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Foreword

The anchoring problem is an important aspect of
the connection between symbolic and sensory based
processes in autonomous robotic systems. Anchoring
is in fact the problem of how to create, and maintain
in time, the connection between the symbol- and the
signal-level representations of the same physical ob-
ject. An example is the problem of connecting, inside
a mobile robot, the symbol used by a planner to refer
to a particular person to follow, say John, to the sensor
data that correspond to that person in the robot’s vi-
sion system. This connection must be dynamic since
the same symbol must be associated to new entities in
the perceptual stream in order to track the object over
time or re-acquire it at a later moment.

Although anchoring must necessarily occur in any
physically embedded system that comprises a sym-
bolic reasoning component, most current solutions to
the anchoring problem are developed on a system by
system basis, and the solution is often hidden in the
code. This is unfortunate, since having a general the-
ory of anchoring would greatly advance our ability to
build intelligent embedded systems and transfer tech-
niques and results across different systems.

On these grounds, we have organized in November
2001 a symposium on anchoring within the AAAI Fall
Symposium Series (http://www.aass.oru.se/Agora/
FSS01). The ambition of that symposium was to
create an interdisciplinary community that will even-
tually develop a general theory of anchoring. The
symposium showed that there is a growing interest
around the anchoring problem in the robotics and ar-
tificial intelligence communities. It also showed that

there starts to be a critical mass of work related to
the anchoring problem, but that this work tends to be
scattered across different scientific communities and
different topics. The aim of this special issue is to
collect in one place relevant pieces of work that can
be instrumental in building such a general theory of
anchoring.

In putting together this special issue, we received
substantial help by several people. Andreas Birk,
Isabelle Bloch, Andrea Bonarini, Antonio Chella,
Dimiter Driankov, Tom Duckett, Marcello Frixione,
Joachim Hertzberg, Ian Horswill, David Jung, Lars
Karlsson, Kurt Konolige, Benjamin Kuipers, Yves
Lespérance, Lisa Meeden, Illah Nourbakhsh, Erich
Prem, Murray Shanahan, Stuart Shapiro, Josefina
Sierra Santibanez, Monique Thonnat, Thierry Vidal,
Paul Vogt, and Holly Yanco helped us in carefully
reviewing the many submissions received. We are
grateful to Frans Groen, the Editor of this journal, for
offering us this opportunity. Finally, we wish to thank
the participants in the above mentioned symposium.
This special issue would not exist if it were not for
the enthusiasm and the exciting discussions seen at
the symposium.
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Abstract

Anchoring is the problem of connecting, inside an artificial system, symbols and sensor data that refer to the same physical
objects in the external world. This problem needs to be solved in any robotic system that incorporates a symbolic component.
However, it is only recently that the anchoring problem has started to be addressed as a problem per se, and a few general
solutions have begun to appear in the literature. This paper introduces the special issue onperceptual anchoringof theRobotics
and Autonomous Systemsjournal. Our goal is to provide a general overview of the anchoring problem, and highlight some of
its subtle points.
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1. Introduction

For things to exist there are two essential conditions,
that a man should see them and be able to give them
a name[19, p. 53].

You are at a friend’s house and your host asks you
to go to the cellar and fetch the bottle of Barolo wine
stored at the top of the green rack. You go down to the
cellar, look around in order to identify the green rack,
and visually scan the top of the rack to find a bottle-like
object with a Barolo label. When you see it, you reach
out your hand to grasp it, and bring it upstairs.

This vignette illustrates a mechanism that we con-
stantly employ in our everyday life; the use of words
to refer to objects in the physical world, and communi-
cate a specific reference to another agent. This exam-
ple presents one peculiar instance of this mechanism,
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one in which the first agent “knows” which object he
wants but cannot see it, while the second agent only
has an incomplete description of the object but can see
it. Put crudely, the two agents that embody two differ-
ent types of processes: one that reasons about abstract
representations of objects, and the other one that has
access to perceptual data. One of the prerequisites for
the successful cooperation between these processes is
that they agree about the objects they talk about, i.e.,
that there is a correspondence between the abstract rep-
resentations and the perceptual data which refer to the
same physical objects. In other words, there must be a
correspondence between the names of things and their
perceptual image. We callanchoringthe process of es-
tablishing and maintaining this correspondence[4,17].

Not unlike our example, autonomous systems em-
bedded in the physical world typically incorporate
two different types of processes: high-level cognitive
processes that perform abstract reasoning and gener-
ate plans for actions, and sensory-motoric processes
that observe the physical world and execute actions
in it (seeFig. 1). The crucial observation here is that
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Fig. 1. Graphical illustration of the anchoring problem.

these processes have different ways of referring to
the same physical objects in the environment. Cogni-
tive processes typically (although not necessarily) use
symbols to denote objects, while sensory-motoric pro-
cesses typically operate from sensor data that origi-
nate from observing these objects. If the overall sys-
tem has to successfully perform its task, it needs to
make sure that these processes “talk about” the same
physical objects, i.e., it has to perform anchoring.

Suppose for concreteness that a robot’s planner has
generated the actionPickUp(bottle-22), where
the symbolbottle-22 denotes an object known by
the planner to be a bottle and to contain Barolo wine.
In order to execute this action, the robot might start a
PickUp operator implemented by visual-servoing the
robot’s arm with respect to a given region in the cam-
era input. Butwhichregion? Intuitively, the robot must
make sure that the region used for controlling the arm
is precisely the one generated by observing the object
that the planner callsbottle-22. That is, the robot
mustanchorthe symbolbottle-22 to the right sen-
sor data. How the “right” data can be identified from
the sensor stream is part of the anchoring problem.

The above considerations suggest that anchoring
must necessarily take place in any robotic system that
comprises a symbolic reasoning component. Until re-
cently, however, the anchoring problem was typically
solved on a system-by-system basis, often using tech-

niques from the pattern recognition or object tracking
domains, and the solution was hidden in the code. The
situation is now changing, and the field of autonomous
robots is showing a tendency to engage in the study
of the anchoring problem per se (see for instance[5]).
This study would allow us to develop a set of common
principles and techniques for anchoring that can be
easily applied across different systems and domains.
From a more general perspective, a study of the an-
choring problem would increase our understanding of
the delicate issue of integration between symbolic rea-
soning and physical embodiment. The papers in this
special issue discuss possible solutions to the anchor-
ing problem in its different facets and different appli-
cation domains.

2. The anchoring problem

Having recognized the existence of the anchoring
problem, the next step is to define it in a more precise
way. This is an obvious prerequisite to being able to
devise general theories and techniques to address it.
We give the following definition.

Definition 1. We callanchoringthe process of creat-
ing and maintaining the correspondence between sym-
bols and sensor data that refer to the same physical
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objects. Theanchoring problemis the problem of how
to perform anchoring in an artificial system.

This definition clearly covers the informal account
given in Section 1, but in fact it defines the anchor-
ing problem in more general terms. In the rest of this
section, we discuss this definition by highlighting the
assumptions that it makes and those that it does not
make.

The first thing to note is that the definition does not
make any assumption about the direction of the an-
choring process. In our introductory example, we were
concerned with the top-down problem of identifying
the “right” object to be used for a given task, and al-
lowing the sensory-motoric subsystem in the robot to
operate on that specific object. Anchoring, however,
can be performed top-down, bottom-up, or in both di-
rections simultaneously. For example, in some systems
the flow of sensor data determines, in a bottom-up
fashion, which anchoring processes are initiated. An
example in this issue can be found in the paper by
Steels and Baillie[21], which focuses on the interpre-
tation of scenes using linguistic terms.

A second observation is that our definition does not
make any assumption about the type of architecture
used in the robotic agent. InSection 1, we have con-
sidered an agent endowed with a specific architecture.
However, the definition simply assumes an agent that
usessymbolsto denote individual physical objects,
and that has access tosensor datathat refer to those
objects.

As for the assumptions that our definition does
make, the main one is that anchoring concernsphysi-
cal objects. Anchoring concerns the grounding of the
name for an object, say ‘car-22’, to the perceptual data
that originates from the observation of that specific
object, say a region in an image. In particular, anchor-
ing as defined above does not concern the perceptual
grounding of properties, like ‘red’. Grounding of
properties is of course an important problem. More-
over, as we shall shortly see, it is a prerequisite to the
perceptual grounding of physical objects, since ob-
jects can only be identified by their properties. How-
ever, the assumption to deal with individual physical
objects has important consequences that differentiate
anchoring from generic symbol grounding.

Physical objects persist in time and space, and some
of their properties are preserved across time or evolve

in predictable ways. The anchoring process must take
this temporal dimension into account: anchoring can-
not be modeled as a one-shot process, but it must take
into account the flow of continuously changing sensor
input. That is why our definition explicitly mentions
the aspect ofmaintenance.

One way of taking object persistence into account
is to include in the anchoring process a persistent in-
ternal representation that reifies the correspondence
between symbols and sensor data. This representation
can contain memory of the past and support prediction
of the future. It can be used to track the object and
reacquire an object which has been out of sight. In our
terminology, we refer to this representation as anan-
chor. An anchor can be seen as an internal model of
a physical object that links together the symbol-level
and sensor-level representations of that object. Many
contributions in this issue include internal representa-
tions that play a role similar to anchors. For instance,
Khoo and Horswill[13] use markers, Shapiro and Is-
mail [20] use PML-descriptions, and Fritsch et al.[11]
use a hierarchy of anchors.

An important aspect of anchors is that they can
be shared across different subsystems of the agent in
order to provide them with acommon handleto refer
to a specific physical object. In the example given in
Section 1, when the agent sees a bottle that matches
the given linguistic description, it acquires perceptual
properties like its size and position. These properties
are then used to control the motion of the arm. In our
terminology, the agent has created an anchor for the
bottle. The anchor has persistence: if the agent mo-
mentarily loses sight of the bottle, e.g., while looking
elsewhere, it can still move its arm using the internally
stored position of the bottle. Anchors can be used
for more than controlling motion: in the systems pre-
sented in this special issue, similar representations are
used to coordinate task execution[13], engage in com-
municative actions[20], achieve a shared language
[21,22], and enable human–robot interaction[2].

The focus on individual objects has a second, im-
portant consequence: individual objects should be
perceptually detected as such. In other words, our
definition assumes as a prerequisite for anchoring that
the available sensor data can be segmented to isolate
perceptsthat correspond to individual objects. This
assumption is not free of cost: the figure-ground seg-
mentation is known to be a difficult problem, which is
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highly domain specific[14]. Moreover, the notion of
“individual object” crucially depends on the sensory
apparatus available to the agent, and it does not nec-
essarily correspond to our intuitive, human-centered
notion. For example, for a robot equipped with only
sonar sensors the individual objects may be the dif-
ferent “places” in the environment which it is able to
discriminate, and these are therefore the referents of
the anchoring process for that robot.

The focus on individual objects does not exclude
the possibility that these objects may be composed of
several other objects, possibly in a complex structure.
In this special issue, the paper by Chella et al.[3] con-
siders a robotic finger as a composite object consisting
of the different phalanxes; and the paper by Fritsch
et al. [11] considers anchoring a person by anchoring
a face and two legs, which are perceived by different
sensors. Anchoring of groups of objects can be done
as a group, or on an individual basis. In both the cases
the relations among objects probably need to be taken
into account in the anchoring process.

Finally, some authors have applied the notion of
anchoring to more general entities. In particular,
some of the articles in this issue consider the cor-
respondence between symbols and sensor data that
refer to individualactions and events[3,21]. Inter-
estingly, these authors can use similar principles to
deal with the anchoring of physical objects and of
these more abstract entities: it would constitute an
interesting development to understand the differ-
ences and the similarities between these two types of
anchoring.

3. The challenges of anchoring

Anchoring is a problem that can be studied from
a number of different perspectives and within several
disciplines. Philosophy, linguistics, and cognitive sci-
ence are the ones that first come to mind. A study
of the anchoring problem can raise a number of very
challenging issues from each of these perspectives.
While this suggests that a complete study of the an-
choring problem can be an extraordinarily difficult
task, we nonetheless need to develop practical, albeit
partial solutions to this problem if we want to build
working systems. In this section, we discuss those
challenges that constitute, in our opinion, the most

practical concerns that need to be addressed if one
wants to build a robotic system where anchoring is
present.

A first challenge is represented by the presence of
uncertainty and ambiguity. Uncertainty and ambigu-
ity obviously arise when anchoring is performed using
real sensors, which have intrinsic limitations, and in
an environment which cannot be optimized in order to
reduce these limitations. The anchoring process might
incorporate provisions to deal with these limitations,
for instance by managing multiple hypotheses. Alter-
natively, it can rely on the perceptual system to filter
out the uncertainty, or it can delegate the resolution of
ambiguities to the symbolic level.

In addition to the limitations of sensing, there are
aspects of uncertainty and ambiguity which are in-
herent to the anchoring problem itself. Vagueness of
symbolic descriptions is a first example. Symbolic
properties often do not have a precise definition in
terms of measurable attributes, especially those used
in natural language like ‘red’, and the matching be-
tween sensor data and symbolic descriptions is usually
better described in terms of similarity than identity.
A second aspect is the possibility of a mismatch
between what we would like to discriminate at the
symbolic level, e.g., colored objects, and what can be
actually discriminated by the sensors, e.g., a black and
white camera. A third aspect is that at the symbolic
level we can refer to objects with a specific identity,
like ‘cup-22’, while the perceptual system is not in
general able to perceive the identity of an object but
only some of its properties. Although these factors
may all end up in the same problems—uncertainty
about the identity of perceived objects—their treat-
ment in the anchoring process should probably be
differentiated.

Another challenge of anchoring is that, at the sym-
bolic level, there are several ways to refer to objects.
An important distinction is between definite and in-
definite symbolic descriptions. A definite description
implies the existence of a unique object satisfying the
description in the current context. For instance, ‘the
cup belonging to Silvia’ can denote a unique object
in the office, even if Silvia can own many more cups
at home. An indefinite description denotes an object
having a number of properties, without any assump-
tion about its uniqueness. For instance, ‘a red cup’ is
an indefinite description satisfied by any red cup in the
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current context. The importance of this distinction ap-
pears mainly when more than one object satisfies the
description: this can be a problem in the case of defi-
nite description, but not in the case of indefinite ones.
One may consider several more types of descriptions,
for instance, descriptions that use functional proper-
ties like ‘something to hold water’. The many ways
of giving a reference brings about the problem of how
the anchoring process should treat different kinds of
descriptions.

In Fig. 1 just one object and one observer are
present. This is clearly a simplified case. In general,
it may be necessary to anchor several objects at the
same time and identify objects on the basis of the
relations among them. Moreover an agent could ob-
serve an object with different sensors and/or from
different points of view, and then need to integrate
this information to be able to establish an anchor. We
have an example in this issue in the paper by Fritsch
et al. [11]. A similar problem arises if robots with
different sensors need to exchange information about
the objects in the environment. A robot could anchor
an object on the basis of properties that cannot be
discriminated by another one.

Difficult issues of communication and negotiation
may arise if several robots need to not only anchor
symbols internally but also exchange information
among them and agree on a shared language. Com-
mon agreement about the meaning of the symbols
used to refer to objects in the environment is also
needed for efficient human–robot cooperation. Some
of the papers in this special issue deal with systems
that involve communication among multiple robots
[13,21,22]or between robots and humans[2].

Fig. 2. The ingredients of anchoring in our framework.α is the anchor.

Finally, a fundamental challenge of the anchoring
problem is to investigate the formal properties of the
anchoring process. Intuitively one may feel that some
correspondences between the symbols and the sen-
sor data are correct while some are not. How to ex-
press this formally, and prove the correctness of a
specific system are open problems. Engaging in this
study would probably require the ability to model both
the anchoring system and physical environment in the
same formal system, in which we can define and prove
formal properties.

4. Anchoring in practice

In order to get a better understanding of how the
general concept of anchoring can be instantiated in
different tasks and domains, we present below a few
implemented systems that perform anchoring. First,
however, we need to outline the main ingredients of
the framework for anchoring which is used in all ex-
amples. A detailed description of this framework and
examples can be found in[4,6,7].

4.1. Ingredients and functionalities of anchoring

According to our framework the anchoring process
is performed in an intelligent embedded system that
comprises asymbol systemΣ and aperceptual sys-
temΠ (seeFig. 2). The symbol system manipulates
individual symbols, like ‘x’ and ‘cup22’, which
are meant to denote physical objects. It also asso-
ciates each individual symbol with a set of symbolic
predicates, like ‘red’, that assert properties of the
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Fig. 3. Anchor dynamics. The anchorα is created by theFind functionality, and then maintained by theTrackandReacquirefunctionalities.

corresponding object. The perceptual system gener-
ates percepts,1 like a region in an image, from the ob-
servation of physical objects. It also associates each
percept with the observed values of a set of measur-
able attributes, like the average hue values of a region.

The model further assumes that apredicate ground-
ing relation g is given, which encodes the corre-
spondence between predicate symbols and admissible
values of observable attributes. How the admissible
values are encoded may differ across different ap-
plications. For instance, they may be represented by
ranges, or fuzzy sets. No assumption is made about
the origin of theg relation: it can be hand-coded by
the designer, learnt from samples, or other.

The task of anchoring is to use theg relation to con-
nect individual symbols inΣ and percepts inΠ. For
instance, suppose thatred is predicated of the sym-
bol cup22, and that the hue values of a given region
in an image are compatible with the predicatered
according tog. Then that region could be anchored
to the symbolcup22. The correspondence between
symbols and percepts is reified in a data structure
calledanchor, denoted byα in the figure. The anchor
contains pointers to the corresponding symbols and
percepts, together with an estimate of the current val-
ues of some of the attributes of the object which it
refers to, calledsignatureand denoted bŷγ. The val-
ues in the signature, like the object’s position, can be
used for both acting on the object and re-identifying

1 We take here a percept to be a structured collection of mea-
surements that are assumed to originate from the same physical
object.

it later on. They can also be used to operate on the
object when this is not directly visible. An anchor
can be considered as a model of a physical object that
reflects the persistence of the object, and which can
be shared across different subsystems of the agent.

The anchoring process is defined in our framework
by three abstract functionalities that manage anchors:
Find, Track, andReacquire. These functionalities have
been found adequate to capture top-down anchoring
in several applications. Additional functionalities will
probably be needed for different types of anchoring
processes, for instance, bottom-up anchoring.

TheFind functionality corresponds to the initial cre-
ation of an anchor for an object given a symbolic de-
scription (set of predicates) provided byΣ. This func-
tionality selects a percept from the perceptual stream
provided byΠ using theg predicate grounding rela-
tion to match predicates to observed attribute values.
The initial creation of an anchor resembles a structural
pattern recognition process.

Once an anchor has been created, it must be contin-
uously updated to account for changes in the object’s
attributes, e.g., its position. This is done by theTrack
functionality using a combination of prediction and
new observations, as illustrated inFig. 3. Prediction
is used to make sure that the new percepts used to
update the anchor are compatible with the previous
observations, i.e., that we are still tracking the same
object. Moreover, comparison with the symbolic de-
scriptor is used to make sure that the updated anchor
still satisfies the predicates, i.e., the object still has the
properties that make it “the right one” from the point
of view of the symbol system. The use of abstract
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symbolic information inside the tracking cycle differ-
entiates anchor maintenance from the usual predict–
measure–update cycle of recursive estimators like
Kalman filters. The second example below illustrates
a case where this information is crucial to a correct
anchoring.

The Track functionality assumes that the object is
kept under constant observation. TheReacquirefunc-
tionality takes care of the case in which the object is
re-observed after some time. For instance, every morn-
ing I tell my robot to go and pick up my cup. The robot
knows what my cup looks like and where it has seen it
last time, and it can use this information to find it again.
TheReacquirefunctionality can be considered a com-
bination ofFind andTrack; it is similar to aFind, with
the addition that information from previously observed
attributes can also be used as in theTrackfunctionality.

4.2. Anchoring in an office navigation domain

The aim of this first example is to illustrate a simple
case of anchoring. We consider a Nomad 200 robot
equipped with an array of sonar sensors and controlled
by an architecture similar to the one reported in[18],
which includes a simple STRIPS-like planner. All the
perceptual and prior information about the robot’s sur-
roundings is maintained in a blackboard-like structure
called Local Perceptual Space (LPS). In terms of our
framework, thesymbol systemis given by the plan-
ner; individual symbols denote rooms, corridors, and
doors. Theperceptual systemextracts features from

Fig. 4. Anchoring a corridor:t0 (before anchoring);t1 (after anchoring).

histories of sonar measurements; percepts include
walls and doors. Thepredicate grounding relationis
hand-coded, and maps predicates likenarrow door
to ranges of values for the observed door width, like
[60, 80]. Finally, ananchor contains pointers to the
appropriate symbols and percepts, plus a signature.
Symbolic descriptions, percepts, and anchors are all
Lisp structures stored in the LPS.

The task that we consider in this example is navi-
gation in an office environment, as shown inFig. 4.
Anchoring arises when the planner gives direction to
the robot in terms of names of rooms and corridors,
for instance,Follow(corr4). The robot needs to
anchor the symbolcorr4 to the sonar data corre-
sponding to the walls of the actual corridor denoted
by corr4. At time t0 the planner puts the symbolic
description ofcorr4 into the LPS based on map in-
formation (shown by thick lines in the figure). Att1
this descriptor is anchored to wall percepts (shown
by thin segments) usingFind. Track is then used to
keep it anchored to the new wall percepts. The signa-
ture in the anchor (shown by double lines) is used by
theFollow behavior to control the movement of the
robot along the intended corridor.

4.3. Anchoring in an aerial surveillance domain

The next example emphasizes the dynamic aspect
of anchoring and the use of symbolic information in
predicting the next position of an object. The do-
main is an unmanned aerial vehicle (UAV) performing
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autonomous surveillance tasks in a simulated environ-
ment developed within the WITAS project[8]. The
UAV system integrates a planner, a reactive plan ex-
ecutor, a vision system and a control system.

In terms of our framework, thesymbol systemcon-
sists of the planner; individual symbols denote cars
and elements of the road network. Theperceptual
systemis a reconfigurable active vision system able
to extract information about car-like objects in aerial
images; percepts are regions in the image, and they
have attributes like position, width, and color. The
predicate grounding relationis given as a hand-coded
table that associates each predicate symbol with a
fuzzy set of admissible values for the corresponding
attribute. An anchor is a Lisp structure that stores
an individual symbol, the index of a region, and
an association list recording the current estimates
of the values of the object’s attributes (signature).
The signature in the anchor is used to configure
the vision system, control the camera, and control
the UAV.

In the example shown inFig. 5, the task of the UAV
is to follow a specific car that was previously anchored
using theFind functionality. At timet0 two identical
cars are present in the image, one traveling along a
road which makes a bend under a bridge, and the other
one traveling on the bridge. The UAV is keeping un-
der observation the car traveling along the road using
theTrackfunctionality. At t1 this car disappears under
the bridge and the second car is almost in the position
in the image where the first one was expected to be.
The Track functionality has access to the symbolic
information about road topology and can therefore
recognize that this car cannot be the car previously
tracked. TheReacquirefunctionality is then invoked
in order to find again the tracked car.Reacquireuses
high-level knowledge to infer the presence of the oc-
cluding bridge, and predict the next visible position of

Fig. 5. Anchoring a moving object. The followed car disappears under a bridge and a similar car appears at its place over the bridge.

Fig. 6. Anchoring “a red ball” to perform a ball collection task.

the car. This position is stored in the signature of the
anchor, and used to direct the UAV and the camera
towards the end of the bridge. When the car reappears
from under the bridge att2, a percept is generated by
the vision system that is compatible with the signature
in the anchor. Normal tracking is then resumed.

4.4. Anchoring an indefinite description

Our last example is intended to illustrate some
of the subtleties of the anchoring problem in the
case of an indefinite reference and multiple identical
objects[7]. The task is one of the three “technical
challenges” of the RoboCup 2002 competition in the
Sony four-legged robot league. A Sony AIBO robot
is in a soccer field and 10 identical balls are placed in
the field. The task is to score all the balls. When a ball
is scored, it is removed from the field (seeFig. 6).

With respect to anchoring, the problem can be de-
scribed as follows. The robot is given an indefinite de-
scription of a ball, for instance, ‘x : Ball(x)∧Red(x)’.
Any of the 10 balls is suitable for the task. TheFind
functionality selects the first ball to act upon, for in-
stance the nearest one, and anchors the symbolx to it.
The created anchor includes in its signature the rela-
tive position of this ball, which is used by the motion
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and kicking routines. While the robot moves, theTrack
functionality updates the anchor regularly.

TheTrack functionality has an implicit definite ref-
erence: the ball which the robot is currently acting on.
In a sense, anchoring has made the robot committed
to that specific ball. However the anchoring process
must remember that the original description was an
indefinite one, and that another ball can also be suit-
able for the task. For instance, when the current ball
is removed from the field the robot must try toReac-
quire and thenTrack another ball, since the task was
to score an arbitrary ball. Smarter anchoring strategies
can be devised for this task. For instance, the robot
should not remain committed to a ball if another ball
is in a better position according to some specified cri-
teria. In our implementation of this example, the robot
tracks one specific ball and acts on it, but if it sees an-
other ball which is in the same direction and closer, it
starts tracking and acting on this other one.

5. Related problems

The problem of connecting linguistic descriptions of
objects to their physical referents has been largely con-
sidered in the fields ofphilosophyand linguistics. In
fact, we have borrowed the termanchorfrom situation
semantics.2 Most of the aspects of anchoring discussed
in this paper have also been studied in these fields. For
example, the distinction between definite and indefi-
nite references and the semantical problems associated
with definite references have been addressed, among
others, by Russell[16] and Frege[10]. While the an-
choring problem could certainly belong to the philo-
sophical and linguistic debate, the perspective taken
here is more pragmatic. We are interested in ways of
stating and solving this problem that can lead to im-
plement practical solutions in robotic systems. Even
with this difference in perspective, the reflections done
in the linguistic and philosophical fields undoubtedly
provide a rich source of inspiration for the study of the
different aspects of the anchoring problem. Two book

2 Situation semantics[1] is a semantics of natural language that
tries to find meanings of sentences in the external world and in
relations between situations rather than in truth values as in logic
based semantics. In the terminology of situation semantics, an
anchor is an assignment of individuals, relations and locations to
abstract objects.

reviews in this special issue introduce examples of the
work done in the philosophical community which is
relevant to anchoring.

From a more practical point of view, there are two
research problems in the fields of robotics and AI
which are related to the anchoring problem: pattern
recognition and symbol grounding.Pattern recogni-
tion can be defined as the problem of interpreting
data provided by sensors by assigning them to pre-
defined categories[9,15]. Taking pattern recognition
in its most general sense, anchoring can be consid-
ered a sub-problem of pattern recognition. However,
the anchoring problem emphasizes several peculiar
aspects, which are not usually the focus of pattern
recognition. First, the presence of symbols is an es-
sential aspect of anchoring, while this is not the case
in pattern recognition. Second, a goal of anchoring is
the dynamic maintenance of the anchor in time, while
pattern recognition is mostly used in applications
where this dynamic aspect is not relevant. Finally,
anchoring focuses on the creation and maintenance
of the anchor as a shared representation to link sev-
eral subsystems of the agent, such as motor control,
sensor processing, and reasoning.

Symbol groundingcan be defined as the problem of
finding a semantics for a symbolic system that it is not
in its turn a symbolic system[12]. Symbol grounding
is a more general problem than anchoring. It concerns
the philosophical issues related to the meaning of
symbols in general. Anchoring is concerned with the
practical problem of connecting symbols referring to
physical objects to the sensor data originating from
those physical objects in an implemented robotic
system. In particular, anchoring focuses on perceiv-
able physical objects, while symbol grounding needs
to consider all kind of symbols, including ones like
‘justice’ and ‘peace’. For these kinds of symbols it
would be difficult to find appropriate sensor measure-
ments, while the presence of sensor measurements is
essential in anchoring.

Fig. 7shows a simplified view of the relation among
anchoring, symbol grounding and pattern recognition.
Anchoring is included in the intersection between the
other two problems and can represent a bridge between
them. One can in fact find numerous cases of pattern
recognition where no symbols are present, and one can
study the symbol grounding problem without taking
measurements in consideration. Anchoring by contrast
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Fig. 7. Relations among Anchoring, Symbol grounding and Pattern
recognition.

implies the presence of both symbols and measure-
ments and the possibility of establishing a connection
between the two.

An important aspect of anchoring is that the ref-
erents are individual physical objects. In this respect,
anchoring is related to the problem ofobject track-
ing. In object tracking an object is first found, and
then kept under observation for some time. Some in-
stances of the anchoring problem can also be con-
sidered instances of the object tracking problem, like
the car tracking example discussed in the UAV sce-
nario above. As shown in that example, the presence
of symbols and the possibility of performing symbolic
reasoning is a distinctive aspect of anchoring, which
is usually not considered in object tracking. Other in-
stances of the anchoring problem would not be easily
expressed in terms of object tracking. An example is
the case where a robot finds an object in a room and
some days later is asked to reacquire the object that
can or cannot be still present in the room. This is a
clear case of anchoring, but it could hardly be regarded
as object tracking. The paper by Steels and Baillie
[21] in this issue, which focuses on the interpreta-
tion of scenes using linguistic terms, provides another
example.

We can summarize the above considerations as
follows. Although specific instances of the anchor-
ing problem can be also seen as instances of other
problems studied in AI and in robotics, like symbol
grounding, pattern recognition, and object tracking,
the general anchoring problem has nonetheless sev-
eral distinctive aspects that make it worth studying as
a problem per se. Practical solutions to the anchoring
problem will, of course, draw from the wide set of
techniques developed to address these other problems,
as well as from the debate about the relation between
symbols, perception and reality which has animated
the fields of philosophy, linguistics and psychology.

6. About the papers in this issue

Most of the papers contained in this special is-
sue present specific systems that address the anchor-
ing problem as defined inSection 1, although some
of them deal with anchoring intended in a somewhat
wider sense.

Shapiro and Ismail[20] consider how the anchoring
problem is addressed in GLAIR, a three-level architec-
ture for cognitive robots. The robot used in the exper-
iments interacts with humans using natural language,
and in order to answer the user’s queries it needs to
connect its visual input to the linguistics terms used
by the human. The robot uses abstract knowledge of
objects and persons to make this connection. An ex-
ample is the dialog where the robot is asked to find
Bill, looks for a blue block and when it finds it, it an-
swers that it has found Bill.

Khoo and Horswill [13] present a system which
uses reactive plans, expressed in a rule-based format,
to perform cooperative tasks involving two robots. The
variables used in the reactive rules are anchored to ob-
jects in the environment by means of color trackers
that are attached to specific objects in a camera im-
age. The two robots exchange information about ob-
jects using messages in which the anchored objects
are associated to fixed positions in a bit string. The
authors demonstrate their approach on two tasks in-
volving co-operative office navigation: find an object,
and visit all locations in the environment.

Fritsch et al.[11] deal with the problem of anchoring
a composite object from the data provided by several
sensors, each one of which can only observe part of
the object. The authors consider the case of anchoring
a human by aggregating the two anchors separately
created for the face and for the legs. Face recognition
is based on image data, while leg recognition relies
on data from a laser range finder. Their system can
be seen as a special case of cooperative anchoring, in
which a common anchor must be established between
two perceptual systems.

Vogt’s paper[22] is based on the concept of semi-
otic symbol. A semiotic symbol is defined by a triadic
relation among form, meaning, and referent and it
therefore implicitly includes an anchoring relation be-
tween the form, symbol in the traditional sense, and the
referent object. The approach considered is bottom-up
from sensor data to names, and the experiment
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presented involves two robots sensing light sources
and developing a lexicon to name the light sources.

Among the papers that deal with the anchoring
problem intended in a wider sense, the paper by Steels
and Baillie [21] considers the anchoring not only of
objects but also of events. The system anchors objects
seen in the images bottom-up, and keeps track of them
over time. On the basis of this information events are
recognized. This work is in the context of a language
game between two robotic systems with the aim of
learning a shared language. One of the systems sees
a event, like a ball rolling, through a static camera in
an otherwise static environment. It then formulates a
sentence describing the event. The other system hears
the sentence and interprets it. If the interpretation
is considered appropriate with respect to one of the
events recently seen the game succeeds.

Chella et al.[3] deal with the problem of recogniz-
ing motion events of a robotic finger observed by an
external camera. They propose a framework based on
Gardenförs’ theory ofconceptual spaces. In their sys-
tem, each element (phalanx) of the robotic finger is
anchored bottom-up to a point in a conceptual space,
or knoxel. The knoxels that correspond to the differ-
ent phalanxes of a finger are aggregated into a new
knoxel which provides an anchor for the full finger
object. In addition to anchoring individual physical
objects, Chella et al. also deal with anchoring sym-
bols that denote actions and fluents by considering the
dynamic evolution of (sets of) knoxels. For example,
the fluent “inmotion” is anchored to a set of knox-
els that correspond to a given evolution in time of the
finger. The fluents and actions so anchored are used
in a logical system, formalized in situation calculus,
where higher-level event recognition takes place.

Bredeche et al.[2] present a robotic system capa-
ble of learning the association between symbols like
‘human’ and ‘fire extinguisher’ and visual percepts.
The robot takes snapshots of the environment that are
then labeled by a supervisor. The aim is that the robot,
after a number of label-percept associations, should be
able to label autonomously a new environment. The
authors focus more on the learning of basic concepts
like ‘human’ than on the anchoring of a specific indi-
vidual, a specific human. The learning of the associa-
tion between concepts and sensor data does not cover
the whole anchoring problem, but it is an essential
ingredient in the process of connecting an individual

symbol, like Silvia, to the sensor data associated with
the specific human being known by the robot as Silvia.

