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Abstract

Analyses of multivariate data are frequently hampered by missing values. Until re-

cently, the only missing-data methods available to most data analysts have been relatively

ad hoc practices such as listwise deletion. Recent dramatic advances in theoretical and com-

putational statistics, however, have produced a new generation of flexible procedures with a

sound statistical basis. These procedures involve multiple imputation (Rubin, 1987), a simu-

lation technique that replaces each missing datum with a set of m > 1 plausible values. The

m versions of the complete data are analyzed by standard complete-data methods, and the

results are combined using simple rules to yield estimates, standard errors, and p-values that

formally incorporate missing-data uncertainty. New computational algorithms and software

described in a recent book (Schafer, 1997) allow us to create proper multiple imputations

in complex multivariate settings. This article reviews the key ideas of multiple imputation,

discusses the software programs currently available, and demonstrates their use on data from

the Adolescent Alcohol Prevention Trial (Hansen & Graham, 1991).
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1 Introduction

Missing data are a familiar problem to researchers in the social and behavioral sciences. In

longitudinal studies, subjects may drop out early or be unavailable during one or more data

collection periods. When data are collected by questionnaire, subjects may be unwilling or

unable to respond to some items, or may fail to complete sections of the questionnaire due

to lack of time or interest. These types of missingness, though inevitable, are unintended

and uncontrolled by the researcher. For some data collection efforts, it may also be desirable

to incorporate planned missingness into the study design. For example, the Adolescent

Alcohol Prevention Trial (Hansen & Graham, 1991) involved a three-form design in which

less essential items were divided into three sections, A, B, and C; one-third of the subjects

received sections A and B, one-third received B and C, and one-third received A and C.

This design allowed researchers to measure relationships among a greater number of items

without increasing the burden on individual respondents.

Until recently, the only methods widely available for analyzing incomplete data fo-

cused on “removing” the missing values, either by ignoring subjects with incomplete in-

formation or by substituting plausible values (e.g. means or regression predictions) for the

missing items. These ad hoc methods, though simple to implement, have serious draw-

backs which have been well documented (see, e.g. Little & Rubin, 1987; Graham, Hofer,

& Piccinin, 1994; and their references). For multivariate analyses involving a large number

of items, case deletion procedures can be very inefficient, discarding an unacceptably high

proportion of subjects; even if the per-item rates of missingness are low, few subjects may

have complete data for all items. In addition, case-deletion procedures may bias the results

if the subjects who provide complete data are unrepresentative of the entire sample. Simple
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mean substitution will seriously dampen relationships among variables, but substituting re-

gression predictions will artificially inflate correlations. Even if the missing values could be

imputed in such a way that the distributions of variables and relationships among them were

perfectly preserved, the imputed dataset would still fail to provide accurate measures of vari-

ability for the following reason: subsequent analyses would fail to account for missing-data

uncertainty. Regardless of the imputation method, imputed values are only estimates of the

unknown true values. Any analysis that ignores the uncertainty of missing-data prediction

will lead to standard errors that are too small, p-values that are artificially low, and rates of

Type I error that are higher than nominal levels.

Fortunately, in the last two decades, substantial progress has been made in develop-

ing statistical procedures for missing data. In the late 1970’s, Dempster, Laird, & Rubin

(1977) formalized the EM algorithm, a computational method for efficient estimation from

incomplete data. EM has proven to be very useful as a computational device. More im-

portantly, the ideas underlying EM signalled a fundamental shift in the way statisticians

viewed missing data. Until that time, missing data were viewed as a nuisance to be gotten

rid of, either by case deletion or imputation. Since then, statisticians have begun to see

missing values as a source of variability to be averaged over. In any incomplete dataset, the

observed values provide indirect evidence about the likely values of the unobserved ones.

This evidence, when combined with certain assumptions (described below), implies a pre-

dictive probability distribution for the missing values that should be averaged over in the

statistical analysis. Modern missing-data techniques carry out this averaging in a variety of

ways. EM algorithms perform the averaging in a deterministic or non-random fashion. More

recently, Rubin (1987) has developed the paradigm of multiple imputation, which carries out

the averaging via simulation.

4



?

?

?

Data with missing values Imputations

1 2 · · · m

?

· · ·

· · ·

· · ·

· · ·

Figure 1: Matrix of multivariate data with missing values and multiple imputations

In multiple imputation (MI), each missing value is replaced by a set of m > 1 plausible

values drawn from their predictive distribution. A multiply imputed dataset is depicted in

Figure 1. The variation among the m imputations reflects the uncertainty with which the

missing values can be predicted from the observed ones. After performing MI there are m

apparently complete datasets, each of which can be analyzed by complete-data methods.

After performing identical analyses on each of the m datasets, the results (estimates and

standard errors) are combined, using simple rules provided by Rubin (1987) and others, to

produce overall estimates and standard errors that reflect missing-data uncertainty.

MI is attractive for a number of reasons. First, it works in conjunction with standard

complete-data methods and software. One the MI’s have been generated, the analyses can

be carried out using procedures in SAS, LISREL, or virtually any other statistical package.

Second, one set of m imputations may be used for a variety of analyses; there is often no

5



Table 1: Percent efficiency of MI estimation by number

of imputations m and fraction of missing information γ

γ

m .1 .3 .5 .7 .9

3 97 91 86 81 77

5 98 94 91 88 85

10 99 97 95 93 92

20 100 99 98 97 96

need to reimpute when a new analysis is performed. Third, the inferences—standard errors,

p-values, etc.—obtained from MI are generally valid because they incorporate uncertainty

due to missing data. Finally, MI is attractive because it can be highly efficient even for small

values of m. In many applications, just 3–5 imputations are sufficient to obtain excellent

results.

