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Abstract

This article is concerned with Bayesian optimal filtering and smoothing of non-linear continuous-discrete state space
models, where the state dynamics are modeled with non-linear Itô-type stochastic differential equations, and measure-
ments are obtained at discrete time instants from a non-linear measurement model with Gaussian noise. We first show
how the recently developed sigma-point approximations as well as the multi-dimensional Gauss–Hermite quadra-
ture and cubature approximations can be applied to classical continuous-discrete Gaussian filtering. We then derive
two types of new Gaussian approximation based smoothers forcontinuous-discrete models and apply the numerical
methods to the smoothers. We also show how the latter smoother can be efficiently implemented by including one
additional cross-covariance differential equation to the filter prediction step. The performance of the methods is tested
in a simulated application.

Keywords: Bayesian continuous-discrete filtering, Bayesian continuous-discrete smoothing, Gaussian
approximation, Kalman filter, Rauch–Tung–Striebel smoother

1. Introduction

Non-linear continuous-discrete optimal filtering and
smoothing refer to applications of Bayesian inference to
state estimation in dynamic systems, where the time be-
havior of the system is modeled as a non-linear stochas-
tic differential equation (SDE), and noise-corrupted ob-
servations of the state are obtained from a non-linear
measurement model. These kind of continuous-discrete
state estimation problems arise in many applications,
such as, in guidance systems, integrated inertial navi-
gation and passive sensor based target tracking [1, 2, 3].
Solving these estimation problems is very hard, because
the SDEs appearing in the dynamic model or the cor-
responding Fokker–Planck–Kolmogorov partial differ-
ential equations cannot typically be solved analytically
and approximations must be used. Here we consider the
particularly difficult case of non-additive noise which
is intractable to many existing methods in the field (cf.
[4, 5]).

In this paper, we show how the numerical integra-
tion based discrete-time Gaussian filtering and smooth-
ing frameworks presented in [6, 7, 8] can be applied to
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continuous-discrete models. We first show how the re-
cent numerical integration methods can be applied to the
classical continuous-discrete Gaussian filtering frame-
work [9]. The usage of cubature integration method in
continuous-discrete filtering was also recently analyzed
by S̈arkkä and Solin [5], and here we generalize those
results. The main contributions of this paper are to de-
rive new continuous-discrete Gaussian smoothers by us-
ing two different methods: (i) by forming a Gaussian
approximation to the partial differential equations of the
smoothing solution [10, 11], and (ii) by computing the
continuous limit of the discrete-time Gaussian smoother
[8] as in [12]. Both of these smoothers consist of dif-
ferential equations for the smoother mean and covari-
ance. The third main contribution is to derive a novel
computationally efficient smoothing method which only
requires forward integration of one additional matrix
differential equation during the prediction step of the
continuous-discrete filter.

1.1. Problem Formulation
This paper is concerned withBayesian optimal fil-

tering and smoothingof non-linear continuous-discrete
state space models [1] of the following form:

dx= f (x, t) dt+ L(x, t) dβ

yk = hk(x(tk), rk),
(1)
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wherex(t) ∈ Rn is the state andyk ∈ Rd is the measure-
ment at time instanttk. The functionsf (x, t) andhk(x, r)
define the dynamic and measurement models, respec-
tively. Here{β(t) : t ≥ 0} is a s-dimensional Brow-
nian motion with diffusion matrixQ(t) and{rk : k =
1,2, . . .} is a Gaussian N(0,Rk) white random sequence.
The processesβ(t) andrk as well as the random initial
conditionsx(0) ∼ N(m0,P0) are assumed to be mutually
independent.L(x, t) is a matrix valued function which
causes the effective diffusion matrix of the process noise
to be

Σ(x, t) = L(x, t) Q(t) LT(x, t), (2)

and is thus allowed to be state-dependent. In this paper,
we interpret the stochastic differential equations (SDE)
as It̂o-type stochastic differential equations (see, e.g.,
[13]).

In continuous-discrete filtering, the purpose is to
compute the followingfiltering distributionswhich are
defined for allt ≥ 0, not only for the discrete measure-
ment steps:

p(x(t) | y1, . . . , yk), t ∈ [tk, tk+1), k = 1,2, . . . (3)

The Bayesian optimal continuous-discrete filter[14, 1,
9] is actually almost the same as the discrete filter—
only the prediction step is replaced with solving of the
Fokker–Planck–Kolmogorov (FPK) partial differential
equation.

In continuous-discrete smoothingwe are interested in
computing smoothing distributions of the form

p(x(t) | y1, . . . , yK), t ∈ [t0, tK ]. (4)

The formal Bayesian filtering and smoothing solu-
tions to the state estimation problem—including the
continuous-discrete special case—have already been
around since the 60’s–70’s [15, 1, 10, 11, 16] and are
in that sense well known. However, the only way to
solve the formal Bayesian filtering and smoothing equa-
tions is by approximation, as the closed-form solution is
available only for the linear Gaussian case [17, 18, 19]
and for a few other isolated special cases (see, e.g.,
[20]). Although non-linear continuous-discrete optimal
filtering and smoothing are mature subjects, the approx-
imations have concentrated to Taylor series based meth-
ods [21, 22, 23, 16, 9] and other methods have received
considerably less attention.

During the last few decades, the speed of computers
has increased exponentially, and due to that, numerical
integration methods and other computational methods
have developed rapidly. Thus more accurate approx-
imations to the formal filtering and smoothing equa-
tions are tractable than before. In particular, the sigma-
point based unscented transform was introduced as an

alternative to Taylor series approximations for discrete-
time filters and estimators in [24, 25, 26] and the exten-
sion to smoothing problems was presented in [27]. The
idea was extended to a full numerical integration based
discrete-time Gaussian filtering and smoothing frame-
work in [6, 7, 8]. Note that the Gaussian approxima-
tions themselves date back to the 60’s–80’s [28, 1, 9],
but the contributions of the recent articles are in appli-
cation of more general numerical integration methods to
the problem.

