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AbstractThe Client{Server DBMS model has emerged as themain paradigm in database computing. The EnhancedClient{Server architecture takes advantage of all the avail-able client resources including their disk managers. Clientscan cache server data into their own disk units if data arepart of their operational space. However, when updates oc-cur at the server, some of the client data managers mayneed to not only be noti�ed about them but also obtain por-tions of the updates as well. In this paper, we examinethe problem of managing server imposed updates that af-fect client cached data. We propose a number of serverupdate propagation techniques in the context of the En-hanced Client{Server DBMS architecture and examine theperformance of these strategies through detailed simulationexperiments.1 IntroductionIn recent years, we have seen a number of importanttechnology developments, namely, the wide availabilityof inexpensive workstations and PCs, the introduction oflarge, fast and reliable disk units, as well as the appearanceof fast local area networks (FDDI networks [19]). Thesedevelopments paved the way to the introduction of theClient{Server Database Systems (CS{DBMSs).The central concept in CS-DBMSs is that a dedicatedmachine runs a DBMS and maintains a main centralizeddatabase (DBMS{Server)[10, 8]. The users of the systemaccess the database through either their workstations orPCs via a local area network. They usually run theirprograms locally on their own machines and direct alldatabase inquiries and/or updates to the DBMS{Server.�This research was partially supported by grants NRGS94-18-16-500-06, NASA/USRA FCPO 550-81, NSF IRI-8719458,and GDR-85-00108.yAlso with the University of Maryland Institute for Ad-vanced Computer Studies (UMIACS).

In this way, they become the server's clients. This con-�guration is termed Standard Client{Server DBMS (SCS)[7]. Although the environment in SCS is distributed, theDBMS is centralized and therefore, transaction handlingis easier than distributed transaction management. Thecomputational Client{Server model [24] has been adoptedas a standard by DBMS suppliers and used in commercialproducts [15, 13] as well as a number of research prototypes[12, 3]. The Enhanced Client{Server DBMS [8] o�{loadsdisk accesses from the server by having the clients run alimited DBMS, in terms of concurrency, and by cachingresults of server queries to the client disk managers. Inthis paper, we study propagation strategies of server im-posed updates for the Enhanced Client{Server DBMS ar-chitecture as the number of participating clients increases.A number of update propagation techniques is presented,and their performance is studied through simulation undervarious workloads.The paper is organized as follows: the second sectiongives an overview of the Enhanced Client{Server DBMS.In section 3, we state the problem and compare this workwith prior related studies. The fourth section proposes anumber of policies, and discusses unique policy character-istics and overheads. Section 5 gives an overview of thesimulation models used. In section 6, we present the eval-uation methodology and some results from our simulationexperiments. Finally, conclusions can be found in the lastsection.2 Overview of the Enhanced Client{Server DBMS ArchitectureThe Standard Client{Server DBMS architecture (SCS)uses the network as the means to either send messagesor ship query results from the server to clients. Heavydatabase processing can create serious overheads on theserver. The Enhanced Client{Server DBMS architecture(ECS) utilizes both the CPU and the I/O of the client bycaching query results and by enhancing the client function-ality to a DBMS for incremental management of cacheddata [7]. Figure 1 depicts this setting. Although the archi-tecture can be generalized for any data model we restrict



our discussion to the relational model where we have al-ready de�ned incremental operations [20].
