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Abstract 
The reliability of learning methods depends 

on testing discovered patterns in the data before 
they are used for their intended purpose. A novel 
extension of the round robin testing method is 
presented in this paper. The novelty includes the 
mathematical mechanism used based on the 
theory of monotone Boolean functions and 
multithreaded parallel processing. This 
mechanism speeds up required computations. 
The method has been implemented for 
backpropagation neural networks and 
successfully tested for 1024 neural networks by 
using  SP500 data. 

1. Approach and Method 

One common approach used to test learned 
regularities is to divide the data set D into two 
parts and use one part for training and another 
part for validating the discovered patterns. This 
process is repeated several times and if results 
are similar to each other than a discovered 
regularity can be called reliable for data D.   

Three major methods for selecting subsets of 
training data are known as: 

1. Random selection of subsets, 
2. Selection of disjoint subsets, 
3. Selection of subsets according the 

probability distribution. 
These methods are sometimes called, 
respectively, bootstrap aggregation (bagging), 
cross-validated committees, and boosting 
[Dietterich, 1997].  The random selection of 
subsets, or bagging method, uses a training set 
that consists of a sample of m training examples 
drawn randomly with replacement from the 
original training set of N items.  

The second method divides the training sets 
into subsets, e.g., 10 disjoint subsets. Then 10 
overlapping training sets can be constructed by 
deleting some of these 10 subsets. The same 
procedure is employed to construct training sets 

in 10-fold cross-validation [Dietterich, 1997]. 
Ensembles constructed in this way are 
sometimes called cross-validated committees.  

The third method, computes the probability 
distribution P(x) over the training data and 
generates subsamples of size k according to this 
distribution. Moreover, this distribution is 
systematically adjusted for paying more attention 
for cases failed to learn using previous 
subsamples [Dietterich, 1997]. 

Problems of sub-sampling. Different sub-
samples of a sample, Tr, can be governed by 
different regularities. Rejecting and accepting 
regularities heavily depends on the accidental 
splitting of Tr. This is common for non-
stationary financial time series, e.g., bear and 
bull market trends for different time intervals.  

Let subsets A and B be chosen from Tr as 
testing data and their compliments, A’ and B’, in 
Tr be chosen as training data sets: 

 
 Tr=A’∪A, Tr=B’∪B.  
 
Further suppose that subsets A and B satisfy 

two different regularities, and that A and B do 
not intersect but occupy complimentary parts of 
Tr as shown in figure 1, covering 100% of the 
sample Tr. 

 

      A                                     A’                             C
regularity 1
(bear market)

        B’                                    B                                C
                                           regularity 2
                                         (bull market)

Independent
data C

Training sample Tr

 
Figure 1. Training subsets for non-stationary data 

 
Here regularity #1 discovered on A is useless 

for A’, which is actually B and thus governed by 
regularity #2. Similarly, regularity #2 discovered 
on B can not be confirmed on B’ which is 
governed by regularity #1. In this extreme 50:50 
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case, the splitting test approach reasonably 
rejected both regularities as universal for Tr. 
Now assume that 70% of Tr is governed by 
regularity #2 and only 30% by regularity #1. If 
accidentally, test set A consists of all cases 
governed by regularity #1, then regularity #2 
found on A’ will be rejected although it is true 
for 70% of the sample Tr.  

These examples show that test results can be 
sensitive to a particular splitting of Tr. Therefore, 
such tests can reflect rather an arbitrary splitting 
instead of the real strength of regularities on 
data.   

A more comprehensive approach is the round 
robin method. It is designed to eliminate 
arbitrary splitting by examining several groups 
of subsets of Tr. If these groups do not cover all 
possible subsets then round robin approach faces 
the problem of selecting independent subsets and 
determining their sizes.  

The complete round robin method examines 
all groups of subsets of Tr. The obvious 
drawback with the complete round robin is that 
there are 2n possible subsets, where n is the 
number of groups of objects in the data set.  
Learning 2n neural networks is a computational 
challenge.   

