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Foreword

The anchoring problem is an important aspect of there starts to be a critical mass of work related to
the connection between symbolic and sensory basedthe anchoring problem, but that this work tends to be
processes in autonomous robotic systems. Anchoring scattered across different scientific communities and
is in fact the problem of how to create, and maintain different topics. The aim of this special issue is to
in time, the connection between the symbol- and the collect in one place relevant pieces of work that can
signal-level representations of the same physical ob- be instrumental in building such a general theory of
ject. An example is the problem of connecting, inside anchoring.

a mobile robot, the symbol used by a planner to refer  In putting together this special issue, we received
to a particular person to follow, say John, to the sensor substantial help by several people. Andreas Birk,
data that correspond to that person in the robot’s vi- Isabelle Bloch, Andrea Bonarini, Antonio Chella,
sion system. This connection must be dynamic since Dimiter Driankov, Tom Duckett, Marcello Frixione,
the same symbol must be associated to new entities inJoachim Hertzberg, lan Horswill, David Jung, Lars
the perceptual stream in order to track the object over Karlsson, Kurt Konolige, Benjamin Kuipers, Yves
time or re-acquire it at a later moment. Lespérance, Lisa Meeden, lllah Nourbakhsh, Erich

Although anchoring must necessarily occur in any Prem, Murray Shanahan, Stuart Shapiro, Josefina
physically embedded system that comprises a sym- Sierra Santibanez, Monique Thonnat, Thierry Vidal,
bolic reasoning component, most current solutions to Paul Vogt, and Holly Yanco helped us in carefully
the anchoring problem are developed on a system byreviewing the many submissions received. We are
system basis, and the solution is often hidden in the grateful to Frans Groen, the Editor of this journal, for
code. This is unfortunate, since having a general the- offering us this opportunity. Finally, we wish to thank
ory of anchoring would greatly advance our ability to the participants in the above mentioned symposium.
build intelligent embedded systems and transfer tech- This special issue would not exist if it were not for
nigues and results across different systems. the enthusiasm and the exciting discussions seen at

On these grounds, we have organized in November the symposium.

2001 a symposium on anchoring within the AAAI Fall

Symposium Series hftp://www.aass.oru.se/Agora/ Silvia Coradeschi, Alessandro Saffiotti
FSS0). The ambition of that symposium was to AASS Mobile Robotics Lab
create an interdisciplinary community that will even- Department of Technology, Orebro University
tually develop a general theory of anchoring. The S-70182 Orebro, Sweden
symposium showed that there is a growing interest E-mail addresses: silvia.coradeschi@aass.oru.se
around the anchoring problem in the robotics and ar- (S. Coradeschi)
tificial intelligence communities. It also showed that asaffio@aass.oru.se (A. Saffiotti)
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An introduction to the anchoring problem

Silvia Coradeschi Alessandro Saffiotti

Department of Technology, Center for Applied Autonomous Sensor Systems, Orebro University,
Fakultetsgatan 1, S-70182 Orebro, Sweden

Abstract

Anchoring is the problem of connecting, inside an artificial system, symbols and sensor data that refer to the same physical
objects in the external world. This problem needs to be solved in any robotic system that incorporates a symbolic component.
However, it is only recently that the anchoring problem has started to be addressed as a problem per se, and a few general
solutions have begun to appear in the literature. This paper introduces the special j[gstweptual anchoringf theRobotics
and Autonomous Systejpsirnal. Our goal is to provide a general overview of the anchoring problem, and highlight some of
its subtle points.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction one in which the first agent “knows” which object he
wants but cannot see it, while the second agent only
has an incomplete description of the object but can see
it. Put crudely, the two agents that embody two differ-
ent types of processes: one that reasons about abstract
representations of objects, and the other one that has
You are at a friend’s house and your host asks you access to perceptual data. One of the prerequisites for
to go to the cellar and fetch the bottle of Barolo wine the successful cooperation between these processes is
stored at the top of the green rack. You go down to the that they agree about the objects they talk about, i.e.,
cellar, look around in order to identify the green rack, thatthereis acorrespondence between the abstract rep-
and visually scan the top of the rack to find a bottle-like resentations and the perceptual data which refer to the
object with a Barolo label. When you see it, you reach same physical objects. In other words, there must be a
out your hand to grasp it, and bring it upstairs. correspondence between the names of things and their
This vignette illustrates a mechanism that we con- perceptual image. We calhchoringthe process of es-
stantly employ in our everyday life; the use of words tablishing and maintaining this correspondefké7].
to refer to objects in the physical world, and communi- ~ Not unlike our example, autonomous systems em-
cate a specific reference to another agent. This exam-bedded in the physical world typically incorporate
ple presents one peculiar instance of this mechanism,two different types of processes: high-level cognitive
processes that perform abstract reasoning and gener-
" Corresponding author. ate plans for actions, and sensory-motoric processes
E-mail addressessilvia.coradeschi@aass.oru.se (S. Coradeschi), that observe the physical world and execute actions
alessandro.saffiotti@aass.oru.se (A. Saffiotti). in it (seeFig. 1). The crucial observation here is that

For things to exist there are two essential conditions,
that a man should see them and be able to give them
a name[19, p. 53]
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Fig. 1. Graphical illustration of the anchoring problem.

these processes have different ways of referring to niques from the pattern recognition or object tracking
the same physical objects in the environment. Cogni- domains, and the solution was hidden in the code. The
tive processes typically (although not necessarily) use situation is now changing, and the field of autonomous
symbols to denote objects, while sensory-motoric pro- robots is showing a tendency to engage in the study
cesses typically operate from sensor data that origi- of the anchoring problem per se (see for insta3¢e
nate from observing these objects. If the overall sys- This study would allow us to develop a set of common
tem has to successfully perform its task, it needs to principles and techniques for anchoring that can be
make sure that these processes “talk about” the sameeasily applied across different systems and domains.
physical objects, i.e., it has to perform anchoring. From a more general perspective, a study of the an-
Suppose for concreteness that a robot’s planner haschoring problem would increase our understanding of
generated the actiofi ckUp(bott| e-22), where the delicate issue of integration between symbolic rea-
the symbobot t | e- 22 denotes an object known by  soning and physical embodiment. The papers in this
the planner to be a bottle and to contain Barolo wine. special issue discuss possible solutions to the anchor-
In order to execute this action, the robot might start a ing problem in its different facets and different appli-
Pi ckUp operator implemented by visual-servoing the cation domains.
robot’s arm with respect to a given region in the cam-
era input. Butvhichregion? Intuitively, the robot must
make sure that the region used for controlling the arm 2. The anchoring problem
is precisely the one generated by observing the object
that the planner callbot t | e- 22. That is, the robot Having recognized the existence of the anchoring
mustanchorthe symbobot t | e- 22 to the right sen- problem, the next step is to define it in a more precise
sor data. How the “right” data can be identified from way. This is an obvious prerequisite to being able to
the sensor stream is part of the anchoring problem. devise general theories and techniques to address it.
The above considerations suggest that anchoring We give the following definition.
must necessarily take place in any robotic system that
comprises a symbolic reasoning component. Until re- Definition 1. We callanchoringthe process of creat-
cently, however, the anchoring problem was typically ing and maintaining the correspondence between sym-
solved on a system-by-system basis, often using tech-bols and sensor data that refer to the same physical
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objects. Theanchoring problenis the problem of how
to perform anchoring in an artificial system.

This definition clearly covers the informal account
given in Section 1 but in fact it defines the anchor-
ing problem in more general terms. In the rest of this
section, we discuss this definition by highlighting the

87

in predictable ways. The anchoring process must take
this temporal dimension into account: anchoring can-
not be modeled as a one-shot process, but it must take
into account the flow of continuously changing sensor
input. That is why our definition explicitly mentions
the aspect ofmaintenance

One way of taking object persistence into account

assumptions that it makes and those that it does notis to include in the anchoring process a persistent in-

make.

The first thing to note is that the definition does not
make any assumption about the direction of the an-
choring process. In our introductory example, we were
concerned with the top-down problem of identifying
the “right” object to be used for a given task, and al-
lowing the sensory-motoric subsystem in the robot to
operate on that specific object. Anchoring, however,
can be performed top-down, bottom-up, or in both di-

ternal representation that reifies the correspondence
between symbols and sensor data. This representation
can contain memory of the past and support prediction
of the future. It can be used to track the object and
reacquire an object which has been out of sight. In our
terminology, we refer to this representation asaan
chor. An anchor can be seen as an internal model of
a physical object that links together the symbol-level
and sensor-level representations of that object. Many

rections simultaneously. For example, in some systems contributions in this issue include internal representa-

the flow of sensor data determines, in a bottom-up
fashion, which anchoring processes are initiated. An
example in this issue can be found in the paper by
Steels and Bailli¢21], which focuses on the interpre-
tation of scenes using linguistic terms.

A second observation is that our definition does not

tions that play a role similar to anchors. For instance,
Khoo and Horswill[13] use markers, Shapiro and Is-
mail [20] use PML-descriptions, and Fritsch et[dl1]
use a hierarchy of anchors.

An important aspect of anchors is that they can
be shared across different subsystems of the agent in

make any assumption about the type of architecture order to provide them with aommon handli¢o refer

used in the robotic agent. Bection 1 we have con-

sidered an agent endowed with a specific architecture.

to a specific physical object. In the example given in
Section 1 when the agent sees a bottle that matches

However, the definition simply assumes an agent that the given linguistic description, it acquires perceptual

usessymbolsto denote individual physical objects,
and that has access $ensor datahat refer to those
objects.

As for the assumptions that our definition does
make, the main one is that anchoring concegrhgsi-
cal objects Anchoring concerns the grounding of the

properties like its size and position. These properties
are then used to control the motion of the arm. In our
terminology, the agent has created an anchor for the
bottle. The anchor has persistence: if the agent mo-
mentarily loses sight of the bottle, e.g., while looking
elsewhere, it can still move its arm using the internally

name for an object, say ‘car-22’, to the perceptual data stored position of the bottle. Anchors can be used

that originates from the observation of that specific
object, say a region in an image. In particular, anchor-

for more than controlling motion: in the systems pre-
sented in this special issue, similar representations are

ing as defined above does not concern the perceptualused to coordinate task executid3], engage in com-

grounding of properties, like ‘red’. Grounding of
properties is of course an important problem. More-

over, as we shall shortly see, it is a prerequisite to the

municative actiong20], achieve a shared language
[21,22], and enable human-robot interacti@j.
The focus on individual objects has a second, im-

perceptual grounding of physical objects, since ob- portant consequence: individual objects should be
jects can only be identified by their properties. How- perceptually detected as such. In other words, our
ever, the assumption to deal with individual physical definition assumes as a prerequisite for anchoring that
objects has important consequences that differentiatethe available sensor data can be segmented to isolate
anchoring from generic symbol grounding. perceptsthat correspond to individual objects. This

