
 1

Testing neural networks using the complete round robin method

Boris Kovalerchuk, Clayton Todd, Dan Henderson
Dept. of Computer Science, Central Washington University, Ellensburg, WA, 98926-7520

borisk@cwu.edu toddc.@cwu.edu, hendersond@cwu.edu

Abstract
The reliability of learning methods depends

on testing discovered patterns in the data before
they are used for their intended purpose. A novel
extension of the round robin testing method is
presented in this paper. The novelty includes the
mathematical mechanism used based on the
theory of monotone Boolean functions and
multithreaded parallel processing. This
mechanism speeds up required computations.
The method has been implemented for
backpropagation neural networks and
successfully tested for 1024 neural networks by
using SP500 data.

1. Approach and Method

One common approach used to test learned
regularities is to divide the data set D into two
parts and use one part for training and another
part for validating the discovered patterns. This
process is repeated several times and if results
are similar to each other than a discovered
regularity can be called reliable for data D.

Three major methods for selecting subsets of
training data are known as:

1. Random selection of subsets,
2. Selection of disjoint subsets,
3. Selection of subsets according the

probability distribution.
These methods are sometimes called,
respectively, bootstrap aggregation (bagging),
cross-validated committees, and boosting
[Dietterich, 1997]. The random selection of
subsets, or bagging method, uses a training set
that consists of a sample of m training examples
drawn randomly with replacement from the
original training set of N items.

The second method divides the training sets
into subsets, e.g., 10 disjoint subsets. Then 10
overlapping training sets can be constructed by
deleting some of these 10 subsets. The same
procedure is employed to construct training sets

in 10-fold cross-validation [Dietterich, 1997].
Ensembles constructed in this way are
sometimes called cross-validated committees.

The third method, computes the probability
distribution P(x) over the training data and
generates subsamples of size k according to this
distribution. Moreover, this distribution is
systematically adjusted for paying more attention
for cases failed to learn using previous
subsamples [Dietterich, 1997].

Problems of sub-sampling. Different sub-
samples of a sample, Tr, can be governed by
different regularities. Rejecting and accepting
regularities heavily depends on the accidental
splitting of Tr. This is common for non-
stationary financial time series, e.g., bear and
bull market trends for different time intervals.

Let subsets A and B be chosen from Tr as
testing data and their compliments, A’ and B’, in
Tr be chosen as training data sets:

 Tr=A’∪A, Tr=B’∪B.

Further suppose that subsets A and B satisfy

two different regularities, and that A and B do
not intersect but occupy complimentary parts of
Tr as shown in figure 1, covering 100% of the
sample Tr.

 A A’ C
regularity 1
(bear market)

 B’ B C
 regularity 2
 (bull market)

Independent
data C

Training sample Tr

Figure 1. Training subsets for non-stationary data

Here regularity #1 discovered on A is useless

for A’, which is actually B and thus governed by
regularity #2. Similarly, regularity #2 discovered
on B can not be confirmed on B’ which is
governed by regularity #1. In this extreme 50:50

Kovalerchuk, B., Todd C., Henderson D. Testing Neural Networks Using the Complete Round Robin Method, Proc.
5th Joint Conference on Information Sciences, February 27-March 3, 2000, Atlantic City, NJ, Association of
Intelligent Machinery, vol. 1, pp.823-827, 2000

 2

case, the splitting test approach reasonably
rejected both regularities as universal for Tr.
Now assume that 70% of Tr is governed by
regularity #2 and only 30% by regularity #1. If
accidentally, test set A consists of all cases
governed by regularity #1, then regularity #2
found on A’ will be rejected although it is true
for 70% of the sample Tr.

These examples show that test results can be
sensitive to a particular splitting of Tr. Therefore,
such tests can reflect rather an arbitrary splitting
instead of the real strength of regularities on
data.

A more comprehensive approach is the round
robin method. It is designed to eliminate
arbitrary splitting by examining several groups
of subsets of Tr. If these groups do not cover all
possible subsets then round robin approach faces
the problem of selecting independent subsets and
determining their sizes.

The complete round robin method examines
all groups of subsets of Tr. The obvious
drawback with the complete round robin is that
there are 2n possible subsets, where n is the
number of groups of objects in the data set.
Learning 2n neural networks is a computational
challenge.

