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Power Spectra of Return-to-Zero Optical Signals
Ezra Ip and Joseph M. Kahn, Fellow, IEEE

Abstract—Analytical formulas for the power spectra of return-
to-zero (RZ) optical signals generated by Mach–Zehnder (MZ)
modulators are derived. Pulse duty cycles of 33%, 50%, and
67%, in conjunction with several modulation techniques, includ-
ing binary ON–OFF keying (OOK), duobinary OOK, and M -ary
differential phase-shift keying (DPSK), phase-shift keying (PSK),
and quadrature-amplitude modulation (QAM), are considered.
Spectral characteristics and bandwidth requirements of these
different schemes are compared.

I. INTRODUCTION

R ETURN-TO-ZERO (RZ) modulation formats are be-
coming increasingly popular for long-haul optical fiber

transmission systems at bit rates of 10 Gb/s and above [1].
Previously, the benefits of RZ formats were often overlooked,
because they require larger bandwidth than non-return-to-zero
(NRZ) formats, and their generation typically requires two
cascaded Mach–Zehnder (MZ) modulators. In recent years, it
has been shown that RZ can have superior performance over
NRZ in certain regimes where chromatic dispersion and fiber
nonlinearities are present [2]–[4], as the RZ pulse may exhibit
“soliton-like” properties. In addition, RZ has greater tolerance
to polarization-mode dispersion than NRZ [5]. Recent research
has compared the performance of RZ with different modulation
techniques, including binary ON–OFF keying (OOK) and binary
differential phase-shift keying (2-DPSK) [6], [7].

RZ pulses are frequently generated by driving an MZ modu-
lator by a sinusoidal drive waveform; we assume throughout
this paper that RZ pulses are generated in this manner. We
define the pulse duty cycle as TFWHM/TS , where TFWHM

is the pulsewidth (full-width at half-maximum intensity), and
TS is the symbol duration. Depending on the drive waveform
amplitude and bias, RZ pulses can have duty cycles of 33%,
50%, and 67%. In particular, 67% RZ is often referred to as
carrier-suppressed RZ (CSRZ).

The optical power spectrum is an important characteristic of
any modulation format to be employed in a dense wavelength-
division-multiplexed (DWDM) system. The spectrum relates to
several key system attributes, which include 1) optical filter
bandwidth required for low distortion and crosstalk; 2) channel
spacing required for low crosstalk; 3) sensitivity to chromatic
dispersion; and 4) impact of fiber nonlinearity. (It should be
pointed out that while the spectrum is indicative of these
attributes, detailed performance analysis is required to precisely
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characterize these attributes for a given modulation scheme and
system design.)

The spectra of various RZ schemes have been measured in
several experiments [8], [9] and in numerous simulations. Since
measured spectra can be corrupted by noise while simulated
spectra can depend on the data sequence employed, it is desir-
able to compute the spectra analytically. While the spectra of
nonoptical signals have been systematically analyzed [10], the
spectra of externally modulated optical signals have not been
fully characterized analytically. A major difficulty lies in the
nonlinear transfer characteristic of the MZ modulator, which
can cause the optical spectrum to be very different from the
spectrum of the electrical drive signal. Recently, optical spectra
were calculated for binary signals with both raised-cosine and
Bessel-filtered NRZ pulse shapes and for optical duobinary
signals created by Bessel-filtered NRZ pulse shape [11].

In this paper, we derive analytical formulas for the spectra
of 33%, 50%, and 67% RZ, in conjunction with various mod-
ulation techniques, including binary OOK, duobinary OOK,
and M -ary differential phase-shift keying (DPSK), phase-shift
keying (PSK), and quadrature-amplitude modulation (QAM).
We compare the spectral characteristics and bandwidth require-
ments of these schemes.