Non-linear continuous and continuous-discrete
smoothing has been more recently studied in [29, 30],
and applications of the unscented (sigma-point) trans-
form and related approximations to continuous-discrete
(and continuous-time) filtering and smoothing have
been proposed in [30, 31, 32, 12]. The extension of
the cubature Kalman filter [33] to continuous-discrete
filtering problems—using It̂o–Taylor series based
approximations—has also been recently studied in
[4], and its relationship to the classical approach to
continuous-discrete filtering was analyzed in [5].

In this paper we only consider Gaussian approxima-
tions, but obviously other approximations exist as well.
One possible approach is to use MCMC (Markov chain
Monte Carlo) based methods for sampling from the state
posterior (see, e.g., [34, 35, 36]). It is also possible
to use simulation (sequential Monte Carlo) based parti-
cle filtering and smoothing methods (see, e.g., [37, 38])
or approximate the solution of the Fokker–Planck–
Kolmogorov equation numerically (see, e.g., [39, 40]).
Although these methods are more accurate in some
cases, they typically are computationally more demand-
ing than Gaussian approximations.

2. Continuous-Discrete Gaussian Filtering

2.1. Gaussian Filter for the Continuous-Discrete Prob-
lem

In the filtering algorithms presented in this paper, we
use the classical Gaussian filtering [1, 9, 6, 7] approach
where the idea is to employ the approximation

p(x(t) | y1, . . . , yk) ≈ N(x(t) |m(t),P(t)). (5)

That is, we replace the true expectations with respect to
x(t) with expectations over the Gaussian approximation.
The meansm(t) and covariancesP(t) are computed via
the following algorithm:

1. Prediction step:Integrate the following mean and
covariance differential equations starting from the
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meanm(tk−1) and covarianceP(tk−1) on the previ-
ous update time, to the timetk:

dm
dt
= E[ f (x, t)]

dP
dt
= E[(x−m) f T(x, t)] + E[ f (x, t) (x−m)T ] + E[Σ(x, t)],

(6)

where E[·] denotes the expectation with respect to
x ∼ N(m,P). The results of the prediction are de-
noted asm(t−k ), P(t−k ), where the minus at super-
script means ‘infinitesimally before the timetk’.

2. Update step:This is the same as the discrete-time
filter update step (see, e.g., [6, 7]) which in the
present non-additive case can be written as

µk =

∫∫

hk(x, r) N(x |m(t−k ),P(t−k )) N(r |0,Rk) dx dr

Sk =

∫∫

(hk(x, r) − µk) (hk(x, r) − µk)
T

× N(x |m(t−k ),P(t−k )) N(r |0,Rk) dx dr

Dk =

∫∫

(x−m(t−k )) (hk(x, r) − µk)
T

× N(x |m(t−k ),P(t−k )) N(r |0,Rk) dx dr

Kk = Dk S−1
k

m(tk) = m(t−k ) + Kk (yk − µk)

P(tk) = P(t−k ) − Kk Sk KT
k .

(7)

If the functionx 7→ f (x, t) is differentiable, we can sim-
plify the covariance prediction equation by using the
following property of Gaussian random variables [41]:

E
[

f (x, t) (x−m)T
]

= E[Fx(x, t)] P, (8)

whereFx(x, t) is the Jacobian matrix off (x, t) with re-
spect tox, with elements [Fx] i j = ∂ fi/∂x j , and E[·] de-
notes the expectation with respect tox ∼ N(x |m,P).
The prediction Equations (6) can thus be equivalently
written as

dm
dt
= E[ f (x, t)]

dP
dt
= PE[Fx(x, t)]

T + E[Fx(x, t)] P+ E[Σ(x, t)].
(9)

2.2. Numerical Integration of Filtering Equations

As we saw in Section 2.1, the Gaussian filter update
step is identical in both discrete and continuous-discrete
cases. Thus here we only consider implementation of
the differential equations on the prediction step. In order

to implement the prediction equations given in (6) or
(9), we need means to approximate the following kind
of integrals over Gaussian distributions:

E[g(x, t)] =
∫

g(x, t) N(x |m,P) dx. (10)

The classical way [1, 9] is to eliminate the non-
linearities by forming analytical approximations to the
drift and diffusion as follows:

f (x, t) ≈ f (m, t) + Fx(m, t) (x−m)

Σ(x, t) ≈ Σ(m, t),
(11)

whereFx denotes the Jacobian matrix off with respect
to x. In this case, of course,f (x, t) has to be differ-
entiable with respect tox. The prediction equations
(6) now reduce to the classical first-order continuous-
discrete extended Kalman filter (EKF) prediction equa-
tions [1]:

dm
dt
= f (m, t)

dP
dt
= P FT

x (m, t) + Fx(m, t) P+ Σ(m, t).
(12)

Exactly the same equations would have been obtained
by using the approximation E[Fx(x, t)] ≈ Fx(m, t) in the
prediction equations (9). The linearization is obviously
exact only for linear functions and for this reason does
not work well for highly non-linear problems (see [26,
7, 33]).

