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Abstract—Experience shows that different text classification methods can give different results. We look here at a way of combining

the results of two or more different classification methods using an evidential approach. The specific methods we have been

experimenting with in our group include the Support Vector Machine, kNN (nearest neighbors), kNN model-based approach (kNNM),

and Rocchio methods, but the analysis and methods apply to any methods. We review these learning methods briefly, and then we

describe our method for combining the classifiers. In a previous study, we suggested that the combination could be done using

evidential operations [1] and that using only two focal points in the mass functions (see below) gives good results. However, there are

conditions under which we should choose to use more focal points. We assess some aspects of this choice from an evidential

reasoning perspective and suggest a refinement of the approach.

Index Terms—Data mining systems and tools, modeling of structured, textual and multimedia data, uncertainty reasoning.

�

1 INTRODUCTION

TEXT Categorization (TC) is a technique often used as a
basis for applications in document processing and

visualization, Web mining, technology watch, patent
analysis, etc. Assessment of different methods by experi-
ment is the basis for choosing a classifier as a solution to a
particular problem instance. No single classifier is always
best [2], so, for practical purposes, we need to develop an
effective methodology for combining them.

The fusion of results from multiple classifiers (for
various purposes such as image classification as well as
text) may generate a better classification than the indivi-
duals concerned. Different rules have been tried for this
fusion, such as the product, average, and some more
esoteric rules, such as Dempster’s Rule [3] or information
theoretic criteria [17]. Another approach is to employ a
second-level classifier which uses Decision Templates [18]
to combine the results—e.g., by comparing them to a
template characterizing each class. This has the advantage
of using all of the results to arrive at the final support for
each class. In [18], it was shown to be superior to other
methods of combination such as majority voting or naive
Bayes on LandSat data. It gave similar results to Dempster’s
Rule for this image classification.

There are clear benefits of combining multiple classifiers
based on different classification methods for TC and these
have been discussed in [3], [4], [5]. Our own approach is to
use a combination method for text classifiers based on

Dempster’s Rule for combination of evidence, as presented
in [1]. We detailed an experimental study on the method in
[6]. We developed [7], [8] a novel evidence structure for
representing outputs from different classifiers based on the
confidence values for labels, using a 2-points focused mass
function (see below), which has been employed in [1], [6].
This constitutes a piece of evidence and serves the purpose
of distinguishing important elements from trivial ones. We
now assess some aspects of this from an evidential
reasoning perspective and suggest a refinement of the
approach. We generalize the approach to cover mass
functions with more foci and show how to find conditions
which determine when two focal points are better than 3, 3
better than 4, etc.

2 LEARNING ALGORITHMS FOR TEXT

CATEGORIZATION

In a prototype for an EU Framework 5 project called
ICONS, we implemented some existing methods for TC and
added a new one called kNNModel (see below). The
existing methods included the Rocchio method, the Support
Vector method, and the standard kNN method.

The Rocchio method was originally developed for query
expansion by means of relevance judgments in information
retrieval. It has been applied to text categorization by Ittner
et al. [9]. There are several versions of the algorithm and we
implemented Ittner’s method.

kNN is an instance-based classification method which
has been effectively applied to text categorization in the
past decade. In particular, it is one of the top-performing
methods on the benchmark Reuters corpus [10]. Unlike
most supervised learning algorithms that have an explicit
training phase before dealing with any test document, kNN
makes use of the local contexts derived from training
documents to make the classification decision on a
particular document.

SVM (Support Vector Machine) is a high-performance
learning algorithm which has been applied to text categor-
ization by Joachims [11]. We have integrated a version of
the SVM algorithm implemented by Chang and Lin [12] in
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our prototype system for text categorization. There are two
advantages of this algorithm: The first is that it has the
ability to cope with the multiclass classification problem
and the second is that the classified results can be expressed
as posterior probabilities that are directly comparable
between categories.

The kNNModel is an integration of the conventional kNN
andRocchio algorithms [13]. It improves the kNNmethod by
not being too dependent on our choice of k. Local models are
treated as local centroids for the respective categories to
overcome the deficiency of misclustering some data points
when linearly clustering the space of data points.

2.1 Output of Classification Methods

We now describe the classification process in an abstract
manner. Let D ¼ fd1; d2; . . . ; djDjg be a training set of
documents, where d is represented by a jV j-dimensional
weighted vector and V is a set of keywords. Let C ¼
fc1; c2; . . . ; ci; . . . ; cjCjg be a set of categories, then the task of
assigning predefined categories onto documents can be
regarded as mapping which maps a Boolean value true (T )
or false (F ) to each pair < d; c >2 D� C. If value T is
assigned to < d; c > , it means that a decision is made to
include document d under the category c, whereas value F
indicates that document d is not under the category c.

The task of learning for text categorization is to
construct such an approximation to a unknown function
’ such that makes ’ : D� C ! fT; Fg, where ’ is called
a classifier. However, given a test document d, such a
mapping cannot guarantee that an assignment of the
categories to the document is either true or false;
instead, it is a jCj-dimensional vector of numeric values,
denoted by S ¼ ðs1; s2; . . . ; si; . . . ; sjCjÞ, where si ¼ wðciÞ
represents the relevance of the document to the list of
categories in the form of similarity scores or probabil-
ities, i.e., ’ðdÞ ¼ fs1; s2; . . . ; si; . . . ; sjCjg, where the greater
the score of the category, the greater the possibility of
the document being under the corresponding category. It
is necessary to develop a decision rule to determine a
final category of the document on the basis of these
scores or probabilities.

3 HANDLING UNCERTAINTY

When classifying a particular document, information and
knowledge (e.g., rules) pertinent to it often originate from
different evidence sources and are often pervaded with
uncertainty. The question arises: Is there any way we could
formalize the reasoning processes or otherwise make more
visible for practical application how evidence (uncertain
knowledge and information) pertinent to a situation is
obtained from multiple sources and combined?

We adopt an evidential approach for this. Exploitation of
the different pieces of evidence usually requires combina-
tion operations such as Dempster’s Rule or the orthogonal
sum [14] to solve the Data/Information/Knowledge fusion
problem.

Decision making involves finding the best supported
option based on all the available evidence. One tradi-
tional approach to evidential reasoning, based on
numerical methods of representing evidential supports,

is the Dempster-Shafer (D-S) theory of evidence, which

can make use of quantitative information available (from

classifiers, in the present context).

3.1 Evidence Theory

The D-S theory of evidence has been recognized as an

effective method for coping with such uncertainty or

imprecision embedded in evidence used in the reasoning

process. It is suited to a range of decision-making activities.

