
1

An Automatic Approach for Ontology-Driven Service Composition

Hua Xiao
School of Computing
Queen’s University

Kingston, Ontario, Canada
huaxiao@cs.queensu.ca

Ying Zou, Ran Tang
Dept. of Electrical and Computer Engineering

Queen’s University
Kingston, Ontario, Canada

{ying.zou, 8rt4}@queensu.ca

Joanna Ng, Leho Nigul
IBM Toronto Lab

Markham, Ontario, Canada
{jwng, lnigul}@ca.ibm.com

Abstract—Current service composition techniques and tools
are mainly designed for use by Service Oriented Architecture
(SOA) professionals to solve business problems. This focus on
SOA professionals creates challenges for the non-expert users,
with limited SOA knowledge, who try to integrate SOA
solutions into their online experience. To shelter non-expert
users from the complexity of service composition, we propose
an approach which automatically composes a service on the fly
to meet the situational needs of a user. We present a tag-based
service description schema which allows non-expert users to
easily understand the description of services and add their own
descriptions using descriptive tags. Instead of specifying the
detailed steps for composing a service, a non-expert user would
specify the goal of their desired activities using a set of
keywords then our approach can automatically identify the
relevant services to achieve the goal at run-time. A prototype is
developed as a proof of concept. We conduct a case study to
compare the performance of our approach in automatic service
composition with a baseline approach which consists of the
manual process of searching for services using keywords. The
case study shows that our approach can achieve higher
precision and recall than the baseline approach.

Keywords—tag-based service description; service discovery;
service composition; ontology

I. INTRODUCTION
In today’s on-line experience, an end-user, who is not

familiar with Web services standards and tools, frequently
re-visits Web sites and uses on-line services to perform
repeated activities, such as on-line shopping. The end-user
potentially composes an ad-hoc process to fulfill his or her
needs. Such an ad-hoc process is characterized by a set of
tasks performed by end-users without a strict execution
order. For example, planning a trip is an ad-hoc process for
many end-users. It involves several tasks, such as searching
for flight tickets, booking a hotel, and checking the weather
reports for the destination. These tasks can be performed in
any order to achieve the goal of trip planning. More
specifically, an end-user would manually browse different
Web services to gather each piece of information to plan a
trip. It is often challenging for end-users to compose the
frequently used services as a process due to the detailed
knowledge required for service composition.

In the current state of practice, developing Service
Oriented Architecture (SOA) systems requires a large
number of professionals (e.g., business analyst, system
integrator and service developer) with strong SOA
background. The development process involves various
technical tools and languages to specify, compose, and
deploy services. To produce a SOA system, the

professionals in different roles and tools must interact in
harmony. Unfortunately, non-expert end-users do not
possess knowledge of most of these tools and lack the
knowledge of SOA standards. In short, involving end-users
in service composition has the following two challenges:

Complexity of service descriptions. The Web Service
Description Language (WSDL) [8] is commonly used to
define the programming interface of a service, such as the
operations offered by a service and the format of messages
sent and received between services. However, WSDL is too
complex for non-expert end-users. WSDL is primarily
intended for SOA experts to understand the interface and
parameters of a Web service to correctly invoke a service.

Complexity of service integration. A system integrator
can specify BPEL (Business Process Execution Language)
[28] processes to compose Web services, using tools, such
as WID (WebSphere Integration Developer) [15]. An ad-hoc
process involves the dynamic integration of various services
(e.g., Web services, and Web sites) on the fly. It is
infeasible to expect an end-user to specify the details of
each task and orchestrate a well-defined process in BPEL.

To help such end-users compose services for their daily
activities, we propose an approach that hides the complexity
of Web services standards and tools. Our approach
automatically identifies services which reflect the situational
needs of users. More specifically, we address the
aforementioned challenges in the following two aspects:
1) To ease the end-user’s difficulty in understanding the

functional and non-functional properties of a service, we
propose a service description schema that describes
services using descriptive tags (i.e., keywords). The end-
users can provide feedback based on their experience of
using the services.

2) Instead of requiring end-users to specify the concrete
tasks, the end-users only need to describe the goal that
they want to achieve by invoking services using
keywords. For example, the goal for planning a trip can
be expressed using keywords, such as trip and travel. To
derive the tasks for achieving the specified goal, we need
to understand the semantic meaning of the specified
goal. Ontologies capture the relevant information related
to particular goals using expert knowledge. For example
the ontology for the concept “travel” lists relevant
concepts, such as “flight”, “hotel reservation”, and
“weather”. To have a better understanding of the
specified goal, we search for existing ontologies that can
expand the meaning of a specified goal. Furthermore, we

2

provide a technique that analyzes the identified ontology
to automatically discover services and compose an ad-
hoc process to achieve the specified goal.
The remainder of this paper is organized as follows.