II. DERIVATION OF RZ POWER SPECTRA

We derive the spectra of modulated RZ data signals in this
section. We review the generation of RZ data signals in part A
and the time-domain waveforms of isolated RZ pulses in part B.
In part C, we derive the frequency-domain spectra of isolated
RZ pulses. In part D, we review the autocorrelation functions
and power spectra of common modulation formats and combine
the latter with the results of part C to obtain the power spectra
of modulated RZ data signals.

A. Generation of Modulated RZ Data Signals

Throughout this paper, we assume that unchirped RZ signals
are generated using a cascade of two MZ modulators, as shown
in Fig. 1. We use E(t) to denote a complex baseband electric
field and Ê(f) to denote its Fourier transform. At each MZ
modulator (i = 1, 2), the relationship between input and output
electric fields satisfies

Ei,out(t) = Ei,in(t) sin
(

πVi(t)
2Vπ

)
. (1)

For a balanced single-drive modulator, Vi(t) represents the
drive voltage. For a dual-drive modulator, Vi(t) represents the
algebraic difference between the two drive voltages, which
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Fig. 1. Generation of RZ signals using cascaded MZ modulators. The output of the first modulator is a continuous stream of RZ pulses. The second modulator
modulates the RZ pulse amplitudes in accordance with the modulation format.

must be complementary to produce zero chirp. For both modu-
lator types, Vπ represents the change in Vi(t) that is required to
swing the intensity from minimum to maximum.

We assume that the first modulator—known as the pulse
carver—is driven by a sine wave V1(t) to produce an optical
pulse train. The second modulator is driven with an NRZ
electrical waveform V2(t) that encodes data onto the pulse
train (Fig. 1). In this paper, we assume that the data encoder
modulator has infinite modulation bandwidth. Assume that
M -ary data symbols are encoded onto the pulse train. The
interval between pulses, which is equal to the symbol interval
Ts, is related to the bit interval Tb by

Ts = Tb log2 M. (2)

Likewise, the pulse repetition rate, which is equal to the symbol
rate Rs, is related to the bit rate Rb by

Rs =
Rb

log2 M
. (2a)

In the particular case of binary transmission M = 2, we have
Ts = Tb and Rs = Rb.

B. Waveforms of Isolated RZ Pulses

A graphical representation of the sinusoidal drive voltage
V1(t) required to produce 33%, 50%, and 67% RZ pulse trains
is shown in Fig. 2. The underlying curve depicts the modulator
transfer characteristic E1,out(t)/E1,in(t) versus V1(t), given by
(1), while the horizontal arrows denote the excursion of V1(t)
over one cycle. In the case of 50% RZ, V1(t) passes through
one intensity maximum per cycle, so the frequency of V1(t)
equals the symbol rate Rs. In the cases of 33% and 67% RZ,
V1(t) passes through two intensity maxima per cycle, so the
frequency of V1(t) equals Rs/2. We note that in the cases of
33% and 50% RZ, E1,out(t)/E1,in(t) is nonnegative over the
excursion of V1(t), resulting in unipolar electric field wave-
forms. By contrast, in the case of 67% RZ, E1,out(t)/E1,in(t) is
both positive and negative over the excursion of V1(t), resulting
in bipolar field waveforms that switch polarity between odd and
even symbol intervals.

In this paper, we assume ideal RZ pulses produced by MZ
modulators having infinite modulation bandwidth and zero

Fig. 2. Transfer characteristic of modulator 1, indicating the excursion of
drive waveform V1(t) for generation of RZ pulse trains of 33%, 50%, and 67%
duty cycles.

chirp.1 We can write the time-domain electric field waveforms
for isolated 33%, 50% and 67% RZ pulses as

E33(t) =

{
1√
E33

sin
(

π
2

[
1 + sin

(
πt
Ts

)])
, −Ts

2 ≤ t ≤ Ts

2

0, otherwise

(3)

E50(t) =

{
1√
E50

sin
(

π
4

[
1 + cos

(
2πt
Ts

)])
, −Ts

2 ≤ t ≤ Ts

2

0, otherwise

(4)

