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Rényi Institute of Mathematics,

Budapest P.O.Box 127, H-1364 Hungary,
nemeti@renyi.hu, andreka@renyi.hu,

WWW home page: http://www.renyi.hu/∼nemeti

- Can general relativistic computers break
the Turing barrier?
- Are there final limits to human knowl-
edge?
- Limitative results versus human creativ-
ity (paradigm shifts).
- Gödel’s logical results in comparison/combination
with Gödel’s relativistic results.
- Can Hilbert’s programme be carried through
after all?
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1 Aims, perspective
The Physical Church-Turing Thesis, PhCT, is the con-
jecture that whatever physical computing device (in the
broader sense) or physical thought experiment will be
designed by any future civilization, it will always be sim-
ulatable by a Turing machine. The PhCT was formu-
lated and generally accepted in the 1930’s. At that time
a general consensus was reached declaring PhCT valid,
and indeed in the succeeding decades the PhCT was an
extremely useful and valuable maxim in elaborating the
foundations of theoretical computer science, logic, foun-
dation of mathematics and related areas. But since PhCT
is partly a physical conjecture, we emphasize that this
consensus of the 1930’s was based on the physical world-
view of the 1930’s. Moreover, many thinkers considered
PhCT as being based on mathematics + common sense.
But “common sense of today” means “physics of 100
years ago”. Therefore we claim that the consensus ac-
cepting PhCT in the 1930’s was based on the world-view
deriving from Newtonian mechanics. Einstein’s equations
became known to a narrow circle of specialists around
1920, but around that time the consequences of these
equations were not even guessed at. The world-view of
modern black hole physics was very far from being gen-
erally known until much later, until after 1980.

Our main point is that in the last few decades (well
after 1980) there has been a major paradigm shift in
our physical world-view. This started in 1970 by Hawk-
ing’s and Penrose’s singularity theorem firmly establish-
ing black hole physics and putting general relativity into

2



a new perspective. After that, discoveries and new results
have been accelerating. About 10 years ago astronomers
obtained firmer and firmer evidence for the existence of
larger and larger more exotic black holes [18],[17] not
to mention evidence supporting the assumption that the
universe is not finite after all [20]. Nowadays the whole
field is in a state of constant revolution. If the background
foundation on which PhCT was based has changed so
fundamentally, then it is desirable to re-examine the sta-
tus and scope of applicability of PhCT in view of the
change of our general world-picture. Cf. also [5] for a re-
lated perspective.

A special feature of the Newtonian world-view is the
assumption of an absolute time scale. Indeed, this abso-
lute time has its mark on the Turing machine as a model
for computer. As a contrast, in general relativity there is
no absolute time. Kurt Gödel was particularly interested
in the exotic behavior of time in general relativity (GR).
Gödel [8] was the first to prove that there are models of
GR to which one cannot add a partial order satisfying
some natural properties of a “global time”. In particular,
in GR various observers at various points of spacetime
in different states of motion might experience time radi-
cally differently. Therefore we might be able to speed up
the time of one observer, say C (for “computer”), rela-
tively to the other observer, say P (for “programmer”).
Thus P may observe C computing very fast. The differ-
ence between general relativity and special relativity is
(roughly) that in general relativity this speed-up effect
can reach, in some sense, infinity assuming certain con-
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ditions are satisfied. Of course, it is not easy to ensure
that this speed-up effect happens in such a way that we
could utilize it for implementing some non-computable
functions.

In [7], [15] we prove that it is consistent with Einstein’s
general relativity theory that by certain kinds of relativis-
tic experiments, future generations might find the an-
swers to non-computable questions like the halting prob-
lem of Turing machines or the consistency of Zermelo
Fraenkel set theory (the foundation of mathematics, ab-
breviated as ZFC set theory from now on). For brevity,
we call such thought experiments relativistic computers.
Moreover, the spacetime structure we assume to exist in
these experiments is based in [7],[15] on huge slowly ro-
tating black holes the existence of which is made more
and more likely (almost certain) by recent astronomical
observations [18],[17].