This special issue is completed by the reviews of
two books which may provide interesting insights on
the anchoring problem from a philosophical perspec-
tive. The first one isThe Varieties of Reference, by
Gareth Evans. The second book isConceptual Spaces,
by Peter Gardenförs. The book reviews highlight the
relevance of these two works to the problem of per-
ceptual anchoring.

7. Conclusions

As robots are moving toward more complex tasks
and environments, the field of robotics is looking more
and more to ways of including higher level represen-
tations and reasoning into robotic systems. In many
cases, the higher level is built around a symbol system.
The claim made in this paper is that any physically
embedded robotic system which includes a symbolic
component needs to perform anchoring.

Anchoring is a difficult problem. It involves con-
cepts which have interested philosophers for centuries
and are still far from being fully understood. Nonethe-
less, we have to provide practical solutions to the an-
choring problem if we want to build robotic systems
that include a symbolic component. The papers in
this special issue provide examples of such solutions.
In the longer term, a research program on anchoring
should bring a deeper theoretical analysis of the an-
choring problem, together with general practical so-
lutions that can be re-used in different systems and
domains.
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Abstract

The GLAIR grounded layered architecture with integrated reasoning for cognitive robots and intelligent autonomous agents
has been used in a series of projects in which Cassie, the SNePS cognitive agent, has been incorporated into hardware- or
software-simulated cognitive robots. In this paper, we present an informal, but coherent, overview of the GLAIR approach to
anchoring the abstract symbolic terms that denote an agent’s mental entities in the lower-level structures used by the embodied
agent to operate in the real (or simulated) world. We discuss anchoring in the domains of: perceivable entities and properties,
actions, time, and language.
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1. Introduction

GLAIR (grounded layered architecture with in-
tegrated reasoning) is a three-level architecture for
cognitive robots and intelligent autonomous agents
[15,16]. GLAIR has been used in the design and imple-
mentation of Cassie, a cognitive robot[20–23,39,41,
44,46–48,50], which has been implemented as a hard-
ware robot and in various software-simulated ver-
sions. The capabilities of the embodied Cassie have
included: input and output in fragments of English,
reasoning, performance of primitive and composite
acts, motion, and vision.

Previous papers have described various aspects of
GLAIR and Cassie. In this paper, we present, for the
first time, a coherent, unified, overview of the GLAIR
approach to anchoring the abstract symbolic terms that

∗ Corresponding author. Fax:+1-716-645-3464.
E-mail address:shapiro@cse.buffalo.edu (S.C. Shapiro).

denote an agent’s mental entities in the lower-level
structures used by the embodied agent to operate in
the real (or simulated) world.

In Section 2we give an overview of the three levels
of the GLAIR architecture. InSection 3we discuss
a hardware implementation of Cassie. InSection 4,
we discuss anchoring in the domains of: perceivable
entities and properties, actions, time, and language.
In Section 5, we discuss some related work, and in
Section 6, we summarize the paper. This paper has
deliberately been kept as an informal, but coherent,
overview of our approach. For more details, and more
formal presentations, of particular aspects of our ap-
proach, see the papers cited herein.

2. GLAIR

GLAIR (grounded layered architecture with in-
tegrated reasoning) consists of three levels: the

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00352-4
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knowledge level, the perceptuo-motor level, and the
sensori-actuator level.

The knowledge level (KL) is the level at which
conscious reasoning takes place. The KL is im-
plemented by the SNePS knowledge representation
and reasoning system[46,48,50], and its subsystem
SNeRE (the SNePS rational engine)(see [28–31] and
[53, Chapter 4]), which is used for scheduling and
initiating the execution of intentional acts.

We refer to the KL as the “conscious” level, since
that is the locus of symbols accessible to reasoning
and to natural language interaction. It is the level con-
taining the “abstract-level representations of objects”
[5,6]. Similarly, the KL-level acts are “intentional” in
the sense that they are scheduled as a result of natural
language understanding and reasoning.

Atomic symbols in the KL are terms of the SNePS
logic [42]. Symbol structures in the KL are functional
terms in the same logic[40,42]. All terms denote men-
tal entities[31,46]. For example, if Cassie is asked to
“Find a green thing”, she conceives of an entity whose
only properties are being green and being a thing, by
creating a KL term denoting that entity, and KL terms
denoting propositions that the entity is green and that
the entity is a thing, even though no such object, with-
out further properties, exists in the world. When, in
response to this request, Cassie find a particular green
robot she recognizes (re-cognizes), by already having
a KL term for it, she adds a KL term for the propo-
sition that the two entities have the same extension.
(Compare Frege’s example that “The Morning Star
is the Evening Star”[10].) This approach is in gen-
eral accord with what Jackendoff calls “conceptualist
semantics”[25,26]. We will consistently use “entity”
for such a mental entity—the denotation of a KL term,
and “object” for an object in the real (or simulated)
world.

SNePS (and hence the KL) is implemented in Com-
mon Lisp.

The perceptuo-motor level (PML) is the level con-
taining the “physical-level representations of objects”
[5,6] consisting of object characteristics such as
size, weight, texture, color, and shape. At this level
objects are not characterized by KL terms such as
categories (box, robot, person, etc.) or properties
(green, tall, etc.). The PML also contains routines
for well-practiced behaviors, including those that are
primitive acts at the KL, and other subconscious ac-

tivities that ground Cassie’s consciousness of its body
and surroundings.

The PML has been implemented in three sub-levels:

(1) The highest sub-level (which we will refer to as
PMLa) has been implemented in Common Lisp,
and contains the definitions of the functions that
implement the activity represented by KL primi-
tive acts.

(2) The middle sub-level (henceforth PMLw) contains
a set of Common Lisp symbols and functions de-
fined in theWorld package which use Common
Lisp’s foreign function facility to link to the low-
est sub-level.

(3) The lowest sub-level (henceforth PMLc) has been
a C implementation of “behavioral networks”
[17,18].

The sensori-actuator level (SAL) is the level con-
trolling the operation of sensors and actuators (being
either hardware or simulated). The SAL has been im-
plemented in C and other languages, depending on the
implementation of the hardware or software-simulated
robot.

The Common Lisp programs, PMLc, and the SAL
run on different processes, and, in some circumstances,
on different machines.

The topic of this paper is our approach to an-
choring the KL terms that denote Cassie’s (or any
GLAIR-based agent’s) mental entities in the PML
structures used by embodied Cassie to operate in the
real world. Briefly, our theoretical stance is that a KL
term (symbol) serves as apivot, supporting and co-
ordinating various modalities. Anchoring is achieved
by associating (we use the term “aligning”) a KL
term with one or more PML structures—more than
one, if different PML structures are used by differ-
ent modalities. Some PML structures are accessible
to sensors, some to effectors. Others are accessible
to natural language interaction. KL terms, but not
PML structures, are accessible to reasoning. Cassie’s
ability to understand a natural language description,
and then visually locate an object in the world satis-
fying that description depends on going from PML
structures supporting natural language perception
to KL symbol structures, possibly clarified and en-
hanced by reasoning, to PML structures supporting
visual perception. Her ability to describe in natu-
ral language an object she is seeing in the world
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depends on the following that same path in the other
direction.

3. The FEVAHR

Cassie in the role of a FEVAHR (foveal extra-
vehicular activity helper-retriever)[2,14,41]was im-
plemented, as a joint project of researchers at the
University at Buffalo and researchers at Amherst Sys-
tems, Inc., on a Nomad 200 mobile robot, including
sonar, bumpers, and wheels, enhanced with an hierar-
chical foveal vision system[1] consisting of a pair of
cameras with associated hardware and software[7].
Henceforth, we will refer to Cassie in the role of a
FEVAHR as CassieF (in [14], CassieF is referred to
as Freddy).

CassieF operates in a 17× 17 ft. room containing:
CassieF; Stu, a human supervisor; Bill, another human;
a green robot; three indistinguishable red robots. In
the actual room in which the Nomad robot operated,
“Stu” was a yellow cube, “Bill” was a blue cube, the
green robot was a green ball, and the red robots were
red balls. CassieF is always talking to either Stu or
Bill. That person addresses CassieF when he talks, and
CassieF always addresses that person when she talks.
CassieF can be told to talk to the other person, to find,
look at, go to, or follow any of the people or other
robots in the room, to wander, or to stop. CassieF can
also engage in conversations on a limited number of
other topics in a fragment of English, similar to some
of the conversations in[39]. While CassieF is moving,
she avoids obstacles.

CassieF’s SAL was designed and implemented by
the researchers at Amherst Systems, Inc. Its hierarchi-
cal foveal vision system[1,2,7] was implemented and
trained to recognize the several colors and shapes of
the objects in the room.

CassieF’s KL and PML were designed and imple-
mented by the researchers at the University at Buffalo,
including the senior author of this paper. During devel-
opment of the KL, and subsequently, we used several
simulations of the robot and of the world it operates in:

The Nomad simulatoruses the commercial simulator
that was included with the Nomad robot, enhanced
by a simulation of CassieF’s world and its vision
system.

The VRML simulationsimulates CassieF and her
world by VRML (virtual reality modeling language
[3]) objects visible through a world-wide web
browser.

The Garnet simulationsimulates CassieF and her
world by Garnet[11] objects in a Garnet window.

The ASCII simulation, used to create examples for
Section 4, implements the PMLw, PMLc, and SAL
as sets of Common Lisp functions which print in-
dications of what CassieF would do.

No code at the KL or PMLa levels need be changed
when switching among the hardware robot and these
four different simulations. All that is required is a dif-
ferent PMLw file of functions that just print messages,
or make calls to the appropriate PMLc sub-level.

4. Anchoring in GLAIR

4.1. Perceivable entities

There are KL terms for every mental entity Cassie
has conceived of, including individual entities, cate-
gories of entities, colors, shapes, and other properties
of entities.

There are PML structures (at the PMLw and PMLc
sub-levels) for features of the perceivable world that
Cassie’s perceptual apparatus can detect and distin-
guish. For example, in the hardware and Nomad sim-
ulator versions of CassieF, each distinguishable color
and each distinguishable shape is represented by a sin-
gle integer, while in the VRML simulation, each is
represented by a string, and in the Garnet and ASCII
simulations, each is represented by a Lisp symbol.
Each particular perceived object is represented at this
level by ann-tuple of such structures,〈v1, . . . , vn〉,
where each component,vi, is a possible value of some
perceptual feature domain,Di. What domains are used
and what values exist in each domain depend on the
perceptual apparatus of the robot. We will call the
n-tuples of feature values “PML-descriptions”.

Our approach to grounding KL terms for perceiv-
able entities, categories, and properties is to align
a KL term with a PML-description, possibly with
unfilled (null) components. For example, CassieF
used two-component PML-descriptions in which
the domains were color and shape. In the hardware
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and Nomad simulator versions, the KL term de-
noting CassieF’s idea of blue was aligned with a
PML-description whose color component was the
PML structure the vision system used when it detected
blue in the visual field, but whose shape component
was null. The KL term denoting people was aligned
with a PML-description whose shape component was
the PML structure the vision system used when it
detected a cube in the visual field, but whose color
component was null. We have implemented align-
ment in various ways, including association lists, hash
tables, and property lists.

Call a PML-description with some null compo-
nents an “incomplete PML-description”, and one with
no null components a “complete PML-description”.
KL terms denoting perceivable properties and KL
terms denoting recognizable categories of entities are
aligned with incomplete PML-descriptions. Examples
include the terms for blue and for people mentioned
above, and may also include terms for the properties
tall, fat, and bearded, and the categories man and
woman. The words for these terms may be combined
into verbal descriptions, such as “a tall, fat, bearded
man”, whose incomplete PML-descriptions may be
used to perceptually recognize the object correspond-
ing to the entity so described.

In this paper, we will use “description” (unqual-
ified by “PML”) only to mean a verbal description
that can be used for perceptual recognition, such as
“a tall, fat, bearded man”, and not to mean a ver-
bal description that cannot be used for perceptual
recognition, such as “a college-educated business-
man who lives in Amherst, NY”. Cassie might have
a KL term for an entity about which she knows no
descriptive terms. For example, all she might believe
about Fred is that he is a college-educated business-
man who lives in Amherst, NY. Thus, she would be
incapable of describing Fred (the way we are using
“describe”). Nevertheless, it might be the case that
Cassie’s term denoting Fred is aligned with a com-
plete PML-description. In this case, Cassie would be
able to recognize Fred, though not describe him ver-
bally. We call such a PML-description aligned with an
entity-denoting term, the entity’s PML-description.

A complete PML-description may be assembled for
an entity by unifying the incomplete PML-descriptions
of its known (conceived of) properties and categories.
For example, if Cassie knows nothing about Harry,

and we tell her that Harry is a tall, fat, bearded man,
she would be able to assemble a PML-description
of Harry and recognize him on the street (assum-
ing that Cassie’s terms for tall, fat, bearded, and
man are aligned with incomplete PML-descriptions).
In some cases, this might result in a set of sev-
eral complete PML-descriptions. For example, the
PML-descriptions of some, but not a particular, red
chair might include PML-descriptions with different
shape components. Once a PML-description is as-
sembled for an entity, it can be cached by aligning the
term denoting the entity directly with it. Afterwards,
Cassie could recognize the entity without thinking
about its description.

To find (come to be looking at) an entity, Cassie
finds a PML-description of the entity that is as com-
plete as possible, and directs her perceptual apparatus
(via the SAL) to do what is necessary to cause an ob-
ject satisfying it to be in her visual field. For example,
in the Nomad version of CassieF, the PML-description
of Bill is the 2-tuple〈13, 21〉, which is passed to the ap-
propriate SAL routines, which move the cameras until
a blue cube is in their field-of-view (see the section on
actions, for a description of how actions are grounded).

If Cassie is looking at some object, she can recog-
nize it if its PML-description is the PML-description
of some entity she has already conceived of. If there is
no such entity, Cassie can create a new KL term to de-
note this new entity, align it with the PML-description,
and believe of it that it has those properties and
is a member of those categories whose incomplete
PML-descriptions unify with the PML-description of
the new entity.

If there are multiple entities whose PML-
descriptions match the object’s PML-description, dis-
ambiguation is needed, or Cassie might simply not
know which one of the entities she is looking at.

We are currently investigating the issue of when
Cassie might decide that the object she is looking at
is new, even though it looks exactly like another she
has already conceived of (see[36]).

We have not worked on the problem of recogniz-
ing an entity by context. For example, a store clerk
might be recognized as any person standing behind a
cash register.1 We speculate that this problem requires

1 This example was suggested by one of the anonymous review-
ers of Shapiro and Ismail[43].



S.C. Shapiro, H.O. Ismail / Robotics and Autonomous Systems 43 (2003) 97–108 101

Table 1
Objects and descriptions of CassieF’s world

Object Color Shape

World:Bill World:blue World:square
World:Stu World:yellow World:square
World:Cassie World:cyan World:circle
World:Greenie World:green World:circle
World:Redrob-1 World:red World:circle
World:Redrob-2 World:red World:circle
World:Redrob-3 World:red World:circle

Table 2
Some of CassieF’s KL terms and their PML-descriptions

KL term 〈Color, Shape〉
b1 〈World:cyan, World:circle〉
b5 〈World:yellow, World:square〉
b6 〈World:blue, World:square〉
m21 〈World:green, nil〉
m25 〈World:red, nil〉
m19 〈nil, World:square〉
m22 〈nil, World:circle〉

a combination of KL knowledge and KL–PML align-
ment. Knowing that a person standing behind a cash
register is a clerk is KL knowledge. Recognizing a
person, a cash register, and the “behind” relation re-
quires KL–PML alignment.

Consider an example interaction with the ASCII
version of CassieF. In this simulation, created so that
interactions can be shown in print, the entire PML
and the simulated world are implemented in Common
Lisp. The PML-descriptions have two domains, called
“color” and “shape”. There are seven objects in the
simulated world. The Common Lisp symbols that rep-
resent these objects and their PML-descriptions are
shown inTable 1.2 Recall that Lisp symbols of the
PMLw are in theWorld package, so Lisp prints them
preceded by “World:”.

The KL terms that are aligned with PML-
descriptions are shown inTable 2. Notice thatb1, b5,
andb6 are aligned with complete PML-descriptions,
while m21, m25, m19, and m22 are aligned with
incomplete PML-descriptions.b1, b5, and b6 de-
note individuals.m21 andm25 denote the properties

2 The examples in this paper were created using SNePS 2.6[50]
running under Franz, Inc.’s Allegro CL 6.2[9].

Table 3
Some of CassieF’s beliefs

b1’s name is Cassie Bill and Stu are people
b5’s name is Stu Robbie is a green robot
b6’s name is Bill b8, b9, and b10 are red robots
Cassie is a FEVAHR People and robots are things
FEVAHRs are robots

green and red, respectively.m19 andm22 denote the
categories of people and robots, respectively.

CassieF’s relevant beliefs about the entities denoted
by these terms may be glossed as shown inTable 3.
The only descriptive terms CassieF has for Bill and
Stu are that they are people, and the only descrip-
tive term she has for herself is that she is a robot.
Nevertheless, Bill, Stu, and Cassie are aligned with
complete PML-descriptions, so she can recognize
them. On the other hand, neither Robbie,b8, b9,
norb10 are aligned with PML-descriptions, although
PML-descriptions can be assembled for them from
their properties and categories.

Following is an interaction with CassieF about these
entities. Sentences preceded by “:” are human inputs.
Sentences preceded by “PML:” and “SAL:” are re-
ports of behaviors and simulated actions and percep-
tions by the ASCII version of CassieF at the respective
levels, and are not output by the other four versions.
Notice that the PML deals with PML-descriptions, and
only the SAL deals with (simulated) objects in the
world. Sentences beginning with “I” are generated by
CassieF. At the beginning of the interaction, CassieF
is looking at, listening to, and talking to Stu. (See next
page).

4.2. Deictic registers

An important aspect of being embodied is being sit-
uated in the world and having direct access to compo-
nents of that situatedness. This is modeled in GLAIR
via a set of PML registers (variables), each of which
can hold one or more KL terms or PML structures.
Some of these registers derive from the theory of the
Deictic Center[8], and include:I, the register that
holds the KL term denoting the agent itself;YOU,
the register that holds the KL term denoting the indi-
vidual the agent is talking with; andNOW, the regis-
ter that holds the KL term denoting the current time.
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: Find a robot.
PML: The FEVAHR is looking at (World:yellow World:square)
PML: The FEVAHR is looking for something that’s (nil World:circle)
SAL: The FEVAHR found World:RedRob-1
PML: The FEVAHR found (World:red World:circle)
I found a red robot.
PML: The FEVAHR is looking at (World:red World:circle)
I am looking at a red robot.

: Find a person.
PML: The FEVAHR is looking at (World:red World:circle)
PML: The FEVAHR is looking for something that’s (nil World:square)
SAL: The FEVAHR found World:Stu
PML: The FEVAHR found (World:yellow World:square)
I found you, Stu.
PML: The FEVAHR is looking at (World:yellow World:square)
I am looking at you.

: Find a green thing.
PML: The FEVAHR is looking at (World:yellow World:square)
PML: The FEVAHR is looking for something that’s (World:green nil)
SAL: The FEVAHR found World:Greenie
PML: The FEVAHR found (World:green World:circle)
I found Robbie.
PML: The FEVAHR is looking at (World:green World:circle)
I am looking at Robbie.

: Find Bill.
PML: The FEVAHR is looking at (World:green World:circle)
PML: The FEVAHR is looking for something that’s (World:blue World:square)
SAL: The FEVAHR found World:Bill
PML: The FEVAHR found (World:blue World:square)
I found Bill.
PML: The FEVAHR is looking at (World:blue World:square)
I am looking at Bill.

It was by use of these registers that, in the exam-
ple interaction shown inSection 4.1, Cassie used
“I” to refer to the individual denoted byb1 (her-
self), “you” to refer to the individual denoted byb5
(Stu), and the appropriate tense in all the sentences
she generated. The use ofNOW is discussed further
in Section 4.5, and language is discussed further in
Section 4.6.

Embodiment is further modeled in GLAIR via a set
of modality registers.

4.3. Modality registers

How does an agent know what it is doing? A stan-
dard technique in the Artificial Intelligence literature
amounts to the following steps:
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(1) I started doinga at some previous time or in some
previous situation.

(2) I have not done anything since then to stop me
from doinga.

(3) Therefore, I am still doinga.

However, we human’s do not have to follow these
steps to know what we are doing, because we have
direct access to our bodies.

GLAIR agents know what they are doing via di-
rect access to a set of PML registers termed “modality
registers”. For example, if one of Cassie’s modalities
were speech, and she were currently talking to Stu, her
SPEECH register would contain the KL term denot-
ing the state of Cassie’s talking to Stu (and the term
denoting Stu would be in theYOU register). In many
cases, a single modality of an agent can be occupied
by only one activity at a time. In that case the regis-
ter for that modality would be constrained to contain
only one term at a time.

One of the modality registers we have used is for
keeping track of what Cassie is looking at. When she
recognizes an object in her visual field, the KL term
denoting the state of looking at the recognized entity is
placed in the register, and is removed when the object
is no longer in the visual field. If one assumed that
Cassie could be looking at several objects at once, this
register would be allowed to contain several terms. If
asked to look at or find something that is already in her
visual field, Cassie recognizes that fact, and doesn’t
need to do anything. The following interaction with
CassieF continues from the previous one:

: Look at Robbie.
PML: The FEVAHR is looking at (World:blue World:square)
PML: The FEVAHR is looking for something that’s (World:green World:circle)
SAL: The FEVAHR found World:Greenie
PML: The FEVAHR found (World:green World:circle)
I found Robbie.
PML: The FEVAHR is looking at (World:green World:circle)
I am looking at Robbie.

: Find a robot.
PML: The FEVAHR is looking at (World:green World:circle)
I am looking at Robbie.

Comparing Cassie’s response to the second request
with her response to the previous requests, one can

see that she realized that she was already looking at a
robot, and so did not need to do anything to find one.

4.4. Actions

Some KL terms denote primitive actions that the
GLAIR agent can perform. We call a structure con-
sisting of an action and the entity or entities it is per-
formed on, an “act”. For example, the act of going to
Bill consists of the action of going and the object Bill.
Acts are denoted by KL functional terms.

Each KL action term that denotes a primitive action
is aligned with a procedure in the PML. The proce-
dure takes as arguments the KL terms for the argu-
ments of the act to be performed. For example, when
Cassie is asked to perform the act of going to Bill, the
PML going-procedure is called on the KL Bill-term.
It then finds the PML-description of Bill, and (via the
SAL) causes the robot hardware to go to an object in
the world that satisfies that description (or causes the
robot simulation to simulate that behavior). The PML
going-procedure also inserts the KL term denoting the
state of Cassie’s going to Bill into the relevant modal-
ity register(s), which whenNOW moves (seeSection
4.5), causes an appropriate proposition to be inserted
into Cassie’s belief space.

Acts whose actions are primitive are considered
to be primitive acts. Composite acts are composed
of primitive “control actions” and their arguments,
which, themselves are primitive or composite acts.
Control actions include sequence, selection, iteration,
and non-deterministic choice[21,27–30,50]. There are

also propositions for act preconditions, goals, effects,
and for plans (what some call recipes) for carrying out
non-primitive acts.
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In the interactions shown above, sentences preceded
by “SAL:” were printed by the simulated action func-
tion, which was called by the PML procedure aligned
with the KL term for finding something. When Cassie
was asked to look at Robbie, she did so by finding
Robbie, because there is a KL belief that the plan for
carrying out the non-primitive act of looking at some-
thing is to find that thing.

4.5. Time

As mentioned above, theNOW register always con-
tains the KL term denoting the current time[20,23,
24,41]. Actually, since “now” is vague (it could mean
this minute, this day, this year, this century, etc.),NOW
is considered to include the entire semi-lattice of times
that include the smallest current now-interval Cassie
has conceived of, as well as all other times containing
that interval.
NOW moves whenever Cassie becomes aware of a

new state. Some of the circumstances that cause her
to become aware of a new state are: she acts, she ob-
serves a state holding, she is informed of a state that
holds.NOW moves by Cassie’s conceiving of a new
smallest current now-interval (a new KL term is in-
troduced with that denotation), andNOW is changed to
contain that time. The other times in the oldNOW are
defeasibly extended into the new one by adding propo-
sitions asserting that the newNOW is a subinterval
of them.

Whenever Cassie acts, the modality registers change
(see above), andNOW moves. The times of the state(s)
newly added to the modality registers are included in
the newNOW semi-lattice, and the times of the state(s)
deleted from the modality registers are placed into
the past by adding propositions that assert that they
precede the newNOW.

The following interaction, following the ones shown
above, shows an action of Cassie’s first being in the
present, and then being in the past:

: Who have you talked to?
I am talking to you.

: Talk to Bill.
PML: The FEVAHR is starting to talk
to b6
I am talking to you, Bill.
: Who have you talked to?

I talked to Stu
and I am talking to you.

The term denoting the state of Cassie’s talking to
Stu did not change between the first of these interac-
tions and the third. What did change were: the state of
Cassie’s talking to Stu was replaced in theSPEECH
register by the state of Cassie’s talking to Bill; a propo-
sitional term was added to the KL that the time of
talking to Stu was before the time of talking to Bill;
and theNOW register was changed to include the time
of talking to Bill and the times that include it.

To give GLAIR agents a “feel” for the amount of
time that has passed, the PML has aCOUNT register
acting as an internal pacemaker[20,24]. The value
of COUNT is a non-negative integer, incremented at
regular intervals. WheneverNOW moves, the following
happens:

(1) The old now-intervalto is aligned with the current
value ofCOUNT, grounding it in a PML-measure
of its duration.

(2) The value ofCOUNT is quantized into a value
δ which is the nearest half-order of magnitude
[19] to COUNT, providing an equivalence class of
PML-measures that are not noticeably different.

(3) A KL term d, aligned withδ, is found or created,
providing a mental entity denoting each class of
durations.

(4) A belief is introduced into the KL that the duration
of to is d, so that the agent can have beliefs that
two different states occurred for about the same
length of time.

(5) COUNT is reset to 0, to prepare for measuring the
new now-interval.

4.6. Language

Cassie interacts with humans in a fragment of En-
glish. Although it is possible to represent the linguistic
knowledge of GLAIR agents in the KL, use reasoning
to analyze input utterances[32–34,45], and use the
acting system to generate utterances[12,13], we do not
currently do this. Instead, the parsing and generation
grammars, as well as the lexicon, are at the PML (see,
e.g.[35,38,49]). There are KL terms for lexemes, and
these are aligned with lexemes in the PML lexicon.
We most frequently use a KL unary functional term to
denote the concept expressed by a given lexeme, but
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this does not allow for polysemy, so we have occa-
sionally used binary propositions that assert that some
concept may be expressed by some lexeme. There may
also be KL terms for inflected words, strings of words,
and sentences. This allows one to discuss sentences
and other language constructs with GLAIR agents.

This facility was used for Cassie to understand the
human inputs shown in the example interactions in
this paper, and for her to generate her responses (the
sentences beginning with “I”). We can also use the
low levelsurface function to see the NL expression
Cassie would use to express the denotation of various
SNePS terms (the prompt for this Lispish interaction
level is “∗”):

∗ (surface b1)
me

∗ (surface b5)
Stu

∗ (surface b6)
you

∗ (surface m21)
green

∗ (surface m115)
I found a red robot.

∗ (surface m332)
I am looking at Robbie.

(Remember, Cassie is currently looking at Robbie and
talking to Bill.)

5. Related work

Coradeschi and Saffiotti[4,6] present a model of
anchoring in an agent with a symbol system, which
includes object symbols and unary predicate symbols,
and a perceptual system, which includes attributes
and percepts. Their grounding relation relates pred-
icate symbols, attributes, and attribute values. Their
anchor is a partial function from time to quadruples
of: object symbols; percepts; partial functions from
attributes to attribute values; and sets of predicate
symbols. Their anchor is “reified in an internal data
structure” [7, p. 408]. Their symbol system corre-
sponds to our KL, and their perceptual system to a
combination of our PML and SAL. While their an-
chor is a data structure that cuts across their symbol
and perceptual systems, our KL and PML commu-

nicate by passing PML-descriptions from one to the
other, sometimes by socket connections between dif-
ferent computers. Their discussion of “perceptual
anchoring of symbols for action”[6] concerns the
anchoring of object symbols of objects the actions are
performed on. We also discussed the anchoring of ac-
tion symbols to the PML procedures that carry them
out.

Santos and Shanahan[37] discuss anchoring as the
“process of assigning abstract symbols to real sen-
sor data” and develop a theory whose “universe of
discourse includes sorts for time points, depth, size,
peaks, physical bodies and viewpoints.Time points,
depthand sizeare variables that range over positive
real numbers (R+), peaks are variables for depth
peaks,physical bodiesare variables for objects of
the world, viewpointsare points inR3” [pp. 39–40,
italics in the original]. We consider data such as these
to belong at the PML, as not being the sort of entities
people reason and talk about, and therefore, not the
sort of entities cognitive robots should have at the KL.
We view anchoring as the aligning of physical-level
representations such as these to the KL terms used
for reasoning.

Jackendoff[26] explicates a theory in which “the
character of a consciously experienced entity is func-
tionally determined by a cognitive structure that con-
tains the following feature types: an indexical feature
to which descriptive features can be attached; one
or more modalities in which descriptive features are
present; the actual descriptive features in the avail-
able modalities”[27, p. 313]. His indexical features
correspond with our KL term, and his descriptive
features correspond with our PML-descriptions. His
suggestion that “we think of the descriptive features
as being linked to a common indexical feature”[27,
pp. 311–312]parallels our suggestion inSection 2of
KL terms as pivots.

6. Summary

We have given an informal, but coherent, uni-
fied, overview of our approach to connecting the
abstract-level representations to the physical-level
representations in GLAIR, an architecture for cogni-
tive robots and intelligent autonomous agents. The
abstract-level representations are terms of SNePS
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logic contained in the knowledge level (KL) of the
GLAIR architecture, while the physical-level repre-
sentations aren-tuples of perceptual features, proce-
dures, and other symbol structures contained at the
perceptuo-motor level (PML) of the architecture.

KL terms denoting perceivable entities, perceivable
properties, and recognizable categories are aligned
with PML-descriptions. Primitive actions are aligned
with PML procedures. Deictic and modality regis-
ters hold KL terms for individuals and states that the
agent is currently aware of, including states of its
own body. They are updated by the PML procedures.
TheNOW register is used to give the agent a personal
sense of time, including keeping track of current and
past states. KL terms denoting times and temporal
durations are aligned with PML numeric measures of
durations created by the PML pacemaker. Lexemes
are represented by KL terms that are aligned with
PML lexicon entries used by the parsing and genera-
tion grammars, which, like PML procedures, mediate
between the agent and the outside world, in this case,
humans with which she communicates.
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Abstract

This paper presents arguments for approaching the anchoring problem usingsemiotic symbols. Semiotic symbols are defined
by a triadic relation between forms, meanings and referents, thus having an implicit relation to the real world. Anchors are
formed between these three elements rather than between ‘traditional’ symbols and sensory images. This allows an optimization
between the form (i.e. the ‘traditional’ symbol) and the referent. A robotic experiment based on adaptive language games
illustrates how the anchoring of semiotic symbols can be achieved in a bottom-up fashion. The paper concludes that applying
semiotic symbols is a potentially valuable approach toward anchoring.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The symbol grounding problem that deals with the
question how symbols can be used meaningfully[8]
is one of the hardest problems in AI and robotics. As
many robotic applications use symbols for reasoning,
problem solving and communication, solutions for this
problem are extremely important for robotics research
and development. But symbol grounding is also an im-
portant problem in studying foundations of cognition
such as the evolution of language, as human language
is primarily symbolic[7].

Recently, a formalized solution for the technical as-
pect of the symbol grounding problem has been pro-
posed under the name ofanchoring [5]. Anchoring
concentrates on constructing and maintaining a rela-
tion between a symbol and a sensory image that is
acquired from observing a physical object. Symbol
grounding is, in addition to anchoring, also concerned
with ‘anchoring’ abstractions and, more fundamen-

E-mail address:p.vogt@cs.unimaas.nl (P. Vogt).

tally, with philosophical issues relating to the meaning
of symbols.

Many attempts to tackle the anchoring problem
start with the design of predefined symbol systems
that have predefined anchors to relate symbols with
visual percepts[5,13]. Recently, an increasing num-
ber of attempts have been made to approach the an-
choring problem from the bottom-up in which robots
develop their symbolic representations during their
evolution—be it phylogenetic and/or ontogenetic.
These attempts often relate to the development of
symbolic communication[2,12,16,22,24].

The common approach to tackle the anchoring
problem focuses on the development—hand-coded
or learned—of anchors between symbols and sen-
sory images[5]. This is a difficult problem since the
robots have to deal with the object constancy prob-
lem: when viewing an object from different locations,
the sensory images relating to this object differ enor-
mously because the size of the projection may differ
or because the object may be obscured. Humans are
well capable of dealing with object constancy, but it
is unclear how this works. One approach to tackle

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00353-6
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the problem of object constancy would be to develop
anchors between symbols and the real world object,
rather than between symbols and sensory images.

This paper proposes that the anchoring problem can
be solved in terms ofsemiotic symbols, which have
implicit anchors in the real world[22]. An experiment
based on Steels’[14] language game model illustrates
how anchors in these semiotic symbols may be con-
structed from the bottom-up through the use of lan-
guage. In addition, it is discussed how the presented
language game model may explain the cognitive phe-
nomenon of family resemblance[23].

The paper is organized as follows:Section 2
presents the notion of semiotic symbols and discusses
some of the requirements for anchoring these. The ex-
perimental setup is presented inSection 3. Section 4
presents the experimental results. Discussions of the
issues raised in the paper are presented inSection 5.
Conclusions are given inSection 6.