Many are surprised by the claim that only 3–5 imputations may be needed. Rubin

(1987, p. 114) shows that the efficiency of an estimate based on m imputations is approxi-

mately (
1 +

γ

m

)−1

,

where γ is the fraction of missing information for the quantity being estimated. The fraction

γ quantifies how much more precise the estimate might have been if no data had been

missing. (A generic method for estimating γ will be given below.) The efficiencies achieved

for various values of m and rates of missing information are shown in Table 1. This table

shows that gains rapidly diminish after the first few imputations. Consider the column for
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30% missing information (γ = .3), a moderately high rate for many applications. With

m = 5 imputations, we have already achieved 94% efficiency. Increasing the number to

m = 10 raises the efficiency to 97%, a rather slight gain for a doubling of computational

effort. In most situations there is simply little advantage to producing and analyzing more

than a few imputed datasets.

Although MI was first proposed nearly twenty years ago (Rubin, 1978), the method

has remained largely unknown and unused by non-experts. The main reason for this obscu-

rity has been the lack of computational tools for creating MI’s. Except in trivial settings,

the probability distributions that one must draw from to produce proper MI’s tend to be

complicated and intractable. Very recently, however, a remarkable variety of new simulation

methods have appeared in the statistical literature. These methods, known collectively as

Markov chain Monte Carlo, have spawned a small revolution in applied parametric modeling

(Gilks, Richardson, & Spiegelhalter, 1996). Schafer (1997) has adapted and implemented

Markov chain Monte Carlo methods for the purpose of multiple imputation. In particular,

he has written general-purpose MI software for incomplete multivariate data. Some of these

programs, which are easier to learn and use than previous ones, are implemented as graphi-

cal, stand-alone applications for PCs running Windows (95/NT). They may be downloaded

free of charge at our web site (http://stat.psu.edu/~jls/misoftwa.html). Four packages

are currently available: NORM, which performs multiple imputation under a multivariate

normal model; CAT, for multivariate categorical data; MIX, for mixed datasets containing

both continuous and categorical variables; and PAN, for multivariate panel or clustered data.

In the remainder of this article, we will introduce and explain the key ideas of MI

and the use of our software from the perspective of a data analyst. First we review the

major assumptions that are made about the data and mechanisms of nonresponse. Then we
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provide an overview of some computational tools and algorithms used by Schafer’s software,

and summarize Rubin’s rules for combining point estimates and standard errors from mul-

tiple analyses. The latter part of this article illustrates the use of MI on data drawn from

the Adolescent Alcohol Prevention Trial (Hansen & Graham, 1991), which we impute and

analyze using NORM. Finally, we conclude with a discussion comparing MI to some other

modern missing-data procedures currently available, such as those used by the structural

equations modeling program Amos (Arbuckle, 1995).

2 Assumptions

Like any statistical method, MI is based upon certain assumptions. Responsible use of MI

requires basic understanding of these assumptions and the possible implications for subse-

quent analyses if they are violated. These assumptions pertain to (a) the population of

data values, (b) the prior distribution for the model parameters, and (c) the mechanism of

nonresponse. Let us consider each of these topics in turn.

2.1 The data model

In order to generate imputations for the missing values, one must impose a probability

model on the complete data (observed and missing values). Each of our software packages

applies a different class of multivariate complete-data models. NORM uses the multivariate

normal distribution. CAT is based on loglinear models, which have been traditionally used

by social scientists to describe associations among variables in cross-classified data. The

MIX program relies on the general location model, which combines a loglinear model for the
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categorical variables with a multivariate normal regression for the continuous ones. Details

of these models are given by Schafer (1997). The new package PAN, described by Schafer

(submitted), uses a multivariate extension of a popular two-level linear regression model

commonly applied to multilevel data (e.g. Bryk & Raudenbush, 1992). The PAN model is

appropriate for describing multiple variables collected on a sample of individuals over time,

or multiple variables collected on individuals who are grouped together into larger units (e.g.

students within classrooms).

Experienced analysts know that real data rarely conform to convenient models such

as the multivariate normal. In most applications of MI, the model used to generate the

imputations will at best be only approximately true. Fortunately, experience has repeatedly

shown that MI tends to be quite forgiving of departures from the imputation model. For

example, when working with binary or ordered categorical variables, it is often acceptable to

impute under a normality assumption and then round off the continous imputed values to

the nearest category. Variables whose distributions are heavily skewed may be transformed

(e.g. by taking logarithms) to approximate normality and then transformed back to their

original scale after imputation. Simulation studies demonstrating the robustness of MI to

departures from the imputation model are reported by Ezzati-Rice et al. (1995); Schafer

(1997); and Graham & Schafer (in press).

Despite these encouraging results, it is naive to suggest that imputation may be

carried out haphazardly or that the choice of imputation model is unimportant. An impu-

tation model should be chosen to be (at least approximately) compatible with the analyses

to be performed on the imputed datasets. In particular, the model should be rich enough

to preserve the associations or relationships among variables that will be the focus of later

investigation. For example, suppose that a variable Y is imputed under a normal model that
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includes the variable X1. After imputation, the analyst then uses linear regression to predict

Y from X1 and another variable X2 which was not in the imputation model. The estimated

coefficient for X2 from this regression would tend to be biased toward zero, because Y has

been imputed without regard for its possible relationship with X2. In general, any associa-

tion that may prove important in subsequent analyses should be present in the imputation

model.