Section II introduces ontologies. Section III presents our
approach to compose ad-hoc processes. Section IV
describes a proof of concept prototype for our approach.
Section V shows our case studies. Section VI gives an
overview of the related work. Section VII concludes the
paper and presents the future work.

II. MODELING AN ONTOLOGY DEFINITION
An ontology expresses common concepts (e.g., people,

travel and weather), and the relations among these concepts.
The semantic of a high-level concept is expanded into
multiple more concrete sub-concepts. An ontology can be
visualized as a graph that contains nodes representing a
concept or a sub-concept, and edges representing relations
between these concepts. Figure 1 illustrates an example
ontology for defining the concept “travel”.

Figure 1. An Example Ontology Definition

Ontologies are manually specified using various
standards, such as Web Ontology Language (OWL) [26]
and Resource Definition Framework (RDF) [5]. Various
ontology specifications define different types of relations
among concepts/sub-concepts. To capture the general
structure and concepts of ontologies specified in various
languages, we create a general ontology graph that abstracts
the relations specified in various standards into three types
of edges. Figure 1 illustrates the various edges among
concepts in an ontology graph.
• subClassof: a concept extends an abstract concept to

convey more concrete knowledge. As shown in Figure
1, “Fight”, “Hotel” and “Weather” are the subclasses of
“Travel”. The subClassof relation describes the parent
and children relations among the connected concepts.

• AND relation: a concept is composed of its children.
“Weather” is composed of “Forecast”, “Wind”,
“Temperature” and “Precision”.

• OR relation: two concepts are in an alternative relation.
For example, “hotel agency” can be the alternative for
“hotel reservation”, meaning that a user can either book
the hotel by themselves or asks a “hotel agency” to
book it for them.

Essentially, the subClassof relation describes the
extension of a parent concept to a set of children concepts.
The AND and OR relations capture the relations among the
child concepts. A terminal concept, such as “Phone
Number” and “Price”, has no sub-concepts. A terminal
concept delivers the most concrete information in an
ontology graph. An internal concept, such as “Air Agency”
and “Weather”, has at least one sub-concept. We also
define the depth of a concept as the distance along the path
from the root to the concept. For the example illustrated in
Figure 1, concept “Air Agency” has a depth of 2, and the
concept “Payment” has a depth of 3.

III. AN APPROACH FOR COMPOSING AD-HOC PROCESSES
An ad-hoc process records the tasks that need to be

performed by an end-user. A task can be associated with
more than one service of the similar functionally. For
example, the task, “purchasing flight tickets”, can be
implemented by different travel agent services. In some
cases, a few tasks have to be performed together. For
example, two tasks, such as “selecting a book” and
“providing payment information” must be performed before
a book can be delivered. When more than one task must be
completed, the relation among these tasks is treated as an
“AND” relation. In the other cases, it is sufficient to conduct
only one task among several tasks. For example, tasks, such
as “buying a train ticket” and “buying a flight ticket” are
alternative options for the transportation. Such an alternative
relation among tasks is considered as an “OR” relation. An
ad-hoc process contains a set of tasks and the “AND” and
“OR” relations among tasks. The set of tasks can be
performed in any order; hence this is an ad-hoc process.
Figure 2 shows the schema for representing an ad-hoc
process. The services fulfilling a task are either directly
discovered from a service repository or composed by other
ad-hoc processes (i.e., sub-processes).

Figure 2. Description of an Ad-Hoc Process

To generate a meaningful ad-hoc process, it is critical to
describe the service in an efficient way that allows end-users
and composition tools to understand the properties of Web
services. In Web 2.0, tags are a popular feature to describe
Web resources. For example, Facebook [9] uses tags to
depict images and seekda.com [23] takes tags to describe
Web services. However, those tags are designed for the
purpose of classification and searching. The tags are not
organized in a structured way to ease the end-user to
understand the detailed properties of services (e.g., the

3

Figure 3. Steps for Composing Ad-Hoc Processes

operations of a service). Moreover, the tags can be
redundant or irrelevant to a service. In our work, we propose
a schema for associating Web services with structured
descriptive tags. To ensure tags reflect the functionality of
the services, the tags are initially extracted from WSDL.
End-users can add new tags.

