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Abstract—Network Virtualization (NV) and Software-Defined
Networking (SDN) are both expected to increase the flexibility and
programmability of today’s communication networks. Combining
both approaches may even be a further step towards increasing
the efficiency of network resource utilization. Multiple solutions
for virtualizing SDN networks have already been proposed,
however, they are either implemented in software or they require
special network hardware. We propose HyperFlex, an SDN
hypervisor architecture that relies on the decomposition of the
hypervisor into functions that are essential for virtualizing SDN
networks. The hypervisor functions can be flexibly executed in
software or hosted on SDN network elements. Furthermore,
existing hypervisor solutions focus on data-plane virtualization
mechanisms and neglect the virtualization of the control-plane of
SDN networks. HyperFlex provides control-plane virtualization
by adding a control-plane isolation function, either in software
or on network elements. The isolation function ensures that
the resources of the control-plane are shared correctly between
each virtual SDN network while it also protects the hypervisor
resources from resource exhaustion.

I. INTRODUCTION

Network Virtualization (NV) promises to overcome the
current ossification and limitations in today’s communication
networks [1]. NV allows multiple tenants to share the same
physical infrastructure by acquiring virtual resources according
to their services’ demands. The main drivers for NV include
cost reduction, faster network and service deployment (time
to market), and higher efficiency in utilizing the network
resources. Software-Defined Networking (SDN) is another
emerging concept in networking [2]. Decoupling the control-
plane from the data-plane of the switches, SDN runs a logically
centralized controller in software, namely an SDN controller.
Open interfaces and protocols, e.g., OpenFlow (OF), allow
remote control of the data-plane SDN switches. Combining
SDN and NV introduces network programmability, flexibility
and automation resulting in virtual SDN networks (vSDNs).

The functional building blocks of NV are network ab-
straction, translation, and isolation [1]. In order to virtual-
ize SDN networks, existing solutions introduce a hypervisor
layer, or shortly a hypervisor, comparable to virtualization of
servers [3]. A hypervisor provides mechanisms that realize the
functional building blocks of NV. However, existing hypervi-
sors have limited flexibility. They run either as software or they
require special networking hardware, thus, they work only for
special-purpose networks. Consequently, in case of different
types of networks, such as data center networks, wide-area

networks, or enterprise networks, the existing hypervisors are
not able to adapt to changing demands.

As SDN decouples the control from the data-plane, an
integral part of the performance of SDN is the realization
of the control-plane. In particular, for virtual SDN networks
(vSDNs), the performance of the control path, i.e., the physical
links and the network elements, may have an impact on the
performance of the virtual SDN network. As the hypervisor
is placed between virtual SDN controllers and virtual SDN
networks, the hypervisor itself may influence the performance
of the virtual SDN networks. Most existing hypervisors focus
on data-plane virtualization only, while less attention has been
devoted to the virtualization of the control-plane.

In order to address the shortcomings of existing architec-
tures, we introduce HyperFlex, an SDN hypervisor architecture
based on flexible hypervisor function allocation. The design
goals of HyperFlex are scalability, flexibility, isolation and
protection. In order to provide scalability and flexibility, we
analyze the building blocks of NV and how existing solutions
realize them. Based on this analysis, HyperFlex relies on
the decomposition of the hypervisor into functions that can
be hosted on different platforms. The hypervisor functions’
realization and placement adapts flexibly to the performance
of the target host platform and to the virtual SDN network
demands. Thus, HyperFlex can work in different operation
modes, which may provide performance gains for different
networks. Additionally, to the best of our knowledge, Hyper-
Flex is the first virtualization solution for SDN networks that
provides control-plane virtualization.

The remainder of this paper is structured as follows. In
Section II, we introduce the HyperFlex architecture and pro-
vide detailed information on its possible modes of operation.
As a first example for our proposed architecture, we explain
how HyperFlex virtualizes the control-plane of SDN networks
in Section II. In Section III, we provide a detailed summary of
existing state of the art solutions for SDN network virtualiza-
tion. In Section IV, we show a first prototype implementation
of HyperFlex and present results measured in a real SDN
testbed. Future work is outlined in Section V. Finally, we draw
a conclusion in Section VI.