The D-S theory is often viewed as a generalization of

Bayesian probability theory by providing a coherent

representation for ignorance (lack of evidence) and also by

discarding the insufficient reasoning principle. It formulates a

reasoning process as pieces of evidence and hypotheses and

subjects these to a strict formal process to infer conclusions

from the given uncertain evidence, avoiding human

subjective intervention to some extent.
In the D-S theory, which we also refer to as evidence

theory, evidence is described in terms of evidential

functions. Several functions commonly used in the theory

are mass functions, belief functions, commonality functions,

doubt functions, and plausibility functions. Any one of these

conveys the same information as any of the others.

Definition 1. Let � be a finite nonempty set and call it the

frame of discernment. Let ½0; 1� denote the interval of real

numbers from zero to one, inclusive: ½0; 1� ¼ fxj0 � x � 1g.
A function m : 2� ! ½0; 1� is called a mass function if it

satisfies: mð;Þ ¼ 0,
P

X�� mðXÞ ¼ 1.

A mass function is a basic probability assignment bpa to all

subsets X of �. A subset A of a frame � is called a focal

element of a mass functionm over � if mðAÞ > 0. Note that a

focal element is a subset rather than an element of �. The

union C of all the focal elements of a mass function is called

its core: C ¼ [X;mðXÞ>0X.

A function bel : 2� ! ½0; 1� is called a belief function if

it satisfies: belð;Þ ¼ 0; belð�Þ ¼ 1; for any collection

A1; A2; . . . ; An (n � 1) of subsets of �,

belðA1 [A2 [ . . . [AnÞ �
X

I�f1;2;...;ng;I 6¼;
ð�1ÞjIjþ1belð\i2IAiÞ:

This expression can be contrasted with conventional

probability, where the inequality is replaced by an equality.
The fundamental operation of evidential reasoning,

namely, the orthogonal sum of evidential functions, is

known as Dempster’s rule for combining evidence. Let

m1 and m2 be mass functions on the same frame �.

Denote N ¼
P

X\Y 6¼; m1ðXÞm2ðY Þ. Suppose N > 0, i.e.,P
X\Y¼; m1ðXÞm2ðY Þ < 1. Then, the function m : 2� !

½0; 1� defined by: mð;Þ ¼ 0 and

mðAÞ ¼ ð1=NÞ
X

X\Y¼A

m1ðXÞm2ðY Þ

for all subsets A 6¼ ; of � is a mass function. The mass

functionm is called the orthogonal sum ofm1 andm2 and is

denoted by m1 �m2, and K ¼ 1=N is called the normal-

ization constant of the orthogonal sum of m1 and m2.
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3.2 A Categorization-Specific Mass Function

We now consider the problem of estimating the degrees of
belief for the evidence obtained from text classifiers and the
specific definitions of mass and belief functions for this
domain. We then look at how to fuse multiple pieces of
evidence in order to reach a final decision.

Definition 2. Let C be a frame of discernment, where each

category ci 2 C is a proposition of the form: “document d is of

category ci” and let ’ðdÞ be a piece of evidence that indicates

the strength of our confidence that the document comes from
each category c1; c2; . . . ; ci; . . . ; cjCj. Then, the following mass

function m is a basic probability assignment (bpa) to ci for

1 � i � jCj : mðfcigÞ ¼
si

PjCj
k¼1 sk

¼ wðciÞ
PjCj

k¼1 wðckÞ
:

This mass function bpa expresses the degrees of beliefs in

respective propositions corresponding to each category to
which a given document could belong.

We can rewrite the expression for the output information
’ðdÞ as ’ðdÞ ¼ ðmðc1Þ;mðc2Þ; . . . ;mðciÞ; . . . ;mðcjCjÞÞ. Two or
more outputs derived from different classifiers as pieces of
evidence can then be combined using the orthogonal sum.
In order to improve the efficiency of computing orthogonal
sum operations and the accuracy of a final decision on the
basis of the combined results, we have developed a new
structure using a 2-points focused mass function (see
below), which partitions ’ðdÞ into three subsets [7], [8].
This is an example of a truncated foci mass function and the
concept can be generalized to deal with more than three
subsets. Empirical evaluations have shown that it is
effective and that using only the best classifiers gives good
results. Some theoretical work for its validity and ability to
be combined can be found in [8].

Definition 3. Let C be a frame of discernment and

’ðdÞ ¼ ðmðc1Þ;mðc2Þ; . . . ;mðciÞ; . . . ;mðcjCjÞÞ;

where jCj � 2. Consider an expression of the form
Y ¼ ðA1; A2; A3Þ, where A1; A2 � C are singleton, and A3

is the whole set C. These elements are given by the formulae

below. Arrange ’ðdÞ so thatmðci1Þ � mðci2Þ � . . . � mðcijCj Þ:
Then, A1 ¼ fci1g; A2 ¼ fci2g; A3 ¼ C.

The associated 2-points focused mass function is
given as follows: mðA1Þ ¼ mðfci1gÞ, mðA2Þ ¼ mðfci2gÞ,
mðA3Þ ¼ 1�mðA1 �mðA2ÞÞ, i.e.,

mðCÞ ¼ 1�mðfci1gÞ �mðfci2gÞ:

We refer to the set fA1; A2; A3g as a triplet. Previously, we
made the assumption that the categories to be assigned to a
given document include only the top choice, the top second
choice, or the whole of the frame in descending order for
each classifier. It is then possible that the second top choice
for a classifier will be ranked as the top choice when we
combine multiple classifiers. This provides the rationale
behind dividing ’ðdÞ into a triplet. We show how this can
be done in Section 5 and compare it with structures having
more than two foci.

4 THE 2-POINTS FOCUSED COMBINATION METHOD

Assume that we have a set of training data and a set of
algorithms, each of which can generate one or more
classifiers based on the training data set chosen. We can
combine outputs of different classifiers on the same testing
documents using Dempster’s rule of combination to make
the final classification decision. Fig. 1 illustrates the process
of combining the outputs of two classifiers derived from
two different learning algorithms.

Consider an example where we are given two triplets
ðA1; A2; CÞ and ðB1; B2; CÞ, where A1; A2; B1; B2 � C, and
two associated 2-points focused mass functions m1;m2.
These are two pieces of evidence. Suppose that they are
obtained from two classifiers kNN and SVM, respectively,
represented in XML [7] in Fig. 2. In this example, C ¼
fc1; c2; c3; c4; c5; c6g is a frame of discernment, where ci
(i ¼ 1; 2; . . . ; 6) are document categories. That is, c1: comp.
windows.x; c2: comp.graphics; c3: comp.sys.ibm.pc.hard-
ware; c4:comp.sys.mac.hardware; c5: comp.os.ms-windows.
misc; c6: alt.atheism.