Figure 3 provides an overview of the steps for
generating an ad-hoc process. To compose an ad-hoc
process, a user simply describes a desired goal using
keywords. We parse the identified ontology and represent it
using the ontology graph discussed in Section II. In an
ontology, the semantic of a high-level goal is expanded into
more concrete concepts. We use the concepts as keywords
to search for services in a service repository. To facilitate
the reuse of the services when the same goal re-occurs, we
abstract the discovered services into tasks and aggregate
tasks into an ad-hoc process. The ad-hoc process can be
stored and shared among multiple end-users. Finally, we
display the generated process in a Mashup page so users can
modify the process. In the following sub-sections, we
discuss the steps in describing services, searching for
ontologies to match with the goal description, and
generating an ad-hoc process.

A. Tag-based Service Description
We propose a structured, tag-based service description

schema which captures various properties of a service
provided by both end-users and service providers to reflect
the different perceptions of a service. Service providers
define technical specification of the services. End-users can
record perceived quality of the services and the delivered
functionality. Figure 4 illustrates the schema for the tag-
based service description. In general, we classify the tags
into three categories:

General description is provided by the service
provider. It specifies the basic characteristics of a service,
such as version number, service name, and the URL address
for accessing the service.
Functional description is provided by both service
providers and end-users to describe the functionality of a
service. A service provider publishes the name of a service,
the operations and parameters as keywords. For example, an
operation name, “getWeather”, can be represented by a
keyword, “weather”. The constraints on using each
operation are expressed as a set of self-defined tags and
value pairs (i.e., weather forecast period = 7 days). Such
functional description tags are automatically extracted from
WSDL. Moreover, an end-user can add their own
descriptions about each operation using a set of keywords.

Figure 4. Schema for Tag-based Service Description

Many end-users may submit similar reviews. Similar to the
indexing techniques used in existing search engines [6], we
extract the meaningful keywords from the reviews and store
them as tags.

Quality of services (QoS) specifies the quality attributes
either perceived by end-users or measured by service
providers. The availability of a service, response time and
the processing time are major concerns when invoking a
discovered service. The values for these quality attributes
are monitored and provided by service providers.
Furthermore, the end-users can submit their rating about a
service. A set of tag and value pairs (i.e., availability = 99%,
and user rating = excellent) are used to describe the quality
attributes. More quality attributes can be added to extend
the tag-based service description. The values for the quality
attributes are used to select services when multiple services
of equivalent functionality are returned.

The tag-based description for a service is represented in
XML and stored in a service repository which links the
WSDL for a service with the tag-based description. We
design and develop tools to automatically extract
meaningful tags from the user’s input and WSDL files.

B. Searching for An Ontology for Describing User
Specified Goals
An end-user describes a process as a goal using a

collection of keywords (i.e., keyword (G)={k1, k2, …, kn}, ki
refers to a keyword in the goal description). For example, a
travel planning goal can be represented as a set of keywords,
i.e., keyword(plan trip)={ travel, trip, hotel}. An ontology
can be defined to capture the expert knowledge of a user
specified goal. Instead of predicting the possible users’
goals and predefining the corresponding ontology, we
search for relevant ontologies in the Web. This allows an
end-user to specify any goals for the ah-hoc processes. To
improve the chances for discovering the ontology, we also
collect the set of synonyms of the keywords used in the goal
description (i.e., keyword (G)). As an optional choice, we
allow users to specify the tasks that they want to perform
using keywords. For example, a “planning travel” goal
contains tasks, such as car rental, hotel reservation, and
transportation. Similarly, we collect the synonyms for the
task descriptions. We denote the task descriptions as
keyword (T) = {tk1, tk2, …, tkm} where tki refers to the
keyword for describing a task.

4

An ontology of the specified goal is identified when the
root of an ontology matches one of the keywords in keyword
(G) (i.e., the set of keywords for goal description). For
example shown in Figure 1, when the root concept, “travel”
is matched with a “Travel to New York” goal description,
the ontology is returned. If a goal description is matched
with a concept defined within an ontology instead of the
root concept, we retrieve the matched concept and its sub-
concepts (e.g., shown in Figure 1, the concept “hotel” and
all the related sub-concepts, such as “hotel reservation” and
“price”). In some cases, more than one ontology can be
matched with the goal description. To select an appropriate
one, we count the frequency of the keywords in the set of
the task description (i.e., keyword (T)) and the goal
description (i.e., keyword (G)) appearing in each ontology.
We select the ontology with the highest frequency of the
provided keywords. A user can also inspect the ontologies
and manually select one.