Below we present an original implementation 
of the complete round robin method and 
techniques to speed up required computations 
along with experimental testing of 1024 neural 
networks constructed using SP500 data. This 
method uses the concepts of monotonicity and 
multithreaded parallel processing for Windows 
NT. It is applicable to both attribute-based and 
relational data mining methods. However in 
this paper, the  method is illustrated only for 
neural networks. 

Let M be a learning method and D be a set of 
N objects, represented by m attributes. 
D={di},i=1,…,N, di=(di1, di2,…, dim). Method M 
is applied to data D for knowledge discovery. 
We assume that data are grouped, for example in 
a stock time series, the first 250 data objects 
(days) belong to 1980, the next 250 objects 
(days) belong to 1981, and so on. To simplify the 
example, assume we have ten groups (years), 
n=10. Similarly, half years, quarters and other 
time intervals can be used. There are 210 
possible subsets of the data groups. Any of these 
subsets can be used as training data.  

If the data do not represent a time series, then 
all their complements without constraint can be 
used as testing data. For instance, by selecting 
the odd groups #1, #3, #5, #7 and #9 for training, 

permits use of the even groups #2, #4, #6, #8 and 
#10 for testing.  

Alternatively, when the data represents a time 
series, it is reasonable to assume that test data 
should represent a later time than the training 
groups. For instance, training data can be the 
groups #1 to #5 and testing data can be the 
groups #6 to #10.  

For our work, we have taken a third path with 
completely independent later data C for testing.  
This allows us to use any of the 210 subsets of 
data for training.  

The hypothesis of monotonicity is used below 
as a major assumption with the following 
notation. Let D1 and D2 be training data sets and 
let Perform1 and Perform2 be the performance 
indicators of learned models using D1 and D2, 
respectively. We will consider a simplified case 
of a binary Perform index, where 1 stands for 
appropriate performance and 0 stands for 
inappropriate performance. The hypothesis of 
monotonicity (HM) says that: 

 
If  D1⊇ D2 then Perform1≥ Perform2.        (1) 
 
This hypothesis means that if data set D1 

covers data set D2, then performance of method 
M on D1 should be better or equal to 
performance of M on D2. The hypothesis 
assumes that extra data bring more useful 
information than noise for knowledge discovery. 
Obviously, the hypothesis is not always true. 
From 1024 subsets of ten years used to generate 
the neural network, the algorithm found 683 
subsets such that Di ⊇ Dj. We expected that the 
significant number of them would satisfy the 
property of monotonicity  

 
P(M,Di)≥ P(M,Dj)  
 

Surprisingly, in this experiment monotonicity 
was observed for all of 683 combinations of 
years. This is strong evidence for use of 
monotonicity along with the complete round 
robin method. In fact, incomplete round robin 
method assumes some kind of independence of 
training subsets used.  Discovered monotonicity 
shows that independence at least should be 
tested.  

Below we introduce a formal notation, which 
will allow us to use the concept of monotonicity 
in the format where available tools from the 
theory of monotone Boolean functions can be 
applied. 

The error Er for data set D={di}, i=1,…,N, is 
the normalized error of all its components di: 
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Here T(di) is the actual target value for di and 
J(di) is the target value forecast delivered by 
discovered model J, i.e., the trained neural 
network in our case.  

Performance is measured by the error 
tolerance (threshold) Q0 of error Er: 
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Next, we introduce the hypothesis of 
monotonicity in terms of binary vectors and 
Perform to be able to use methods form the 
theory of monotone Boolean functions. 
Combinations of years are coded as binary 
vectors vi=(vi1,vi2…vi10) with 10 components 
from (0000000000) to (1111111111) with total 
2n=1024 data subsets. In these binary terms, the 
hypothesis of monotonicity can be rewritten as 

 
If vi � vj  then Performi≥ Performj    (2) 
 
Here relation vi�vj  (“no greater than”) for 

binary vectors is defined by the ordinary numeric 
order relation “≥” for the components of these 
vectors: 

 
vi � vj     vik  ≥ vjk  for all k=1,...,10. 
 