Below we present an original implementation
of the complete round robin method and
techniques to speed up required computations
along with experimental testing of 1024 neural
networks constructed using SP500 data. This
method uses the concepts of monotonicity and
multithreaded parallel processing for Windows
NT. It is applicable to both attribute-based and
relational data mining methods. However in
this paper, the method is illustrated only for
neural networks.

Let M be a learning method and D be a set of
N objects, represented by m attributes.
D={di},i=1,…,N, di=(di1, di2,…, dim). Method M
is applied to data D for knowledge discovery.
We assume that data are grouped, for example in
a stock time series, the first 250 data objects
(days) belong to 1980, the next 250 objects
(days) belong to 1981, and so on. To simplify the
example, assume we have ten groups (years),
n=10. Similarly, half years, quarters and other
time intervals can be used. There are 210
possible subsets of the data groups. Any of these
subsets can be used as training data.

If the data do not represent a time series, then
all their complements without constraint can be
used as testing data. For instance, by selecting
the odd groups #1, #3, #5, #7 and #9 for training,

permits use of the even groups #2, #4, #6, #8 and
#10 for testing.

Alternatively, when the data represents a time
series, it is reasonable to assume that test data
should represent a later time than the training
groups. For instance, training data can be the
groups #1 to #5 and testing data can be the
groups #6 to #10.

For our work, we have taken a third path with
completely independent later data C for testing.
This allows us to use any of the 210 subsets of
data for training.

The hypothesis of monotonicity is used below
as a major assumption with the following
notation. Let D1 and D2 be training data sets and
let Perform1 and Perform2 be the performance
indicators of learned models using D1 and D2,
respectively. We will consider a simplified case
of a binary Perform index, where 1 stands for
appropriate performance and 0 stands for
inappropriate performance. The hypothesis of
monotonicity (HM) says that:

If D1⊇ D2 then Perform1≥ Perform2. (1)

This hypothesis means that if data set D1

covers data set D2, then performance of method
M on D1 should be better or equal to
performance of M on D2. The hypothesis
assumes that extra data bring more useful
information than noise for knowledge discovery.
Obviously, the hypothesis is not always true.
From 1024 subsets of ten years used to generate
the neural network, the algorithm found 683
subsets such that Di ⊇ Dj. We expected that the
significant number of them would satisfy the
property of monotonicity

P(M,Di)≥ P(M,Dj)

Surprisingly, in this experiment monotonicity
was observed for all of 683 combinations of
years. This is strong evidence for use of
monotonicity along with the complete round
robin method. In fact, incomplete round robin
method assumes some kind of independence of
training subsets used. Discovered monotonicity
shows that independence at least should be
tested.

Below we introduce a formal notation, which
will allow us to use the concept of monotonicity
in the format where available tools from the
theory of monotone Boolean functions can be
applied.

The error Er for data set D={di}, i=1,…,N, is
the normalized error of all its components di:

 3

∑
∑

=

=
−

= N

i i

i
N

i i

T

JT
Er

1

2
1

)(

))()((

d

dd

Here T(di) is the actual target value for di and
J(di) is the target value forecast delivered by
discovered model J, i.e., the trained neural
network in our case.

Performance is measured by the error
tolerance (threshold) Q0 of error Er:





>
≤

=
0

0

QErif0,
QErif1,

 Perform

Next, we introduce the hypothesis of
monotonicity in terms of binary vectors and
Perform to be able to use methods form the
theory of monotone Boolean functions.
Combinations of years are coded as binary
vectors vi=(vi1,vi2…vi10) with 10 components
from (0000000000) to (1111111111) with total
2n=1024 data subsets. In these binary terms, the
hypothesis of monotonicity can be rewritten as

If vi � vj then Performi≥ Performj (2)

Here relation vi�vj (“no greater than”) for

binary vectors is defined by the ordinary numeric
order relation “≥” for the components of these
vectors:

vi � vj vik ≥ vjk for all k=1,...,10.