The converse of this rule, however, is not at all necessary. If Y has been imputed

under a model that includes X2, there is no need to include X2 in future analyses involving

Y unless its relationship to Y is of substantive interest. Results pertaining to Y cannot

be biased by the inclusion of extra variables in the imputation phase. Therefore, a rich

imputation model that preserves a large number of associations is desirable because it may

be used for a variety of post-imputation analyses.

2.2 The prior distribution

The statistical theory underlying MI involves the fundamental law of probability known

as Bayes’s Theorem. The Bayesian nature of MI requires the imputer to specify a prior

distribution for the parameters of the imputation model. In the Bayesian paradigm, this

prior distribution quantifies one’s belief or state of knowledge about model parameters before

any data are seen. Because different prior distributions can lead to different results, Bayesian

methods have been regarded by some as subjective and unscientific. In practice, however, the

results of a Bayesian procedure tend to be far more sensitive to the choice of the data model

than the choice of the prior. In many cases—especially when the sample size is moderately

large—nearly any reasonable prior distribution should lead to essentially the same results.
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We tend to view the prior distribution as a necessary evil, a mathematical convenience

that allows us to generate the imputations in a principled fashion. By default, our software

applies well accepted “noninformative” prior distributions that correspond to a state of

prior ignorance about model parameters. In the vast majority of data analyses, the default

noninformative prior works well. In some unusual situations—with small samples, sparse

data or high rates of missing information—it may be necessary to apply an informative prior

distribution. Extended discussion on the choice of prior distributions is given by Schafer

(1997).

2.3 The nonresponse mechanism

Every missing-data method must make some largely untestable statistical assumptions about

the manner in which the missing values were lost. Our methods assume that the missingness

mechanism is ignorable, in the precise sense defined by Rubin (1987). Another, essentially

equivalent, term for this is the missing at random (MAR) assumption (Rubin, 1976; Little

& Rubin, 1987). Despite its name, MAR does not mean that the missing values must be a

random subsample of the entire dataset. The latter condition, known as missing completely

at random, is much more restrictive and often unrealistic. In layman’s terms, MAR means

that the probabilities of missingness may depend on data values that are observed but not

on ones that are missing.

To understand the MAR assumption, consider a simple bivariate dataset with one

variable X that is always observed and a second variable Y that is sometimes missing. Under

MAR, the probability that Y is missing for a sample subject may be related to the subject’s

value of X but not to his value of Y . In other words, suppose we define a response indicator
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R that is equal to one if Y is observed and zero if Y is missing; MAR implies that the Y

and R may be related, but only indirectly through their mutual associations with X. Under

MAR, the values of Y for nonrespondents may tend to be systematically higher or lower

than those for respondents. But MAR does imply that that the statistical relationship (in

the sense of regression) between Y and X is on average no different for the two groups. If

MAR were satisfied, then one could regress Y on X for the respondents and then use the

estimated relationship to obtain unbiased predictions of Y for nonrespondents.

Extensions of this simple example to more complex sitations—e.g. to where missing

values occur on both X and Y —are less intuitive and more difficult to describe. Nevertheless,

the prediction principle does carry over. MAR is the formal assumption that allows us to

first estimate the relationships among variables from the observed data, and then use these

relationships to obtain unbiased predictions of the missing values from the observed values.

Regarding MAR, several points ought to be made. First, MAR is defined relative to

the variables present in a dataset. If a variable X is related both to the missingness of other

variables and to the values of those variables, and X is removed from the dataset, then MAR

will no longer be satisfied. For this reason, it is good practice to include in an imputation

procedure variables that are predictive of missingness, because MAR then becomes more

plausible. Second, the MAR hypothesis cannot be tested from data at hand; doing so would

require knowledge of the missing values themselves. Third, data that are missing by design

(e.g. in a study with planned missingness) are generally MAR.

When data are missing for reasons beyond the control of the investigators, one can

never be sure whether MAR holds. In fact, to speak of a single “missingness mechanism” is

often misleading, because in most studies missing values occur for a variety of reasons; some
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of these reasons may be entirely unrelated to the data in question, but others may be closely

related. Consider, for example, the problem of attrition in a school-based longitudinal study

of adolescent substance use; over time, some subjects may be lost simply because they moved

to another school district, whereas others may have dropped out of school in a pattern of

problematic behavior that includes substance use. Uncontrolled missingness typically arises

from a mixture of ignorable and nonignorable sources. For a detailed discussion of this

point with examples of both planned and uncontrolled missingness, see Graham, Hofer, and

Piccinin (1994).

Unfortunately, it is not possible to relax the MAR assumption in any meaningful way

without replacing it with other equally untestable assumptions. The alternative to assuming

MAR is to propose a formal probability model for response and carry out an analysis under

that model. Doing so usually requires substantial effort and technical expertise. Such analy-

ses have been done in a variety of settings, but the methods tend to be rather problem-specific

and do not generalize well. At present, there are no principled nonignorable missing-data

methods readily available to most data analysts. Until such methods become available, we

recommend the cautious use of ignorable methods with an awareness of their limitations.

In the vast majority of studies, principled methods that assume MAR will tend to perform

better than ad hoc procedures such as listwise deletion or imputation of means. Moreover,

even when MAR seems unrealistic, ignorable procedures that draw upon a rich assortment of

covariates may introduce little or no bias relative to a complicated nonignorable procedure.