Note that not every vi and vj are comparable 

with each other by the “�” relation. More 
formally, we will present Perform as a quality 
indicator Q:  

 
Q(M, D, Q0) =1  Perform=1,    (3) 
  
 

where Q0  is some performance limit. In this 
way, we rewrite (2)  
 
If vi � vj then Q(M, Di, Q0)≥ Q(M, Dj, Q0)       (4) 

 
and obtain Q(M, D, Q0) as a monotone Boolean 
function of D.      

The theory of monotone Boolean functions 
[Hansel, 1966; Kovalerchuk et al, 1996] is a 
well-developed theory having mechanisms to 
speed up computations.  

We exploit this theory to speed up the round 
robin method. Consider a method M and data 
sets D1 and D2 with D2 contained in D1.  
Informally, according to the hypothesis of 

monotonicity if it is found that the method M 
does not perform well on the data D1, then it will 
not perform well on the data D2 either. Under 
this assumption, we do not need to test method 
M on D2.  

Our experiments with SP500 shows that by 
eliminating these redundant computations it is 
possible to run method M 250 times instead of 
the complete 1024 times. The number of 
computations depends on a sequence of testing 
data subsets Di. To optimize the sequence of 
testing, Hansel’s lemma [Hansel, 1966, 
Kovalerchuk et al, 1996] from the theory of 
monotone Boolean functions is applied to so 
called Hansel’s chains of binary vectors. The 
mathematical monotone Boolean function 
techniques are presented in [Kovalerchuk et, al, 
1996].  

The general logic of software is the 
following. The set of Hansel chains is generated 
first and stored. In the exhaustive case we need 
1. to generate 1024 subsets using a file 
preparation program and  
2.  compute backpropagation for all of them. 
Actually, we follow the sequence dictated by the 
Hansel chains. Therefore, for a given binary 
vector we produce the corresponding training 
data and compute backpropagation generating 
the Perform value.  This value is used along with 
a stored Hansel chains to decide which binary 
vector (i.e., subset of data) will be used next for 
learning neural networks. We consider next the 
implementation of this approach. 

 

2. Multithreaded implementation 

The computation process for the round robin 
method can be decomposed into relatively 
independent subprocesses. Each subprocess 
can match to learning an individual neural 
network or a group of the neural networks. The 
multithreaded application in C++ uses both these 
decompositions, where each subprocess is 
implemented as an individual thread. The 
program is designed in such way that it can run 
in parallel on several processors to further speed 
up computations. Screen shots of the 
implementation for the backpropagation neural 
network  are  presented in figures 2 and 5. The 
implementation diagram of this project is 
presented in figure 3.  

Threads and the user interface. The 
processes described at the end of the previous 
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section lend themselves to implementation by 
threads.  

 
Figure 2. Main screen for complete round robin 
method software for neural networks 
 

The system creates a new thread for the first 
vector in each Hansel chain. Each thread 
accomplishes three tasks:  
– training file preparation,  
– backpropagation using this file, and  
– computing the value Perform.  
When the thread starts, it paints a small area 
within the Thread State Watcher on the form to 
provide visual feedback to the user. The Perform 
value is extended, if possible, to the other threads 
in the chain and the results are printed to a file.  

Threads are continually checking the critical 
section and an event state to see if it is 
permissible for them to run yet. When it is 
finally permitted for them to run, a group of 
them will all run at once, which is forced by the 
operating system to maintain the highest priority. 
Since the starting of all the threads for each 
vector occurs at the same time, the vectors are 
split up over several computers.  

The main program acts as a client, which 
accesses servers to run threads on different 
computers. On initialization, the client gathers 
user information and sends sets of vectors to 
various servers. Then the servers initialize only 
threads corresponding to the vectors they have 
been given.  

If a server finishes with all its assigned 
vectors it starts helping another server with the 
vectors it has not yet finished. Instead of having 
one computer run 250+ threads, six computers 
can run anywhere from 9 to 90 threads. This 
provides a speed up of approximately 6 times.  

The client is made of two main components: 
the interface and the monitor. Once settings are 
made through the interface, the simulation is 
started. The monitor then controls the process by 

setting up, updating, and sending work to all the 
connected servers. 

Interface

Thread Monitor

Server 1 Server 2 Server 250

Network Communication Streams

Threads….