Physical objects persist in time and space, and someassumption is not free of cost: the figure-ground seg-
of their properties are preserved across time or evolve mentation is known to be a difficult problem, which is
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highly domain specifi§14]. Moreover, the notion of  practical concerns that need to be addressed if one
“individual object” crucially depends on the sensory wants to build a robotic system where anchoring is
apparatus available to the agent, and it does not nec-present.
essarily correspond to our intuitive, human-centered A first challenge is represented by the presence of
notion. For example, for a robot equipped with only uncertainty and ambiguity. Uncertainty and ambigu-
sonar sensors the individual objects may be the dif- ity obviously arise when anchoring is performed using
ferent “places” in the environment which it is able to real sensors, which have intrinsic limitations, and in
discriminate, and these are therefore the referents ofan environment which cannot be optimized in order to
the anchoring process for that robot. reduce these limitations. The anchoring process might
The focus on individual objects does not exclude incorporate provisions to deal with these limitations,
the possibility that these objects may be composed of for instance by managing multiple hypotheses. Alter-
several other objects, possibly in a complex structure. natively, it can rely on the perceptual system to filter
In this special issue, the paper by Chella ef2l.con- out the uncertainty, or it can delegate the resolution of
siders a robotic finger as a composite object consisting ambiguities to the symbolic level.
of the different phalanxes; and the paper by Fritsch  In addition to the limitations of sensing, there are
et al.[11] considers anchoring a person by anchoring aspects of uncertainty and ambiguity which are in-
a face and two legs, which are perceived by different herent to the anchoring problem itself. Vagueness of
sensors. Anchoring of groups of objects can be done symbolic descriptions is a first example. Symbolic
as a group, or on an individual basis. In both the cases properties often do not have a precise definition in
the relations among objects probably need to be takenterms of measurable attributes, especially those used
into account in the anchoring process. in natural language like ‘red’, and the matching be-
Finally, some authors have applied the notion of tween sensor data and symbolic descriptions is usually
anchoring to more general entities. In particular, better described in terms of similarity than identity.
some of the articles in this issue consider the cor- A second aspect is the possibility of a mismatch
respondence between symbols and sensor data thabetween what we would like to discriminate at the
refer to individualactions and events[3,21]. Inter- symbolic level, e.g., colored objects, and what can be
estingly, these authors can use similar principles to actually discriminated by the sensors, e.g., a black and
deal with the anchoring of physical objects and of white camera. A third aspect is that at the symbolic
these more abstract entities: it would constitute an level we can refer to objects with a specific identity,
interesting development to understand the differ- like ‘cup- 22’, while the perceptual system is not in
ences and the similarities between these two types of general able to perceive the identity of an object but
anchoring. only some of its properties. Although these factors
may all end up in the same problems—uncertainty
about the identity of perceived objects—their treat-
3. The challenges of anchoring ment in the anchoring process should probably be
differentiated.
Anchoring is a problem that can be studied from  Another challenge of anchoring is that, at the sym-
a number of different perspectives and within several bolic level, there are several ways to refer to objects.
disciplines. Philosophy, linguistics, and cognitive sci- An important distinction is between definite and in-
ence are the ones that first come to mind. A study definite symbolic descriptions. A definite description
of the anchoring problem can raise a number of very implies the existence of a unique object satisfying the
challenging issues from each of these perspectives.description in the current context. For instandbg'
While this suggests that a complete study of the an- cup belonging to Silvia’ can denote a unique object
choring problem can be an extraordinarily difficult in the office, even if Silvia can own many more cups
task, we nonetheless need to develop practical, albeitat home. An indefinite description denotes an object
partial solutions to this problem if we want to build having a number of properties, without any assump-
working systems. In this section, we discuss those tion about its uniqueness. For instancered cup’ is
challenges that constitute, in our opinion, the most an indefinite description satisfied by any red cup in the
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current context. The importance of this distinction ap-  Finally, a fundamental challenge of the anchoring
pears mainly when more than one object satisfies the problem is to investigate the formal properties of the
description: this can be a problem in the case of defi- anchoring process. Intuitively one may feel that some
nite description, but not in the case of indefinite ones. correspondences between the symbols and the sen-
One may consider several more types of descriptions, sor data are correct while some are not. How to ex-
for instance, descriptions that use functional proper- press this formally, and prove the correctness of a
ties like ‘something to hold water’. The many ways specific system are open problems. Engaging in this
of giving a reference brings about the problem of how study would probably require the ability to model both
the anchoring process should treat different kinds of the anchoring system and physical environment in the
descriptions. same formal system, in which we can define and prove
In Fig. 1 just one object and one observer are formal properties.
present. This is clearly a simplified case. In general,
it may be necessary to anchor several objects at the
same time and identify objects on the basis of the 4. Anchoring in practice
relations among them. Moreover an agent could ob-
serve an object with different sensors and/or from In order to get a better understanding of how the
different points of view, and then need to integrate general concept of anchoring can be instantiated in
this information to be able to establish an anchor. We different tasks and domains, we present below a few
have an example in this issue in the paper by Fritsch implemented systems that perform anchoring. First,
et al. [11]. A similar problem arises if robots with  however, we need to outline the main ingredients of
different sensors need to exchange information about the framework for anchoring which is used in all ex-
the objects in the environment. A robot could anchor amples. A detailed description of this framework and
an object on the basis of properties that cannot be examples can be found [4,6,7].
discriminated by another one.
Difficult issues of communication and negotiation 4.1. Ingredients and functionalities of anchoring
may arise if several robots need to not only anchor
symbols internally but also exchange information  According to our framework the anchoring process
among them and agree on a shared language. Com-s performed in an intelligent embedded system that
mon agreement about the meaning of the symbols comprises asymbol systent’ and aperceptual sys-
used to refer to objects in the environment is also tem 7 (seeFig. 2. The symbol system manipulates
needed for efficient human-robot cooperation. Some individual symbols, like X’ and ‘cup22’, which
of the papers in this special issue deal with systems are meant to denote physical objects. It also asso-
that involve communication among multiple robots ciates each individual symbol with a set of symbolic
[13,21,22]or between robots and humajf3. predicates, like red’, that assert properties of the

g ~ ™

o= < v >
individual a1 1Y
symbols cup22
A percepts
predicate

pred attr values area = 310 attrib
symbols {red\, 1arg\e} red hue  [-20,20] 4 hue = 12 utes
\ = - orange hue [20,30] 5 C o 7
SO blue hue  [220260][ """~
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g

Fig. 2. The ingredients of anchoring in our framewagkis the anchor.
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Symbolic descriptions from the symbol system

predict predict

predict predict

Percepts from the perceptual system

Fig. 3. Anchor dynamics. The ancheris created by thé&ind functionality, and then maintained by tfieack and Reacquirefunctionalities.

corresponding object. The perceptual system gener-it later on. They can also be used to operate on the

ates perceptslike a region in an image, from the ob-

object when this is not directly visible. An anchor

servation of physical objects. It also associates each can be considered as a model of a physical object that
percept with the observed values of a set of measur- reflects the persistence of the object, and which can

able attributes, like the average hue values of a region.

The model further assumes thagtr@dicate ground-
ing relation g is given, which encodes the corre-

be shared across different subsystems of the agent.
The anchoring process is defined in our framework
by three abstract functionalities that manage anchors:

spondence between predicate symbols and admissibleFind, Track andReacquire These functionalities have

values of observable attributes. How the admissible
values are encoded may differ across different ap-

been found adequate to capture top-down anchoring
in several applications. Additional functionalities will

plications. For instance, they may be represented by probably be needed for different types of anchoring
ranges, or fuzzy sets. No assumption is made aboutprocesses, for instance, bottom-up anchoring.

the origin of theg relation: it can be hand-coded by
the designer, learnt from samples, or other.

The task of anchoring is to use tpeelation to con-
nect individual symbols i~ and percepts idl. For
instance, suppose thatd is predicated of the sym-
bol cup22, and that the hue values of a given region
in an image are compatible with the predicated
according tog. Then that region could be anchored
to the symbolcup22. The correspondence between
symbols and percepts is reified in a data structure
calledanchor, denoted by in the figure. The anchor

TheFind functionality corresponds to the initial cre-
ation of an anchor for an object given a symbolic de-
scription (set of predicates) provided By This func-
tionality selects a percept from the perceptual stream
provided byIT using theg predicate grounding rela-
tion to match predicates to observed attribute values.
The initial creation of an anchor resembles a structural
pattern recognition process.

Once an anchor has been created, it must be contin-
uously updated to account for changes in the object’s
attributes, e.g., its position. This is done by ffrack

contains pointers to the corresponding symbols and functionality using a combination of prediction and

percepts, together with an estimate of the current val-
ues of some of the attributes of the object which it
refers to, calledgignatureand denoted by. The val-

ues in the signature, like the object’s position, can be
used for both acting on the object and re-identifying

1 We take here a percept to be a structured collection of mea-

new observations, as illustrated fig. 3. Prediction

is used to make sure that the new percepts used to
update the anchor are compatible with the previous
observations, i.e., that we are still tracking the same
object. Moreover, comparison with the symbolic de-
scriptor is used to make sure that the updated anchor
still satisfies the predicates, i.e., the object still has the

surements that are assumed to originate from the same physical Properties that make it “the right one” from the point

object.

of view of the symbol system. The use of abstract
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symbolic information inside the tracking cycle differ- histories of sonar measurements; percepts include
entiates anchor maintenance from the usual predict—walls and doors. Theredicate grounding relatiotis
measure—update cycle of recursive estimators like hand-coded, and maps predicates tilkeg r ow_door
Kalman filters. The second example below illustrates to ranges of values for the observed door width, like
a case where this information is crucial to a correct [60, 80]. Finally, ananchor contains pointers to the

anchoring. appropriate symbols and percepts, plus a signature.
The Track functionality assumes that the object is Symbolic descriptions, percepts, and anchors are all
kept under constant observation. TReacquirefunc- Lisp structures stored in the LPS.

tionality takes care of the case in which the objectis  The task that we consider in this example is navi-
re-observed after some time. For instance, every morn- gation in an office environment, as shownFHig. 4.

ing | tell my robot to go and pick up my cup. The robot  Anchoring arises when the planner gives direction to
knows what my cup looks like and where it has seen it the robot in terms of names of rooms and corridors,
last time, and it can use this information to find it again. for instanceFol | ow( cor r 4) . The robot needs to
TheReacquirgfunctionality can be considered a com- anchor the symbotorr 4 to the sonar data corre-

bination ofFind andTrack it is similar to aFind, with sponding to the walls of the actual corridor denoted
the addition that information from previously observed by cor r 4. At time rg the planner puts the symbolic
attributes can also be used as inThackfunctionality. description ofcor r 4 into the LPS based on map in-
formation (shown by thick lines in the figure). At
4.2. Anchoring in an office navigation domain this descriptor is anchored to wall percepts (shown

by thin segments) usingind. Track is then used to

The aim of this first example is to illustrate a simple keep it anchored to the new wall percepts. The signa-
case of anchoring. We consider a Nomad 200 robot ture in the anchor (shown by double lines) is used by
equipped with an array of sonar sensors and controlled theFol | ow behavior to control the movement of the
by an architecture similar to the one reportediif], robot along the intended corridor.
which includes a simple STRIPS-like planner. All the
perceptual and prior information about the robot’s sur- 4.3. Anchoring in an aerial surveillance domain
roundings is maintained in a blackboard-like structure
called Local Perceptual Space (LPS). In terms of our  The next example emphasizes the dynamic aspect
framework, thesymbol systens given by the plan-  of anchoring and the use of symbolic information in
ner; individual symbols denote rooms, corridors, and predicting the next position of an object. The do-
doors. Theperceptual systemaxtracts features from  main is an unmanned aerial vehicle (UAV) performing

——
AT .
WL
g ]
i
S

1 1

0 1

Fig. 4. Anchoring a corridorzg (before anchoring)s; (after anchoring).
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autonomous surveillance tasks in a simulated environ-
ment developed within the WITAS proje8]. The
UAV system integrates a planner, a reactive plan ex-
ecutor, a vision system and a control system.

In terms of our framework, theymbol systernon-
sists of the planner; individual symbols denote cars
and elements of the road network. Tperceptual
systemis a reconfigurable active vision system able
to extract information about car-like objects in aerial
images; percepts are regions in the image, and they
have attributes like position, width, and color. The
predicate grounding relatiofs given as a hand-coded
table that associates each predicate symbol with athe car. This position is stored in the signature of the
fuzzy set of admissible values for the corresponding anchor, and used to direct the UAV and the camera
attribute. Ananchoris a Lisp structure that stores towards the end of the bridge. When the car reappears
an individual symbol, the index of a region, and from under the bridge ab, a percept is generated by
an association list recording the current estimates the vision system that is compatible with the signature
of the values of the object’s attributes (signature). in the anchor. Normal tracking is then resumed.

The signature in the anchor is used to configure
the vision system, control the camera, and control 4.4. Anchoring an indefinite description
the UAV.

Fig. 6. Anchoring “a red ball” to perform a ball collection task.

