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Abstract 

There have been many studies that have documented the application of crash severity models to 

explore the relationship between accident severity and its contributing factors. Although a large 

amount of work has been done on different types of models, no research has been conducted 

about quantifying the sample size requirements for crash severity modeling. Similar to count data 

models, small data sets could significantly influence model performance. The objective of this 

study is therefore to examine the effects of sample size for the three most commonly used crash 

severity models:  multinomial logit, ordered probit and mixed logit models. The study objective 

is accomplished via a Monte-Carlo approach using simulated and observed crash data. The 

results of this study are consistent with prior expectations in that small sample sizes significantly 

affect the development of crash severity models, no matter which type is used. Furthermore, 

among the three models, the mixed logit model requires the largest sample size, while the 

ordered probit model requires the lowest sample size. The sample size requirement for the 

multinomial logit model is located between these two models.  

 
Keywords: sample size, crash severity model, multinomial logit model, ordered probit model, 

mixed logit model 
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1. Introduction 

Discrete response models in traffic safety (often referred to as crash severity models), such as 

logit and probit models, are usually used to explore the relationship between accident severity 

and its contributing factors such as driver characteristics, vehicle characteristics, roadway 

conditions, and road-environment factors. A review of these types of models that have been used 

for crash severity analyses shows that they can be generally classified as either nominal or 

ordinal (see Savolainen et al., 2011 for a thorough review). Among the nominal models, the three 

most common ones are: multinomial logit models, nested logit models, and mixed logit models. 

The ordinal models, on the other hand, can also be classified into three groups: ordered logit 

models, ordered probit models, and ordered mixed logit models. There are other types of crash 

severity models, but they are not as popular or used in practice. The curious reader is referred to 

Savolainen et al. (2011) for an extensive list of available models for analyzing crash severity. 

Overall, based on the existing literature, the multinomial logit models and ordered probit models 

have been found to be the most prominent types of models used for traffic crash severity analysis 

(see Table 1 in Savolainen et al., 2011). Meanwhile, the mixed logit model is a promising model 

that has recently been used widely in many different areas.   

 

Few research studies have been conducted on directly comparing different crash severity models, 

though each model type has its own unique benefits and limitations. So far, there is no consensus 

on which model is the best, as the selection of the model is often governed by the availability and 

characteristics of the data (Savolainen et al., 2011). Some researchers prefer choosing nominal 

models over ordinal models because of the restriction placed on how variables affect ordered 

discrete outcome probabilities; that is using the same coefficient for a variable among different 
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crash severities. Others still prefer ordinal models due to its simplicity and overall performance 

when less detailed data are available (Washington et al., 2011). From the few researchers who 

directly compared crash severity models, Abdel-Aty (2003) recommended the ordered probit 

model over the multinomial logit models and nested logit models, while Haleem and Abdel-Aty 

(2010) reported that the aggregate binary probit model (a special case of an ordered probit model 

by aggregating the five crash severity levels into two) offered superior performances compared 

to the ordered probit and nested logit models in terms of goodness-of-fit. 

 

Similar to count data models (Lord, 2006), crash severity models can be heavily influenced by 

the size of the sample from which they are estimated. As discussed in previous research (Lord 

and Bonneson, 2005; Lord and Mannering, 2010), crash data are often characterized by a small 

number of observations. This attribute is credited to the large costs of assembling crash and other 

related data. Although it is anticipated that the size of the sample will influence the performance 

of crash severity models, nobody has so far quantified how the sample size affects the most 

commonly used crash severity models and consequently provide guidelines on the data size 

requirements. A few have proposed such guidelines, but only for crash-frequency models (Lord, 

2006; Lord and Miranda-Moreno, 2008; Park et al., 2010). In addition, crash severity models are 

usually estimated using the maximum-likelihood estimator (MLE), which is a consistent 

estimator (ensuring that standard errors of parameter estimates become smaller as sample size 

becomes larger), but not necessarily an efficient estimator (i.e., for a given sample size the 

parameter estimate may not have the lowest possible standard error), thus estimation results can 

be problematic in small samples (Washington et al., 2011).  
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As stated above, there is a need to examine how sample size can influence the development of 

commonly used crash severity models. Providing this information could help transportation 

safety analysts in their decision to use one model over another given the size and characteristics 

of the data. The objective of this study is therefore to examine the effects of sample size on the 

three most commonly used crash severity models: the multinomial logit, ordered probit and 

mixed logit models. The objective is accomplished using a Monte-Carlo analysis based on 

simulated and observed data. The sample sizes analyzed varied from 100 to 10,000 observations. 