C. Searching for Services
The identified ontology can provide more detailed

description about a user’s goal. Essentially, the concepts
defined in ontology capture the characteristics of the
functional requirements for desired services that help
achieve a user’s goal. We use concepts as criteria to search
for the matching services. More specifically, we group the
names of a concept and its sub-concepts as a set of
keywords, i.e., concept(c0) = {c0} {c1, c2, c3, …, cm}. c0 is
the name of a concept in an ontology. ci refers to a sub-
concept expanded from c0. For example, the “hotel
reservation” concept is expanded into a set of detailed sub-
concepts, denoted as a set of concepts, i.e., concept (hotel
reservation) = {hotel reservation} {price, room, hotel}.
Each concept ci has its own set of synonyms, i.e.,
syn(ci)={si1, si2, …, sin}. For example, the concept, “hotel
reservation”, has a set of synonyms, such as room booking
(i.e., syn(hotel reservation)={room booking}). To retrieve
relevant Web services from a service repository, we
combine the concept set and synonym sets into a keyword
set (i.e., _))
to search for the matching services in a service repository.

SIM
of matched keywords

|n|
 1

n is the total number of tags in general description and functional
description for a service

As discussed in Section III.A, each service, si, in a
repository is described by a set of tags that specify the
general information and the functionality. Therefore, we
form a set of keywords for describing a service using tags,
i.e., ws-keys(sj) = {t1, t2, …, tz}, where sj is a service and ti is
a tag of a service. To discover a service, we count the
number of matched keywords between the concept
description keywords (i.e., con-keys(c0)) in the ontology and
service description tags, i.e., ws-keys(sj)) in the service
repository. The similarity degree of the concepts and

services are defined in equation (1). The similarity degree
ranges from 0 to 1. A higher value means that more tags in a
service description are matched with the supplied concepts.
A high value indicates a high degree of similarity between
the concepts and the services.

As a result of service discovery, we locate the services
with the required functionality. When many services are
matched, we can sort services according to the similarity
degree from high to low. When two services have the same
similarity degree, they are sorted using the values of QoS
description provided in the tag-value pairs specified in the
service description. For example, the discovered services are
sorted using the values of the processing time given that the
discovered services have the same similarity degree. An
end-user needs to interpret if the high value of a quality
attribute is more desired for the returned services.

D. Generating Ad-Hoc Processes
The entire set of concepts defined in an ontology graph

could be used to search for all possible services. However, a
large number of services could be returned without any
logical relations. Returned services may be redundant. It is a
tedious job for end-users to manually select desired services.
We develop a technique to organize the returned services in
a logical structure (i.e., ad-hoc process) by: 1) sorting the
functionally similar services under one task; and 2) inferring
the relations of the corresponding tasks. Essentially, ad-hoc
processes provide abstract description on a list of unique
tasks that a user must perform in order to achieve the goal.
More specifically, we generate an ad-hoc process in two
steps: 1) analyze the concepts in the ontology graph to
identify a list of unique tasks which are associated with one
or more functionally similar returned services; and 2)
identify the relations among the tasks.

To identify tasks, we first decompose the ontology graph
to locate a subset of concepts used for service discovery. To
provide more concrete information in the service discovery,
we use a depth first traversal to find the most concrete
concepts in the search criteria. In particular, the terminal
concepts represent the most detailed knowledge about the
root concept which is the goal specified by users. Therefore,
we visit the terminal concept in the furthest apart from the
root concept. However, simply using a terminal concept in
the search criteria may also prevent us from discovering
some services since a single keyword from the terminal
concept provides limited knowledge. Similar to the most of
search engines, which use the expanded query to search for
the relevant documents [1] [10], we extend the search
keywords by including the parent of the terminal concept of
the longest path, and the sibling terminal concepts as the
keywords to search for a service in a service repository, as
discussed in Section III.C. For example shown in Figure 5,
“Phone Number” is a terminal concept in the longest paths.
Its parent, “Air Agency” and the terminal concepts, “Flight
Ticket” and “Price”, are provided as keywords to search for
services (i.e., con-keys(Air Agency)={Air Agency, Phone

5

Number, Flight Ticket, Price}). Once a service is identified
from the group of concepts, these concepts are marked as a
task, shown in Figure 5. We derive the task name from the
name of the parent concept. For the example shown in
Figure 5, the task corresponding to concepts “Phone
number”, “Flight Ticket”, “Price” and “Air Agency” is
named after the parent concept, “Air Agency”. If no
relevant Web services are retrieved from the path, we
remove the failed concepts (i.e., the parent along the
children) from the ontology graph. We recursively identify
the next terminal concept with the longest path and repeat
the same procedure, until all the terminal concepts are
visited.