Further discussion of nonignorable alternatives is given by Schafer (1997, pp. 27–28).
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3 Tools for creating multiple imputations

Special computational techniques are needed to create MI’s for incomplete multivariate data.

Our software applies new methods of Markov chain Monte Carlo. In particular, we use a

procedure called data augmentation (Tanner & Wong, 1987). Because data augmentation

is closely related to the EM algorithm (Dempster, Laird, and Rubin, 1977), we first review

EM.

3.1 The EM algorithm

The EM algorithm is a general technique for fitting models to incomplete data. EM cap-

italizes on the relationship between missing data and the unknown parameters of a data

model. If we knew the missing values, then estimating the model parameters would be

straightforward. Similarly, if we knew the parameters of the data model, then it would

be possible to obtain unbiased predictions for the missing values. This interdependence

between model parameters and missing values suggests an iterative method where we first

predict the missing values based on assumed values for the parameters, use these predictions

to update the parameter estimates, and repeat. The sequence of parameters converges to

maximum-likelihood estimates that implicitly average over the distribution of the missing

values.

The formal definition and key properties of EM are reviewed by Little & Rubin

(1987) and Schafer (1997). It is helpful to note that EM’s rate of convergence is determined

by the rates of missing information in the dataset. If there were no missing values, then

convergence would be immediate; if large amounts of information are missing about one or
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more parameters, then convergence will require many iterations. One way to monitor the

convergence of EM is to examine the loglikelihood function and confirm that it increases at

each iteration. In addition, it is sometimes helpful to run EM from a few different starting

values to ensure that the loglikelihood has a unique maximum. There are situations where a

unique maximum does not exist; for example, the likelihood might have multiple modes or

a ridge. These situations tend to occur with small samples, high rates of missingness, and

models that have too many parameters to be supported by the amount of observed data.

The programs NORM, CAT, and MIX include EM-type algorithms for parameter

estimation. Running these algorithms before producing MI’s is highly recommended for

two reasons: (a) the resulting parameter estimates provide excellent starting values for the

data augmentation procedure, and (b) the convergence behavior of EM helps to predict the

convergence behavior of subsequent data augmentation runs.

3.2 Data augmentation

Like EM, data augmentation (DA) is an iterative process that alternately fills in the miss-

ing data and makes inferences about the unknown parameters. However, DA does this in

a stochastic or random fashion. DA first performs a random imputation of missing data

under assumed values of the parameters, and then draws new parameters from a Bayesian

posterior distribution based on the observed and imputed data. The procedure of alternately

simulating missing data and parameters creates a Markov chain that eventually stabilizes or

converges in distribution. The distribution of the parameters stabilizes to a posterior distri-

bution that averages over the missing data. The distribution of the missing data stabilizes

to a predictive distribution—the exact distribution, in fact, that one needs to draw from to
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create proper MI’s.

As with EM, the convergence of DA is closely related to rates of missing information;

large amounts of missing information cause the convergence to be slow. The meaning of

convergence, however, is quite different because DA is a stochastic procedure that converges

in distribution. When EM converges, the parameter estimates no longer change from one

iteration to the next. When DA converges, the distribution of the parameters no longer

changes from one iteration to the next, although the random parameter values themselves

do continue to change. For this reason, assessing the convergence of DA is much more

complicated than for EM.

One way to address this issue is to reinterpret convergence as a lack of serial depen-

dence. DA may be said to have converged by k cycles if the value of any parameter at cycle

t is statistically independent of its value at cycle t + k for t = 1, 2, . . .. We can assess the

degree of serial dependence by storing the parameters at each cycle and constructing time-

series plots. Storing the parameter values also allows us to calculate and plot the sample

autocorrelation function (ACF) for any parameter. The ACF is simply the lag-k Pearson

correlation coefficient for various values of k, i.e. the correlation between the simulated value

of a parameter at any cycle and its value k cycles later. A DA algorithm can reasonably be

said to have converged by k cycles if the sample ACFs for all parameters have died down

to zero by lag k. Our software is capable of storing parameters and creating time-series and

ACF plots automatically, making it easy for the user to monitor convergence.

In practice, we have found that DA nearly always converges in fewer cycles than does

EM. For example, if the EM algorithm for a particular problem converges in 50 cycles, it

would be highly unusual for the corresponding DA algorithm to require more than 50 cycles.
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For this reason, it is very helpful to run the EM algorithm prior to running DA to obtain a

rough idea of how many DA cycles may be needed.

When using DA to create m multiple imputations of missing data, it is important to

note that proper MI’s are independent draws of missing data from their predictive distribu-

tion. Once we have determined that DA has converged by k cycles, we can perform m runs

of length k and save the completed datasets from the end of each run as our m imputations.

Alternatively, we can perform a single run of length km and store the completed datasets

from cycles k, 2k, . . . , mk. Our software is designed to perform either operation. The user

must specify starting values for the parameters (typically the estimates obtained from EM)

and a total run length. The user may then optionally choose to save the final imputed

datasets from the end of the DA run, or to save the imputed datasets at every kth cycle for

any value of k.

There is no danger in using too large a value of k, because once DA has converged

the process remains stationary. On the other hand, if k is too small, the imputed datasets

will not be truly independent and the variability among them may understate the true levels

of missing-data uncertainty. Time and computational resources allowing, it is therefore

advisable to choose k to be somewhat larger than necessary, to create a margin of safety and

ensure that the multiple imputations are truly independent.