2. The anchors of semiotic symbols

In this section, I will define the notion of semiotic
symbols as opposed to the definition of symbols that is
commonly used in AI. As I will argue below, semiotic
symbols have implicit anchors between some internal
structures and reality. Finally, I will discuss under what
conditions semiotic symbols may emerge.

The definition of semiotic symbols is adopted from
Peirce[11], who defined a semiotic symbol in terms
of a sign, which in semiotics is a relation between a
referent, meaningandform.1 These three elements can
be described as follows:

Form. A form (or word) is the shape of the sign,
which is not necessarily material.

Meaning.The meaning is the sense that is made of
the sign.

Referent.A referent is the object that stands for the
sign, which may include abstractions, actions or
other signs.

1 Peirce called this a symbol rather than a semiotic symbol. I call
it a semiotic symbol to distinguish it from the—in AI and some
other disciplines of cognitive science—commonly used definition
of a symbol, which is similar to the form of the semiotic symbol.
In addition, Peirce used the termsrepresentamen, interpretantand
object where I use the terms form, meaning and referent.

Fig. 1. The semiotic triangle illustrates the relations between ref-
erent, form and meaning that constitute a sign. Each line is an
anchor, but the dotted line indicates that the relation between a
form and a referent need not be a physical anchor, which must be
established between referent and meaning, and between meaning
and form.

The relation between the referent, form and mean-
ing is often illustrated with the semiotic triangle[10]
as shown inFig. 1. According to Peirce, a sign be-
comes a (semiotic) symbolwhen its form, in relation
to its meaning is arbitrary or conventionalized so that
the relationship has to be learned; otherwise the sign
is either anicon or an index.

A semiotic symbol becomes meaningful when it is
constructed and used functionally by an agent, which
is conform Wittgenstein[23]. As such the meaning
arises from the interaction of an agent that uses a
form with the referent. Elsewhere, I have argued that
the symbol grounding problem as presented by Har-
nad is no longer relevant when we adopt semiotic
symbols, because these areper definitiongrounded as
their meanings have intrinsic relations with their ref-
erents[22]. This, however, does not solve the symbol
grounding problem, but translates it into another—
more technical—problem, which I have coined the
physical symbol grounding problem.2

The physical symbol grounding problem is related
to the anchoring problem in that it aims at constructing
and maintaining anchors between symbols—i.e., the
forms in semiotic symbols—and reality. Coradeschi
and Saffiotti’s[5] description of anchoring, however,
focuses on anchors between forms and sensory data.
As the sensory data is acquired from a robot’s inter-
action with its environment, the forms relate to the
real world. The anchors, however, are not necessarily

2 This problem is coined the physical symbol grounding problem
to indicate that semiotic symbols provide a way to approach
symbol grounding with the physical grounding hypothesis[4]
as the semiotic symbols themselves form a coupling between
the environment and an agent’s behavior and thus are physically
grounded.
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constructed to maintain a relation with the real world
entity, but rather with the sensory image of this entity.
The physical symbol grounding problem, on the other
hand, does focus on constructing and maintaining a
relation with the real world by constructing anchors
between forms and real world entities, mediated by
anchors between forms and meanings, and between
meanings and referents. In addition, where anchor-
ing relates forms to sensory images (and thus to the
sensing of physical objects), the physical symbol
grounding problem is not restricted to constructing
semiotic symbols about physical objects, but also
include abstractions, movements and even other semi-
otic symbols.

The development of semiotic symbols depends on
how an agent interacts with its environment. When
the semiotic symbols are used in language, the way
the meaning is constructed depends on how it is used
[23]. However, the meaning of semiotic symbols also
must have a part that can be memorized, which can be
represented in terms of prototypical categories. When
mediating on the meaning of a semiotic symbol, agents
must confer to a similar meaning. Hence they must try
to find a common way to name the meaning. It is not
unlikely that this requires for the agents to construct
similar representations of the meanings they use. In
addition, the construction of semiotic symbols should
be adaptive, because it may be impossible to design
‘static’ anchors that apply to the dynamic interactions
of a robot with its environment[9]. An adaptive ap-
proach to construct semiotic symbols allows robots to
create new anchors when none exist or when exist-
ing ones are insufficient. As a result, I assume that a
semiotic symbol can have multiple meanings (or pro-
totypes) to stand for a referent in relation to a form.
These different meanings of a semiotic symbol will
then be used to interpret a referent on different oc-
casions. To achieve such a development of semiotic
symbols in communication, I assume that the mean-
ings co-develop with linguistic forms[3] by means of
cultural interactions between agents and their environ-
ment[18].

The anchors between meanings and referents arise
from the physical interactions between an agent and
its environment. The meanings are anchored to lin-
guistic forms through the production and interpreta-
tion of expressions. These physical anchors between
referents, meanings and forms provide an implicit

non-physical anchor between the forms and refer-
ents through their use in language (Fig. 1). The way
these anchors are formed is influenced by the agents’
interactions with their environment and individual
adaptations as a self-organizing process[14].

For robots that develop semiotic symbols from the
bottom-up, the above requires that robots are capable
of interacting with their environment, including each
other. Furthermore, they have to construct and memo-
rize categorizations that provide anchors between the
referents and the categories such that these can be used
appropriately in language. To use these in language
they also have to construct anchors between the cat-
egories and linguistic forms adaptively. How this can
be modeled is explained in the next section.

3. Adaptive language games

To illustrate how a set of anchored symbols can
be developed from the bottom-up, an experiment
is presented in which two mobile LEGO robots
bootstrapped a symbolic communication system. To
achieve this, the robots engaged in a series ofadap-
tive language games[14,17] in which they tried to
communicate the form that stands for an object and
adapt their internal structures in order to improve
their performance on later occasions. Various types of
language games have been implemented such asob-
servational games, guessing gamesandselfish games,
which differ from each other in the type of learning
mechanism the robots use and in what non-verbal in-
put they use to determine the reference of an utterance
[19,20]. For the experiment of this paper, the robots
played a series ofguessing games. Below follows a
technical description of the experimental setup.

3.1. The environment

In the experiment two mobile LEGO robots were
used that were equipped with light sensors, bumpers,
active infrared, two motors, a radio module and a sen-
sorimotor board, seeFig. 2. The light sensors were
used to detect the objects in the robots’ environment.
The other sensors and the motors were used to process
the physical behaviors of the robots.

The robots were situated in a small environment
(2.5 m×2.5 m) in which four light sources were placed
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Fig. 2. The LEGO robots and a light source as used in the experiment.

at different heights. The light sources acted as the ob-
jects that the robots tried to name. The four light sen-
sors of the robots were mounted at the same height
as the different light sources. Each sensor outputs its
readings on asensory channel. A sensory channel is
said tocorrespondwith a particular light source if the
sensor has the same height as this light source. The
goal of the experiment was that the robots developed a
lexicon with which they could successfully name the
different light sources.

3.2. Sensing, segmentation and feature extraction

Through the interactions of the robots with their
environment, they obtained raw sensory data. In or-
der to reduce the redundant information from this
high dimensional data, the robots transferred this data
into low dimensionalfeature vectors. The process of
acquiring feature vectors was done bysensing, seg-
mentationand feature extraction. Each subsequent
step reduced the amount of sensory data as if it were
a sieve.

3.2.1. Sensing
A guessing game started when both robots were

standing close to each other with their backs ‘facing’
each other.3 During the sensing phase, the robots ro-

3 In the original implementation, the robots aligned themselves
autonomously[17], but to speed up the experiments, the robots
were placed by hand for this experiment.

tated one by one 720◦ to obtain a spatial view of their
environment. A spatial view contained the raw sen-
sory data from the middle 360◦, which can be written
in the form of a matrix4

X =




x1,1 . . . x1,q

...
. . .

...

xn,1 . . . xn,q


 , (1)

where each row represents the sensory data of then

sensory channels (four in the experiment) and the de-
tection ofq measurements are given in the columns.5

The sensory data was sent to a stand alone PC where
all further processing took place off-line.

Fig. 3 shows the sensing of the two robots during
a guessing game. The left figure shows that robot A
clearly detected the four light sources; there appears
a ‘winning’ peak for every light sensorsi that cor-
responds to one light source. The right figure shows
that robotB did not sense all four light sources clearly
and hence acquired a different view than robotA. This
happened because both robots were not located at the
same position.

4 The robots rotated twice instead of once to ensure they rotated
at a constant speed when the actual sensing started. This is done
because the onset and offset of the movement induced a warped
view, which in turn induced much noise for the segmentation.

5 Note that although the robots have more than four sensors only
the four light sensors are used to construct anchors.
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Fig. 3. The sensing of robot A (left) and robot B (right) during a language game. The plots show the spatial view of the robots’ environment.
It was acquired during 360◦ of their rotation. They-axis shows the intensity of the sensors, while thex-axis determines the time (or angle)
of the sensing in PDL units. A PDL unit takes about 1/40 s, hence the total time of these sensing events took about 1.5 s for robot A and
1.3 s for robot B.

3.2.2. Segmentation
The segmentation phase extracted connecting re-

gions where the sensory data exceeded a threshold that
represented the upper noise level of that sensor. These
regions were supposed to be induced by the sensing
of a light source. To accomplish this segmentation, the
raw sensory inputX was thresholded for noise result-
ing in X′ = matrix(x′

i,j) according to

x′
i,j = H(xi,j − Θi), (2)

where

H(x) =
{

x if x ≥ 0,

0 if x < 0
(3)

andΘi represents the upper noise level of light sensor
i, which was acquired empirically for each sensor.

Given the preprocessed sensory dataX′, a segment
Sk can be defined as thelargestmatrix

Sk =




x′
1,r . . . x′

1,m

...
. . .

...

x′
n,r . . . x′

n,m


 , (4)

where in each columnj there is at least one element for
whichx′

i,j > 0 for i = 1, . . . , n andj = r, . . . , m; and
where 1≤ r < m < q. Note that the inequalityr <

m implies that the segments have to contain at least
two measurements to filter out further noise. When

a segment was detected at the start of the view and
another was detected at the end, both segments were
concatenated.

Ideally, the segmentation resulted in a set that con-
tained a segment for each light source. This set consti-
tuted what is called thecontextof the guessing game,
i.e. Cxt = {S1, . . . , SN}, whereN is the number of
segments that were sensed. Each robot participating
in the guessing game acquired its own context which
could differ from another.

3.2.3. Feature extraction
The feature extraction resulted in a feature vector

f = (f1 . . . , fn), wherefi = ϕ(Sk) was a function
that normalized the maximum intensity of a sensory
channeli to the overall maximum intensity within a
segmentSk. That is, the maximum value in rowi of the
matrix Sk was normalized to the maximum value of
the entire matrix. Mathematically, the functionϕ(Sk)

is given by

ϕ(Sk) = maxj∈[r,m](x
′
i,j)

maxSk
(x′

p,q)
. (5)

This way the function extracted the invariant property
that the feature of the sensory channel with the overall
highest intensity inside a segment had a value of 1,
whereas all other features had a value≤ 1. Or, in other
words, the feature with value 1 corresponded to the
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light source the feature vector referred to. The space
that spans all possible feature vectorsf is called the
n-dimensional feature spaceF = [0, 1]n, or feature
spacefor short.

3.3. Discrimination game

Each robot played adiscrimination game[15] to
form a memorized representation of the meaning—or
meaning for short—for each (potential)topic. A topic
is a segment from the acquired context as described
by its feature vector. The speaker selected its topic
randomly from the context and this topic became the
subject of communication. As the hearer of a guessing
game tried to guess what the speaker’s utterance re-
ferred to, it had to consider all segments in its context
as apotential topic. A discrimination game was suc-
cessful when it resulted in one or more categories that
distinguished the topic from all other segments in the
context. When the robot failed to find such a category,
the discrimination game failed and the robot expanded
its ontology in which the categories were stored. The
discrimination game is a sequence of three processes:
categorization, discriminationandadaptation.

3.3.1. Categorization
A categoryc = 〈c, ν, ρ, κ〉 was defined as a region

in the feature spaceF and it was represented by scores
ν, ρ and κ and a prototypec = (y1, . . . , yn), where
yi were the coordinates of the prototype in each of
the n dimensions ofF. The category was the region
in F in which the points had the nearest distance to
c. Each feature vector in the context was categorized
using the1-nearest neighbor algorithm[6]. So, feature
vectorf was categorized with that categoryc for which
the prototypec had the smallest Euclidean distance
‖f − c‖.

In order to allow generalization and specialization
of the categories, different versions of the feature space
Fλ were available to a robot. In each space a different
resolution was obtained by allowing each dimension
of Fλ to be exploited up to 3λ times, whereλ =
0, . . . , λmax. How this was done will be explained in
Section 3.3.3.

The use of different feature spaces allowed the
robots to categorize a segment in different ways.
The categorization of segmentSk resulted in a set of
categoriesCk = {c0, . . . , cm}, wherem ≤ λmax.

3.3.2. Discrimination
Suppose that a robot wants to find distinctive cate-

gories for (potential) topicSt , then a distinctive cate-
gory set, DC, can be defined as follows:

DC = {ci ∈ Ct|∀(Sk ∈ Cxt\{St}) : ci /∈ Ck}. (6)

Or in words, the distinctive category set DC consists of
all categoriesci of the topicSt that are not a category
of any other segmentSk in the context Cxt.

3.3.3. Adaptation
If DC = ∅, the discrimination game fails and the

robot should adapt its ontology by constructing new
categories. Suppose that the robot tried to categorize
feature vectorf = (f1, . . . , fn), then new categories
were created as follows:

(1) Select an arbitrary featurefi > 0.
(2) Select a feature spaceFλ that has not been ex-

ploited 3λ times in dimensioni for λ as low as
possible. If no such space can be found, the adap-
tation is stopped.

(3) Create new prototypescj = (y1, . . . , yn), where
yi = fi and the otheryr are made by combining
the features from all existing prototypes inFλ.

(4) Add the new prototypical categoriescj =
〈cj, νj, ρj, κj〉 to the feature spaceFλ, with
ν = ρ = 0.01 andκ = 1 − (λ/λmax).

The three scoresν, ρ and κ together constitute the
meaning scoreµ = (1/3)(ν +ρ + κ), which was used
in the naming phase of the guessing games. Although
the influence of this score was small, it helped to select
a form-meaning association in case of an impasse.
Whereκ was kept constant,ν and ρ were increased
when the category was distinctive (ν) and when it was
used successfully in the naming phase (ρ); they were
lowered otherwise. Exact details of these updates can
be found in[20].

If the distinctive category set DC�= ∅, the discrimi-
nation game was a success and the DC was forwarded
to the naming phase of the guessing game. If a cat-
egoryc was used successfully in the guessing game,
the prototypec of this category was moved toward the
feature vectorf of the topic

c := c + ε · (f − c), (7)

whereε = 0.1 is a constant step size with which the
prototype moved towardsf . This way the prototypes
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became more representative samples of the feature
vectors it categorized.

The discrimination game as implemented here dif-
fers from the implementation of Steels[15] mainly
in the representation and construction of categories.
Steels used binary trees to split up the sensory (or fea-
ture) channels rather than using prototypes. The rea-
son for using prototypes is that the world as sensed
by a robot is not binary and splitting up categories
in binary trees seems therefore inappropriate. In ad-
dition, Steels allowed categories to be formed in only
one dimension or in any combination of the different
feature dimensions; while in this implementation the
categories were alwaysn-dimensional.

It is important to realize that all processing up to this
point was carried out by each robot individually. This
way, the ontologies, contexts and distinctive category
sets differed from robot to robot.

3.4. Production

After both robots obtained distinctive categories of
the (potential) topic(s), the speaker tried to communi-
cate its topic based on its lexicon. The lexiconL was
defined as a set of form-meaning associations:L =
{FMi}, where FMi = 〈Fi, Mi, σi〉 was a lexical entry.
Word-form Fi was made from an arbitrary combina-
tion of consonants and vowels taken from the alphabet,
meaningMi was represented by some category, and
association scoreσi ∈ 〈0, 1〉 was a real number that
indicated the effectiveness of the lexical entry based
on past interactions. Each form could be associated
with multiple meanings, and each meaning could have
associations with more than one form.

The speaker of the guessing game ordered the
distinctive category set DC based on the meaning
scoreµ. It selected the distinctive category with the
highest meaning score and searched its lexicon for
form-meaning associations of which the meaning
matched this distinctive category. If it failed to find
such an element, the speaker first considered the next
best distinctive category from the ordered DC. If all
distinctive categories were explored and still no entry
was found, the speaker could invent a new form as
will be explained inSection 3.7.

If there were one or more lexical entries that fulfilled
the above condition, the speaker selected the entry
that had the highest association scoreσ. The form that

was thus produced was uttered to the hearer. In the
on-board implementation this was done using radio
communication, off-line the utterance was a shared
variable.

3.5. Interpretation

On receipt of the utterance, the hearer searched its
lexicon for entries for which the form matched the ut-
teranceand the meaning matched one of the distinc-
tive categories of the potential topics. If it failed to
find one, the lexicon had to be expanded, as explained
in Section 3.7.

If the hearer found one or more entries, it selected
the entry that had the highest scoreΣ = σ + α · µ,
whereα = 0.1 is a constant weight. The potential topic
that was categorized by this meaning was selected by
the hearer asthe topic of the guessing game. That is,
this segment was what the hearer guessed to be the
subject of communication.

3.6. Corrective feedback

The effect of the guessing games was evaluated by
the corrective feedback. If the speaker had no lexi-
cal entry that matched a distinctive category, or if the
hearer could not interpret the speaker’s utterance be-
cause it did not have a proper lexical entry in the
context of the game, then the guessing game was a
failure. The guessing game was successful when both
robots communicated about the same referent. So if
the hearer interpreted the utterance and thus guessed
the speaker’s topic, the robots had to evaluate whether
they communicated about the same referent.

In previous work there have been various attempts
to implement the corrective feedback physically as a
pointing behavior[17]. All these attempts, however,
failed. In order not to focus too long on this problem
and to prove the principle, it was assumed for the time
being that the robots could do this and the verification
was simulated. Naturally, this problem needs to be
solved in the future.

The corrective feedback was simulated by compar-
ing the feature vectors of the two robots relating to
their topics. If the features with value 1 matched for
both topics, this means that the topics corresponded to
the same referent and the guessing game was consid-
ered successful. If the hearer selected an inconsistent
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topic during the interpretation, then there was amis-
match in referentand the guessing game failed.

3.7. Lexicon adaptation

Depending on the outcome of the game, the lexi-
con of the two robots was adapted. There were four
possible outcomes/adaptations:

(1) The speaker had no lexical entry.In this case
the speaker created a new form and associ-
ated this with the distinctive category it tried to
name. This was done with a certain probability,
which was kept constant during the experiment at
Ps = 0.1.

(2) The hearer had no lexical entry.The hearer
adopted the form uttered by the speaker and as-
sociated this with the distinctive categories of a
randomly selected segment from its context.

(3) There was a mismatch in referent.Both robots
adapted the association scoreσ of the used lexi-
cal entry byσ := η · σ, whereη = 0.9 is a con-
stant learning parameter. In addition, the hearer
adopted the utterance and associated it with the
distinctive categories of a different randomly se-
lected segment.

(4) The game was a success.Both robots reinforced
the association score of the used entry byσ :=
η ·σ +1−η. In addition, they lowered competing
entries (i.e. entries for which either the form or
the meaning was the same as in the used entry)

Fig. 4. (Left) The CS and DS of the experiment. (Right) The evolution of the number of meanings and forms that were used successfully
by the robots in one run of the experiment.

by σ := η · σ. The latter update is called lateral
inhibition.

The coupling of the naming phase with the dis-
crimination game and the sensing part makes that
the emerging lexicon is grounded in the real world.
The robots successfully solve the physical symbol
grounding problem in some situation when the guess-
ing game is successful, because only in those case a
semiotic triangle (Fig. 1) is constructed completely in
a functional—and thus meaningful—sense.

4. Experimental results

An experiment was done for which the sensory data
of the sensing phase during 1000 guessing games was
recorded. From this data set it was calculated that
the a priori chance for successful communication was
23.5% when the robots randomly chose a topic. Be-
cause the robots did not always detect all the light
sources that were present, their context was not al-
ways coherent. This incoherence caused an upper limit
to the success rate that could be reached, called the
potential understandability, which was 79.5% on the
average.

The 1000 recorded situations were processed
off-line on a PC in 10 runs of 10,000 guessing games.
Fig. 4(left) shows the average communicative success
(CS) and discriminative success (DS) of the 10 runs.
The CS measures the number of successful guessing
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Fig. 5. The referent-form competition diagram (left) shows the competition between forms to name referent light source L1. The
referent-meaning diagram (right) shows the competition between meanings to interpret light source L1. In both diagrams they-axis shows
the occurrence frequencies of successfully used forms or meanings over the past 200 games relative to the occurrence of the referent. The
x-axis shows the number of games played.

games, averaged over the past 100 games. The DS
measures the number of successful discrimination
games, also averaged over the past 100 guessing
games. As the figure shows, the DS reaches a value
near 1 very fast. Hence, the robots were well capable
of finding distinctive categories for the sensed light
sources. The CS was somewhat lower. It increased
towards a value slightly below 0.8 near the end. Since
this is close to the potential understandability, the
robots were capable to construct a shared lexicon
within its limits.

Fig. 4 (right) shows the number of different mean-
ings and forms that were used at least once success-
fully in one run of the experiments. As the figure
shows, the number of meanings used were much
higher than the number of used forms. The robots
used up to 450 meanings in relation to the four ref-
erents, while they only used 16 forms to name them.
So, there are approximately 28× more meanings used
than forms. Although the robots used about 450 mean-
ings to distinctively categorize the four light sources,
further analysis revealed they only used about 20–25
meanings frequently. In addition, only six or seven
forms were used regularly. So, the robots named each
referent consistently with one or two forms.

The competition diagram ofFig. 5(left) shows how
the occurrence frequencies of the used forms to name
one of the referents evolved during one run of the
experiment. As this figure makes clear, the most fre-

quently used form “tyfo” clearly won the competition
to name light source L1. At the bottom of the dia-
gram, other forms reveal a weak competition. Similar
competitions can be observed for the other referents
[20,22]. Fig. 5 (right) shows that the competition be-
tween meanings to categorize a referent is stronger,
which would be expected givenFig. 4 (right). More
experimental results can be found in[20,22].

5. Discussion

In this section, I will discuss why the notion of
semiotic symbols is useful in relation to the anchor-
ing problem. The discussion will be based on the ob-
servation that semiotic symbols can be constructed by
optimizing the anchor between their forms and the ob-
jects they stand for; thus solving the object constancy
problem. Furthermore, I will explain how the use of
semiotic symbols can model the phenomenon of fam-
ily resemblance.

In this paper the ‘alternative’ definition of symbols
as semiotic symbols is adopted to provide the possi-
bility to construct anchors between symbols (or forms
as I call them) and the real world. But is there any ad-
vantage of using semiotic symbols over the traditional
symbols in relation to the anchoring problem? In the
original anchoring problem[5], anchors are sought
between symbols and perceptual features, while the
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symbols’ relations to the real world objects are some-
what brought to the background. The experiment of
this paper revealed that it is the relation between the
form and the real world object that is being optimized
in terms of a one-to-one relationship. The relation be-
tween the form and the sensory data (or even the cat-
egories) does not reveal this optimization. I do not
argue that the relationship between form and sensory
data is unimportant, but I do want to argue that the re-
lation between form and referent is the one we should
care for.

Before explaining why the relation between form
and referent is crucial, I will elaborate on the im-
portance of the relation between sensory images and
forms. The processes between sensing and feature
extraction are extremely important because these
transform the raw sensory data into more manageable
feature vectors that additionally bear some invariant
information concerning the referents. In addition, the
intermediate representations of categories are impor-
tant to allow the optimization between form and refer-
ent, because the discrimination games function—like
the sensing, segmentation and feature extraction—as
a sieve. This sieve enables the robots to bind the nu-
merous variation of the sensing to more informative
granules that are less numerous. These granules are,
although still numerous, more manageable than the
raw sensory data; thus allowing to close the coupling
between referents, meanings and forms more easily.

The optimization between referent and form, how-
ever, is the most dominant process for the construction
of consistent anchors between these two elements. To
understand how this optimization works, it is impor-
tant to realize that robots try to construct a lexicon
that they can apply in different contexts. The lexicon
is constructed through the interplay of adaptations un-
der selective pressures and pragmatic language use.
In the experiment, anchors were formed between ref-
erents and meanings, between meanings and forms;
and between forms and referents. The results show
that many anchors were used between referents and
meanings, and between meanings and forms. How-
ever, when forms were used, they were well anchored
to the referents they name. Failures in the discrimi-
nation game caused the emergence of so many mean-
ings, because every time a discrimination game fails,
a new category was added to the ontology. Many of
them were associated with a form when they became

distinctive in a later discrimination game. As associa-
tions were selected during a guessing game when their
meanings fitted in the context—even if the scores were
not high—a lot of these meanings were used success-
fully in the game.

The same context dependency causes the emergent
tendency that the robots do not use so many forms,
despite the variability of the acquired contexts dur-
ing different games and between the robots. This can
be understood by realizing that when one robot cat-
egorizes a referent differently in different guessing
games, this does not necessarily mean that the other
robot finds different distinctive categories. When the
robot that uses the same distinctive category on dif-
ferent occasions, it will most likely use the same
form to express this meaning too. This allows the
other robot to use the form in association with the
two different meanings successfully, as the game is
context dependent. When such situations occur fre-
quently, this, in turn, allows the robots to use more
meanings than forms. These emerging dynamics of
the lexicon can be classified as semiotic dynamics and
illustrates how conceptual development is, at least to
some extent, dependent on language acquisition and
language use and vice versa. This is conform the—in
a weaker version—revived Sapir-Whorf thesis[3]. A
similar argument in favor of this weaker version of
the Sapir-Whorf thesis was made in another study
using language games[1]. In that study it was shown
that agents developed a shared categorization of the
color space when they used language, but a distinc-
tive categorization when they developed categories
without engaging in guessing games.

The optimization between referent and form solves,
at least to some extent, the notion of object constancy:
How can an object be recognized as being the same
when different views of such an object can result in
dramatically different sensory stimuli, for instance,
because it is partly obscured?Fig. 6 (left) illustrates
how the semiotic dynamics can explain the solution to
the object constancy problem. In the experiment, the
robots detected the light sources from different posi-
tions, resulting in different sensings—illustrated as the
continuum of sensings P inFig. 6 (left)—which may
yield different meanings M1 and M2. Nevertheless,
the system identifies the objects consistently, because
the one-to-many relations between form and meaning
converge at the level of form and referent.
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The results of the experiment in this paper show that
minimal autonomous robots can develop a shared set
of semiotic symbols from the bottom-up by optimizing
their anchors between forms and referents. However,
one of the driving forces for this optimization—the
corrective feedback—was simulated. This is a major
shortcoming as the method used—inspecting each
other’s internal states—is unrealistic and may under-
mine the principle. Nevertheless, the assumption was
adopted to test the principles of the underlying boot-
strapping mechanisms and not to get stuck on solving
this problem. A solution may come from applications
were robots evaluate the corrective feedback using
task-oriented behaviors, as was recently investigated
in simulations[21]. In these simulations, the feedback
came from the effect of the task that the agents had
to perform using the evolved language.

The semiotic dynamics of the guessing games help
to solve the object constancy problem, but it may
also help to explain another interesting phenomenon
observed in cognitive science, namelyfamily resem-
blance [23]. Family resemblance is the observation
that seemingly different things are called the same
without being ambiguous, like the meaning ofgames.
Where soccer and chess are typical games, a game like
swinging is not typical. Swinging lies near the border
of the ‘conceptual space’ of games, e.g. referent R1 in
Fig. 6(right). It has no direct resemblance with games
like soccer and chess, e.g. R2 and R3—but it has some
resemblance with other games that in turn do have re-
semblance with soccer and chess. Such categorization
process can be explained with the one-to-many rela-

Fig. 6. Illustration of two semiotic relations between referent R,
meaning M and form F. The left figure shows the continuum of
possible views of P of referent R as displayed as a rectangle. Some
part of the rectangle may be interpreted by M1 and another by
M2. When both meanings relate to the same form, this mechanism
solves the problem of object constancy. The right figure shows
how the model may explain family resemblance. The ovals should
be interpreted as Venn diagrams of the meanings M1 and M2.

tions between form and meaning. The word “games”
is associated with different meanings for soccer, chess
and swinging. The successful use of these meanings
in different situated language games allows the system
to emerge a family of resemblance. Optimization here
should be made on the relation between a form and
different referents. This optimization can be realized
through the use of language.

Concluding, the above discussions provide many
arguments in favor of using semiotic symbols over
the traditional symbols with respect to anchoring. The
most important argument is that in the construction of
semiotic symbols, anchors between forms and reality
are implicitly being optimized, rather than optimizing
anchors between symbols and sensory images.

6. Conclusions

This paper illustrates how a small group of au-
tonomous robots can develop a set of shared semi-
otic symbols in a bottom-up fashion by engaging in
adaptive language games. The semiotic symbols the
robots construct are defined by physical anchors be-
tween referents and meanings, and between meanings
and forms, which yield a non-physical anchor between
form and referent. The use of semiotic symbols allows
a profitable optimization to find, track and (re)acquire
anchors between forms and referents, rather than be-
tween forms and sensory images as proposed in the
original description of the anchoring problem[5].

The experiments show how a consistent construc-
tion of semiotic symbols is positively influenced by
their use in language. Through the use of language,
the forms are shared externally to the robots. In addi-
tion, the robots share the reference of their communi-
cation through the received feedback. These external
factors, together with the internal adaptations influence
the way the robots organize their conceptual spaces.
Thus their conceptual development is influenced to a
large extent by their language use, hence providing
an argument in favor of a weak interpretation of the
Sapir-Whorf thesis as discussed in[3].

To further broad our understanding on the emer-
gence of semiotic symbol systems in language use,
additional research is required on the emergence of
compositionality as this is one of the key aspects of hu-
man language use. Future research should concentrate
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on how compositional structures can be grounded in
the sensorimotor flow through grammatical language
use. In addition, more research is required to design
robotic applications that are capable of verifying the
effectiveness of their language use in order to provide
corrective feedback autonomously. Although further
research is required to improve and scale the model,
adaptive language games provide a potentially valu-
able technology for a bottom-up approach towards an-
choring semiotic symbols.
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Abstract

Traditional symbolic reasoning systems are typically built on a transaction model of computation, which complicates the
process of synchronizing their world models with changes in a dynamic environment. This problem is exacerbated in the
multi-robot case, where there are nown world models keep in synch. In this paper, we describe an inference grounding and
coordination mechanism for robot teams based on tagged behavior-based systems. This approach supports a large subset of
classical AI techniques while providing a novel representation that allows team members to share information efficiently. We
illustrate our approach on two problems involving systematic spatial search.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Autonomous mobile robots; Multi-robot teams; Behavior-based control

1. Introduction

Autonomous robots that reside in complex, dynamic
environments must anchor the abstract representations
they use to actual physical objects. The world around
the robot continually changes, and its sensory systems
must track those changes. In turn, the robot’s con-
trol systems must be ready to alter plans and actions
to suit its changing model of the world. Traditional
symbolic reasoning systems are typically built on a
transaction-oriented model of computation. Knowl-
edge about the world, or the “world model”, is stored
in a database of assertions in some logical language,
indexed perhaps by predicate name[20]. Populating
this database from a highly dynamic environment is
a difficult and non-trivial problem[13]. In this pa-
per, we argue that the issue of world model synchro-
nization is even more problematic in a cooperative
multi-robot team, and we propose an alternative coor-

∗ Corresponding author. Fax:+1-847-491-5258.
E-mail addresses:khoo@cs.northwestern.edu (A. Khoo),
ian@cs.northwestern.edu (I. Horswill).

dination approach based on periodic knowledge-base
broadcast. Finally, we describe an implementation of
this approach that was used on two tasks involving
systematic spatial search.

2. World model synchronization

When changes in the environment occur often, the
world model must also be updated frequently, or the
reasoning system will operate on stale data. Addition-
ally, assertions in the world model database can be
dependent on other assertions. For example, the asser-
tion that an area is safe could depend on the assertion
that the robot does not currently observe any preda-
tors in the area. If the latter assertion is withdrawn,
then the former must be too. Hence, each update from
the perceptual systems can trigger a cascade of fur-
ther transactions, resulting in additional load on the
system. In principle, modifying such a system to track
changes in the environment would require recording
dependencies between stored assertions and their jus-
tifications such that when the perceptual system added

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00354-8
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or retracted an assertion, the reasoning system could
enumerate and update the set of existing assertions
affected by the change. This is a sufficiently compli-
cated process that we know of no implemented phys-
ical robots that do it.

Keeping the knowledge-base synchronized with
the external environment becomes even more difficult
in cooperative activity. Rather than one robot with a
single knowledge-base, we now haven robots with
n knowledge-bases to keep consistent both with the
world and with one another. While others have shown
that there exist cases in which agents can achieve co-
operation despite discrepancies in their world models
[22], there is currently no concrete theory on what
tasks are achievable despite inconsistent world mod-
els. Therefore, we conservatively assume that failure
to properly coordinate the knowledge-bases could
lead to system delusion[12], i.e. the databases are
now inconsistent, and there is no obvious way to
repair them, resulting in failure to coordinate activity.

An analysis of asynchronous peer-to-peer replicated
databases by Gray et al.[11] suggests that a potential
problem exists. Aconflict occurs when two different
databases attempt to update the same object, or race
to install their updates at other databases. Whenever
conflicts occur, the replication mechanism must detect
this and somehow reconcile the two transactions so
that their updates are not lost. Under the following
simple assumptions

• The databases are updated through lazy group repli-
cation, i.e. the originating database updates its en-
tries, and then propagates the update to other repli-
cas asynchronously.

• Each node updates any other database location with
equal probability.

• All nodes impose an equal load on the system.
• There are a fixed number of objects per transaction.