Another general way [7] is to approximate the inte-
grals as a weighted sum:

E[g(x, t)] ≈
∑

i

W(i) g(x(i), t), (13)

where x(i) and W(i) are the sigma-points and weights
which have been selected using a method specific deter-
ministic rule. In the multidimensional Gauss–Hermite
integration [6], unscented transform [24, 25, 26] and cu-
bature integration [7, 33] the sigma-points are selected
as follows:

x(i) = m+
√

Pξi , (14)

where the matrix square root is defined byP =√
P
√

PT , and the vectorsξi and the weightsW(i) are
selected as follows:

• Gauss–Hermiteintegration method (the product
rule based method) uses set ofmn vectorsξi which
have been formed as a Cartesian product of the ze-
ros of the Hermite polynomials of orderm. The
weights W(i) are formed as products of the cor-
responding one-dimensional Gauss–Hermite inte-
gration weights (see, [6, 7], for details).
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• Unscented transformuses a zero vector and 2n
scaled coordinate vectorsei as follows:

ξ0 = 0

ξi =

{ √
λ + n ei , i = 1, . . . ,n
−
√
λ + n ei−n , i = n+ 1, . . . ,2n,

(15)

and the weights are defined as follows:

W(0) =

{

λ
n+λ , For the 1st term in (10),
λ

n+λ + (1− α2 + β) , For the 2nd term in (10).

W(i) =
1

2(n+ λ)
, i = 1, . . . ,2n,

(16)

whereλ = α2(n + κ) − n andα, β, andκ are pa-
rameters of the method. The parametersα andκ
determine the spread of the sigma-points around
the mean, andβ is an additional parameter that can
be used for incorporating prior information on the
distribution ofx [25].

• Cubature method(spherical 3rd degree) uses only
2n vectors as follows:

ξi =

{ √
n ei , i = 1, . . . ,n
−
√

n ei−n , i = n+ 1, . . . ,2n,
(17)

and the weights are defined asW(i) = 1/(2n) for
i = 1, . . . ,2n. Note that the cubature rule is a spe-
cial case of the unscented transform with the pa-
rametersα = 1, β = 0, andκ = 0.

The sigma-point methods above lead to the following
approximations to the prediction step differential equa-
tions:

dm
dt
=

∑

i

W(i) f (m+
√

Pξi , t)

dP
dt
=

∑

i

W(i) f (m+
√

Pξi , t) ξ
T
i

√
PT

+
∑

i

W(i)
√

Pξi f T(m+
√

Pξi , t)

+
∑

i

W(i) Σ(m+
√

Pξi , t),

(18)

where in the case of the unscented transform we need
to use different weights for the first two terms in the
covariance differential equation (cf. (16) and [31]).

The sigma-point methods above have the advantage
that they all are exact for monomials up to order 3

[7, 33], in contrast to linearization, which is only ex-
act up to order 1. It is possible to form higher order
approximations using higher order terms in the Taylor
series, but the computation of the required higher or-
der derivatives in closed form quickly becomes compli-
cated and error prone. With suitable selection of pa-
rameters, the unscented transform can also be made ex-
act for some fourth order monomials as well [26]. The
Gauss–Hermite method can be made exact for mono-
mial up to an arbitrary order.

Once the Gaussian integral approximation has been
selected, the solutions to the resulting ordinary differen-
tial equations (ODE) can be computed, for example, by
4th order Runge-Kutta method or any similar numerical
ODE solution method.

3. Continuous-Discrete Gaussian Smoothing

3.1. Gaussian Approximation to Formal Smoothing
Equation

According to [10, 11] the expectation of an arbitrary
functiong(x) over the smoothed distribution solves the
partial differential equation

dEs[g(x)]
dt

= Es[K1 g(x)], (19)

where Es[·] denotes the expectation with respect to the
smoothing distribution and the operatorK1 is given as

K1g(x) =
∑

i

fi(x, t)
∂g(x)
∂xi

− 1
2

∑

i j

Σi j (x, t)
∂2g(x)
∂xi∂x j

−
∑

i j

∂g(x)
∂xi

∂Σi j (x, t)

∂x j

− 1
p(x, t)

∑

i j

Σi j (x, t)
∂g(x)
∂xi

∂p(x, t)
∂x j

,

(20)

wherep(x, t) denotes the filtering distribution. Assume
that we have already employed the Gaussian filter to the
estimation problem and thus obtained the approxima-
tion:

p(x, t) , p(x(t) | y1, . . . , yk) ≈ N(x(t) |m(t),P(t)). (21)

Then by direct calculation we get

∂p(x, t)
∂x

≈ −P−1 (x−m) N(x |m,P)

≈ −P−1 (x−m) p(x, t),
(22)
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and thus the operator in Equation (20) can be approxi-
mated as

K1g(x) ≈
∑

i

fi(x, t)
∂g(x)
∂xi

− 1
2

∑

i j

Σi j (x, t)
∂2g(x)
∂xi∂x j

−
∑

i j

∂g(x)
∂xi

∂Σi j (x, t)

∂x j

+
∑

i j

Σi j (x, t)
∂g(x)
∂xi

[P−1 (x−m)] j .

(23)

By first selectingg(x) = x, theng(x) = (x−ms) (x−ms)T ,
wherems = Es[x], and by finally taking the expecta-
tions with respect to the smoothing distribution, we ob-
tain the following approximate differential equations for
the smoother mean and covariance:

dms

dt
= Es[ f (x, t)] − Es

















∑

j

∂Σ j(x, t)

∂x j

















+ Es[Σ(x, t) P−1 (x−m)] (24)

dPs

dt
= Es[ f (x, t) (x−ms)T ] + Es[(x−ms) f T(x, t)]

+ Es[Σ(x, t) P−1 (x−m) (x−ms)T ]

+ Es[(x−ms) (x−m)T P−1 Σ(x, t)]

− Es

















∑

j

(

∂Σ j(x, t)

∂x j

)

(x−ms)T

















− Es

















∑

j

(x−ms)

(

∂Σ j(x, t)

∂x j

)T
















− Es[Σ(x, t)],

(25)

whereΣi denotes theith column ofΣ and the expecta-
tions are taken with respect to the smoothed distribution
of x at timet.