Figure 5. An Example of an Ontology Graph

Figure 6. An Example Ad-Hoc Process

We identify the relations (i.e., AND, OR relations)
among tasks by inheriting the relations from the closest
common concept of the tasks. For the example shown in
Figure 5, tasks “Air Agency” and “Flight Ticket
Reservation” have the common concept, “Flight”. The
basic control structures among tasks are determined by the
edges emanating from the closest common ancestor of the
two tasks. For example shown in Figure 5, the control
structures of tasks, “Air Agency” and “Flight Ticket
Reservation” are determined by the edges of the OR relation
emanating from “Flight”. Similarly, tasks “Hotel
Reservation” and “Weather” are in an AND relation. We
traverse the ontology graph from the tasks to the root
concept to recognize the hierarchal structure among control
flow relations. An OR relation in an ontology graph is
interpreted as an alternative control flow among two tasks.
An AND relation in an ontology graph is converted into a
parallel control flow which describes a set of tasks running
in any order. As a result, Figure 6 shows the generated ad-
hoc process from the ontology graph depicted in Figure 5.

IV. IMPLEMENTATION
We built a prototype to help end-users to generate ad-

hoc processes by specifying a goal. We use the IBM
WebSphere Service Registry and Repository (WSRR) [16]
to register and manage Web services. To display the
interfaces of selected services and invoke services, we use
the IBM Mashup Center [14] as a service Mashup platform
to integrate various Web services.

Figure 7. Annotated Screenshot for Our Prototype

Figure 7 is an annotated screenshot of our prototype. A
user can specify their goal (e.g., plan a trip to New York) in
the Goal Editor. In our current implementation of the
prototype, the ontologies are manually searched using
Swoogle [27], a search engine for ontologies, and imported
into our prototype to ease the analysis. An ad-hoc process is
automatically generated to capture a set of tasks that meet
the specified goal shown in the Process Editor. A task in a
generated ad-hoc process can be associated with one or
more services. As shown in Figure 7, once a user selects the
“Car Rental” task in the Process Editor, the associated
services are automatically displayed in the Service Selection
Panel on the right side of the markup page. We allow a user
to select the most desirable services.

A user can refine and customize the ad-hoc process in the
process editor. A user can remove a task if it is not needed
by selecting the “Remove” check box. A user can also add a
new task by specifying keywords for searching for services.
We record the modifications as the user’s preferences.
When a user specifies the same goal, our prototype provides
the previously refined ad-hoc process.

V. CASE STUDIES
The objective of our case study is to evaluate the

effectiveness of our approach that eases end-users to
automatically compose services without the knowledge of
SOA technology. We want to examine 1) if our approach

6

can effectively generate ad-hoc processes using ontologies;
and 2) if the tag-based description helps to locate the
relevance services with high precision and recall.

We manually registered 504 Web services into our
service repository. In addition, we searched for the related
ontologies and imported them into our ontology database.
Each of the services is described using the proposed tag-
based service description.

A. Evaluation of the Generation of Ad-Hoc Processes
We recruit a Master’s student who has no knowledge of

SOA, as an end-user. We gave the subject a 15-minutes
tutorial on how to use our prototype and asked him to
compose ad-hoc processes by specifying five different
goals. Five processes are automatically generated from five
ontologies (listed in Table I) found in the Web to achieve
the five goals respectively. The characteristics of the
generated ad-hoc processes and the corresponding
ontologies are specified in Table I. For example listed in
Table I, Process 1 is generated from the “Travel” ontology
which contains 44 concepts. We identify 5 tasks from the
“Travel” ontology listed in Figure 7. As shown in Figure 7,
task “Flight Ticket Reservation” is derived from concepts,
such as “Airport”, “Flight Ticket”, and “Airline”. Each task
is associated with a set of relevant services. The returned
services are sorted according to their similarity from high to
low. The subject verified that the total of 18 tasks in the 5
processes listed in Table I can accurately reflect the
specified goals.