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......Figure 1: The ECS DBMS ArchitectureCaching query results over time permits a client to cre-ate a server database subset on its own disk unit. A clientdatabase is a partial replica of the server database that is ofinterest to the client's application(s). There are two majoradvantages for this kind of disk caching: �rstly, requests forthe same data from the server are eliminated and secondly,system performance is boosted since the CPU of clientscan access local data copies. Nonetheless, in the presenceof updates the system needs to ensure proper propagationof new item values to the appropriate clients.When the result of a query is cached into a local relationfor the �rst time, this \new" local relation is bound to theserver relations used in extracting the result. Every suchbinding is described by three elements: the participatingserver relation(s), the applicable condition(s) on the rela-tion(s), and a timestamp. The condition is essentially the�ltering mechanism that decides what are the qualifyingtuples for a particular client. The timestamp indicates thelast time that a client has seen the server updates that maya�ect its cached data. Bindings can be either stored at theserver's catalog or maintained by the individual clients.Updates are directed for execution to the server whichis the primary site. Pages to be modi�ed are read intomain memory, updated and 
ushed back to the server diskunit. Every server relation is associated with an updatepropagation log which consists of timestamped insertedtuples and timestamped qualifying conditions for deletedtuples. Only updated (committed) tuples are recorded inthese logs. The number of bytes written to the log perupdate is generally much smaller than the size of the pagesread into main memory [23].Client query processing against bound data is precededby a request for an incremental update of the cached data.The server is required to look up log portions of the queryinvolved relations. These log portions maintain times-tamps greater than the one currently held by the client.The look up process may be done once the binding infor-mation for the demanding client is available. Only relevantfractions or increments of the modi�cations (relation up-date logs) are propagated to the client's site. The set of al-gorithms that carry out these tasks are based on the incre-mental access methods for relational operators describedin [20].

The concurrent processing of all updates and query/logoperations is carried out by the Server DBMS. In order tomaintain consistency, data pages are accessed through astandard locking protocol such as the 2� locking protocol.We assume that DBMS bu�er areas used in both server(s)and clients can accommodate only portions of their disk{resident data at a time. By making the server the pri-mary site of the con�guration, we avoid all the complexjob management and processing that has to be carried outby a conventional distributed DBMS.3 The Problem and Related WorkThe main question addressed in this paper could besummarized as follows: given an ECS{DBMS con�gura-tion and a server committed update, what are the bestalternatives in propagating the results of this operation tothe interested clients? Although the issue in its generalframework is not new, it has been examined under di�er-ent contexts in the past. Alonso et. al. [1] examine relax-ation (quasi) update propagation methods in informationsystems. Carey et al. [6], and Wang and Rowe [26] ex-amine the performance of data consistency algorithms formaintaining consistency of data cached in clients' bu�ers.Franklin et al. examine the performance of various page{oriented caching techniques [11]. There is also a largeamount of work done in the areas of cache coherence al-gorithms [2] and distributed shared main memories[18],where the major bottleneck point is the common bus.When the problem is examined in the context of theECS DBMS con�guration, there is a number of elementsthat impose new constraints. These constraints stem fromthe fact that databases work predominantly with disk res-ident data and that the CPU time to process database op-erations is not negligible at both server and clients. Fewother questions that can be examined in this setting are: �What is the performance of the various propagation alter-natives that we may employ ? � How do these strategiesscale up in the presence of many clients (more than 30{40)?� Is there any gain in employing an incremental propaga-tion strategy? � In an rare{update environment, thereis no data inconsistency and clients work o� their copiesproviding a system with almost linearly scalable perfor-mance. As updates increase and their operational areason the database become larger, what is the overhead thatneeds to be paid by both clients and server to o�er timelychange propagation? Some work indirectly related to thisstudy can be found in [17, 4, 22, 25, 14].4 Description of the StrategiesIn this section, we introduce �ve possible strategies forECS data propagation and talk about their rationale andsupporting mechanisms.