We use triplets ðA1; A2; CÞ and ðB1; B2; CÞ to represent
the two results, i.e.,

ðA1; A2; CÞ ¼ ðfc1g; fc2g; fc1; c2; c3; c4; c5; c6gÞ;
ðB1; B2; CÞ ¼ ðfc2g; fc4g; fc1; c2; c3; c4; c5; c6gÞ:

The values of the corresponding mass functions on these
propositions for document 37928 are shown in Fig. 2.
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Fig. 1. The procedure of combining classifiers.

Fig. 2. Outputs produced by kNN and SVM.



Note that if A1; A2; B1; B2 are singletons, where A2 ¼ B1,
the values of their belief functions are the same as the
values of mass functions m1 and m2, respectively. There-
fore, we have a set of strengths of belief with three possible
categories as a combined result: ðbelðA1Þ; belðA2Þ; belðB2ÞÞ.

On one hand, the mass function given by SVM is

m1ðA1Þ ¼ m1ðfc1gÞ ¼ 0:724;m1ðA2Þ ¼ m1ðfc2gÞ ¼ 0:184;

and the ignorance m1ðCÞ ¼ 0:092. By choosing the category
with the maximum degree of belief as a decision, it seems
that document 37928 corresponds to A1 ¼ fc1g—the deci-
sion made by the SVM classifier.

On the other hand, the mass function given by kNN is
m2ðB1Þ ¼ m2ðfc2gÞ ¼ 0:688,m2ðB2Þ ¼ m2ðfc4gÞ ¼ 0:208, and
the ignorance m2ðCÞ ¼ 0:104. By choosing the category with
the maximum degree of belief as a decision, we see that
document 37928 corresponds to B1 ¼ fc2g—the decision
made by the kNN classifier.

By computing the pairwise orthogonal sum as in Fig. 2,
we combine all of the 2-points focused mass functions. We
can obtain a set of aggregated results as follows: First of all,
we compute

ðm1 �m2Þðfc1gÞ ¼ 0:24; ðm1 �m2Þðfc2gÞ ¼ 0:67;

ðm1 �m2Þðfc4gÞ ¼ 0:06; ðm1 �m2ÞðCÞ ¼ 0:03:

Then, we find the associated mass function

mðfc2gÞ ¼ 0:67;mðfc1gÞ ¼ 0:24;

mðCÞ ¼ 1� 0:67� 0:24 ¼ 0:03þ 0:06 ¼ 0:09:

Thus, the final decision made by the combined classifier is
category c2.

One way that we could improve on this method is by
using a threshold for the allocation to ignorance. For
example, we could use a threshold of 0:1 for ignorance—i.e.,
the mass allocated to the whole set (Frame of Discernment)
is 0:1. The order of the final choices might then be different,
although this is unlikely in the example above. It would also
be useful to know, in practice, conditions under which our
triplet would be improved upon by using a quartet. That is,
when would a 3-points focused mass function be better? To
study this, we carry out a simple analysis for three
categories. There are a limited number of permutations of
categories A1; A2; A3 to consider and, by the nature of the
problem space, some of these cannot occur. For example,

the two orders would not start with the same category as

the most strongly supported category in both lists will then

be the same and it would clearly be the overall winner. For

clarity of presentation, we remove the ordering condition of

Definition 3.
Consider the combination of two pieces of evidence m1

andm2 in the casewherewe have such a quartet rather than a

triplet and the three sets are the same, but are not necessarily

supported the same in each case. So, we keep the best three

categories A1; A2; A3, where A1 ¼ fxg; A2 ¼ fyg; A3 ¼ fzg.
Using an intersection table (see Table 1), we get the

orthogonal sum of two mass functions in the best three

categories as shown in Table 1:

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
þm1ð�Þm2ðfygÞÞ;

ðm1 �m2ÞðfzgÞ ¼ Kðm1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ
þm1ð�Þm2ðfzgÞÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ
�m1ðfxgÞm2ðfzgÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfzgÞ �m1ðfzgÞm2ðfygÞ > 0:

We can then draw some interesting conclusions for

particular cases using some simple algebra. For example,

we can rewrite the conditions for A1 being best as:

Condition 1.

m1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ þm1ð�Þm2ðfxgÞ
> m1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ þm1ð�Þm2ðfygÞ;

i.e.,

m1ðfxgÞ½m2ðfxgÞ þm2ð�Þ�
> m1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
�m1ð�Þ½m2ðfxgÞ �m2ðfygÞ:
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Condition 2.

m1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ þm1ð�Þm2ðfxgÞ
> m1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ þm1ð�Þm2ðfzgÞ;

i.e.,

m1ðfxgÞ½m2ðfxgÞ þm2ð�Þ�
> m1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ �m1ð�Þ½m2ðfzgÞ
�m2ðfxgÞ�:

Then, we can say such things as: When

m1ðfxgÞ½m2ðfxgÞ þm2ð�Þ� > m1ðfygÞm2ðfygÞ;

the first condition always holds when m1ð�Þ > m2ð�Þ and

½m2ðfxgÞ �m2ðfygÞ� > m1ðfygÞ: This would occur when the

first set of results has m1ðfxgÞ � m1ðfygÞ � m1ðfzgÞ and the

second set of results has m2ðfzgÞ > m2ðfxgÞ > m2ðfygÞ.
Suppose, for illustration, that the second set of results

brings the third rated category to the top. That is,

m2ðfzgÞ > maxðm2ðfxgÞ;m2ðfygÞ;m2ð�ÞÞ.
This would happen, for example, if we had

m1ðfxgÞ ¼ 0:6;m1ðfygÞ ¼ 0:2;m1ðfzgÞ ¼ 0:1;m1ð�Þ ¼ 0:1;

and

m2ðfzgÞ ¼ 0:45;m2ðfxgÞ ¼ 0:35;

m2ðfygÞ ¼ 0:14;m2ð�Þ ¼ 0:06:

Now, for A3 to be better supported than A1, we need
to have

m1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ þm1ð�Þm2ðfxgÞ
< m1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ þm1ð�Þm2ðfzgÞ;

i.e.,

m1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ þ ½1�m1ðfxgÞ �m1ðfygÞ
�m1ðfzgÞ�m2ðfxgÞ < m1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ
þ ½1�m1ðfxgÞ �m1ðfygÞ �m1ðfzgÞ�m2ðfzgÞ;

i.e.,

m1ðfxgÞm2ð�Þ þ ½1�m1ðfygÞ �m1ðfzgÞ�m2ðfxgÞ
< m1ðfzgÞm2ð�Þ þ ½1�m1ðfxgÞ �m1ðfygÞ�m2ðfzgÞ;

i.e.,

m1ðfxgÞ½1�m2ðfxgÞ �m2ðfygÞ �m2ðfzgÞ� þ ½1�m1ðfygÞ
�m1ðfzgÞ�m2ðfxgÞ < m1ðfzgÞ½1�m2ðfxgÞ �m2ðfygÞ
�m2ðfzgÞ� þ ½1�m1ðfxgÞ �m1ðfygÞ�m2ðfzgÞ;

i.e.,

m1ðfxgÞ½1�m2ðfxgÞ �m2ðfygÞ� þ ½1�m1ðfygÞ�m2ðfxgÞ
< m1ðfzgÞ½1�m2ðfygÞ �m2ðfzgÞ�
þ ½1�m1ðfygÞ�m2ðfzgÞ;

i.e.,

m1ðfxgÞ½1�m2ðfxgÞ �m2ðfygÞ�
< m1ðfzgÞ½1�m2ðfygÞ �m2ðfzgÞ� þ ½1�m1ðfygÞ�
½m2ðfzgÞ �m2ðfxgÞ�;

i.e.,

m1ðfxgÞ <
m1ðfzgÞ½1�m2ðfygÞ �m2ðfzgÞ�

1�m2ðfxgÞ �m2ðfygÞ

þ ½1�m1ðfygÞ�½m2ðfzgÞ �m2ðfxgÞ�
1�m2ðfxgÞ �m2ðfygÞ

:

Now, consider the case when only the best two of each

categorization method are used (i.e., using a triplet as in [8]).

Let A1 ¼ fxg; A2 ¼ fyg; A3 ¼ fzg, and let m1;m2 be two

2-points focused mass functions showing one equal point

m1ðfxgÞ þm1ðfygÞ þm1ð�Þ ¼ 1; 0 � m1ðfxgÞ;
m1ðfygÞ;m1ð�Þ � 1;

m2ðfxgÞ þm2ðfzgÞ þm2ð�Þ ¼ 1; 0 � m2ðfxgÞ;
m2ðfzgÞ;m2ð�Þ � 1:

To combine m1;m2, make the intersection table for m1 �
m2 as shown in Table 2. Then, we find that

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞ
m2ð�Þ þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Km1ðfygÞm2ð�Þ;
ðm1 �m2ÞðfzgÞ ¼ Km1ð�Þm2ðfzgÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ 1�m1ðfxgÞm2ðfzgÞ �m1ðfygÞm2ðfzgÞ �m1ðfygÞ
m2ðfxgÞ > 0:

A1 is the better choice when:

m1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ þm1ð�Þm2ðfxgÞ
> m1ð�Þm2ðfzgÞ;

i.e.,

½m1ðfxgÞ þm1ð�Þ�m2ðfxgÞ þm1ðfxgÞ½1�m2ðfxgÞ
�m2ðfzgÞ� > ½1�m1ðfxgÞ �m1ðfygÞ�m2ðfzgÞ;
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Intersection Table of Two Triplets



i.e.,

½1�m1ðfygÞ�m2ðfxgÞ þm1ðfxgÞ½1�m2ðfxgÞ�
> ½1�m1ðfygÞ�m2ðfzgÞ;

i.e.,

m1ðfxgÞ½1�m2ðfxgÞ� > ½1�m1ðfygÞ�½m2ðfzgÞ �m2ðfxgÞ�;
i.e.,

m1ðfxgÞ >
½1�m1ðfygÞ�½m2ðfzgÞ �m2ðfxgÞ�

1�m2ðfxgÞ
:

For example, if m2ðfxgÞ ¼ 0:1 and m1ðfygÞ ¼ 0:1 or more,
then m1ðfxgÞ > m2ðfzgÞ � 0:1.

Direct Comparison. When m2ðfygÞ is small, m1ðfxgÞ >
½1�m1ðfygÞ�½m2ðfzgÞ�m2ðfxgÞ�

1�m2ðfxgÞ means A1 is best for a triplet.

m1ðfxgÞ <
m1ðfzgÞ½1�m2ðfygÞ �m2ðfzgÞ�

1�m2ðfxgÞ �m2ðfygÞ

þ ½1�m1ðfygÞ�½m2ðfzgÞ �m2ðfxgÞ�
1�m2ðfxgÞ �m2ðfygÞ

means A3 is better for a quartet.
So, considering two foci gives A1 better when

m1ðfxgÞ > ½1�m1ðfygÞ�½m2ðfzgÞ�m2ðfxgÞ�
1�m2ðfxgÞ .

However, when a quartet, rather than a triplet ,is
considered, this changes toA3 betterwhenm1ðfzgÞ is such that

m1ðfxgÞ <
m1ðfzgÞ½1�m2ðfygÞ �m2ðfzgÞ�

1�m2ðfxgÞ �m2ðfygÞ

þ ½1�m1ðfygÞ�½m2ðfzgÞ �m2ðfxgÞ�
1�m2ðfxgÞ �m2ðfygÞ

:

5 CONSTRICTED MASS FUNCTIONS

To recapitulate, a mass function m is called 2-points focused
if it has no focuses other than two singletons and �. That is,
there exist two elements x; y 2 � such that

mðfxgÞ þmðfygÞ þmð�Þ ¼ 1;

0 � mðfxgÞ;mðfygÞ;mð�Þ � 1:

Similarly, we can consider 3-points focused, 4-points

focused, ..., n-points focused mass functions. We have

discussed 2-points focused mass functions in other papers

[8], and discuss 3-points more fully in this paper.
Generally, amass functionmayhavemore than three focal

singletons. We can use a focusing operator � to a constricted

mass function of 3-points as follows: Letm be amass function
with focal singletons fx1g; fx2g; . . . ; fxng;n � 3. Then, the
focusing operator � makes m� as:

m�ðfugÞ þm�ðfvgÞ þm�ðfwgÞ þm�ð�Þ ¼ 1;

where u ¼ xi1 ; v ¼ xi2 ; w ¼ xi3 for

mðfxi1gÞ � mðfxi2gÞ � mðfxi3gÞ � . . . � mðfxingÞ

and m�ð�Þ ¼ 1�m�ðfugÞ �m�ðfvgÞ �m�ðfwgÞ.
We seek general formulae for combining 3-points

focused evidential functions. These give the basis of our

combination algorithm.

5.1 Three Points Equal

We now consider again the case where the three foci are
equal (e.g., x; y; z in our example).