In the example shown iRig. 5, the task of the UAV Our last example is intended to illustrate some
is to follow a specific car that was previously anchored of the subtleties of the anchoring problem in the
using theFind functionality. At timerq two identical case of an indefinite reference and multiple identical

cars are present in the image, one traveling along aobjects[7]. The task is one of the three “technical
road which makes a bend under a bridge, and the otherchallenges” of the RoboCup 2002 competition in the
one traveling on the bridge. The UAV is keeping un- Sony four-legged robot league. A Sony AIBO robot
der observation the car traveling along the road using is in a soccer field and 10 identical balls are placed in
theTrackfunctionality. Atz this car disappears under the field. The task is to score all the balls. When a ball
the bridge and the second car is almost in the position is scored, it is removed from the field (sE&. 6).

in the image where the first one was expected to be. With respect to anchoring, the problem can be de-
The Track functionality has access to the symbolic scribed as follows. The robot is given an indefinite de-
information about road topology and can therefore scription of a ball, for instancex*: Ball(x) A Red(x)’.
recognize that this car cannot be the car previously Any of the 10 balls is suitable for the task. Thiand
tracked. TheReacquirefunctionality is then invoked  functionality selects the first ball to act upon, for in-
in order to find again the tracked c&eacquireuses stance the nearest one, and anchors the symtwoit.
high-level knowledge to infer the presence of the oc- The created anchor includes in its signature the rela-
cluding bridge, and predict the next visible position of tive position of this ball, which is used by the motion

Fig. 5. Anchoring a moving object. The followed car disappears under a bridge and a similar car appears at its place over the bridge.
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and kicking routines. While the robot moves, ffrack reviews in this special issue introduce examples of the
functionality updates the anchor regularly. work done in the philosophical community which is
The Trackfunctionality has an implicit definite ref-  relevant to anchoring.
erence: the ball which the robot is currently actingon.  From a more practical point of view, there are two
In a sense, anchoring has made the robot committedresearch problems in the fields of robotics and Al
to that specific ball. However the anchoring process which are related to the anchoring problem: pattern
must remember that the original description was an recognition and symbol groundinattern recogni-
indefinite one, and that another ball can also be suit- tion can be defined as the problem of interpreting
able for the task. For instance, when the current ball data provided by sensors by assigning them to pre-
is removed from the field the robot must try Reac- defined categorief9,15]. Taking pattern recognition
quire and thenTrack another ball, since the task was in its most general sense, anchoring can be consid-
to score an arbitrary ball. Smarter anchoring strategies ered a sub-problem of pattern recognition. However,
can be devised for this task. For instance, the robot the anchoring problem emphasizes several peculiar
should not remain committed to a ball if another ball aspects, which are not usually the focus of pattern
is in a better position according to some specified cri- recognition. First, the presence of symbols is an es-
teria. In our implementation of this example, the robot sential aspect of anchoring, while this is not the case
tracks one specific ball and acts on it, but if it sees an- in pattern recognition. Second, a goal of anchoring is
other ball which is in the same direction and closer, it the dynamic maintenance of the anchor in time, while
starts tracking and acting on this other one. pattern recognition is mostly used in applications
where this dynamic aspect is not relevant. Finally,
anchoring focuses on the creation and maintenance
5. Related problems of the anchor as a shared representation to link sev-
eral subsystems of the agent, such as motor control,
The problem of connecting linguistic descriptions of sensor processing, and reasoning.
objects to their physical referents has been largely con-  Symbol groundingan be defined as the problem of
sidered in the fields gbhilosophyandlinguistics In finding a semantics for a symbolic system that it is not
fact, we have borrowed the teramchorfrom situation in its turn a symbolic systerfi2]. Symbol grounding
semantic€.Most of the aspects of anchoring discussed is a more general problem than anchoring. It concerns
in this paper have also been studied in these fields. Forthe philosophical issues related to the meaning of
example, the distinction between definite and indefi- symbols in general. Anchoring is concerned with the
nite references and the semantical problems associategractical problem of connecting symbols referring to
with definite references have been addressed, amongphysical objects to the sensor data originating from
others, by Russel[tL6] and Fregd10]. While the an- those physical objects in an implemented robotic
choring problem could certainly belong to the philo- system. In particular, anchoring focuses on perceiv-
sophical and linguistic debate, the perspective taken able physical objects, while symbol grounding needs
here is more pragmatic. We are interested in ways of to consider all kind of symbols, including ones like
stating and solving this problem that can lead to im- ‘justice’ and ‘peace’. For these kinds of symbols it
plement practical solutions in robotic systems. Even would be difficult to find appropriate sensor measure-
with this difference in perspective, the reflections done ments, while the presence of sensor measurements is
in the linguistic and philosophical fields undoubtedly essential in anchoring.
provide a rich source of inspiration for the study of the Fig. 7shows a simplified view of the relation among
different aspects of the anchoring problem. Two book anchoring, symbol grounding and pattern recognition.
Anchoring is included in the intersection between the
2 Situation semanticfl] is a semantics of natural language that  other two problems and can represent a bridge between
tries to find meanings of sentences in the external world and in tham. One can in fact find numerous cases of pattern

relations between situations rather than in truth values as in logic recoanition where no svmbols are present. and one can
based semantics. In the terminology of situation semantics, an gniuonw Yy p !

anchor is an assignment of individuals, relations and locations to Study the Symb.c’l grou.nding. problem WithOUt taking
abstract objects. measurements in consideration. Anchoring by contrast
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6. About the papersin thisissue

Pattern recognition Symbol grounding Most of the papers contained in this special is-
sue present specific systems that address the anchor-
ing problem as defined iBection 1 although some
of them deal with anchoring intended in a somewhat
Fig. 7. Relations among Anchoring, Symbol grounding and Pattern wider S?nse' . .
recognition. Shapiro and Isma[R0] consider how the anchoring
problem is addressed in GLAIR, a three-level architec-
ture for cognitive robots. The robot used in the exper-
implies the presence of both symbols and measure-iments interacts with humans using natural language,
ments and the possibility of establishing a connection and in order to answer the user’s queries it needs to
between the two. connect its visual input to the linguistics terms used
An important aspect of anchoring is that the ref- by the human. The robot uses abstract knowledge of
erents are individual physical objects. In this respect, objects and persons to make this connection. An ex-
anchoring is related to the problem object track- ample is the dialog where the robot is asked to find
ing. In object tracking an object is first found, and Bill, looks for a blue block and when it finds it, it an-
then kept under observation for some time. Some in- swers that it has found Bill.
stances of the anchoring problem can also be con- Khoo and Horswill[13] present a system which
sidered instances of the object tracking problem, like uses reactive plans, expressed in a rule-based format,
the car tracking example discussed in the UAV sce- to perform cooperative tasks involving two robots. The
nario above. As shown in that example, the presence variables used in the reactive rules are anchored to ob-
of symbols and the possibility of performing symbolic jects in the environment by means of color trackers
reasoning is a distinctive aspect of anchoring, which that are attached to specific objects in a camera im-
is usually not considered in object tracking. Other in- age. The two robots exchange information about ob-
stances of the anchoring problem would not be easily jects using messages in which the anchored objects
expressed in terms of object tracking. An example is are associated to fixed positions in a bit string. The
the case where a robot finds an object in a room and authors demonstrate their approach on two tasks in-
some days later is asked to reacquire the object thatvolving co-operative office navigation: find an object,
can or cannot be still present in the room. This is a and visit all locations in the environment.
clear case of anchoring, but it could hardly be regarded  Fritsch et al[11] deal with the problem of anchoring
as object tracking. The paper by Steels and Baillie a composite object from the data provided by several
[21] in this issue, which focuses on the interpreta- sensors, each one of which can only observe part of
tion of scenes using linguistic terms, provides another the object. The authors consider the case of anchoring
example. a human by aggregating the two anchors separately
We can summarize the above considerations as created for the face and for the legs. Face recognition
follows. Although specific instances of the anchor- is based on image data, while leg recognition relies
ing problem can be also seen as instances of otheron data from a laser range finder. Their system can
problems studied in Al and in robotics, like symbol be seen as a special case of cooperative anchoring, in
grounding, pattern recognition, and object tracking, which a common anchor must be established between
the general anchoring problem has nonetheless sev-two perceptual systems.
eral distinctive aspects that make it worth studying as  Vogt's paper22] is based on the concept of semi-
a problem per se. Practical solutions to the anchoring otic symbol. A semiotic symbol is defined by a triadic
problem will, of course, draw from the wide set of relation among form, meaning, and referent and it
techniques developed to address these other problemstherefore implicitly includes an anchoring relation be-
as well as from the debate about the relation between tween the form, symbol in the traditional sense, and the
symbols, perception and reality which has animated referent object. The approach considered is bottom-up
the fields of philosophy, linguistics and psychology. from sensor data to names, and the experiment
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presented involves two robots sensing light sources symbol, like Silvia, to the sensor data associated with

and developing a lexicon to name the light sources. the specific human being known by the robot as Silvia.
Among the papers that deal with the anchoring  This special issue is completed by the reviews of

problem intended in a wider sense, the paper by Steelstwo books which may provide interesting insights on

and Baillie[21] considers the anchoring not only of the anchoring problem from a philosophical perspec-

objects but also of events. The system anchors objectstive. The first one isThe Varieties of Referencey

seen in the images bottom-up, and keeps track of themGareth Evans. The second boolCisnceptual Spaces

over time. On the basis of this information events are by Peter Gardenfors. The book reviews highlight the

recognized. This work is in the context of a language relevance of these two works to the problem of per-

game between two robotic systems with the aim of ceptual anchoring.

learning a shared language. One of the systems sees

a event, like a ball rolling, through a static camera in

an otherwise static environment. It then formulates a 7. Conclusions

sentence describing the event. The other system hears

the sentence and interprets it. If the interpretation  As robots are moving toward more complex tasks
is considered appropriate with respect to one of the and environments, the field of robotics is looking more
events recently seen the game succeeds. and more to ways of including higher level represen-
Chella et al[3] deal with the problem of recogniz-  tations and reasoning into robotic systems. In many
ing motion events of a robotic finger observed by an cases, the higher level is built around a symbol system.
external camera. They propose a framework based onThe claim made in this paper is that any physically
Gardenfors’ theory ofonceptual spacesn their sys-  embedded robotic system which includes a symbolic
tem, each element (phalanx) of the robotic finger is component needs to perform anchoring_
anchored bottom-up to a point in a conceptual space, Anchoring is a difficult problem. It involves con-
or knoxel The knoxels that correspond to the differ- cepts which have interested philosophers for centuries
ent phalanxes of a finger are aggregated into a new and are still far from being fully understood. Nonethe-
knoxel which provides an anchor for the full finger |ess, we have to provide practical solutions to the an-
object. In addition to anchoring individual physical choring problem if we want to build robotic systems
objects, Chella et al. also deal with anchoring sym- that include a symbolic component. The papers in
bols that denote actions and fluents by considering the this special issue provide examples of such solutions.
dynamic evolution of (sets of) knoxels. For example, |n the longer term, a research program on anchoring
the fluent “inmotion” is anchored to a set of knox-  should bring a deeper theoretical analysis of the an-
els that correspond to a given evolution in time of the choring problem, together with general practical so-
finger. The fluents and actions so anchored are used|utions that can be re-used in different systems and
in a logical system, formalized in situation calculus, domains.

where higher-level event recognition takes place.
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Abstract

The GLAIR grounded layered architecture with integrated reasoning for cognitive robots and intelligent autonomous agents
has been used in a series of projects in which Cassie, the SNePS cognitive agent, has been incorporated into hardware- ol
software-simulated cognitive robots. In this paper, we present an informal, but coherent, overview of the GLAIR approach to
anchoring the abstract symbolic terms that denote an agent’s mental entities in the lower-level structures used by the embodied
agent to operate in the real (or simulated) world. We discuss anchoring in the domains of: perceivable entities and properties,
actions, time, and language.
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1. Introduction denote an agent’'s mental entities in the lower-level
structures used by the embodied agent to operate in

GLAIR (grounded layered architecture with in- the real (or simulated) world.

tegrated reasoning) is a three-level architecture for In Section 2we give an overview of the three levels

cognitive robots and intelligent autonomous agents of the GLAIR architecture. IrSection 3we discuss

[15,16] GLAIR has been used in the design and imple- a hardware implementation of Cassie. 3ection 4

mentation of Cassie, a cognitive roj@n-23,39,41, we discuss anchoring in the domains of: perceivable

44,46-48,50]which has been implemented as a hard- entities and properties, actions, time, and language.

ware robot and in various software-simulated ver- In Section 5 we discuss some related work, and in

sions. The capabilities of the embodied Cassie have Section 6 we summarize the paper. This paper has

included: input and output in fragments of English, deliberately been kept as an informal, but coherent,

reasoning, performance of primitive and composite overview of our approach. For more details, and more

acts, motion, and vision. formal presentations, of particular aspects of our ap-
Previous papers have described various aspects ofproach, see the papers cited herein.