On{Demand strategy (ODM): This policy has been es-sentially used in the model of the Enhanced Client{Servermodel outlined in section 2. The main idea is that theserver does not do any book{keeping in terms of the databindings. This implies that any time the client wants toanswer a query it has to poll the server with its bind-ing/caching information. In this way, the server is capableof identifying the data space of interest for every individ-ual client and initiate the appropriate actions to servicethe request. Query messages, binding information, as wellas update requests are directed through the network fromthe clients to the server. Data increments and update com-mit acknowledgments are forwarded from the server to theclients.The second alternative strategy is built around the ideaof broadcasting server data modi�cations to all clients inthe cluster as soon as the update commits [16]. The ra-tionale is that if the updated tuples are already in mainmemory, then we could avoid re{reading data from thedisk when the need for update propagation arises. Thus,logs become unnecessary items. There are two alternativesfor broadcasting data modi�cations: Broadcasting with NoCatalog bindings, and BroadcastingWith Catalog bindings.Broadcasting with No Catalog bindings (BNC): Thisis the simple version of broadcasting in which commit-ted updates are sent to all clients indiscriminately. Thisstrategy requires no extra server functional overhead. Assoon as a write operation commits, the server establishesa communication channel with each of its clients (one ata time). Through this channel, updated tuples (or pages)are shipped to workstations. When the client receives thechanges, it suspends any on{going work and determines ifthe broadcasted modi�cations a�ect its operational localein any way (this can be determined easily with the bind-ing information at hand). If this is the case, the clientaborts the current job (if any), 
ushes the newly arrivedchanges into its disk, and restarts the just aborted query.The network tra�c consists of update requests and up-dated records. Queries are executed solely at the clientswithout any server interaction.Broadcasting With Catalog bindings (BWC): The ap-proach taken in this strategy is to limit the amount ofbroadcasted data over the network. This is done by reduc-ing the volume of data based on server maintained bind-ing information. A directory (or catalog) of binding infor-mation for each client has to be maintained in the serverDBMS system area. This directory is a table of bind-ings that designate the speci�c areas of the database whicheach client has cached into its disk. Every time an updatejob commits, the server opens a communication channelwith a speci�c client only if the client's binding calls forit. In addition, only a portion of the updated tuples needsto travel over the network, e.g. the one pertinent to theclient. Any query executing at the time of broadcasting atthe client site is aborted and can be restarted after the in-coming modi�cations have been committed into the clientdisk manager. The directory of the bindings can be main-

tained in main memory. However, when the number ofclients increases such an assumption may not be realisticand the binding directory has to be maintained on the disk.Finally, there are two more possible propagation strate-gies by combining the concepts described so far and by in-corporating the idea of periodic update broadcasting. Inperiodic update broadcasting, logs are used as the maintool to record the \net changes" and client originatedqueries are handled in a manner similar to that describedin the ODM strategy. The additional feature is that, atregular intervals, the server is interrupted by a daemon.This daemon essentially collects all the changes \not seen"by the clients so far, and initiates their propagation. Thisis done with the rationale that the strategy could gainon server idle time periods. During these periods someuseful propagation work may take place. However, it isexpected that under stringent job submission times (shortthink times) the periodic propagation su�ers in compar-ison with the previous strategies. As soon as the serverdaemon reads the \not seen" portions of the log(s) intothe memory bu�ers, it can dispatch them to the variousclients. This can happen by either using a naive or a dis-criminatory broadcasting strategy. The former results intothe Periodic broadcasting with No Catalog bindings (PNC)and the latter into the Periodic broadcasting With Cat-alog bindings (PWC). The qualitative di�erence betweenPNC and PWC is the same as that between BNC andBWC. PWC tries to limit the volume of data travelingover the local area network by using server catalog infor-mation about the operational areas of every client. Clientqueries in progress may be aborted and restarted after themodi�cations are applied on the client data.5 Simulation ModelsWe have developed �ve software packages based onclosed network queueing models corresponding to the �veupdate propagation policies. The original ECS closed net-work simulation model [8] is altered to re
ect the changesthat the above propagation strategies impose. There arethree additional issues that are addressed by these queue-ing models, in particular: network processing, time spentfor accessing and processing binding directory informa-tion, and �ltering of broadcasted updates at the client siteswherever necessary. The description of the used closed net-work models is omitted for brevity here but it can be foundin [9]. The set of parameters that describe the model ele-ments are provided in Table 1. The �Reli factor indicatesthe fraction of the server relation i that is cached in everyclient disk manager. Both clients and servers spent timefor processing the critical path of RPCs [21, 5] in theirNetwork Proc: Modules(NPM). Table 2 shows some ad-ditional parameters used in the models of this section. Thenet proc parameter accounts for the extra CPU penaltiesthat take place at the NPM processing elements.