Gray et al. were able to show that the conflict rate
per second is:

O

(
r2a3tn3

s

)
,

wherer is the number of transactions per second ini-
tiated by each node,a is the number of locations
updated per transaction,t is the time required to com-
plete an update,s is the number of distinct entries in

the database andn is the number of nodes (which, in
our case, is equivalent to the number of robots) in the
system.

The critical point here is that the number of con-
flicts encountered by the system increases with the
third power of the number of nodes or robots. As
Gray et al. point out, “having the reconciliation rate
rise by a factor of 1000 when the system scales up
by a factor of 10 is frightening”. While the two mod-
els are not exactly analogous, there is sufficient over-
lap between the problem of synchronizing different
knowledge-bases and the issue of distributed database
replication to elicit concern.

Furthermore, note that message propagation times
are not presently part of the conflict model as pre-
sented above. If message delays were added to the
model, then each transaction would last longer, hold
more resources and generate more conflicts. Moreover,
mobile robots necessarily communicate via wireless
links, which are well known to have higher error rates
[9,26], and hence higher message delays, than their
wired counterparts. This analysis suggests that we
could potentially face serious scalability issues for any
physical multi-robot system with a database-driven
knowledge model. The work necessary to reconcile
the conflicts that could arise as team members tried
to communicate knowledge to other members could
eventually overwhelm the robots, or leave them badly
out of synch.

3. Related work

Recent progress has been made towards the devel-
opment of a formal framework for anchoring symbols
[7,8]. However, most implemented physical systems
take the approach of equipping the symbolic system
with a set of domain-dependent epistemic actions that
fire task-specific perceptual operators to update spe-
cific parts of the knowledge-base. The programmer
designing the knowledge-base is responsible for en-
suring that the proper updates are done, i.e. the right
epistemic actions are fired at the appropriate times.
This alleviates some of the difficulties of getting infor-
mation into the knowledge-base in a timely manner.
However, any mistakes by the programmer will lead
to inconsistencies between the knowledge-base used
by the symbolic system and the external environment.
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Tiered architectures, such as[2,4,6], that combine
symbolic and behavior-based systems inherit these
model coherency issues, because their symbolic layer
still relies on a database-driven world model for its
reasoning process. As we pointed out in the previous
section, these issues are exacerbated in a cooperative
environment where multiple knowledge-bases have to
be synchronized.

We feel that these knowledge-base synchronization
issues have led to a paucity of physical multi-robot
systems utilizing symbolic reasoners. There has been
excellent work done on coordination protocols for co-
operative agents[5] in the multi-agent community, and
these protocols have been successfully used for agent
teamwork in simulation environments[23]. However,
the only physical multi-robot team that utilizes both a
symbolic reasoner (in a tiered architecture) and active
communication that we know of is the DIRA system
[21].

Most existing multi-robot controllers implemented
on physical systems focus on extending traditional
behavior-based techniques[1] to a team environment
(for example see[3,10,19]). Behavior-based systems
allow rapid response to changes in the environment
due to tight sensor–actuator integration. Many of these
behavior-based systems also obey circuit semantics,
which means their control programs are generally im-

Fig. 1. Communication via virtual wires.

plemented as feed-forward circuits. This simplifies
the communication structure necessary to maintain
coordination between team members. Essentially com-
munication in these behavior-based multi-robot con-
trollers is reduced to virtual wires connecting the ap-
propriate circuitry on one team member to another’s
(seeFig. 1). The wires carry relevant information from
a robot to its counterparts. Conversely, each robot
views its teammates simply as additional sensory in-
put, and integrates the incoming information as appro-
priate. Conveniently, virtual wires can be simulated
on physical robots using a broadcast communication
mechanism such as User Datagram Protocol (UDP).

However, this convenience is not without cost. The
strengths of the behavior-based approach are also
its weakness. Circuit semantics impose a proposi-
tional representation on the reasoning system, i.e.
representations without predicate/argument structure.
Propositional representation makes most reasoning
and planning tasks both difficult and clumsy since
they require redundant copies of the system for each
possible argument to a predicate or action[18].
Since most multi-robot controllers are extensions
of behavior-based techniques, they inherit the same
issues from the basic underlying architecture.

Some systems have attempted to solve the syn-
chronization problem through techniques other than
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active communication. Wie[25] proposes an approach
that achieves coordination through teammate obser-
vation and plan inference. Ronald Kube and Zhang
[17] utilizes stochastic techniques that allow the in-
dividual robots to achieve a global goal through the
use of simple non-interference behaviors. Some sys-
tems in the robocup small-sized robot league utilize a
traditional symbolic reasoner that relies on a central
shared world model[24]. In this case, reasoning is per-
formed at a central server location where the master
knowledge-base is located, and then actions are trans-
mitted to the individual robots. Little, if any, reasoning
is done on the client side.

In this paper, we only consider team models where
members are fully autonomous entities with indepen-
dent decision making ability, i.e. the robots are not
reliant upon a central reasoner. Each robot is responsi-
ble for deciding its own course of action. Furthermore,
we are focusing on domains where passive communi-
cation or stochastic techniques are insufficient. That
is, team members will have to coordinate through the
use of explicit communication.

4. HIVEMind

While designing our current multi-robot control ar-
chitecture, we wanted to utilize as many useful fea-
tures of traditional symbolic AI systems as possible
on our robots. Specifically, we would like to have the
ability to utilize predicate/argument structure in our
representations. However, we also wanted to avoid im-
porting the model coherence and database synchro-
nization issues that symbolic systems encounter. That
is, the symbols utilized in our inference rules should
be tightly anchored to updates from the sensory sys-
tems as well as incoming information from other team
members.

Our efforts in this direction have resulted in HIVE-
Mind (Highly Interconnected Very Efficient Mind),
a multi-robot control architecture that supports very
efficient sharing of symbolic information between
team members. The HIVEMind architecture is built
on role-passing[13], a type of tagged behavior-based
system [16]. Role-passing provides the developer
with a limited set of domain-independent indexical
variables (called roles) such asagent, patient, source,
destination, etc. When a role is bound to an object,

a tracker is dynamically allocated to it and tagged
with the name of the role. Since the number of roles
is relatively small, we can represent the extensions of
unary predicates as bit-vectors, with one bit represent-
ing each role. This representation allows inference
to be performed using bit-parallel operations in a
feed-forward network.

Alternatively, for commodity serial hardware, we
can represent a unary predicate extension using a
single machine word. Inference rules can then be com-
piled directly into straight-line machine code consist-
ing only of load, store, and bit-mask instructions[13].
While more limited than a full logic-programming
system, it does allow us to express much of the kinds
of inference used on physical robots today. The infer-
ence rules can be completely rerun on every cycle of
the system’s control loop, allowing the robots to re-
spond to contingencies as soon as they are sensed. The
compiled code is sufficiently efficient that inference is
effectively free—1000 Horn clauses of five conjuncts
each can be completely updated at 100 Hz using less
than 1% of a current CPU. In short, role-passing af-
fords us the ability to implement traditional inference
rules using circuit semantics.

In addition to allowing very fast inference, this
representation allows for very compact storage of a
robot’s current set of inferences. Unary predicates
are stored in one machine word. Function values are
represented using small arrays indexed by role. This
compactness, combined with the circuit semantic na-
ture of role-passing, allows us to take full advantage of
simplified communication mechanism described pre-
viously, i.e. virtual wires connecting team members.
In fact, for the kinds of tasks currently implemented
by multi-robot teams, the representation we use is
sufficiently compact to allow all function and predi-
cate values of a robot to fit into a single UDP packet.
Robots can therefore share information by periodi-
cally broadcasting their entire knowledge-base, or at
least all those predicates and functions that might be
relevant to other team members.

Knowledge-base broadcast is a simple communica-
tion and coordination model that provides each robot
with transparent access to every other robot’s state, es-
tablishing a kind of “group mind”. It allows the team to
efficiently maintain a shared situational awareness and
to provide hard real-time response guarantees; when
a team member detects a contingency, other members
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are immediately informed and respond within one
update cycle without the need for negotiation proto-
cols. Moreover, since HIVEMind systems are based
on role-passing, multi-robot controllers implemented
using this architecture have greater representational
power and flexibility than pure behavior-based sys-
tems with propositional representations. That is,
our communication is not based on passing propo-
sitional values such assee-blue-object or
see-red-object, but rather predicates such as
see-object(X). Furthermore, since all relevant
team knowledge is continuously being rebroadcast,
each member’s knowledge-base converges to the
same state within O(1) time of joining the HIVE-
Mind. This means that team members can be brought
online and integrated into the HIVEMind very easily,
allowing us to add or subtract team members dynam-
ically. This also implies that, should communication
fail for some time, the team would very rapidly return
to a common state when it is restored.

Fig. 2 shows an abstract HIVEMind configuration
for a two-robot team. Each team member has its own
inference network. The network is driven both by its
own sensory system and by the incoming data from the
other team members. Outputs from the current robot’s
sensory systems are fed into aggregation functions on
other team members. The output from those aggre-
gation functions is then fed into the inference rules
which drive the motor behaviors.

The aggregation functions are used to combine in-
formation from teammates and sensors into a single
coherent output for the inference rules to reason over.
In ann robot team, each robot’s inference network has

Fig. 2. Abstract view of HIVEMind.

n distinct sets of inputs, one generated internally, and
the rest received from the robot’s teammates. These
distinct inputs are first fused into a single set of inputs:

K = β(k1, k2, . . . , kn),

where theki are the tuples of inputs from each robot,K
is the final fused tuple, andβ is the some aggregation
function that performs the fusion. For example, if a
particular component of the input was a proposition,
the aggregation function might simply OR together the
corresponding components of theki. Thus the robot
would believe the proposition if and only if some robot
had evidence for it. In more complicated cases, fuzzy
logic or Bayesian inference could be used. Real-valued
data is likely to require task-specific aggregation. For
example

• The team is assigned to scout an area and report the
number of enemies observed. Each team member
has a slightly different count of enemy troops. In
this case, the best solution is probably to average
the disparate counts.

• The task is “converge on the target”. Each robot’s
sensors report a slightly different position for the
target. In this situation, it appears to make sense that
each team member rely on its own sensor values
to track the target and only rely on other robots
when the robot’s own sensors are unable to track
the target, e.g. the target is out of sight.

Fig. 3 shows how aggregation is performed in the
actual system. As packets arrive on from other robots,
they are unpacked into buffers for their respective
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Fig. 3. Implementation of HIVEMind virtual wires.

robots, replacing whatever data had been stored previ-
ously for that robot. In parallel with this process, the
main control loop of the robot aggregates the inputs
from each robot and reruns the inference rules on the
result. These inference rules then enable and disable
low-level behaviors for sensory-motor control. Since
the main control loop is performing real-time control,
it runs much faster than the 1 Hz update used for com-
munication (10 Hz in our current implementation).

The entire HIVEMind can be considered a single,
parallel control network whose components happen
to be distributed between the different robot bodies
being controlled. Wires crossing between bodies are
simulated using the RF broadcast mechanism, so that
each member of the team is “connected” to every
other member in a web-like structure of virtual wires.
In our current implementation, each robot broadcasts
its sensory data and state estimates in a single UDP
packet at predefined intervals. Presently, broadcasts
are made every second. Faster or slower rates could be
used when latency is more or less critical. However,
1 Hz has worked well for our applications. To reiter-
ate, we expect that currently implementable robot sys-
tems could store all the sensory inputs to the inference
system in a single UDP packet (1024 bytes). Current
autonomous robots are severely limited in their task
capabilities, and hence their communication needs, by

their sensors and actuators. Therefore, we feel that
there is plenty of available bandwidth for communi-
cation in the foreseeable future. As robots develop
more complicated sensoria, it may be necessary to use
more complicated protocols, perhaps involving multi-
ple packets, or packets that only contain updates for
wires whose values have changed since the last trans-
mission. For the moment, however, these issues are
moot.

Given the current single-packet-protocol, the aggre-
gate bandwidth required for coordination is bounded
by 1 KB/robot/s, or about 0.1% of a current RF LAN
per robot. Thus robot teams on the order of 100 robots
should be practical from a communication standpoint.
However, hardware failure limits most current robot
teams to less than 10 members, so scaling limits are
difficult to test empirically.

It may seem inefficient for each robot to have its
own separate copy of the inference network. However,
to have a single robot perform each inference and share
the results would require much more complicated co-
ordination protocols[5] analogous to the multi-phase
commit protocols used in distributed database systems.
Since communication bandwidth is a scarce resource
and inference in our system is essentially free, it is
more efficient for HIVEMind robots to perform re-
dundant computation.
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5. Implementation

5.1. Overview

We have implemented the HIVEMind system on a
robot team that performs two tasks:

• Find object: The team systematically searches for
a brightly colored object in a known environment.
Team members explore the environment in a sys-
tematic manner until one of the team members lo-
cates the object or all searchable space is exhausted.
When the object is found, all team members con-
verge on its location.

• Town crier: This task involves making announce-
ments in the same known environment. The team
cooperatively travels to each landmark on a map
and makes an announcement at every landmark.

In both cases a human user is responsible for indi-
cating the current task to perform and supplying any
required parameters for that task, e.g. the properties of
the object to be found in the former task. The human
interacts with the team through a user console, which
appears as an additional, albeit non-performing, mem-
ber of the team. When user input is entered into the
console, that information is passed through the virtual
wires to all team members. We have tested both tasks
with a two robot team. The code for this system was
written in a combination of GRL[14] and Scheme,
although low-level vision operators were written in
C++.

5.2. Hardware

The robotic bases used in this experiment are first
generation Real World Interface (RWI) Magellan
bases. The Magellan provides sonars, infrared sensors
and bump switches; a total of 16 each, arrayed around
the circular base. Vision is provided by a ProVideo
CCD camera, connected by a Nogatech USB video
capture adaptor cable to a laptop. The laptops are
Dell Latitudes with Pentium II 450 MHz processors,
384 MB of RAM and 11 GB hard drives. They run
Windows98, and communicate with the base through
a serial cable. Remote communication is provided by
Lucent Orinoco Silver wireless Ethernet cards that
feature an 11 Mbps data transfer rate under the IEEE
802.11b standard.

5.3. User console

The Command Console for the HIVEMind team is
based on the Cerebus project[15]. It provides a natural
language interface for the human user and allows com-
mands such as ‘find green ball’ or ‘announce “talk at
7!”’ to be entered. The task is bound to theactivity
role, and any arguments are bound to other appropri-
ate roles, e.g. green would be bound toobject in
the former example. The current bindings are repre-
sented in a list form and transmitted on a virtual wire
to all members to the team. The console appears as
another robot to other team members, albeit one that
is not doing any physical work. The user console also
provides status information in the form of display win-
dows based on the broadcast knowledge it is receiving
from other team members. Using this interface, the hu-
man commander can inject new information into the
team, as well as receive data about the current state of
the “group mind”.

5.4. Perceptual systems

The sensory and memory systems are divided into
“pools”, which are useful abstractions for grouping
perceptual systems or descriptions of objects. Note
that we do not make any unique claims about pools;
they are simply convenient abstractions for imple-
menting role-passing. The pools drive the inference
rule network, which in turn drives the low-level be-
haviors that actually control the robot.Fig. 4 shows a
high-level view of the system. The action pool stores
a set of reified user-defined plans that can be bound
to roles at runtime. These plans can then be run by
calling the role to which they are bound. For exam-
ple, thefind plan is bound to the roleactivity
when the user enters “find green ball” at the console.
The binding is passed via virtual wire to the indi-
vidual team members. So, when the control system
callsactivity, it would run thefind plan. There
are currently two plans in the action pool:find and
announce.

The color pool stores color coordinates of different
objects in a format suitable for use by the visual track-
ing system. The color of a desired object can be spec-
ified by binding a given color description in the pool
to the role of the object. For example, when the user
directs the team to seek a green ball, the term green
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Fig. 4. Control flow from sensors to behaviors in a single robot.

is bound to an appropriate role. The bindings are then
automatically passed over the network to the robots.
The color pool presently contains descriptions for red,
green, and blue objects, and is only used for the find
object task.

The tracker pool consists of a set of trackers that
utilize a variant ofk-means clustering for tracking
blobs of color in the robots visual image. These track-
ers can be allocated and bound to a role. The trackers
can drive low-level behaviors with image-plane coor-
dinate of the objects they track. In addition, they gen-
erate the low-level predicatessee-object(X) and
near-object(X) for input to the inference net-
work. The trackers are used only in the find object task.

The place pool is a probabilistic localization sys-
tem that uses a topological, i.e. landmark-based,
map. Roles can be bound to landmarks and the sys-
tem can determine the next appropriate waypoint in
order to reach a landmark specified by role. The place
pool also records the set of landmarks that have been
visited with high probability and can determine the
closest unvisited landmark. The current map con-
tains 11 landmarks distributed over the west wing of
the 3rd floor of the Northwestern Computer Science
Department.

5.5. Communication

Both tasks require communication of the fol-
lowing:

• The current role bindings, including bindings for
the current activity or task, and any bindings for
pertinent arguments.

• A bit-vector specifying the set of landmarks that the
robot has personally visited.

• The bit vector for thesee-object(X) predicate.
• An array representing thelocation(X) function,

which give the two nearest landmarks, if known, for
any roleX.

All of these are low-level outputs of the various
pools, except for the current role bindings, which
has to be stored on a separate latch on the user con-
sole. When the team is performing the town-crier
task, the latter two communication structures, i.e.
see-object(X) andlocation(X), are not uti-
lized for reasoning.

6. Inference rules

The inference rules for both tasks are fairly simple.
This is partly due to the continual recomputation of
inferences, which alleviates the need for some error
detection and recovery logic that would otherwise be
necessary. The inference rules for the find object task
are:

1. If see-object(X) is true, thengoto(X).
2. If location(X) is known, andsee-object(X)

is false, thengoto(location(X)).
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3. If location(X) is unknown, andsee-object
(X) is false, thengoto(next-unsearched-
location()).

The inference rules for the town-crier task are:

1. If at-landmark(X) and not-announced-
at(X), thenspeak-string().

2. If true, then goto(next-unsearched-loc
ation()).

The functionnext-unsearched-location()
returns the current location if there are no new loca-
tions to travel to.Goto() is a polymorphic action
keyed by the type of the argument passed to it. If
the argument is bound to a location, then the robot
will navigate to that landmark. If the argument is
bound to a color in the color pool, then the robot
approaches the largest object matching that color in
its view. Goto() activates the four behaviors de-

Fig. 5. Two robots leaving from starting point to perform a task.

scribed below as necessary to accomplish its current
task.

6.1. Behaviors

There are four motor behaviors that drive the
robot:

• Approachdrives to an object specified by role. It
attempts to keep the object in the middle of its visual
image.

• Turn-to swivels the robot to face a new direction.
It is used when the robot arrives at a landmark and
needs to turn in a new direction to reach another
landmark.

• Unwedgeactivates when the robot becomes stuck
in some corner unexpectedly. It swivels the robot
in the direction in which it thinks has the greatest
open space so the robot can continue moving.
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• Follow-corridor navigates the hallways. It tries to
remain centered in the middle of the corridor to fa-
cilitate easy recognition of environmental features.

The behaviors are arbitrated strictly through a prior-
ity stack. Behaviors that are higher on the stack have
higher priority, and, if active, will be chosen to run
over those of lower priority. Since HIVEMind always
ensures that all team members are up-to-date on the
current situation, each robot always knows the appro-
priate behavior to activate for the current situation and
no conflict between team members arises.

6.2. Results

We have tested the system with a three-member
team consisting of two robots and the command con-
sole (Fig. 5). The team was tested in the west wing
of the 3rd floor of the Computer Science Department

Fig. 6. One member of the team locating the target in the find object task.

building. The wing consists of a network of six corri-
dors spanning an area approximately 6 m×20 m with
an aggregate path length of 50 m. The network of cor-
ridors is represented by 12 landmarks in the topolog-
ical map showing the locations of features such as
corners and intersections. The robots drive at approxi-
mately 1 m/s on straight-aways, although stopping for
ballistic turns at corners and intersections somewhat
reduces their mean velocity. Sensing, inference and
control decisions are each performed at 10 Hz.

In the find object experiments, all team members
were started from a central point at the extreme east
end of the wing (Fig. 6). The goal object, a green ball,
was placed out of view, 15–20 m from the starting
point. The object was always at least two corridors and
three landmarks away from the starting point. When
the command “find green” was entered on the com-
mand console, the robots begin a systematic search
of the wing for the goal object. Unlike stochastic
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search techniques such as foraging, the systematic
search guarantees that each landmark is searched at
most once and that all landmarks are guaranteed to
be searched, if necessary. Using a greedy algorithm
for landmark selection, the team was consistently able
to find the landmark within 30 s provided that there
were no catastrophic failures of the place recognition
system. On typical runs, the team found the object in
approximately 20 s.

For the town crier task, team members were again
started from a central point at the extreme east end
of the wing. The objective was for the robots to go
through each landmark at least once, making the an-
nouncement at each landmark that the robots passed
through. If a robot had already spoken at a particu-
lar landmark, then no further announcement should
be made there, since we do not wish to inundate any
nearby offices with multiple announcements. Again,
barring any catastrophic failures of the place recogni-
tion system, the team was able to complete the task
successfully.

The place recognition system is the weak point of
the current implementation. Minor errors are common
and occasional catastrophic failures can cause one of
the team members to think that it has traversed its
intended destination when in fact it has not. While
we are working on improving the place recognition
system, it should be stressed that the actual control
and coordination architecture worked without error.

7. Conclusions

Grounding inference is a complex but unavoidable
issue for systems embodied physically. Traditional
symbolic reasoning systems face the issue of main-
taining a world model that is coherent with the dy-
namic world. This issue is exacerbated in multi-robot
systems, as we now haven knowledge-bases to syn-
chronize with each other as well as the external envi-
ronment. The multi-robot case shares some similarity
to the problem of replicatingn distributed databases;
a problem that others have shown to very challeng-
ing, since the number of conflicts during attempted
updates rises with the third power of the number of
participating robots. We offer an alternative architec-
ture that supports the useful features of a traditional
symbolic reasoning system, in particular the ability to

utilize predicate/argument structure, while avoiding
the model coherence and database synchronization
issues that traditional symbolic and tiered systems
encounter.

The HIVEMind architecture allows behavior-based
systems to abstract over both objects and sensors,
while providing an anchoring approach that is efficient
enough in both inference speed and bandwidth con-
sumption to be usable on physical robotic teams. It
presents multi-robot system designers with more pow-
erful representations than behavior-based systems, and
has a simple, efficient model for group coordination
that consumes very little bandwidth while allowing
team members to react to opportunities or contingen-
cies within O(1) time. We believe that the right set of
representational choices can allow the kinds of infer-
ence presently implemented on robots to be cleanly
grounded in sensor data and reactively updated by a
parallel inference network. By continually sharing per-
ceptual knowledge between robots, coordination can
be achieved for little or no additional cost beyond the
communication bandwidth required to share the data.
The effect is a kind of “group mind” in which robots
can treat one another as auxiliary sensors and effec-
tors. We have currently implemented two tasks utiliz-
ing HIVEMind: one that finds object, and another that
makes announcements. Our current goal is to imple-
ment a system which finds and traps evading targets
such as other robots or other humans. This is an es-
pecially interesting task because it requires non-trivial
spatial reasoning about containment and visibility.
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Abstract

This paper presents a hybrid approach for tracking humans with a mobile robot that integrates face and leg detection results
extracted from image and laser range data, respectively. The different percepts are linked to their symbolic counterparts
legs and face by anchors as defined by Coradeschi and Saffiotti [Anchoring symbols to sensor data: preliminary report,
in: Proceedings of the Conference of the American Association for Artificial Intelligence, 2000, pp. 129–135]. In order to
anchor the composite objectpersonwe extend the anchoring framework to combine different component anchors belonging
to the same person. This allows to deal with perceptual algorithms having different spatio-temporal properties and provides
a structured way for integrating anchor data from multiple modalities. An evaluation demonstrates the performance of our
approach.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Anchoring; Multi-modal person tracking; Human–robot interaction

1. Introduction

The increasing availability of mobile robot plat-
forms with good navigation capabilities provides a
basis for the exploration of advanced human–robot
interfaces (HRI). The development of systems with
natural HRI is an important prerequisite for the
widespread use of robots in home and office environ-
ments[1]. However, building powerful interfaces that
go beyond a simple dialog-based interaction between
user and robot is challenging. Due to the nature of
mobile systems it is necessary to use sensor devices
that can be carried on-board a small robot for realiz-
ing an HRI. Additionally, the sensing techniques must
be non-intrusive, i.e. a human must be allowed to
interact with the robot without having to wear special
equipment (e.g. markers, colored gloves) to enable
the robot’s sensors to observe him. Standard multi-

∗ Corresponding author. Fax:+49-521-106-2992.
E-mail address:jannik@techfak.uni-bielefeld.de (J. Fritsch).

media cameras are cheap sensors that can be used
for observing a human instructor to track his position
and recognize gestural instructions[3,22]. However,
despite intensive research in computer vision, the
variations in lighting conditions encountered in dy-
namic environments pose major problems for tracking
humans based on their visual appearance. For exam-
ple, the color of a human face changes significantly
if the lighting conditions are varied. A face detection
process based on color may therefore fail to always
detect the face in the images of a sequence depicting
a human moving through an office. At the same time
there may be background objects entering the field of
view of the camera that have a face-like color. Conse-
quently, the feature sequence belonging to an image
sequence may contain false positives (background
objects) and false negatives (missed faces).

In order to enable the robot to track humans over
time despite inaccuracies in the feature sequence,
the tracking algorithm can make use of temporal in-
formation and context knowledge. These sources of

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00355-X
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information allow to (1) select the features match-
ing an internal symbolic description of the object to
be tracked, and (2) focus processing on a subset of
all features. The latter is especially important if the
sensor capability is limited, the processing power is
small, or several objects are present.

The anchoringframework by Coradeschi and Saf-
fiotti [4,5] aims at providing a method for tracking
objects over time by defining a theoretical basis for
grounding symbols to percepts originating from phys-
ical objects. The practical capability is demonstrated
with examples dealing with a single type of percept
obtained by processing camera images.

However, in complex environments several different
sensors can generate different types of percepts orig-
inating from the same physical object. Additionally,
the spatio-temporal properties of the different types of
percepts can vary significantly. We propose a solution
to these problems by anchoring a symbol denoting a
composite objectthrough anchoring the symbols of its
correspondingcomponent objects. In this solution, the
composite anchoring module is responsible for fus-
ing the data of the component anchors. Our approach
to integrate several anchoring processes can be easily
extended to other modalities and allows for parallel
or distributed anchoring of component symbols. To
demonstrate our approach we perform person tracking
by anchoring the symbolpersonthrough anchoring the
symbolslegsandfaceto the corresponding percepts.

In extension to the original use of anchoring for con-
necting one symbol system to one perceptual system,
our application concentrates on solving the challeng-
ing task of tracking composite objects, i.e. humans.
Therefore, we use a symbol system that only contains
predicate symbols describing the identity of persons
to be tracked. The use of more predicate symbols in
the symbol system to support more complex inter-
actions using, for example, speech (e.g. ‘Follow the
small person with the red shirt’) will be the focus of
future work.

In the following section we will give a review of re-
lated work. The original anchoring framework will be
described inSection 3. The basic idea of the proposed
integration framework is presented inSection 4, while
Section 5describes some extensions to cope with
multiple composite objects. The application to person
tracking is described inSection 6. Section 7presents
an extensive evaluation of the complete system. The

article concludes with a summary of the presented
work.

2. Related Work

Our approach extends work by Coradeschi and Saf-
fiotti [4,5], and therefore their anchoring framework is
described in detail inSection 3. In this section we will
concentrate on the related techniques of data associa-
tion and fusion, as these techniques bear similarities
to our approach.

Bar-Shalom and Li discuss in[2, Ch. 8.2] differ-
ent types of configurations for multisensor tracking
including a hybrid approach. The so-called Type I
configuration denotes a standard single sensor track-
ing system. Type II configurations perform Type I
tracking for several sensors and subsequently fuse
the individual tracks, while Type III proposes a direct
synchronoussensor data fusion across multiple sen-
sors before performing tracking on the fused sensor
data. The Type IV configuration, instead, uses local
data association for the individual sensors but a global
tracking. However, this configuration still requires
synchronous sensor data. For fusing data originating
from sensors at different sites, a hierarchical hybrid
configuration for multisensor–multisite tracking is
proposed.

For person tracking using different sensing modal-
ities a variety of approaches and fusion methods have
been developed. Darrell et al.[6] use a Type II data
fusion method to integrate depth information, color
segmentation, and face detection results. Fusing the
individual tracks is done using simple rules. Likewise,
Okuno et al.[11] use a Type II configuration to fuse
auditory and visual information from talking persons.
Track fusion is done rule-based, but differently from
[6] thresholds on the track differences are used to
avoid fusing different tracks. A Type III configuration
is used by Feyrer and Zell[7] to track persons based
on vision and laser range data. The two types of sensor
data are fused by adding a two-dimensional Gaussian
to a potential field representation for each potential
person position. After initial selection of the person
to be tracked, another Gaussian is added to the po-
tential field at the Kalman filtered position estimate to
maintain temporal coherence. Type IV configurations
with sequential processing of the individual sensors
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are often implemented hierarchically. After associat-
ing coarse position estimates, a smaller search space is
used for processing more precise sensor data. Schlegel
et al. [15] propose vision-based person tracking that
uses color information to restrict the image area that
is processed to find the contour of a human. A more
sophisticated method to realize the sequential search
space reduction is proposed by Vermaak et al.[21]. In
their approach sound and vision data are sequentially
fused using particle filtering techniques.

Although we perform person tracking using a cam-
era and a laser range finder which are on-board a mo-
bile robot, we have to perform multisite tracking in a
hybrid configuration, as different components of a hu-
man are observed from different positions. In contrast
to the intersite association and overall information
fusion proposed in[2] we developed a model-based
modular integration scheme that extends the an-
choring framework described inSection 3. Besides
enabling classical tracking with multiple sensors at
different sites, anchoring allows to maintain represen-
tations for temporarily occluded objects and provides
mechanisms for reacquiring the object. Therefore,
anchoring can be understood as an extension to clas-
sical tracking approaches that defines a framework
for dealing with missing sensor data in a structured
way. The proposed multi-modal anchoring approach
is easy to implement, has transparent structure, and
exhibits efficient, low complexity performance.

3. Anchoring

The problem of recognizing objects by linking
features extracted from sensor data to an internal
symbolic representation is especially prominent in an
autonomous system whose environment is constantly
changing. Such a system needs to establish connec-

Fig. 1. Linking symbols to sensory data with anchors.

tions between processes that work on the level of
abstract representations of objects in the world (sym-
bolic level) and processes that are responsible for the
physical observation of these objects (sensory level).
These connections must be dynamic, since the same
symbol must be connected to new sensor data every
time a new observation of the corresponding object
is acquired.

We follow the definition of anchoring proposed by
Coradeschi and Saffiotti[5]. They define anchoring as
the problem of creating and maintaining in time the
correspondence between symbols and sensor data that
refer to the same physical object. Basically anchoring
incorporates asymbol systemand aperceptual sys-
temthat are linked by an anchor (Fig. 1). The symbol
system includes a set of individual symbols and a set
of unary predicate symbols. Each individual symbol
has a symbolic description which is a set of predicate
symbols. The perceptual system includes a set ofper-
ceptsand a set ofattributes. A percept is a structured
collection of measurements assumed to originate from
the same physical object. An attribute is a measurable
property of a percept. The set of attribute-value pairs
of a percept is called theperceptual signature.

The role of anchoring is to establish a correspon-
dence between a symbol, which is used to denote an
object in the symbol system, and a percept generated
in the perceptual system by the same object. This is
achieved by comparing the symbolic description and
the perceptual signature via a predicate grounding re-
lation g. This relation constitutes the correspondence
between unary predicates and values of measurable at-
tributes. For example,g could specify that a symbol
with the predicatelargecorresponds to a percept, if the
value of its attributesizeis above a certain threshold.
The relationg can be embedded in a functionmatch
that evaluates whether a given perceptual signature is
consistent to a given symbolic description or not. The
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correspondence between symbol and percept is repre-
sented in an internal data structureα, called anchor.
Since new percepts are generated continuously within
the perceptual system, this relation is indexed by time.

At every momentt, the anchorα(t) contains three
elements: a symbol, meant to denote an object inside
the symbol system; a percept, generated inside the
perceptual system by observing an object; a signature,
providing the estimate of the values corresponding to
the observable properties of the object. The anchorα is
groundedat timet, if it contains the percept perceived
at t and the updated signature. If the object is not
observable att and so the anchor isungrounded, then
no percept is stored in the anchor but the signature
still provides the best available estimate.

In order to solve the anchoring problem for a given
symbolx in a dynamic environment three main func-
tionalities have been outlined in[4,5]:

• Find. Create a grounded anchor the first time that
the object denoted byx is perceived. The function
match is used to assure that the symbolic descrip-
tion matches the perceptual signature. In case of
multiple matching percepts, aselectioncan either
be made inside the find functionality or by the sym-
bol system.

• Track. Continuously update the anchor while ob-
serving the object. In this case the prediction is
achieved by a specificone-step-predictfunction.
The predicted signature is compared to the per-
ceived attributes with amatch-signaturefunction.
This allows to find percepts compatible with the
attributes of the percepts anchored to the symbol
in the previous steps. In case of multiple matching
percepts, theselectfunction is used to choose one
percept.

• Reacquire. Update the anchor when the object has to
be reacquired, i.e. if the anchor is ungrounded. This
is used to locate an object when there is a previous
perceptual experience of it. The experience is used
to predict a new signature which is then compared
to newly acquired percepts. Here, the prediction is
generally more complex than in thetrack case. If it
is verifiedby usingmatchthat a percept is compati-
ble with the prediction and the symbolic description
then the current signature isupdated. Again, in case
of multiple matching percepts, aselectfunction is
used to choose one percept for updating.