TABLE I. CHARACTERISTICS OF THE GENERATED AD-HOC PROCESSES

Process ID Ontologies/Goal # of Concepts # of Tasks

1 Travel 44 5
2 Watching Movie 28 4
3 Online Shopping 29 4
4 Credit Card Application 24 3
5 Stock Analysis 27 2

B. Evaluation of the Tag-based Service Description
We compare the performance of the proposed tag-based

service in discovering Web services with a baseline
approach which requires manually search for relevant
services using keywords. We recruit a novice developer,
who knows the general concepts of SOA and has limited
experience in developing SOA systems. He manually
searches for services to match with the tasks generated from
the five ad-hoc processes. To compare our approaches with
the baseline approach using the same set of tasks, we
provide the 18 discovered tasks, which are generated from
the prior study by the end-user subject, to the developer,
who manually specifies keywords from their knowledge of
the tasks as search criteria to query the service repository.
The services are described using WSDL, without the tag-
based service description as proposed in this paper.

We measure the effectiveness of both approaches in

service discovery using recall (r), precision (p), top-k
precision (pk) and r-precision (pr), as defined as follows.

| |

| |
, | |

| |
,

| |
| |

, | |
| | ||

| |

RelS is the set of relevant services; RetS is the set of returned services
from a query; RetRel is the set of returned services that are relevant; and
RetRelk is the set of relevant services in the top-k returned
services. | | is the number of relevant services at the top |RelS|
number of returned services for a query.

Precision (p) is the ratio of the number of returned
relevant services to the total number of returned services
from the service repository. Recall (r) is the ratio of the
number of returned relevant services to the total number of
relevant services existed in the service repository. However,
the number of the returned services can be too large for a
user to review. Instead, a user would only go through the
first k returned services. Therefore, we use the top-k
precision and r-precision for our evaluation. The top-k
precision evaluates the precision for the top-k returned
services. For example, consider the case of getting 9
relevant services when 50 services are returned as a result of
a query. Those 9 relevant services are listed in the top 10
returns, and there are 20 relevant services in total in the
service repository. The top-10 precision is 9/10=90%
whereas the regular precision would be 9/50=18%. The R-
precision calculates the precision based on the number of
relevant services at the top r returned services, and r is the
total number of relevant services in the service repository.
In the prior example, the r-precision evaluates the precision
of the top 20 returned services since there are 20 relevant
services in the entire repository. The r-precision in this
example would be 9/20=45%.

TABLE II. RECALL AND R-PRECISION COMPARISON

 Recall R-precision
our approach 0.98 0.63

Baseline 0.66 0.27

To calculate the recall and r-precision, one graduate
student spent around 2 weeks in manually analyzing the 504
Web services registered in the service repository and to
identify the relevant services for each task. Table II lists the
average recall of both approaches. In the searches for 18
tasks, our approaches can find all the relevant services with
a recall of 98%. In the baseline approach, a few relevant
services are not returned using the provided keywords since
the developer does not use the same words as the WSDL
description to search for Web services. In summary, our
approach has a higher recall.

Table II also lists the average r-precision of each task for
both approaches. In our approach, an ontology provides
more detailed information for describing a service. We
calculate the averages of the top-k precisions (ranging from
top-1 precision to top-6 precision) for all the tasks. Figure 8
shows the results for average top-k precision for all 18 tasks,

7

when k ranges from 1 to 6. As shown in Figure 8, our
approach outperforms the baseline approach. The ontology
definition used in our approach captures the expert
knowledge and provides more relevant search keywords for
each task; and therefore increases the success of the service
discovery.

We use the precision vs. recall graph to display the
performance of both approaches as shown in figure 9. The
ideal approach should achieve high precision and high
recall. A good performance is indicated by the trend line of
an approach appearing in the upper right portion of the
graph shown in Figure 9. As shown in Figure 9, the
precision rate of our approach decreases slower than the
baseline approach as the recall increases. As a result, our
approach demonstrates higher precision and recall.

Figure 8. Top-k Precision

Figure 9. Recall vs. Precision Curves

C. Discussion
We observe that the baseline approach is highly

dependent on the keywords provided by the novice
developer and his domain knowledge. When a novice
developer is not familiar with the application domain, the
search with the provided keywords often returns no services
although several relevant services exist in the service
repository. Our approach uses the expert knowledge
captured in an ontology and the tag-based services
description. The service retrieval in our approach is
independent from a user’s familiarity with the domain and
their knowledge of Web services. Therefore, our approach
achieves high precision and recall in the service discovery.
We received positive feedback from the end-user subject
who used the prototype to compose the ad-hoc processes.
The end-user subject can get relevant services automatically
without having to search for the services over the Web. The
services are organized in an abstract ad-hoc process which

makes it easy for him to navigate through the services.
Moreover, the end-user subject found that the tag-based
service information very intuitive for understanding the
functionality and usage of the services. The novice
developer found it is challenging to understand the WSDL
description for each service and select appropriate services
without much prior experience.