E67(t) =

{
1√
E67

sin
(

π
2 cos

(
πt
Ts

))
, −Ts

2 ≤ t ≤ Ts

2

0, otherwise
(5)

1If chirp is significant, we can incorporate its effect by writing the chirped
RZ pulses as

Ei,chirp(t) = Ei(t) · ejαt2

where Ei,chirp(t) is a chirped pulse, Ei(t) is the idealized pulse given
by (3)–(5), and α is the chirp factor. The Fourier transform of the chirped
pulse may be calculated by convolving the nonchirped pulse with the Fourier
transform of the chirp term expressed as

Êi,chirp(f) = Êi(f) ⊗
[√

π

α
e
−jπ2 f2

α2

]

where Êi(f) is given by (9)–(11). To compute the spectral broadening for a
particular value of α, the above formula should be used in place of Êi(f)
in (14).
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Fig. 3. Intensity waveforms of isolated 33%, 50%, and 67% RZ pulses. The
pulses are normalized to have unit energy over the symbol period Ts.

where the pulse energies Ei are given by

Ei =

∞∫
−∞

E2
i (t) dt. (6)

Recalling that 67% RZ is bipolar, we note that (5) provides the
formula of a single RZ pulse in the positive polarity. It will
be shown later that for spectra calculations, it is simpler to
compute the Fourier transform of an isolated positive pulse and
incorporate the polarity flip between odd and even symbols into
the modulating data sequence. In Fig. 3, we plot the squared
magnitudes of the RZ pulse waveforms given by (3)–(5). The
pulses are normalized to have unit energy over the symbol
period Ts.

C. Spectra of Isolated RZ Pulses

In order the compute the Fourier transform of an isolated RZ
pulse, it is convenient to first periodically extend the isolated
pulse to obtain a periodic pulse train having period Ts and then
multiply the periodic pulse train by a rectangular function to
extract an isolated RZ pulse.

For 33%, 50%, and 67% RZ, expressions for the iso-
lated pulses Ei(t) (i = 33, 50, 67) are given in (3)–(5). In
order to obtain the corresponding periodically extended pulse
trains gi(t), we simply remove the time constraints from
(3)–(5), obtaining the expressions given in the second col-
umn of Table I. Using well-known expansions for sinusoidal
functions of sinusoidal arguments [12], we represent the pe-
riodically extended pulse trains gi(t) as Fourier series with
coefficients given by Bessel functions, as shown in the third
column of Table I. We can then express these Fourier series as
generalized Fourier transforms ĝi(f) that are infinite sums of
shifted impulses, as given in the fourth column of Table I.

In order to obtain an isolated pulse, we multiply a periodi-
cally extended pulse train gi(t) by a rectangular function, which

is expressed as

Ei(t) = gi(t) · h(t) (7)

where

h(t) =
{

1, −Ts

2 ≤ t ≤ Ts

2
0, otherwise.

(8)

This is illustrated in Fig. 4. Since multiplication by h(t) in
the time domain corresponds to convolution in the frequency
domain by its Fourier transform ĥ(f) = Ts sinc (fTs), the
Fourier transform of an isolated RZ pulse is equal to an infinite
sum of shifted sinc functions weighted by Bessel function
coefficients Jn(β)

Ê33(f) =
Ts√
E33

∞∑
n=−∞

n is even

Jn

(π

2

)
· sinc

(
fTs −

n

2

)
(9)

Ê50(f) =
Ts√
2E50

∞∑
n=−∞

jn− 1
2+ 1

2 (−1)n

Jn

(π

4

)
· sinc(fTs − n)

(10)

Ê67(f) =
Ts√
E67

∞∑
n=−∞

n is odd

jn−1Jn

(π

2

)
· sinc

(
fTs −

n

2

)
. (11)

In the above equations, j =
√
−1. Plots of the squared magni-

tudes of (9)–(11) are shown in Fig. 5.