For a detailed description of the formal anchoring
framework the interested reader is referred to[4,5].

4. Multi-modal anchoring

Up to now the literature on anchoring considers
only the special case of connecting one symbol to the
percepts from one sensor. However, the real world
contains objects that cannot be captured completely
by a single sensor. If several sensors are used, the
symbolic description of the object has to be linked
to several different types of percepts acquired from
different modalities.

One solution is the extension of the anchoring def-
inition to link several percepts to a single symbol.
However, with such an approach the integration of
different types of percepts with different processing
times makes it necessary to anchor the individual
percepts asynchronously. Additionally, if the different
percepts relate to different parts of the object the spa-
tial relations between them need to be incorporated
into the predicate grounding relation to obtain a con-
sistent result. Consequently, the resulting algorithm
for this solution may become very complex from an
implementational point of view.

Therefore, we propose a modular approach (Fig. 2)
that allows to anchor a symbol of a composite object
by distributed anchoring of the corresponding compo-
nent objects based on the related percepts originating
from multiple modalities. This modular approach
provides a structured way for simple integration of

Fig. 2. Multi-modal anchoring.
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additional component anchors and facilitates parallel
anchoring of different types of percepts. The infor-
mation provided by the individual perceptual systems
of the component anchors is collected by a composite
anchoring process for integration. The combined data
is again stored in an anchor structure, the so-called
composite anchor.

The main difference to original anchoring is that
the symbol corresponding to the composite object has
no direct perceptual counterpart. Every time a compo-
nent anchoring process has chosen a new percept for
updating its anchor, the percept is linked to the sym-
bol of the composite object. The composite anchoring
process then calculates its own perceptual signature by
incorporating the signature of the component anchor.
Usually, this signature can only be used to update a
subset of the available attributes of the composite an-
chor, because the associated percept originates only
from the perceptual system of a component object.

The main functionalitiesfind, track, andreacquire
defined in the original anchoring do not directly exist
for the composite anchor module. These functions
are carried out by the component anchoring processes
that also initiate updates of the composite anchor. The
composite object is anchored/grounded, if at least one
component object is anchored/grounded. Because ev-
ery component anchor module has different predicate
symbols, it also contains its own predicate grounding
relation. The predicate grounding relation of the com-
posite anchor module embodies the correspondence
between predicates concerning the composite object
and attribute data calculated from attribute values
originating from the different component anchoring
processes.

In order to coordinate all component anchoring
processes, it must be ensured that the different sen-
sors observe the same composite object. The com-
ponent anchoring processes have to be supplied with
position estimates for the composite object, and the
composite anchoring process has to fuse the informa-
tion supplied by the component anchors. Therefore,
a composition model, a motion model, and afusion
modelare provided.

The composition modelcontains the spatial re-
lationships between the composite object and its
components. It ensures that the individual anchoring
processes only select percepts that are compatible
with the composite object. At startup, a component

anchoring process establishes a grounded anchor sim-
ply if its symbolic description matches the perceptual
signature. Hence, the composite anchor is initialized
and from now on data about the composite object is
provided to its component anchoring processes as fol-
lows: thematchfunction of every component anchor
is extended to additionally make sure that the com-
position relations provided by the composition model
of the composite object are satisfied. Therefore, the
predicatepart-of-Sis added to the symbolic descrip-
tion of the component anchors whereS is the symbol
of the corresponding composite object. After a com-
ponent anchoring process has executed its extended
match, the composite anchoring process can perform
its ownmatchto check whether its symbolic descrip-
tion matches the corresponding perceptual signature
of the processed percept.

The motion modeldescribes the motion behavior of
the composite object and allows to predict its position.
Together with the spatial relations provided by the
composition model a component anchoring process
can predict the position of its underlying component
object. Especially for steerable sensors which allow
to select the desired field of view it may be necessary
to use information about the composite object. In this
case a steerable sensor can be pointed into the direction
where a percept is expected in order to establish the
corresponding component anchor.

The fusion modelis used for integrating the various
signatures of the component anchors in the compos-
ite anchor. Every time a component anchoring process
has processed new percepts, it sends its new signature
to the composite anchor module. This signature refers
to the point of time in the past when the corresponding
sensor data was acquired. Since the different percep-
tual systems achieve different processing speeds, the
composite anchor module does not always receive the
attribute data from component anchors in correct tem-
poral order. In order to ensure that the attribute data
is fused to the signature of the composite anchor at
the appropriate point of time, the composite anchoring
process maintains a list containing all signatures sorted
in chronological order. New attribute data is inserted
in the list and the signature of the composite anchor is
updated for the corresponding point of time based on
the fusion model. If the list already contains entries
that are newer than the inserted one, then the fusion of
the signatures of the composite anchor is repeated for
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the subsequent points of time. The underlying speci-
fication of the fusion itself is domain dependent.

5. Anchoring multiple composite objects

Usually, more than one object has to be tracked
simultaneously. Then, several anchoring processes
have to be run in parallel to keep track of the dif-
ferent objects. In this case, multi-modal anchoring
as described in the previous section may lead to the
following conflicts between the individual composite
anchoring processes:

• A percept is selected by more than one anchoring
process.

• The anchoring processes try to control a steerable
sensor contradictorily.

In order to resolve these two problems, asupervising
moduleis introduced, which manages all composite
anchoring processes. It coordinates the selection of
percepts and schedules access to steerable sensors.
The supervising module grants access to steerable
sensors only to the composite anchoring process
which holds the so-calledanchor of interest. The de-
cision which is the anchor of interest depends on the
intended application.

In order to coordinate the selection of percepts the
selectfunctionalities of the individual component an-
chor modules have to be modified. These modules no
longer select percepts individually. Instead, they as-
sign to every percept a score, which is the higher the
better a percept fits the anchor. Based on these scores
an overall selection can be performed (Fig. 3). Any
possible selection result can be expressed as a list of
assignments, where thenth entry of the list contains

Fig. 3. Modification ofselectin component anchor modules.

the number of the percept which is selected for thenth
anchor. Note, that the entries of the list have to be pair-
wise different in order to describe a consistent result.
The total score of an overall selection is defined as the
sum of the scores corresponding to the assignments.
The aim is to find the optimal result, which is the se-
lection yielding the maximum total score. The corre-
sponding search is realized using a search tree: the root
of the tree is given by the empty list, whose list entries
are all undefined. For every successive node the num-
ber of undefined entries decreases by 1. The leaves of
the search tree contain all possible overall selections.
Since the maximum of all scores assigned by an an-
chor is known, the total score of a partially undefined
list can be estimated optimistically. Hence, the search
can be efficiently realized using the A∗-algorithm.

However, the number of percepts not necessarily co-
incides with the number of anchors. If there are more
anchors than percepts, not every anchor is assigned a
percept and therefore is not updated. If there are more
percepts than anchors, not every percept is assigned to
an anchor. The remaining percepts are used to estab-
lish new anchors. Additionally, an anchor that was not
updated for a certain period of time will be removed
by the supervising module.

6. Person tracking in a dynamic environment

In order to prove the feasibility of our multi-modal
anchoring approach, we demonstrate its use for per-
son tracking with a mobile robot. Person tracking is
a prerequisite for every HRI and has to be realized
with the available on-board sensors which often can
capture only a part of the human body due to the usu-
ally small distance between the human and the robot.
Our robot can observe a person with a camera and a
laser range finder. Based on the skin-colored regions
extracted from camera images the face of a person
can be detected and identified. The beam from the
laser range finder is at leg-height and, consequently,
human legs can be detected. In this section we will
first present our mobile system. Then, the algorithms
to extract the leg and face percepts will be described.
Finally, component anchoring and anchoring of the
composite object person is explained.

Our hardware platform (Fig. 4) is a PeopleBot from
ActivMedia with two on-board PCs (Pentium III, 850
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Fig. 4. Our PeopleBot following a person.

and 500 MHz, respectively). The first PC is used for
controlling the motors and the on-board sensors while
the second one is used for image processing. Both
PCs run Linux and are linked with a 100 Mb Ether-
net. A SICK laser range finder is mounted at the front
at a height of approximately 30 cm. Measurements
are taken in a horizontal plane, covering a 180◦ field
of view. A pan-tilt color camera (Sony EVI-D31) is
mounted on top of the robot at a height of 140 cm for
acquiring images of the upper body part of humans

Fig. 5. A sample 2D laser scan. The arrow marks a pair of legs.

interacting with the robot. For robot navigation we
use the ISR (Intelligent Service Robot) control soft-
ware developed at the Center for Autonomous Sys-
tems, KTH, Stockholm[10].

6.1. Detection of human pairs of legs in 2D laser
scans

In mobile robotics 2D laser range finders are often
used, primarily for robot localization and obstacle
avoidance. A laser range finder mounted at the height
of legs can also be applied to detect persons.Fig. 5
shows a sample laser scan with a person standing in
front of the robot. The legs result in a characteristic
pattern.

Detecting legs in laser scans was already consid-
ered for mobile systems. In[16] for every object fea-
tures like diameter, shape, and distance are extracted
from the laser scan. Then, fuzzy logic is used to de-
termine which of the objects are pairs of legs. In[17]
local minima in the range profile are considered to be
pairs of legs. Since other objects (e.g. trash bins) pro-
duce patterns similar to persons, additionally moving
objects are distinguished from static objects.

Our approach for the detection of human legs is
based on laser scans with an angular resolution of
0.5◦. Generally, persons can be located by two closely
positioned segments. A segment within a laser scan
consists of consecutive reading points with similar
distance values, which usually result from a smooth
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surface of a single object. Large differences of distance
values are due to edges or occlusions. Thus, single
human legs are mostly observed as single segments.

The detection of pairs of legs consists of three steps:
segmentation, classification, andgrouping. In the first
step the laser scan is split into segments. Each segment
consists of a maximum number of successive reading
points, where the differences of the distance values
of two consecutive points are below a given threshold
(chosen as 75 mm). In the following step each segment
is classified asleg or non-leg, based on the following
features: number of reading points(n), mean distance
(µ), standard deviation of the distances(σ), width in
world coordinates in a direction perpendicular to the
laser beam(w), and distances to the adjacent segments
(d1 andd2). We obtained satisfying results using the
following conditions to classify a segment asleg:

(n > 4) ∧ (µ < 3000 mm) ∧ (σ < 40 mm)

∧(50 mm< w < 250 mm)

∧(max(d1, d2) > 250 mm)

∧(min(d1, d2) > −50 mm).

In the final step single legs are grouped into pairs de-
pending on their distance in world coordinates, which
is chosen to be below 500 mm.

In certain cases one leg of a person is occluded by
the other one, and thus only a single leg will be de-
tected. In order not to discard this information, theper-
ceptsgenerated by this perceptual subsystem include
all detected pairs of legs, and all single legs which
are not part of a pair. Theattributescomputed for a
percept are the direction given in the local coordinate
system of the robot, the distance, and a flag, which
indicates whether the percept is a pair of legs or not.
The arrow inFig. 5marks a pair of legs detected with
our approach in the sample laser scan.

6.2. Detection of human faces in color images

Face detection is very important for human–robot
interaction: at first, the detection of a face is a reli-
able indicator for the presence of a person. In addi-
tion, much information is extractable from a face, e.g.
person identity or gaze direction.

The perceptual subsystem that performs face detec-
tion processes color images from the pan-tilt camera

mounted on top of the robot. The detection is mod-
eled as an image scanning process, that repeatedly ex-
tracts sub-images for classification. To speed up the
scanning process, the search space in the image is re-
stricted to regions of skin color. Since we are deal-
ing with images obtained from a camera on a mobile
robot, the task of color segmentation is challenging:

• A moving robot encounters lighting conditions of
high variability.

• There is no constant background in images as the
robot acts in an unstructured environment.

In order to detect color regions under varying lighting
conditions, an adaptive color segmentation algorithm
has to be used. Probably the most famous adaptive im-
age segmentation system is the Pfinder (person finder)
system[23] for tracking a single, completely visible
human wearing homogeneously colored clothes in
front of a static background. In Pfinder, the color of ev-
ery background pixel and each body part (head, torso,
arms, hands, legs, and feet) is modeled as a Gaus-
sian in YUV color space. Additionally, the positions
of body parts are described by Gaussians in image
coordinates.

For the task of skin color segmentation the related
LAFTER system[12] uses similar techniques to track
the face of a single user with a pan-tilt camera. Here
a Gaussian mixture is used to model the background
variations. In order to detect a face in arbitrary back-
grounds captured by a moving camera, recent ap-
proaches avoid explicit background modeling[13,18].
However, these approaches are limited to single faces.

Different from the approaches above our goal is
the tracking ofseveral skin-colored image regions
that may be subjected to different lighting conditions.
This is realized by modeling every skin-colored re-
gion with a separate Gaussian distribution. In order to
stabilize the adaptation step, we use context informa-
tion from face detection to restrict updating to regions
containing faces and select image areas of face size
for adapting the color models. In the following we
give a short overview of our adaptive skin color seg-
mentation approach, more detailed information can
be found in[8]. Note, that for skin color segmenta-
tion on the mobile robot no region-of-interest (ROI)
is used and the complete image is segmented as the
uncertainty for determining ROIs on a mobile robot
is too high to be reliable enough.
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For color representation the r–g color space is used
as it is well suited for representing skin color over a
wide range of lighting conditions[24]. For the special
case of modeling a person’s face a Gaussian distribu-
tion has been shown to be sufficient[14]. For every
pixel the skin probability is calculated as the maximum
of the individual probabilities of the Gaussian mod-
els. The resulting skin probability image is binarized
with an empirically determined threshold of 0.2 and
a connected components analysis yields skin-colored
regions.

In order to prevent the color models from adapt-
ing to skin-colored background objects a face veri-
fication step is carried out on all regions found. For
face detection we apply theeigenface method, oper-
ating on gray-level images. Any image with a size
of n × m pixel can be considered as a point in an
nm-dimensional space. Faces lie in a subspace of the
overall image space. Kirby and Sirovich[9] demon-
strated how Principal Component Analysis (PCA) can
be used to efficiently represent human faces. Later,
Turk and Pentland[20] applied this technique to face
detection. PCA finds the principle components of the
distribution of the face images, which are calledeigen-
faces. They span a subspace (face space) representing
possible face images. We use a face space computed
from a set of sample face images having a size of
37× 43 pixel. These samples only contain the central
parts of faces (eyes, nose and mouth) so that variances
of the background are excluded. In addition, the im-
ages are preprocessed using histogram equalization in
order to compensate varying lighting conditions.

Before a given image can be classified it has to be
rescaled to the size of the sample images and prepro-
cessed. The resulting image is then reconstructed by
a weighted sum of eigenfaces. The resulting residual
error is small if the given image is a face image and
large otherwise. Hence, for classification an empiri-
cally determined threshold can be used to distinguish
face from non-face images.

In order to decide whether a segmented region of
skin color originates from a face, a sub-image at the
position of the region has to be extracted and classi-
fied with the eigenface method. However, the center
of mass (COM) of the region does not necessarily co-
incides with the center of the face due to inaccuracy
of segmentation. Therefore, the area at the region has
to be scanned at different positions and with varying

scalings by using the following method: the center of
the initial sub-image(x, y) coincides with the COM of
the skin-colored region. There and at the two neighbor-
ing positions(x+ 1, y) and(x, y + 1) the correspond-
ing reconstruction errors for the extracted sub-images
are computed. The next position of the scanning pro-
cess is chosen according tosteepest gradient descent.
This process stops if a face is detected or a local min-
imum is reached. In the latter case the process contin-
ues with sub-images of a new size (±7.5%, followed
by ±15%).

For all image regions that are found to contain a
face updating of the color model is performed. In or-
der to stabilize the updating process an empirically
determined global skin color distribution is used for
filtering out non-skin pixels. Based on a theoretical
model Störring et al.[19] have shown that the over-
all skin color distribution occupies a shell-shaped area
in r–g color space that is calledskin locus. Simi-
lar to Soriano et al.[18] we determined the skin lo-
cus for our camera empirically with hand-segmented
training images[8]. With all pixels in an elliptical
image area at a detected face position that lie in-
side the skin locus, local Gaussian parameters are cal-
culated and used to smoothly update the Gaussian
model:

	µnew = γ 	µlocal + (1 − γ)	µold,

�new = γ�local + (1 − γ)�old.

For our system running at approximately 3 Hz a
learning rate ofγ = 0.6 has been shown to provide
good results for persons moving in a standard office
domain.

The perceptsgenerated by this perceptual subsys-
tem are the skin-colored regions classified as face. For
every percept a set ofattributesis computed: with the
position information from the pan-tilt camera the an-
gle of the face relative to the robot is calculated. The
detected face size is used to estimate the distanced

of the person: assuming that sizes of heads of adult
humans only vary to a minor degree, the distance is
proportional to the reciprocal of the size. The height
of the face above the ground is also extracted by using
the distance and the camera position.

Additionally, a face identification step is performed
with a slightly enhanced version of the method pro-
posed in[20]. Each individual is represented in face
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space by a mixture of several Gaussians with diag-
onal covariances. Practical experiments have shown
that the use of 4–6 Gaussians leads to satisfying re-
sults in discrimination accuracy requiring only small
amounts of training material. The mixture densities
are estimated from the projections of up to 50 sam-
ple images per individual. The performance of the
identification process has been evaluated in an exper-
iment with nine individuals. For a test set of 76 im-
ages a recognition rate of 89% could be achieved.
When accepting a rejection rate of 20%, over 96%
of the images classified were assigned to the correct
individual.

6.3. Anchoring component objects

The characteristics of the anchoring processes for
the components legs and face are reflected in their
three main functionalities. Thefind functions of the
leg and face anchor modules anchor only percepts in
front of the robot, if their distance to the robot is less
than 3 m. Additionally, the selected leg percept must
match the predicateis-pair. If the face anchor module
is linked to the anchor of interest, it is first checked in
thefind function whether the field of view of the cam-
era overlaps with the person position provided by the
anchor of interest. If necessary, the camera is pointed
to the direction where the face percept is expected.
The functionalitiestrack andreacquireof the anchor
modules for legs and face are rather similar. All these
functions try to anchor percepts close to the predicted
position while considering restrictions given by the
composition model of the person. More specifically,
the track functions predict the current percept’s po-
sition based on the last known position. In contrast,
the prediction of thereacquirefunctions is based on
the person position obtained from the person anchor
module. If the face anchoring process tracks or tries
to reacquire the face of the person of interest, the
camera is steered to make sure that the position of
the predicted percept does not move out of the field
of view.

6.4. Anchoring composite objects

The person anchoring module receives individual
signatures originating from the leg and the face an-
choring processes. It is important to note that this

Fig. 6. Anchoring a person by anchoring the legs and the face.

data is processed asynchronously by the composite
anchoring process.Fig. 6 shows the framework for
anchoring the composite objectperson. Thecomposi-
tion modelused describes empirically defined person
relations (Fig. 7).

All attributes of the multi-modal anchoring of per-
sons that correspond to spatial positions are described
by Gaussian distributions instead of scalar values. This
allows to model uncertainty for positions. For the at-
tributes of percepts the variance of the Gaussian can be
determined from the measuring inaccuracy of the cor-
responding sensors. Themotion modeldefines how a
position can be predicted for timet(i+1) based on the
known position at timet(i): the mean value remains
unchanged (no velocity assumed) while the variance
increases linearly with time, expressing increasing un-
certainty.

The attribute values contained in the signature list
of the composite anchor module are updated by mul-
tiplying the Gaussian of each attribute value with the
Gaussian representation of the corresponding attribute
values from new percepts. This results in the follow-
ing update formulas that are calculated in thefusion

Fig. 7. The composition model for matching consistent percepts.
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Fig. 8. A schematic example for anchoring a person.

model:

µt(i) = µt(i−1)σp + µpσt(i−1)

σt(i−1) + σp
,

σt(i) = σt(i−1)σp

σt(i−1) + σp
.

The resulting mean valueµt(i) is a weighted sum of
the old mean valueµt(i−1) and the mean value of the
perceptµp. Since the weights are given by the vari-
ances of the old position in the signature list and the
percept, the mean value corresponding to the smaller
variance (more certainty) has a greater effect.

The person attribute values that are updated with the
signatures of the grounded component anchors are the
angleφp and distancedp relative to the robot, the face
heighthp and the person nameNp. The initialization
of the valuesφp anddp is carried out if a component
anchor is grounded for the first time. The attribute val-
ueshp andNp can only be initialized after receiving
the first signature from the face anchoring process.
During normal operation the person’s fusion model
makes sure that the person’s position is smoothly up-
dated by anchored legs and faces. In contrast,hp and
Np can only be updated by processing face signatures.

In order to illustrate the concept a schematic exam-
ple for anchoring one person is shown inFig. 8 de-
picting six consecutive time steps at the beginning of
an anchoring process:

t1 : Person anchoring is started and all component an-
choring processes perform theirfind. The leg de-
tection generates a leg percept and the legs are
anchored for the first time. The leg anchoring pro-
cess switches fromfind to track. Subsequently,
the person position contained in the composite an-
chor module is initialized and the person becomes
grounded. Now, thefindof the face anchor module
is able to point the camera into the right direction.

t2 : The face detection generates a face percept and
the face anchor becomes grounded. The face an-
choring process switches fromfind to track and
the person anchor is updated accordingly.

t3 : Again, the leg detection generates a leg percept.
Based on thetrack function, the leg anchor as well
as the person anchor are updated.

t4 : In this time step, new laser range data is processed
but no matching leg percept is found by the leg an-
choring process. Therefore, it switches fromtrack
to reacquire. No updating of the person anchor
takes place.

t5 : A new camera image is processed but no face per-
cept matching the prediction of the person posi-
tion is found. Thus, the face anchoring process
also switches fromtrack to reacquire. Now the
person is ungrounded since neither the legs nor
the face are grounded.

t6 : In the new laser range data a leg percept matching
the predicted person position is found. Now the
legs as well as the person are grounded again.

7. Results

We implemented the extended anchoring framework
in an object-oriented manner using C++ and added
the person tracking functionality to the ISR software
[10] on the behavior level. When the robot is instructed
to track persons the tracking behavior is started in
parallel with other behaviors necessary, for example,
obstacle avoidance. The tracking behavior initializes
the person anchoring process.

The evaluation of our system was carried out in
an office room, more specifically in an area having
a size of approximately 4.60 m× 3.40 m. The room
was equipped with wooden furniture, which was
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Fig. 9. Scenario: first setup (left); second setup (right).

challenging for the face recognition, because the color
of wood is similar to skin color. We realized two se-
tups (Fig. 9). In the first setup only two persons were
present, one in the middle of the room standing still
(P2) and one guiding the robot (P1). The task forP1
was to become the person of interest by approaching
the robot (<1 m). Then,P1 had to guide the robot
aroundP2 and to leave the room through the door,
while looking towards the camera as long as possible.
The resulting trajectory had a length of approximately
7.5 m. The second setup was similar to the first one,
but three additional personsP3–P5 were placed at
predetermined locations in the room, not affecting
the trajectory resulting from the first setup.P1 was
instructed to try to regain the attention of the robot in
case that the robot lostP1. If this was not possible,
because the robot tried to follow one of the other per-
sons, then the experiment was interpreted as failure.
Both experiments were carried out with ten different
subjects.

Table 1
Results of the first setup withP1 andP2

Run t (s) vø (m/s) Lost Person grounded (%) Legs grounded (%) Face grounded (%) Legs/step Face/step

1 39 0.19 0 99.7 98.9 63.1 1.78 0.76
2 62 0.12 0 96.6 93.8 36.4 1.71 0.90
3 52 0.14 1 95.4 83.5 51.0 1.72 0.57
4 56 0.13 0 99.3 93.8 54.1 1.79 0.59
5 81 0.09 1 96.4 95.7 34.7 1.63 0.40
6 32 0.23 0 99.2 98.7 51.1 1.87 0.78
7 90 0.08 1 80.9 73.2 22.0 1.94 0.49
8 51 0.15 0 99.2 98.8 56.5 1.75 0.70
9 42 0.18 0 98.0 97.9 35.7 1.79 0.45

10 44 0.17 0 88.6 87.1 16.3 1.60 0.39

Average 55 0.14 – 95.3 92.1 42.1 1.76 0.60

Throughout the tests, the laser range finder provided
new laser range data at a rate of 4.6 Hz to the leg detec-
tion algorithm. The processing time necessary for gen-
erating leg percepts and anchoring was negligible. The
adaptive skin-color segmentation processed images
with a size of 189×139 pixels. For each skin-colored
region the face detection was carried out. The pro-
cessing time of the face detection and identification
system depends on the number of skin-colored regions
present in the image. On average the face percepts
were provided at a rate of 3.1 Hz. Again, the time nec-
essary for updating component and composite anchor
was negligible. Together, the person attributes were
updated with an average rate of 7.7 Hz due to the asyn-
chronous anchoring of the different types of percepts.

The first setup (Table 1) was accomplished after an
average time of 55 s. The robot lost three people once,
but they were able to regain the attention of the robot
to complete the run. On average 95.3% of the time a
person was grounded. The legs were grounded 92.1%
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Table 2
Results of the second setup withP1–P5

Run t (s) vø (m/s) Lost Person grounded (%) Legs grounded (%) Face grounded (%) Legs/step Face/step

1 60 0.13 2 93.6 91.5 27.7 2.63 0.41
2 43 0.17 0 96.7 95.0 20.7 2.61 0.32
3 The robot lostP1 and tried to followP3

4 51 0.15 0 98.7 90.4 66.0 2.49 0.74
5 47 0.16 0 96.2 94.5 7.1 2.52 0.20
6 The robot lostP1 and tried to followP2

7 77 0.10 0 99.8 97.5 72.0 2.59 0.85
8 74 0.10 0 93.4 92.6 20.3 2.63 0.22
9 61 0.12 0 97.7 96.1 36.4 2.55 0.56

10 42 0.18 0 86.1 84.2 11.9 2.73 0.26

Average 57 0.13 – 95.3 92.7 32.8 2.59 0.45

of the time, the face 42.1%. On average 1.76 legs and
0.6 faces were processed in every computation step by
the corresponding perceptual systems.

The time needed to successfully perform the task of
the second, more complex setup (Table 2) took only 2 s
more per run on average. For this setup we expected
more percepts to be computed, because more persons
were present. This was in fact true for the legs, but
not for the face. The persons guiding the robot were
taking care of not colliding with one of the persons
P2–P5 and, therefore, looked at the camera less of-
ten. This resulted in a correspondingly lower face de-
tection rate. On average the face was grounded only
32.8% of the time. The legs and the whole person were
grounded for approximately the same time (95.3 and
92.7%) as in the first setup. Runs 3 and 6 resulted in a
failure. A recovery was not possible even though the
face identification would have indicated the mistake.
This is because an active search for a specific person,
which goes beyond the reacquire functionality of an-
choring, is not part of the current implementation.

8. Summary

We presented a method for anchoring composite
symbols through anchoring component symbols to
their associated percepts and subsequently fusing
the resulting data of the component anchors. This
modular approach facilitates multi-modal anchoring
and can easily be extended with additional anchor-

ing processes. We demonstrated the performance of
our approach with a person tracking application for
a mobile robot. In the current implementation laser
range data and color images are processed to find
percepts for the symbolslegsand face. Our extended
anchoring framework allows for multi-modal tracking
of humans. Through taking advantage of the different
sensor capabilities in terms of precision and informa-
tion content a more complete representation of tracked
persons is maintained. Therefore, our approach forms
the basis for more advanced human–robot interaction.
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Abstract

There is a growing interest in both the robotics and AI communities to give autonomous robots the ability to interact
with humans. To efficiently identify properties from its environment (be it the presence of a human, or a fire extinguisher or
another robot of its kind) is one of the critical tasks for supporting meaningful robot/human dialogues. This task is a particular
anchoring task. Our goal is to endow autonomous mobile robots (in our experiments aPioneer 2DX) with a perceptual
system that can efficiently adapt itself to the context so as to enable the learning task required to physically ground symbols.
In effect, Machine Learning based approaches to provide robots with an ability to ground symbols heavily rely on ad hoc
perceptual representation provided by AI designers. Our approach is in the line of meta-learning algorithms, that iteratively
change representations so as to discover one that is well-fitted for the task. The architecture we propose is based on a widely
used approach in constructive induction: the Wrapper-model. Experiments using the PLIC system to have a robot identify
the presence of humans and fire extinguishers show the interest of such an approach that dynamically abstracts a well-fitted
image description depending on the concept to learn.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Anchoring; Meta-learning; Change of representation; Object identification

1. Introduction: anchoring symbols and
identifying objects

Recent works in both robotics and artificial intel-
ligence have shown a growing interest in providing
mobile robots with the ability to interact and commu-
nicate with humans. One of the main challenges in
designing such robots is to give them the ability to
perceive the world in a way that is useful or under-
standable to us. One approach is to give the robot the

∗ Corresponding author. Present address: LIP6-CNRS, Université
P&M Curie, Boite 169, 4, Place Jussieu, 75232 Paris Cedex 6,
France.
E-mail address:nicolas.bredeche@lip6.fr (N. Bredeche).

ability to identify physical entities and relate them to
perceptual symbols that are used by humans (to refer
to these same physical entities). To perform this task,
the robot has to ground these symbols to its percepts
(i.e., its sensor data). Recently, the term ofanchoring
[1] has emerged to describe thebuilding and main-
tenance of the connection between sensor data and
the symbols used by a robot for abstract cognition.
As a matter of fact, anchoring is an important issue
for any situated robot performing abstract reasoning
based on physically grounded symbols. Amongst oth-
ers, anchoring plays an important role to communicate
or relate to either other robots or humans.

There are tasks, such as object manipulation
or functional imitation, where anchoring requires

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00356-1
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explicitly recognizing objects and localizing them
in the three-dimensional space. Fortunately, such an
object recognitiontask is not necessarily required
to achieve anchoring. In applications such as hu-
man/object tracking, face and object identification,
or grounded robot–human communication,object
identification is enough. Informally, torecognizean
object often requires from the robot to match its per-
cepts with a known model of the object[2]. This
task has been studied for a few decades now and is
known to be difficult in unknown environments. On
the contrary,identifyingthe sole presence of an object
is simpler since its goal is toclassifyor to namean
object[3]. As a matter of fact, there exist many easy
to use and reliable descriptions for characterizing the
presence of an object. To identify the presence of a
fire in a room, one does not have necessarily to vi-
sually recognize it. Smelling smoke, hearing cracks,
feeling heat, seeing dancing shapes on a wall are dif-
ferent ways of identifying the presence of a fire. For
an autonomous robot, the ability to identify objects
is a first step towards more complex tasks and may
be built by regularly checking for the object. Identi-
fying objects is therefore a simple form of anchoring
symbols (such asfire) to its percepts.

In this paper, we are concerned with a practical task,
where aPioneer 2DX mobile robot has to rely on
its limited visual sensors to anchor symbols such as
human being, mobile robotor fire extinguisher(etc.)
that it encounters while navigating in our laboratory.
Anchoring is then used to support human/robot or
robot/robot communication. For instance, an interac-
tion may be engaged if ahuman beingis identified, or a
rescue operation may be initialized if a non-responding
Pioneer 2DX is identified. Identifying afire extin-
guishermay allow the robot to respond to a query for-
mulated by a human. To design an autonomous robot,
living in a changing environment such as our labo-
ratory, with the identification ability described above
is a difficult task to program. As such it is a good
candidate for a Machine Learning approach, which
may be easily recasted as a classicalconcept learn-
ing task. To teach the robot to anchor symbols us-
ing Machine Learning has proven successful[4]. To
use Machine Learning techniques, the designer has
to both define learning examples and a representa-
tion language based on the robot percepts to describe
them.

It is clear that a great part of the success of the learn-
ing task per se depends on the representation chosen
[5]. Having an AI designer providing the robots with
an adequate representation has a major drawback: it is
a fixed, ad hoc representation. Any change of setting
(a museum instead of an AI lab) may require a new
perceptual description. In order to overcome this draw-
back, our main objective is to endow an autonomous
robot with the ability to dynamically abstract from its
percepts different representations, well suited to learn
different concepts. The intuitive idea is to have the
robot explore the space of possible examples descrip-
tions (with various colors, resolution, representation
formalisms, etc.) so as to discover for each concept
a well-fitted representation. The underlying intuition
being that for anchoring the symbolhuman beinga
robot does not need the same visualstimuli that might
be necessary to identify apower-plug on a wall.

Section 2presents a concrete setting in which this
problem occurs and pinpoints why adapting one’s
representation may be useful to increase learning accu-
racy.Section 4explains our approach based on abstrac-
tion operators applied to visual information provided
by the robot. Finally inSection 5andSection 6, a set of
real-world experiments describes the interest of such
an approach and outlines the difference between three
representations, each one fitted to a different concept
(the presence of a human, a fire extinguisher or a box).

2. Problem settings

2.1. The MICRobES project

The practical task we are concerned which takes
place in a wider project called MICRobES[6], which
is a collective robotics experiment started in 1999 and
involving more than 10 people. This project aims at
studying the long-term adaptation of a micro-society
of autonomous mobile robots in an environment pop-
ulated by a human collectivity: the LIP6 laboratory in
Paris. The robots, 10Pioneer 2DX, have to survive
in this environment as well as cohabit harmoniously
with its inhabitants.

From an individual point of view, they need to
recharge themselves autonomously, build the map of
their environment in order to memorize its charac-
teristics and localize themselves, avoid the mobile
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obstacles (human beings, other robots) and the poten-
tially dangerous places (stairs, lifts).