Using integration by parts, the diffusion matrix
derivatives in the mean and covariance equations can
be eliminated, which results in the following smoothing

equations:

dms

dt
= Es[ f (x, t)] − Es[Σ(x, t) (Ps)−1 (x−ms)]

+ Es[Σ(x, t) P−1 (x−m)]

dPs

dt
= Es[ f (x, t) (x−ms)T ]

+ Es[(x−ms) f T(x, t)]

+ Es[Σ(x, t) P−1 (x−m) (x−ms)T ]

+ Es[(x−ms) (x−m)T P−1 Σ(x, t)]

− Es[Σ(x, t) (Ps)−1 (x−ms) (x−ms)T ]

− Es[(x−ms) (x−ms)T (Ps)−1 Σ(x, t)]

+ Es[Σ(x, t)]

(26)

which should be integrated from the terminal condition
ms(T) = m(T),Ps(T) = P(T) to the initial timet = 0.
Note that if the process noise is additive, that isΣ(x, t) =
Σ(t), the mean and covariance equations reduce to

dms

dt
= Es[ f (x, t)] + Σ(t) P−1 [ms −m]

dPs

dt
= Es[ f (x, t) (x−ms)T ]

+ Es[(x−ms) f T(x, t)]

+ Σ(t) P−1 Ps + Ps P−1 Σ(t) − Σ(t).

(27)

The equations, which we shall callType I continuous-
discrete Gaussian smootherequations, are obtained
when instead of the true expectations, we use the fol-
lowing approximations in the Equations (26) or in the
additive Equations (27):

Es[g(x, t)] ≈
∫

g(x, t) N(x |ms,Ps) dx (28)

If the function f (x, t) is differentiable, the Equation (8)
can be used for rewriting the first two terms in the co-
variance formulas.

3.2. Continuous-Time Limit of Discrete-Time Smoother

An alternative way to derive continuous-discrete non-
linear smoothing equations is by computing the for-
mal continuous-time limit of the discrete-time smooth-
ing equations, as was done for the unscented Rauch–
Tung–Striebel (RTS) smoother in [12]. The idea is to
start from the discretized approximation to the dynamic
model

x(t + δt) = x(t) + f (x(t), t) δt

+ L(x(t), t) δβ(t) + o(δt),
(29)
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where δβ(t) ∼ N(0,Q(t) δt), apply a discrete-time
smoother, and then take the limitδt → 0. If we follow
the derivation presented in [12], except that we replace
the discrete time RTS smoother [27] with the more gen-
eral Gaussian smoother [8], we get the following differ-
ential equations for the smoother mean and covariance,
which are here called theType II continuous-discrete
Gaussian smootherequations:

dms

dt
= E[ f (x, t)] +

{

E[ f (x, t) (x−m)T ]

+ E[Σ(x, t)]
}

P−1[ms −m]

dPs

dt
= {E[ f (x, t) (x−m)T ] + E[Σ(x, t)]}P−1 Ps

+ Ps P−1 {E[ f (x, t) (x−m)T ] + E[Σ(x, t)]}T

− E[Σ(x, t)].

(30)

Note that here the expectations are taken with respect to
the Gaussian approximation to the filtering distribution,
that is x ∼ N(m,P). Again, we could rewrite some of
the terms in the equations with Equation (8), but there
seems to be no obvious advantage in doing that. The
additive form of this equation can be simply obtained
by replacing the terms E[Σ(x, t)] with Σ(t).

3.3. Forward-Time Differential Equations

Because the expectations in Equations (30) are with
respect to the filtering distributions, not with respect to
the smoothing distributions, the equations can be seen
to have the form

dms

dt
= u(t) + A(t) [ms −m]

dPs

dt
= A(t) Ps + Ps AT(t) − S(t),

(31)

where the following are functions of the filtering solu-
tion only:

u(t) = E[ f (x, t)]

A(t) =
{

E[ f (x, t) (x−m)T ] + E[Σ(x, t)]
}

P−1

S(t) = E[Σ(x, t)].

(32)

LetΦ(t, s) be the transition matrix of the systemdx/dt =
A(t) x. Then given the smoothed solution at timetk, that
is ms(tk), we can solve the mean equation at timet−k+1 as
follows:

ms(t−k+1) = Φ(t−k+1, tk) ms(tk)

+

∫ t−k+1

tk

Φ(t−k+1, s) [u(s) − A(s) m(s)] ds

= Φ(t−k+1, tk) ms(tk) +m(t−k+1) − Φ(t−k+1, tk) m(tk).
(33)

Similarly, for the covariance we get

Ps(t−k+1) = Φ(t−k+1, tk) Ps(tk)Φ
T(t−k+1, tk)

−
∫ t−k+1

tk

Φ(t−k+1, s) S(s)ΦT(t−k+1, s) ds

= Φ(t−k+1, tk) Ps(tk)Φ
T(t−k+1, tk)

− Φ(t−k+1, tk) P(tk)Φ
T(t−k+1, tk) + P(t−k+1).

(34)

Because the smoother mean and covariance are contin-
uous with respect to time, we can replace the termst−k+1
in them with tk+1. As the result we get that the filter
and smoother means and covariance are related by the
backward recursions

ms(tk) = m(tk) + Φ(tk, t
−
k+1) [ms(tk+1) −m(t−k+1)]

Ps(tk) = P(tk)

+ Φ(tk, t
−
k+1) [Ps(tk+1) − P(t−k+1)] ΦT(tk, t

−
k+1).

(35)

The differential equation for the transition matrix
Φ(tk, t) can be written as

∂Φ(tk, t)
∂t

= −Φ(tk, t) A(t)

= −Φ(tk, t)
{

E[ f (x) (x−m)T ] + E[Σ(x, t)]
}

P−1.