II. HYPERFLEX DESIGN

In this section, we first outline the design challenges of a
hypervisor considering control-plane virtualization. Next, we
introduce HyperFlex’s architecture and its modes of operation.



Finally, we address the control-plane virtualization function
and provide examples of its realization in our proposed archi-
tecture.

A. Design Goals

In the following, we point out important aspects that a
hypervisor for virtual SDN networks (vSDNs) should fulfill,
namely flexibility, scalability, isolation, and protection for the
virtual resource and hypervisor functions. These aspects are
based on the design goals for NV given in [4] and [5].

a) Flexibility: One of the main properties of NV, in
general, is the ability to cope with the network dynamics,
where virtual networks provide the flexibility to adapt to
the changes in the network, e.g. time-varying traffic [6] or
network failure [7], through the migration of virtual nodes
or the assignment of virtual link capacities, for instance. In
vSDNs, network dynamics are not only to be observed at the
physical infrastructure, i.e., SDN data-plane, but also at the
tenants’ vSDN controllers, i.e., SDN control-plane, as their
control-plane can dynamically adapt to the changes in the data-
plane, for example by relocating the controllers, to provide
the desired overall performance, e.g. control-plane latency.
Hence, a vSDN hypervisor layer is also required to provide
the flexibility to adapt to the network dynamics at the SDN
physical infrastructure as well as the vSDN control layer.

b) Scalability: Each tenant of a vSDN could use its
own controller to manage its vSDN topology. A hypervisor
architecture for a virtualized infrastructure should provide a
high degree of scalability in terms of control-plane access
to vSDN topologies, i.e., the physical connection for the
tenants to the hypervisor. In large-scale networks, a centralized
hypervisor may lead to bottlenecks or to significant waste of
network resources. The tenants’ controller, for instance, may
send messages over long network paths before being discarded
due to network over-utilization or hypervisor exhaustion. Addi-
tionally, vSDN controllers might be actually managing disjoint
sets of physical resources. In such case, having a hierarchical
or a distributed hypervisor responsible for the disjoint sets of
resources would per se lead to an improved control perfor-
mance. However, duplicating the software along the hypervisor
layer may have two drawbacks. First, it may waste resources
due to duplicated instances that are not needed along the whole
hypervisor network. Second, it requires resources, i.e., servers,
to host the distributed instances.

c) Isolation and Protection: Classical NV requires
resource isolation and protection between co-existing virtual
networks on the physical data-plane infrastructure. Resource
guarantees are important in order to provide the tenants with a
reliable operation. Protection means that operations of multiple
tenants should not affect each others’ performance, i.e., there
is no performance degradation due to sharing the network
among multiple tenants. Again, in vSDN networks, isolation
and protection are required on the physical infrastructure for
the data-plane traffic as well as the SDN control-plane. Since
the SDN control-plane path, between the vSDN controllers and
the physical SDN infrastructure, includes the hypervisor layer,
it is important to provide isolation and protection mechanisms
for the hypervisor’s processing resources among the different
vSDN tenants.
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Fig. 1: HyperFlex flexible architecture consisting of hypervisor
software, SDN network and controller

B. HyperFlex Architecture

The first main concept of HyperFlex relies on the decom-
position of the hypervisor virtualization functions required to
realize vSDN, where having a functional-granularity achieves
a more tailored operation. This approach of function decom-
position is seen to be more optimal in terms of resource
efficiency. If a distributed hypervisor layer is needed, indi-
vidual virtualization functions could be distributed such that a
tailored virtualization layer is achieved, instead of duplicating
the whole hypervisor instance along the network.