Theorem 5.1.1. Let m1;m2 be two 3-points focused mass
functions having three points equal,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1;

0 � m1ðfxgÞ;m1ðfygÞ;m1ðfzgÞ;m1ð�Þ � 1;

m2ðfxgÞ þm2ðfygÞ þm2ðfzgÞ þm2ð�Þ ¼ 1;

0 � m2ðfxgÞ;m2ðfygÞ;m2ðfzgÞ;m2ð�Þ � 1:

Then,

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ
�m1ðfxgÞm2ðfzgÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfzgÞ �m1ðfzgÞm2ðfygÞ;

and m1;m2 are combinable if and only if

m1ðfxgÞm2ðfygÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfzgÞþ
m1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfzgÞ þm1ðfzgÞm2ðfygÞ < 1:

When m1;m2 are combinable, we have

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
þm1ð�Þm2ðfygÞÞ;

ðm1 �m2ÞðfzgÞ ¼ Kðm1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ
þm1ð�Þm2ðfzgÞÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:

Proof. To combine m1;m2, make the intersection table for
m1 �m2 as shown in Table 3. Then, we find that

1=K ¼ N ¼ 1�
X

X\Y¼;
m1ðXÞm2ðY Þ ¼ 1�m1ðfxgÞm2ðfygÞ

�m1ðfygÞm2ðfxgÞ �m1ðfxgÞm2ðfzgÞ
�m1ðfzgÞm2ðfxgÞ �m1ðfygÞm2ðfzgÞ
�m1ðfzgÞm2ðfygÞ;

and that m1;m2 are combinable if and only if N > 0, i.e.,

1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ �m1ðfxgÞm2ðfzgÞ
�m1ðfzgÞm2ðfxgÞ �m1ðfygÞm2ðfzgÞ
�m1ðfzgÞm2ðfygÞ > 0;

i.e.,

m1ðfxgÞm2ðfygÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfzgÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfzgÞ
þm1ðfzgÞm2ðfygÞ < 1:

We know that

ðm1 �m2ÞðAÞ ¼ K
X

X\Y¼A

m1ðXÞm2ðY Þ:
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By the intersection table for m1 �m2 we find that

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ

þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ

þm1ð�Þm2ðfygÞÞ;

ðm1 �m2ÞðfzgÞ ¼ Kðm1ðfzgÞm2ðfzgÞ þm1ðfzgÞm2ð�Þ

þm1ð�Þm2ðfzgÞÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:
tu

5.2 Two Points Equal

Now, the three points equal case is probably the simplest.

We need to consider other possibilities.

Theorem 5.2.1. Let m1;m2 be two 3-points focused mass

functions having points equal 2,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1;

0 � m1ðfxgÞ;m1ðfygÞ;m1ðfzgÞ; m1ð�Þ � 1;

m2ðfxgÞ þm2ðfygÞ þm2ðfugÞ þm2ð�Þ ¼ 1;

0 � m2ðfxgÞ;m2ðfygÞ;m2ðfugÞ;m2ð�Þ � 1:

Then,

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfugÞ �m1ðfxgÞm2ðfugÞ
�m1ðfzgÞm2ðfxgÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfygÞ;

and m1;m2 are combinable if and only if

m1ðfxgÞm2ðfygÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfugÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfugÞ
þm1ðfzgÞm2ðfygÞ þm1ðfzgÞm2ðfugÞ < 1:

When m1;m2 are combinable we have

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
þm1ð�Þm2ðfygÞÞ;

ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ; ðm1 �m2ÞðfugÞ
¼ Km1ð�Þm2ðfugÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:

Proof. To combine m1;m2, make the intersection table for
m1 �m2 as shown in Table 4. Then, we find that

1=K ¼ N ¼ 1�
X

X\Y¼;
m1ðXÞm2ðY Þ

¼ 1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfugÞ �m1ðfxgÞm2ðfugÞ
�m1ðfzgÞm2ðfxgÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfygÞ;

and that m1;m2 are combinable if and only if N > 0, i.e.,

1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ �m1ðfzgÞm2ðfugÞ
�m1ðfxgÞm2ðfugÞ �m1ðfzgÞm2ðfxgÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfygÞ > 0;
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Three Points Equal

TABLE 4
Two Points Equal



i.e.,

m1ðfxgÞm2ðfygÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfugÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞ

m2ðfugÞ þm1ðfzgÞm2ðfygÞ þm1ðfzgÞm2ðfugÞ < 1:

We know that

ðm1 �m2ÞðAÞ ¼ K
X

X\Y¼A

m1ðXÞm2ðY Þ:

By the intersection table for m1 �m2 we find that

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ

þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ

þm1ð�Þm2ðfygÞÞ;

ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ;

ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:
ut

However, now that m1 �m2 is not a 3-points focused

mass function, there are focal points fxg; fyg; fzg; fug, and
�. The 3-points focusing operator � should be applied.

Theorem 5.2.2. Let m1;m2 be two 3-points focused mass
functions,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1;

0 � m1ðfxgÞ;m1ðfygÞ;m1ðfzgÞ;m1ð�Þ � 1;

m2ðfxgÞ þm2ðfygÞ þm2ðfugÞ þm2ð�Þ ¼ 1;

0 � m2ðfxgÞ;m2ðfygÞ;m2ðfugÞ;m2ð�Þ � 1:

Suppose that

m1ðfxgÞm2ðfygÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfugÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfugÞ þm1ðfzgÞm2ðfygÞ
þm1ðfzgÞm2ðfugÞ < 1:

So, m1;m2 are combinable. Denote

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ ¼ fðxÞ;
ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
þm1ð�Þm2ðfygÞÞ ¼ fðyÞ;
ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ ¼ fðzÞ;
ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðuÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfugÞ �m1ðfxgÞm2ðfugÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfugÞ �m1ðfzgÞm2ðfygÞ:

Then, ðm1 �m2Þ� is the following:

ðm1 �m2Þ�ðfx0gÞ þ ðm1 �m2Þ�ðfy0gÞ þ ðm1 �m2Þ�ðfz0gÞ
þ ðm1 �m2Þ�ð�Þ ¼ 1; ðm1 �m2Þ�ðfx0gÞ ¼ fðx0Þ;

where fx0; y0; z0; u0g ¼ fx; y; z; ug and

fðx0Þ � fðy0Þ � fðz0Þ � fðu0Þ;

and

ðm1 �m2Þ�ðfy0gÞ ¼ fðy0Þ;
ðm1 �m2Þ�ðfz0gÞ ¼ fðz0Þ;
ðm1 �m2Þ�ð�Þ ¼ 1� fðx0Þ � fðy0Þ � fðz0Þ:

Proof. By Theorem 5.2.1,

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ ¼ fðxÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
þm1ð�Þm2ðfygÞÞ ¼ fðyÞ;

ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ ¼ fðzÞ;
ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðuÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfygÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfugÞ �m1ðfxgÞm2ðfugÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfugÞ �m1ðfzgÞm2ðfygÞ:

Then, by the definition of the 3-points focusing operator �,

we find that ðm1 �m2Þ� as follows:

ðm1 �m2Þ�ðfx0gÞ þ ðm1 �m2Þ�ðfy0gÞ þ ðm1 �m2Þ�ðfz0gÞ
þ ðm1 �m2Þ�ð�Þ ¼ 1; ðm1 �m2Þ�ðfx0gÞ ¼ fðx0Þ;

where fx0; y0; z0; u0g ¼ fx; y; z; ug and

fðx0Þ � fðy0Þ � fðz0Þ � fðu0Þ;

and ðm1 �m2Þ�ðfy0gÞ ¼ fðy0Þ, ðm1 �m2Þ�ðfz0gÞ ¼ fðz0Þ,
ðm1 �m2Þ�ð�Þ ¼ 1� fðx0Þ � fðy0Þ � fðz0Þ. tu

5.3 One Equal Point

Only one focus might be shared by the two sets of results.

Theorem 5.3.1. Let m1;m2 be two 3-points focused mass

functions having one equal point,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1;

0 � m1ðfxgÞ;m1ðfygÞ;m1ðfzgÞ;m1ð�Þ � 1;

m2ðfxgÞ þm2ðfugÞ þm2ðfvgÞ þm2ð�Þ ¼ 1;

0 � m2ðfxgÞ;m2ðfugÞ;m2ðfvgÞ;m2ð�Þ � 1:

Then,

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfvg �m1ðfygÞm2ðfugÞ
�m1ðfxgÞm2ðfvgÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfugÞ;
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and m1;m2 are combinable if and only if

m1ðfxgÞm2ðfugÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfvgÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfvgÞ þm1ðfzgÞm2ðfugÞ
þm1ðfzgÞm2ðfvg þm1ðfygÞm2ðfugÞ < 1:

When m1;m2 are combinable we have

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Km1ðfygÞm2ð�Þ;
ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ;
ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ;
ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

Proof. To combine m1;m2, make the intersection table for
m1 �m2 as shown in Table 5. Then, we find that

1=K ¼ N ¼ 1�
X

X\Y¼;
m1ðXÞm2ðY Þ ¼ 1�m1ðfxgÞm2ðfugÞ

�m1ðfygÞm2ðfxgÞ�m1ðfzgÞm2ðfvg1�m1ðfygÞm2ðfugÞ
�m1ðfxgÞm2ðfvgÞ�m1ðfzgÞm2ðfxgÞ�m1ðfygÞm2ðfvgÞ
�m1ðfzgÞm2ðfugÞ;

and that m1;m2 are combinable if and only if N > 0, i.e.,

1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfxgÞ �m1ðfzgÞm2ðfvg
�m1ðfygÞm2ðfugÞ �m1ðfxgÞm2ðfvgÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfugÞ > 0;

i.e.,

m1ðfxgÞm2ðfugÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfvgÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfvgÞ þm1ðfzgÞm2ðfugÞ
þm1ðfzgÞm2ðfvg þm1ðfygÞm2ðfugÞ < 1:

We know that

ðm1 �m2ÞðAÞ ¼ K
X

X\Y¼A

m1ðXÞm2ðY Þ:

By the intersection table for m1 �m2, we find that

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ;

ðm1 �m2ÞðfygÞ ¼ Km1ðfygÞm2ð�Þ; ðm1 �m2ÞðfzgÞ
¼ Km1ðfzgÞm2ð�Þ;

ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ;
ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:

However, nowm1 �m2 is not a 3-points focused mass

function, there are focal points fxg; fyg; fzg; fug; fvg and

�. The 3-points focusing operator � should again be

applied. tu
Theorem 5.3.2. Let m1;m2 be two 3-points focused mass

functions,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1; 0 � m1ðfxgÞ;
m1ðfygÞ;m1ðfzgÞ;m1ð�Þ � 1;

m2ðfxgÞ þm2ðfygÞ þm2ðfugÞ þm2ð�Þ ¼ 1;

0 � m2ðfxgÞ;m2ðfygÞ;m2ðfugÞ;m2ð�Þ � 1:

Suppose that

m1ðfxgÞm2ðfugÞ þm1ðfygÞm2ðfxgÞ þm1ðfxgÞm2ðfvgÞ
þm1ðfzgÞm2ðfxgÞ þm1ðfygÞm2ðfvgÞ þm1ðfzgÞm2ðfugÞ
þm1ðfzgÞm2ðfvg þm1ðfygÞm2ðfugÞ < 1:

So, m1;m2 are combinable. Denote

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ ¼ fðxÞ;

ðm1 �m2ÞðfygÞ ¼ Kðm1ðfygÞm2ðfygÞ þm1ðfygÞm2ð�Þ
þm1ð�Þm2ðfygÞÞ ¼ fðyÞ;

ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ ¼ fðzÞ;
ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðuÞ;
ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðvÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;
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TABLE 5
One Equal Point



where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfvg �m1ðfygÞm2ðfugÞ
�m1ðfxgÞm2ðfvgÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfugÞ:

Then, ðm1 �m2Þ� is the following:

ðm1 �m2Þ�ðfx0gÞ þ ðm1 �m2Þ�ðfy0gÞ þ ðm1 �m2Þ�ðfz0gÞ
þ ðm1 �m2Þ�ð�Þ ¼ 1;

ðm1 �m2Þ�ðfx0gÞ ¼ fðx0Þ;

where fx0; y0; z0; u0; v0g ¼ fx; y; z; u; vg and

fðx0Þ � fðy0Þ � fðz0Þ � fðu0Þ � fðv0Þ;

and ðm1 �m2Þ�ðfy0gÞ ¼ fðy0Þ, ðm1 �m2Þ�ðfz0gÞ ¼ fðz0Þ,
ðm1 �m2Þ�ð�Þ ¼ 1� fðx0Þ � fðy0Þ � fðz0Þ.