We are careful to avoid basing the beyond-Turing power
of our computer on “side-effects” of the idealizations in
our mathematical model/theory of the physical world.
For example, we avoid relying on infinitely small ob-
jects (e.g. pointlike test particles, or pointlike bodies),
infinitely elastic balls, infinitely (or arbitrarily) precise
measurements, or anything like these. In other words, we
make efforts to avoid taking advantage of the idealiza-
tions which were made when GR was set up. Discussing
physical realizability and realism of our design for a com-
puter is one of the main issues studied in [15].

The next three pages summarize the ideas said so far.
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Church Thesis was formulated in the pre-relativistic 
(Newtonian) worldview 
 
Turing Machine concept incorporates  “ABSOLUTE TIME” 
 

 
 
 
Believable that after General Relativity (GR) breaking 
Turing barrier becomes conceivable. 
 
GR         you can manipulate time (just like space) 
 
 
Kurt Gödel was fascinated with this feature. 
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2 An intuitive idea for how
relativistic computers
work

In this part of the talk we would like to illuminate the
ideas of how relativistic computers work, without going
into the mathematical details. The mathematical details
are elaborated, among others, in [7], [9], [15]. To make
our narrative more tangible, here we use the example
of huge slowly rotating black holes for our construction
of relativistic computers. But we emphasize that there
are many more kinds of spacetimes suitable for carrying
out essentially the same construction (these are called
Malament-Hogarth spacetimes in the physics literature).
So, relativistic computers are not tied to rotating black
holes, there are other general relativistic phenomena on
which they can be based. An example is anti-de Sitter
spacetime which attracts more and more attention in ex-
plaining recent discoveries in experimental cosmology. We
chose rotating black holes because they provide a tangible
example for illustrating the kind of reasoning underlying
general relativistic approaches to breaking the “Turing
barrier”. Astronomical evidence for their existence makes
them an even more attractive choice for our didactic pur-
poses.
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New freedom (handle on the problem): 
 
We can manipulate time in GR.  
(Already in SR. But that is not enough.) 
 
Fourth dimension: “moving in time” 
 
Boldly: Assume for a second (only!!!) that 
time travel exists. 
 
Time travel → Beyond Turing computer. 
 
Less boldly:  Instead of time travel use 
huge rotating black holes (observed). 
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Let us start out from the so-called Gravitational Time
Dilation effect (GTD). The GTD is a theorem of relativ-
ity which says that gravity makes time run slow. More
sloppily: gravity slows time down. Clocks that are deep
within gravitational fields run slower than ones that are
farther out. We will have to explain what this means, but
before explaining it we would like to mention that GTD
is not only a theorem of general relativity. This theorem,
GTD, can be already proved in (an easily understand-
able logic-based version of) special relativity in such a
way that we simulate gravity by acceleration [11], [13].
So one advantage of GTD is that actually why it is true
can be traced down by using only the simple methods of
special relativity. Another advantage of GTD is that it
has been tested several times, and these experiments are
well known. Roughly, GTD can be interpreted by the fol-
lowing thought experiment. Choose a high enough tower
on the Earth, put precise enough (say, atomic) clocks at
the bottom of the tower and the top of the tower, then
wait enough time, and compare the readings of the two
clocks. Then the clock on the top will run faster (show
more elapsed time) than the one in the basement, at each
time one carries out this experiment. Figure 2 represents
how GTD can be proved in special relativity using an
accelerated spaceship for creating artificial gravity and
checking its effects on clocks at the two ends of the space-
ship. Detailed purely logical formulation and proofidea is
found in [12].
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accelerates

Slow time Fast time

artificial
GRAVITY
experienced

Fig. 2. GTD is a theorem of Special Relativity (SR) (easily proved in first-order logic
version of SR).

The next picture, Figure 3, represents the same GTD
effect as before, but now using a tall tower on the Earth
experiencing the same kind of gravity as in the space-
ship. Gravity causes the clock on the top ticking faster.
Therefore computers there also compute faster. Assume
the programmer in the basement would like to use this
GTD effect to speed up his computer. So he sends the
computer to the top of the tower. Then he gets some
speed-up effect, but this is too little. The next two pic-
tures, Figure 4 and Figure 5, are about the theoretical
possibility of increasing this speed-up effect.
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Slow
time
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time
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(complexity)

Programmer

Computer

Earth

Fig. 3. TIME WARP (Tower Paradox, effects of gravity on time). Clocks higher in a
gravitational well tick faster.
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Earth
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C
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effect we get