The second main concept is the hosting platform of the
SDN hypervisor layer. The hypervisor functions can be im-
plemented in software. However, since in large-scale networks
it is reasonable to assume multiple network elements inter-
connecting the hypervisor with the tenants’ controllers or the
physical infrastructure, we propose using the available pro-
cessing functions, e.g., traffic shapers or packet inspection, on
these interconnecting network elements to execute hypervisor
functions. Thus, the virtualization layer can be spanned on
software as well as SDN network elements, which we call the
hypervisor SDN network (hSDN) as illustrated in Figure 1.
This hSDN network is operated and controlled by a hypervisor
SDN controller. The proposed architecture has the flexibility
to allocate the virtualization functions, on a per-function basis,
among the software and the SDN network elements of the
hypervisor network.

In case a hypervisor function is delegated to the network
elements, it needs to be transformed to its corresponding SDN
data-plane execution function (F E) at the hSDN network
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Fig. 2: Alternative modes of operation of HyperFlex

element and a function control logic (F L) residing at the
hSDN controller as shown in Figure 1. Additionally, the hSDN
controller is responsible for managing the delegated functions
as well as maintaining the connectivity between the vSDN
tenants and the physical infrastructure.

A hypervisor consists of multiple virtualization functions
that could be potentially delegated or even better suited to
heavy-load processing functions at the network elements. As
for example, the translation function that transparently maps
the vSDN control messages to their physical resources. The
translation could be done by the network elements according
to their packet inspection capabilities and packet modification
performance. Another example is the policy enforcement func-
tion, which ensures that a vSDN controller has access only
to its acquired virtual resources, or the abstraction function,
which determines the granularity of information to be exposed
to the vSDN controller. These policies can be translated to
rules enforced by the network elements. Additionally, the iso-
lation functions, that slices the data and control-plane resources
among the different vSDNs, could benefit from the traffic
shaping mechanisms of the network elements.

A main advantage of this proposed architecture is of-
floading the load of performing the virtualization functions
between the software and the hypervisor network elements.
This implies that the resources of the servers, hosting the
hypervisor software, are extended by the resources of the SDN
hypervisor network, which has a direct impact on improving
the virtualization performance. It also adds another flexibility
dimension by providing the possibility to change dynamically
the functions placement during operation, since both options
are present, namely the software and the SDN hypervisor
network. Such flexibility is crucial, for example, in case the
software or the network element is running out of resources
and is not capable of offering the required performance for
a certain virtualization function. Such function could be of-
floaded and executed at another software instance or network
element.

It is intended to separate the SDN hypervisor network from
the SDN physical infrastructure to isolate the virtualization
functions from the data-plane, hence eliminate any impact
that could be imposed by virtualization on the data-plane
performance.

C. HyperFlex Modes of Operation

a) Hypervisor in Software: The flexibility in Hyper-
Flex’s architecture provides the option to operate a classical
virtualization layer in software as a centralized or distributed
hypervisor. This mode of operation, shown in Figure 2a, is ade-
quate in case a powerful and a wide-spanned servers infrastruc-
ture is available to host the hypervisor software. Alternatively,
it suffices in case the vSDN tenants are geographically close
to the hypervisor or in case of a small-scale SDN physical
infrastructure, which allows the performance requirements
by the vSDN tenants to be met, i.e., SLAs which include
latency or bandwidth guarantees on the data and control-plane.
This mode is selected given that the interconnecting network
elements can not execute the virtualization functions due to
the functions’ complexity or the network elements’ limited
resources.

b) Function Chaining: This mode of operation, shown
in Figure 2b, is the intermediary solution between running
hypervisor functions solely in software or exclusively on
network elements. As it exploits the functional-granularity and
the processing resources of the hSDN network, it assigns the
virtualization functions to the software or network elements,
forming function chains that realize the hypervisor layer. The
hSDN controller has to ensure that the correct chains are set
along the hSDN network including the hypervisor software.
This mode is seen beneficial in case some functions are too
complex or not possible to realize by the network elements,
e.g., DPI or stateful forwarding. Such virtualization functions
are then implemented in software. The function placement
decision is based on the available network resources, network
elements’ capabilities, and vSDN SLA requirements. These
parameters can be quite variant, thus making this flexible
operation very advantageous.