D. Spectra of Modulated RZ Data Signals

In Fig. 1, the drive voltage V2(t) of the second MZ modulator
causes a data symbol sequence {In}∞n=−∞ to be modulated onto
the periodic RZ pulse train output from the first modulator. The
data sequence In can be drawn from an arbitrary modulation
format, e.g., OOK, DPSK, etc. We can write the output of the
second modulator as

E2,out(t) =
∞∑

n=−∞
In · Ei(t − nTs) ≡ A(t). (12)

In the remainder of the paper, to simply notation, we denote the
output of the second modulator as A(t). In (12), Ei(t) is the
electric field waveform of a single RZ pulse, given in (3)–(5)
for the cases of 33%, 50%, and 67% RZ.

An autocorrelation function φII(m) = E	I∗nIn+m� exists
for the data sequence. The spectrum of this autocorrelation
function is defined as

ΦII(f) =
∞∑

m=−∞
φII(m) · ej2πmfTs . (13)

Once the spectrum of the data sequence is found using (13),
the complete baseband equivalent spectrum of the modulated
RZ data signal can be computed as [10]

ΦAA(f) =
1
Ts

ΦII(f) ·
∣∣∣Êi(f)

∣∣∣2 . (14)
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TABLE I
IN COMPUTING THE SPECTRUM OF AN ISOLATED RZ PULSE, WE PERIODICALLY EXTEND AN ISOLATED PULSE AND

CALCULATE THE FOURIER TRANSFORM OF THE RESULTING PERIODIC PULSE TRAIN

Fig. 4. Isolated RZ pulse Ei(t) is obtained by multiplying its periodic
extension gi(t) by h(t).

According to (14), the spectrum of modulated RZ depends on
the spectrum of the isolated pulse shape Êi(f) and the spectrum
of the data sequence In. The autocorrelation functions and
spectra of common modulation formats are shown in Table II
[10]. In evaluating the spectra Êi(f) given by (9)–(11), we
consider unit pulse energies Ei = 1. Hence, P represents the
average power of the modulated RZ data signal.

There are two well-known methods of generating duobi-
nary signals. In the first method, the second modulator’s drive
waveform V2(t) in Fig. 1 is produced by passing the input bit
sequence through a delay-and-add circuit. The resulting wave-
form V2(t) is three leveled [10], [13]. In the second method, the
drive waveform V2(t) is obtained by lowpass filtering a binary
waveform, resulting in a quasi-three-level drive waveform [14].
In this paper, for analytical convenience, we consider the first
type of duobinary encoder, i.e., the delay-and-add circuit.

As pointed out earlier, in the case of 67% RZ (CSRZ),
the electric field waveform at the first MZ modulator’s output
(see Fig. 1) switches polarity between odd and even symbol
intervals. For analytical convenience, we work with a unipolar
field waveform and incorporate the polarity flips by inserting
appropriate sign changes in the modulating data. Let In be the
nth data symbol modulating the second MZ modulator. We may
write a modified data sequence as

Īn = (−1)nIn. (15)

The modulated RZ data signal is then the product of the
modified data sequence Īn and the unipolar 67% RZ pulse train,
whose single-pulse Fourier transform was computed in (11).
The modified data sequence Īn has autocorrelation function

φII(m) and spectrum ΦII(f). In order to compute the base-
band equivalent spectrum of data signals with 67% RZ pulses,
we use (14), substituting ΦII(f) for ΦII(f).

The particular case of 67% RZ pulses with binary OOK is
illustrated in Fig. 6. The modified data sequence Īn has an au-
tocorrelation function φII(m) = (−1)mE[I∗OOK,nIOOK,n+m]
given by

φII(m) =




P , m = 0
P
2 , m �= 0, m is even
−P
2 , m �= 0, m is odd.