(36)

Let’s now defineCk(t) = Φ(tk, t) P(t). By computing its
time derivative, and by using the Equations (6) and (36),
we get the differential equation

dCk

dt
=
∂Φ(tk, t)
∂t

P(t) + Φ(tk, t)
dP(t)

dt
= Ck(t) P−1(t) E[ f (x) (x−m(t))T ]T .

(37)

By rewriting the transition matrix in Equations (35) in
terms ofCk(t−k+1), the Type II Gaussian smoother in the
previous section can beequivalently writtenin the fol-
lowing form which we callType III continuous-discrete
Gaussian smoother:

dm
dt
= E[ f (x)]

dP
dt
= E[ f (x) (x−m)T ]

+ E[ f (x) (x−m)T ]T + E[Σ(x, t)]

dCk

dt
= Ck P−1 E[ f (x) (x−m)T ]T

Gk+1 = Ck(t
−
k+1) P−1(t−k+1)

ms(tk) = m(tk) +Gk+1 [ms(tk+1) −m(t−k+1)]

Ps(tk) = P(tk) +Gk+1 [Ps(tk+1) − P(t−k+1)] GT
k+1.

(38)

The initial conditions for the mean and covariance dif-
ferential equations are the filtered mean and covariance,
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m(tk) and P(tk), and the initial condition for the third
equation isC(tk) = P(tk). Note that the first three dif-
ferential equations above are forward-time differential
equations and thus can be solved already during the fil-
tering stage, and actually, the first two equations are just
the predicted mean and covariance of the continuous-
discrete filter. In the filtering stage, we only need to
store the filtered values,m(tk) andP(tk), predicted val-
ues,m(t−k+1) andP(t−k+1), and the gainsGk+1 to be able
to compute the smoothing solution later. That is, we
do not need to store or recompute the filter solution for
each time instantt to be able to compute the smoothing
solution.

The Equation (8) can now be used for eliminating the
matrix inverse in the third differential equation of (38),
because it can also be written as

dCk

dt
= Ck E[Fx(x, t)]

T . (39)

By comparing Equations (38) to the discrete-time Gaus-
sian smoother in [8], it is easy to see that the smoother
equations have the same form as the discrete-time equa-
tions if we identifym−k+1 , m(t−k−1), P−k+1 , P(t−k+1) and
Ck+1 , Ck(t−k+1). Thus we can implement the smoother
by replacing the first three equations in the discrete-
time smoother with the first three equations in the above
smoother.

Note that the equations (38) are actually valid for ar-
bitrary time instantsτ ∈ [tk, tk+1) and thus we can re-
cover the smoother mean and covariance for arbitrary
time instants, not just for the measurement times.

3.4. Computational Complexity of Smoother Types

In target tracking scenarios we are often interested in
computing the filtering and smoothing results only at
the measurement times or at some other discrete times.
In such cases the different types of smoothers have sig-
nificantly different computational and storage require-
ments. The computational and storage requirements for
the smoothers (including the filtering step) are summa-
rized in Table 1, assuming ann-dimensional state,K
measurements andN evaluation steps in the numerical
integration. The computational requirements are mea-
sured as the number of Gaussian integral computations,
and the storage requirements as number of stored float-
ing point numbers. As can be seen from the require-
ments, the Type III smoother has significantly lower
computational and storage requirements than the other
smoothers.

The differences in the computational requirements
are due to the number of Gaussian integrals required in

Table 1: The computational requirements (= the number of Gaussian
integral computations) and the storage requirements for different types
of smoothers.

Smoother Integrals Storage

Type I 10N K N K (n+ n2)
Type II 3N K N K (2n+ 3n2)
Type III 3N K K (2n+ 3n2)

the smoothing step. In Type II and Type III smoothers
we do not need to evaluate additional Gaussian inte-
grals during smoothing, provided that we store the re-
sults during the filtering step. The storage requirements
are different, because in Type I and Type II smoothers
we need to store all theN intermediate filtering results
between theK measurements to be able to implement
the backward smoothing differential equations. In Type
II smoother we also need to store the results of the com-
puted Gaussian integrals. In Type III smoother we need
to store the predicted mean, predicted covariance and
the gainGk+1, but only at the measurement steps.

3.5. Numerical Approximation of Smoothers

In this section we demonstrate the usage of the the-
ory by showing how certain known Taylor series based
continuous-discrete (or continuous) smoothers can be
derived from the present theory. In addition to that, we
also show how the sigma-point type numerical integra-
tion methods can be used for approximating the inte-
grals in a similar manner as was done for filtering equa-
tions in Section 2.2. We only consider additive process
noises, that is, assume thatΣ(x, t) = Σ(t) for notational
convenience.

A Type I Taylor series based smoother can be derived
by substituting the second order Taylor series expansion
of f (x, t) formed around the smoothed mean into the
Equations (27):

dms

dt
= f (ms, t) +

1
2

∑

i

tr
{

F(i)
xx(m

s, t) Ps
}

ei

+ Σ(t) P−1 [ms −m]

dPs

dt
= Fx(m

s, t) Ps + Ps FT
x (ms, t) − Σ(t)

+ Σ(t) P−1 Ps + Ps P−1 Σ(t).

(40)

whereF(i)
xx is the Hessian offi andei is a unit coordi-

nate vector. These equations are exactly the same as the
minimum variance smoothing equations derived from
the non-linear smoothing theory in [11]. The non-linear
continuous maximum a posteriori (MAP) fixed-interval
smoothers given in [42, 23], which have been derived
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by the invariant embedding approach, can be recovered
from the above equations by neglecting the second order
derivative term.

For the Type II Taylor series based smoother we ex-
pand the functionf around the filter mean instead of the
smoother mean, which gives:

dms

dt
= f (m, t) +

1
2

∑

i

tr
{

F(i)
xx(m, t) P

}

ei

+ [Fx(m, t) + Σ(t) P−1] [ms −m]

dPs

dt
= Fx(m, t) Ps + Ps FT

x (ms, t) − Σ(t)

+ Σ(t) P−1 Ps + Ps P−1 Σ(t).