Fig. 4. Thought experiment for fast computation: The programmer “throws” his slave-
computer to a high orbit. Communicates via radio.
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only finite
speed up

Neutron star

1000g

Fig. 5. By using a neutron star we still get only a finite speed-up.
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How could we use GTD for designing computers that
compute more than Turing Machines can? In the above
outlined situation, by using the gravity of the Earth, it
is difficult to make practical use of GTD. However, in-
stead of the Earth or of a neutron star, we could choose
a huge black hole, cf. Figure 6. A black hole is a re-
gion of spacetime with so big “gravitational pull” that
even light cannot escape from this region. There are sev-
eral types of black holes, an excellent source is Taylor
and Wheeler [19]. For our demonstration of the main
ideas here, we will use huge, slowly rotating black holes.
(These are called slow-Kerr in the physics literature.)
These black holes have two so-called event horizons, these
are bubble-like surfaces one inside the other, from which
even light cannot escape (because of the gravitational
pull of the black hole). See Figures 6–8. As we approach
the outer event horizon from far away outside the black
hole, the gravitational “pull” of the black hole approaches
infinity as we get closer and closer to the event horizon.
This is rather different from the Newtonian case, where
the gravitational pull also increases but remains finite
even on the event horizon.1 For a while from now on
“event horizon” means “outer event horizon”.

1 The event horizon also exists in the Newtonian case, namely, in the Newtonian case,
too, the event horizon is the “place” where the escape velocity is the speed of light
(hence even light cannot escape to infinity from inside this event horizon “bubble”).
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“INFINITE”
speed up!

(no limit)

infinite
gravitational

pull here

clocks
freeze

BLACK HOLE
event horizon

Fig. 6. Getting “infinite” speed-up.
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Rotating Black Hole

all signals sent
by computer

reach programmer
outside IEH fall of programmer

inner event horizon
IEH

Fig. 7. Rotating Black Hole has two event horizons. Programmer can survive forever.
(Ring singularity can be avoided.)
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e z
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P

Inner event
horizon

Outer event horizon

Axis of rotation(θ = 0)

Fig. 8. A slowly rotating (Kerr) black hole has two event horizons and a ring-shape
singularity (the latter can be approximated/visualized as a ring of extremely dense and
thin “wire”). The ring singularity is inside the inner event horizon in the “equatorial”
plane of axes x, y. Time coordinate is suppressed. Figure 9 is a spacetime diagram
with x, y suppressed. Rotation of ring is indicated by an arrow. Orbit of in-falling
programmer P is indicated, it enters outer event horizon at point e, and meets inner
event horizon at point b.
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Let us study observers suspended over the event hori-
zon. Here, suspended means that the distance between
the observer and the event horizon does not change. Equiv-
alently, instead of suspended observers, we could speak
about observers whose spaceship is hovering over the
event horizon, using their rockets for maintaining alti-
tude. Assume one suspended observer H is higher up and
another one, L, is suspended lower down. So, H sees L

below him while L sees H above him. Now the gravita-
tional time dilation (GTD) will cause the clocks of H run
faster than the clocks of L. Moreover, they both agree on
this if they are watching each other e.g. via photons. Let
us keep the height of H fixed. Now, if we gently lower L
towards the event horizon, this ratio between the speeds
of their clocks increases. Moreover, as L approaches the
event horizon, this ratio approaches infinity. This means
that for any integer n, if we want H’s clocks to run n

times as fast as L’s clocks, then this can be achieved by
lowering L to the right position.
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Let us see what this means for computational complex-
ity. If the programmer wants to speed up his computer
with an arbitrarily large ratio, say n, then he can achieve
this by putting the programmer to the position of L and
putting the computer to the position of H. Already at
this point we could use this arrangement with the black
hole for making computers faster. The programmer goes
very close to the black hole, leaving his computer far
away. Then the programmer has to wait a few days and
the computer does a few million year’s job of computing
and then the programmer knows a lot about the conse-
quences of, say, ZFC set theory or whatever mathemati-
cal problem he is investigating. So we could use GTD for
just speeding up computation which means dealing with
complexity issues. However, we do not want to stop at
complexity issues. Instead, we would like to see whether
we can attack somehow the “Turing barrier”.