 

2. Methodological Background 

This section describes the three crash severity models: the multinomial logit, ordered probit, and 

mixed logit models. The multinomial logit model is derived under the assumption that the 

unobserved factors are uncorrelated over the alternatives or outcomes, also known as the 

independence from irrelevant alternatives (IIA) assumption (Train, 2003). This assumption is the 

most notable limitation of the multinomial logit model since it is very likely that the unobserved 

factors are shared by some outcomes. Despite of this limitation, the IIA assumption makes the 

multinomial logit model very convenient to use which also explains its popularity.  

 

In the general case of a multinomial logit model of crash injury severity outcomes, the propensity 

of crash i  towards severity category k  is represented by severity propensity function, kiT , as 

shown in Equation (1) (Kim et al., 2008). 

 

ki k k ki kiT    β X                           (1)             
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where, k is a constant parameter for crash severity category k; kβ  is a vector of the estimable 

parameters for crash severity category k; k=1, , K  (K=5 in the paper) representing all the five 

severity levels: no-injury (NI), possible injury (PI), non-incapacitating injury (NII), 

incapacitating injury (II), and fatal (F); kiX  represents a vector of explanatory variables affecting 

the crash severity for i  at severity category k (geometric variables, environmental conditions, 

driver characteristics, etc.); ki  is a random error term following the Type I generalized extreme 

value (i.e., Gumbel) distribution; ni ,,1  where n  is the total number of crash events 

included in the model. 

 

Equation (2) shows how to calculate the probability for each crash severity category. Let )(kPi as 

the probability of accident i  ending in crash severity category k, such that 
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The ordered probit model uses a latent variable z , as shown in Equation (3) to determine crash-

severity outcomes. 

 

z   βX                            (3) 

 

where, X is a vector of explanatory variables for the  individual crash; β  is a vector of the 

coefficients for the explanatory variables;   is a random error term following standard normal 

distribution. 
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Using Equation (3), the value of the dependent variable y  is determined by 
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where,  11 ,,,  Kk     are the threshold values for all crash severity categories, 

corresponding to integer ordering; k=1, , K  (K=5 in the paper), representing all the five 

severity levels: 1=no-injury (NI), 2=possible injury (PI), 3=non-incapacitating injury (NII), 

4=incapacitating injury (II), 5=fatal (F); K is the highest ordered crash severity category. 

 

Given the value of X , the probability that the crash severity of an individual crash belongs to 

each category is 
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where, )(  stands for the cumulative probability function of the standard normal distribution. 

 

As stated by Eluru et al. (2008), the standard ordered response models (including the ordered 

probit model) have a limitation in that the threshold values are fixed across observations, which 

could lead to inconsistent model estimation. Therefore, these authors introduced a new type of 
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model known as the mixed generalized ordered response logit model for analyzing crash data. 

The mixed generalized ordered response logit model can generalize the standard ordered 

response models by allowing the flexibility of the effects of covariates on the threshold value for 

each ordinal category. However, given the complexity of the model and the fact that it has only 

been used once, the mixed generalized ordered response logit model was not examined in this 

study. Furthermore, Abdel-Aty et al. (2011) used a new model, the multilevel ordered logistic 

model, to study the effects of fog/smoke on crashes. The multilevel ordered logistic model is an 

extension of ordinary ordered logit model, accounting for the cross-segment heterogeneities by 

including a random effect component in the thresholds. Using the same method, ordered probit 

models could be extended into multilevel ordered probit ones in future research, which is beyond 

the scope of this paper. 

 

The mixed logit model has attracted considerable attention by traffic safety researchers because 

of its flexibility in model definition and it has become popular due to the improvement in 

computer power and the development of simulation techniques which are necessary for model 

estimations (Milton et al., 2008). Mixed logit probabilities are the integrals of standard logit 

probabilities over a density of parameters (i.e., it is a weighted average of the logit formula 

evaluated at different value of parameters (β ), with the weights given by the density ( )f β ).  

 

The mixed logit model shares the same structure of severity propensity function, kiT , utilized for 

the multinomial logit model, as shown in Equation (1). Therefore, Equation (6) shows the 

calculation of the probability of each crash severity category for the mixed logit model. 
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Let )(kPi as the probability of accident i  ending in crash severity category k , such that 
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where, ( | )f β θ  is the density function of β  with θ  referring to a vector of parameters of the 

density function (mean and variance). 