(41)

If we neglect the second order term, we recover the lin-
earization based continuous non-linear smoothers given
in [29] and [30].

Substituting the Taylor series approximation to the
Type III smoother Equation (38), we get the follow-
ing approximations to the first three equations of the
smoother:

dm
dt
= f (m, t) +

1
2

∑

i

tr
{

F(i)
xx(m, t) P

}

ei

dP
dt
= Fx(m, t) P+ P FT

x (m, t) + Σ(t)

dCk

dt
= Ck FT

x (m, t),

(42)

and the smoothing solution would be then given by the
last three of the Equations (38).

Sigma-point type numerical integration approxima-
tions to the Type I smoothing equations can be ob-
tained by substituting the following approximation to
the Equations (27):

Es[ f (x, t)] ≈
∑

i

W(i) f (ms +
√

Ps ξi , t). (43)

The vectorsξi can be selected, for example, according
to one of the rules given in Section 2.2. For the Type
I smoother we get the following backward differential
equations:

dms

dt
=

∑

i

W(i) f (ms +
√

Ps ξi , t) + Σ(t) P−1 [ms −m]

dPs

dt
=

∑

i

W(i) f (ms +
√

Ps ξi , t) ξ
T
i

√
PsT

+
∑

i

W(i)
√

Ps ξi f T(ms +
√

Ps ξi , t)

+ Σ(t) P−1 Ps + Ps P−1 Σ(t) − Σ(t).
(44)

For the Type II smoother we need the following approx-
imation:

E[ f (x, t)] ≈
∑

i

W(i) f (m+
√

Pξi , t), (45)

and by substituting into Equations (30), we obtain the
following backward differential equations for the Type
II smoother:

dms

dt
=

∑

i

W(i) f (m+
√

Pξi , t)

+















∑

i

W(i) f (m+
√

Pξi , t) ξ
T
i

√
PT + Σ(t)















× P−1 [ms −m]

dPs

dt
=















∑

i

W(i) f (m+
√

Pξi , t) ξ
T
i

√
PT + Σ(t)















P−1 Ps

+ Ps P−1















∑

i

W(i) f (m+
√

Pξi , t) ξ
T
i

√
PT + Σ(t)















T

− Σ(t).
(46)

Finally, by substituting into the Equations (38), we get
the following forward differential equations for the Type
III smoother:

dm
dt
=

∑

i

W(i) f (m+
√

Pξi , t)

dP
dt
=

∑

i

W(i) f (m+
√

Pξi , t) ξ
T
i

√
PT

+
∑

i

W(i)
√

Pξi f T(m+
√

Pξi , t) + Σ(t)

dCk

dt
= Ck

∑

i

W(i)
√

P−1 ξi f T(m+
√

Pξi , t).

(47)

3.6. Computational Complexity of Numerical Integra-
tion

In addition to the selection of the smoother type (cf.
Section 3.4), the computational complexity of the filters
and smoothers also depends on the numerical integra-
tion methods chosen. In particular, in sigma-point meth-
ods such as Gauss–Hermite, Cubature and Unscented
methods the complexity is directly proportional to the
number of sigma-points (cf. Section 2.2). For the accu-
racy and complexity analysis of the different Gaussian
integration methods reader is referred to [7].
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4. Simulation

Radar Tracked Coordinate Turn With Multiplicative
Noise in Dynamic Model

To compare the performance of the different meth-
ods, we use a modified version of the simulation sce-
nario used in [4]. In the original simulation, the dy-
namic model was a three-dimensional coordinated turn
model which can be written in the form:

dx= f (x) dt+ dβ, (48)

where the state isx = (ǫ, ǫ̇, η, η̇, ζ, ζ̇, ω); ǫ, η and ζ
are the position coordinates; ˙ǫ, η̇ andζ̇ the correspond-
ing velocities andω is the turn rate in (ǫ, η) space.
The drift function wasf (x) = (ǫ̇,−ω η̇, η̇, ω ǫ̇, ζ̇,0,0)
and the Brownian motionβ had the diffusion matrix
Q = diag(0, σ2

1,0, σ
2
1,0, σ

2
1, σ

2
2). The radar was as-

sumed to be located at origin measuring the ranger,
azimuth angleθ and elevation angleφ with sampling in-
tervalT:





















rk

θk
φk





















=























√

ǫ2(tk) + η2(tk) + ζ2(tk)
tan−1 (η(tk)/ǫ(tk))

tan−1
(

ζ(tk)/
√

ǫ2(tk) + η2(tk)
)























+ wk, (49)

wherewk ∼ N(0,R) with R = diag(σ2
r , σ

2
θ
, σ2
φ). As

discussed in [4], this is a suitable scenario for test-
ing nonlinear estimators, because it has nonlinear dy-
namic and measurement models, and it is relatively
high-dimensional.

In the above model, the process noise models the ef-
fect of turbulence, winds and other such unmodeled ef-
fects. The random effects are assumed to be similar in
each direction and in particular, independent of the di-
rection of the motion. However, it may be desirable to
assume that the random effects have different magnitude
in tangential and normal directions with respect to the
trajectory. For this reason, we have modified the model
such that the process noise is different in tangential and
normal directions. The dynamic model can be then writ-
ten as

dx= f (x) dt+ L(x) dβ′, (50)

where the statex and drift functions are still the same,
but the diffusion coefficient matrix is

L(x) =





























































0 0 0 0
ǫ̇/u η̇/uǫη ǫ̇ζ̇/(u uǫη) 0
0 0 0 0
η̇/u −ǫ̇/uǫη η̇ζ̇/(u uǫη) 0
0 0 0 0
ζ̇/u 0 −uǫη/u 0
0 0 0 1





























































(51)

whereu =
√

ǫ̇2 + η̇2 + ζ̇2 and uǫη =
√

ǫ̇2 + η̇2. The
Brownian motionβ′ has the diffusion matrix Q′ =
diag(σ2

t , σ
2
h, σ

2
v, σ

2
ω), whereσt, σh, σv, σω are the noise

densities in tangential, horizontal and vertical direc-
tions, and turn rate, respectively.