Overall, our approach hides the complexity of the SOA
standards and technologies from the end-users and enables
end-users to participate in the service composition and adopt
them into their daily on-line experience. However, we also
note that the number of tasks generated is dependent on the
number of relevant services in the repository. The generated
process largely depends on the quality of the ontologies for
the goal. If an ontology does not define the main concepts of
the goal or does not represent concepts in a good structure,
the generated process may include some tasks which the end
user does not need or it might miss some important tasks
which are necessary for achieving the goal.

VI. RELATED WORK
Enhancing service description with semantics.

Current standards for Web services (e.g., WSDL) provide
only the syntactic level description without semantic
meaning. Semantic Web is proposed to enrich the service
description with semantics. A few approaches, such as
[21][25] enhance the Web service standards with semantics.
Other approaches build a separate semantics description for
web services. For example, the Ontology Web Language
(OWL)-S [19] is built on top of WSDL to describe Web
services using ontologies. DAML-S [2] uses DAML+OIL
(the predecessor of OWL) based ontology to specify
semantic service descriptions. Formalized semantic models
are required for the semantic Web service descriptions.
However, semantic Web services technology appears
immature for the adoption into practices [12]. In a recent
survey [13], the semantic Web service descriptions are
limited compared to the service description for Web
services. In our work, we enhance the service description
using tags which are built on top of existing WSDL and
ontologies. We do not require formal semantic models.

Automatic service composition. Well-defined business
processes and Artificial Intelligence (AI) planner techniques
are used to automatically compose Web services [17]

[24][29]. Such techniques require formally describe tasks
and the pre and post conditions for each task for achieving a
user’s goal. Therefore these techniques have limited support
for the dynamic discovery of tasks. Our work can reflect the
changing needs of an end-user without the pre-defined
processes or tasks. Similar to our approach, ontologies are
used for service discovery and service composition
[3][4][11]. In [3], the services are classified using ontology
to guide users to search for services. The approach in [4]
uses ontology to semi-automatically compose services by
matching the interface of individual services. Different from
the aforementioned approaches, our approach identifies the

8

control relations among identified tasks and generates ad-
hoc processes from ontologies.

Services Mashup. Service Mashup supports a
lightweight way for service composition in a Web browser
without the formal definition of business processes. Liu et
al. [18] uses a Mashup model to assist developers to
compose services. Carlson et al. [7] reuse service discovery
approaches to find functionally equivalent non Web service
based components, such as portlets, Web applications and
widgets. The service markup is easier for non-expert user to
learn and to manually compose services. Our work enhances
service Mashup by providing guidance to end-users as they
create their Mashups through the automatic composition of
services.

VII. CONCLUSION
In this paper, we provide an approach that hides the

complexity of SOA standards and tools from end-users and
automatically composes services to help an end-user fulfill
their daily activities. We propose a tag-based service
description to allow users to understand the functionality of
a service and add their own descriptive tags. Using our
approach, an end-user only needs to specify the goal of their
activities using keywords. Our approach automatically
composes services that help an end-user achieve their
desired goals without requiring the user to specify the
detailed tasks. Our case study demonstrates the
effectiveness of our approach for an end-user to compose
services. Moreover, our approach can achieve higher
precision and recall in the service discovery than the
baseline approach.

Over time, the number of tags associated with a service
would grow considerably, since any user can freely add new
tags to the service description. Extraneous tags would
negatively affect the effectiveness of the service discovery
and end-users’ understanding of the services. To reduce
redundant tags, we plan to investigate techniques for
checking semantically equivalent tags before adding them to
the repository. We also plan to identify the conflicting tags
for describing the same service. In the future, we plan to
integrate Swoogle into our prototype to automatically search
for ontologies. We also plan to conduct a larger user study
to better evaluate the benefit of our approach.