Proof. By Theorem 5.3.1,

ðm1 �m2ÞðfxgÞ ¼ Kðm1ðfxgÞm2ðfxgÞ þm1ðfxgÞm2ð�Þ
þm1ð�Þm2ðfxgÞÞ ¼ fðxÞ;

ðm1 �m2ÞðfygÞ ¼ Km1ðfygÞm2ð�Þ ¼ fðyÞ; ðm1 �m2ÞðfzgÞ
¼ Km1ðfzgÞm2ð�Þ ¼ fðzÞ;

ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðuÞ;
ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ ¼ fðvÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfxgÞ
�m1ðfzgÞm2ðfvg �m1ðfygÞm2ðfugÞ
�m1ðfxgÞm2ðfvgÞ �m1ðfzgÞm2ðfxgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfugÞ:

Then, by the definition of the 3-points focusing operator
� we find that ðm1 �m2Þ� as follows:

ðm1 �m2Þ�ðfx0gÞ þ ðm1 �m2Þ�ðfy0gÞ þ ðm1 �m2Þ�ðfz0gÞ
þ ðm1 �m2Þ�ð�Þ ¼ 1;

ðm1 �m2Þ�ðfx0gÞ ¼ fðx0Þ;

where fx0; y0; z0; u0; v0g ¼ fx; y; z; u; vg and

fðx0Þ � fðy0Þ � fðz0Þ � fðu0Þ � fðv0Þ;

and ðm1 �m2Þ�ðfy0gÞ ¼ fðy0Þ, ðm1 �m2Þ�ðfz0gÞ ¼ fðz0Þ,
ðm1 �m2Þ�ð�Þ ¼ 1� fðx0Þ � fðy0Þ � fðz0Þ. tu

5.4 Totally Different Points

Of course, there is no guarantee that any focus is shared
between the two sets of results.

Theorem 5.4.1. Let m1;m2 be two 3-points focused mass
functions having one equal point,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1;

0 � m1ðfxgÞ;m1ðfygÞ;m1ðfzgÞ;m1ð�Þ � 1;

m2ðfugÞ þm2ðfvgÞ þm2ðfwgÞ þm2ð�Þ ¼ 1;

0 � m2ðfugÞ;m2ðfvgÞ;m2ðfwgÞ;m2ð�Þ � 1:

Then,

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfug �m1ðfxgÞm2ðfvgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfvg
�m1ðfxgÞm2ðfwgÞ �m1ðfygÞm2ðfwgÞ
�m1ðfzgÞm2ðfwg;

and m1;m2 are combinable if and only if

m1ðfxgÞm2ðfugÞ þm1ðfygÞm2ðfugÞ þm1ðfzgÞm2ðfugÞ
þm1ðfxgÞm2ðfvgÞ þm1ðfygÞm2ðfvgÞ þm1ðfzgÞm2ðfvgÞ
þm1ðfxgÞm2ðfwgÞþm1ðfygÞm2ðfwgÞþm1ðfzgÞm2ðfwgÞ
< 1:

When m1;m2 are combinable we have

ðm1 �m2ÞðfxgÞ ¼ Km1ðfxgÞm2ð�Þ; ðm1 �m2ÞðfygÞ
¼ Km1ðfygÞm2ð�Þ;

ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ; ðm1 �m2ÞðfugÞ
¼ Km1ð�Þm2ðfugÞ;

ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ; ðm1 �m2ÞðfwgÞ
¼ Km1ð�Þm2ðfwgÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:

Proof. To combine m1;m2, make the intersection table for
m1 �m2 as shown in Table 6. Then, we find that

1=K ¼ N ¼ 1�
X

X\Y¼;
m1ðXÞm2ðY Þ

¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfug �m1ðfxgÞm2ðfvgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfvg
�m1ðfxgÞm2ðfwgÞ �m1ðfygÞm2ðfwgÞ
�m1ðfzgÞm2ðfwg;

and that m1;m2 are combinable if and only if N > 0, i.e.,

1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfugÞ �m1ðfzgÞm2ðfug
�m1ðfxgÞm2ðfvgÞ �m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfvg
�m1ðfxgÞm2ðfwgÞ �m1ðfygÞm2ðfwgÞ �m1ðfzgÞm2ðfwg
> 0;

i.e.,

m1ðfxgÞm2ðfugÞ þm1ðfygÞm2ðfugÞ þm1ðfzgÞm2ðfugÞ
þm1ðfxgÞm2ðfvgÞ þm1ðfygÞm2ðfvgÞ þm1ðfzgÞm2ðfvgÞ
þm1ðfxgÞm2ðfwgÞ þm1ðfygÞm2ðfwgÞ þm1ðfzgÞm2ðfwgÞ
< 1:

We know that

ðm1 �m2ÞðAÞ ¼ K
X

X\Y¼A

m1ðXÞm2ðY Þ:
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By the intersection table for m1 �m2, we find that

ðm1 �m2ÞðfxgÞ ¼ Km1ðfxgÞm2ð�Þ; ðm1 �m2ÞðfygÞ

¼ Km1ðfygÞm2ð�Þ;

ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ;

ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ;

ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ;

ðm1 �m2ÞðfwgÞ ¼ Km1ð�Þm2ðfwgÞ;

ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ:
ut

However, now m1 �m2 is not a 3-points focused mass

function, there are focal points fxg; fyg; fzg; fug; fvg; fwg
and �. The focusing operator � should again be applied.

Theorem 5.4.2. Let m1;m2 be two 3-points focused mass
functions,

m1ðfxgÞ þm1ðfygÞ þm1ðfzgÞ þm1ð�Þ ¼ 1;

0 � m1ðfxgÞ;m1ðfygÞ;m1ðfzgÞ;m1ð�Þ � 1;

m2ðfugÞ þm2ðfvgÞ þm2ðfwgÞ þm2ð�Þ ¼ 1;

0 � m2ðfugÞ;m2ðfvgÞ;m2ðfwgÞ;m2ð�Þ � 1:

Suppose that

m1ðfxgÞm2ðfugÞ þm1ðfygÞm2ðfugÞ þm1ðfzgÞm2ðfugÞ
þm1ðfxgÞm2ðfvgÞ þm1ðfygÞm2ðfvgÞ þm1ðfzgÞm2ðfvgÞ
þm1ðfxgÞm2ðfwgÞ þm1ðfygÞm2ðfwgÞ þm1ðfzgÞm2ðfwgÞ
< 1:

So, m1;m2 are combinable. Denote

ðm1 �m2ÞðfxgÞ ¼ Km1ðfxgÞm2ð�Þ ¼ fðxÞ;
ðm1 �m2ÞðfygÞ ¼ Km1ðfygÞm2ð�Þ ¼ fðyÞ;
ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ ¼ fðzÞ;
ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðuÞ;
ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ ¼ fðvÞ;
ðm1 �m2ÞðfwgÞ ¼ Km1ð�Þm2ðfwgÞ ¼ fðwÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfug �m1ðfxgÞm2ðfvgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfvg
�m1ðfxgÞm2ðfwgÞ �m1ðfygÞm2ðfwgÞ
�m1ðfzgÞm2ðfwg:

Then, ðm1 �m2Þ� is the following:

ðm1 �m2Þ�ðfx0gÞ þ ðm1 �m2Þ�ðfy0gÞ þ ðm1 �m2Þ�ðfz0gÞ
þ ðm1 �m2Þ�ð�Þ ¼ 1;

ðm1 �m2Þ�ðfx0gÞ ¼ fðx0Þ;

where fx0; y0; z0; u0; v0; w0g ¼ fx; y; z; u; v; wg and

fðx0Þ � fðy0Þ � fðz0Þ � fðu0Þ � fðv0Þ � fðw0Þ;

and ðm1 �m2Þ�ðfy0gÞ ¼ fðy0Þ, ðm1 �m2Þ�ðfz0gÞ ¼ fðz0Þ,
ðm1 �m2Þ�ð�Þ ¼ 1� fðx0Þ � fðy0Þ � fðz0Þ.