 

3. Data  

The primary data sources utilized in this study included four years (from 1998 to 2001) of traffic 

crash records provided by the Texas Department of Public Safety and the Texas Department of 

Transportation general road inventory. This research investigated the probability of crash 

severities of single-vehicle traffic accidents involving fixed objects that occurred on rural two-

way highways (excluding those occurring at intersections). There were a total of 26,175 usable 

records in the database which contained a variety of information including conditions of weather, 

roadway, driver and vehicle as well as crash severities reported at the time of the accidents.  For 

this dataset, these categories had 11,844 (45.3%), 5,270 (20.1%), 5,807 (22.2%), 2,449 (9.4%), 

and 805 (3.1%) observations for severity no-injury, possible injury, non-incapacitating injury, 

incapacitating injury, and fatal, respectively. There were 27 independent variables used in the 

empirical analysis which are summarized in Table 1.  
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4. Model Estimation Result 

Using the above data, three models (the multinomial logit, ordered probit and mixed logit models) 

were developed, estimating the probabilities of the five crash severity levels conditional on an 

accident having occurred. For model estimation, LIMDEP 9.0 was used (Greene, 2007). The 

estimation results for each model are listed in Table 2. In addition, they are briefly explained as 

follows and readers are referred to original document for additional information of three models 

estimation (Ye, 2011). 

 

4.1 Analysis for the multinomial logit model 

In the procedure of estimating the multinomial logit model, all 27 explanatory variables 

mentioned in Table 1 were tested for inclusion, but only 10 variables were retained, as shown in 

Table 2. The criteria used for variables inclusion were data availability, engineering judgment, 

and significance level (0.05 is used in this study). For the five crash severity levels, fatal was 

used as the baseline outcome. Initially, coefficients of a variable in the severity propensity 

function kiT were specified to be different across all four severity categories (except for fatal, as a 

baseline outcome). If no significant difference at a 0.05 significance level was observed among 

the coefficients in two of the severity propensity functions, then they were set to be equal. 

Likelihood ratio tests were used to test whether the coefficients of a variable in the four severity 

propensity functions were significantly different from each other. In addition, the Small-Hsiao 

IIA test (Washington et al., 2011) was conducted. Based on the test, the multinomial logit model 

structure cannot be refuted and IIA assumption among the five crash severities could not be 

rejected at the 0.10 significance level for the dataset.  
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4.2 Analysis for the ordered probit model 

For the ordered probit model estimation, all the 27 variables mentioned above were initially 

included in the model, and the backward selection was used for the selection process so that only 

those significant at the 0.05 significance level were included in the model. For the final result, 

more significant variables were kept (18 variables) than the multinomial logit and mixed logit 

models (10 variables). The signs and values for the estimated coefficients of variables from all 

three models were deemed reasonable. Sensitivity analyses and direct elasticities that support the 

interpretation of these variables were performed for each model, but are not presented here due 

to space limitations (See Ye, 2011 more for details).  

 

4.3 Analysis for the mixed logit model 

The mixed logit model allows for the randomness of the parameters of a variable, and thus in 

developing the model, we first assumed all parameters included in the model were random. The 

popular distributions (normal, uniform and lognormal distribution) were tested for the random 

parameters, so numerous combinations of these distributions were evaluated by modifying the 

parameter assumptions. Then, the t-test was used to examine their estimated standard deviations 

for exploring the randomness of each parameter: if their standard deviation was not found 

statistically different from zero at the 0.05 significance level, they were restricted to be fixed 

instead of random. The simulation-based maximum likelihood method was used for parameter 

estimation, with 200 Halton draws (Milton et al., 2008). The final result of the mixed logit model 

estimation, as shown in Table 2, was based on engineering judgment and goodness-of-fit 

measurement. 
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4.4 Model Results Comparison 

Based on the output of the three models, it is found that the mixed logit model is more 

interpretive than the multinomial logit model, since the former includes the randomness 

associated with parameters of some variables in propensity functions, rather than being fixed for 

each variable by allowing both a mean and standard deviation. That is to say, depending on the 

parameter distribution, the parameter effects for the mixed logit model can vary across individual 

crash, ranging from positive to negative and of varying magnitudes (Milton, 2006). This results 

in the prediction of a mean value and standard deviation for the probability of each severity level 

rather than a single point probability. Meanwhile, though accounting for the ordinal information 

of crash severities, the ordered probit model still does not have the same good interpretive power 

as the multinomial logit and mixed logit models. The ordered probit model restricts the effects of 

explanatory variables on ordered discrete outcome probabilities by using the identical coefficient 

for an explanatory variable across different crash severities. It causes the variable either to 

increase the probability of highest severity (fatal in the study) and decrease the probability of 

lowest severity (no-injury in the study), or to decrease the probability of highest severity and 

increase the probability of lowest severity. However, it does not allow the probabilities of both of 

the highest and lowest severity increase or decrease. This may not be realistic because it is 

possible that some explanatory variables can create an increase in the probability for some 

outcome predictions but decrease the probability for other outcome predictions. For instance, 

inclement weather could lead to an increase in the probability for both highest severities (fatal, 

incapacitating injury) and lowest severity (no-injury), but reduce the probability of the other 

severities (possible injury, non-incapacitating injury). In addition, it is not clear what effects a 
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positive or negative variable parameter has on the probabilities of the “interior” severity levels:  

incapacitating injury, non-incapacitating injury, and possible injury (Washington et al., 2011). 