The modified model is even more challenging and
nonlinear than the original model, because it now has
a multiplicative, highly nonlinear term in the dynamic
model. Due to the multiplicative term, the method pre-
sented in [4] is inapplicable to the model and it would be
non-trivial to extend that It̂o–Taylor expansion method
to cope with the multiplicative term.

The measurement noises were selected to be the
same as in [4], that is,σr = 50 m, σθ = 0.1◦,
and σφ = 0.1◦. The initial conditions werex(0) =
(1000 m,0 ms−1,2650 m,150 ms−1,200 m,0 ms−1,6◦s−1)
which were assumed to be known with standard de-
viations of 100 m in the positions, 100 ms−1 in the
velocities and 1◦s−1 in the turn rate. The sampling
interval was T = 8 s and 26 measurements were
simulated. Note that these parameters correspond to the
parameters in the most challenging case considered in
[4]. The horizontal and vertical noises were selected
to be the same as the process noise magnitudes in the
original model,σh =

√
0.2 andσv =

√
0.2, and the

tangential noise was significantly higherσt =
√

100.
The noise in the turn rate was the same as in the
original,σω = 7× 10−3. The data was simulated using
1000 steps of the Euler–Maruyama method between
each measurement.

The following methods were tested:

• EKF/ERTS: Linearization based filter (EKF) and
smoothers of Type I (ERTS1), Type II (ERTS2)
and Type III (ERTS3).

• CKF/CRTS: 3rd order spherical cubature integra-
tion based filter (CKF) and smoothers (CRTS1,
CRTS2, CRTS3).

• UKF/URTS: Unscented transform based filter
(UKF) and smoothers of each type (URTS1,
URTS2, URTS3). The UT parameters were se-
lected to beα = 1, β = 2 andκ = 0.

• GHKF/GHRTS: 3rd order Gauss–Hermite integra-
tion based filter (GHKF) and smoothers (GHRTS1,
GHRTS2, GHRTS3).

The time integrations were done using the 4th order
Runge-Kutta (RK4) method with 100 integration steps
between the measurements. We used the initialization
presented in the Section 5.5.2 of [3], that is, we drew the
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initial estimates from the prior distribution. In the esti-
mation methods, the units of position and velocity were
the plain meters and meters per second, respectively, but
in turn rate we used units of 1/100 degrees per second
to have more uniform scaling of the state variables.

The root mean square errors (RMSE) over 100 in-
dependent Monte Carlo runs, where both the trajecto-
ries and measurements were randomly drawn, are listed
in Table 2. As can be seen in the results, the sigma-
point methods quite systematically outperform the lin-
earization based methods in the filter case as well as in
all types of smoothers. In the filters the error differ-
ence is quite small, but in smoothers the difference is
considerable. The performance of the different sigma-
point methods is practically the same though the high
number of sigma-points in Gauss–Hermite does in-
deed give some benefit and its errors are lowest of all
the methods—except in the case of GHRTS1 smoother
which has surprisingly high errors. The Type II and
Type III smoothers tend to give better results than the
Type I smoother in position errors, but in velocities and
turn rates the Type I works better in CRTS and URTS
cases. The performance of the smoother Types II and
III is quite similar with all the methods, which was ex-
pected, because the underlying approximations in Types
II and III are essentially the same.

In the 100 simulations, EKF diverged 9 times which
caused 9 of the Type II and Type III smoother runs
also to diverge. However, ERTS1 diverged a total of 34
times, including the 9 divergences of EKF. The sigma-
point filter runs (CKF/UKF/GHKF), as well as their
Type II and Type III smoother runs were all successful
and there were no problems with divergence. However,
with Type I smoothers there were numerical problems:
CRTS1 and URTS1 diverged 37 times and GHRTS1 di-
verged 7 times. The latter also explains the poor RMSE
performance of GHRTS1: the method indeed did not di-
verge in some of the runs where CRTS1 and URTS1 did,
but it almost diverged and thus produced a result with
quite high error. The reason to the divergences seems to
be that the Type I smoother equations are numerically
more sensitive than the other ones, because the expec-
tations are computed over the smoothed distributions.
In this simulation, the covariances tend to become quite
ill-conditioned which is likely to be the reason to the
divergences.

The time evolution in errors in filters and smoothers
is illustrated in Figures 1 and 2, respectively. The er-
rors are the actual mean squared errors (MSE) of three-
dimensional positions over the 100 Monte Carlo runs
at each time point. As here the purpose is to compare
the choice of the Gaussian integration method, we have

Table 2: RMSE errors averaged over 100 Monte Carlo runs.

Method Position Velocity Turn Rate

EKF 49.4 13.4 0.092
ERTS1 44.2 15.0 0.048
ERTS2 43.1 10.4 0.067
ERTS3 43.1 10.5 0.067
CKF 46.2 11.7 0.069
CRTS1 28.0 7.1 0.032
CRTS2 25.9 7.4 0.046
CRTS3 25.7 7.4 0.046
UKF 47.0 11.7 0.069
URTS1 28.2 7.1 0.032
URTS2 26.6 7.3 0.046
URTS3 26.4 7.3 0.046
GHKF 41.7 11.1 0.066
GHRTS1 44.4 8.3 0.045
GHRTS2 22.6 6.9 0.045
GHRTS3 22.3 6.9 0.045

0 50 100 150 200 250
10

2

10
3

10
4

10
5

Time

E
rr

or

 

 
EKF
CKF
UKF
GHKF

Figure 1: Time evolution of mean squared errors in filters.

only included the filters and Type III smoothers to the
analysis. The larger errors of the Taylor series based
EKF and ERTS can be quite clearly seen also in both
the figures. The errors of CKF and UKF as well as of
the corresponding smoothers CRTS and URTS can be
seen to be very similar. The error of GHKF is lowest of
all the filters most of the time, but on some time inter-
vals the error is bigger than the error of CKF and UKF.
In smoothers the error of GHRTS remains the lowest
almost all the time except for the very end of the trajec-
tory.