DBMS Operational Aspects V aluepage size 2KBytessrv cpu mips 41 MIPSsrv disk acc tm 12 msecsrv main mem 2000 Pagesread page 6500 inswrite page 8000 insinst sel 10000 insinst prj 11000 insinst join 29000 insinst mod 12500 insinst log 5000 insinst ism 6000 insmpl 12bl delay 0.2 msecdd search 10 mseckill time 200 mseccl cpu mips 20 MIPScl disk acc tm 16 mseccl main memory 500 PagesNetwork Features V aluerpcdel 10 msecmesg length 400 bytesnet rate 10 Mbits/secDatabase Features V alueRelation Size 1000 pagesPage Size 2048 BytesNumber of Relations 8Caching � Logging V alueCharacteristics�Reli 0.3Write Log Fract 0.10ISM Proc 6000 insTable 1: Model ParametersThe �ve simulation packages were written in C and theirsize vary between 5.3k to 6.1k lines of source code. Theysupport concurrent job operations, automatic deadlock de-tection at the server and interruption of processing at theclients as discussed above. The run time for each of ourexperiments requires approximately 47 hours of CPU timeon a SparcStation 2.6 Workloads and ExperimentsThe means to create the client data patterns of accessis that of job streams. A job is either a query or an up-date. A job stream is a sequence of jobs made up bymixing queries and updates in a prede�ned proportion.In the two extreme cases, we can have either query orupdate only streams. Every client is assigned to executesuch a stream. Utilizing the varying query/update ratiosfeature that our simulators have, we run two families of ex-periments: �Those with Constant number of Update jobs(CU), where a constant number of four streams submitupdates and the remaining clients queries only (simulat-ing stock market environments or generally environmentswith few writers and many readers). �Those with VariableUpdate jobs (VU) where each stream is a combination ofboth queries and updates|updates constitute 10% of allthe jobs and are uniformly distributed over the queries(simulating traditional database environments). Queriesconsists of relational operations that manipulate up to 10%of the pages of the server relation(s). The same exactlystreams were submitted for all update propagation strate-gies.The objective of the experiments is twofold: �rst, toexamine how the various update propagation techniquesbehave under these workloads, and second to identify im-portant parameters and study their impact on the di�er-ent strategies. In the experiments, we vary two param-
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Figure 2: CU Experiment with 2% Update Jobseters: the number of participating clients from 5 to 100and the update page selectivity from 2% to 8%. The sim-ulators create streams by randomly selecting jobs fromsets of query and update templates. The page updateselectivity remains the same throughout all the modi�ca-tions of the same job stream. The number of participatingjobs per stream was selected to be long enough (135) toguarantee throughput con�dent results. The main perfor-mance criterion for our evaluation is the overall average jobthroughput. The average throughput is measured in jobsper minute (JPM). Initially, client think time is set to zeroin order to test the various update propagation strategiesunder stringent conditions. In our experiments, the clientshave cached the data of their interest in their respectivedisk units before experimentation commences.6.1 CU ExperimentFigure 2 shows the results of the �ve con�gurations for2% update jobs in the CU workload. The number of up-date streams remains 4 throughout the experiment. BNCsurprisingly performs better than ODM. In ODM strategy,there are log pages that need to be �rst 
ushed into thedisk and then read on behalf of the various clients. In BNC,no such reading/writing takes place. Updated tuples fromthe main memory bu�ers (just before or after the com-mit) are transferred to system designated areas and putforward to the network interface. BNC charges the serverCPU with some processing time and since the broadcastinghappens in a point to point fashion, the network utilizationincreases. The server CPU is also charged with the net-work preparation processing in the case of ODM, but theamount of data is signi�cantly less and yields smaller net-work utilization. However, the combined overhead of theBNC CPU network processing and the network is less thanthe overhead of ODM since BNC avoids expensive disk op-erations. PNC throughput values fall below ODM perfor-mance, while BWC and PWC con�gurations present theworst performance rates. PNC is a hybrid between ODMand BNC. It maintains logs and client originated queriesretrieve log portions on demand (similarly to ODM). Inaddition, at regular time intervals (every 5 secs) a daemon



AdditionalParameters Meaning V aluenet proc Avg. overhead for processing a page at NPM 2 msecdir cond Avg. number of pages accessed for every directory search 2 pagescpu per dir page Average time needed to CPU a directory page 15 msecsODM msg len Average Message Length for ODM{ECS Con�guration 2 KBytesBRUP prc Avg. time to process a page of broadcasted updates 2.5 msecmsg len Average Message Length for non-ODM{ECS Con�gurations 400 Bytesper interval Periodic Broadcasting Interval 5 secTable 2: Additional Model Parametersfor update broadcasting is invoked and propagates withoutdiscrimination the updated tuples \not sought" until thattime. Since there is no think time, the disk utilization forPNC policy ranges between 0.91 and 0.94 for more than30 clients. This forces the throughput curve to come con-siderably lower than that of the ODM. The reason for thelow throughput rates achieved by both BWC and PWCis the high CPU server utilization which ranges between0.73 and 0.78 for the BWC, and 0.53 and 0.62 for PWCfor more than 25 clients. A great deal of the CPU time inthese policies goes in processing the catalog pages. Morespeci�cally, BWC spends 73.00% of its busy CPU timeprocessing catalog pages and PWC 61.90%.