 

In terms of the goodness-of-fit among three models, the ordered probit model includes more 

significant variables (18 variables) which results in a slightly higher adjusted rho-squared value 

(Adjusted 2 = 0.208) than those of the multinomial logit and mixed logit model (Adjusted 2

=0.194). Since the multinomial logit model is a nested model of the mixed logit model, we can 

further compare their goodness-of-fit using a likelihood ratio test, even though both of them have 

the same adjusted rho-squared value. From the multinomial logit model estimation results in 

Table 2, the log-likelihood at convergence is -33926.2 with 27 estimated parameters (degrees of 

freedom, including four estimated constant variables), and the log-likelihood at convergence for 

the mixed logit model estimation is -33917.3 with 30 estimated parameters (three more 

randomness in the variables than the multinomial logit model). Therefore, the likelihood ratio 

statistic is 2×(-33917.3-(-33926.2)) =8.9 with 3 degrees of freedom, which is larger than the 2

table value of 7.81 for the 0.05 level of significance. This indicates that the mixed logit model is 

statistically better than the multinomial logit model in terms of goodness-of-fit at the 5% 

significance level.  

 

5. Model Comparisons by Sample Size 

For this part of the analysis, we used simulated data as well as the four-year accident records 

described above. Recall that this dataset includes 26,175 single-vehicle accidents involving fixed 

objects on rural two-way highways. Intuitively, small sample size in crash severity models can 

lead to erratic results, which limit their ability to estimate the true parameters and result in an 
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inaccurate prediction of the probabilities for each severity outcome. In order to find the 

difference in sample size requirements for the three models discussed above, a Monte Carlo 

simulation was used to examine the potential bias associated with different sample sizes for each 

model type. 

 

5.1 Analysis Based on Simulated Data 

By repeating the sampling to produce estimators more clustered around the true values (designed 

values for the simulated data), the Monte-Carlo simulation is an ideal way to verify the sample 

size effects on three models since we create the data with the knowledge of true values of 

estimators and true response functions. Thus, the bias can all be attained by comparing the model 

estimation with the true values of estimators for different sample sizes. 

 

5.1.1 Simulation Design 

All the variables included in a crash severity model are observation-related rather than outcome-

related, which means that the variables keep the same values no matter what accident severity the 

target observed crash is (Khorashadi et al., 2005). In other words, the variables in the propensity 

functions for each severity category for an observed crash are identical though their parameters 

which describe the effects of crash characteristics might differ across each severity. Thus, the 

covariate in the propensity functions generated in the simulation should be kept the same for all 

severities in each observation. 

 

Since the crash data have five severity categories, the number of parameters to investigate is very 

large. For simplification, one covariate randomly generated from the standard normal 
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distribution was introduced for all three models. In addition, five outcomes (denoted as injury 

levels 1 to 5, from no-injury to fatal) will be used to replicate the five severity categories.  

 

The three datasets for each model were generated. For the multinomial logit model, the variable 

parameters were kept the same with a value equal to 1 for each outcome, i.e., k =1. Constant 

parameters k  were 1.5, 1, 0.5, 0 for injury levels 2 to 5 (level 1, no-injury, was the baseline 

outcome with α1 = β1 =0). The independent variable x  for each level was drawn from a normal 

distribution with mean equal to -2 and a variance equal to 1. The error term for each level was 

drawn independently from a Type I extreme value distribution by obtaining draws from the 

uniform random distribution and applying the following transformation )]ln(ln[ u , where u  

was a random number drawn from the uniform distribution between 0 and 1. Thus, they gave the 

following proportions 44.1%, 25.4%, 15.4%, 9.4% and 5.7% for injury levels 1 to 5 respectively 

which represented the proportions observed in the data (five crash severities from no-injury to 

fatal). 

 

For the ordered probit model, the variable parameter   was equal to 1 for each level, x  was 

drawn from a normal distribution with a mean equal to 2.2 and a variance equal to 1, and 

threshold variables k were 2.4, 1.5, 0.8, 0 for levels 2 to 5 (for keeping the population ratios of 

each level as close as those for the multinomial logit model). The error term was standard 

normally distributed for each outcome. Thus, they gave the following proportions 44.3%, 24.6%, 

15.0%, 10.1%, and 6.0% for injury levels 1 to 5 (from no-injury to fatal), respectively.  
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For the mixed logit model, the steps for generating the dataset were very similar to those used in 

generating the dataset for the multinomial logit model. The only difference is that the 

independent variable was assumed to have a random component in the variable parameter for 

injury level 1 (no-injury), which followed a normal distribution (mean=1, variance=1). The 

population proportions for each outcome were 39.3%, 23.6%, 14.3%, 8.7% and 14.1% for injury 

levels 1 to 5 (from no-injury to fatal), respectively. What can be noticed is that the proportions of 

each level for the mixed logit model are not as close as those for the multinomial logit and 

ordered probit models. This can be attributed to the existing randomness associated with the 

mixed logit model. The randomness causes more variability of the data and makes the 

proportions harder to be controlled. 

