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Abstract. Grouping data points is one of the fundamental tasks in data
mining, commonly known as clustering. In the case of interrelated data,
when data is represented in the form of nodes and their relationships, the
grouping is referred to as community. A community is often defined based
on the connectivity of nodes rather than their attributes or features. The
variety of definitions and methods and its subjective nature, makes the
evaluation of community mining methods non-trivial. In this paper we
point out the critical issues in the common evaluation practices, and dis-
cuss the alternatives. In particular, we focus on the common practice of
using attributes as the ground-truth communities in large real networks.
We suggest to treat these attributes as another source of information,
and to use them to refine the communities and tune parameters.
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1 Introduction and Related Works

One fundamental property of real networks is that they tend to organize accord-
ing to an underlying modular structure [9]. Clustering networks (a.k.a commu-
nity mining) has direct application such as module identification in biological
networks; for example clusters in protein-protein interaction networks outline
protein complexes and parts of pathways [47]. Clustering networks is also an
intermediate step for further analyses of networks such as link and attribute
prediction which are the basis of targeted advertising and recommendation sys-
tems; for example clusters of hyperlinks between web pages in the WWW outline
pages with closely related topics, and are used to refine the search results [2].

A cluster in a network a.k.a community is loosely defined as groups of nodes
that have relatively more links between themselves than to the rest of the net-
work. This definition is interpreted in the literature in many different ways, e.g.
a group of nodes that: have structural similarity [48], are connected with cliques
[33], within them a random walk is likely to trap [34], follow the same leader
node [36], coding based on them gives efficient compression of the graph [43],
are separated from the rest by minimum cut, or conductance [22], the number
of links between them is more than chance [29, 1].
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Fortunato [8] shows that the different community mining algorithms discover
communities from different perspective and may outperform others in specific
classes of networks. Therefore, an important research direction is to evaluate
and compare the results of different community mining algorithms. An intuitive
practice is to validate the results partly by a human expert [24]. However, the
community mining problem is NP-complete; the human expert validation is lim-
ited, and is based on narrow intuition rather than on an exhaustive examination
of the relations in the given network, specially for large real networks.

There is a congruence relation between defining communities and evaluating
community mining results. In fact, the well-known Q-modularity by Newman
and Girvan [28] which is commonly used as an objective function for community
detection, was originally proposed for quantifying the goodness of the community
structure, and is still used for evaluating the algorithms [4, 41]. More generally,
the internal evaluation practice verifies whether a clustering structure produced
by an algorithm matches the underlying structure of the data, using only infor-
mation inherent in the data [13]. The main problem with this type of evaluation
is the assumption it makes about what are good communities, and hence is
not appropriate to validate results of algorithms built upon different assump-
tions. In our earlier works in Rabbany et al. [35, 38], we presented an extensive
set of general objectives for evaluation of network clustering algorithms, mostly
adapted from clustering background such as Variance Ratio Criterion, Silhouette
Width Criterion, Dunn index, etc. Our experiments revealed that the ranking of
these measures depends on the experiment settings, and there is not one to rule
them all. This is not surprising as an evaluation criterion encompasses the same
non-triviality as of the community mining task itself.

Another common evaluation practice is the external evaluation, which in-
volves measuring the agreement between the discovered communities and the
ground-truth structure in benchmark datasets [17, 32, 12, 3, 7]. There are few
and typically small real world benchmarks with known communities available.
Therefore the external evaluation is usually performed on synthetic benchmarks
or on large networks with explicit or predefined communities. In the following,
we discuss the issues and considerations with these types of evaluation.

The external evaluation is not applicable in real-world networks, as the
ground-truth is not available. However we assume that the performance of an
algorithm on the synthetic benchmarks, is a predictor of its performance on real
networks. For this assumption to hold, we need realistic synthetic benchmarks,
with tunable parameters for different domains; since it has been shown that the
characteristics of clusters in networks are remarkably similar between networks
from the same domain [19, 30]. However, the current common generators used
for synthesizing benchmarks, such as the LFR benchmarks [18], are domain-
independent and also overlook some characteristics of the real networks [27,
31]. Consequently, there are recent studies which try to improve the synthetic
benchmark generators, including our recent works in [20].

Alternative to generating benchmarks for the community detection task,
large real world benchmarks are often used where the ground-truth commu-
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nities are defined based on some explicit properties of the nodes such as user
memberships in social network. Notably Yang and Leskovec [49] adapt this ap-
proach to compare different community detection algorithms based on their per-
formance on large real world benchmarks; where characteristics such as social
groups are considered “reliable and robust notion of ground-truth communities”.
For example, in a collaboration network of authors obtained from DBLP, venues
are considered as the ground-truth communities, or in the Amazon product co-
purchasing network, product categories are considered as the ground-truth. A
similar analysis is performed in Yang et al. [51], including a comparison between
the result on large real social networks and the LFR benchmarks, arguing that
the former is better indicator of the performance of the algorithms. However
as Lee and Cunningham [21] elaborate, this ground-truth data is imperfect and
incomplete and should be rather considered as metadata or labeled attributes
correlated with the underlying communities.