From a collective point of view, they have to solve
the spatial conflicts (access to the charging stations,
coordination in navigation), cooperate by sharing
information about the environment (open or closed
rooms, etc.) and abide by some individualized con-
straints in their interactions with human beings (e.g.
learning individual schedules and respect for privacy).

The colony of robots does not have, then, a func-
tional goal, apart from being able to survive in an
eco-system in which it must implement a robust and
adaptive social structure. Thus, by studying robots that
are physically as well as socially situated, MICRobES
works towards two main goals: design a sufficiently
autonomous and versatile robotics basis that can be
used in different applications (distributed surveillance
of buildings, guidance of visitors, etc.) and study,
in collaboration with sociologists, the conditions re-
quired for immerging autonomous mobile robots in a
larger public.

2.2. Anchoring and the building of a perceptual
system

Inside the MICRobES project, we are concerned
with providing the robot with the ability to perform
robot–human communication about objects in the
world. However, from the robot’s point of view, using
a shared lexicon of human symbols requires some
prerequisites such as grounding these symbols in
order to make sense in the world[7].

In this paper, we aim at providing eachPioneer
2DX autonomous mobile robot with the ability to
identify (i.e. correctly classify) objects or living beings
encountered in its environment thanks to mecha-
nisms inspired from perceptual learning. As stated in
Section 1, there is a strong difference between object
recognitionand identificationas stated in[3]:

• Object recognitionconsists in finding a familiarity
with an object for which there already exists a (usu-
ally 3D) model known by the system.

• Object identificationconsists in classifying or nam-
ing an object, i.e. it requires neither a model of the
object nor complex scene reconstruction algorithms.

This identification ability will serve to build a lex-
icon of grounded human symbols in order to provide

a basis for human–robot interaction-based behaviors
(e.g. dialogueusing the lexicon, request totrack or
follow an anchored object, etc.). This paper focus on
the anchoring process while the use of a lexicon for
such tasks will not be described here. It is important to
understand that the anchoring process described here
is independent of any behavior.

In practical, each robot navigates in the environment
during the day and takes snapshots of its field of vi-
sion with its video camera according to three possible
behaviors:

• Wander behavior. The robot explores its environ-
ment and takes snapshots from time to time. This
behavior is useful to get a set of images that is rep-
resentative of the environment.

• Attention behavior. The robot takes a snapshot upon
a request. This enables a supervisor to show specific
scenes.

• Active learner behavior. The robot explores its en-
vironment and takes snapshots that are supposed to
be interesting according to what it already knows. In
Machine Learning, suchactive learningtechniques
can greatly improve the accuracy of new classifiers
by selecting examples based on the performance of
previously learnt classifiers.

At the end of each day, the robot may report to a su-
pervisor and “ask” her/him what objects (whose sym-
bols may or may not belong to a predefined lexicon)
are to be identified on a subset of taken pictures (with-
out the supervisor pointing at them). It then performs
a learning task in order to create or update the con-
nection between sensory data and symbols which is
referred to as the anchoring process. From a Machine
Learning point of view, the learning tasks produces
classifiers that should then be used to identify symbols
from the sensory data.Fig. 1 describes this process.
The learning task associated to the anchoring is there-
fore characterized by a set of image descriptions and
attached labels. It corresponds to a multi-class concept
learning task.

A key aspect of the problem lies in the definition of
the learning examples (i.e. the set of descriptions ex-
tracted from the images) used by the robot during the
anchoring process. In effect, a first step in any anchor-
ing process is to identify (relevant) information out of
raw sensory data in order to reduce the complexity of
the learning task.
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Fig. 1. The four steps toward lexicon anchoring. As a first step, the robot takes snapshots of its environment which arelabeled by a
supervisor. The robot tries to associate (learn) the provided label(s) with its percept, and, after a number of such steps take place, it shall
be able to autonomously label a new environment.

Fig. 2. Examples of the robot’s visual experience.

The Pioneer2DX mobile robot provides images
thanks to its LCD video camera while navigating
in the corridors. The images are 160× 120 wide,
with a 24 bits color information per pixel. Humans,
robots, doors, extinguishers, ashtrays and other pos-
sible targets can be seen among the images as shown
in Fig. 2. All these possible targets, as they appear
in the images, are of different shape, size, orientation
and sometimes they are partially occluded. Finally,
each image is labeled with the names of the occurring
targets.

3. Related works

In this section, we will briefly review two research
domains that are more or less related to our problem
setting. We will try to highlight both the specificity
of our task and the common concerns between prob-
lem settings. Firstly, we will state the differences with
works studying theemergence of languagein a soci-
ety of robots. Then, we will study common concerns
betweencontent-based image retrievaland our iden-
tification task.

3.1. Emergent adaptive lexicon and language

Lexicon anchoring is mainly concerned with study-
ing the evolution of a language in a society of agents
through the emergence of a shared grounded lexicon.
In order to build a shared lexicon, a group of agents
may require a combination of individual adaptation,
cultural evolution, and auto-organization[8].

These works do not focus much on the problem
of extracting visual percepts. The world is perceived
through few “channels” (such ascolor, localization,
height, width) and discrimination treesare built in-
crementally to disambiguate words[9]. In fact, the
problem of perceptions is simplified so that it is
possible to study the evolution of language on a
large scale (i.e. grounding meaning in a society of
agents).

While these works achieved very interesting results
and deals with the grounding of a lexicon, we are not
concerned with the same issues. As a matter of fact,
we consider the anchoring of agivenlexicon, i.e. how
to extract relevant information from complex images,
instead of theemergenceof such a lexicon, i.e. lexicon
adaptation, evolution of grammar or syntax, etc.
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3.2. Content-based image retrieval

Our problem setting shares much more in common
with that ofcontent-based image retrieval(cbir) [10].
However the goal incbir is (roughly) to compute a
similarity measure between two images, the question
as to how the information is extracted remains central
in both cases. As a matter of fact, we can learn much
by studying the popular approaches used incbir to
describe an image. There are three main approaches
based on:

• Global color histogram description[11]. Match-
ing image’s histogram descriptions achieved sur-
prisingly good retrieval results and is considered as
a benchmark to evaluate other approaches. This ap-
proach is simple yet efficient.

• Region-based similarity [12,13]. The similarity
measure is computed by matching regions grown
according to various properties of the images (e.g.
color and texture properties). However good re-
sults where achieved using this approach, there are
known drawbacks such as the complexity of match-
ing between images described as sets of regions
and the unreliability of region-growing algorithms.

• Configural recognition[14]. This approach pro-
vides an efficient way to compare images using
spatial properties between regions while limiting
the matching complexity. Only afixed number
of regions according to agiven configuration are
taken into account. Since thetemplateis given by
the supervisor,1 this approach is fitted for retrieval
of images with constant overall organizations (i.e.
scenes (e.g. mountain, sea, etc.) vs. objects).

The cited approaches can help us defining an image
description mechanism but we should also take into
account that there are strong differences between an-
choring andcbir. These fundamental differences are
that:

(1) Retrieval is not identification. cbir uses a simi-
larity measure that do not explicitly classify the
example. Moreover, learnt classifiers (set of rules,
decision trees, trained neural networks, etc.) are
faster to apply than computing any similarity

1 The values for each component within the fixed template can
also be learnt[15].

measure (i.e. one-pass test vs. complex matching
phase). Such classifiers enable nearly costless im-
age classification and can easily be implemented
in a real-time operating mobile robot.

(2) cbir is not a long-term behavior. The robot is
supposed to navigate in the environment and
constantly update its anchors. Since the world is
dynamic and subject toconcept drifts, the robot
requires to be able to learn and adapt its anchors
through time (e.g. if a new example of the “chair”
symbol may appear someday).

(3) The images are not collected thanks to a situated
behavior. The data collected by the robot are spe-
cific to its location. Due to the properties of such
images, we are concerned with checking if there is
a specific property hidden in the image that would
help to identify an object. As a matter of fact, the
environment of the robot provides very similar im-
ages where global variations are not bounded to
a given object. On the other hand,cbir is about
retrieving globally similar images among a set of
very different images.

4. Changing the representation of images

4.1. Initial perceptual representation

We define the role of the robot’s perceptual system
as to extractabstract perceptsout of low-level per-
cepts, such as a set of pixels, from the video camera
or sonar values. These abstract percepts provide a rep-
resentation of the perceived world on which further
computation will be based. They can be anything from
sets of clustered colored regions to a matrix resulting
from a Hough transform. The choice of a representa-
tion is motivated by finding a good trade-off that re-
duces the size of the search space and enhances the
expressiveness of the abstract percepts.

As mentioned inSection 2, the problem we consider
is that of automatically finding a representation of a
set of labeled images that is well adapted to the learn-
ing of concepts. Let us underline that our goal is not to
achieve the best performance on the particular learn-
ing task mentioned in the previous section. To obtain
the best performance would require that experts in the
field build an ad hoc representation for each concept
to learn. On the contrary, we are interested in having
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a robot find by itself the good representation, so that,
if the context changes or the concept to learn is differ-
ent, it has the ability to discover by himself the good
level of representation. We therefore consider the rep-
resentation provided by the sensors as aninitial rep-
resentation.

From the robot’s point of view, each pixel from the
camera is converted into alow-level percept. In the
initial image representation, where each pixel is de-
scribed by its position (x, y), its hue(the tint of a color
as measured by the wavelength of light), itssaturation
(term used to characterize color purity or brilliance)
and itsvalue(the relative lightness and darkness of a
color, which is also refereed to as “tone”). The initial
description of an image is therefore a set of 19 200
(160×120 pixels) 5-tuple (x, y, h, s, v). Each image is
labeled by symbols following the process described in
Section 2(see alsoFig. 2). Thepositiveexamples of a
given concept (e.g. presence of a fire extinguisher) to
learn correspond to all images labeled positively for
this concept. Thenegativeexamples are the images
not labeled forthisconcept. As a matter of fact, a neg-
ative example for a given concept can be a positive
example for another concept. The number of positive
examples for each concept may vary greatly depend-
ing on the environment, the exploration of the robot,
etc.

The initial representation of images, consisting
of hundreds of thousands of pixels, is clearly a
too low-level representation to be used by Machine
Learning algorithms. We shall now analyze different
representations that have been considered in the field
of Computer Vision from the Machine Learning point
of view. These different representations will provide
some directions for investigating automatic changes
of representation to improve the learning accuracy.

4.2. Representation languages in Machine
Learning

In the traditional setting of Machine Learning, each
object is represented by afeature-vector x, to which
is associated a labelf(x). The supervized learning task
consists in finding a classifierh which minimizes the
misclassification probability Pr[f(x) �= h(x)] on a
newly observed example (x, f(x)).

Within the multiple-instance setting [16], ob-
jects are represented bybags of feature-vectors.

Feature-vectors are also calledinstances, as in the
traditional setting features may be numeric as well
as symbolic features. Again, the associated learn-
ing task consists in finding a classifierhmulti such
that most bags are correctly classified. In this set-
ting, multiple-instance classifiers are of the form
hmulti(b) = h(x1)v · · · vh(xr) whereb = {x1, . . . , xr}
is a bag containingr instances. Thus, an object
represented by a bagb will be classified positively
by hmulti iff at least one of its instances firesh.
Multiple-instance learning has been successfully ap-
plied to various domains including the prediction the
chemical activity of molecules[16], and the classifi-
cation of natural scenes[15].

Within a relational settingthe objects are repre-
sented by a set of components objects, their features,
and relations between components. In particular, in In-
ductive Logic Programming[17] Prolog facts are used
to describe objects and Background KnowledgeB en-
codes deductive rules.

To summarize, in Machine Learning the languages
used to represent examples fall into three broad cate-
gories:

• Feature-vector. The most widely used and for which
efficient algorithms have been devised.

• Relational description. The most expressive repre-
sentation but whose inherent complexity[18] pre-
vents from efficient learning.

• Multiple-instance. An in-between representation,
more expressive than feature-vector but for which
efficient algorithms do exist.

4.3. Dimensions of abstraction

In the perspective of automatically exploring the set
of possible representations of an image, we propose
to identify particular operators and to experiment with
them. There are countless operators that could be ap-
plied to an image hoping for more accurate learning.
Operators changing thecontrast, the resolution, the
definitionare all possible candidates.

To improve the learning of concepts, we are in-
terested in transformation that areabstractionsin the
sense that they decrease the quantity of information
contained in the image[5]. Abstraction is considered
as a specificchange of representationthat is anhomo-
morphismfrom one representation to another (here:
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from an image to its description). Starting from the
initial low-level percepts(i.e. the pixels of the image),
the elements obtained after applying theabstraction
operatorswill be referred to asabstract percepts, since
they will be used as representative percepts for further
processing.

The two main dimensions of abstraction that we
shall study aregranularity andstructure. Granularity
corresponds to the resolution of the image. Structure
corresponds to the basic element of the image as the
smallest individually accessible portion of the image
to consider, be it a pixel or a complex region.Fig. 4
depicts the space of representation changes associated
to these two dimensions and their corresponding ab-
straction operators that we define as:

• The associate operator(for granularity). It con-
sists in replacing a set of pixels with a unique
(mega)pixel that has for its (h, s, v) values the aver-
age of the pixels that were associated. This operator
is a built-in operator for the robot as it corresponds
to a particularsub-sampling. The resultingabstract
perceptswill be referred to asr-percepts.2

• The aggregate operator(for structure). It consists
in grouping a set of pixels or regions to form a
pattern. This operation is also referred to as “term
construction” in the literature[19]. The pattern does
not replace the pixels or regions it is composed of,
and therefore the resolution or granularity of the
image is not changed. What changes is the structure
of the image. The aggregate operator may be either
data-driven (e.g. growing patterns) or model based
(e.g. applying a predefined mask). For reasons of
efficiency required by the use of a robot we have
considered an aggregate operator that is applied to
contiguous pixels forming a particular shape (we do
not consider region-growing algorithms because of
their versatility when using fixed thresholds). The
resulting abstract perceptswill be referred to as
s-percepts.3

Fig. 3illustrates how one can use these operators by
showing a practical example where specific instances
of the associate and aggregate operators are sequen-
tially applied to extract a new description from an im-
age.

2 r-percepts, as inresolution percept.
3 s-percept, as instructural percept.

Fig. 3. An example where specific instances of the operators
associateand aggregateare sequentially applied to an image.

5. Automatically changing the representation
for learning

In the previous section two abstraction operators to
change the representation of images were presented.
The parameter of the associate operators we have con-
sidered is the number of pixels that are associated to
form a (mega)pixel. The parameter of the aggregate
operator is the pattern or region structure.

With respect to the learning task described in
Section 2, a key issue is to analyze the impact of
representation changes on learning. The main ques-
tion is related to the choice of one operator and its
parameters. In Machine Learning, the abundant lit-
erature on feature selection shows that approaches
fall in two broad categories: thewrapper and the
filter approach[20]. Intuitively, the wrapper
approach uses the performance of the learning algo-
rithm as a heuristic to guide the abstraction. In the
following, we present how thewrapper approach
can be used to choose the most fitted abstraction. As it
is an approach that attempt to learn from the learning
process itself it is also referred to as ameta-learning
approach.

We have developed the PLIC system, which is both
an image description toolkit, a data reformulation
tool, and a Wrapper. PLIC interacts with RippMi, a
multiple-instance rule learnerthat generates classi-
fiers as decision rules (see[21] for a full description
of RippMi). For example, a typical classifier would
be (using a s-percept such as the one seen inFig. 3:

• hypothesis: human.
• true:- p3Value<=9, p2Saturation>=27.
• true:- p2Hue<=203, p1Saturation<=3,

p3Value<=165.
• true:- p3Hue<=198,p1x>=6, p1y>=2.
• default false.
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Fig. 4. The space of image representation obtained by applying the associate operator (changing theresolution) and the aggregate operator
(changing thestructure).

where p1, p2, p3 are the corresponding embedded
r-percepts. RippMi cross-validates learnt classifiers in
order to evaluate the average error rate on unknown
data. This is generally a reliable estimation of the
classifier’s accuracy on future data.

With the help of RippMi, PLIC applies the operators
as follows:

(1) Association operator. The horizontal dimension
in Fig. 4 is difficult to explore since object iden-
tification is independent of scaling. Since there is
no “better” resolution and that every resolutions
should be useful, PLIC describes each image by
using the associate operator for several image res-
olutions (namely 1× 1, 4× 3, 8× 6, 16× 12,
32×244). The idea behind thismulti-granularities
approachis to learn classifiers that are invariant
to resolutions and object size variations.

(2) Aggregation operator. PLIC uses its Wrapper
component in order to explore the vertical dimen-
sion in Fig. 4. Exploring the vertical dimension
is used to select between different structural pat-
terns to apply with the aggregate operator. The
Wrapper-based component explores different
s-percepts iteratively as synthesized is shown in

4 We were not able to go further due to memory limitations.

Fig. 5. An initial s-percept is chosen (at first, it
embeds only one r-percept), and the image is re-
formulated in a multiple-instance representation
using this structure; then, the concepts are learnt
using this representation. Based on the results
with cross-validation of the learning algorithm,
a new structure is devised by adding a contigu-
ous r-percept. The heuristic for creating a new
structure is based on the fact that for the current
s-percept, all the embedded r-percepts are used in
at least one decision rule of the rule set with the
accuracy being better than at the previous level.
For example, the rule set we saw before would be
extended (all three embedded r-percepts are used).

PLIC uses RippMi to learn severalclassifiersfor
each object to be identified (e.g. one classifier for each
s-percepts). Each classifier is learnt thanks to a fixed
number of positive and negative examples during a
batch learning session. However these classifiers are
cross-validated, it is possible that the robot may en-
counter new occurrences of the object. For example,
people may change clothes, objects may be moved or
replaces, the environment can vary greatly during the
day (e.g. daylight vs. artificial light), etc.

Fortunately, all these classifiers can be combined in
order to evaluate which one have to be replaced. PLIC
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Fig. 5. The PLIC system Wrapper component.

addressesanchoring in the long-termby increasing
or decreasing each classifier’sweight depending on
the accuracy of its prediction when new images are
presented. Many on-line learning algorithms can be
used such as the weighted majority algorithm[22] or
even a simple perceptron. As a consequence, we can
easily replace outdated classifiers by the newly learnt
classifiers whenever there is a batch learning session.
For a given concept, such a session can be launch once
n new images have been labeled with this concept
(choosingn is free but may take into account memory
limitation since this is a batch learning task where all
positive and negative examples are handled at the same
time as opposed to on-line learning).

6. Experiments

6.1. Experimental setup

To evaluate the interest of abstracting visual per-
cepts from a Machine Learning point of view, a num-
ber of different experiments have been carried out. The
experiments presented are based on the images ac-
quired by aPioneer2DX mobile robot in the corridor
of theLIP6 laboratory (Paris, France). The objects as
they appear in the images are different in shape, size,
orientation and are sometimes partially occluded. The

lexicon contains three symbols to anchor:

(1) Human. A single person with different kind of
clothes.

(2) Fire extinguisher. They can be found in the corri-
dor of our lab.

(3) Box. Various boxes that stand alone or piled up.

As explained inSection 2, a supervisor “names”
the occurring targets. Given the symbol to anchor, we
have decided that every batch learning session would
be based on the first 25 positively labeled examples
and 25 randomly selected negative examples (no bias).
The size of the corresponding descriptions depends on
the operators. For example, a learning set may vary
from approximately 2 KB (with a global histogram
description for each image) to 3 MB (with an asso-
ciate operator set to 32× 24 and an aggregation oper-
ator with s-percepts that embed 4 r-percepts). Among
the positive examples, about 50% are labeled with
one object, 15% with two objects and 5% with three
objects.

Three independent sets of experiments are pre-
sented. The first one illustrates the impact of the
operator associate used to build a multi-granularities
descriptions. The second studies the impact of the ag-
gregate operator based on an arbitrarily selected gran-
ularity. The multiple-instances rule learner RipperMi
was used on the descriptions obtained from these



158 N. Bredeche et al. / Robotics and Autonomous Systems 43 (2003) 149–162

Table 1
Object detection accuracy (%) and granularity

Human Extinguisher Box

Global histogram (baseline) 61.83 64.72 77.78
4 × 3 50 63.89 69.17
8 × 6 50.28 66.67 86.11

16 × 12 63.61 58.61 82.5
32 × 24 72.5 70.28 56.67
Multi-granularities 72.8 75.28 75.8

images with a 10-fold cross-validation.5 Moreover,
each experiment is repeated 10 times in order to get a
good approximation of the results. In Machine Learn-
ing, such a validation is known to compute a good
approximation of what will be the real accuracy of
the classifiers (i.e. the object identification accuracy).
RipperMi returns a set of rules (i.e. a classifier) that
covers the positive examples. Finally, we describe the
use of weights to evaluate classifiers obtained at the
previous steps and show the benefits of updating the
anchor of an object through time.

6.2. Evaluating automatic changes of granularity

To begin with, we performed a simple learning task
using Ripper [23], a well-known supervized learn-
ing algorithm, with a learning set consisting of the
popular6 global histogram descriptions of the images.
This will serve as a baseline to evaluate the impact of
choosing a specific granularity.

Table 1 shows the object identification accuracy
for the three concepts.7 According to the results, it
is not clear which resolution is better. The experi-
ment with the global histograms sometimes yields bet-
ter results that experiment with finer grain. Moreover,
the multi-granularities approach seems to yield only
slightly better results than other approach and is even
worse for the easy-to-learn “box” concept. Neverthe-
less, the multi-granularities approach produces classi-
fiers that are resolution independent: each classifier is
learnt on a dataset where each image is described in

5 Cross-validation is a widely used data-oriented evaluation of
the learning generalization error. The dataset is divided into a
learning and a training set.

6 At least in cbir.
7 Learning duration is less than 10 s standard deviation is about

1%.

Fig. 6. Four levels of structural configurations (i.e. s-percepts)
generated by PLIC.

four different ways (i.e. 4×3, 8×6, 16×12 and 32×24
representations) that generates four distinct examples.

Clearly, object identification depends on the object
and its accuracy is subject to change through time
and experience. While the multi-granularity approach
do not always yield the best results, there are good
chances that its classifiers will prove more robust in
time than other classifiers.

6.3. Experiments on automatic changes
of structure

PLICs Wrapper tool was used with the heuristic
described inSection 5in order to generate up to a
maximum of 4 r-percepts per s-percept. The possible
structural configurations are shown inFig. 6. Each
structural configuration is applied from every single
r-percept to generate the learning sets. The 32× 24
resolution was chosen in order to show the potential of
structural reformulation.Table 2shows the best results
achieved for each structural level of complexity.

Results from the experiments show that for all the
objects, the highest accuracy is achieved by one of the
most complex structural configurations, which is not

Table 2
Object detection accuracy (%): best results for each structure level

Human Extinguisher Box

Global histogram
(baseline)

61.83 64.72 77.78

Level 1 72.5 70.28 56.67
Level 2 73.5 (2.2) 73.33 (2.2) 60 (2.2)
Level 3 76.67 (3.5) 73.33 (3.4) 76.7 (3.4)
Level 4 80.8 (4.10) 80.8 (4.3) 85.33 (4.16)
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Fig. 7. Three snapshots taken during a tracking behavior (with identification).

surprising. However the structural configurations are
still quite simple, the identification accuracy for each
object rose between 8 points (human detection) and
29 (!) points (box detection).

Eventhough the impact of modifying the aggrega-
tion operator depends on the concept to learn (same as
the association operator), structural reformulation is
clearly an efficient way to improve classifiers for an-
choring. The classifier shown inSection 5was learnt
from a reformulated dataset using the “3.3” s-percept.
This classifier demonstrates that relations between the
embedded r-percepts are taken into account.

6.4. On-line learning and updating anchors

We saw previously that PLIC and RipperMi require
a fixed number of examples during abatch learning
session. As a consequence, thesebatch learning al-
gorithmsbuild efficient classifiers as long as exam-
ples are representative of the world. Given the world
is dynamic and unstable, we have to update the an-
chors from time to time. An interesting approach is
to combine an on-line learning algorithm such as the
well-known weighted majority algorithm[22] with
our batch learning algorithms. Such an on-line learner
would:

• Provide a global detection prediction by aggregating
the weighted classifiers predictions.

• Improve the global performance of a set of classi-
fiers in the long-term by evaluating them (classifiers
with a low accuracy are replaced by new ones).

We experimented this algorithm during several
batch learning sessions and it proved to be efficient
thanks to the following characteristics:

(1) It naturally improves classifiers. Each learning
session is based on a specific set of data. If the
robot’s environment is (more or less) stable, it is

possible to grasp new object’s properties or to take
better snapshots. This sometimes results in learn-
ing better classifiers that can slightly increase the
global identification accuracy for an object. In our
experiments, we empirically evaluated this as less
than a 5% growth in object identification accura-
cies for different kind of redundant objects.

(2) It performs long-term adaptation to concept drifts.
We experimented on the tracking by identifica-
tion of a human being dressed in grey and black.
The robot built its classifiers during two learn-
ing sessions. Then, the robot was made unable to
track the target because the human dressed in blue
and white. After two other learning sessions, new
classifiers were built and the robot could track
the human target again. What is important here
is that some of the old classifiers still remained.
These few classifiers relied onskin andhair col-
ors, which are constant human features.

Fig. 7 shows three snapshots taken during tracking
human (and other objects). Different classifiers were
used depending on the image. On the first image, clas-
sifiers identified a human based ont-shirt, hair and
skin colors using different structures. A box is also
identified. On the second image, human detection re-
lies simply on the color of the skin. Finally, the third
image shows an example of wrong detection on the
right part of the picture due to an unknown environ-
ment (bureau vs. corridor). Nevertheless, the human
is also detected thanks to skin-based classifiers and a
“t”-like structure classifier that covers the face (skin
and hair).

7. Conclusion

In this paper we have addressed the problem of
using automatic abstraction of visual percepts by an
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autonomous mobile robot to improve its ability to
learn anchors [1]. This work finds its application
in a real-world environment within the MICRobES
multi-robots project[6], where anchors provides a
basis for communication between thePioneer 2DX
robot and its human interlocutor. In the approach we
proposed the robot starts with the initial low-level
representation of the images it perceives with its LCD
video camera, and iteratively changes their represen-
tation so as to improve the learning accuracy. Be-
tween the low-level pixel representation and a global
histogram representation there is an immense space
of possible representations. To explore part of this
abstract space of representation we have identified
two operators. A first one changes the resolution and
loose information by averaging the color of squares
of pixels. A second one that groups pixels without
changing the resolution.

To guide the exploration of the space of possi-
ble abstractions, we have developed the PLIC sys-
tem which uses the learning results in order to se-
lect the abstract operators to be applied. From a Ma-
chine Learning point of view, this architecture is based
on a widely used approach in feature selection: the
Wrapper-model. The set of experiments that have been
conducted show that both operators do impact on the
learning accuracy. It is interesting to notice that the
best resolution and structure (sort of coordinates in the
abstract space) found by the system depends of the
concept.

It is also clear that as the number of examples in-
creases, different reformulations might perform better.
Creating high-level abstract percepts does not only im-
prove accuracy, it makes object identification faster for
the robot. This is true as long as the abstraction pro-
cess do not takes itself too much time. This is a known
trade-off in the field of abstraction[24]. As a matter
of fact, abstracting regions by using region-growing
algorithm was a candidate abstract operators but its
computation is too costly for on-line identification.

This study shows that for learning anchors, an ap-
proach that periodically searches for the most accu-
rate representation, given the examples at hand, is a
promising direction. Moreover, it appears that for each
anchor that needs to be learnt, different abstractions
might be more appropriate. These findings raise sev-
eral questions with respect to the robot architecture.
The search for a better representation should be trig-

gered by a decrease of performance of the acquisition
of new examples? How to compare the application of
operators that change the resolution and operators that
change the structure? A central question for any life-
long learning system, integrating abstraction abilities,
is to decide whether to continue toexploit its current
representation orexplore new representations at the
risk of loosing resources if no better ones is found.
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Abstract

The paper describes a system for open-ended communication by autonomous robots about event descriptions anchored
in reality through the robot’s sensori-motor apparatus. The events are dynamic and agents must continually track changing
situations at multiple levels of detail through their vision system. We are specifically concerned with the question how
grounding can become shared through the use of external (symbolic) representations, such as natural language expressions.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The work reported in this paper is part of a
larger research effort towards grounded open-ended
self-generated communication among robots[22] and
grounded open-ended natural language-like commu-
nication between humans and robots[19]. Grounded
means here that the communication is about the shared
environment in which speaker and hearer are situated
and which has to be perceived and interpreted au-
tonomously by both participants through a perceptual
apparatus. This contrasts with natural language in-
terfaces to purely symbolic information systems like
databases[3] or communication systems for software
agents[4] in which the agents have full access to an
accurate and complete representation of the environ-
ment and each others’ internal states.Open-ended
means that the communication conventions are not
fixed in advance but they are negotiated and adapted
to suit the communication needs of the partners. This

∗ Corresponding author. Present address: SONY Computer Sci-
ence Laboratory, Paris, France.
E-mail address: steels@arti.vub.ac.be (L. Steels).

appears necessary because human communication is
open-ended as well. Humans may invent new mean-
ings and new expressions for these meanings or adapt
existing expressions to serve new purposes as part of
a normal conversation[9].

Grounded verbal communication is an enormously
challenging task which requires the integration of
many capabilities, including speech and language pro-
cessing. We believe that there is no single sweeping
principle that will make a non-grounded AI system
grounded. It is definitely not the case that one can
simply attach a vision/action module to a logic-based
reasoning system to obtain a grounded agent, nor that
one can simply put a conceptual system on top of a
behaviour-based robot. Instead, grounding is a matter
of embodiment and very careful design, as well as
tight integration of many components at many differ-
ent levels. Nevertheless, it is possible to identify a set
of issues that need to be dealt with and general design
principles or strategies.

This paper starts with an introduction into the
grounding issue in an attempt to clear up possible ter-
minological confusions. It then describes very briefly
a system that we have built which is a combination

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00357-3
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and integration of two subsystems reported on ear-
lier: the PERACT system[5], designed for the visual
recognition of actions, and the EVOLAN system[20],
designed for exploring the symbolisation of event
description in multi-agent simulations. This paper
focuses mainly on the visual processing and event
categorisation that anchor symbols in the world. We
next turn to a discussion of the underlying design
principles and end with some conclusions.

2. Terminological issues

There has been a big debate in AI and cognitive sci-
ence on whether intelligence requires symbolic repre-
sentations[8], and if so how these representations are
supposed to be related to the world through a sensory
apparatus and how this relation is acquired[11,13].

For the purposes of clarifying this discussion, we
have found it useful to make a number of new distinc-
tions. Generally speaking, representations code mean-
ings, i.e. features of the environment relevant to the
agent. We can distinguish internal and external rep-
resentations. Internal representations occur when the
physical structures are located inside computer memo-
ries or in brains. External representations are physical
structures outside the individual: marks on a piece of
paper, sounds, gestures, objects. Communication be-
tween two agents always requires external representa-
tions.

Another useful distinction which has been intro-
duced by Sperber and Wilson, is that between Shan-
non coding and inferential coding, which gives rise
to a distinction between information representations
(I-representations) and expressive representations
(E-representations), respectively. Natural language ut-
terances are clear examples of inferential coding and
thus of E-representations[18]. The interpreter is as-
sumed to be intelligent and capable to infer meaning
from mere hints. As a consequence the representa-
tion can be more compact because the interpreter
shares sufficient context and background knowledge
to make the appropriate inference. Most importantly,
the representation need not be exclusively based on
established conventions but can be the outcome of a
negotiation process. Thus analogy is heavily used in
natural language to invent a way for expressing a new
meaning. For example, soon after Douglas, Engelbart

developed the new concept of an “x–y position indica-
tor for a display system” in the form of a box rolling
over the table, it was called a mouse by analogy with
the shape of a real mouse and now the whole world
calls it that way. This shows that inferential coding
can potentially express an open-ended set of mean-
ings because the coding conventions can be adapted
as the needs arise.

The information structures typically used in com-
puters are examples of Shannon codings, and further
called I-representations. No intelligent interpreter is
assumed and so interpretation is straightforward and
automatic. There is even a question whether one can
speak of interpretation. All the information is in the
message itself and the coding is fixed. There is no
need to go through a complex process of disambigua-
tion or the guessing of meaning. The production and
interpretation of E-representations clearly requires in-
formation processing, both to code the meaning that
needs to be expressed and the partial structures (such
as syntactic structures) generated as part of the pro-
duction and interpretation process (which sometimes
even involves a model of the listener). But this does
not necessarily imply that the brain internally uses
E-representations. We do not want to go into that
discussion here, except to point out that often philoso-
phers, anthropologists, artists, etc. use the term rep-
resentation in the sense of (external) E-representation
whereas computer scientists or AI researchers use
it in the sense of (internal) I-representations. Our
more precise terminology is proposed to avoid this
confusion.

The term grounding applies to all possible represen-
tations, and the opposite of a grounded representation
is a formal representation, like an uninterpreted alge-
bra. A grounded representation has intentionality; it
is about objects and situations in the world. This im-
plies that the agent needs processes to establish and
maintain this relation. For example, there might be
internal I-representations in the form of data struc-
tures (or states in neural networks) that code for the
colour, position, shape, size, trajectory, speed of move-
ment, etc. of an object in the world and these could
be constructed and maintained by a vision system that
is segmenting images, tracking them, and computing
their properties in real time. External representations
could also be grounded, in the sense that a description
produced by one agent could be about an object or
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situation in reality and the other agent has to ground
the meaning of this description in his own perception
of reality in order to understand it.

A key issue, and the one we try to solve in the exper-
iments discussed in this paper, is howshared ground-
ing can occur. This is a big problem because the agents
do not have access to each other’s internal states (i.e.
each other’s internal representations). We argue that
shared grounding can be established through a nego-
tiation process embedded in language games. So the
‘symbols’ that we are trying to see grounded are ex-
ternal symbols used in language-like communication,
they are not internal symbols used in some cognitive
process. Not only are we interested in single sym-
bols (words) but also, and particularly, in the shared
grounding of the meaning of grammatical structures.
By negotiation we mean that agents invent representa-
tional conventions, try them out with others, and adapt
their set of conventions based on the feedback on suc-
cess or failure in communication.