The above arrangement for speeding the computer up
raises the question of how the programmer avoids conse-
quences of the fact that the whole manoeuver will slow
down the programmer’s own time relative to the time on
his home planet, e.g. on the Earth. We will deal with this
problem later. Let us turn now to the question of how we
can use this effect of finite (but unbounded) speed-up
for achieving an infinite speed-up, i.e. for breaking the
Turing barrier.
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If we could suspend the lower observer L on the event
horizon itself then from the point of view of H, L’s clocks
would freeze, therefore from the point of view of L, H’s
clocks (and computers!) would run infinitely fast, hence
we would have the desired infinite speed-up upon which
we could then start our plan for breaking the Turing bar-
rier. The problem with this plan is that it is impossible to
suspend an observer on the event horizon. As a consola-
tion for this, we can suspend observers arbitrarily close to
the event horizon. To achieve an “infinite speed-up” we
could do the following. We could lower and lower again L
towards the event horizon such that L’s clocks slow down
(more and more, beyond limit) in such a way that there
is a certain finite time-bound, say b, such that, roughly,
throughout the whole history of the outer (or outside)
universe L’s clocks show a time smaller than b. More
precisely, by this we mean that whenever H decides to
send a photon to L, then L will receive this photon be-
fore time b according to L’s clocks. This is possible. See
Figure 9.
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horizon
inner event
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horizon

wristwatch−time

1

2

2.40

2.41

III II I

t̄ z = r− z = r+

z

z = 0

C

P

Fig. 9. The “tz-slice” of spacetime of slowly rotating black hole in coordinates where
z is the axis of rotation of black hole. The pattern of light cones between the two event
horizons r− and r+ illustrates that P can decelerate so much in this region that he will
receive outside of r− all messages sent by C. r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole as in Figure 8. The tilting
of the light cones indicates that not even light can escape through these horizons. That
there is an outward push counteracting gravity can be seen by the shape of the light-
cones in region III (central region of the black hole). The time measured by P is finite
(measured between the beginning of the experiment and the event when P meets the
inner event horizon at b) while the time measured by C is infinite.
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Are we done, then? Not yet, there is a remaining task
to solve. As L gets closer and closer to the event horizon,
the gravitational pull or gravitational acceleration tends
to infinity. If L falls into the black hole without using
rockets to slow his fall, then he does not have to with-
stand the gravitational pull of the black hole. He would
only feel the so-called tidal forces which can be made
negligibly small by choosing a large enough black hole.
However, his falling through the event horizon would be
so fast that some photons sent after him by H would not
reach him outside the event horizon. Thus L has to ap-
proach the event horizon relatively slowly in order that he
be able to receive all possible photons sent to him by H.
In theory he could use rockets for this purpose, i.e. to slow
his fall (assuming he has unlimited access to fuel some-
how). Because L approaches the event horizon slowly, he
has to withstand this enormous gravity (or equivalently
acceleration). The problem is that this increasing gravi-
tational force (or acceleration) will kill L before his clock
shows time b, i.e. before the planned task is completed.

At the outer event horizon of our black hole we cannot
compromise between these two requirements by choosing
a well-balanced route for L: no matter how he will choose
his route, either L will be crashed by the gravitational
pull, or some photons sent by H would not reach him.
(This is the reason why we can not base our relativis-
tic computer on the simplest kind of black holes, called
Schwarzschild ones, which have only one event horizon
that behaves as we described as above.)
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To solve this problem, we would like to achieve slow-
ing down the “fall” of L not by brute force (e.g. rockets),
but by an effect coming from the structure of spacetime
itself. In our slowly rotating black hole, besides the grav-
itational pull of the black hole (needed to achieve the
time dilation effect) there is a counteractive repelling ef-
fect coming from the revolving of the black hole. This
repelling effect is analogous to “centrifugal force” in New-
tonian mechanics and will cause L to slow down in the
required rate. So the idea is that instead of the rockets
of L, we would like to use for slowing the fall of L this
second effect coming from the rotation of the black hole.
In some black holes with such a repelling force, and this
is the case with our slowly rotating one, two event hori-
zons form, see Figures 7–9. The outer one is the result of
the gravitational pull and behaves basically like the event
horizon of the simplest, so-called Schwarzschild hole, i.e.
as described above. The inner event horizon marks the
point where the repelling force overcomes the gravita-
tional force. So inside the inner horizon, it is possible
again to “suspend” an observer, say L, i.e. it becomes
possible for L to stay at a constant distance from the
center of the black hole (or equivalently from the event
horizons).
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Rotating Black Hole