In this paper we first investigate the correlations between attributes and
community structure using our network specific agreement/external indexes pro-
posed recently in [40]. Then we present the concept of community guidance by
attributes, where we adapt our previously proposed TopLeaders[37] community
detection method, to find the right number of communities in the given network,
based on the available attributes information.

2 Correlation of Communities and Attributes

Traud et al. [45] show that a set of node attributes can act as the primary organiz-
ing principle of the communities; e.g. House affiliation in their study of Facebook
friendship network of five US universities. In computing the correlation between
attributes and relations, Traud et al. [45] use the basic clustering agreement in-
dices for communities comparison. They observe that the correlation significantly
depends on this agreement index and differs significantly even between those in-
dices that have been known to be linear transformation of each other. Here we
perform similar experiments, but in the context of evaluating community mining
algorithms. In more details, we compare the agreements of the results from four
different community mining algorithms, with each attribute in the dataset; see
Figure 1 for a visualized example. First, the community mining algorithms are
applied on the dataset, which are InfoMap [42], WalkTrap [34], Louvain [1], and
FastModularity [29]. Then the correlations between the resulted communities
from these algorithms and the attributes are measured using clustering agree-
ment indices. More specifically, we measure the agreement assuming the unique
attribute values are grouped together and formed a clustering. For example for
the attribute ‘year’, all nodes that have value ‘2008’ are in the same group or
cluster. Figure 2 shows the agreements of the community mining algorithms
with each attribute averaged over all the networks in the Facebook 100 dataset.
The agreements, between two groupings/clusterings of the dataset, are measured
with eight different agreement indices: Jaccard Index, F-measure, Variation of
Information(VI), Normalized Mutual Information(NMI), Rand Index(RI), Ad-
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major
62(76) values
9.94% missing

dorm
23(25) values
48.2% missing

gender
2(2) values
5.87% missing

student
or faculty
5(6) values
0.03% missing

year
9(20) values
12% missing

highschool
198(2881)
values
13.7% missing

second major
or minor
71(79) values
42.5% missing

(a) Attributes: nodes are colored the same if they have the same value for the corre-
sponding attribute; nodes with a missing value for the attribute are white. The number
of unique attribute values, i.e. different colours, and the percentage of missing values
are also reported. The number outside the parentheses is the number of main values
which have at least five nodes, whereas the total number of unique values is reported
inside the parentheses.

InfoMap
63(94) clusters

Walktrab
19(204) clusters

Louvain
10(19) clusters

FastModularity
9(27) clusters

(b) Communities: nodes are colored the same if they belong to the same community in
the results of corresponding community mining algorithms. The number of clusters,
i.e. colours, with at least five members is reported, whereas the total number of clusters
in the result is given inside the parentheses.

Fig. 1: Visualization of correlations between attributes and communities for the
American75 dataset from Facebook 100 dataset [46]. This network has 6386 nodes
and 217662 edges (friendships which are unweighted, undirected). Visualization
is done with Gephi, and an automatic layout is used which positions nodes only
based on their connections.

justed Rand Index(ARI), and two structure based extensions of ARI tailored
for comparing network clusters: with overlap function as the sum of weighted
degrees(ARIΣdx2 ), and the number of common edges(ARIξx2) [38].

Unlike the previous study, we observe very similar rankings with different
agreement indexes. The most agreements are observed with the attribute ‘year’,
followed not so closely by ‘dormitory’. We can however see that the ranking across
different attributes is not the same, whereas Walktrap is the winner according to
the ‘year’, and Infomap performs the best if we consider the agreement with the
‘dormitory’. Therefore, although we observe a correlation between the attributes
and the communities, it is not wise to compare the general performance of com-
munity mining algorithms based on their agreements with a selected attribute
as the ground-truth. Instead one should treat attributes as another source of in-
formation. In the next section, for example, we use this information to fine tune
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Fig. 2: The agreement of different community detection algorithms with each
attribute, averaged over datasets from Facebook 100 dataset.

the parameters of a community mining algorithm, so that it results in a commu-
nity structure which compiles most with our selected attribute. Before that we
present a discussion on the effect of missing values on the agreement indices.

2.1 Missing Values and Agreement Indices

The definitions of original agreement indices assume the two clusterings are
covering the same set of datapoints. Therefore to use these indices, nodes with
missing values should be either removed, or grouped all as a single cluster. The
implementations we use here are based on our generalized formula proposed
recently in [40]. Unlike the original definitions, these formulae do not require
the assumption that the clusterings cover the whole dataset. Hence they can be
directly applied to the cases where we have un-clustered datapoints, which will
be ignored. For the sake of comparison, in Figure 3 three bars are plotted per
<attribute, community mining> pair, corresponding to how the missing values
can be handled: (i) when nodes with missing values are removed from both
groupings before computing the agreement, (ii) when all the nodes with missing
attribute value are grouped into a single cluster, and (iii) when computing the
agreements with lifting the covering assumption, using the formulations of [40].
This comparison is in particular important here, since we have many nodes with
missing values for some of the attributes, such as ‘dormitory’ or ‘second major’;
which can significantly increase the agreements if missing values are removed
altogether, as seen in the Figure 3.
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Fig. 3: The effect of missing values: bars with horizontal, diagonal, and solid fill
correspond respectively to removing missing values, adding missing values as a
single cluster, or lifting the covering assumption.