There has been quite a lot of work (as illustrated by
this special issue, as well as the papers in[10]) on how
a single agent can ground his internal I-representations
in reality by a sensory-motor apparatus. But there has
been little work so far on shared grounding through

Fig. 1. Robotic installation used for the experiments reported in this paper. It consists of two steerable cameras capturing images of
dynamic scenes. The captured images are shown on separate monitors.

external E-representations, i.e. how a population of
agents, each with a grounded representation system,
can evolve agreement on how their respective inter-
nal representations are coordinated through external
representations. Other papers describing our approach
(see, for example[19,22]) have focused mainly on the
language part, whereas this paper focuses exclusively
on the anchoring components, i.e. the vision and track-
ing system that generates the internal representations
to be expressed.

3. Grounded language communication

The robotic installation used for the present pa-
per is displayed inFig. 1 and similar to that used in
earlier ‘talking heads’ experiments[22]. It consists
of two SONY pan-tilt cameras (EVI-D31) each con-
nected to a computer, which runs the PERACT sys-
tem. The computers are Bi-Xeon 1.7 GHz machines
running Linux Redhat 7.1. The language-specific
aspects of the system (parsers, producers, etc.)
run on a third computer (Mac G4 with Common
LISP) with communication through a local area
network.
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3.1. Language games

The robots engage in interactions which we call
language games[19]. A language game is a routinised,
situated interaction between two agents. The inter-
action not only involves verbal communication, i.e.
the parsing and producing of utterances, but also the
grounding of internal representations through sensory
processing, and, most importantly, steps for learning
new aspects of language if necessary: new words, new
meanings for existing words, new phrases. We believe
that human–robot communication is best structured
in terms of language games because human language
interpretation requires a strong sense of context. The
utterance does not contain all the information nec-
essary for its interpretation. Words are ambiguous,
many things are left unsaid, and the speech signal is
notoriously difficult to decode. Because the language
game makes the communication more predictable and
provides a framework for semantic inference, it pro-
duces the strong constraints needed to make verbal
communication doable and enables social learning
[21].

The present paper focuses on one game only,
namely a description game in which one agent (the
speaker) describes to another agent (the hearer) an
event in the world. The hearer gives feedback whether
he agrees with the description or not. Some snapshots
of a typical example of a scene is shown inFig. 2.
There is a hand which moves towards a (red) object
and picks it up. An adequate description is: “The hand
picks up the red object”. Notice that the background
consists of an unaltered typical office environment
with different sources of light (daylight and artificial
light). The action takes place at a normal pace and
the dialog takes place as a commentary on the actions
in real time.

Fig. 2. Snapshots of a typical event handled in the experiment: a hand grasping an object.

Additional typical events handled by the system are:
the red ball rolls against the green block. The hand
slides the pyramid against the blue box. The hand
puts the red cube on top of the green one. A yellow
ball rolls down a ramp. Because the world consists of
dynamically changing situations, classified as events,
this work is strongly related to other research on visual
event classification[14,17], temporal world modelling
[2], and the conceptual analysis of event expression in
natural languages[23].

3.2. The semiotic cycle

To play a description game requires that the speaker
perceives the situation by capturing streams of im-
ages with the camera, represent the result of sensory
processing as a series of facts in memory, and then
conceptualise the event and the objects in terms of
roles and event types. Next the speaker must map
this conceptualisation into an utterance, which in-
cludes choosing words for the predicates identifying
the objects and the event, and applying the rules of
grammar. The hearer must lookup the words and
decode the grammatical structures, reconstruct a
semantic structure, and interpret it in terms of his
own world model. The language game succeeds if
the utterance produced by the speaker describes an
event in the recent past. The whole process is called
the semiotic cycle (an extension and adaptation of
the well-known ‘semiotic triangle’) and displayed in
Fig. 3.

The internal conceptual representation con-
sists of a series of facts represented in first-order
predicate–calculus, following standard practices in
symbolic AI [15]. A typical set of facts generated
from visual processing for an event in which a red
ball moves away from a green ball is:
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Fig. 3. The semiotic cycle: left, processes carried out by the speaker; right, processes carried out by the hearer.

(move-away ev-1) (move-away-patient
ev-1 obj-1)

(move-away-source ev-1 obj-2)
(green obj-2)

(ball obj-2) (hand obj-4) (red obj-1)
(ball obj-1)

(larger obj-1 obj-2) (box obj-3)
(next-to obj-1 obj-3)

Speaker and hearer see the situation from different
angles, which often implies that there is no complete
equivalence in their world models.

Each fact has three additional information items:

• A time stamp indicating when the fact arrived into
memory. This is used for implementing forgetting:
after a certain time period ‘old’ facts are erased and
can no longer be the subject of a language commu-
nication.

• A time period which specifies the start and end point
of a fact (when known). This makes it possible to
use the temporal interval calculus[2] for represent-
ing and reasoning about actions and time.

• A certainty indication assigned by the vision system
to this fact.

Before making an utterance, the speaker chooses
(randomly) a recent event plus a set of objects related
to this event (for example, ev-1, obj-1 and obj-2). For
each object and for the event itself, the speaker then
seeks a predicate or conjunctive combination of pred-
icates, that are distinctive for the object or the event.
Distinctive means that the predicate (or combination)
is only valid for the intended object but not for any
other object in the context. Thus (ball obj-3) is not
distinctive for obj-3 in the above example, because
both obj-1 and obj-2 are described as such. How-

ever, (green obj-3) is distinctive because obj-3 is the
only green object in the context. The lexicon asso-
ciates words with predicates (for example, the word
“green” with the predicate ‘green’) and grammatical
rules map additional aspects of meaning such as the
predicate–argument relations into syntactic structures.
The speaker assembles all of this into a complete ut-
terance and the hearer uses the same rules in reverse
to come up with a semantic structure.

The semantic structure as reconstructed by the
hearer from parsing the utterance consists of a
predicate–calculus expression with variables that can
be matched against the facts in fact memory, again
following standard practises in natural language se-
mantics. For example, for the utterance “the red ball
moves away”, this expression looks as follows:

(move-away ?event) (move-away-
patient ?event ?object)

(red ?object) (ball ?object)

When this expression is matched against the fact
memory shown earlier, a unique coherent set of bind-
ings of all variables is obtained:

((?event . ev-1) (?object . obj-1))

This is considered as an appropriate interpretation
and therefore the game succeeds. The game fails
when there is no such interpretation or when there
is more than one set of possible bindings for all the
variables.

This paper does not further discuss the (very com-
plex) language component, nor how words or gram-
matical rules are invented and learned as part of the
game (see[19] for more details). Instead, we focus
on how agents establish the relation between the real
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world as captured by the cameras and their internal
world models.

3.3. Issues in grounding

There are a number of very difficult grounding is-
sues which need to be handled within the context of
this application:

• First of all, the environment which generates input
to the system consists of the dynamically changing
unpredictable real world. Agents have to keep up
with the dynamics of the environment and produce
responses within available sensory and computa-
tional resources. It follows that not just anything can
be computed but resources need to be allocated in
a dynamic fashion depending on the requirements
of the communicative situation.

• Second, because the images are unconstrained, with
natural and changing daylight, the results of visual
processing are necessarily going to be noisy. For ex-
ample, segments found on the basis of colour seg-
mentation may suddenly disappear or change when
light conditions are slightly changing, a condition
in the world (like a hand touching an object) may
during a short instant of time change because of
unstable segmentation, part of an event may not be
perceived due to failures in lower level visual pro-
cessing, etc. So we need a way to handle noise, for
example by using top-down expectations.

• Third, because the communication is open-ended, it
will be necessary to adapt the visual processing to
the needs of the communication partners, which im-
plies that at least some of it will have to be learned.
Another thing which has to be learned is what the
vision system ‘tells’ the language system.

4. Visual processing

We now focus on the set of visual interpretation pro-
cesses that the agents use to relate the external dynam-
ically changing real world with the internal conceptual
world models and with the meaning of natural lan-
guage expressions. Rather than detailing the many vi-
sion algorithms that have been used (which are most of
the time well-known state of the art algorithms[16]),
we focus on the general architectural principles. More

information on the PERACT system can be found in
[6].

The vision system can be decomposed into three
subsystems. The first one attempts to detect and track
visual units at different hierarchical levels. The second
subsystem detects and tracks events, again at differ-
ent hierarchical levels. The third subsystem consists
of feature detectors that attempt to find qualitative de-
scriptions for units at different levels of the object or
event hierarchy. The result of all these processes is a
set of streams, reporting objects and their properties
dynamically in response to a changing world. There is
a (short term) memory of these streams that is kept as
they unfold. This is called the visual memory. Some
of the descriptions flow automatically into the robot’s
fact memory (particularly those that are at a higher
level and whose certainty is beyond a threshold) and
these are used by the conceptualisation system to con-
struct or interpret semantic structures.

4.1. Detecting and tracking spatio-temporal units

The first step in grounding is to detect and ‘latch
onto’ regions in the image that are generated by ob-
jects of interest in the environment. This results in a
deictic representation[1] which establishes and moni-
tors indexical references between internal symbols and
external objects. A first innovation of the work pre-
sented here is that this tracking not only takes place
for a single object, but for an open-ended set of ob-
jects at different hierarchical levels—as long as they
are part of the same spatio-temporal context. The de-
tection and tracking of units at different hierarchical
levels constitutes the backbone of the vision system. It
starts in a bottom-up manner from the images captured
by the camera, and goes through various processing
steps, first to extract spatial regions, and then to con-
nect them in time to get spatio-temporal continuities
(seeFig. 4).

More concretely the following layers are present:

(1) Image streams: At the first bottom layer, there is
an influx of images (at a rate of 24 s and with a
size of 160× 120 pixels) supplied by the camera
in the LUV colour space.

(2) Figure/ground separation: The next step is to
identify regions that may correspond to objects
in the scene, thus distinguishing figure(s) from
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Fig. 4. Flow of treatment from raw image to segmented objects.

background. This is currently implemented by
comparing the captured image with a stored im-
age of the background. All zones where the pixels
are not identical to the background are marked
as zones of interest. This avoids processing the
complete image in subsequent layers. The back-
ground needs to be learned prior to further visual
processing but is updated whenever there are
significant changes.

(3) Occupancy grid: Constructing an occupancy grid
is a well known technique used in mobile robotics
for navigation and path planning. An occupancy
grid is a cellular representation of the environment
that contains in each cell information about the
probability that there is an object present[12].
We use a similar technique here. Prior to routine
visual processing, probabilistic colour histograms
are learned for each of the possible objects that
may appear in a scene[7]. These histograms make
it possible to calculate the probability that a certain
pixel belongs to a particular object. The occupancy
grid collects these probabilities for all pixels in
each zone of interest and assigns the pixel to the
object with the highest probability, if it is greater
than a minimal threshold. Note that relying on
colour histograms for object recognition clearly
limits the types of scenes and object sets we can
handle, but as our main goal is on exploring shared
grounding, we do not seek absolute competence
in vision.

(4) Spatial region growing: The resolution of the oc-
cupancy grid is then reduced (for efficiency) and
next used by a region growing algorithm[24] to
group the zones of interest into regions that corre-
spond to objects. The result of this layer is there-
fore a stream of ‘best’ hypotheses for each object’s
coarse spatial occupancy.

(5) Temporal tracking: The first four layers all work
on streams of single images. The next layers work
on multiple images with the goal of tracking the
same object over time. Because objects are iden-
tified using the histogramming technique, it is rel-
atively easy to know whether they re-occur in the
image and to compute their centre so that a tra-
jectory can be established. No sophisticated re-
gion tracking (by trying to match parts of regions
from one image to the next) is performed, which
of course restricts the number of objects of the
same colour that can be handled.

Obviously, this vision system has a number of clear
limitations. The background has to be learned prior to
visual processing and has to be updated when there is
a significant change. The frame rate of the camera is
low (24 images/s), so that fast actions (such as a ball
being dropped onto the table) cannot be detected. Ob-
jects which can participate in scenes have to be learned
in advance. There is only a small set of objects (typi-
cally seven depending on their colour histograms) that
can be used simultaneously in the same set of scenes.
Nevertheless, this system is adequate enough for our
main purposes (namely experiments in grounded lan-
guage communication). Work continues to improve its
reliability and speed by integrating additional vision
algorithms, but the strong temporal constraint imposed
by the real world puts a limit on how much visual pro-
cessing can be done with available hardware. Right
now the system computes all visual information at a
rate that keeps up with the frame rate of the camera.

4.2. Event detection and tracking

The next set of visual processes is concerned with
the detection and tracking of events. The task is similar



170 L. Steels, J.-C. Baillie / Robotics and Autonomous Systems 43 (2003) 163–173

to that of detecting objects, in the sense that deictic
representations are constructed and maintained. The
main difference is that grouping is based on changes
in the properties of objects rather than on invariances.
Event detection is organised in different layers:

(1) Detecting change: The first layer produces a
stream of properties of objects that change over
time. Specifically, it produces qualitative descrip-
tions for:

• Movement of an object, which is signalled if
the centre of gravity of an object has changed
significantly in between two image frames.

• Contact between two objects which is signalled
if the regions of the objects concerned touch
each other for a significant time period.

• Approach between objects which is triggered if
the distance between the centres of gravity of
two objects is becoming significantly smaller
between image frames.

• Front positioning of one objectx with respect
to an objecty which is signalled ifx is moving
towardsy, andy is located within a cone ema-
nating fromx.

A stream of Boolean values for these descriptions
are produced for all the objects in the scene, to-
gether with an indication of their certainty.

(2) Detecting events: The next layer groups these re-
sults in time. Moments when the same configura-
tion of qualitative descriptors holds are grouped
together in blocks. For the scenes shown inFig. 2,
two objects are being tracked: 0 (a hand) and 1 (a
red object), and the following properties: the hand
moves (M0), object-1 moves (M1), object-1 and
the hand touch each other (T10), they approach
each other (A10), object-1 moves in front of the
hand (F10) or the hand moves in front of object-1
(F01). The description streams generated in con-
junction withFig. 2 is as follows, where the num-
ber in front of each line indicates the number of
time steps that the same configuration of descrip-
tions holds.

Blocks of time in which the same configuration
holds are called micro-events. For example, the
first micro-event is one where the hand moves and
approaches an object. The second micro-event is
one where the hand is touching the object. In the
third micro-event the hand and the object move,
the hand still touches the object and the hand is
moving fronted with respect to the object. In the
final micro-event the hand still touches the ob-
ject but neither the hand nor the object move.
Micro-events are generated as soon as they have
been found, in other words when the configura-
tion of qualitative descriptors changes for a sig-
nificantly long time.

(3) The final layer is concerned with the detection of
events. Events are sequences of micro-events. For
example, the pick-up event inFig. 2, involving a
hand and an object, is defined as a sequence of
three micro-events: (1) the hand moves towards
the object, (2) the hand touches the object, and
(3) both move away together. Processes concerned
with recovering such events use a library of event
definitions which is matched against the stream of
micro-events.

4.3. Qualitative descriptors

The final set of processes consists of pattern detec-
tion algorithms which detect significant features about
the objects or events at different levels of the hier-
archy. These algorithms look at the stream of units
and compute properties of single objects (such as size,
shape, colour, texture, etc.) or properties of multiple
objects (such as respective geographical locations and
change in locations). They output the result as streams
of qualitative descriptions with a certainty indication.
The algorithms use standard techniques from compu-
tational geometry and pattern recognition[6].

The qualitative descriptors are integrated in a flex-
ible architecture that makes it possible to add new
detectors at any time at any level of the object or
event hierarchy or reschedule their usage, partly driven
by top-down expectations. Concretely each descrip-
tor runs as a separate parallel process (implemented
as POSIX threads). Each process gets time-slices to
advance its computation. Certain algorithms require
more resources than others, and so ‘quick’ algorithms
yield early results which can already be used at higher
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levels and may be sufficient for the purpose of lan-
guage communication. Processes may be pre-empted
when their results are no longer relevant.

4.4. Top-down information flow

In the discussion so far we assumed that information
flows only in a bottom-up manner: from the images
captured by the camera via a whole set of processes
to the facts in memory. But this is a simplification that
does not work for two reasons:

1. Each of the processing steps discussed may yield
an unreliable result. For example, it is seldom the
case that the qualitative descriptors which provide
the basis for the detection of micro-events yields
a clean set of outputs so that the micro-event is
neatly defined as a block in time. Instead, the con-
figuration is interspersed with very short moments
when some of the descriptors do not hold. If we
would only perform strict bottom-up processing we
cannot deal with this kind of noise. Our solution
has been to introduce for each pattern detector a
top-down influence from the next level up. The user
of the results of a pattern detectors monitors the
certainty of recognition and the constancy of a pat-
tern over time, so that small glitches can be elimi-
nated and weak hypotheses discarded.

2. There is so much visual information in the image
that it is impossible to extract fast enough every-
thing that could possibly be extracted. Moreover, as
little as possible should be put into the fact mem-
ory to avoid overloading or slowing down symbolic
processing. However, occasionally more process-
ing at lower levels is necessary: because an object
being tracked on the basis of colour disappears tem-
porarily from view, or because the continuation of
an action which was taking place in fact does not
take place, because the listener needs to use infor-
mation about the shape of an object which was not
yet computed by the vision system, etc. In these
situations, it must be possible to assign more re-
sources to the processes taking place at a specific
layer and perform additional computation.

We have addressed these issues by introducing the
notion of requests. Requests can be sent from the lan-
guage system to the vision system, and the vision sys-
tem can internally also generate requests. Requests

trigger the activation or re-activation of pattern detec-
tors on specific stretches of the object or event streams.
They may also cause the reconfiguration of pattern de-
tectors to change priorities and give more computer
time to requested information. Finally, they can change
the set of descriptors that is sent by default from the
vision system to the fact memory.

Here are two concrete examples where this facility
is used:

(1) In deciding what to say, the speaker must find a dis-
tinctive description to refer to an object. Suppose
that there are two objects in memory, obj-1 and
obj-2, and that facts in the fact memory only say
that they are both red, perhaps because colour was
the only property computed so far with sufficient
certainty. The speaker cannot discriminate between
the objects and so a request is issued to the vision
system to stimulate computation of other qualita-
tive descriptors for obj-1 and obj-2, that might yield
a distinctive description. There are pattern detec-
tors for colour, shape, texture, size, position, etc.
with default priorities. Some of them may not have
had enough resources to come up with a reliable
conclusion, others may have such a low priority
that they were not started at all. When the request
comes, more computational power is given to these
pattern detectors. Moreover, they do not necessar-
ily operate over the image stream as it is entering
the system but on past stretches as recorded in vi-
sual memory. When the pattern detectors produce
more results, they are sent to the language system,
turned into facts in memory and used in a new at-
tempt for discrimination.

(2) The hearer may be sent an utterance that uses a set
of properties which are not yet in the fact memory.
For example, the hearer may have been asked to
identify “the ball next to the green cube” but his
fact memory may have recorded only that there is
a green and a red object. Again a request is gener-
ated to the hearer’s vision system to go after more
information. This request can be precise: compute
information about shape for these specific objects
given the hypothesis that it can be ball or a cube.

It would be desirable to enrich the power of the
top-down flow of constraints on vision processing, for
example, by predicting the position of objects in future
time steps and use that as hypotheses for the pattern
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detectors, but this is not done yet in the current im-
plementation.

5. Design principles for grounding

We now attempt to extract some of the lessons
learned from our designs and experimentations with
the grounded communication system briefly described
in the previous section. We do not claim that these
principles are unique to the system discussed here, on
the contrary, we try to capture the ‘best practice’ in
the field.

1. Indexical representations: The first important prin-
ciple is to introduce a continuous detection and
tracking of objects and events. The vision system
described here latches onto an object or event and
keeps tracking it as much as possible. This results in
a dynamic deictic representation which maintains
streams of indexical references, even if objects or
events change.

2. Description streams: The second important prin-
ciple is the introduction of description streams
which produce and monitor properties of objects
and events in time. The streams start from the
images flowing in through the camera at a steady
rate and continues all the way up to facts spilling
into the fact memory. The units to which the de-
scriptions apply are assembled, first spatially then
temporally, at many different hierarchical levels.

3. Noise reduction: It is well known that real images
taken from relatively unprepared real world situ-
ations always yield noisy processing results. This
motivates the next design principle: noise at one
hierarchical level can be reduced by preferring the
most coherent analysis at the level just above it.
We apply this principle through the whole system
and at all levels.

4. Top-down information flow: It is clearly not enough
to have information flowing from the sensory data
to the conceptual world model, partly because
there is not enough time to compute everything
that could be computed. So there must also be a
steady top-down flow of requests and expectations
from the ‘cognitive’ layers to sensory processing.

5. Attention: Finally, we believe that an attention
mechanism is unavoidable. The attention mech-

anism is responsible for allocating scarce com-
putation resources. The system discussed in this
paper uses a variety of means to achieve this: fig-
ure/ground computation at a very early stage, a
thread-based implementation of feature detectors
with varying and dynamically modifiable priorities
partly steered by the vision system.

6. Conclusions

Grounded robots that engage in communication us-
ing external representations not only need a physical
body and low-level behaviours but also a conceptual
world model which must be anchored firmly and dy-
namically by the robot in the environment through
its sensori-motor apparatus. We argued that there is
not a simple sweeping theoretical principle to turn
a system that uses conceptual world models into a
grounded system. Instead many processes must be
carefully integrated. We described an implemented
system that has attempted to do so in the context of
experiments in grounded open-ended language com-
munication among robots as well as between humans
and robots. We also proposed a set of design princi-
ples that capture the principles that we have used in
our design.
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Abstract

This paper deals with the anchoring of one of the most influential symbolic formalisms used in cognitive robotics, namely
the situation calculus, to a conceptual representation of dynamic scenarios. Our proposal is developed with reference to a
cognitive architecture for robot vision. An experimental setup is presented, aimed at obtainingintelligent monitoringoperations
of a robotic finger starting from visual data.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A cognitive architecture for robot vision has been
proposed by the authors in[4–6]; it is aimed at the rep-
resentation of knowledge extracted from visual data in
both static and dynamic scenarios. One of the main as-
sumptions underlying the design of this architecture is
the need of a principled integration of the approaches
developed within the artificial vision community and
the symbolic, propositional systems developed within
symbolic knowledge representation (KR) in AI. Such
an integration is based on the introduction of acon-
ceptual levelof representation, intermediate between
the processing of visual data and declarative, proposi-
tional representations.

This paper deals with the anchoring of one of the
most influential symbolic formalisms adopted in cog-
nitive robotics, namely thesituation calculus, to the

∗ Corresponding author.
E-mail addresses:chella@unipa.it (A. Chella), frix@dist.unige.it
(M. Frixione), gaglio@unipa.it (S. Gaglio).

conceptual representation of dynamic scenes. We dis-
cuss in particular howactions, situationsandfluents
may be anchored (in the sense of anchoring developed
by Coradeschi and Saffiotti[9,11]) to the representa-
tions at the conceptual level, which are in turns gen-
erated starting from the robot perceptions (for an up
to date survey on different perspectives on anchoring
see[10]).

The main motivation for choosing the situation cal-
culus lies in the fact that it is one of the simplest, more
powerful and best known logic formalisms for the rep-
resentation of knowledge about actions and change.
It was primarily developed by McCarthy and Hayes
[22]; for up to date and exhaustive introductions see
[28,27]. Nowadays, it is a widely adopted formalism
in the cognitive roboticsliterature; efficient Prolog
implementations have been proposed[12,13,21]; sim-
plified versions of the situation calculus are used by
working mobile robots[3,14,18].

The following discussion is based on an experimen-
tal setup aimed at obtaining an intelligent visual con-
trol of a robotic finger starting from visual data. The

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00358-5
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Fig. 1. The robotic finger used in the experimental setup. The
terminal phalanxa, the middle phalanxb and the upper phalanx
c are shown.

finger has been entirely developed at the Robotics Lab-
oratory, Department of Computer Engineering, Uni-
versity of Palermo. It is made up by three phalanxes:
a terminal phalanxa, a middle phalanxb and an upper
phalanxc (seeFig. 1).

The finger is driven by schematic behaviors[1],
and performs articulated movements, such as push-
ing a ball (Fig. 2) or picking up torus-shaped objects
(Fig. 3). The system is equipped with a video camera
that acquires the movements of the objects and of the
finger itself, in order to performintelligent monitor-
ing operations. The acquired visual data are anchored
to symbolic descriptions of the finger operations.

The system takes in input a sequence of images cor-
responding to subsequent phases of the evolution of

Fig. 2. The robotic finger pushes a ball.

Fig. 3. The robotic finger picks up a simple torus-shaped object.

the scene (the movements of the robotic finger and
their effects on the whole scene), and produces in out-
put a declarative description of the scene, formulated
as a set of assertions written in the formalism of the
situation calculus.

Such a symbolic description may be employed to
perform high-level inferences, e.g. those needed to
generate complex long-range plans, or to perform
causal and diagnostic reasoning about the system
operations. Symbolic assertions may also be used to
generate explanations of the operations of the finger,
in order to perform high-level teleautonomy[8].

The paper is organized as follows. In the next sec-
tion, the main assumptions underlying the cognitive
architecture are summarized. The third section is de-
voted to a synthetic description of the conceptual level
representation of motion. The fourth section shows in
details how the situation calculus is anchored to the
conceptual representation. The last section discusses
the proposed framework, and compares it to some rel-
evant frameworks for anchoring described in the liter-
ature. Short conclusions follow.

2. The cognitive architecture for visual
perception: an overall view

The existing attempts to integrate visual perception
with propositional KR are mostly oriented towards
natural language interpretation, with particular empha-
sis on man–machine interaction. They face only in a
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Fig. 4. The three areas of representation and the relations among
them.

marginal way the general aspects of knowledge rep-
resentation (see[6] for a review).

Our proposal is based on the hypothesis that a prin-
cipled integration of the approaches of artificial vi-
sion and of symbolic KR requires the introduction
of an intermediate representation between these two
levels. Such a role is played by aconceptual space,
according to the approach proposed by Peter Gär-
denfors [15]. In our architecture, this intermediate,
conceptual representation is the place where the an-
choring occurs, and where the anchoring procedures
operate.

The architecture is organized in threecomputational
areas. Fig. 4schematically shows the relations among
them. Thesubconceptualarea is concerned with the
low-level processing of perceptual data coming from
the sensors. We call it “subconceptual” because here
information is not yet organized in terms of concep-
tual structures and categories. The subconceptual area
includes a 3D model of the perceived scenes. Even
if such a kind of representation cannot be considered
“low-level” from the point of view of artificial vision,
it still remains below the level of conceptual catego-
rization.

In the linguistic area, representation and process-
ing are based on the formalism of the situation calcu-
lus. In theconceptualarea, the data coming from the
subconceptual area are organized in conceptual cate-
gories, which are still independent from any linguis-
tic characterization. The symbols in the linguistic area

are anchored to sensory data by mapping them on the
representations in the conceptual area. The purpose of
the subsequent discussion is to show how a conceptual
representation can be used to anchor the sentential rep-
resentations of the situation calculus to the perceptual
activities of a robotic system in a theoretically well
founded way.

3. Conceptual spaces for representing motion

As previously stated, representations in the concep-
tual area are couched in terms of aconceptual space
[15] that provides a principled way for relating high
level, linguistic formalisms on the one hand, with low
level, unstructured representation of data on the other.
In this sense, we claim that conceptual spaces are a
valuable tool for anchoring[7]. A conceptual space
CS is a metric space whose dimensions are in some
way related to the quantities processed in the subcon-
ceptual area. Dimensions do not depend on any spe-
cific linguistic description. In this sense, a conceptual
space comes before any symbolic-propositional char-
acterization of cognitive phenomena. In particular, a
conceptual space devoted to the representation of the
motion of geometric shapes is taken into account in
the present paper.

3.1. Dynamic conceptual space

The termknoxel denotes a point in a conceptual
space. From the mathematical point of view, a knoxel
k is a vector in CS; from the conceptual point of view,
it is an epistemologically simple element at the consid-
ered level of analysis. In the case of static scenes[4], a
knoxel coincides with a 3D primitive shape, described
in terms of some constructive solid geometry (CSG)
schema. For example, the robotic finger (Fig. 1) may
be described by three knoxels, corresponding respec-
tively to the terminal phalanxa, the middle phalanxb
and the upper phalanxc.

In order to represent dynamic scenes, we adopted
an intrinsicallydynamic conceptual space. The main
assumption behind such a dymamic CS is that simple
motions are categorized in their wholeness, and not as
sequences of static frames. According to this hypoth-
esis, every knoxel corresponds to a simple motion of
a 3D primitive.
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Formally, a knoxelk can be decomposed in a set
of componentsxi(t), each of them associated with a
degree of freedom of the moving primitive shape. In
other words:

k = [x1(t), x2(t), . . . , xn(t)], (1)

wheren is the number of degrees of freedom of the
moving 3D primitive (e.g. a phalanx of the finger). In
turn, each motionxi(t) may be considered as the result
of the superimposition of a set of elementary motions
f i

j(t):

xi(t) =
∑

j

Xi
jf

i
j(t). (2)

In this way, it is possible to choose a set of basis
functionsf i

j(t), in terms of which any simple motion
can be expressed. Such functions can be associated
to the axes of the dynamic conceptual space as its
dimensions. Therefore, from the mathematical point
of view, the resulting CS is afunctionalspace.

In the domain under investigation, the chosen set of
basis functions are the first low frequency harmonics,
according to the well-known Discrete Fourier Trans-
form (DFT, see[25]). By a suitable composition of
the trigonometric functions of all of the geometric pa-
rameters, the overall motion of a 3D primitive is rep-
resented as a point in the functional space.

A single knoxel in CS therefore describes asim-
ple motion, i.e. the motion of a primitive shape. A
composite simple motionis a motion of a composite
object (i.e. an object approximated by more than one
primitive shapes, as is the case of the robot finger).
A composite simple motion is represented in the CS
by the set of knoxels corresponding to the motions of
its components. For example, the first part of the tra-

Fig. 5. The CAD model of the robot finger.

jectory of the whole finger shown inFig. 3 is repre-
sented as a composite motion made up by the knox-
elska (the motion of the terminal phalanxa), kb (the
motion of the middle phalanxb) andkc (the motion
of the upper phalanxc). Note that in composite sim-
ple motions the (simple) motions of their components
occur simultaneously. In this case, the configuration
of the conceptual space is completely described by
the three knoxels participating to the motion of the
finger:

CS= {ka, kb, kc}. (3)

To consider the composition of several (simple or com-
posite), motions arranged according to some temporal
relation (e.g. a sequence), the notion ofstructured pro-
cessis introduced. A structured process corresponds
to a series of different configurations of knoxels in
the conceptual space. In the transition between two
subsequent different configurations, there is a change
of at least one of the knoxels in the CS which is the
consequence of a change in the motion of the corre-
sponding 3D primitives. We call “scattering” such a
transition from one knoxel to another. It corresponds
to a discontinuity in time, and is associated with an
instantaneous event.

In the case of the finger, a scattering occurs, e.g.
when the finger has reached its upmost position, and
begins to move downwards to pick up the object. In
the CS representation, this amounts to say that knoxel
ka (i.e. the upward motion of the terminal phalanx) is
replaced by knoxelk′

a, and, similarly, knoxelskb and
kc are replaced byk′

b andk′
c. The new CS′ configu-

ration is

CS′ = {k′
a, k′

b, k′
c}. (4)
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The occurred scattering may be described by the or-
dered set of the two CS configurations, before and af-
ter the scattering:

(CS, CS′) ≡ ({ka, kb, kc}, {k′
a, k′

b, k′
c}). (5)

3.2. Extraction of knoxels from image sequences

In the current experimental setup, the role of the
subsymbolicarea is the extraction of the knoxel pa-
rameters describing the 3D motion of the finger parts.
This operation is based on an a priori 3D CAD model
of the finger (Fig. 5).

In order to extract the finger contours, the images
acquired by the camera are processed by an algorithm
based onsnakes[2]. A snake is a curve that searches
the image under the influence of forces driven by the
local distribution of the gray levels. Briefly, when the
snake reaches the contour of an object, it is attracted by
the contour itself, and it adapts its shape to the shape
of the object. When the object moves or changes its
shape, the snake continues to adapt itself in order to
track the object.

Formally, a snake is described in a parametric form
by the following equation:

v(s) = (x(s), y(s)), (6)

wherex(s) andy(s) are the coordinates along the shape
contour ands the normalized arc length:

s ∈ [0, 1]. (7)

The snake model adopted for this example reflects the
geometric constraints imposed by the 3D model. The
energyEsnakeof a contour is defined as

Esnake(v(s)) =
∫ 1

0
(Eint(v(s)) + Eimage(v(s)) ds. (8)

The energy integral is a functional since the variables

is in its turn a function (the shape contour). The inter-
nal energyEint is formed from a Tikhonov stabilizer
and is defined by

Eint(v(s)) = a(s)

∣∣∣∣dv(s)2

ds2

∣∣∣∣ + b(s)

∣∣∣∣dv(s)2

ds2

∣∣∣∣
2

, (9)

where| · | is the Euclidean norm.
The first-order continuity term, weighted bya(s), let

the snake behave elastically. The second-order curva-
ture term, weighted byb(s), let the snake be resistant

to bending. For example, if we setb(s) = 0 at points,
the snake becomes second-order discontinuous at that
point, and generates a corner.