4 Rules for MI inference

Once MI’s have been created, the datasets may be analyzed by nearly any method that

would be appropriate if the data were complete. For example, one could perform linear

17



or logistic regression procedures using any standard statistical package. Any model would

have to be fit m times, once for each imputed dataset, and the results across these datasets

will vary as a reflection of missing-data uncertainty. To obtain an overall set of estimated

coefficients and standard errors, one would have to store the estimates and standard errors

from each of the m imputed datasets, and then combine the results using the rules given by

Rubin (1987). These same rules have been implemented in each of our software packages;

each program (NORM, CAT, MIX, and PAN) has the capacity to read m files containing

point estimates and standard errors and combine them by these rules. Alternatively, these

rules could easily be programmed as a macro in SAS or another statistical package.

Rubin’s rules proceed as follows. Let Q̂ denote an estimate of a population quantity

of interest and U its estimated variance. For example, Q̂ could be an estimated regression

coefficient and U its squared standard error. After performing the same analysis on each im-

puted dataset, we have m equally plausible estimates Q̂1, Q̂2, . . . , Q̂m and their corresponding

variances U1, U2, . . . , Um. The MI estimate, or overall estimate, is given by

Q̄ =
1

m

m∑
i=1

Q̂i.

The total variance for the estimate has two components that take into account variability

within each dataset and across datasets. The within-imputation variance,

Ū =
1

m

m∑
i=1

Ui,

is simply the average of the estimated variances. The between-imputation variance,

B =
1

m − 1

m∑
i=1

(Q̂i − Q̄)2,

is the sample variance of the estimates themselves. The total variance, T , is the sum of the

two components with an additional correction factor to account for the simulation error in
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Q̄,

T = Ū +
(
1 +

1

m

)
B.

The square root of T is the overall standard error associated with Q̄. Note that if there

were no missing data, then Q̂1, Q̂2, . . . , Q̂m would be identical, B would be 0 and T would

simply be equal to Ū . The size of B relative to Ū is a reflection of how much information is

contained in the missing part of the data relative to the observed part.

A rough 95% confidence interval can be obtained as Q̄ ± 2
√

T . In general, however,

it is better to calculate intervals using the approximation

Q̄ ± tdf
√

T ,

where tdf denotes a quantile of Student’s t-distribution with degrees of freedom

df = (m − 1)

(
1 +

mŪ

(m + 1)B

)2

.

P-values for testing the null hypothesis Q = 0 may be obtained by comparing the ratio

Q̄/
√

T to the same t-distribution.

Notice that with an infinite number of imputations (m = ∞) the total variance

reduces to the sum of the two variance components and the confidence interval is based on

a normal distribution (df = ∞). The degrees of freedom are influenced both by the number

of imputations and the relative sizes of B and Ū . When B dominates Ū the degrees of

freedom are close to the minimum value of m − 1, but when Ū dominates B the degrees of

freedom approach infinity. If the computed value of df is very small—say, less than 10—it

suggests that greater efficiency (i.e. more accurate estimates and narrower intervals) could

be obtained by increasing the number of imputations m. If df is large, however, it suggests

that little will be gained from a larger m.
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Rubin (1987) also shows that an estimate of the fraction of missing information about

the population quantity Q is

γ =
r + 2/(df + 3)

r + 1
,

where

r =
(1 + m−1)B

Ū

is the relative increase in variance due to nonresponse. Both of these quantities are interesting

and useful diagnostics, revealing how strongly the estimation of Q may be influenced by

missing data.

Many important statistical questions cannot be answered by a confidence interval

or hypothesis test about a single parameter Q. One is often concerned with assessing the

joint significance of group of coefficients in a model, or testing a model’s overall goodness of

fit. General rules for multiparameter inference from multiply-imputed data are reviewed by

Schafer (1997, pp. 112–118). Unfortunately, the implemention of these rules with existing

statistical software is not necessarily straightforward. We are currently investigating methods

for goodness-of-fit testing and model selection in structural equation models using popular

software packages such as LISREL; new results in this area should be available soon.

5 Application: The Adolescent Alcohol Prevention Trial

5.1 The data

The data in this example come from the Adolescent Alcohol Prevention Trial (AAPT), a

school-based study of substance use in the Los Angeles area (Hansen & Graham, 1991).
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We examine a cohort of N = 3, 017 students who received an intervention in grade 7.

Students were assigned to four groups corresponding to four different substance-use preven-

tion programs. One group received information on the consequences of use (ICU), which

can be regarded as a baseline or control program. A second group received this baseline

program plus resistance training (ICU+RT), designed to build skills to help students re-

sist future offers of substance use by their peers. A third group received the baseline plus

normative education (ICU+NORM), designed to correct students’ perceptions about the

prevalence and acceptability of use. The fourth group received all three program components

(ICU+RT+NORM).

The goal of this analysis will be to examine the possible effects of the grade 7 inter-

vention on reported alcohol use in grade 9, controlling for important covariates measured

in grade 7. This exercise is designed to illustrate the usefulness of our software and the MI

paradigm, and to raise certain points about imputation modeling. To keep matters simple,

we will sidestep two issues that complicate these data. The first issue pertains to the distri-

bution of reported alcohol use. In both seventh and ninth grades, a substantial proportion

of students reported no alcohol use at all, whereas the remaining students reported levels

ranging from very little use to heavy use. Consequently, the distribution of this variable is

“semicontinuous,” a mixture of zeros and continuously varying positive responses. Ideally,

the statistical analysis and missing-data procedure should address this variable’s two-part

nature, but doing so in the present article would be an unwelcome digression. For now,

we will simply collapse alcohol use into a dichotomous variable (some use versus no use),

sacrificing our ability to distinguish among users of varying degree.