 

Table 3 summarized the true values assumed for three models. The parameter values chosen for 

three models were based on the assumption the results would not be affected much by different 

values of the parameters.  

 

Datasets of each model were repeatedly drawn 100 times for each sample size according to the 

designed true parameter values of the model. The sample sizes were designed as 100, 250, 500, 

1,000, 1,500, 2,000, 5,000, and finally 10,000. 

 

5.1.2 Simulation Results 

Turning first to the simulation results for the multinomial logit model, based on quintiles from 

the empirical sampling distribution of the parameter estimators, 95% confidence intervals were 

calculated for each estimated parameter. The graphs in Figure 1 show the relationship between 
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95% confidence intervals for the four estimated constant parameters and the parameters 

associated with the independent variables for the sample sizes described above. In each graph, 

the Y-axis is the parameter estimate, and the X-axis is the sample size. For each sample size, 

there are two estimates of the parameter, one for lower-bound and the other for upper-bound of 

the 95% confidence intervals. Thus, the interval encloses a 95% probability of the real value of 

each parameter.    

           

From Figure 1, it can be noticed that for each parameter, the range for the 95% confidence 

interval becomes narrower as the sample size gets larger, though no direct inverse proportional 

relationship has been found between the 95% confidence interval and sample size. In addition, as 

the sample size reaches 2,000, the 95% confidence interval gets smaller and stays stable around 

the true value for each parameter. In order to take a closer look at the simulation results, the 

relationship between the mean value of each parameter and sample size was extracted and is 

illustrated in Figure 2. This figure shows that sample sizes less than 2,000 are somewhat erratic 

in the abilities to find the true parameters. Furthermore, the estimated mean value for all the 

variables appears to be biased for all four coefficients. At this point, the factors influencing the 

bias are unknown and additional work is needed to determine what causes this bias. The mean 

value becomes stable for a sample size greater than 2,000, which is about the same value when 

the 95% confidence interval becomes much smaller, as seen in Figure 1. 

 

For the ordered probit model, as shown in Figures 3 and 4, larger sample sizes lead to the 

narrower range for the 95% confidence interval for the parameters and closer value for the mean. 

As opposed to the multinomial logit model, the only difference is that for the ordered probit 
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model, the stable point arrives at a smaller sample size, which is about half of that for the 

multinomial logit model (1,000). In other words, as the sample size reaches 1,000, the 95% 

confidence interval of parameters gets narrower and stable around the true value and the mean 

value is steadily close to the true value for each parameter. Similar to the multinomial logit 

model, the estimated mean value for all the variables appears to be biased for a sample size 

below 1,000 observations. 

 

For the mixed logit model, Figures 5 and 6 show the relationships between both the 95% 

confidence intervals for the parameters and the mean value for each parameter as a function of 

the sample size. Very similar patterns as those observed above can be seen in these two figures. 

However, some differences can be noticed for the fatal variable parameter. Since the fatal 

variable parameter is random, it was found to be less stable both for the 95% confidence interval 

and the estimated mean value, especially for smaller sample sizes. In fact, the stable point for the 

fatal variable parameter is located around the 5,000 observations mark (we use it as the stable 

point for the mixed logit model), which is the largest amongst the three models. Finally, it is 

anticipated that a larger sample size may be needed for the mixed logit model, if more random-

parameters are introduced into the model. 

 

To summarize, although the above results are based on simulated data, there are still a few 

findings that could be generalized in terms of sample size for the three models. Crash severity 

models with sample sizes below 1,000 should not be estimated. In addition, the ordered probit 

model is the one that requires the least samples (>1,000), the mixed logit model is the most 
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demanding on samples (>5,000), while the multinomial logit model requirements are located 

between the ordered probit and mixed logit models (>2,000). 

 

5.2 Analysis Based on Crash Data 

In the section above and for the sake of simplicity, we only included one variable which was 

assumed to be normally distributed. However, the crash severity data have a large amount of 

variation which might lead to different sample size requirements for the three models. Thus, we 

conducted further analyses using crash data described in section 4.  For this part, we set the 

models estimated from the full dataset as the baseline conditions (as estimated in Section 4). 