GLAIR and Cassie. In this paper, we present, for the

first time, a coherent, unified, overview of the GLAIR

approach to anchoring the abstract symbolic terms that2- GLAIR

* Corresponding author. Fax:1-716-645-3464. GLAIR (grounded layered architecture with in-
E-mail address:shapiro@cse.buffalo.edu (S.C. Shapiro). tegrated reasoning) consists of three levels: the

0921-8890/03/$ — see front matter © 2003 Elsevier Science B.V. All rights reserved.
Pll: S0921-8890(02)00352-4
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knowledge level, the perceptuo-motor level, and the
sensori-actuator level.

The knowledge level (KL) is the level at which
conscious reasoning takes place. The KL is im-
plemented by the SNePS knowledge representation
and reasoning systefd6,48,50] and its subsystem
SNeRE (the SNePS rational engirfege [28-31] and
[53, Chapter 4]) which is used for scheduling and
initiating the execution of intentional acts.

We refer to the KL as the “conscious” level, since
that is the locus of symbols accessible to reasoning
and to natural language interaction. It is the level con-
taining the “abstract-level representations of objects”
[5,6]. Similarly, the KL-level acts are “intentional” in

the sense that they are scheduled as a result of natura‘ )

language understanding and reasoning.

Atomic symbols in the KL are terms of the SNePS
logic [42]. Symbol structures in the KL are functional
terms in the same log{d0,42]. All terms denote men-
tal entities[31,46] For example, if Cassie is asked to
“Find a green thing, she conceives of an entity whose
only properties are being green and being a thing, by
creating a KL term denoting that entity, and KL terms
denoting propositions that the entity is green and that
the entity is a thing, even though no such object, with-
out further properties, exists in the world. When, in

Autonomous Systems 43 (2003) 97-108

tivities that ground Cassie’s consciousness of its body
and surroundings.
The PML has been implemented in three sub-levels:

(1) The highest sub-level (which we will refer to as
PMLa) has been implemented in Common Lisp,
and contains the definitions of the functions that
implement the activity represented by KL primi-
tive acts.

The middle sub-level (henceforth PMLw) contains
a set of Common Lisp symbols and functions de-
fined in theWor | d package which use Common
Lisp’s foreign function facility to link to the low-
est sub-level.

The lowest sub-level (henceforth PMLc) has been
a C implementation of “behavioral networks”
[17,18]

)

The sensori-actuator level (SAL) is the level con-
trolling the operation of sensors and actuators (being
either hardware or simulated). The SAL has been im-
plemented in C and other languages, depending on the
implementation of the hardware or software-simulated
robot.

The Common Lisp programs, PMLc, and the SAL
run on different processes, and, in some circumstances,
on different machines.

response to this request, Cassie find a particular green The topic of this paper is our approach to an-

robot she recognizes (re-cognizes), by already having
a KL term for it, she adds a KL term for the propo-
sition that the two entities have the same extension.
(Compare Frege’'s example that “The Morning Star
is the Evening Star[10].) This approach is in gen-
eral accord with what Jackendoff calls “conceptualist
semantics']25,26] We will consistently use “entity”

for such a mental entity—the denotation of a KL term,
and “object” for an object in the real (or simulated)
world.

SNePS (and hence the KL) is implemented in Com-
mon Lisp.

The perceptuo-motor level (PML) is the level con-
taining the “physical-level representations of objects”
[5,6] consisting of object characteristics such as
size, weight, texture, color, and shape. At this level
objects are not characterized by KL terms such as
categories (box, robot, person, etc.) or properties
(green, tall, etc.). The PML also contains routines
for well-practiced behaviors, including those that are
primitive acts at the KL, and other subconscious ac-

choring the KL terms that denote Cassie’'s (or any
GLAIR-based agent’s) mental entities in the PML
structures used by embodied Cassie to operate in the
real world. Briefly, our theoretical stance is that a KL
term (symbol) serves as @vot, supporting and co-
ordinating various modalities. Anchoring is achieved
by associating (we use the term “aligning”) a KL
term with one or more PML structures—more than
one, if different PML structures are used by differ-
ent modalities. Some PML structures are accessible
to sensors, some to effectors. Others are accessible
to natural language interaction. KL terms, but not
PML structures, are accessible to reasoning. Cassie’s
ability to understand a natural language description,
and then visually locate an object in the world satis-
fying that description depends on going from PML
structures supporting natural language perception
to KL symbol structures, possibly clarified and en-
hanced by reasoning, to PML structures supporting
visual perception. Her ability to describe in natu-
ral language an object she is seeing in the world
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depends on the following that same path in the other The VRML simulationsimulates Cassieand her

direction. world by VRML (virtual reality modeling language
[3]) objects visible through a world-wide web
browser.

3. The FEVAHR The Garnet simulatiorsimulates Cassieand her

world by Garnef11] objects in a Garnet window.
Cassie in the role of a FEVAHR (foveal extra- The ASCII simulationused to create examples for
vehicular activity helper-retrieveifp,14,41]was im- Section 4 implements the PMLw, PMLc, and SAL
plemented, as a joint project of researchers at the as sets of Common Lisp functions which print in-
University at Buffalo and researchers at Amherst Sys-  dications of what Cassiewould do.
tems, Inc., on a Nomad 200 mobile robot, including
sonar, bumpers, and wheels, enhanced with an hierar- No code at the KL or PMLa levels need be changed
chical foveal vision systerfl] consisting of a pair of ~ when switching among the hardware robot and these
cameras with associated hardware and softfafe four different simulations. All that is required is a dif-
Henceforth, we will refer to Cassie in the role of a ferent PMLw file of functions that just print messages,
FEVAHR as Cassie (in [14], Cassie is referred to or make calls to the appropriate PMLc sub-level.
as Freddy).
Cassige operates in a 1% 17 ft. room containing:
Cassie; Stu, a human supervisor; Bill, another human; 4. Anchoringin GLAIR
a green robot; three indistinguishable red robots. In
the actual room in which the Nomad robot operated, 4.1. Perceivable entities
“Stu” was a yellow cube, “Bill” was a blue cube, the
green robot was a green ball, and the red robots were There are KL terms for every mental entity Cassie
red balls. Cassjeis always talking to either Stu or  has conceived of, including individual entities, cate-
Bill. That person addresses Casgsighen he talks, and  gories of entities, colors, shapes, and other properties
Cassige always addresses that person when she talks. of entities.
Cassig can be told to talk to the other person, to find, There are PML structures (at the PMLw and PMLc
look at, go to, or follow any of the people or other sub-levels) for features of the perceivable world that
robots in the room, to wander, or to stop. Cassian Cassie’s perceptual apparatus can detect and distin-
also engage in conversations on a limited number of guish. For example, in the hardware and Nomad sim-
other topics in a fragment of English, similar to some ulator versions of Cassieeach distinguishable color
of the conversations if89]. While Cassie is moving, and each distinguishable shape is represented by a sin-
she avoids obstacles. gle integer, while in the VRML simulation, each is
Cassig’s SAL was designed and implemented by represented by a string, and in the Garnet and ASCII
the researchers at Amherst Systems, Inc. Its hierarchi-simulations, each is represented by a Lisp symbol.
cal foveal vision systerfll,2,7]was implemented and  Each particular perceived object is represented at this
trained to recognize the several colors and shapes oflevel by ann-tuple of such structuregps, ..., v,),
the objects in the room. where each component, is a possible value of some
Cassig’s KL and PML were designed and imple- perceptual feature domaify;. What domains are used
mented by the researchers at the University at Buffalo, and what values exist in each domain depend on the
including the senior author of this paper. During devel- perceptual apparatus of the robot. We will call the
opment of the KL, and subsequently, we used several n-tuples of feature values “PML-descriptions”.
simulations of the robot and of the world it operates in: Our approach to grounding KL terms for perceiv-
able entities, categories, and properties is to align
The Nomad simulatarses the commercial simulator a KL term with a PML-description, possibly with
that was included with the Nomad robot, enhanced unfilled (null) components. For example, Cassie
by a simulation of Cassi¢s world and its vision used two-component PML-descriptions in which
system. the domains were color and shape. In the hardware
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and Nomad simulator versions, the KL term de-
noting Cassig’'s idea of blue was aligned with a
PML-description whose color component was the
PML structure the vision system used when it detected
blue in the visual field, but whose shape component
was null. The KL term denoting people was aligned
with a PML-description whose shape component was
the PML structure the vision system used when it
detected a cube in the visual field, but whose color
component was null. We have implemented align-
ment in various ways, including association lists, hash
tables, and property lists.

Call a PML-description with some null compo-
nents an “incomplete PML-description”, and one with
no null components a “complete PML-description”.
KL terms denoting perceivable properties and KL
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and we tell her that Harry is a tall, fat, bearded man,
she would be able to assemble a PML-description
of Harry and recognize him on the street (assum-
ing that Cassie’'s terms for tall, fat, bearded, and
man are aligned with incomplete PML-descriptions).
In some cases, this might result in a set of sev-
eral complete PML-descriptions. For example, the
PML-descriptions of some, but not a particular, red
chair might include PML-descriptions with different
shape components. Once a PML-description is as-
sembled for an entity, it can be cached by aligning the
term denoting the entity directly with it. Afterwards,
Cassie could recognize the entity without thinking
about its description.

To find (come to be looking at) an entity, Cassie
finds a PML-description of the entity that is as com-

terms denoting recognizable categories of entities are plete as possible, and directs her perceptual apparatus
aligned with incomplete PML-descriptions. Examples (via the SAL) to do what is necessary to cause an ob-
include the terms for blue and for people mentioned ject satisfying it to be in her visual field. For example,
above, and may also include terms for the properties in the Nomad version of Cassighe PML-description

tall, fat, and bearded, and the categories man andof Bill is the 2-tuple(13, 21), which is passed to the ap-
woman. The words for these terms may be combined propriate SAL routines, which move the cameras until
into verbal descriptions, such as “a tall, fat, bearded a blue cube is in their field-of-view (see the section on
man”, whose incomplete PML-descriptions may be actions, for a description of how actions are grounded).
used to perceptually recognize the object correspond- If Cassie is looking at some object, she can recog-

ing to the entity so described.
In this paper, we will use “description” (unqual-
ified by “PML”") only to mean a verbal description

nize it if its PML-description is the PML-description
of some entity she has already conceived of. If there is
no such entity, Cassie can create a new KL term to de-

that can be used for perceptual recognition, such asnote this new entity, align it with the PML-description,
“a tall, fat, bearded man”, and not to mean a ver- and believe of it that it has those properties and
bal description that cannot be used for perceptual is a member of those categories whose incomplete

recognition, such as “a college-educated business-

man who lives in Amherst, NY”. Cassie might have
a KL term for an entity about which she knows no
descriptive terms. For example, all she might believe

PML-descriptions unify with the PML-description of
the new entity.