Proof. By Theorem 5.4.1,

ðm1 �m2ÞðfxgÞ ¼ Km1ðfxgÞm2ð�Þ ¼ fðxÞ;
ðm1 �m2ÞðfygÞ ¼ Km1ðfygÞm2ð�Þ ¼ fðyÞ;
ðm1 �m2ÞðfzgÞ ¼ Km1ðfzgÞm2ð�Þ ¼ fðzÞ;
ðm1 �m2ÞðfugÞ ¼ Km1ð�Þm2ðfugÞ ¼ fðuÞ;
ðm1 �m2ÞðfvgÞ ¼ Km1ð�Þm2ðfvgÞ ¼ fðvÞ;
ðm1 �m2ÞðfwgÞ ¼ Km1ð�Þm2ðfwgÞ ¼ fðwÞ;
ðm1 �m2Þð�Þ ¼ Km1ð�Þm2ð�Þ;

where

1=K ¼ N ¼ 1�m1ðfxgÞm2ðfugÞ �m1ðfygÞm2ðfugÞ
�m1ðfzgÞm2ðfug �m1ðfxgÞm2ðfvgÞ
�m1ðfygÞm2ðfvgÞ �m1ðfzgÞm2ðfvg
�m1ðfxgÞm2ðfwgÞ �m1ðfygÞm2ðfwgÞ
�m1ðfzgÞm2ðfwg:

Then, by the definition of the 3-points focusing operator �,

we find that ðm1 �m2Þ� as follows:

ðm1 �m2Þ�ðfx0gÞ þ ðm1 �m2Þ�ðfy0gÞ þ ðm1 �m2Þ�ðfz0gÞ
þ ðm1 �m2Þ�ð�Þ ¼ 1;

ðm1 �m2Þ�ðfx0gÞ ¼ fðx0Þ;
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TABLE 6
Totally Different Points



where fx0; y0; z0; u0; v0; w0g ¼ fx; y; z; u; v; wg and

fðx0Þ � fðy0Þ � fðz0Þ � fðu0Þ � fðv0Þ � fðw0Þ;

and ðm1 �m2Þ�ðfy0gÞ ¼ fðy0Þ, ðm1 �m2Þ�ðfz0gÞ ¼ fðz0Þ,
ðm1 �m2Þ�ð�Þ ¼ 1� fðx0Þ � fðy0Þ � fðz0Þ. tu
Notice that we have used Dempster’s Rule for the

combination of results from two classifiers. A number of
properties, including prima face weaknesses, of Dempster’s
rule have been identified, exhaustively analyzed, and dealt
with in the literature over the years. We mention a few of
these here.

An attractive feature is that, for belief functions, the
orthogonal sum gives a result which is independent of the
order in which the combinations take place (commutative
and associative). Also, a combination of belief functions
gives another belief function.

On the other hand, the belief functions to be combined
must be based on distinct pieces of evidence. There are strict
rules under which the Orthogonal Sum can be used. For
example, in the case of TC, we could argue that the pieces of
evidence cannot be assumed to be entirely independent and
multiple agents methods should be used instead. But, these
issues are beyond the scope of the present study. The
empirical results of using the orthogonal sum for this
purpose have been illustrated in [6].

6 EVALUATION

In this section, we describe the experiment which has
been performed to evaluate our combination method
given in the previous sections. For our experiments, we
have chosen a public benchmark data set, often referred
to as 20-newsgroup. It consists of 20 categories and each
category has 1,000 documents (Usenet articles), so the
data set contains 20,000 documents in total. Except for a
small fraction of the articles (4 percent), each article
belongs to exactly one category [11]. We use information
gain as a measure for feature selection at the preproces-
sing stage for each classification method and weight
features by using tfidf (term frequency within the
document and inverse document frequency) after remov-
ing function words and applying stemming [19]. In total,
5,300 features have been selected. The experiments have
been conducted using a 10-fold cross validation. For each

classification method, 10 classifiers are generated and the
performance of the method is the mean value of the 10
classifiers. The performance of learning algorithms has
been measured using a measure which is widely used in
information retrieval and text categorization: the macro-
average F1 defined on a pair of measures, called Precision
and Recall [20], [21]. Fig. 3 demonstrates the performance
comparison among the best combined classifier (SVM and
kNNM—called SM) and four individual classifiers (SVM,
kNNM, kNN, and Rocchio) on 20 document categories.
The best combined classifier outperforms any individual
classifiers on the average. The estimated performance of
the best combination is 90.15 percent, which is 2.69 per-
cent better than the best individual classifier (SVM). Fig. 4
illustrates the performance comparison among the best
combinations of two classifiers SM (SVM + kNNM), three
classifiers SMR (SVM + kNNM + Rocchio), and the four
classifiers SMNR (SVM + kNNM + kNN + Rocchio). As
we see, the best combination of two classifiers SM
outperforms SMR and SMNR and the performance of
the best combination of SMR is almost the same as that of
SMNR with the exception of document categories of 8-11
and 13-16. The estimated classification accuracies of SMR
and SMNR are 86.12 percent and 84.58 percent, respec-
tively, which are 1.35 percent and 2.88 percent worse than
the best individual classifier SVM. So, our experimental
results show that the combination of the best and the
second best classifiers is the best combination that
outperforms the individual classifiers and the combined
classifiers.

7 CONCLUSION

In this paper, we have suggested how a novel method and
technique for representing outputs from different classi-
fiers—a focal element triplet—can be extended to a focal
element quartet. An evidential method for combining
multiple classifiers based on this new structure has been
analyzed. Similar formulae to those obtained in Section 5 for
triplets and quartets can also be obtained for comparison of
other numbers of focal elements. The structure and the
associated methods and techniques developed in this
research are particularly useful for data analysis and
decision making under uncertainty.
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Fig. 3. The performance of the best combined classifier SM (SVM +

kNNM) against the individual classifiers SVM, kNNM, kNN, and Rocchio.

Fig. 4. The performance of the best combined classifier SM (SVM +

kNNM) against the individual classifiers SVM, kNNM, kNN, and Rocchio.
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