To test the consistency of the filters and smoothers
we used the two sided chi-square test [3], for the nor-
malized estimation error squared (NEES) averaged over
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Figure 2: Time evolution of mean squared errors in Type III
smoothers.

Table 3: Normalized estimation error squared (NEES) averagedover
100 Monte Carlo runs and measurements. Only GH based methods
can be seen to be on the 95% confidence interval [6.9,7.1] implying
consistency.

Method Average NEES

EKF 1.1× 106

ERTS3 1.9× 106

CKF 12.5
CRTS3 12.3
UKF 11.6
URTS3 11.6
GHKF 7.0
GHRTS3 7.1

Monte Carlo samples and time. Under hypothesis that
the filter is consistent, with probability 95% the aver-
aged empirical NEES should be on the range [6.9,7.1].
According to the test results, which are shown in Ta-
ble 3, only the Gauss–Hermite based methods GHKF
and GHRTS are indeed consistent. The test statistics
of EKF and ERTS are not even close to the 95% confi-
dence interval, and although those of CKF, CRTS, UKF
and URTS are much closer, the methods are not consis-
tent according to the statistical test.

5. Discussion and Extensions

5.1. Which Method to Choose?

The theoretical analysis and simulation suggests that
for a practical tracking problem with moderately high
state dimension, the method of choice would be the
Type III smoother with the cubature or unscented trans-
form based Gaussian integration method (i.e., CRTS3

or URTS3). The Type III smoother has the lowest com-
putational cost and also gave very low errors in the
simulation. The cubature and unscented methods have
the advantage of being computationally quite light, but
still their error properties are very good. However, they
have the problem that their error estimates might not al-
ways be consistent with the actual errors. The unscented
transform has more parameters to tune for a particular
tracking problem, which can be an advantage or a dis-
advantage, and in fact, cubature method can be seen as
a special case of unscented transform with suitable se-
lection of parameters (α = 1, β = 0, κ = 0). Although,
the error of Gauss–Hermite integration is lower than of
the other integration methods, and its consistency prop-
erties are very good, its computational complexity is too
high for many practical tracking problems. In lower di-
mensional tracking problems the Gauss–Hermite might
also be the method of choice or in the cases that the es-
timator consistency is a very important factor.

5.2. Square-Root and Bryson–Frazier–Bierman Forms
The sigma-point based approximations to the filter

and smoother differential equations in Sections 2.2 and
3.5 could also be converted into square-root form us-
ing the same procedure as was used in [31, 12] for
deriving the continuous square root unscented estima-
tors. Of course, on the update step of the filter we can
use the square-root formulations of discrete-time filters
[43, 44, 33]. It might also be possible to avoid the in-
version of the prediction covariance in the smoother by
defining a new variable,ω(t) = P−1 [ms − m], and by
converting the smoothing problem into a form compati-
ble with the variational formulation of Bryson and Fra-
zier (see [21, 19, 22, 43]).

5.3. Continuous-Time Models
Continuous-time filtering and smoothingare consid-

ered with state space models, where the measurement
process is continuous in time also (see, e.g., [1]):

dx= f (x, t) dt+ L(x, t) dβ

dz= hc(x, t) dt+ dν,
(52)

whereν(t) is a Brownian motion with diffusion matrix
Rc(t). If we use the same limiting procedure as was used
in [31], we get the followingcontinuous-time Gaussian
filtering equations:

Kc(t) = E[(x−m) hT
c (x, t)] R−1

c (t)

dm= E[ f (x, t)] dt+ Kc(t) (dz− E[hc(x, t)] dt)

dP
dt
= E[(x−m) f T(x, t)] + E[ f (x, t) (x−m)T ]

+ E[Σ(x, t)] − Kc(t) Rc(t) KT
c (t),

(53)
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which could further be simplified with Equation (8) and
approximated, for example, with the methods presented
in Section 2.2.

As the non-linear smoothing theory in [11] is appli-
cable both to continuous-discrete and continuous prob-
lems, the Type I smoothing equations are also valid in
pure continuous-time problems. However, whether the
Type II equations are valid also for continuous-time pro-
cesses is not as clear, because we had to resort to use of
ordinary calculus in their derivation. But it can be ar-
gued that the equations should be valid in Stratonovich
sense [12]. However, if the used filter approximation is
such that the covariance approximation is differentiable
(as, e.g., in the approximation above), except possibly
at finite number of points, then the Type II equations
should be valid for continuous-time smoothing as well.
This conclusion is also backed up by the fact that the
previously presented continuous-time smoothing equa-
tions can indeed be considered as approximations to the
Type II smoothers (see, Section 3.5).

6. Conclusion

In this paper we have first shown how new numeri-
cal integration and sigma-point based methodology can
be applied to the classical continuous-discrete Gaussian
filtering framework. We have also derived two novel
Gaussian smoothers which consist of backward differ-
ential equations for the smoother mean and covariance,
and shown, how the latter smoother can be converted
into a computationally more efficient form. We have
also shown how the new numerical methodology can
be used for approximating the Gaussian integrals occur-
ring in the smoother equations. The performance of the
different approximations was tested in a simulated ap-
plication.
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