Note that not every vi and vj are comparable

with each other by the “�” relation. More
formally, we will present Perform as a quality
indicator Q:

Q(M, D, Q0) =1 Perform=1, (3)

where Q0 is some performance limit. In this
way, we rewrite (2)

If vi � vj then Q(M, Di, Q0)≥ Q(M, Dj, Q0) (4)

and obtain Q(M, D, Q0) as a monotone Boolean
function of D.

The theory of monotone Boolean functions
[Hansel, 1966; Kovalerchuk et al, 1996] is a
well-developed theory having mechanisms to
speed up computations.

We exploit this theory to speed up the round
robin method. Consider a method M and data
sets D1 and D2 with D2 contained in D1.
Informally, according to the hypothesis of

monotonicity if it is found that the method M
does not perform well on the data D1, then it will
not perform well on the data D2 either. Under
this assumption, we do not need to test method
M on D2.

Our experiments with SP500 shows that by
eliminating these redundant computations it is
possible to run method M 250 times instead of
the complete 1024 times. The number of
computations depends on a sequence of testing
data subsets Di. To optimize the sequence of
testing, Hansel’s lemma [Hansel, 1966,
Kovalerchuk et al, 1996] from the theory of
monotone Boolean functions is applied to so
called Hansel’s chains of binary vectors. The
mathematical monotone Boolean function
techniques are presented in [Kovalerchuk et, al,
1996].

The general logic of software is the
following. The set of Hansel chains is generated
first and stored. In the exhaustive case we need
1. to generate 1024 subsets using a file
preparation program and
2. compute backpropagation for all of them.
Actually, we follow the sequence dictated by the
Hansel chains. Therefore, for a given binary
vector we produce the corresponding training
data and compute backpropagation generating
the Perform value. This value is used along with
a stored Hansel chains to decide which binary
vector (i.e., subset of data) will be used next for
learning neural networks. We consider next the
implementation of this approach.

2. Multithreaded implementation

The computation process for the round robin
method can be decomposed into relatively
independent subprocesses. Each subprocess
can match to learning an individual neural
network or a group of the neural networks. The
multithreaded application in C++ uses both these
decompositions, where each subprocess is
implemented as an individual thread. The
program is designed in such way that it can run
in parallel on several processors to further speed
up computations. Screen shots of the
implementation for the backpropagation neural
network are presented in figures 2 and 5. The
implementation diagram of this project is
presented in figure 3.

Threads and the user interface. The
processes described at the end of the previous

 4

section lend themselves to implementation by
threads.

Figure 2. Main screen for complete round robin
method software for neural networks

The system creates a new thread for the first
vector in each Hansel chain. Each thread
accomplishes three tasks:
– training file preparation,
– backpropagation using this file, and
– computing the value Perform.
When the thread starts, it paints a small area
within the Thread State Watcher on the form to
provide visual feedback to the user. The Perform
value is extended, if possible, to the other threads
in the chain and the results are printed to a file.

Threads are continually checking the critical
section and an event state to see if it is
permissible for them to run yet. When it is
finally permitted for them to run, a group of
them will all run at once, which is forced by the
operating system to maintain the highest priority.
Since the starting of all the threads for each
vector occurs at the same time, the vectors are
split up over several computers.

The main program acts as a client, which
accesses servers to run threads on different
computers. On initialization, the client gathers
user information and sends sets of vectors to
various servers. Then the servers initialize only
threads corresponding to the vectors they have
been given.

If a server finishes with all its assigned
vectors it starts helping another server with the
vectors it has not yet finished. Instead of having
one computer run 250+ threads, six computers
can run anywhere from 9 to 90 threads. This
provides a speed up of approximately 6 times.

The client is made of two main components:
the interface and the monitor. Once settings are
made through the interface, the simulation is
started. The monitor then controls the process by

setting up, updating, and sending work to all the
connected servers.

Interface

Thread Monitor

Server 1 Server 2 Server 250

Network Communication Streams

Threads….

Figure 3. Implementation diagram

This information is communicated in the form of
groups of vectors. Once the servers receive their
information, they spawn threads to work on the
assigned group of vectors.