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ClientsFigure 3: CU Experiment with 6% Update JobsFor more than 80 clients, PWC o�ers slightly improvedthroughput rates over BWC. PWC uses heavily its diskunit (to retrieve portions of the logs at regular intervals)which brings its disk utilization at high levels (between0.95 and 0.97), while the BWC's disk utilization remainslimited (between 0.49 and 0.51). Higher disk utilizationmeans that while the CPU is processing either updates ornetwork related requests, the disk manager forwards intothe bu�er area the appropriate logs portions that needtransmission. This is the reason why PWC o�ers betterthroughput rates.Figure 3 shows the results of the CU experiment withwriters updating 6% of the server relation pages. BNCand ODM curves come very close since the bene�ts andpenalties of each of both under the current size of updatesprovide almost equivalent throughput rates. Essentially,the higher network utilization along with the higher CPUserver utilization become equivalent to the high disk uti-

lization of the ODM. PNC and PWC drop below the BWCcurve predominantly because the size of the log increasescreating more disk accesses for both types of periodic prop-agation.
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Figure 4: CU Experiment with 8% Update JobsFigure 4 depicts the results for the CU experiment with8% page update selectivity jobs. The ODM curve givesbetter results than that of BNC. Due to the signi�cantlylarger number of updated tuples, BNC creates a congestednetwork. The ODM con�guration maintains low networkutilization by forwarding selectively only portions of thelogs. The gap between BNC and BWC becomes smallercompared to the corresponding gaps of the two previ-ous graphs. The same is the case with PNC and PWC.This indicates that heavy updates are handled better withdirectory{based techniques (BWC, PWC).6.2 VU ExperimentFigure 5 shows the results of the VU experiment for 2%updates in all �ve propagation con�gurations. ODM domi-nates up to 30 clients but then drops below the throughputrates achieved by BNC. ODM disk and CPU utilizationvalues are overall higher than their counterparts of BNCresulting in faster completion of the client jobs. ODM de-cline starts at 40 clients. Beyond this point the server diskutilization ranges between 0.87 and 0.97 indicating that thenumber of updates{that increases with the number of par-ticipating client{makes the server disk resource the mainbottleneck point. BNC decline starts at 50 clients whenthe network utilization reaches 0.83. Beyond this pointthe network utilization ranges between 0.91 and 0.98 and
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Figure 5: VU Experiment with 2% Update Jobsit becomes the major bottleneck element for the strategy.PNC achieves lower rates than ODM mostly due to strin-gent time conditions at the server and the extra disk andCPU required processing for periodic update propagation.Policies based on catalog page reviewing have the worstperformance. BWC requires heavy use of server CPU forclusters that have more than 25 clients attached (CPUutilization is between 0.47 and 0.83), while PWC demon-strates highly utilized disk manager (utilization is between0.79 and 0.97 for more than 25 clients). The heavy PWCdisk utilization in this area results in performance worsethan that of BWC.