all signals sent
by computer

reach programmer
outside IEH fall of programmer

inner event horizon
IEH

Fig. 7. Rotating Black Hole has two event horizons. Programmer can survive forever.
(Ring singularity can be avoided.)
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Fig. 8. A slowly rotating (Kerr) black hole has two event horizons and a ring-shape
singularity (the latter can be approximated/visualized as a ring of extremely dense and
thin “wire”). The ring singularity is inside the inner event horizon in the “equatorial”
plane of axes x, y. Time coordinate is suppressed. Figure 9 is a spacetime diagram
with x, y suppressed. Rotation of ring is indicated by an arrow. Orbit of in-falling
programmer P is indicated, it enters outer event horizon at point e, and meets inner
event horizon at point b.
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Fig. 9. The “tz-slice” of spacetime of slowly rotating black hole in coordinates where
z is the axis of rotation of black hole. The pattern of light cones between the two event
horizons r− and r+ illustrates that P can decelerate so much in this region that he will
receive outside of r− all messages sent by C. r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole as in Figure 8. The tilting
of the light cones indicates that not even light can escape through these horizons. That
there is an outward push counteracting gravity can be seen by the shape of the light-
cones in region III (central region of the black hole). The time measured by P is finite
(measured between the beginning of the experiment and the event when P meets the
inner event horizon at b) while the time measured by C is infinite.
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Let us turn to describing how a slowly rotating black
hole implements the above outlined ideas, and how it
makes possible to realize our plan for “infinite speed-up”.
Figure 8 represents a slowly rotating huge Kerr black
hole and Figure 9 represents its spacetime structure. As
we said, there are two event horizons, the inner one sur-
rounded by the outer one. The source of gravity of the
black hole is a ring shaped singularity situated inside the
inner horizon. The path of the in-falling observer L can
be planned in such a way that the event when L reaches
the inner horizon corresponds to the time-bound b (on
the wristwatch of L) mentioned above before which L

receives all the possible messages sent out by H. In Fig-
ures 8,9 the world-lines of L and H are denoted as P and
C because we think of L as the programmer and we think
of H as L’s computer.