The second issue that we will not address pertains to the fact that the subjects in

this study may not act independently of one another. The students are grouped into schools,

21



and the intervention programs were administered at the school level. An ideal analysis of

these data should account for their grouped or multilevel structure. Methods for multilevel

regression analysis are readily available (e.g. Bryk & Raudenbush, 1992), and imputation

procedures for multivariate multilevel data have been developed by Schafer (submitted). For

simplicity, however, we will ignore the multilevel aspects of these data and use methods that

treat the students as independent agents. Our failure to account for the multilevel structure

means that the precision of estimated relationships will be somewhat overstated, and that

the actual statistical significance of an effect is somewhat less than what we will report.

The variables included in the analysis and their rates of missingness are reported in

Table 2. All variables except for ALC9 were collected in seventh grade prior to intervention.

Notice that the variables PARRELAT, MONITOR, PEERPREV and GRADES7 are missing

for approximately one-third of the subjects. Most of these missing values were planned, a

consequence of Graham’s three-form design. The missingness for ALC9, however, is due to

a combination of attrition, absenteeism, and insufficient time to complete the questionnaire

when the ninth grade measures were taken. Histograms of the nine variables are displayed

in Figure 2.

One interesting feature of these data is that GRADES7 is a fairly strong predictor

of missingness for ALC9. Students with lower grades tended to have poorer reading skills

which hindered their ability to complete the questionnaire in time and, consequently, led to

missing values for ninth grade alcohol use. To the extent that GRADES7 explains part of

the missingness for ALC9, including it in the imputation procedure tends to make the MAR

assumption more plausible. Variables thought to be strong predictors of missingness should

be included in the imputation procedure wherever possible, even if they are not needed for

later substantive analyses.
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Table 2: Variables from the AAPT study, with rates of missing

values

Name Description missing (%)

PARRELAT relationship with parents 35

(↑ means better relationship)

MONITOR parental monitoring 35

(↑ means more monitoring)

PEERPREV prevalence of use among peers 36

(↑ means more perceived use)

SMOKE7 smoking, grade 7 0

(↑ means more smoking)

ALC7 alcohol use, grade 7 0

(0 = none, 1 = some)

FRNDUSE substance use by friends 0

(↑ means more use)

GRADES7 grades, grade 7 37

(↑ means better reading skills)

SEX gender 0

(0 = female, 1 = male)

ALC9 alcohol use, grade 9 45

(0 = none, 1 = some)
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Figure 2: Histograms of nine variables from the AAPT study
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By applying the MAR assumption, we are in effect assuming that any unmeasured

covariates related to missingness are essentially unrelated to the key variables in this study.

Because the missingness for ALC9 was uncontrolled, we have no way to support or discredit

this hypothesis directly. Extensive follow-up evaluations, however, suggested that in the vast

majority of cases, these data were missing for reasons unrelated to substance use (Graham,

Hofer, & Piccinin, 1994). Therefore, we believe that applying the MAR assumption to these

missing values is not entirely unreasonable.

5.2 Plan for analysis

Prior to imputation, it is helpful to have in mind the methods by which the data will

ultimately be analyzed, to devise an imputation model that will be compatible with the

intended analyses.

Because our main goal is to assess possible program effects on alcohol use at grade 9,

we will contruct a logistic regression model to predict ALC9. Letting p denote the probability

that a subject reports alcohol use (ALC9=1), we will fit a model of the form

log

(
p

1 − p

)
= β0 + β1X1 + β2X2 + · · ·+ βqXq,

where X1, . . . , Xq represent the other covariates listed in Table 2 and dummy indicators to

distinguish among the program groups. Because there are four program groups, let us define

three indicators: RTICU (equal to one if the student received ICU + RT, zero otherwise);

NORMICU (one if ICU + NORM, zero otherwise); and COMBICU (one if ICU + RT +

NORM, zero otherwise). Under this coding scheme, the β-coefficients for these indicators

will distinguish the rate of alcohol use in each of the three experimental treatment groups

(ICU + RT, ICU + NORM, and ICU + RT + NORM, respectively) from that of the control
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group (ICU only).

For simplicity, we will not investigate possible interactions among the program indi-

cators and other covariates. That is, we will determine only whether the programs appeared

to have any discernible effects on ALC9 in an overall sense, and we will not attempt to

measure any differences in program effects among subgroups (e.g. boys and girls). Thus it

will be sufficient to use an imputation model that allows simple associations or correlations

between each dummy indicator (RTICU, NORMICU, and COMBICU) and ALC9. If we had

intended to look at interactions of program and gender, we would need an imputation model

that allows more general three-way associations between the dummy indicators, ALC9, and

gender.

5.3 The imputation model

Because this dataset contains both continuous and binary variables, we might consider imput-

ing the missing data using the program MIX. However, it is also possible to do an acceptably

good job using the simpler package NORM, which treats the variables as if they are jointly

normal. The binary variables ALC7, SEX, and ALC9 can be imputed under normality as-

sumptions and then rounded off to zero or one, a procedure that tends to work quite well

in practice Schafer (1997). The variables SMOKE7 and FRNDUSE are highly skewed and

clearly nonnormal. One might consider transforming these variables to make the normality

assumption more plausible. The rates of missingness for these variables are extremely low

(less than 0.5%), however, so they will almost never be imputed; including them without

transformation will produce very little distortion of their distributional shapes. They are

present mainly to preserve their relationships with other variables, particularly ALC9. To
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preserve program effects, the dummy indicators RTICU, NORMICU and COMBICU are

also added to the model, even though they are completely observed and do not require

imputation.