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Figure 6: VU Experiment with 6% Update JobsFigure 6 shows the results of the experiment with up-dates of 6%. BNC o�ers the best performance through-out the range of the clients while BWC has emerged asthe second best con�guration. These two con�gurationsdemonstrate high server disk and CPU utilizations whilethe ODM su�ers from very high disk utilization for morethan 30 clients (higher than 0.91). The latter is the rea-son for the early decline of the ODM con�guration curve.Periodic type of propagation policies su�er also from veryhigh disk utilization rates for more than 15 clients. Similartrends were found for the 8% update selectivity experimentwhere the various curves become more distinguished thanin Figure 6. It is worth mentioning that in this VU work-load, where the number of update jobs increases with thenumber of clients increases, the coupling of a fast server

CPU with a fast network (where all 10Mbits/sec are e�ec-tively used to transfer modi�ed tuples between the serverand the clients) makes broadcasting a more e�ective way ofpropagating changes than the lazy and on demand strat-egy. ODM has to spend considerable amount of time inthe disk resident log.6.3 Experiments with Think TimeTo examine the behavior of the various propagationpolicies in the presence of non{zero think time we re{runthe experiments with average client think time 15 secs.For brevity, we present only four of the produced graphsnamely those corresponding to experiments CU and VUand for update jobs with page selectivity of 2% and 6%.Figures 7 and 8 depict the results for the CU experiment.ODM is doing better than any other con�guration since
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Figure 7: CU, 2% Updates, and Think Timethe think time provides lighter server resource contention.In Figure 8 and for the range 80{100 clients, ODM of-fers inferior throughput rates than BNC due to the highdisk utilization (ranges between 0.88 and 0.90). In thissame high client space, the BNC strategy capitalizes onthe fast network interface and provides better throughputrates. ODM maintains lower throughput rates only whenthe server disk becomes the bottleneck (Figure 8{space be-tween 80 and 100 clients). The con�gurations based on the
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Figure 8: CU, 6% Updates, and Think Timeperiodic type of update propagation perform well and their



performance approaches that of ODM in Figure 7. Theyuse the server idle periods (implicitly provided by the clientthink time) to propagate updates. However, under largerupdates (i.e. Figure 8) the gap between PNC/PWC andODM becomes larger since these idle server periods be-come shorter. Note also that in Figure 8 and between 0{25 clients PNC/PWC give better results than BNC/BWCdue to light server resource utilization.
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Figure 9: VU, 2% Updates, and Think TimeFigures 9 and 10 show the results of the VU with 2%and 6% update jobs and an average client think time of 15secs. In Figure 9, the ODM o�ers the best performancebetween 0 and 80 clients. Beyond 80 clients, its through-put rates are worse than those of BNC due to heavy serverresource utilization. Simple updated tuple broadcastingdoes relatively well at the beginning of the client spacebut o�ers the best rates for more than 80 clients (the net-work for BNC is still fairly uncongested, i.e., at 100 clientsthe utilization is 0.34). The BWC con�guration gives thepoorest rates. The number of binding information pagesthat have to be retrieved in order to process the updatesincreases linearly with the number of submitting streams(VU experiment). This contributes signi�cantly to the de-terioration of the throughput rates.