c) Hypervisor on Network Elements: Realizing the
hypervisor functions on network elements enables the full
deployment of the hypervisor layer on SDN network elements,
as illustrated in Figure 2c. This could help bringing the
virtualization functions nearer to the vSDN tenants or the
physical infrastructure, hence improving the scalability and
performance. It can also be seen as an enabler to achieve infras-
tructure savings, as servers are only needed to host the hSDN
controller. This mode fully exploits the available processing
functions in the SDN network elements to host the hypervisor



functions. However, such network elements might not provide
all hypervisor functions out of the box, according to their SDN
implementation. Therefore, this mode of operation adds the
complexity of perhaps modifying the network elements and
transforming the hypervisor function to an SDN realization.
In addition, this mode adds to the management and control
overhead for the transformed functions.

d) vSDN Differentiation: Another advantage inherited
from the flexible operation on a functional-granularity is the
possibility to allocate hypervisor functions to vSDN tenants,
thus realizing vSDN differentiation. Each hypervisor function
can be instantiated on different locations within the network
to provide different performance quality for different vSDN
tenants. As shown as an example in Figure 2d, vSDN1 is
served by the functions running in software while vSDN2
is using the functions hosted by the hSDN network. This
elasticity enables more differentiated services and agreements,
which impacts the business position of the hypervisor provider.

D. Control-plane Virtualization

As mentioned in SectionII-B, the hypervisor layer is com-
posed of multiple virtualization functions, forming a function
chain, that are traversed by the SDN control-plane communi-
cation between the vSDN controllers and the SDN physical
infrastructure. The control-plane isolation function is intended
to ensure guarantees on each of the virtualization functions
shared among multiple tenants and to protect the hypervisor’s
processing resources, e.g., CPU or memory, from being ex-
hausted by one of the vSDN tenants. If we take the translation
function as an example, its resources can be exhausted if a
vSDN controller is sending excessive FLOW MOD messages
,downstream to its virtual SDN switches, or if a virtual SDN
switch is overloading the translation function with PACKET IN
messages, upstream to the controller.

Considering a scenario where the translation function is in
software and we target, for instance, to isolate and protect the
CPU processing resources for this software. Figure 3 shows
the control-plane isolation function realization in software.
The first isolation logic module is the admission module
which receives control-plane resources requests by each vSDN
controller, in the form of requested number of control messages
per second from each message type. As the hypervisor’s
CPU utilization is proportional to the amount of control-plane
messages to be processed from each vSDN controller, the
admission module contains a CPU utilization as a function
of the control messages rate, on which it bases its decision
to accept the requests. This information is passed to the
message counter module which intercepts the control-plane
messages and makes sure that the limit is not yet reached
before forwarding to the translation function.

Figure 4 illustrates the function chaining mode, where
the translation function is in software while the control-plane
isolation function is realized on a network element, that is
controlled by the hSDN controller. The admission module
plays the same role, however currently at the hSDN controller.
The correlation module translates the messages rate into a rate
that a network element could enforce, e.g., bits per second
or number of packets per second. The rate information is
passed to the configuration module. This module configures
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the isolation function at the network element, which can be,
e.g. a port traffic shaper or OpenFlow meter.

This way the control-plane messages monitoring and isola-
tion would be done by the hypervisor network element before
forwarding the messages to the software to be translated, which
exploits the processing power of the networking elements. It
also protects and improves the utilization of the server, hosting
the hypervisor software, as well as the hypervisor network
since the control-plane traffic is shaped at the network point
of entry according to the assigned control-plane shares of each
vSDN controller.

III. STATE OF THE ART

There are several existing hypervisor architectures to pro-
vide network virtualization for SDN networks. We are con-
cerned with their proposed architecture, hypervisor platform
and isolation mechanisms.