If there are multiple entities whose PML-
descriptions match the object’'s PML-description, dis-

about Fred is that he is a college-educated business-ambiguation is needed, or Cassie might simply not

man who lives in Amherst, NY. Thus, she would be

incapable of describing Fred (the way we are using
“describe”). Nevertheless, it might be the case that
Cassie’s term denoting Fred is aligned with a com-
plete PML-description. In this case, Cassie would be
able to recognize Fred, though not describe him ver-
bally. We call such a PML-description aligned with an

entity-denoting term, the entity’s PML-description.

A complete PML-description may be assembled for
an entity by unifying the incomplete PML-descriptions
of its known (conceived of) properties and categories.
For example, if Cassie knows nothing about Harry,

know which one of the entities she is looking at.

We are currently investigating the issue of when
Cassie might decide that the object she is looking at
is new, even though it looks exactly like another she
has already conceived of (SE&6]).

We have not worked on the problem of recogniz-
ing an entity by context. For example, a store clerk
might be recognized as any person standing behind a
cash registet.We speculate that this problem requires

1 This example was suggested by one of the anonymous review-
ers of Shapiro and Ismaj#3].
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Table 1
Objects and descriptions of Cagsgeworld
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Table 3
Some of Cassigs beliefs

Object Color Shape
World:Bill Wor | d: bl ue Wor | d: squar e
Worl d: Stu Worl d: yel | ow Wor | d: squar e
Wor | d: Cassi e Wor | d: cyan World:circle
Worl d: Greeni e Wor | d: green World:circle
Wor | d: Redr ob- 1 Worl d: red World:circle
Wor | d: Redr ob- 2 Worl d:red World:circle
Wor | d: Redr ob- 3 Worl d: red World:circle
Table 2

Some of Cassigs KL terms and their PML-descriptions

KL term (Color, Shapé

bl (Worl d: cyan, Worl d:circle)
b5 (Worl d: yel | ow, Worl d: squar e)
b6 (Wor | d: bl ue, Worl d: squar e)
21 (Worl d: green, nil)

25 (World:red, nil)

ni9 (nil, Worl d: squar e)

n22 (nil, World:circle)

a combination of KL knowledge and KL—-PML align-

bl's name is Cassie
b5’s name is Stu
b6’s name is Bill
Cassie is a FEVAHR
FEVAHRSs are robots

Bill and Stu are people
Robbie is a green robot
b8b9, and b10 are red robots
People and robots are things

green and red, respectivelyl9 andn22 denote the
categories of people and robots, respectively.

Cassig’s relevant beliefs about the entities denoted
by these terms may be glossed as showmahle 3
The only descriptive terms Casgidas for Bill and
Stu are that they are people, and the only descrip-
tive term she has for herself is that she is a robot.
Nevertheless, Bill, Stu, and Cassie are aligned with
complete PML-descriptions, so she can recognize
them. On the other hand, neither Robbig, b9,
norb10 are aligned with PML-descriptions, although
PML-descriptions can be assembled for them from
their properties and categories.

Following is an interaction with Casgi@about these
entities. Sentences preceded by &re human inputs.

ment. Knowing that a person standing behind a cash gentences preceded bpPNL: " and “SAL: ” are re-

register is a clerk is KL knowledge. Recognizing a

person, a cash register, and the “behind” relation re-

quires KL—PML alignment.

Consider an example interaction with the ASCII
version of Cassie In this simulation, created so that
interactions can be shown in print, the entire PML
and the simulated world are implemented in Common
Lisp. The PML-descriptions have two domains, called
“color” and “shape”. There are seven objects in the
simulated world. The Common Lisp symbols that rep-

ports of behaviors and simulated actions and percep-
tions by the ASCII version of Cassiat the respective
levels, and are not output by the other four versions.
Notice that the PML deals with PML-descriptions, and
only the SAL deals with (simulated) objects in the
world. Sentences beginning with ™ are generated by
Cassie. At the beginning of the interaction, Cassie

is looking at, listening to, and talking to Stu. (See next

page).

resent these objects and their PML-descriptions are 4 5 peictic registers

shown inTable 12 Recall that Lisp symbols of the
PMLw are in theWor | d package, so Lisp prints them
preceded byWor | d: ”.

The KL terms that are aligned with PML-
descriptions are shown ifable 2 Notice thath1, b5,
andb6 are aligned with complete PML-descriptions,
while n21, n25, nl9, and n22 are aligned with
incomplete PML-descriptionsb1, b5, and b6 de-
note individualsn21 andn5 denote the properties

2 The examples in this paper were created using SNeP@]6
running under Franz, Inc.’s Allegro CL 6[2].

An important aspect of being embodied is being sit-
uated in the world and having direct access to compo-
nents of that situatedness. This is modeled in GLAIR
via a set of PML registers (variables), each of which
can hold one or more KL terms or PML structures.
Some of these registers derive from the theory of the
Deictic Center[8], and include:l , the register that
holds the KL term denoting the agent itse¥QU,
the register that holds the KL term denoting the indi-
vidual the agent is talking with; anbOW the regis-
ter that holds the KL term denoting the current time.
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: Find arobot.
PM.: The FEVAHR s | ooki ng at (Worl d: yel | owWor | d: squar e)
PM.: The FEVAHR s | ooki ng for somethingthat’s (nil Wirld:circle)
SAL: The FEVAHRf ound Wor | d: RedRob- 1
PM.: The FEVAHRf ound (Worl d: red Wrl d:circle)
| found aredrobot.
PM.: The FEVAHRI s | ooki ng at (World:red Worl d:circle)
I aml ooki ng at aredrobot.

: Find a person.
PM.: The FEVAHRi s | ooki ng at (Worl d:red Wrl d:circle)
PM_.: The FEVAHRI s | ooki ng for sonethingthat’s (nil Wrl d: square)
SAL: The FEVAHRf ound Wor | d: St u
PM.: The FEVAHRf ound (Worl d: yel | owWor | d: squar e)
| foundyou, Stu.
PM.: The FEVAHRI s | ooki ng at (Worl d: yel | owWor| d: squar e)
I aml ooki ng at you.

. Findagreenthing.
PM.: The FEVAHRI s | ooki ng at (Worl d: yel | owWor | d: squar e)
PM.: The FEVAHRI s | ooki ng for sonethingthat’s (Worl d:greennil)
SAL: The FEVAHRf ound Wr | d: Greeni e
PM.: The FEVAHRf ound (Worl d: green Wrl d: circl e)
| f ound Robbi e.
PM.: The FEVAHR s | ooki ng at (Worl d: greenWrld:circle)
I aml ooki ng at Robbi e.

:FindBill.
PM.: The FEVAHRi s | ooki ng at (Worl d: greenWrl d:circle)
PM.: The FEVAHRI s | ooki ng for sonet hingthat’s (Worl d: bl ue Wrl d: square)
SAL: The FEVAHRf ound Wor | d: Bi | |
PM.: The FEVAHRf ound (Wor | d: bl ue Wor | d: squar e)
| found Bill.
PM.: The FEVAHRI s | ooki ng at (Wor | d: bl ue Wor | d: squar e)
I aml ookingat Bill.

It was by use of these registers that, in the exam- Embodiment is further modeled in GLAIR via a set
ple interaction shown irSection 4.1 Cassie used  of modality registers.

“1” to refer to the individual denoted bipl (her-

self), “you” to refer to the individual denoted Hy5 4.3. Modality registers

(Stu), and the appropriate tense in all the sentences

she generated. The use BOWis discussed further How does an agent know what it is doing? A stan-
in Section 4.5 and language is discussed further in dard technique in the Artificial Intelligence literature
Section 4.6 amounts to the following steps:
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(1) |started doing at some previous time or in some  see that she realized that she was already looking at a

previous situation. robot, and so did not need to do anything to find one.
(2) | have not done anything since then to stop me
from doinga. 4.4. Actions

(3) Therefore, | am still doing.

However, we human’s do not have to follow these = Some KL terms denote primitive actions that the
steps to know what we are doing, because we have GLAIR agent can perform. We call a structure con-
direct access to our bodies. sisting of an action and the entity or entities it is per-
GLAIR agents know what they are doing via di- formed on, an “act”. For example, the act of going to
rect access to a set of PML registers termed “modality Bill consists of the action of going and the object Bill.
registers”. For example, if one of Cassie’s modalities Acts are denoted by KL functional terms.
were speech, and she were currently talking to Stu, her Each KL action term that denotes a primitive action
SPEECH register would contain the KL term denot- s aligned with a procedure in the PML. The proce-
ing the state of Cassie’s talking to Stu (and the term dure takes as arguments the KL terms for the argu-
denoting Stu would be in th#OU register). In many ~ ments of the act to be performed. For example, when
cases, a single modality of an agent can be occupiedCassie is asked to perform the act of going to Bill, the
by only one activity at a time. In that case the regis- PML going-procedure is called on the KL Bill-term.
ter for that modality would be constrained to contain !t then finds the PML-description of Bill, and (via the
only one term at a time. SAL) causes the robot hardware to go to an object in
One of the modality registers we have used is for the world that satisfies that description (or causes the
keeping track of what Cassie is |00king at. When she robot simulation to simulate that behaViOf). The PML
recognizes an object in her visual field, the KL term 9oing-procedure also inserts the KL term denoting the
denoting the state of looking at the recognized entity is State of Cassie’s going to Bill into the relevant modal-
placed in the register, and is removed when the object ity register(s), which whetNONmoves (se€Section
is no longer in the visual field. If one assumed that 4.5, causes an appropriate proposition to be inserted
Cassie could be looking at several objects at once, thisinto Cassie’s belief space.
register would be allowed to contain several terms. If ~ Acts whose actions are primitive are considered
asked to look at or find something that is already in her t0 be primitive acts. Composite acts are composed
visual field, Cassie recognizes that fact, and doesn't of primitive “control actions” and their arguments,

need to do anything. The following interaction with Which, themselves are primitive or composite acts.
Cassig continues from the previous one: Control actions include sequence, selection, iteration,

and non-deterministic choi¢21,27-30,50] There are

: Look at Robbi e.
PM.: The FEVAHRI s | ooki ng at (Wor |l d: bl ue Wor | d: squar e)
PM_.: The FEVAHRI s | ooki ng for sonmethingthat’s (Wrl d: greenWrld:circle)
SAL: The FEVAHRf ound Wor | d: G eeni e
PM.: The FEVAHRf ound (Wor | d: green Worl d: circl e)

| found Robbi e.
PM.: The FEVAHRI s | ooki ng at (Worl d: greenWirld:circle)

I aml ooki ng at Robbi e.

: Findarobot.
PM.: The FEVAHRI s | ooki ng at (Worl d: green Worl d: circl e)
I aml ooki ng at Robbi e.

also propositions for act preconditions, goals, effects,
Comparing Cassie’s response to the second requestand for plans (what some call recipes) for carrying out
with her response to the previous requests, one cannon-primitive acts.
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In the interactions shown above, sentences preceded | tal ked to Stu

by “SAL: " were printed by the simulated action func-
tion, which was called by the PML procedure aligned
with the KL term for finding something. When Cassie
was asked to look at Robbie, she did so by finding
Robbie, because there is a KL belief that the plan for
carrying out the non-primitive act of looking at some-
thing is to find that thing.

4.5. Time

As mentioned above, tHeOWregister always con-
tains the KL term denoting the current tini20,23,
24,41] Actually, since “now” is vague (it could mean
this minute, this day, this year, this century, etbigQW
is considered to include the entire semi-lattice of times

that include the smallest current now-interval Cassie ha
has conceived of, as well as all other times containing

that interval.

NOWmoves whenever Cassie becomes aware of a
new state. Some of the circumstances that cause her

and | amtal ki ngtoyou.

The term denoting the state of Cassie’s talking to
Stu did not change between the first of these interac-
tions and the third. What did change were: the state of
Cassie’s talking to Stu was replaced in tBREECH
register by the state of Cassie’s talking to Bill; a propo-
sitional term was added to the KL that the time of
talking to Stu was before the time of talking to Bill;
and theNOWregister was changed to include the time
of talking to Bill and the times that include it.