To understand the properties of a dataset imputed with NORM software, one must

understand the essential features of the multivariate normal model. Unless special restric-

tions are added to the covariance structure (and NORM does not apply any such restrictions),

the multivariate normal model implies that each variable has an additive linear regression

on all other variables with main effects but no interactions. As a result, NORM imputes

data using linear regression predictions at the subject level. For example, consider a subject

with a missing value for PEERPREV, but observed values for all other variables. Her value

for PEERPREV is imputed from a linear regression equation based on her recorded values

for all other variables. The imputed value is not merely a regression prediction, but incorpo-

rates an appropriate level of residual noise to preserve the dataset’s covariance structure. If

two or more variables are missing for a subject, then they are imputed under a multivariate

regression model that includes residual correlations among them. Imputations from NORM

are thus created under a system of simultaneous regression models in which each variable

potentially depends on all other variables.

Notice that the logistic regression that will ultimately be used for analysis is nonlinear

and therefore does not precisely mesh with the linear model applied by NORM. Simulation

work (e.g. Schafer, 1997, ch. 6) has shown that the biases that may arise due to discrepan-

cies such as these—slight differences in functional form between the imputer’s and analyst’s

models—are usually minor and have little or no discernible impact on the statistical analysis.

A more serious inconsistency would arise, however, if the subsequent regression model for

ALC9 included interactions among the predictors. The multivariate normal model allows
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simple pairwise correlations among variables, but more complex associations such as inter-

actions are not supported. Straightforward imputation under a normal model would tend to

dampen interactions, making them more difficult to detect in post-imputation analyses.

If interactions are to be a crucial part of post-imputation analyses, then one should

apply an imputation model that preserves the interactions of interest. Higher-order asso-

ciations among variables can be specified in the models used by CAT and MIX. It is also

possible to preserve higher-order associations within NORM by including products of vari-

ables. For example, suppose that we wanted to investigate differences in program effects

among boys and girls. Adding the product variables RTICU×SEX, NORMICU×SEX,

and COMBICU×SEX to the NORM imputation procedure would ensure that program by

gender interactions on ALC9 would be preserved.

5.4 Summarizing the data

The first step in using NORM is to prepare the data set. NORM reads ordinary text (ASCII)

files where each line represents data for a different subject and the variables are separated by

one or more blank spaces. NORM prompts the user for the number of variables, the number

of cases or subjects, and a numerical missing value code. For obvious reasons, missing values

should be denoted by a number which is not a plausible response for any of the variables (e.g.

-999). Once the data have been read, NORM may be asked to display a printed summary of

the observed data. This summary includes the number and percent missing for each variable,

as well as the means and standard deviations of the observed data. It also provides a matrix

of 0’s and 1’s which indicate missingness patterns in the data. A portion of the NORM

window which summarizes the AAPT data is shown in Figure 3.
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Figure 3: NORM data summary window showing rates of missingness, patterns of missing-

ness, and means and standard deviations by variable
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It is interesting to note that only 534 of the 3,017 subjects have complete data on

all variables. If an analysis involving all these variables were performed using standard

statistical packages, the built-in case deletion procedures would discard up to 82% of the

subjects, resulting in a substantial loss of power.

5.5 Running EM and DA

After examining the data summary, we ran the EM algorithm to compute maximum-likelihood

estimates of parameters (means and covariances) under the normal model. The procedure

converged in 32 iterations, which took less than 10 seconds on a 133 MHZ Pentium com-

puter. Upon convergence, NORM provides an iteration history, including the observed-data

loglikelihood, as well as the final estimates of the means, standard deviations and correla-

tions, as shown in Figure 4. The estimated parameters are automatically saved to a file in

an appropriate format to serve as starting values for subsequent runs of data augmentation.

Based on the rapid convergence of EM, it appeared that 32 cycles of data augmenta-

tion would be sufficient for DA to converge in distribution. For an extra margin of safety, we

decided to double that number and take 64 cycles of DA between imputations. We ran DA

for a total of 640 cycles, producing an imputation at every 64th cycle for a total of m = 10

imputations. We used the default noninformative prior distribution and also stored the pa-

rameters from each cycle of DA so that we could later create time-series and ACF plots.

The entire data augmentation and imputation procedure took 127 seconds. Each imputed

dataset is stored as a text (ASCII) file, in a format similar to that of the input data.
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Figure 4: NORM window showing output from a run of the EM algorithm
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Figure 5: Time-series and ACF plot from a data augmentation run showing rapid convergence

5.6 Assessing convergence

As discussed earlier, it is a good idea to examine time-series and ACF plots of the parameters

to diagnose convergence. Plots for one of the parameters are shown in Figure 5. In the time

series, the value of the parameter (vertical axis) is plotted against the iteration number

(horizontal axis). If DA converges quickly, the series should resemble a horizontal band

without long upward or downward trends, as it does have. Long-term drifts or trends

indicate positive lag-k correlations at large values of k. These correlations, as displayed

in the ACF plot, die out very quickly for this parameter. Plots for all other parameters show
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Figure 6: Time-series and ACF plot from a data augmentation run showing pathological

behavior

similar behavior, verifying that the DA algorithm converged rapidly in this example.

For comparison, plots for a parameter from a poorly behaved DA run are shown in

Figure 6. The data and model that produced this plot are discussed by (Schafer, 1997, Sec.