 

Figure 3. Implementation diagram 

This information is communicated in the form of 
groups of vectors. Once the servers receive their 
information, they spawn threads to work on the 
assigned group of vectors.  

Once the thread has reached a result (Perform 
value), the information is communicated back to 
the monitor. The monitor then sends more work 
to the server if any remains and updates the 
display to reflect the work that has been done. 
Servers that are given work and fail to reply, 
have their work flagged and once all other results 
are collected, the flagged work is sent to a 
different server. If there is still flagged work and 
no servers are responding, the client itself will 
execute the remaining work. 

3. Experiments with SP500 and Neural 
Networks 

In [Rao, Rao, 1993] the backpropagation neural 
network producing 0.6% prediction error on the 
SP500 test data (50 weeks) with 200 weeks 
(about four years) of training data was presented 
Now we consider the question - is this result 
reliable? In other words, will it be sustained for 
wider training and testing data? In an effort to 
answer these questions, we used all available 
data associated with SP500 from [Rao, Rao, 
1993] as training and testing data:  
a) Training data -- all trading weeks from 1980 

to 1989 and  
b) Independent testing data -- all trading weeks 

from 1990-1992. 
We generated all 1024 subsets of the ten 

training years (1980-1989) and computed the 
corresponding backpropagation neural networks 
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and their Perform values. Table 1 (see all tables 
in the appendix) shows these results. A 
satisfactory performance is coded as 1 and non-
satisfactory performance is coded as 0. Each of 
the resulting neural networks was tested on the 
same fixed independent testing data set (1990-
1992) with a 3% error tolerance threshold 
(Q0=0.03), which is higher than 0.6% used for 
the smaller data set in [Rao, Rao, 1993]. 

The majority of data subsets (67.05%, 686) 
satisfied the 3% error tolerance thus 
demonstrating sound performance of both 
training and testing data. Unsound performance 
was demonstrated by 48 subsets (4.68%). Of 
those 48 cases, 24 had Perform=1 for training 
and Perform=0 for testing while the other 24 
cases had Perform=0 for training and Perform=1 
for testing. Of course testing regularities found 
on any of those 48 subsets will fail, even if 
similar regularities were discovered on the 686 
other subsets above. Using any of the remaining 
289 subsets (28.25%) as training data would lead 
to the conclusion that there is insufficient data to 
discover regularities with a 3% error tolerance.   

Therefore, a random choice of data for 
training from ten-year SP500 data will not 
produce a regularity in 32.95% of cases, 
although regularities useful for forecasting do 
exist. 

Table 2 presents a more specific analysis for 9 
nested data subsets of the possible 1023 subsets 
(the trivial empty case (0000000000) is excluded 
from consideration). Suppose we begin the 
nested sequence with a single year (1986). Not 
surprisingly, it turns out that this single year’s 
data is too small to train a neural network to a 
3% error tolerance.  

For the next two subsets, we added the years 
1988 and 1989, respectively with the same 
negative result. However, when a fourth subset 
was added to the data, 1985, the error moved 
below the 3% threshold. The additional subsets 
with five or more years of data also satisfy the 
error criteria. This, of course, is not surprising as 
we expect the monotonicity hypothesis will hold. 

Similar computations made for all other 1023 
combinations of years have shown that only a 
few combinations of four years satisfy the 3% 
error tolerance, but practically all five-year 
combinations satisfy the 3% threshold. In 
addition, all combinations of over five years 
satisfy this threshold.   

Let us return to the results of Rao and Rao 
[1993] about the 0.6% error for 200 weeks 
(about four years) from the 10-year training data. 
In general, we see that four-year training data 

sets produce marginally reliable forecasts.  For 
instance, the four years (1980, 1981, 1986, and 
1987) corresponding to the binary vector 
(1100001100) do not satisfy the 3% error 
tolerance when used as training data. A neural 
network trained on them failed when it was 
tested on 1990-1992 years.  