A. FlowVisor

FlowVisor [3] has been introduced as one of the ear-
liest architectures to provide virtualzation for SDN, based



TABLE I: Comparison between SDN hypervisor solutions concerning their platform and the proposed isolation mechanisms

FlowVisor ADVisor VeRTIGO Auto-slice Carrier-grade OpenVirteX HyperFlex

Hypervisor
Platform software software software software network elements software extended by

edge network elements
software and
network elements

Isolation
Focus

data-plane
(flow tables) – – – data-plane (flow

tables/bandwidth) data-plane (flowspace) control-plane
(CPU/bandwidth)

on OpenFlow. It plays the role of a logically centralized
hypervisor layer between the controllers of virtual tenants
and the physical SDN infrastructure, although it can also be
deployed in a hierarchical fashion. It realizes the network
abstraction by providing a mapping between the controller
and its allocated virtual network resources. FlowVisor is im-
plemented in software, hence it is a purely software solution.
Regarding isolation, FlowVisor provides flow table isolation
by maintaining a maximum number of flow entries for each
vSDN at their assigned SDN switches. It is also mentioned
that FlowVisor has the capabilities to associate certain network
QoS guarantees with a virtual slice, e.g., data-plane bandwidth
guarantees using the VLAN priority field..

B. ADVisor

Advanced FlowVisor or ADVisor [8] is developed as an
extension of FlowVisor, in which a software proxy or an
enhanced abstraction unit is added to improve the virtual
resources abstraction. Hence, similar to FlowVisor, it is also a
software solution. No control-plane isolation mechanisms were
proposed by this work.

C. VeRTIGO

The developers of VeRTIGO [9] take the virtual network
abstraction a step further. It is also an extension of FlowVisor,
hence a software solution as well. VeRTIGO allows the vSDN
controllers to select the level of virtual network abstraction that
they require. The abstraction feature can range from providing
the whole set of assigned virtual resources, with full virtual
network control, to abstracting the whole vSDN to a single
abstract resource, where the network operation is carried out by
the hypervisor while the tenant focuses on services deployment
on top. While this feature adds more flexibility in provision-
ing vSDNs, it also increases the hypervisor complexity and
does not address the control-plane isolation limitations of the
previous solutions.

D. Auto-slice

AutoSlice [10] thrives to improve the scalability of a logi-
cally centralized hypervisor and, thus, it distributes the hyper-
visor’s workload. For that purpose, the physical infrastructure
is segmented into non-overlapping SDN domains, while the
hypervisor is split into a management module and multiple
controller proxies, one for each SDN physical domain. The
virtual resources assignment is done by the management mod-
ule and stored at each proxy, where the proxies in turn carry out
the translation of the messages exchanged between the vSDN
controllers and the physical infrastructure in their respective
domain. It is still a solution targeting software deployment.
Regarding isolation, a partial control-plane offloading could
be offered by distributing the hypervisor over multiple proxies.

However, within each SDN domain, the control-plane isolation
problem still persists.

E. Carrier-grade Virtualization Scheme

A distributed virtualization architecture for vSDN has been
introduced in [11], by placing translation units in every data-
plane SDN switch at the physical infrastructure. Hence, it is
solution targeting network elements. A virtualization controller
supplies the translation units with the set of policies and rules,
which include the assigned label, flow table and port for each
vSDN slice. Such distributed architecture aims at minimizing
the additional overhead of a logically centralized hypervisor
by providing a direct access from the vSDN controllers to
the physical infrastructure. However, processing complexity
is added to the data-plane physical infrastructure, which
jupredizes the data-plane elements in case of overloading its
control channel that could result in data-plane performance
degradation. Additionally, the data-plane physical switches
have to be modified to include a translation unit, which adds a
higher complexity and eventually cost. Finally, there are still no
isolation or protection functions proposed for the SDN control-
plane.