To give GLAIR agents a “feel” for the amount of
time that has passed, the PML ha€@JNT register
acting as an internal pacemak@0,24] The value
of COUNT is a non-negative integer, incremented at
regular intervals. Whenev&lOWMmoves, the following
ppens:

(1) The old now-interval, is aligned with the current
value of COUNT, grounding it in a PML-measure
of its duration.

to become aware of a new state are: she acts, she ob{2) The value of COUNT is quantized into a value

serves a state holding, she is informed of a state that

holds. NOWmoves by Cassie’s conceiving of a new
smallest current now-interval (a new KL term is in-
troduced with that denotation), aiNDWis changed to
contain that time. The other times in the dlidMWare

defeasibly extended into the new one by adding propo-

sitions asserting that the nelNOWis a subinterval
of them.

Whenever Cassie acts, the modality registers change

(see above), andOWVmoves. The times of the state(s)

newly added to the modality registers are included in
the newNOWsemi-lattice, and the times of the state(s)
deleted from the modality registers are placed into

8 which is the nearest half-order of magnitude
[19] to COUNT, providing an equivalence class of
PML-measures that are not noticeably different.

(3) AKL termd, aligned withé, is found or created,
providing a mental entity denoting each class of
durations.

(4) Abeliefisintroduced into the KL that the duration
of 1y is d, so that the agent can have beliefs that
two different states occurred for about the same
length of time.

(5) COUNT is reset to 0, to prepare for measuring the
new now-interval.

the past by adding propositions that assert that they 4.6. Language

precede the nelWOwW
The following interaction, following the ones shown

Cassie interacts with humans in a fragment of En-

above, shows an action of Cassie’s first being in the glish. Although it is possible to represent the linguistic

present, and then being in the past:

: Who have you t al ked t 0?
| amtal kingtoyou.

: TalktoBill.
PM.: The FEVAHRI s startingtotal k
to b6
| amtal kingtoyou, Bill.
: Who have you t al ked t 0?

knowledge of GLAIR agents in the KL, use reasoning
to analyze input utterancg82—-34,45] and use the
acting system to generate utteranides13], we do not
currently do this. Instead, the parsing and generation
grammars, as well as the lexicon, are at the PML (see,
e.0.[35,38,49). There are KL terms for lexemes, and
these are aligned with lexemes in the PML lexicon.
We most frequently use a KL unary functional term to
denote the concept expressed by a given lexeme, but
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this does not allow for polysemy, so we have occa- nicate by passing PML-descriptions from one to the
sionally used binary propositions that assert that some other, sometimes by socket connections between dif-
concept may be expressed by some lexeme. There mayferent computers. Their discussion of “perceptual
also be KL terms for inflected words, strings of words, anchoring of symbols for action[6] concerns the
and sentences. This allows one to discuss sentencesnchoring of object symbols of objects the actions are
and other language constructs with GLAIR agents.  performed on. We also discussed the anchoring of ac-
This facility was used for Cassie to understand the tion symbols to the PML procedures that carry them
human inputs shown in the example interactions in out.
this paper, and for her to generate her responses (the Santos and ShanahBi’] discuss anchoring as the
sentences beginning with *). We can also use the  “process of assigning abstract symbols to real sen-
low levelsur f ace function to see the NL expression sor data” and develop a theory whose “universe of
Cassie would use to express the denotation of variousdiscourse includes sorts for time points, depth, size,
SNePS terms (the prompt for this Lispish interaction peaks, physical bodies and viewpointéme points,
level is “«”): depthand sizeare variables that range over positive
real numbers K1), peaksare variables for depth

f 1 : ! . .
* (surface bl) peaks, physical bodiesare variables for objects of

ne : . o

« (surf ace b5) the world, viewpointsare points inR®” [pp. 39-40,
Stu italics in the original]. We consider data such as these

« (surf ace b6) to belong at the PML, as not being the sort of entities

you people reason and talk about, and therefore, not the
sort of entities cognitive robots should have at the KL.

x (surface n2l) . : _ :
We view anchoring as the aligning of physical-level

« (surface ni15) ;gf:zzzg;ailggns such as these to the KL terms used

| Tound aredrobot. Jackendoff[26] explicates a theory in which “the

x (surface md32) X ) o
character of a consciously experienced entity is func-

tionally determined by a cognitive structure that con-

(Remember, Cassie is currently looking at Robbie and tains the following feature types: an indexical feature

talking to Bill.) to which descriptive features can be attached; one
or more modalities in which descriptive features are
present; the actual descriptive features in the avail-

5. Related work able modalities”[27, p. 313] His indexical features
correspond with our KL term, and his descriptive

Coradeschi and Saffiotf#,6] present a model of  features correspond with our PML-descriptions. His

anchoring in an agent with a symbol system, which suggestion that “we think of the descriptive features

includes object symbols and unary predicate symbols, as being linked to a common indexical featufg?7,

and a perceptual system, which includes attributes pp. 311-312parallels our suggestion iBection 2of

and percepts. Their grounding relation relates pred- KL terms as pivots.

icate symbols, attributes, and attribute values. Their

anchor is a partial function from time to quadruples

of: object symbols; percepts; partial functions from 6. Summary

attributes to attribute values; and sets of predicate

symbols. Their anchor is “reified in an internal data ~ We have given an informal, but coherent, uni-

structure” [7, p. 408] Their symbol system corre- fied, overview of our approach to connecting the

sponds to our KL, and their perceptual system to a abstract-level representations to the physical-level

combination of our PML and SAL. While their an- representations in GLAIR, an architecture for cogni-

chor is a data structure that cuts across their symbol tive robots and intelligent autonomous agents. The

and perceptual systems, our KL and PML commu- abstract-level representations are terms of SNePS

green

| aml ooki ng at Robbi e.
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Abstract

This paper presents arguments for approaching the anchoring problensesiingic symbol$Semiotic symbols are defined
by a triadic relation between forms, meanings and referents, thus having an implicit relation to the real world. Anchors are
formed between these three elements rather than between ‘traditional’ symbols and sensory images. This allows an optimization
between the form (i.e. the ‘traditional’ symbol) and the referent. A robotic experiment based on adaptive language games
illustrates how the anchoring of semiotic symbols can be achieved in a bottom-up fashion. The paper concludes that applying
semiotic symbols is a potentially valuable approach toward anchoring.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction tally, with philosophical issues relating to the meaning
of symbols.

The symbol grounding problem that deals with the ~ Many attempts to tackle the anchoring problem
guestion how symbols can be used meaningf[8ly start with the design of predefined symbol systems
is one of the hardest problems in Al and robotics. As that have predefined anchors to relate symbols with
many robotic applications use symbols for reasoning, visual perceptg5,13]. Recently, an increasing num-
problem solving and communication, solutions for this ber of attempts have been made to approach the an-
problem are extremely important for robotics research choring problem from the bottom-up in which robots
and development. But symbol grounding is also an im- develop their symbolic representations during their
portant problem in studying foundations of cognition evolution—be it phylogenetic and/or ontogenetic.
such as the evolution of language, as human languageThese attempts often relate to the development of
is primarily symbolic[7]. symbolic communicatiofi2,12,16,22,24]

Recently, a formalized solution for the technical as-  The common approach to tackle the anchoring
pect of the symbol grounding problem has been pro- problem focuses on the development—hand-coded
posed under the name ahchoring[5]. Anchoring or learned—of anchors between symbols and sen-
concentrates on constructing and maintaining a rela- sory imageg5]. This is a difficult problem since the
tion between a symbol and a sensory image that is robots have to deal with the object constancy prob-
acquired from observing a physical object. Symbol lem: when viewing an object from different locations,
grounding is, in addition to anchoring, also concerned the sensory images relating to this object differ enor-
with ‘anchoring’ abstractions and, more fundamen- mously because the size of the projection may differ

or because the object may be obscured. Humans are
well capable of dealing with object constancy, but it
E-mail addressyp.vogt@cs.unimaas.nl (P. Vogt). is unclear how this works. One approach to tackle
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MEANING

the problem of object constancy would be to develop
anchors between symbols and the real world object,
rather than between symbols and sensory images.
This paper proposes that the anchoring problem can
be solved in terms o$emiotic symbo)swhich have
implicit anchors in the real worlfP2]. An experiment
based on Steel$14] language game model illustrates Fig. 1. The semiotic triangle illustrates the relations between ref-
how anchors in these semiotic symbols may be con- erent, form and meaning that constitute a sign. Each line is an
structed from the bottom-up through the use of lan- anchor, but the dotted line indicates that the relation between a

REFERENT

guage. In addition, it is discussed how the presented
language game model may explain the cognitive phe-

nomenon of family resemblang23].
The paper is organized as followSection 2

form and a referent need not be a physical anchor, which must be
established between referent and meaning, and between meaning
and form.

presents the notion of semiotic symbols and discusses  The relation between the referent, form and mean-
some of the requirements for anchoring these. The ex- ing is often illustrated with the semiotic triang[&0]

perimental setup is presented$ection 3 Section 4

as shown inFig. 1 According to Peirce, a sign be-

presents the experimental results. Discussions of thecomes agemiotig symbolwhen its form, in relation

issues raised in the paper are presentefidntion 5
Conclusions are given iSection 6

2. The anchors of semiotic symbols

In this section, | will define the notion of semiotic
symbols as opposed to the definition of symbols that is
commonly used in Al. As | will argue below, semiotic
symbols have implicit anchors between some internal
structures and reality. Finally, 1 will discuss under what
conditions semiotic symbols may emerge.

The definition of semiotic symbols is adopted from
Peirce[11], who defined a semiotic symbol in terms
of a sign, which in semiotics is a relation between a
referent meaningandform.! These three elements can
be described as follows:

Form. A form (or word) is the shape of the sign,
which is not necessarily material.

Meaning.The meaning is the sense that is made of
the sign.

ReferentA referent is the object that stands for the
sign, which may include abstractions, actions or
other signs.

1 Peirce called this a symbol rather than a semiotic symbol. | call
it a semiotic symbol to distinguish it from the—in Al and some
other disciplines of cognitive science—commonly used definition
of a symbol, which is similar to the form of the semiotic symbol.
In addition, Peirce used the termepresentamerinterpretantand
objectwhere | use the terms form, meaning and referent.

to its meaning is arbitrary or conventionalized so that
the relationship has to be learned; otherwise the sign
is either anicon or anindex

A semiotic symbol becomes meaningful when it is
constructed and used functionally by an agent, which
is conform Wittgensteirf23]. As such the meaning
arises from the interaction of an agent that uses a
form with the referent. Elsewhere, | have argued that
the symbol grounding problem as presented by Har-
nad is no longer relevant when we adopt semiotic
symbols, because these ger definitiongrounded as
their meanings have intrinsic relations with their ref-
erentg[22]. This, however, does not solve the symbol
grounding problem, but translates it into another—
more technical—problem, which | have coined the
physical symbol grounding problefn

The physical symbol grounding problem is related
to the anchoring problem in that it aims at constructing
and maintaining anchors between symbols—i.e., the
formsin semiotic symbols—and reality. Coradeschi
and Saffiotti’s[5] description of anchoring, however,
focuses on anchors between forms and sensory data.
As the sensory data is acquired from a robot’s inter-
action with its environment, the forms relate to the
real world. The anchors, however, are not necessarily