Figure 4 and table 3  present further analyses 
of the performance of the same 1023 data 
subsets, but with three different levels of error 
tolerance, Q0: 3.5%, 3.0% and 2.0%. The number 
of neural networks with sound performance goes 
down from 81.82% to 11.24% by moving error 
tolerance from 3.5% to 2%. Therefore, neural 
networks with 3.5% error tolerance are much 
more reliable than networks with 2.0 % error 
tolerance. A random choice of training data for 
2% error tolerance will more often reject the 
training data as insufficient.  However, this 
standard approach does not even allow us to 
know how unreliable the result is without 
running the complete 1024 subsets in complete 
round robin method.  
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Figure 4. Performance of neural networks for different 
error tolerance (3.5%, 3.0% and 2.0%) 

Running a complete round robin is a 
computational challenge. Below we present 
results of computational experiments showing 
that monotonicity and multithreading 
significantly decrease the computation time. Use 
of monotonicity with 1023 threads decreased 
average runtime about 3.5 times from 15-20 
minutes to 4-6 minutes in order to train 1023 
Neural Networks in the case of mixed 1s and 0s 
for output. Different error tolerance values can 
change output and runtime. For instance, we may 
get extreme cases with all 1’s or all 0’s as 
outputs. Table 4 shows result obtained for the 
extreme case where all 1s were produced as 
output.  

In addition, a significant amount of time is 
taken for file preparation to train 1023 Neural 
Networks. The largest share of time for file 
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preparation (41.5%) is taken by files using five 
years in the data subset (table 5).   

We also ran backpropagation neural networks 
on another set of SP500 data (training data -- 
daily SP500 data from 1985-1994, and testing 
data -- daily SP500 data from 1995-1998). 

Figure 5. Performance of 256 Neural networks on 
SP500 data.  

Figure 5 presents a screen shot of the 
performance of 256 backpropagation neural 
networks for these data. Error tolerance in this 
test was chosen to be 3%. More than one-
thousand (1007) neural networks out of 1023 
total satisfied this error tolerance on both training 

and testing data. The total runtime was 4.14 
minutes using a single processor. In this 
experiment, monotonicity allowed us to run 256 
subsets instead of 1023 subsets.  
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      Appendix 
Table 1. Performance of 1024 Neural Networks 

Performance 
Training Testing 

Number of neural networks  % of neural networks 

0 0 289 28.25 
0 1 24 2.35 
1 0 24 2.35 
1 1 686 67.05 

Table 2. Backpropagation neural networks performance for different data subsets. 
Training years Performance Binary code 

for set of 
years 

80 81 82 83 84 85 86 87 88 89 Training 
 

Testing  
90-92 

0000001000       x    0 0 
0000001001       x   x 0 0 
0000001011       x  x x 0 0 
0000011011      x x  x x 1 1 
0000111011     x x x  x x 1 1 
0001111011    x x x x  x x 1 1 
0011111011   x x x x x  x x 1 1 
0111111011  x x x x x x  x x 1 1 
1111111011 x x x x x x x  x x 1 1 

 

Table 3. Overall performance of 1024 neural networks with different error tolerance 
Performance Error tolerance 
Training Testing 

Number of neural 
 networks  

% of neural networks 

3.5% 0 0 167 16.32 
 0 1 3 0.293 
 1 0 6 0.586 
 1 1 837 81.81 

3.0% 0 0 289 28.25 
 0 1 24 2.35 
 1 0 24 2.35 
 1 1 686 67.05 

2.0% 0 0 845 82.60 
 0 1 22 2.150 

 1 0 31 3.030 
 1 1 115 11.24 

Table 4. Runtime for different error tolerance settings  
Method Average time for 1023 

Neural Networks 
1 Processor,  no threads 

Average time for 1023 
Neural Networks 
1 Processor, 1023 threads 

Round-Robin with monotonicity for 
mixed 1’s and 0’s as output 

15-20 min. 6-4 min. 

Round-Robin with monotonicity for 
all 1’s as output  

10 min. 3.5 min. 

Table 5. Time for backpropagation and file preparation         
Set of years % of time in File preparation             % of time in Backpropagation 
0000011111 41.5% 58.5% 
0000000001 36.4% 63.6% 
1111111111 17.8% 82.2% 
 