6.3) and will not be explained here. For our purposes, we simply note that the long-term

drift and high autocorrelations imply a pathological situation with extremely high rates of

missing information. In fact, the rate of missing information for this parameter is 100%.

For further explanation and remedies for such unusual situations, see Chapters 3, 4 and 6 of

Schafer (1997).
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5.7 Analyzing the imputed datasets

Following imputation, we performed logistic regression analyses to predict ALC9. The analy-

ses were carried out in SAS using PROC LOGISTIC. Our SAS program read in each imputed

dataset and rounded off the imputed values of ALC7, SEX, and ALC9 to zero or one. A

logistic regression was fit to predict ALC9 from all other variables, including the dummy

indicators RTICU, NORMICU, and COMBICU. The estimated coefficients and standard

errors were then saved to a text file. This text file consists of a column of coefficients and

a column of standard errors separated by blank space. The same SAS program was run ten

times, with only trivial modifications to change the input file names to AAPT*.IMP and the

output file names to RESULT*.DAT for * = 1, 2, . . . , 10.

5.8 Combining the results

The final step in our analysis was to combine the coefficients and standard errors in the

RESULT*.DAT files according to Rubin’s rules. The NORM program carries out this step

automatically; after restarting NORM, select “MI inference” under the “Analyze” menu

option. The printed report generated by NORM, as shown in Figure 7, resembles a table

of coefficients produced by traditional regression software. For each coefficient, the report

provides the overall estimate Q̄, the standard error
√

T , the degrees of freedom df for the

t-approximation, and the p-value for testing the hypothesis Q = 0 against the two-sided

alternative. A second table provides the lower and upper limits of a 95% confidence interval

and the estimated percent missing information for each coefficient. The high rates of missing

information for all coefficients reflect the high percentage of missing values for the response

variable ALC9.
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Figure 7: NORM window displaying combined results from ten logistic regression analyses
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Because this analysis does not reflect the multilevel structure of the data, the p-values

shown in Figure 7 are probably “too significant,” overstating the strength of evidence for

each coefficient. Nevertheless, the estimated coefficients for MONITOR, ALC7, and SEX

are highly significant and the effects are in the expected direction. Alcohol use at grade

9 appears to be negatively associated with parental monitoring and positively associated

with alcohol use at grade 7, and girls are less likely to use alcohol than boys. None of

the dummy indicators for treatment are significantly different from zero. The estimated

coefficient for NORMICU is negative and fairly large, however, suggesting that the ICU +

NORM intervention may have some benefit in reducing alcohol use relative to the baseline

ICU program. This finding is rather consistent with previous analyses of AAPT by Hansen

& Graham (1991) and Palmer et al. (submitted), who reported that the only group that

behaved significantly better than ICU was NORM + ICU. The fact that the NORMICU

effect seems weaker in this present analysis may be due to the information lost by our

dichotomization of ALC9. Grouping the reported users of alcohol into a single category

eliminates the possibility of detecting program effects that diminish the levels of use among

users.

6 Discussion

The analysis of datasets with missing values is one area of statistical science where real

advances have recently been made. Modern missing-data techniques which substantially

improve upon old ad hoc methods are finally becoming available to data analysts. Among

these new techniques, multiple imputation is especially powerful because of its generality.

Standard programs for data analysis such as SAS, SPSS, and LISREL were never intended
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to handle datasets with a high percentage of incomplete cases, and the missing-data proce-

dures built into these programs are crude at best. On the other hand, these programs are

exceptionally powerful tools for complete data, providing an amazing variety of exploratory

methods and model-fitting routines. Our new software for MI supplements rather than re-

places these statistical packages. MI does resemble the older methods of case deletion and ad

hoc imputation in that it addresses the missing-data issue at the beginning, prior to the sub-

stantive analyses. Unlike the ad hoc methods, however, MI solves the missing-data problem

in a principled and statistically defensible manner, incorporating missing-data uncertainty

into all summary statistics.

MI is not the only modern missing-data tool to become available to researchers. Some

producers of statistical software are beginning to incorporate incomplete-data features di-

rectly into certain types of model-fitting routines. These procedures are similar to MI in

that they implicitly average over a predictive distribution for the missing values, but the

averaging is performed using analytic or numerical methods rather than simulation. Pro-

grams for multilevel regression modeling, including HLM (Bryk, Raudenbush, & Congdon,

1996) and SAS PROC MIXED (Littell et al. 1996) allow arbitrary patterns of missing val-

ues in the response variable. Two programs for structural equations modeling, Mx (Neale,

1991) and Amos (Arbuckle, 1995), can perform direct maximum-likelihood estimation us-

ing both complete and incomplete cases. With reasonably large sample sizes, these direct

maximum-likelihood methods should lead to essentially the same results as MI. In fact, di-

rect maximum-likelihood methods will be slightly more efficient than MI because they do

not rely on simulation.

To the extent that direct maximum-likelihood methods are available, we wholeheart-

edly encourage analysts to use them. For many types of analyses, however, no direct pro-
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cedures currently exist. For example, we know of no statistical software capable of fitting

a logistic regression model with missing values on both the predictors and the response,

as in the AAPT example above. It appears unlikely that any such software will become

available in the forseeable future. Direct maximum-likelihood methods are computationally

complicated and require a special implementation for each new type of model. MI, on the

other hand, is a general technique that can be applied to a wide variety of modeling prob-

lems right now. We look forward to developing MI routines and software for wider classes

of incomplete-data problems, and to disseminating these methods beyond a small circle of

statistical experts to the wider community of researchers and data analysts.
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