REFERENCES
[1] D. Aguilar-Lopez, I. Lopez-Arevalo, V. Sosa-Sosa, “Toward the

Semantic Search by Using Ontologies,” Intl. Conference on Electical
Engineering, Computing Science and Automatic Control (2008)

[2] A. Ankolekar, et al., “DAML-S: Web Service Description for the
Semantic Web,” Intl. Semantic Web Conference (2002)

[3] K. Arabshian, C. Dickmann and H. Schulzrinne, “Ontology-Based
Service Discovery Front-End Interface for GloServ,” LNCS In The
Semantic Web: Research and Applications (2009)

[4] I. B. Arpinar, B. Aleman-Meza, R. Zhang, A. Maduko, "Ontology-
Driven Web Services Composition Platform," IEEE Intl. Conference
on E-Commerce Technology (2004)

[5] D. Beckett, B. McBride, RDF/XML Syntax Specification (Revised),
W3C Recommendation (2004)

[6] S. Brin, L. Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” Intl. Conference on World Wide Web, p.107-117
(1998)

[7] M. P. Carlson, A. H. H. Ngu, R. M. Podorozhny, L. Zeng,
“Automatic Mash Up of Composite Applications,” Intl. Conference
on Service Oriented Computing (2008)

[8] R. Chinnici, J. Moreau, A. Ryman, S. Weerawarana, “Web Service
Description Language Version 2.0,” W3C Recommendation (2007)

[9] Facebook, http://www.facebook.com/, last accessed on June 18, 2009.
[10] W. Fang, L. Zhang, Y. Wang, S. Dong, “Toward a Semantic Search

Engine Based on Ontologies,” Intl. Conference on Machine Learning
and Cybernetics (2005)

[11] M. Flügge, D. Tourtchaninova, “Ontology-Derived Activity
Components for Composing Travel Web Services,” Intl. Workshop
on Semantic Web Technologies in Electronic Business (2004)

[12] M. Klusch, “Semantic Web Service Description”, book CASCOM:
Intelligent Service Coordination in the Semantic Web, Birkhäuser
Basel publishing, page 31-37 (2008)

[13] M. Klusch, Z. Xing, “Semantic Web Service In the Web: A
Preliminary Reality Check”, First Intl. Joint Workshop SMR2 on
Service Matchmaking and Resource Retrieval in the Semantic Web,
Busan, South Korea (2007)

[14] IBM Mashup Center, http://www-01.ibm.com/software/info/mashup-
center/, last accessed on June 18, 2009.

[15] IBM WebSphere Integration Developer, http://www-
01.ibm.com/software/integration/wid, last access on June 18, 2009

[16] IBM WebSphere Service Registry and Repository, http://www-
01.ibm.com/software/integration/wsrr/, last access on June 2, 2009

[17] U. Küster, M. Stern, B. König-Ries, “A Classification of Issues and
Approaches in Service Composition,” International Workshop on
Engineering Service Compositions (2005)

[18] X. Liu, Y. Hui, W. Sun, H. Liang, “Towards Service Composition
Based on Mashup,” IEEE Congress on Services (2007)

[19] D. Martin, et al., “OWL-S: Semantic Markup for Web Services,”
Technical Report, Member Submission, W3C (2004)

[20] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, “Service-
Oriented Computing Research Roadmap", European Union
Information Society Technologies, Directorate D – Software
Technologies (2006)

[21] P. Rajasekaran, J. Miller, K. Verma, A. Sheth, “Enhancing Web
Services Description and Discovery to Facilitate Composition,” Intl.
Workshop on Semantic Web Services and Web Process Composition
(2004)

[22] J. Rao, X. Su, “A Survey of Automated Web Service Composition
Methods,” Intl. Workshop on Semantic Web Services and Web
Process Composition (2004)

[23] Seekda, http://seekda.com/, last accessed on June 16, 2009
[24] M. Sheshagiri, M. desJardins, T. Finin, “A Planner for Composing

Services Described in DAML-S,” AAMAS Workshop on Web
Services and Agent-Based Engineering (2003)

[25] K. Sivashanmugam, J. A. Miller, A. Sheth, K. Verma, “Framework
for Semantic Web Process Composition,” Intl. Journal of Electronic
Commerce, Winter 04/05 issue, 9 (2), pp. 71-106 (2004)

[26] M. K. Smith, C. Welty, McGuinness, D. L.: OWL Web Ontology
Language Guide, W3C Recommendation (2004)

[27] Swoogle, http://swoogle.umbc.edu/, last accessed on August 12, 2009
[28] Web Services Business Process Execution Language,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, last
accessed on June 2, 2009

[29] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau, “Automating DAML-
S Web Services Composition Using SHOP2,” Intl. Semantic Web
Conference (2003)