3 Community Guidance by Attributes

Many real world applications include information on both attributes of individual
nodes as well as relations between the nodes, while there exists an interplay
between these attributes and relations [5, 16, 23]. More precisely, the relations
between nodes motivates them to develop similar attributes (influence), whereas
the similarities between them motivates them to form relations (selection), a
property referred to as homophily. This can also account for the correlation
observed between community structure and attributes, i.e. self-identified user
characteristics [45]; which has motivated defining ground-truth communities for
real networks based on these explicit properties of nodes.
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In the presence of attributes, a more plausible viewpoint is finding groups of
nodes that are both internally well connected and having their members with
homogeneous attributes. This grouping is referred to as structural attribute clus-
tering by Zhou et al. [52] or cohesive patterns mining by Moser et al. [26].
Similar to community mining, several alternative approaches are proposed for
this task [14, 26, 25, 50, 15, 11, 6]. Zhou et al. [52] propose clustering an attribute
augmented network. The augmented network includes attribute nodes for each
<attribute, value> and edges are added between original graph nodes to their
corresponding <attribute, value> nodes1. The authors show that a straight-
forward distance function based on a linear combination of the structural and
attribute similarities, fails to outperform a similar method that only considers
structural or attribute similarities. In Mislove et al. [25], communities are found
using a link based approach but are initialized using a clustering based on their
attribute similarities. As another example in Cruz et al. [6], communities found
by links are further divided into smaller sub-groups according to the attributes.
In more details, the overlap of each community is computed with each cluster
in the clustering of the same data according to the attributes. Then larger than
average overlaps are cut from the main community to form smaller, more co-
hesive communities. All these works we have discussed so far further motivate
combining attribute and link data, rather than validating one based on the other.

Here, we propose the concept of community guidance by attributes, where
selected attribute is used to direct a community mining algorithm. More specif-
ically, we guide our TopLeaders [37, 39] algorithm to find the right number of
communities, based on the agreements of its result with the given attribute2.

The number of communities, k for short, is the main parameter for the
TopLeaders algorithm, similar to the k-means algorithm for data clustering. Fig-
ure 4 illustrates an example on the Amherst41 dataset, where the agreements of
each attribute with the results of Topleaders are plotted as a function of k. For
some of the attributes, such as ‘student/faculty’, we observe a clear peak around
the true number of classes. We also plotted where other algorithms land. How-
ever, there has not been any parameter tuning for those algorithm, and hence
they are indicated with a single point. The vertical lines show the true number
of classes for the corresponding attribute, i.e. the distinct values3.

Consequently, between the communities detected by the TopLeaders for dif-
ferent values of k, which only uses the links to discover communities, we select
the one that has the most agreement with the given attribute. We used an ex-
haustive search to find the optimal k for each attribute, in the range of [2,

√
n],

where n is the total number of datapoints. A better optimization method is a
future work. Figure 5 shows the agreements obtained through this approach,

1 This graph representation has also been used in link recommendation, e.g. see [10].
2 The concept is however general and can be applied to fine tune parameters of any

community mining algorithm. Which is true for algorithms which are capable of
providing different community structure perspectives, based on different values for
the algorithm parameters.

3 For attribute ’highschool’, true k is 1075 and out of the plot’s scale.
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Fig. 4: Agreement of attributes with the results of algorithms plotted as a func-
tion of number of communities.

Fig. 5: TopLeaders performance when the number of communities are chosen
according to the agreement of its results with the given attribute. This result is
averaged over a subset of 5 datasets from the 100 Facebook networks, which are:
Amherst41, Bowdoin47, Caltech36, Hamilton46, and Haverford76.
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compared to the four commonly used community detection algorithms. We can
see in Figure 5 that the communities found by this approach have compara-
ble and in some cases better agreements with the attributes, compared to the
methods which do not consider that extra information. This is more signifi-
cant according to the structure based agreement measures, especially ARIξx2 ,
which considers common edges as the cluster overlaps; and also for less trivial
attributes which have a low agreement with the trivial communities, e.g. ‘stu-
dent/faculty’, ‘second major’, or ‘highschool’. One should however note that this
is not a comparison for the performance of these algorithms, since TopLeaders
used the agreements with the attribute to find the k, which is not available to
the other methods.

4 Conclusions

In this paper we discussed different evaluation approaches for community de-
tection algorithms. In particular, we investigated the evaluation of communities
on real-world networks with attributes, where there exist a correlation between
the characteristics of individual nodes and their connections. We then proposed
the concept of community guidance by attributes, where a community mining
algorithm is guided to find a community structure which corresponds most to a
given attribute. This is in particular useful in real world applications, since we
often have access to both link and attribute information, and an idea of how
communities will be used. For example, communities in protein-protein inter-
action networks are shown to be correlated with the functional categories of
their members, which are used to predict the previously uncharacterized protein
complexes [44]; in such case, one might be interested to select the community
structure that corresponds most with the available functional categories.
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