(16)

The spectrum of this modified data sequence can be shown
to equal

ΦII(f) =
P

2
+

P

2Ts

∞∑
n=−∞

n is odd

δ

(
f − n

2Ts

)
. (17)

In the case of 67% RZ pulses with duobinary OOK, we
consider a delay-and-add duobinary encoder (the first method
described above), as we have considered for 33% and 50% RZ.
The modified data sequence Īn has a power spectrum given by

ΦII(f) = P − P cos(2πfTs). (18)

Note that [15] proposed a 67% RZ duobinary OOK scheme
using a lowpass filter duobinary encoder (the second method
described above).

In the cases of 67% RZ pulses with DPSK, PSK, or QAM,
the original data sequence In and modified data sequence
Īn have identical autocorrelation functions and thus identical
spectra.

III. RESULTS AND SIMULATIONS

Figs. 7–9 show the baseband equivalent power spectra for
33%, 50%, and 67% RZ when various modulation schemes
are employed. In Figs. 7–9, the frequency scale is expressed
in terms of fTs = f/Rs, where the symbol duration Ts and
symbol rate Rs are given by (2) and (2a). Because M -ary
modulation uses a symbol rate Rs that is log2 M lower than the
bit rate Rb, M -ary modulation is log2 M times more bandwidth
efficient than binary (M = 2) modulation.
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Fig. 5. Squared magnitudes of Fourier transforms of isolated 33%, 50%, and 67% RZ pulses.

TABLE II
AUTOCORRELATION FUNCTIONS AND SPECTRA OF COMMON DIGITAL MODULATION FORMATS. P REPRESENTS THE AVERAGE POWER OF THE

MODULATED RZ DATA SIGNAL, PROVIDED THAT THE PULSE ENERGY Ei, GIVEN BY (6), IS SET TO UNITY

The theoretical plots in Figs. 7–9 display strong agreement
with available experimentally measured spectra [8], [9], [15].
We have also verified the theoretical plots in Figs. 7–9 by
Monte Carlo simulations. The simulations were performed by
generating a random sequence of 1024 modulated RZ symbols

and then oversampling the signal at 64 times the symbol rate.
We estimated the signal’s spectrum using the periodogram
technique, dividing the modulated RZ output into blocks of 16
symbols, and computing an average spectrum of the blocks.
Essentially perfect matching between theory and simulation
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Fig. 6. Generation of 67% RZ (CSRZ) signals with OOK. (a) Actual implementation: a bipolar pulse train is modulated by a unipolar data sequence In.
(b) Equivalent model used for analysis: a unipolar pulse train is modulated by a bipolar data sequence Īn = (−1)nIn.

Fig. 7. Spectra of RZ signals with binary OOK. Solid line: analytical formula, x: Monte Carlo simulation.

results was observed in all cases. In the first plot of Fig. 7,
we display the theoretical spectrum as a solid line, and the
simulation results as discrete crosses. In all the other cases, we
display only the theoretical results.

A major reason for computing the spectrum of a data signal
is to determine the signal’s bandwidth. We use the following
expression to define a bandwidth B(γ) around the carrier
frequency over which a given fraction γ of the total energy

is contained:

γ =

B(γ)
2∫

−B(γ)
2

|ΦAA(f)|2 df

∞∫
−∞

|ΦAA(f)|2 df

. (19)
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Fig. 8. Spectra of RZ signals with duobinary OOK.

The integration in (19) is performed over a range centered at
f = 0, because (14) represents a baseband equivalent spectrum.

Table III lists the bandwidths B(γ) containing 90% and 99%
of the total power for the different RZ modulation schemes.
We note from Fig. 7 that the OOK spectra have impulses at
frequencies equal to integer multiples of the symbol period.
Half of the power of an OOK signal lies in these impulses.
We computed two bandwidths for OOK in Table III, first with
the impulses included in our calculations and then without. The
results with the impulses considered are shown in parentheses
in the first row of Table III. The results without the impulses
are shown without parentheses and are observed to be the same
as the bandwidths for M -ary DPSK, PSK, or QAM.