F. OpenVirteX

The authors in [12] tackle the flowspace problem, which
is present in all above mentioned solutions. The flowspace
problem is simply using flow matching header fields to differ-
entiate between virtual tenants, thus not being able to offer the
whole flow matching space to the vSDNs. OpenVirteX places
edge switches at the borders of the physical SDN network to
re-write the virtual IP addresses, used by the hosts of each
tenant, into disjoint addresses to be used within the physical
SDN infrastructure. The hypervisor makes sure that the correct
address mapping is stored at the edge switches. Hence, the
full flowspace could be provided to each tenant. The hyper-
visor layer is still software and extended by edge switches.
Regarding isolation, no isolation schemes are discussed.

Table I shows a summarized comparison between the
aforementioned hypervisor solutions regarding their hypervisor
platform and their considered isolation mechanisms. Note that
alternative solutions, which do not provide a full virtualized
SDN, are not considered in our analysis, as for example
FlowN [13]. FlowN proposes an architecture with a shared
controller among all tenants where network applications of
each tenant can be operated on top. In this case, the tenants
are restricted to the capabilities of the provided controller by
FlowN. Hence, the full programmability of a vSDN is reduced,
which is only achieved in case a tenant is able to program and
operate its own vSDN controller and virtual SDN switches. It
should be further noted here that the above analyzed hypervisor
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solutions are examples to discuss different proposed architec-
tures and platforms, other hypervisor solutions following the
same architecture might be found.

IV. EVALUATION

First measurements in an OpenFlow-based SDN testbed
are conducted in order to evaluate a prototype implementation
of HyperFlex. In detail, we demonstrate a proof-of-concept
of the flexible function allocation and control-plane virtual-
ization. We investigate the performance of different setups
for the hypervisor control-plane isolation function providing
performance guarantees, which means that there should not
be any cross effect between virtual SDN networks. A cross
effect may result in performance degradation of one or more
virtual SDN networks. Such performance degradation could
be, for example, a longer flow setup time due to additional
latency on the control paths. We consider the delay of OF
control messages as a performance metric for all following
evaluations. The overall goal is to guarantee control message
delay for each virtual SDN network.

The measurement setup is shown in Figure 5. Two tenant
controllers, namely vSDN-C1 and vSDN-C2, are running in a
Virtual Machine (VM). For testing purpose, both controllers
are based on OFTest [14], a framework and test suite for OF
switches. OFTest is extended to generate an average constant
rate of OF messages to test the hypervisor performance and
control-plane virtualization under varying control-plane traffic.
Both vSDN controllers are connecting to a data-plane switch
of the SDN hypervisor network. The data-plane switch is an
Open vSwitch (OVS) also running in a VM. An instance of
FlowVisor [3] is used to provide the core hypervisor functions,
e.g., the translation function. To implement the hypervisor
controller, a Ryu controller [15] is used to control the hy-
pervisor network. Both FlowVisor and Ryu share one VM. An

additional instance of OVS represents the shared physical SDN
data-plane network, that is running in another VM.

The measurement procedure is as follows. Both vSDN
controllers are sending OF FEAT REQUEST messages to
the shared data-plane switch and receive OF FEAT REPLY
messages back. We evaluate the control-plane performance
in terms of latency to receive the reply message back from
the switch for each request message. All OF messages from
both controllers have to be processed by the hypervisor. This
produces load on the hypervisor’s CPU resources. This CPU
load can have a direct impact on the control-plane latency.
Thus, the CPU utilization of the hypervisor needs to be
monitored and isolated for each vSDN.

Hence, before investigating the performance latency for
vSDNs, a first measurement is conducted to measure and ana-
lyze the impact of the rate of OF messages on the hypervisor
CPU. Thus, the CPU utilization of the VM that hosts the
hypervisor software is monitored for two setups. In the first
setup, no isolation function is active. In the second setup,
the isolation function on the OVS switch of the hypervisor
network is activated. The allowed OF message rate is set to
500 messages per second, which corresponds to a traffic rate
of 260 kbps. Note that this rate holds as long as only one
OF message is sent per network packet. In both setups, 100 to
1000 OF FEAT REQUESTs per second are sent to FlowVisor.
Each run lasts 25 seconds and is repeated 10 times.