2 This problem is coined the physical symbol grounding problem
to indicate that semiotic symbols provide a way to approach
symbol grounding with the physical grounding hypotheBi$
as the semiotic symbols themselves form a coupling between
the environment and an agent’'s behavior and thus are physically
grounded.
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constructed to maintain a relation with the real world non-physical anchor between the forms and refer-
entity, but rather with the sensory image of this entity. ents through their use in languadéd. 1). The way
The physical symbol grounding problem, on the other these anchors are formed is influenced by the agents’
hand, does focus on constructing and maintaining a interactions with their environment and individual
relation with the real world by constructing anchors adaptations as a self-organizing procg<y.
between forms and real world entities, mediated by  For robots that develop semiotic symbols from the
anchors between forms and meanings, and betweenbottom-up, the above requires that robots are capable
meanings and referents. In addition, where anchor- of interacting with their environment, including each
ing relates forms to sensory images (and thus to the other. Furthermore, they have to construct and memo-
sensing of physical objects), the physical symbol rize categorizations that provide anchors between the
grounding problem is not restricted to constructing referents and the categories such that these can be used
semiotic symbols about physical objects, but also appropriately in language. To use these in language
include abstractions, movements and even other semi-they also have to construct anchors between the cat-
otic symbols. egories and linguistic forms adaptively. How this can
The development of semiotic symbols depends on be modeled is explained in the next section.
how an agent interacts with its environment. When
the semiotic symbols are used in language, the way
the meaning is constructed depends on how it is used 3. Adaptive language games
[23]. However, the meaning of semiotic symbols also
must have a part that can be memorized, which can be To illustrate how a set of anchored symbols can
represented in terms of prototypical categories. When be developed from the bottom-up, an experiment
mediating on the meaning of a semiotic symbol, agents is presented in which two mobile LEGO robots
must confer to a similar meaning. Hence they must try bootstrapped a symbolic communication system. To
to find a common way to name the meaning. It is not achieve this, the robots engaged in a serieadzfp-
unlikely that this requires for the agents to construct tive language gamefl4,17] in which they tried to
similar representations of the meanings they use. In communicate the form that stands for an object and
addition, the construction of semiotic symbols should adapt their internal structures in order to improve
be adaptive, because it may be impossible to designtheir performance on later occasions. Various types of
‘static’ anchors that apply to the dynamic interactions language games have been implemented suabas
of a robot with its environmenf9]. An adaptive ap-  servational gamesgjuessing gameandselfish games
proach to construct semiotic symbols allows robots to which differ from each other in the type of learning
create new anchors when none exist or when exist- mechanism the robots use and in what non-verbal in-
ing ones are insufficient. As a result, | assume that a put they use to determine the reference of an utterance
semiotic symbol can have multiple meanings (or pro- [19,20] For the experiment of this paper, the robots
totypes) to stand for a referent in relation to a form. played a series ofjuessing game®Below follows a
These different meanings of a semiotic symbol will technical description of the experimental setup.
then be used to interpret a referent on different oc-
casions. To achieve such a development of semiotic 3.1. The environment
symbols in communication, | assume that the mean-

ings co-develop with linguistic formi8] by means of In the experiment two mobile LEGO robots were
cultural interactions between agents and their environ- used that were equipped with light sensors, bumpers,
ment[18]. active infrared, two motors, a radio module and a sen-

The anchors between meanings and referents arisesorimotor board, se€ig. 2 The light sensors were
from the physical interactions between an agent and used to detect the objects in the robots’ environment.
its environment. The meanings are anchored to lin- The other sensors and the motors were used to process
guistic forms through the production and interpreta- the physical behaviors of the robots.
tion of expressions. These physical anchors between The robots were situated in a small environment
referents, meanings and forms provide an implicit (2.5mx2.5m) inwhich four light sources were placed
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Fig. 2. The LEGO robots and a light source as used in the experiment.

at different heights. The light sources acted as the ob- tated one by one 72G0o obtain a spatial view of their
jects that the robots tried to name. The four light sen- environment. A spatial view contained the raw sen-
sors of the robots were mounted at the same height sory data from the middle 360which can be written
as the different light sources. Each sensor outputs its in the form of a matrix*

readings on &ensory channelA sensory channel is

said tocorrespondwith a particular light source if the X141 .- Xlg

sensor has the same height as this light source. They — o , (1)
goal of the experiment was that the robots developed a ' ’

lexicon with which they could successfully name the An,l .- Xng

different light sources.
where each row represents the sensory data ofi the

sensory channels (four in the experiment) and the de-
tection ofg measurements are given in the colurins.
The sensory data was sent to a stand alone PC where
all further processing took place off-line.

Fig. 3 shows the sensing of the two robots during
a guessing game. The left figure shows that robot A
clearly detected the four light sources; there appears
a ‘winning’ peak for every light sensay; that cor-
responds to one light source. The right figure shows
that robotB did not sense all four light sources clearly
and hence acquired a different view than roBoThis
happened because both robots were not located at the
same position.

3.2. Sensing, segmentation and feature extraction

Through the interactions of the robots with their
environment, they obtained raw sensory data. In or-
der to reduce the redundant information from this
high dimensional data, the robots transferred this data
into low dimensionafeature vectorsThe process of
acquiring feature vectors was done $gnsing seg-
mentation and feature extraction Each subsequent
step reduced the amount of sensory data as if it were
a sieve.

3.2.1. Sensing
A guessing game started when both robots were
standing close to each other with their backs ‘facing’

. . 4 The robots rotated twice instead of once to ensure they rotated
each othef. During the sensing phase, the robots ro-

at a constant speed when the actual sensing started. This is done
because the onset and offset of the movement induced a warped

3 In the original implementation, the robots aligned themselves view, which in turn induced much noise for the segmentation.
autonomously[17], but to speed up the experiments, the robots 5 Note that although the robots have more than four sensors only
were placed by hand for this experiment. the four light sensors are used to construct anchors.
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Fig. 3. The sensing of robot A (left) and robot B (right) during a language game. The plots show the spatial view of the robots’ environment.
It was acquired during 360of their rotation. They-axis shows the intensity of the sensors, while thaxis determines the time (or angle)

of the sensing in PDL units. A PDL unit takes aboy#Qs, hence the total time of these sensing events took ab®stfar robot A and

1.3 s for robot B.

3.2.2. Segmentation a segment was detected at the start of the view and
The segmentation phase extracted connecting re-another was detected at the end, both segments were

gions where the sensory data exceeded a threshold thatoncatenated.

represented the upper noise level of that sensor. These Ideally, the segmentation resulted in a set that con-

regions were supposed to be induced by the sensingtained a segment for each light source. This set consti-

of a light source. To accomplish this segmentation, the tuted what is called theontextof the guessing game,

raw sensory inpuk was thresholded for noise result- i.e. Cxt= {S1,..., Sy}, whereN is the number of
ing in X" = matrix(x’; ;) according to segments that were sensed. Each robot participating
o o , in the guessing game acquired its own context which
% j = B = 60, ) could differ from another.
where
t ifr>0 3.2.3. Feature extraction
H(x) = = (3) The feature extraction resulted in a feature vector
0 ifx<0O f = (f1..., fu), Where f; = ¢(S;) was a function

that normalized the maximum intensity of a sensory
channeli to the overall maximum intensity within a
segmensy. Thatis, the maximum value in roiof the
matrix S; was normalized to the maximum value of
the entire matrix. Mathematically, the functigtiSy)

and®; represents the upper noise level of light sensor

i, which was acquired empirically for each sensor.
Given the preprocessed sensory diitaa segment

Sx can be defined as tHargestmatrix

Xy oo Xim is given by
Sk=1 -], 4) ) maX;e[,m] (*'i, /) 5)
P(8k) = ———=—"—=—
Xnr oo Xum maxs, (x'p.4)
where in each columjthere is at least one element for  This way the function extracted the invariant property
whichx’; ; > 0fori=1,...,nandj=r,...,m;and that the feature of the sensory channel with the overall
where 1< r < m < ¢. Note that the inequality < highest intensity inside a segment had a value of 1,

m implies that the segments have to contain at least whereas all other features had a vatué. Or, in other
two measurements to filter out further noise. When words, the feature with value 1 corresponded to the



114 P. Vogt/Robotics and Autonomous Systems 43 (2003) 109-120

light source the feature vector referred to. The space 3.3.2. Discrimination

that spans all possible feature vectbris called the Suppose that a robot wants to find distinctive cate-
n-dimensional feature spacg = [0, 1]*, or feature gories for (potential) topicS;, then a distinctive cate-
spacefor short. gory set, DC, can be defined as follows:

DC = {c; € C|V(Sk € CxXt\{S:}) : ¢i ¢ C}. (6)

3.3. Discrimination game
Or in words, the distinctive category set DC consists of
Each robot played aiscrimination gamg15] to all categorieg; of the topicsS; that are not a category
form a memorized representation of the meaning—or of any other segmersf; in the context Cxt.
meaning for short—for each (potentiabpic. A topic
is a segment from the acquired context as described3.3.3. Adaptation
by its feature vector. The speaker selected its topic If DC = ¢, the discrimination game fails and the
randomly from the context and this topic became the robot should adapt its ontology by constructing new
subject of communication. As the hearer of a guessing categories. Suppose that the robot tried to categorize
game tried to guess what the speaker’s utterance re-feature vectof = (f1, ..., f»), then new categories
ferred to, it had to consider all segments in its context were created as follows:
as apotential topic A discrimination game was suc-
cessful when it resulted in one or more categories that
distinguished the topic from all other segments in the
context. When the robot failed to find such a category, :
S . possible. If no such space can be found, the adap-
the discrimination game failed and the robot expanded .
) . . . tation is stopped.
its ontology in which the categories were stored. The
o e . (3) Create new prototypesg = (y1, ..., y»), Where
discrimination game is a sequence of three processes: .
o T . yi = f; and the other, are made by combining
categorization discriminationand adaptation -
the features from all existing prototypes..

(4) Add the new prototypical categories; =
(cj,vj, pj,kj) to the feature spaceF), with

(1) Select an arbitrary featurg > O.
(2) Select a feature spacg, that has not been ex-
ploited 3' times in dimension for A as low as

3.3.1. Categorization
A categoryc = (c, v, p, k) was defined as a region

in the feature spacg and it was represented by scores
v, p andk and a prototype = (y1, ..., y»), Where The three scores, p and « together constitute the

y; were the coordinates of the prototype in each of meaning scorge = (1/3)(v+ p + k), which was used
the n dimensions ofF. The category was the region in the naming phase of the guessing games. Although
in F in which the points had the nearest distance to the influence of this score was small, it helped to select
c. Each feature vector in the context was categorized a form-meaning association in case of an impasse.
using thel-nearest neighbor algorithfi6]. So, feature Wherex was kept constanty and p were increased

vectorf was categorized with that categarfor which when the category was distinctive) @nd when it was
the prototypec had the smallest Euclidean distance used successfully in the naming phagg they were
If —cll. lowered otherwise. Exact details of these updates can

In order to allow generalization and specialization be found in[20].
of the categories, different versions of the feature space If the distinctive category set D& ¢, the discrimi-
F). were available to a robot. In each space a different nation game was a success and the DC was forwarded
resolution was obtained by allowing each dimension to the naming phase of the guessing game. If a cat-

of F; to be exploited up to ‘3times, wherer = egoryc was used successfully in the guessing game,
0,..., Amax- How this was done will be explained in  the prototypec of this category was moved toward the
Section 3.3.3 feature vectof of the topic

The use of different feature spaces allowed the
robots to categorize a segment in different ways.
The categorization of segmesi resulted in a set of  wheree = 0.1 is a constant step size with which the
categorieCy = {co, ..., cm}, Wherem < Amax- prototype moved towards This way the prototypes

ci=c+e-(f—0), (7)
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became more representative samples of the featurewas thus produced was uttered to the hearer. In the

vectors it categorized. on-board implementation this was done using radio
The discrimination game as implemented here dif- communication, off-line the utterance was a shared

fers from the implementation of Ste€l$5] mainly variable.

in the representation and construction of categories.

Steels used binary trees to split up the sensory (or fea-3.5. Interpretation

ture) channels rather than using prototypes. The rea-

son for using prototypes is that the world as sensed On receipt of the utterance, the hearer searched its

by a robot is not binary and splitting up categories lexicon for entries for which the form matched the ut-

in binary trees seems therefore inappropriate. In ad- teranceand the meaning matched one of the distinc-

dition, Steels allowed categories to be formed in only tive categories of the potential topics. If it failed to

one dimension or in any combination of the different find one, the lexicon had to be expanded, as explained

feature dimensions; while in this implementation the in Section 3.7

categories were alwaysdimensional. If the hearer found one or more entries, it selected
Itis important to realize that all processing up to this the entry that had the highest scale= o + « - pu,

point was carried out by each robot individually. This wherex = 0.1 is a constant weight. The potential topic

way, the ontologies, contexts and distinctive category that was categorized by this meaning was selected by

sets differed from robot to robot. the hearer athe topic of the guessing game. That is,
this segment was what the hearer guessed to be the
3.4. Production subject of communication.