Then, the multinomial logit, mixed logit and ordered probit models were estimated using a 

stratified sampling method for different sampling sizes: 100, 500, 2,000, 5,000, 10,000, and 

20,000 crashes. The stratified sampling method was used in order to keep the same proportion 

rates as those used for the full dataset: 45.3%, 20.1%, 22.2%, 9.4%, and 3.1% for severity no-

injury, possible injury, non-incapacitating injury, incapacitating injury and fatal, respectively. In 

all, 30 random samples were selected for each sample size. We then compared the results with 

those calculated from the baseline conditions to get the value of bias, absolute-percentage-bias 

(APB) and root-mean-square-error (RMSE) for each parameter. Furthermore, the mean of APB, 

maximum of APB and total RMSE were estimated as a function of the sample size for each 

model. 

 

Based on the 30 estimated models, for each parameter, the bias was calculated as 

baseliner )ˆ(  －EBias   (where r is the number of replications (r=30),   represents each 
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parameter in the model, and )ˆ( rE  is approximated by 


r

i ir 1
ˆ1  ). The APB was computed 

by dividing the absolute value of bias to the baseline value. The RMSE was calculated as 

2RMSE Bias Var  . Thus, the mean of the APB among all the parameters in a model could 

be calculated by taking the average of the APB values of all parameters. Furthermore, the 

maximum of APB was found by comparing the APB value of each parameter in a model. 

Finally, total RMSE could easily be attained by summing up the RMSE value of each parameter 

in a model. The results of the comparison analysis based on the three evaluation criteria 

described in the previous paragraph are summarized in Table 4. 

 

From Table 4, we note the following results: 

(1) As anticipated, all three models show the same tendency noted with the simulated 

data: the increase in sample size leads to the reduction in all three criteria (mean of 

APB, max of APB and total RMSE), improving the accuracy of model estimation. 

Again, since maximum likelihood estimators are consistent, as the sample size 

approaches infinity (or becomes very large), the estimated parameters will have 

smaller standard errors and this leads to a better model performance (Washington et 

al., 2011). 

(2) In terms of the values of all three criteria, the multinomial logit and mixed logit are 

more sensitive to small sample sizes than the ordered probit model and this is 

especially noticeable for the sample sizes equal to 100 and 500. Nonetheless, for a 

sample size below 500, all models perform poorly.  

(3) Similar to the results shown in the previous section, the mixed logit model needs a lot 

of data to lower the value of the three criteria. Even at 5,000 observations, the mean 
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of APB, max of APB and total RMSE for the mixed logit model is still twice as large 

as those for the multinomial logit model. 

(4) According to the three criteria, the minimum sample size for the ordered probit, 

multinomial logit, and mixed logit models should be 2,000, 5,000 and 10,000, 

respectively. At that point, the estimated values become very close to the “true” 

values for all three criteria. In short, these findings are consistent with those found 

with the simulated data about which models are more affected by the small sample 

size problem. However, the minimum numbers are larger than the ones proposed in 

simulation. This may be partly explained by the large variability of crash data and the 

number of random samples running (30 for each sample size).   

 

6. Conclusions and Recommendations 

There have been a lot of studies that have documented the application of crash severity models to 

explore the relationship between accident severity and its contributing factors such as driver 

characteristics, vehicle characteristics, roadway conditions, and road-environment factors. 

Although a large amount of work has been done on different types of models, no research has 

been conducted about quantifying the sample size requirements for crash severity models. 

Similar to count data models, small data sets could significantly influence model performance. 

The objective of this study consisted in examining and quantifying the effects of different sample 

sizes on the performance of the three most commonly used crash severity models: the 

multinomial logit, ordered probit and mixed logit models. The objective of this study was 

accomplished by using a Monte-Carlo analysis based on simulated data and observed data. The 

sample size investigated varied between 100 and 10,000 observations.  
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Using 26,175 single-vehicle traffic accidents involving fixed-objects on rural two-way highways 

in Texas, it was first found that the mixed logit model has a better interpretive power than the 

multinomial logit model, while this latter model had superior interpretive power than the ordered 

probit model. On the other hand, the ordered probit model had a slightly better goodness-of-fit 

than that of the multinomial logit and mixed logit models, but the mixed logit model had a 

significant better fit than the multinomial logit model. 