Figure 6 shows boxplots for hypervisor’s CPU utilization
in % according to the rate of OF messages received for both
setups. In addition, all figures that are showing boxplots have
the corresponding mean values shown as red squares and
additionally as values on top. In case no isolation is active,
as shown by Figure 6a, the CPU utilization increases linearly
with the amount of OF messages sent. The maximum mean
value for this setup is 39.3 %. In case of limited CPU resources
or shared hypervisor resources, too many network packets
containing OF messages can lead to a performance degradation
of the hypervisor. In order to avoid CPU over-utilization due
to excessive OF messages or packet rate, the network isolation
can force the sender of OF messages to aggregate messages.
This is additionally marked by the dashed line as shown in
Figure 6b. The dashed line illustrates the limit of 500 OF
messages. While the CPU utilization linearly increases with
the message rate from 100 to 500, the rate limiter installed
on the hypervisor network throttles the network rate between
500 and 1000 messages. After reaching a maximum mean
value of 27.4 %, the rate limiting even decreases the CPU
utilization. Thus, the hypervisor could be protected from over-
utilization. In order to additionally illustrate the impact of
OF messages on the CPU utilization of the hypervisor, the
available processing capacity is limited to 40 % in all following
experiments. According to Figure 6, this allows the hypervisor
to handle 1000 OF messages per second.

For the investigation of all operation modes of HyperFlex
guaranteeing control-plane isolation, vSDN-C1 and vSDN-C2
are each assigned an equal share of 500 OF FEAT REQUEST
messages per second. The performance of the control-plane
isolation is evaluated for the following four scenarios. The
configurations of all setups are additionally provided in Ta-
ble II.
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Fig. 6: Hypervisor CPU utilization versus OF messages rate with and without network isolation.
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Fig. 7: Control-plane latency of vSDN-C1 and vSDN-C2 for four evaluation scenarios: hypervisor CPU under-utilization (uu),
CPU over-utilization (ou), isolation in software (software), and isolation on network (network)

TABLE II: Scenario configurations

OF messages of vSDN-C1 OF messages of vSDN-C2 isolation in software isolation on network
under-utilization (uu) 500 500 - -
over-utilization (ou) 500 1000 - -

software 500 1000 500 per vSDN-C -
network 500 1000 - 260 kbps per vSDN-C

a) Hypervisor CPU under-utilization: In this scenario,
each of vSDN-C1 and vSDN-C2 is generating its assigned rate
of 500 OF FEAT REQUEST messages per second.

b) Hypervisor CPU over-utilization: vSDN-C2 ex-
ceeds its assigned rate by sending 1000 OF FEAT REQUEST
messages per second, while vSDN-C1 keeps sending 500
OF FEAT REQUEST messages per second. No isolation
mechanisms are applied in this scenario.

c) Control-plane isolation in hypervisor software:
vSDN-C2 exceeds its assigned rate in this scenario as well
by sending 1000 OF FEAT REQUEST messages per second.

However, the control-plane software isolation function is ac-
tivated to monitor the OF messages rate sent by each vSDN
controller with a limit of 500 OF FEAT REQUEST messages
per second. OF messages exceeding the rate limit are dropped.

d) Control-plane isolation on hypervisor network:
In this scenario, control-plane isolation is provided by the
hypervisor network, i.e. switch. Rate policing is activated at
the ingress ports for each vSDN controller. The OF messages
rate is transformed to bitrate, where the assigned share of
500 OF FEAT REQUEST messages per second corresponds
to 260 kbps, in case a single OF message is sent per packet.