Once the thread has reached a result (Perform
value), the information is communicated back to
the monitor. The monitor then sends more work
to the server if any remains and updates the
display to reflect the work that has been done.
Servers that are given work and fail to reply,
have their work flagged and once all other results
are collected, the flagged work is sent to a
different server. If there is still flagged work and
no servers are responding, the client itself will
execute the remaining work.

3. Experiments with SP500 and Neural
Networks

In [Rao, Rao, 1993] the backpropagation neural
network producing 0.6% prediction error on the
SP500 test data (50 weeks) with 200 weeks
(about four years) of training data was presented
Now we consider the question - is this result
reliable? In other words, will it be sustained for
wider training and testing data? In an effort to
answer these questions, we used all available
data associated with SP500 from [Rao, Rao,
1993] as training and testing data:
a) Training data -- all trading weeks from 1980

to 1989 and
b) Independent testing data -- all trading weeks

from 1990-1992.
We generated all 1024 subsets of the ten

training years (1980-1989) and computed the
corresponding backpropagation neural networks

 5

and their Perform values. Table 1 (see all tables
in the appendix) shows these results. A
satisfactory performance is coded as 1 and non-
satisfactory performance is coded as 0. Each of
the resulting neural networks was tested on the
same fixed independent testing data set (1990-
1992) with a 3% error tolerance threshold
(Q0=0.03), which is higher than 0.6% used for
the smaller data set in [Rao, Rao, 1993].

The majority of data subsets (67.05%, 686)
satisfied the 3% error tolerance thus
demonstrating sound performance of both
training and testing data. Unsound performance
was demonstrated by 48 subsets (4.68%). Of
those 48 cases, 24 had Perform=1 for training
and Perform=0 for testing while the other 24
cases had Perform=0 for training and Perform=1
for testing. Of course testing regularities found
on any of those 48 subsets will fail, even if
similar regularities were discovered on the 686
other subsets above. Using any of the remaining
289 subsets (28.25%) as training data would lead
to the conclusion that there is insufficient data to
discover regularities with a 3% error tolerance.

Therefore, a random choice of data for
training from ten-year SP500 data will not
produce a regularity in 32.95% of cases,
although regularities useful for forecasting do
exist.

Table 2 presents a more specific analysis for 9
nested data subsets of the possible 1023 subsets
(the trivial empty case (0000000000) is excluded
from consideration). Suppose we begin the
nested sequence with a single year (1986). Not
surprisingly, it turns out that this single year’s
data is too small to train a neural network to a
3% error tolerance.

For the next two subsets, we added the years
1988 and 1989, respectively with the same
negative result. However, when a fourth subset
was added to the data, 1985, the error moved
below the 3% threshold. The additional subsets
with five or more years of data also satisfy the
error criteria. This, of course, is not surprising as
we expect the monotonicity hypothesis will hold.

Similar computations made for all other 1023
combinations of years have shown that only a
few combinations of four years satisfy the 3%
error tolerance, but practically all five-year
combinations satisfy the 3% threshold. In
addition, all combinations of over five years
satisfy this threshold.

Let us return to the results of Rao and Rao
[1993] about the 0.6% error for 200 weeks
(about four years) from the 10-year training data.
In general, we see that four-year training data

sets produce marginally reliable forecasts. For
instance, the four years (1980, 1981, 1986, and
1987) corresponding to the binary vector
(1100001100) do not satisfy the 3% error
tolerance when used as training data. A neural
network trained on them failed when it was
tested on 1990-1992 years.

Figure 4 and table 3 present further analyses
of the performance of the same 1023 data
subsets, but with three different levels of error
tolerance, Q0: 3.5%, 3.0% and 2.0%. The number
of neural networks with sound performance goes
down from 81.82% to 11.24% by moving error
tolerance from 3.5% to 2%. Therefore, neural
networks with 3.5% error tolerance are much
more reliable than networks with 2.0 % error
tolerance. A random choice of training data for
2% error tolerance will more often reject the
training data as insufficient. However, this
standard approach does not even allow us to
know how unreliable the result is without
running the complete 1024 subsets in complete
round robin method.