  

The results from the simulated data and random samples drawn from 26,175 crash records are 

consistent with prior expectations in that small sample sizes significantly affect the development 

of crash severity models, no matter which type is used. Furthermore, among the three models, 

the mixed logit model requires the largest sample size, while the ordered probit model requires 

the lowest sample size. The sample size requirement for the multinomial logit model is located 

between these two models. Overall, the recommended absolute minimum numbers of 

observations for the ordered probit, multinomial logit, and mixed logit models are 1,000, 2,000 

and 5,000, respectively. Although those values are recommended guidelines, larger datasets 

should be sought, as demonstrated by the analysis using observed crash data (larger variability in 

the crash data or more randomness estimated in the mixed logit model). In order to minimize the 

bias produced by the insufficient sample size, the sequence of selecting a model among the three 

ones is the ordered probit model, multinomial logit model and mixed logit model as mentioned 

above. This study is a first step in the model comparison of the sample size on crash severity 

models. Further research is needed to generalize sample size requirements for developing the 

three models evaluated in this study, which may be partly dependent upon the characteristics of 



22 
 

the data, as discussed in Savolainen et al. (2011). Finally, the same kind of research should be 

expanded to other crash severity models (e.g., the random parameters ordered probit model, 

finite mixture models, Markov switching models, etc.). 
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Table 1: Summary Statistics for the Variables Included in the Models 

Variable Type Description Mean St.d 
Road Condition 
Log(ADT) Log of average daily traffic 7.597 0.999 
Shoulder width in feet Shoulder width varied between 0 and 20ft 4.865 3.264 
Lane width in feet Lane width varied between 8ft and 16ft 11.341 1.251 
Speed limit in mi/h Maximum speed limit varied between 30 mi/h and 

75 mi/h 
58.330 6.935 

Curve and level indicator 1=curve, level; 0=otherwise 0.373 0.484 
Curve and grade indicator 1=curve, grade; 0=otherwise 0.002 0.048 
Curve and hill indicator 1=curve, hill; 0=otherwise 0.002 0.047 
Accident information 
Night indicator 1=night;0=day 0.495 0.500 
Dark with no light indicator 1=dark with no light; 0=otherwise 0.424 0.494 
Dark with light indicator 1=dark with light; 0=otherwise 0.033 0.177 
Rain indicator 1=rain; 0=otherwise 0.806 0.395 
Snow indicator 1=snow; 0=otherwise 0.005 0.068 
Fog indicator 1=fog; 0=otherwise 0.023 0.149 
Surface condition indicator 0=good surface(dry); 1=otherwise 0.267 0.442 
Driver information 
Vehicle type indicator 1=truck; 0=otherwise 0.474 0.499 
Driver gender indicator 1=female; 0=male 0.340 0.474 
Driver’s age in years 32.743 15.245 
Driver defect indicator 1=defect (including physical and mental defect); 

0=otherwise 
0.176 0.381 

Restraining device use indicator 1=no restraining device used; 0=otherwise 0.120 0.325 
Fatigue indicator 1=fatigued or asleep; 0=otherwise 0.151 0.358 
Airbag deploy indicator 1=air bag deployed; 0=otherwise 0.179 0.384 
Seat belt use indicator 1=seat belt used; 0=otherwise 0.649 0.477 
Fixed-object type information 
Hit pole indictor 1=hit pole; 0=otherwise 0.113 0.317 
Hit tree indictor 1=hit tree; 0=otherwise 0.224 0.417 
Hit fence indictor 1=hit fence; 0=otherwise 0.261 0.439 
Hit bridge indictor 1=hit bridge; 0=otherwise 0.052 0.222 
Hit barrier indictor 1=hit barrier; 0=otherwise 0.058 0.233 
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Table 2: Estimation Results of the Multinomial Logit, Ordered Probit and Mixed Logit Models Based on the Observed Crash Data 

Variable1 Multinomial logit Ordered probit Mixed logit 
NI2 PI NII II NI PI NII II 