TABLE III: Loss rate of OF FEAT REQUEST messages for
vSDN-C1 and vSDN-C2 in each evaluation scenario

under-util over-util isolation in software isolation on network
vSDN-C1 0% 0% 5.8% 0%
vSDN-C2 0% 0% 52.9% 0%

All scenarios were run for 25 seconds and repeated 30
times in order to get statistical evidence. Figure 7a and Fig-
ure 7b show the control-plane latency of vSDN-C1 and vSDN-
C2, respectively, for the four scenarios via boxplots. Both
controllers observe a similar average control-plane latency of
4 ms given that the hypervisor’s CPU is under-utilized. In case
of over-utilization of the hypervisor CPU, which is caused
by vSDN-C2 exceeding its assigned control-plane message
rate, an up to 6 times higher average control-plane latency
is observed for both controllers. This shows the cross effect
and impact of vSDN-C2 on the control-plane performance of
vSDN-C1, provided that no control-plane isolation is imple-
mented.

With control-plane isolation activated in the hypervisor
software, control-plane latency for both controllers is once
more similar to the under-utilization case, thus control-plane
isolation is achieved. Note that the latency observed by vSDN-
C2 is only for the conforming 500 OF messages out of 1000
total messages that are generated per second. The software
isolation function, which implements rate limiting on the ap-
plication layer, i.e., OF layer, drops all OF messages exceeding
the limit per second. This results in a loss rate of 52.9% for
OF FEAT REQUEST messages generated by vSDN-C2, as
shown in Table III. Note that there is a minor loss rate of
5.8% observed by vSDN-C1 since the OF message generation
is not ideal and might also slightly exceed the assigned 500
OF messages.

In case of control-plane isolation activated on the network
element, the control-plane latency of vSDN-C1 is similar
to the under-utilization scenario. However, a much higher
control-plane latency is experienced by vSDN-C2. Rate lim-
iting on the network element drops TCP packets exceeding
the rate limit on the ingress port. In contrast to OF, TCP
initiates retransmissions for the dropped packets. Hence, all
1000 OF FEAT REQUEST messages are transmitted to the
hypervisor and no OF message loss is experienced as shown in
Table III. However, retransmissions result in a higher control-
plane latency.

V. FUTURE WORK

As for future work, following the concept of decomposing
a hypervisor into functions, we are keen on defining metrics
and algorithms to dynamically place hypervisor functions over
the available resources pool, between software and network
elements. The hypervisor functions’ placement algorithms
should adapt to the virtual SDN networks’ requirements, the
observed performance by each vSDN, and the properties and
current performance of the physical infrastructure. Regarding
the control-plane isolation function performance, it is required
to be evaluated for different types of OF control traffic,
e.g., FLOW MOD or topology discovery packets. Further
evaluation could consider OF control traffic also using UDP,
as it is now possible with auxiliary channels since OF 1.3 [16].

We aim to extend our investigation to implement other hy-
pervisor functions, e.g., the abstraction or translation function,
as software or their realization on SDN network elements. This
would enable us to reach the final goal of a fully adaptable
and flexible hypervisor layer.

VI. CONCLUSION

In this paper, we propose a hypervisor architecture that
decomposes the hypervisor for SDN networks into functions,
which can be flexibly placed among servers or SDN network
elements, in order to provide a flexible, scalable and perfor-
mant virtualization architecture. As the hypervisor functions
can be flexibly placed among the network, the architecture
provides different operation modes that can be used according
to the performance guarantees needed for the virtualized
SDN network. The architecture also provides control-plane
virtualization that ensures control-plane isolation among the
virtual SDN tenants while protecting the hypervisor from
over-utilization. The realization of the control-plane isolation
function is thoroughly discussed as a server-based function or
transformed to an SDN-based realization.

A first prototype was implemented and evaluated in order
to show the trade-offs between the different operation modes
of the proposed hypervisor architecture. Measurement results
taken from a real SDN testbed for different utilization sce-
narios reveal that the flexible hypervisor provides improved
isolation between virtual SDN networks of multiple tenants.
Furthermore, the architecture is more reliable as the perfor-
mance protection of hypervisor functions is improved as well.
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