0
10
20
30
40
50
60
70
80
90

<0,0> <1,1> <0,1> <1,0>

Performance <training,testing>

%
 o

f n
eu

ra
l n

et
w

or
ks

Er. tolerance=3.5% Er.tolerance=3.0% Er. tolerance=2.0%

Figure 4. Performance of neural networks for different
error tolerance (3.5%, 3.0% and 2.0%)

Running a complete round robin is a
computational challenge. Below we present
results of computational experiments showing
that monotonicity and multithreading
significantly decrease the computation time. Use
of monotonicity with 1023 threads decreased
average runtime about 3.5 times from 15-20
minutes to 4-6 minutes in order to train 1023
Neural Networks in the case of mixed 1s and 0s
for output. Different error tolerance values can
change output and runtime. For instance, we may
get extreme cases with all 1’s or all 0’s as
outputs. Table 4 shows result obtained for the
extreme case where all 1s were produced as
output.

In addition, a significant amount of time is
taken for file preparation to train 1023 Neural
Networks. The largest share of time for file

 6

preparation (41.5%) is taken by files using five
years in the data subset (table 5).

We also ran backpropagation neural networks
on another set of SP500 data (training data --
daily SP500 data from 1985-1994, and testing
data -- daily SP500 data from 1995-1998).

Figure 5. Performance of 256 Neural networks on
SP500 data.

Figure 5 presents a screen shot of the
performance of 256 backpropagation neural
networks for these data. Error tolerance in this
test was chosen to be 3%. More than one-
thousand (1007) neural networks out of 1023
total satisfied this error tolerance on both training

and testing data. The total runtime was 4.14
minutes using a single processor. In this
experiment, monotonicity allowed us to run 256
subsets instead of 1023 subsets.

Acknowledgment

We would like to express our gratitude to James
Schwing and Edward Gellenbeck for providing
many valuable comments.

References

Dietterich, T. G., Machine Learning Research:
Four Current Directions AI Magazine. 18 (4),
97-136. 1997.

Hansel, G. Sur le nombre des fonctions Boolenes
monotones den variables, C.R. Acad. Sci.
Paris (in French), 262(20):1088-1090, 1966.

Kovalerchuk, B., Triantaphyllou, E., Despande,
A., Vityaev, E., Interactive Learning of
Monotone Boolean Function. Information
Sciences, Vol. 94, issue 1-4, 1996, pp. 87-
118.

Rao, V.B., Rao, H.V. C++ Neural Networks and
Fuzzy Logic, Management Information
Source Press, NY, 1993.

 7

 Appendix
Table 1. Performance of 1024 Neural Networks

Performance
Training Testing

Number of neural networks % of neural networks

0 0 289 28.25
0 1 24 2.35
1 0 24 2.35
1 1 686 67.05

Table 2. Backpropagation neural networks performance for different data subsets.
Training years Performance Binary code

for set of
years

80 81 82 83 84 85 86 87 88 89 Training

Testing
90-92

0000001000 x 0 0
0000001001 x x 0 0
0000001011 x x x 0 0
0000011011 x x x x 1 1
0000111011 x x x x x 1 1
0001111011 x x x x x x 1 1
0011111011 x x x x x x x 1 1
0111111011 x x x x x x x x 1 1
1111111011 x x x x x x x x x 1 1

Table 3. Overall performance of 1024 neural networks with different error tolerance
Performance Error tolerance
Training Testing

Number of neural
 networks

% of neural networks

3.5% 0 0 167 16.32
 0 1 3 0.293
 1 0 6 0.586
 1 1 837 81.81

3.0% 0 0 289 28.25
 0 1 24 2.35
 1 0 24 2.35
 1 1 686 67.05

2.0% 0 0 845 82.60
 0 1 22 2.150

 1 0 31 3.030
 1 1 115 11.24

Table 4. Runtime for different error tolerance settings
Method Average time for 1023

Neural Networks
1 Processor, no threads

Average time for 1023
Neural Networks
1 Processor, 1023 threads

Round-Robin with monotonicity for
mixed 1’s and 0’s as output

15-20 min. 6-4 min.

Round-Robin with monotonicity for
all 1’s as output

10 min. 3.5 min.

Table 5. Time for backpropagation and file preparation
Set of years % of time in File preparation % of time in Backpropagation
0000011111 41.5% 58.5%
0000000001 36.4% 63.6%
1111111111 17.8% 82.2%