By this we achieved the infinite speed-up we were aim-
ing for. This infinite speed-up is represented in Figure 9
where P measures a finite proper time between its sepa-
ration from the computer C (which is not represented in
the figure) and its touching the inner horizon at proper
time b (which point also is not represented in Figure 9).
It can be seen in the figure that whenever C decides to
send a photon towards P , that photon will reach P before
P meets the inner horizon. The above outlined intuitive
plan for creating an infinite speed-up effect is elaborated
in more concrete mathematical detail in [7], [15].
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Let us see how we can use all this to create a com-
puter that can compute tasks which are beyond the Tur-
ing limit. Let us choose the task, for an example, to de-
cide whether ZFC set theory is consistent. I.e. we want
to learn whether from the axioms of set theory one can
derive the formula FALSE. (This formula FALSE can be
taken to be ∃x(x 6= x).) The programmer P and his com-
puter C are together (on Earth), not moving relative to
each other, and P uses a finite time-period for transfer-
ring input data to the computer C as well as for program-
ming C. After this, P boards a huge spaceship, taking all
his mathematical friends with him, and chooses an appro-
priate route towards our huge slowly rotating black hole,
entering the inner event horizon when his wrist-watch
shows time b. While he is on his journey towards the
black hole, the computer checks one by one the theorems
of set theory, and as soon as the computer finds a contra-
diction in set theory, i.e. a proof of the formula FALSE,
from the axioms of set theory, the computer sends a signal
to the programmer indicating that set theory is inconsis-
tent. (This is a special example only. The general idea is
that the computer enumerates a recursively enumerable
set and, before starting the computer, the programmer
puts on the tape of the computer the name of the ele-
ment which he wants to be checked for belonging to the
set. The computer will search and as soon as it finds the
element in question inside the set, the computer sends a
signal.) If it does not find the thing in the set, the com-
puter does nothing.
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What happens to the programmer P from the point
of view of the computer C? This is represented on the
next page. Let C’s coordinate system be the one repre-
sented on the next page. By saying “from the point of
view of C” we mean “in this particular coordinate sys-
tem (adjusted to C)”. In this coordinate system when the
programmer goes closer and closer to the inner horizon
of the black hole, the programmer’s clock will run slower
and slower and slower, and eventually on the inner event
horizon of the black hole the time of the programmer
stops. Subjectively, the programmer does not experience
it this way, this is how the computer will coordinatize
it in the distance, or more precisely, how the coordinate
system shown on the next page represents it. If the com-
puter thinks of the programmer, it will see in its mind’s
eye that the programmer’s clocks stop and the program-
mer is frozen motionless at the event horizon of the black
hole. Since the programmer is frozen motionless at the
event horizon of the black hole, the computer has enough
time to do the computation, and as soon as the computer
has found, say, the inconsistency in set theory, the com-
puter can send a signal and the computer can trust that
the programmer—still with his clock frozen—will receive
this signal before it enters the inner event horizon.
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What will the programmer experience? This is rep-
resented in Figure 8 as well as on the next page. The
programmer will see that as he is approaching the inner
event horizon, his computer in the distance is running
faster and faster and faster. Then the programmer falls
through the inner event horizon of the black hole. If the
black hole is enormous, the programmer will feel nothing
when he passes either event horizon of the black hole—
one can check that in case of a huge black hole the so-
called tidal forces on the event horizons of the black hole
are negligibly small [16]. So the programmer falls into the
inner event horizon of the black hole and either the pro-
grammer will experience that a light signal arrives from
the direction of the computer, of an agreed color and
agreed pattern, or the programmer will observe that he
falls in through the inner event horizon and the light sig-
nal does not arrive. After the programmer has crossed the
inner event horizon, the programmer can evaluate the sit-
uation. If a signal arrived from the computer, this means
that the computer found an inconsistency in ZFC set the-
ory, therefore the programmer will know that set theory
is inconsistent. If the light signal has not arrived, and
the programmer is already inside the inner event hori-
zon, then he will know that the computer did not find
an inconsistency in set theory, did not send the signal,
therefore the programmer can conclude that set theory
is consistent. So he can build the rest of his mathematics
on the secure knowledge of the consistency of set theory.
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The next question which comes up naturally is whether
the programmer can use this new information, namely
that set theory is consistent, or whatever he wanted to
compute, for his purposes. A pessimist could say that OK
they are inside a black hole, so—now we are using com-
mon sense, we are not using relativity theory—common
sense says that the black hole is a small unfriendly area
and the programmer will sooner or later fall into the mid-
dle of the black hole where there is a singularity and the
singularity will kill the programmer. But this is not so:
The reason why we chose our black hole to be a huge
slowly rotating one, say of mass 1010m⊙, is the following.
If the programmer falls into a black hole which is as big
as this and it rotates slowly, then the programmer will
have quite a lot of time inside the black hole because the
center of the black hole is relatively far from the event
horizon. But this is not the key point. If it rotates, the
“matter content”, the so-called singularity, which is the
source of the gravitational field of the black hole so-to-
speak, is not a point but a ring. So if the programmer
chooses his route in falling into the black hole in a clever
way, say, relatively close to the north pole instead of the
equatorial plane, then the programmer can comfortably
pass through the middle of the ring, never get close to
the singularity and happily live on forever. We mean, the
rules of relativity will not prevent him from happily living
forever. He may have descendants, he can found society,
he can use the so obtained mathematical knowledge.
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Some claustrophobic readers might not like the idea
of diving into a black hole no matter how big and com-
fortable the black hole is. In this connection we mention
three things (i)-(iii) below.

(i) We can use what is called a wormhole in the liter-
ature. So the programmer might “come out”.

(ii) The inside of a rotating black hole might have a
completely different geometry from that guessed by look-
ing at it from the outside. E.g. there is infinite space in-
side.

(iii) Instead of black holes, wormholes, and the like,
we could use anti-de-Sitter spacetime which plays an im-
portant role in modern cosmology. Then the roles are re-
versed, the programmer P stays on Earth and the com-
puter C is the one who does the travelling. Cf. Hoga-
rth [9],[10]. The “logic” of this anti-de-Sitter version is
the same as that of the present one, the difference is only
in the choice of the spacetime geometry we use. (But all
of these are general relativity models.)