The image functional determines which features
have a low image energy, and hence attract the con-
tours. In general, this functional is made up by three
terms:

Eimage= wlineTline + wedgeEedge+ wtermEterm,

(10)

where thew’s are constant weights. The three terms
respectively correspond to lines, edges and termina-
tions. In the version of the model adopted for this
example, only the edge functional is present, which
attracts the snake to points with a high edge gradient:

Eimage= Eedge= −(Gσ ∗ ∇2I(x, y))2. (11)

This corresponds to the image functional proposed
by Kass et al.[19]. It is a scale-based edge operator
that increases the locus of attraction of energy mini-
mum. Gσ is a Gaussian of standard deviation sigma
which controls the smoothing process prior to edge
operator. Minima ofEedge lies on zero-crossing of
Gσ ∗ ∇2I(x, y) which defines the edges.

In order to extract the Regions of Interest (ROI)
of the scenes before the application of the snake al-
gorithm, some standard filtering operations are per-
formed (seeFig. 6): starting from the acquired image
(a), the noise is reduced by a 5× 5 median filter (b),
then the moving parts are detected by means of the
Canny algorithm (c) and the image intensities between
frames are subtracted in order to individuate the ROIs
(d).

Fig. 7shows the snake being attracted by the upper
phalanx. As a first step, the snake initialize its posi-
tion and dimensions by individuating the finger con-
tours; then, it tracks the position of the finger during
the evolution of the scene (Fig. 8). The geometric in-
formation obtained in this way is sent to a 3D CAD
system that generates a VRML animated model of the
evolution of the finger operations (Fig. 9).

Finally, the data concerning the movement of each
phalanx are sent to a software module that performs
the DFT, in order to generate the knoxel configuration
of the conceptual space.
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Fig. 6. The filtering operation to individuate the ROI of the finger.

Fig. 7. The snake attracted by the upper phalanx.

4. Anchoring situation calculus to conceptual
spaces

In the linguistic area, the evolution of the concep-
tual space is represented in terms of logic assertions
expressed in thesituation calculusformalism. Indeed,
the representation adopted by the situation calculus is
in many respects homogeneous to the conceptual rep-
resentation described in the previous section.

In order to anchor linguistic area expressions to
structures in the conceptual space, ananchoring func-
tion Φ associates expressions of the situation calculus
to their counterpart in the conceptual space.

4.1. Anchoring actions and situations

The basic idea behind the situation calculus is that
the evolution of a state of affairs is modeled in terms
of a sequence of situations. The world changes when
someactionis performed. So, given a certain situation
S1, performing a certain actiona will result in a new
situationS2. Actions are the sole sources of change of
the world: if the situation of the world changes from,
say,Si−1 to Si, then some action has been performed.
The initial situationS0 models the initial state of the
domain under consideration.

The situation calculus is based on the language of
predicate logic. Situations and actions are denoted by
first-order terms. The two place functiondo takes as its
arguments an action and a situation:Si = do(a, Si−1)

denotes the new situationSi obtained by performing
the actiona in the situationSi−1.

Classes of actions can be represented as functions.
For example, the one argument function symbol
pick up(x) could be assumed to denote the class of
the actions consisting in picking up some objectx.
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Fig. 8. The snake tracking the motion of the finger.

Given a first-order termo denoting a specific ob-
ject, the termpick up(o) denotes the specific action
consisting in picking upo.

In terms of conceptual spaces, an actiona is mapped
on a suitable scattering of knoxels, corresponding to an
ordered pair(CSi−1, CSi), where CSi−1 and CSi are
the configurations of the knoxels, respectively, before
and after the scattering:

Φ(a) = (CSi−1, CSi). (12)

The initial situationS0 corresponds to the initial con-
figurations of knoxels CS0 in the conceptual space:

Φ(S0) = (CS0). (13)

According to the situation calculus, a situation fully
describes the state of affairs of the domain under con-
sideration. Different sequences of actions lead to dif-
ferent situations. In other words, it can never be the
case that performing some action starting form differ-
ent situations can result in the same situation. If two

situations derive from different situations, they are in
their turn different, in spite of their similarity.

Therefore, a generic situationSi is individuated by
the unique sequence of actions(a0, a1, . . . , an−1, an)

that generates the corresponding sequence of situa-
tions starting form the initial situationS0. As a con-
sequence,Si is anchored to the sequence of knoxel
configurations generated by the sequence of scattering
corresponding to the actions:

Φ(Si) = (CS0, CS1, . . . , CSi−1, CSi). (14)

It should be noted that the formulaSi = do(a, Si−1)

means that the actiona generates the new situation
(CS0, CS1, . . . , CSi−1, CSi) starting from the old one
(CS0, CS1, . . . , CSi−1).

As an example, consider again the finger scenario.
Suppose that the terminal phalanx of the finger ini-
tially rests in the positionp1. The initial situationS0
is anchored to the configuration CS0 = {ka, kb, kc},
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Fig. 9. The VRML model of the motion of the finger.

whereka corresponds the terminal phalanx, andkb, kc
to the other to two phalanxes, all in rest state. Now
the terminal phalanx begins to move from positionp1
towards positionp2 (suppose that the two other pha-
lanxes do not change their position). When the motion
of the phalanx starts, a scattering occurs in the con-
ceptual space, and the knoxelka changes its position.
Therefore the new configuration of knoxels is CS1 =
{k′

a, kb, kc} and the new situationS1 is anchored to
the sequence(CS0, CS1).

Such a scattering corresponds to an (instanta-
neous) action that is represented by the formula
start move terminal phalanx(tph1, p1, p2) (where
tph1 is the individual constant denoting the terminal
phalanx). The knoxelk′

a corresponds to the motion
of the phalanx. During all the time in which the pha-
lanx remains in such a motion state, the CS1 remains
unchanged (provided that nothing else is happening
in the considered scenario), andk′

a continues to be
active in it.

When the motion of the phalanx ends in the position
p2, a further scattering occurs,k′

a disappears, and a
new knoxelk′′

a becomes active. Therefore, a new con-

figuration CS2 = {k′′
a, kb, kc} is generated. This sec-

ond scattering(CS1, CS2) corresponds to the instanta-
neous actionendmove terminal phalanx(tph1, p1, p2).
The knoxelk′′

a corresponds again to a rest state of
the phalanx, but now in the positionp2. The new
situation S2 is now anchored to the configuration
(CS0, CS1, CS2).

4.2. Anchoring fluents

As a state of affairs evolves, it can happen that prop-
erties and relations change their values. In the situation
calculus, properties and relations that can change their
truth value from one situation to another are called
(relational)fluents. An example of fluent could be the
property of being in motion: it can happen that it is true
that a certain object is in motion in a certain situation,
and it becomes false in another. Fluents are denoted by
predicate symbols that take a situation as their last ar-
gument. For example, the fluent corresponding to the
property of being in motion can be represented as a two
place relationin motion(x, s), wherein motion(o, S1)

is true if the objecto is in motion in the situationS1.
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Given a situation, a relational fluentf is, in gen-
eral, anchored to a set of (sets of) knoxels. For exam-
ple, the fluentin motion(x, s) is anchored to the set of
knoxels that correspond to moving shapes in the CS
configurations that correspond to a situations. A flu-
ent approaching(x, y, s) is anchored to the set of or-
dered pairs of knoxels that represent pairs of shapes
approaching each other in the CS configurations that
correspond to a situations. And so on.

In the finger example, a fluentmoving terminal
phalanx(x, p1, p2, s) is anchored to the set of knox-
els moving from a pointp1 to a pointp2 in the CS
configurations that correspond to a situations.

In general, the anchoring functionΦ for fluents be-
haves as follows:

Φ(f(x̄, s)) = {kt1, kt2, . . . , ktn}, (15)

wheref is a fluent,̄x are all the arguments off except
for the last, andkti are all the knoxels, or knonxel
t-uples, that satisfy the fluentf in the situations.

The geometric structure of conceptual spaces, and
the fact that the distance between points in a concep-
tual space can be interpreted as a measure of their
similarity [15] make it possible to account for proto-
typical effects between the instances of a fluent: given
a fluentf , and provided that the sets to whichf is
anchored in the different situations correspond tonat-
ural concepts[7], more central points correspond to
“prototypical”, or “better” instances off . Many forms
of inference can take advantage from this feature of
the conceptual representation.

4.3. Anchoring actions with temporal duration

In the ordinary discourse, actions may have a tem-
poral duration. For example, the action of moving
from a certain spatial location to another takes some
time. In the situation calculus, all actions in the strict
sense are assumed to be instantaneous. Actions that
have a duration may be represented as processes, that
are initiated and are terminated by instantaneous ac-
tions (see[26; 27, Chapter 7]). Suppose to represent
the action of moving the robot fingerf1 from point
p1 to point p2. In the terminology of the situation
calculus, this is a process that is initiated by an in-
stantaneous action, saystart move finger(f1, p1, p2),
and is terminated by another instantaneous action, say
endmove finger(f1, p1, p2). Processes correspond

to relational fluents. For example, the process of
moving the finger fromp1 to p2 corresponds to the
fluent moving finger(f1, p1, p2, s). A formula like
moving finger(f1, p1, p2, S1) is true if in situationS1
the fingerf1 is moving from positionp1 to position
p2. The anchoring of processes immediately follows
from the anchoring of actions and fluents without
particular modifications of theΦ function.

4.4. Anchoring concurrent actions

Traditional situation calculus does not allow to ac-
count for concurrency. Actions are assumed to occur
sequentially, and it is not possible to represent several
instantaneous actions occurring at the same instant.
In the considered setup, this limitations is too severe.
When a scattering occurs in a CS it may happen that
more knoxels are involved. This is tantamount to say
that several instantaneous actions occur concurrently.
This is the case, e.g. of the motion of the finger de-
scribed in the previous paragraph. The trajectory of the
whole finger can be represented as a composite mo-
tion made up by three knoxels:ka (the motion of the
terminal phalanx),kb (the motion of the middle pha-
lanx) andkc (the motion of the upper phalanx). More
in general, according to this terminology,composite
simple motionsare motions of composite objects. A
composite simple motion corresponds in a CS to the
set of the knoxels corresponding to the motions of its
components. The beginning and the end of a com-
posite simple motion always involve the scattering of
more than one knoxel. Therefore, composite simple
motions always entail some form of concurrency.

Suppose to represent within the situation calculus
the whole motion of the finger. According to what
stated before, moving the finger is represented as a pro-
cess, that is started by a certain action, saystart move
finger, and that is terminated by another action, say
endmove finger. (For sake of brevity, here we omit
the arguments of the actions.) The process of moving
the finger is represented as a fluentmoving finger(s),
that is true if in the situations the finger is mov-
ing. The scattering in the CS corresponding to both
start move finger and endmove finger involve three
knoxels, namelyka, kb and kc, that correspond,
respectively, to the motions of the phalanxes. Con-
sider e.g.start move finger. It is composed by three
concurrent actions, saystart move terminal phalanx,
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start move middlephalanx and start move upper
phalanx, each of them corresponding to the scattering
of one knoxel in the CS (resp.ka, kb andkc).

Extensions of the situation calculus that allow for
a treatment of concurrency have been proposed in the
literature[16,23,26,28]. We adopt the approach devel-
oped in[16] and [26], according to which a two ar-
gument function+ is added to the language. Given
two actions as its arguments,+, produces an action as
its result. In particular, ifa1 anda2 are two actions,
a1 + a2 denotes the action of performinga1 and a2
concurrently. According to this approach, an action is
primitive if it is not the result of performing other ac-
tions concurrently. Ifa is a complex action such that
a = a1 + a2 + · · · + an, then we write thatai ∈ a for
eachi such that 1≤ i ≤ n.

In our approach, primitive actions correspond to the
scattering of a single knoxel in the CS; the contem-
porary scattering of several knoxels corresponds to a
complex action resulting from concurrently perform-
ing different primitive actions. For example, the mo-
tion of the whole finger can be represented by defining
two non-primitive actions in the following way:

start move finger= start move terminal phalanx

+ start move middlephalanx

+ start move upperphalanx

endmove finger= endmove terminal phalanx

+ endmove middlephalanx

+ endmove upperphalanx

generated by the listed six primitive actions.
The anchoring functionΦ does not need any mod-

ification; the main difference from the previous cases
is that the scattering(CSi−1, CSi), corresponding to a
complex action, involves a change in the position of
more than one knoxel in the conceptual space.

4.5. The anchoring system at work

To describe the system at work, consider the as-
sertions generated from the sequence of the finger
pushing a ball. The initial situationS0 corresponds
to an initial configuration CS0 = {ka, kb, kc, kd}
in which the first three knoxels correspond to the
finger phalanxes at rest, and the last knoxel corre-

sponds to the resting ball. In this situation, the fluents
quiet finger(S0) andquiet ball(S0) hold.

When the camera perceives the motion of the finger,
a scattering occurs in the conceptual space, and a new
configuration CS1 = {k′

a, k′
b, k′

c, kd} is generated, in
which the scattering of first three knoxels represents
the beginning of the composite motion of the whole
finger. The last knoxel, corresponding to the resting
ball, remains unchanged.

In the linguistic area, this scattering corresponds
to an occurrence of the instantaneous composite
action start move finger. The new situationS1 =
do(start move finger, S0) (i.e. the situation resulting
from performing inS0 the actionstart move finger)
corresponds in the CS to the sequence of configu-
rations {CS0, CS1}. In the new situation, the fluents
moving finger(S1) andquiet ball(S1) hold.

At a certain time point, the camera perceives the
finger touching the ball. A new scattering occurs, that
affects the knoxel corresponding to the ball. The con-
figuration of the conceptual space becomes: CS2 =
{k′

a, k′
b, k′

c, k′
d} in which the last knoxel scattered to a

new position corresponding to the motion of the ball.
In the linguistic area, the new scattering corresponds

to an occurrence of the instantaneous actionpushball.
The current situation is nowS2 = do(pushball, S1),
which corresponds to the sequence of CS configu-
rations{CS0, CS1, CS2}. In this situation, the fluents
moving finger(S2) andpushedball(S2) hold.

Then, the finger stops its motion and a new rest
state begins. A further scattering occurs, involv-
ing the knoxels that corrspond to the phalanxes of
the finger. The CS configuration becomes: CS3 =
{k′′

a, k′′
b, k′′

c , k′
d}. Note that the last knoxel remains in

its previous position; this because the ball went out
the visual field of the camera, and, in such cases, the
system assumes that objects indefinitely remain in the
motion state they were observed the last time.

Now the current situation isS3 = do(stopmove
finger, S2) and it corresponds to the sequence of CS
configurations{CS0, CS1, CS2, CS3}. In this situation,
the fluentsquiet finger(S3) andpushedball(S3) hold.

In the above example, the conceptual space is di-
rectly linked to the environment through perception:
all the entities represented in the CS have a precise
counterpart in the external world as perceived by the
agent. The symbols generated at the linguistic area
summarize the operations of the finger according to



A. Chella et al. / Robotics and Autonomous Systems 43 (2003) 175–188 185

the situation calculus formalism. In this way, the con-
ceptual and the linguistic area describe the finger op-
erations at two different levels of representation: the
symbolicone (at the linguistic area) and theanalogue
one at the conceptual area.

5. Discussion

In the last few years, the problem of anchoring
symbols to data coming out of sensors became a
relevant topic in autonomous robotics, and several
proposals have been developed. In particular, a model
which presents similarities with our approach is due
to Coradeschi and Saffiotti. Briefly, our linguistic area
corresponds to theirSymbol system, and our subsym-
bolic area corresponds to theirPerceptual system. In
addition, our architecture includes a further level (the
conceptual area), which is missing in their model.
This choice allows the system to anchor symbols to
representations with a rich geometric structure that
can support various forms of reasoning, thus relieving
the linguistic formalism of many tasks.

In our model, symbols are not anchored only to
static objects (as in the approach by Coradeschi and
Saffiotti), but also to temporal entities, such as fluents,
situations and actions. Fluents, actions and situations
are “high-level” symbolic terms; they summarize the
dynamics of the scene, as represented by the dynam-
ics of the knoxels in the conceptual space. Another
advantage of our approach is that the use of the CS
dispense us from defining “low-level” sensor fluents
[33].

According to Coradeschi and Saffiotti, anchoring in-
volves two issues: therepresentationaland theproce-
dural issues. In this paper we primarily face the former.
As far as procedural issues are concerned, Coradeschi
and Saffiotti introduce atracking and areacquiring
functionality, in order to follow and update the link
between symbols and percepts. Currently, in our ar-
chitecture, the procedural aspects are delegated to the
subconceptual area. For example, the snake algorithms
have the burden of tracking and eventually reacquir-
ing the primitive shapes corresponding to the knoxels.
An interesting line of research may be the formaliza-
tion of the prediction and updating capabilities typical
of the Kalman filters in the terms of conceptual space
representations.

Presently, we presuppose atop-downdesign, in the
sense that the designer of the system is responsible for
several tasks: choosing the dimensions of the concep-
tual space, defining the predicates that describe at the
symbolic level the actions and the fluents, and so on.
An important improvement would consist in adding
someself-organizationcapabilities. For example, the
system should be able toexplorethe CS and discover
interesting structures of knoxels that can be linked to
new symbols in the linguistic area, e.g. by means of
a system similar of theSSHarchitecture proposed by
Kuipers[20].

A related improvement would consist in adding the
capability of learning sequences of actions by expe-
rience and imitation, as proposed by Nicolescu and
Mataric[24]. In our model, a sequence of actions cor-
responds to a sequence of scatterings in the CS. Such
sequences could be learned by the system, e.g. by
means of suitable recurrent neural networks.

Presently, or model has been developed having in
mind a single robotic agent. An interesting research
topic concerns a generalization towards a multiagent
architecture. Each agent would be endowed with its
own conceptual and linguistic areas, and the passing
of messages among agents may be aimed to aconver-
genceof conceptual spaces. This generalization would
be useful for the anchoring of the multiagent exten-
sions of the situation calculus proposed by Shapiro
et al. [29].

Multiagent architectures may also playlanguage
games of the kind described by Steels[31] and
Sierra-Santibáñez[30]. The cooperation and compe-
tition among the agents may allow them to suitably
build their conceptual space by taking into account
only the dimensions of the CS relevant to the com-
petitions. In this way, the CS evolution would be
determined by the interaction of the agents.

6. Conclusions

In the above sections, a possible interpretation of
the language of the situation calculus in terms of con-
ceptual spaces is suggested. In this way, the situation
calculus can be adopted as the formalism for the lin-
guistic area of the model, with the advantage of using
a powerful, well understood and widespread formal
tool.
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In recent years, in the field ofcognitive robotics,
various formalisms based on situation calculus have
been proposed, such as[12,13,21]. They allow the
programmer to describe the robot operations at an
high level of abstraction, and account for concur-
rent processes with priorities, interrupts, reactivity
to exogenous events and so on. Some of such for-
malisms, although in simplified versions, have been
tested on working robots for various tasks, such as,
among others, mail delivery applications[18], inter-
active museum guides[3] and control of mobile man-
ipulators[14].

In many of these systems, perception is taken into
account only in a marginal way: it is modelled by
simplesense actionsthat test if some trivial condition
holds in the environment (e.g. the state of a door or the
position of a block on the table), or it is fully delegated
to complex low-level execution modules[17].

Our approach is aimed to allow a robotic system
to perform complex perceptual operation, in such a
way that they can be integrated in its high-level activ-
ities. Therefore, actions, situations and fluents of the
situation calculus are anchored in a theoretically well
founded way to the perceptual activities of the robot,
thus allowing for far richer descriptions of the evolu-
tion of the environment. In this way, an artificial vi-
sion system may generate situation calculus formulas
describing which courses of actions are occurring in
the external world, which are the current situations,
which complex fluents hold, and so on. This rich rep-
resentation is homogeneous with the high-level robot
programming formalisms mentioned above. In partic-
ular, the integration of cognitive representations and
rich perceptual information makes it possible to de-
sign forms of top-down, knowledge driven perceptual
activities (e.g. perceptual explorations, attentive pro-
cesses).

In addition, conceptual spaces can act as asimula-
tion structurein the sense of Weyhrauch[32]. In other
words, many forms of inference (particularly of spa-
tial and causal nature) are more likely to be performed
taking advantage from the geometric structure of the
CS, rather than as logical deductions in the linguistic
area. Immediate examples could be the tracking and
reacquiring functionalities of anchoring[7] proposed
by Coradeschi and Saffiotti which can be described
in terms of knoxels expectations[6] in conceptual
space.
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Book review

Evans’Varieties of Reference and the anchoring problem

Michael L. Anderson
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

To think about how to anchor abstract symbols to
objects in the world is to become part of a tradition
in philosophy with a long history, and an especially
rich recent past. It is to ask, with Wittgenstein, “What
makes my thought about him, a thought abouthim?”
and thus it is to wonder not just about the nature of
referring expressions or singular terms, but about the
nature of referring beings. With this in mind I hereby
endeavor—briefly, incompletely, but hopefully still
usefully—to introduce what in my judgment is the
single best philosophical starting-point for those in-
terested in understanding the referential connections
between symbols and the world, and the cognitive,
epistemic, and linguistic capacities which support
them:The Varieties of Reference by Gareth Evans.1

It is worthwhile first of all to note, as the title in-
dicates, that it is thevarieties of reference that are of
interest. It is Evans’ contention that no single theory
can account for our various use of singular terms; al-
though the different kinds of reference share certain
features, and rely on related cognitive, linguistic and
epistemic capacities, it appears that, rather than being
a class defined by necessary and sufficient criteria for
membership, they form a family of abilities, united,
like a thread, by its overlapping fibers.

Evans does not defend this claim so much as dis-
play it in his account. Much of the underlying vari-
ety in reference can be brought out by considering the
guiding principle of the work as a whole, which Evans

E-mail address: mikeoda@cs.umd.edu (M.L. Anderson).
1 Gareth Evans, The Varieties of Reference, Clarendon Press,

Oxford, 1984, xiii+ 418 pages, ISBN 0-19-824686-2.

calls Russell’s Principle: “The principle is that a sub-
ject cannot make a judgment about something, unless
he knows which object the judgment is about” (p. 89).
A judgment is here construed as something very gen-
eral, of the form:〈a is F〉. Given the generality of the
account, it seems fairly clear that the ability to make—
to determine the truth of—some such judgments is
necessary for autonomous systems (even when this
ability is not implemented in the form of a per se
symbolic reasoner). Insofar as this is true—and given
that Russell’s principle is correct (I will not delve into
Evans’ interesting and convincing defense)—any au-
tonomous system must know (or have the ability to
discover) which thing in the world〈a〉 is.

This hardly seems objectionable. The trouble, as
Evans himself admits, is in spelling out what such
knowledge amounts to. He suggests that the condi-
tion for knowing which thing〈a〉 is might be met by
an agent who: (1) possesses the knowledge of some
discriminating feature of〈a〉, or (2) has the ability to
locate〈a〉 in her vicinity, or (3) has the capacity to rec-
ognize〈a〉, that is, the disposition to identify one (and
only one) object as〈a〉. Of course, even this speci-
fication of conditions leaves ample room for alternate
interpretations (Evans spends some time on an effec-
tive critique of the photograph and causal theories of
reference, demonstrating the inadequacy of their ver-
sions of the above criteria) but it does neatly and natu-
rally suggest three varieties of reference deserving of
further investigation: (1) information-based reference,
(2) demonstrative reference, and (3) recognition-
based reference, to which list Evans adds some other
items, of which self-reference is the most important.

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0921-8890(03)00022-8
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Taking each in turn, and roughly, an information-
based thought about〈a〉 “is the result of a belief about
how the world is which the subject has because he
has received information (or misinformation) from
the object” (p. 121). In this case, the reference is to
the object from which the information derives, even
in the case where that information is mistaken, as in
the famous case of referring to ‘the man holding the
champagne’, whose glass is in fact full of sparkling
cider. The paradigm case of demonstrative reference
is the simple ‘this’, but also includes ‘that’, ‘here’,
‘there’, and all like descriptionless, indexical identi-
fications. Finally (I shall here ignore self-reference,
although Evans’ account of it is interesting, and
the relation he describes between ‘here’-thoughts
and ‘I’-thoughts is central to his overall account)
recognition-based reference deals with the case where
an agent refers to an object previously encountered
and remembered. Evans writes: “[I]f a subject is dis-
posed to identify a particular object as the object of
his thought, and in so doing is exercising a genuine
recognitional capacity stemming from the encounter
or encounters from which the memory information
that saturates the thought derives, then, it seems to
me, that object is the object of his thought, irrespec-
tive of whether or not it can be identified by means of
any descriptions which the subject might otherwise
have” (p. 269).

It is likely that Evans’ discussions of demonstrative
and recognition-based reference will have the most im-
mediate relevance to those involved in understanding
anchoring. And in this regard it is worth mentioning
what I take to be Evans’ greatest strength, considered
from the standpoint of one interested in the behav-
ior of autonomous, embodied agents: his insistence on
situating reference in the larger context of being and
acting in the world. I am impressed in particular with
his argument that demonstrative reference requires of
the agent awareness of an ego-centered space within
which (and in terms of which) experience is instan-
tiated and actions effected. Consider, in this regard,
the difference between the judgments〈There’s a fire
here〉 and 〈There’s a fire there〉, or 〈There’s a dol-
lar here〉. Surely successful anchoring has not been
displayed by a system that does not react differently
in each case. That is, it is not enough to tag an ob-
ject with an arbitrary symbol, and maintain this con-
nection (although doing even this is not without its

challenges!); one must connect with the right sym-
bol, in the right way, so as to support appropriate
reasoning about, and reaction to, the objects of the
world.

In addition to recommendingThe Varieties of Ref-
erence as the single best philosophical resource for
those interested in this immense project, I have also
compiled a brief bibliography of core readings[1–12],
and a longer list of other useful and important work
[13–64]. It is my hope that the collective encounter
with these works can help build a Lingua Franca of
anchoring, without which the collaborative effort re-
quired to advance understanding in this difficult area
will be much hindered.
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Conceptual spaces for anchoring
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In his book,Conceptual Spaces. The Geometry of
Thought1, Peter Gärdenfors proposes the notion of
conceptual space as a way to overcome the opposition
between the traditional, symbolic representations of
“good old-fashioned” artificial intelligence on the one
side, and the connectionist, subsymbolic representa-
tions on the other side. Conceptual spaces would offer
a third kind of approach to knowledge representation
in the cognitive sciences.

The conceptual space approach is based on a ge-
ometric treatment of concepts and knowledge repre-
sentation. According to Gärdenfors, concepts are not
independent of each other, and are structured intodo-
mains. Examples of possible domains are shape, color,
taste, sound, the domain of kinematic properties, the
domain of dynamic properties, and so on. Aconcep-
tual space is structured as a set of domains. Each do-
main is in its turn defined in terms of a set ofquality
dimensions. For example, the domain ofcolor could
be made up by such dimension ashue, saturation
andbrightness, the dimensions of the domain oftaste
could besweet, bitter, saline and sour. Other exam-
ples of quality dimensions for some possible domain
could betemperature, weight, time, pitch. Quality di-
mensions can be either more or less tightly connected
to observable properties, or more abstract in nature

∗ Corresponding author.
E-mail addresses: chella@unipa.it (A. Chella), frix@dist.unige.it
(M. Frixione), gaglio@unipa.it (S. Gaglio).

1 MIT Press, Cambridge, MA, 2000, 317 pages, ISBN
0262071991.

(e.g., concerned with functional or social aspects, or
deriving from scientific categorizations, as is the case,
for example, ofmass).

Each quality dimension has a particular geometric
structure (typically, a topological or a metric struc-
ture). For example, theweight dimension is presum-
ably isomorphic to the half-line of real non-negative
numbers. Other quality dimensions have different
structures: thehue dimension of thecolor domain is
likely to be circular; there can be discrete dimensions,
and so on.

In any case, the form of a conceptual space strictly
depends on the cognitive structure and abilities of a
given class of agents. For example, the color domain
in non-human animals, or in artificial agents with dif-
ferent kind of sensors can deeply differ from the hu-
man color domain. Moreover, in human beings certain
dimensions can be assumed to be innate, other to de-
pend from cultural factors.

According to Gärdenfors, given a certain con-
ceptual space individual objects are represented as
points: every object is characterized by a set of val-
ues, one value for each dimension of the domains
constituting the conceptual space. The values of the
dimensions are the coordinates of the point represent-
ing the object. As a consequence of the geometric
structure of the dimensions, a notion ofdistance
can be defined between the points of a space. The
distance between two points can be interpreted as a
measure of the similarity of the corresponding indi-
viduals.

0921-8890/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
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Concepts are represented asregions in a concep-
tual space: a concept corresponds to the region of the
space in which are located the points that share cer-
tain features at some degree. (Gärdenfors distinguishes
betweenproperties, which are based on a single do-
main, andconcepts, which involve different domains.
For sake of simplicity, we shall not consider this dis-
tinction in the following.) The geometric structure of
conceptual spaces and the interpretation of distance in
terms of similarity allows for a geometric treatment
of concepts. Different geometric properties of regions
correspond to different kinds of concepts. A special
role in Gärdenfors’ theory is played by so callednat-
ural concepts, which correspond to convex regions in
a conceptual space. In the case of natural concepts,
conceptual spaces allow to account for prototypical
effects: given a certain convex region representing a
natural concept, the central points of the region cor-
respond to “better”, or “more typical” instances of
the category, the peripheral points correspond “less
typical” instances.

Such a geometric treatment of concepts is employed
by Gärdenfors in order to face many problems within
the field of the cognitive sciences. Examples taken
from the book include categorization, concept forma-
tion, concept learning, induction, metaphors, lexical
semantics for natural languages.

Symbolic, subsymbolic and conceptual approaches
must not be intended as competing paradigms. Rather,
according to Gärdenfors, they correspond to different,
coexisting levels of representation within a cognitive
system. Subsymbolic (or subconceptual) level is the
lowest level of representations, directly connected to
perception; in it information is represented in terms of
neural patterns of activation. The linguistic level is the
most abstract one. The conceptual level (i.e., the level
of conceptual spaces) is situated between symbols and
subsymbolic patterns. In particular, the conceptual
level can be seen as an internal semantic level for the
symbolic representations: symbolic expressions are
given a meaning in terms of geometric structures in
conceptual spaces. In this perspective, symbol ground-
ing can be achieved through the geometric represen-
tations of the conceptual level, which, in their turn,
are connected to action and perception through the
subsymbolic computations at the subconceptual level.

Many forms of inference can be accounted for at
the conceptual level. In particular, it is our opinion that

most forms of spatial and causal reasoning are likely to
be performed at the conceptual level, taking advantage
from the geometric structure of conceptual spaces. In
this perspective, the role of the symbolic level could
be primarily concerned with communication, and with
some special forms of abstract reasoning.

Let us consider now the relevance of conceptual
spaces for anchoring. Anchoring has to do with con-
necting symbols and sensor data that refer to the
same physical object, and with preserving such a
correspondence as the environment or the state of
the agent change. Sensor data pertain to the subcon-
ceptual level. Conceptual spaces act as an intermedi-
ary between symbols and subconceptual processing.
Therefore, conceptual spaces are a good candidate for
the study and formalization of anchoring.

We said before that individual objects correspond
to points in a conceptual space. This is certainly true
from a synchronic point of view. However, in a di-
achronic perspective, objects can be more profitably
seen astrajectories in conceptual spaces. As a given
state of affairs evolves, the properties of the involved
objects change: if an object moves, its spatial coordi-
nates are modified; it can happens that objects alter
their shape or color during the course of time, and so
on. As the properties of objects are modified, the points
representing them in a conceptual space move, and
describe a certain trajectory. Such trajectories usually
have relevant geometrical properties, they show im-
portant regularities. For example, as far as the changes
of some object are gradual the corresponding trajec-
tory is smooth, physical laws constrain the change of
the values of the various dimensions, and so on.

In our opinion, anchoring could take great advan-
tage from a geometric formulation in terms of con-
ceptual spaces. Let us consider two typical anchoring
functionalities, namely tracking and reacquiring.
Tracking consists in keeping a symbol aligned to the
corresponding perceptual data as such data change in
time. Rather than some form matching of (possibly
complex) symbolic descriptions to perceptual data,
tracking could be more fruitfully seen as a form of in-
ference at the conceptual level, that takes advantages
from the geometric structure of conceptual spaces.
Starting from the geometric properties of the corre-
sponding trajectory, hypotheses can be made concern-
ing the future evolution of a given object. Figuring out
the evolution of an object (its future position, or the
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way in which his features are going to change) could
allow to keep its symbolic representation aligned to
the corresponding perceptual data. In this spirit, track-
ing can be considered as a matter of extrapolating
trajectories in a conceptual space.

Reacquiring has to do with recognizing an object
that has been re-observed after some time (for exam-
ple, after that it has been occluded for a while behind
some obstacle). In most cases, also reacquiring can be
more profitably seen as a form of conceptual level rea-
soning, rather than as a process driven by some form
of symbolic inference. Typically, it can be traced back
to some form of interpolation in a conceptual space.
To reacquire an object amounts to realize that two
separate segments of trajectories in a conceptual space
can be seen as parts of the same overall trajectory
(the former segment corresponding to the disappeared
object, the latter to the reappeared one). In other
terms, to identify again an object that disappeared
amounts to interpolate trajectories in conceptual
spaces.

In this perspective, symbolic expressions are noth-
ing more than mere labels for the entities repre-
sented at the conceptual level. However, this does
not exclude that anchoring in conceptual spaces
could take advantage from top down information:
high level, symbolic knowledge can constrain the
possible shape of the (interpolated or extrapolated)
trajectories.

Summing up, according to the spirit of Gärdenfors’
proposal, various forms of reasoning can be profitably
seen as forms of geometric reasoning performed at
the conceptual level. Such ageometric approach to
knowledge representation and reasoning would be
fruitful for the aims of autonomous robots design. In
particular, it is our opinion that it could offer a general
framework for the study, the formalization and the
implementation of anchoring in cognitive systems.
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