Constant 4.489(12.0)3 4.166(11.1) 3.816(10.2) 3.213(9.3) 0.249(2.8) 4.430(11.5) 4.155(10.8) 3.764(9.8) 3.235(9.2) 
Road condition       
log(ADT) 0.153(7.5) 0.074(3.7) 0.074(3.7)   -0.049(-6.9) 0.167(7.7) 0.079(3.7) 0.079(3.7) 
Speed limit -0.02(-3.8) -0.02(-3.8) -0.02(-3.8) -0.02(-3.8) 0.002(2.47) -0.02(-3.8) -0.02(-3.8) -0.02(-3.8) -0.02(-3.8) 
Curve and level indicator     0.062(4.18) 
Accident information         
Night indicator   -0.229(-6.8) -0.153(-5.2) -0.153(-5.2) -0.124(-4.4) -0.238(-6.9) -0.183(-5.2) -0.183(-5.2) 
Dark with light indicator 0.152(2.1)       0.166(2.0) 
Rain indicator -0.93(-7.2) -0.819(-6.2) -0.523(-4.0) -0.39(-2.8)     -0.939(-7.1) -0.81(-6.1) -0.997(-4.3) -0.397(-2.8) 
        Std.dev. of distribution          1.568(4.0) 
Snow indicator 0.473(2.4)       0.466(2.4) 
Fog indicator 0.106(2.3) 
Surface condition indicator -0.259(-15.7) 
Drive information         
Vehicle type indicator     0.0561(3.8) 
Driver gender indicator     0.132(8.6) 
Driver defect indicator -1.26(-10.0) -0.28(-3.3) -0.28(-3.3) -0.28(-3.3) 0.398(9.4) -1.359(-9.8) -0.24(-2.7) -0.24(-2.7) -0.24(-2.7) 
Restraining device used indicator -2.53(-30.8) -1.99(-23.2) -1.40 (-17.5) -0.83(-9.77) 0.802(21.8) -3.406(-7.6) -2.0(-23.2) -1.25 (-11.9) -0.834(-9.8) 
        Std.dev. of distribution 2.22(3.0) 
Fatigue indicator 0.465(4.6) -0.258(-5.2)   -0.173(-3.8) 0.507(4.4) -0.33(-5.7) 
Airbag deploy indicator     0.447(12.6) 
Seat belt use indicator     -0.128(-3.9) 
Fixed-object type information          
Hit pole indictor     -0.076(-3.2) 
Hit tree indicator -1.05(-13.2) -0.83(-10.1) -0.612(-7.6) -0.36(-4.2) 0.188(10.1) -1.14(-11.8) -0.86(-10.3) -0.561(-6.3) -0.378(-4.4) 
       Std.dev. of distribution         0.939(2.4) 
Hit fence indictor -0.16(-8.8) 
Hit barrier indictor -0.09(-2.9) 
Threshold Parameters         
 
      

0.561(86.2) 
1.393(139.6) 

      2.186(133.2) 
Log-likelihood at zero  -42127.0 -42127.0 -42127.0 
Log-likelihood at convergence -33926.2 -33328.9 -33917.3 
Adjusted 2  0.194 0.208 0.194 

1. See Table 1 for full variable description.   
2. NI: no-injury, PI: possible injury, NII: non-incapacitating injury, II: incapacitating injury. 
3. Values in parentheses are the t-ratio of each estimated parameter.   

1

2
3
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Table 3: True Parameter Values Used in the Simulation for the Three Models 

Model Parameter 
True Values 

Multinomial logit Ordered 
probit 

Mixed logit 

Constant Parameter1 

PI2 
constant 

1.5 2.4 1.5 

NII 
constant 

1 1.5 1 

II 
constant 

0.5 0.8 0.5 

F 
constant 

0 0 0 

Variable Parameter 

PI 
variable 

1 

1 

1 

NII 
variable 

1 1 

II 
variable 

1 1 

F  
variable 

1 N(1,1) 

Sample Size(N) 100, 250, 500, 1,000, 1,500, 2,000, 5,000, 10,000 
 
1. Constant parameter for the ordered probit model is represented by γ1- γ4, which are the threshold variables for 
each outcome in the ordered probit model. 
2. NI: no-injury, PI: possible injury, NII: non-incapacitating injury, II: incapacitating injury. 
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Table 4: Three Evaluation Criteria by Sample Size for the Three Models*  

Sample 
Size 

Mean of 
absolute-percentage- bias 

(APB) 

Max of 
absolute-percentage- bias 

(APB) 

Total root-mean-square-error 
(RMSE)  

MNL ML OP MNL ML OP MNL ML OP 

100 5.50E+13 2.10E+11 143% 9.70E+14 2.90E+12 2.10E+01 7.40E+15 1.60E+13 20.7 

500 2.00E+14 1.10E+04 25% 4.50E+15 1.10E+05 94% 1.30E+16 1.20E+06 4.5 

2000 16% 26% 11% 45% 167% 40% 12.9 28.7 2.2 

5000 9% 13% 5% 27% 52% 20% 7.6 13.7 1.2 

10000 4% 5% 4% 13% 13% 14% 4.7 8.7 0.7 

20000 2% 3% 2% 9% 21% 9% 1.9 3.4 0.4 
 
* MNL: multinomial logit model, OP: ordered probit model, ML: mixed logit model. 
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Figure 1: Confidence Intervals of the Parameters by Sample Size for the 
Multinomial Logit Model 
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Figure 2: Mean of the Parameters by Sample Size for the Multinomial Logit Model 
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Figure 3: Confidence Intervals of the Parameters by Sample Size for the  
Ordered Probit Model 
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Figure 4: Mean of the Parameters by Sample Size for the Ordered Probit Model 
 
 
 
 
 
 
 
 
 
 



32 
 

 
Figure 5: Confidence Intervals of the Parameters by Sample Size for the  

Mixed Logit Model 
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Figure 6: Mean of the Parameters by Sample Size for the Mixed Logit Model 