41



Survive tidal forces? → Huge black hole 
(practically no tidal forces, no spaghettifying!) 
 
 
 
Problem: Enough time for enjoying having 
received the result. 
 
Needed: cushioning effect, i.e. repellent force. A 
second effect counter-acting gravitation. 
 
Plenty of solutions for this, e.g. rotating BH 
(centrifugal force for cushion) or electrostatic 
repulsion 
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Technical details of realizability of this general plan are
checked in [15], [7]. The above outlined train of thought
can be pushed through to show that any recursively enu-
merable set can be decided by a relativistic computer [7].
Actually, more than that can be done by relativistic com-
puters, but it is not the purpose of the present paper to
check these limits. These limits are addressed in [9], [10],
[21].

For the nonspecialist of general relativity, we include
here the mathematical description of a double black hole
with 2 event horizons suitable for the above outlined
thought experiment. Instead of rotation, here we use an
electric charge for “cushioning” the fall of L. The space-
time geometry of our black hole is described by the metric

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dϕ2 (1)

where ϕ is the space angle coordinate. Here A(r) = (1−
1

r
+ e

r
2 ) for some 0 ≤ e < 1/2. (The event horizons form at

r = 1

2
±

√

1

4
− e. In our choice of A(r), the “−1

r
” part is re-

sponsible for gravitational attraction, while the “ e

r
2” part

for the cushioning caused by charge
√

e.) The tr-slice of
the spacetime determined by the simple metric (1) above
is basically the same as the one represented in Figure 9.
(What was denoted as z coordinate should be denoted as
r, now.) For completeness, in (1) above, r is the radial
coordinate, r = distance from the center of black hole.
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3 Conclusion

A virtue of the present research direction is that it es-
tablishes connections between central questions of logic,
foundation of mathematics, foundation of physics, rela-
tivity theory, cosmology, philosophy, particle physics, ob-
servational astronomy, computer science and AI [21]. E.g.
it gives new kinds of motivation to investigating central
questions of these fields like “is the universe finite or in-
finite (both in space and time) and in what sense”, “ex-
actly how do Kerr black holes evaporate” (quantum grav-
ity), “how much matter is needed for coding one bit of
information (is there such a lower bound at all)”, ques-
tions concerning the statuses of the various cosmic censor
hypotheses, questions concerning the geometry of rotat-
ing black holes [4], to mention only a few. The inter-
disciplinary character of this direction was reflected al-
ready in the 1987 course given by the present authors
[14] during which the idea of relativistic hypercomputers
emerged and which was devoted to connections between
the above mentioned areas. Tangible data underlying the
above interconnections and also more history, references
are available in [15]. The book Earman [6, p.119, section
4.9] regards the same interdisciplinary perspective as de-
scribed above to be one of the main virtues of the present
research direction. It is the unifying power of logic which
makes it viable to do serious work on such a diverse col-
lection of topics. One of the main aims of the research
direction represented by [3], [2], [1], [11]–[13] is to make
relativity theory accessible for anyone familiar with logic.
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SUMMARY 
 
 

• Gravitation can be used for speeding up time 
• Black holes provide unlimited resource for this 

effect 
• Undesirable side-effects of falling into a black 

hole can be eliminated by choosing exotic black 
holes (with a repellent, cushioning force) 

• All this is not a fairy tale, it can be 
mathematically verified via GR (no misuse of 
idealizations). Physical realism checked in 
Németi-Dávid: Relativistic computers and the 
Turing Barrier, JAMC 2006 to appear. 

• New, high precision cosmology: No Big 
Crunch, space is infinite, conditions for 
relativistic computer friendly. 

• Universe is infinite both in time and space. 
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Some people with results on relat. 
Computers: 
 
Hogarth (Cambridge) 
Pitowsky (Israel) 
Shagrir (Israel) 
Earman (Pittsburgh) 
Norton (Pittsburgh) 
Malament (USA) 
Etesi (Hungary, Dept. Phys.) 
Dávid (Hungary, Dept. Phys.) 
Tipler 
Barrow 
Jiří Wiedermann 
A&N 1987 Ames USA Lecture Notes 
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