IV. DISCUSSION

The spectra plotted in Figs. 7–9 reveal a number of features
that are discussed in this section.

Among all the modulation formats considered here, binary
OOK with 33% and 50% RZ are unique in having an impulse

in the spectrum at the carrier frequency, which results from
the nonzero mean of the data sequence In [10]. In the case
of binary OOK with 67% RZ (CSRZ), the periodic alternation
of the pulse polarity (or of the modified data sequence Īn) shifts
the spectral impulses to half the symbol rate above and below
the carrier frequency (f = ±1/2Ts in Fig. 7) [15]. In the case
of all other modulation formats, the absence of the impulse at
the carrier frequency can be attributed to the zero mean of the
data sequence In [10].

Fourier transform theory indicates that the shorter the dura-
tion of a signal in time, the wider its bandwidth in frequency.
A comparison of the main lobes of Fig. 5 confirms this: The
RZ pulse that has the shortest time duration (33% RZ) has
the widest main lobe, whereas the pulse with the longest time
duration (67% RZ) has the narrowest main lobe.

When computing signal bandwidths based on the contain-
ment of a given percentage of total power, we find the heights
of the side lobes to be very important. Considering signal band-
widths that contain 90% of the total power, there is a monotonic
decrease in bandwidth as the duty cycle progresses from 33%
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Fig. 9. Spectra of RZ signals with M -ary DPSK, PSK, or QAM.

TABLE III
BANDWIDTHS B(γ) IN WHICH 90% AND 99% OF THE TOTAL POWER IS CONTAINED FOR VARIOUS RZ MODULATION SCHEMES.

FOR BINARY OOK, BANDWIDTHS NOT IN PARENTHESES DO NOT INCLUDE THE IMPULSES IN THE POWER SPECTRA,
WHILE THOSE IN PARENTHESES INCLUDE THE IMPULSES

to 50% to 67%, as one might expect. Considering bandwidths
containing 99% of the power, however, 67% RZ actually has a
wider bandwidth than 33% RZ for each modulation format. In
the isolated pulse spectra shown in Fig. 5, we note that the side
lobes increase in height as the duty cycle is increased from 33%

to 67%, and 67% RZ has a larger percentage of its total power
contained in the side lobes.

Another observation is that the presence of nulls inside
the main lobe can have an unexpected effect on the band-
width. Duobinary encoding is normally used to reduce signal
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bandwidth. Duobinary encoding can actually reduce the pro-
portion of energy that exists inside the main lobe, which may
be evident in a careful comparison between Figs. 7 and 8. Con-
sequently, the 90% bandwidth for duobinary OOK is actually
larger than the 90% bandwidth for binary OOK, for both 33%
and 50% RZ.

It is clear from the above discussion that bandwidth compar-
isons between different RZ signals depend on the criterion used
(e.g., 90% versus 99%) and must be evaluated on a case-by-
case basis.

Finally, we remind the reader that while the spectral char-
acteristics of a modulation scheme are indicative of key
DWDM system performance attributes, including filter distor-
tion, crosstalk, chromatic dispersion, and fiber nonlinearity,
detailed performance analysis is required to precisely charac-
terize these attributes for any particular modulation format and
system design.

V. CONCLUSION

In this paper, we derived analytical formulas for the spectra
of modulated RZ data signals with various pulse duty cycles
and modulation formats. We found that the width of the main
spectral lobe decreases as the duty cycle progresses from 33%
to 50% to 67%. However, this is accompanied by an increase in
the power contained in the spectral side lobes. We determined
bandwidths of RZ signals that contain 90% or 99% of the total
power. We found that in determining the bandwidth containing
a high percentage of the power (e.g., 99%), the power in the
side lobes becomes important. We also found that duobinary
encoding may not necessarily decrease a signal’s bandwidth.
The criteria for evaluating the suitability of an RZ scheme need
to be carefully matched to the requirements of a particular
system.
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