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Figure 10: VU, 6% Updates, and Think TimeWhen the updates become larger (Figure 10), the de-cline of ODM over BNC comes much earlier {at around50 clients{ since the server log manager copes with largeritems of updated data. The server disk utilization varies
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Figure 11: CU, Loaded Network, 8% Updatesbetween 0.69 and 0.89. BWC behaves better than ODMin the range between 60 and 90 clients since both its mainserver resources remain moderately loaded (disk utiliza-tion varies between 0.49 and 0.56 and CPU between 0.59and 0.76). Beyond that point, the BWC becomes CPUbound and the ODM disk bound and they both providesimilar throughput rates. PNC/PWC present the poorestperformance. They not only use the log manager heavilybut they also utilize the server's CPU very much.6.4 Sensitivity AnalysisIn this last part, we examine the behavior of the �veupdate propagation strategies under diverse network andcatalog paging parameter settings. Figure 11 depicts theresults of the CU experiment, with job updates of 8% ina highly loaded network. We simulate this congested net-work by setting the init time to establish a connectionbetween any two machines at 20 msecs and bringing thee�ective transfer rate over the network at 0.5 Mbits/sec.ODM policy o�ers the best throughput rates while thecon�gurations based on �ltering results after consultingcatalog pages (BWC and PWC) are coming second. ODMmaintains performance of 1.8 times (on the average) betterthan PWC and 4.14 times better than BNC throughout therange of the clients due to e�ective use of the incrementallog operations. The network utilization in PNC/BNC formore than 10 clients is more than 0.97 and around the samelevels in PWC/BWC for more than 40 clients. In contrast,the ODM con�guration maintains network utilization be-tween 0.13 (at 10 clients) and 0.70 (at 100 clients).Figure 12 shows the results for the VU experiment with8% update jobs in a highly loaded network. BWC o�ersbetter rates than ODM in the range between 10 and 40clients since the almost immediately appeared high diskutilization of ODM creates delays that {in the case ofBWC{ are o�set by the network. Nevertheless, for morethat 40 clients BWC experiences high network utilization(greater than 0.97). This works negatively for this con�g-uration in the high client space since the total number ofupdates increases linearly to the number of participatingclients (VU type of experiment). The ODM network uti-



lization ranges between 0.26 and 0.64 in the whole clientspace of the experiment.
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Figure 12: VU, Loaded Network,8% UpdatesFigure 13 shows the results of the CU experiment forupdates of 2% in a long haul network. Clients and servercommunicate through dedicated telephone lines at 19,600BPS. ODM o�ers the best throughput rates since it usesits incremental log processing. The network bandwidth isalmost fully utilized for all con�gurations. Therefore, thebest strategy is the one that puts the least amount of traf-�c on the network (i.e., ODM). Although both PWC andBWC discriminate in terms of the volume of data theyforward to the network, they fail to service clients individ-ually creating longer completion times for the submittedstreams than those achieved in ODM.
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Figure 13: CU, Net. Rate 19,600 BPSFinally, Figure 14 presents the results for the VU ex-periments, where light penalties for the catalog based op-erations of the broadcasting con�gurations are assumed.More speci�cally, the server makes one disk access to re-trieve the binding conditions for a group of �ve clientsin average and each such page is processed for 20 msecsonce in the bu�er area. BWC and PWC have come muchcloser to the ODM which maintains the best overall perfor-mance. High network utilization works as an impedimentfor achieving even higher performance rates in both BWCand PWC for more than 40 clients.
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Figure 14: VU, Inexpensive Catalog Access7 ConclusionsWe have proposed server update propagation tech-niques for the Enhanced Client{Server DBMS architectureand evaluated them under multiple jobs streams of di�er-ent composition and varying update rates. Five strategiesfor propagating updates from the server to the clients wereproposed namely, ODM (on demand), BNC/BWC (broad-casting with/without catalog bindings), and PNC/PWC(periodic broadcasting with/without catalog bindings).The core architectural con�guration for our experimentsconsisted of a server connected to a varying number ofclients. We were interested in the way that the various up-date propagation strategies scale up their performance asthe number of clients increases per server. Based on closednetwork queueing models, we developed software packagesfor all the strategies in discussion.Our main experimental results are:� ODM o�ers the best performance if none of the serverresources reaches full utilization.� Under high utilization of server resources, the BNCcon�guration surprisingly o�ers the best performancewhen: 1) The updates have small update page selec-tivities. 2) The number of clients is large (more than60-70) in the CU family of experiments. 3) The num-ber of updates increases linearly with the number ofclients attached to the server. A fast local area net-work paired with fast processing CPUs at both endsof a critical path o�ers a combined job completiontime for the broadcasting policies that is shorter thanthat achieved by the ODM strategy.� If ECS operates under a heavily loaded network, thenODM policy provides the best performance indepen-dent of the workload. The gains become greater forthe more heavily updating curves. This is true if ECSis to function in long haul networks as well.� When server bookkeeping is inexpensive in terms ofdisk accesses and CPU processing time, propagationtechniques based on catalog pages and updated tu-ple �ltering may considerably cut down on networktra�c.
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