After both robots obtained distinctive categories of 3.6. Corrective feedback
the (potential) topic(s), the speaker tried to communi-
cate its topic based on its lexicon. The lexicbrwas The effect of the guessing games was evaluated by
defined as a set of form-meaning associatiadns:= the corrective feedback. If the speaker had no lexi-
{FM;}, where FM = (F;, M;, o;) was a lexical entry. cal entry that matched a distinctive category, or if the
Word-form F; was made from an arbitrary combina- hearer could not interpret the speaker’s utterance be-
tion of consonants and vowels taken from the alphabet, cause it did not have a proper lexical entry in the
meaningM; was represented by some category, and context of the game, then the guessing game was a
association score; € (0, 1) was a real number that failure. The guessing game was successful when both
indicated the effectiveness of the lexical entry based robots communicated about the same referent. So if
on past interactions. Each form could be associated the hearer interpreted the utterance and thus guessed
with multiple meanings, and each meaning could have the speaker’s topic, the robots had to evaluate whether
associations with more than one form. they communicated about the same referent.

The speaker of the guessing game ordered the In previous work there have been various attempts
distinctive category set DC based on the meaning to implement the corrective feedback physically as a
scorepu. It selected the distinctive category with the pointing behaviof17]. All these attempts, however,
highest meaning score and searched its lexicon for failed. In order not to focus too long on this problem
form-meaning associations of which the meaning and to prove the principle, it was assumed for the time
matched this distinctive category. If it failed to find being that the robots could do this and the verification
such an element, the speaker first considered the nextwas simulated. Naturally, this problem needs to be
best distinctive category from the ordered DC. If all solved in the future.
distinctive categories were explored and still no entry  The corrective feedback was simulated by compar-
was found, the speaker could invent a new form as ing the feature vectors of the two robots relating to
will be explained inSection 3.7 their topics. If the features with value 1 matched for

If there were one or more lexical entries that fulfilled both topics, this means that the topics corresponded to
the above condition, the speaker selected the entrythe same referent and the guessing game was consid-
that had the highest association scer&he form that ered successful. If the hearer selected an inconsistent



116

topic during the interpretation, then there wamis-
match in referenaind the guessing game failed.

3.7. Lexicon adaptation

Depending on the outcome of the game, the lexi-
con of the two robots was adapted. There were four
possible outcomes/adaptations:

(1) The speaker had no lexical entrin this case
the speaker created a new form and associ-
ated this with the distinctive category it tried to
name. This was done with a certain probability,
which was kept constant during the experiment at
Py =0.1.

The hearer had no lexical entryThe hearer

)

adopted the form uttered by the speaker and as-

sociated this with the distinctive categories of a
randomly selected segment from its context.
There was a mismatch in refererBoth robots
adapted the association scereof the used lexi-
cal entry byo := n - o, wheren = 0.9 is a con-
stant learning parameter. In addition, the hearer
adopted the utterance and associated it with the
distinctive categories of a different randomly se-
lected segment.

The game was a succe®&oth robots reinforced
the association score of the used entrydy=
n-o+1—n. In addition, they lowered competing

®)

4
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by o := n - 0. The latter update is called lateral
inhibition.
The coupling of the naming phase with the dis-
crimination game and the sensing part makes that
the emerging lexicon is grounded in the real world.
The robots successfully solve the physical symbol
grounding problem in some situation when the guess-
ing game is successful, because only in those case a
semiotic triangle Fig. 1) is constructed completely in
a functional—and thus meaningful—sense.

4. Experimental results

An experiment was done for which the sensory data
of the sensing phase during 1000 guessing games was
recorded. From this data set it was calculated that
the a priori chance for successful communication was
23.5% when the robots randomly chose a topic. Be-
cause the robots did not always detect all the light
sources that were present, their context was not al-
ways coherent. This incoherence caused an upper limit
to the success rate that could be reached, called the
potential understandabilitywhich was 79.5% on the
average.

The 1000 recorded situations were processed
off-line on a PC in 10 runs of 10,000 guessing games.
Fig. 4(left) shows the average communicative success

entries (i.e. entries for which either the form or (CS) and discriminative success (DS) of the 10 runs.
the meaning was the same as in the used entry) The CS measures the number of successful guessing
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Fig. 4. (Left) The CS and DS of the experiment. (Right) The evolution of the number of meanings and forms that were used successfully
by the robots in one run of the experiment.
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Fig. 5. The referent-form competition diagram (left) shows the competition between forms to name referent light source L1. The
referent-meaning diagram (right) shows the competition between meanings to interpret light source L1. In both diagyeemss teeows

the occurrence frequencies of successfully used forms or meanings over the past 200 games relative to the occurrence of the referent. The
x-axis shows the number of games played.

games, averaged over the past 100 games. The DSquently used form “tyfo” clearly won the competition
measures the number of successful discrimination to name light source L1. At the bottom of the dia-
games, also averaged over the past 100 guessinggram, other forms reveal a weak competition. Similar
games. As the figure shows, the DS reaches a valuecompetitions can be observed for the other referents
near 1 very fast. Hence, the robots were well capable [20,22] Fig. 5 (right) shows that the competition be-
of finding distinctive categories for the sensed light tween meanings to categorize a referent is stronger,
sources. The CS was somewhat lower. It increased which would be expected givelfig. 4 (right). More
towards a value slightly below 0.8 near the end. Since experimental results can be found[20,22]
this is close to the potential understandability, the
robots were capable to construct a shared lexicon
within its limits. 5. Discussion

Fig. 4 (right) shows the number of different mean-
ings and forms that were used at least once success- In this section, | will discuss why the notion of
fully in one run of the experiments. As the figure semiotic symbols is useful in relation to the anchor-
shows, the number of meanings used were much ing problem. The discussion will be based on the ob-
higher than the number of used forms. The robots servation that semiotic symbols can be constructed by
used up to 450 meanings in relation to the four ref- optimizing the anchor between their forms and the ob-
erents, while they only used 16 forms to name them. jects they stand for; thus solving the object constancy
So, there are approximately 8nore meanings used  problem. Furthermore, | will explain how the use of
than forms. Although the robots used about 450 mean- semiotic symbols can model the phenomenon of fam-
ings to distinctively categorize the four light sources, ily resemblance.
further analysis revealed they only used about 20-25 In this paper the ‘alternative’ definition of symbols
meanings frequently. In addition, only six or seven as semiotic symbols is adopted to provide the possi-
forms were used regularly. So, the robots named eachbility to construct anchors between symbols (or forms
referent consistently with one or two forms. as | call them) and the real world. But is there any ad-

The competition diagram dfig. 5 (left) shows how vantage of using semiotic symbols over the traditional
the occurrence frequencies of the used forms to namesymbols in relation to the anchoring problem? In the
one of the referents evolved during one run of the original anchoring problenj5], anchors are sought
experiment. As this figure makes clear, the most fre- between symbols and perceptual features, while the
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symbols’ relations to the real world objects are some- distinctive in a later discrimination game. As associa-
what brought to the background. The experiment of tions were selected during a guessing game when their
this paper revealed that it is the relation between the meanings fitted in the context—even if the scores were
form and the real world object that is being optimized not high—a lot of these meanings were used success-
in terms of a one-to-one relationship. The relation be- fully in the game.
tween the form and the sensory data (or even the cat- The same context dependency causes the emergent
egories) does not reveal this optimization. | do not tendency that the robots do not use so many forms,
argue that the relationship between form and sensory despite the variability of the acquired contexts dur-
data is unimportant, but | do want to argue that the re- ing different games and between the robots. This can
lation between form and referent is the one we should be understood by realizing that when one robot cat-
care for. egorizes a referent differently in different guessing
Before explaining why the relation between form games, this does not necessarily mean that the other
and referent is crucial, | will elaborate on the im- robot finds different distinctive categories. When the
portance of the relation between sensory images androbot that uses the same distinctive category on dif-
forms. The processes between sensing and featureferent occasions, it will most likely use the same
extraction are extremely important because theseform to express this meaning too. This allows the
transform the raw sensory data into more manageableother robot to use the form in association with the
feature vectors that additionally bear some invariant two different meanings successfully, as the game is
information concerning the referents. In addition, the context dependent. When such situations occur fre-
intermediate representations of categories are impor- quently, this, in turn, allows the robots to use more
tant to allow the optimization between form and refer- meanings than forms. These emerging dynamics of
ent, because the discrimination games function—like the lexicon can be classified as semiotic dynamics and
the sensing, segmentation and feature extraction—asillustrates how conceptual development is, at least to
a sieve. This sieve enables the robots to bind the nu- some extent, dependent on language acquisition and
merous variation of the sensing to more informative language use and vice versa. This is conform the—in
granules that are less numerous. These granules area weaker version—revived Sapir-Whorf thef3$. A
although still numerous, more manageable than the similar argument in favor of this weaker version of
raw sensory data; thus allowing to close the coupling the Sapir-Whorf thesis was made in another study
between referents, meanings and forms more easily. using language gam¢s]. In that study it was shown
The optimization between referent and form, how- that agents developed a shared categorization of the
ever, is the most dominant process for the construction color space when they used language, but a distinc-
of consistent anchors between these two elements. Totive categorization when they developed categories
understand how this optimization works, it is impor- without engaging in guessing games.
tant to realize that robots try to construct a lexicon  The optimization between referent and form solves,
that they can apply in different contexts. The lexicon at least to some extent, the notion of object constancy:
is constructed through the interplay of adaptations un- How can an object be recognized as being the same
der selective pressures and pragmatic language usewhen different views of such an object can result in
In the experiment, anchors were formed between ref- dramatically different sensory stimuli, for instance,
erents and meanings, between meanings and forms;because it is partly obscured?y. 6 (left) illustrates
and between forms and referents. The results showhow the semiotic dynamics can explain the solution to
that many anchors were used between referents andthe object constancy problem. In the experiment, the
meanings, and between meanings and forms. How- robots detected the light sources from different posi-
ever, when forms were used, they were well anchored tions, resulting in different sensings—illustrated as the
to the referents they name. Failures in the discrimi- continuum of sensings P iRig. 6 (left)—which may
nation game caused the emergence of so many meanyield different meanings M1 and M2. Nevertheless,
ings, because every time a discrimination game fails, the system identifies the objects consistently, because
a new category was added to the ontology. Many of the one-to-many relations between form and meaning
them were associated with a form when they became converge at the level of form and referent.
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The results of the experiment in this paper show that tions between form and meaning. The word “games”
minimal autonomous robots can develop a shared setis associated with different meanings for soccer, chess
of semiotic symbols from the bottom-up by optimizing and swinging. The successful use of these meanings
their anchors between forms and referents. However, in different situated language games allows the system
one of the driving forces for this optimization—the to emerge a family of resemblance. Optimization here
corrective feedback—was simulated. This is a major should be made on the relation between a form and
shortcoming as the method used—inspecting each different referents. This optimization can be realized
other’s internal states—is unrealistic and may under- through the use of language.
mine the principle. Nevertheless, the assumption was Concluding, the above discussions provide many
adopted to test the principles of the underlying boot- arguments in favor of using semiotic symbols over
strapping mechanisms and not to get stuck on solving the traditional symbols with respect to anchoring. The
this problem. A solution may come from applications most important argument is that in the construction of
were robots evaluate the corrective feedback using semiotic symbols, anchors between forms and reality
task-oriented behaviors, as was recently investigated are implicitly being optimized, rather than optimizing
in simulationg21]. In these simulations, the feedback anchors between symbols and sensory images.
came from the effect of the task that the agents had
to perform using the evolved language.

The semiotic dynamics of the guessing games help 6. Conclusions
to solve the object constancy problem, but it may
also help to explain another interesting phenomenon This paper illustrates how a small group of au-
observed in cognitive science, namdéamily resem- tonomous robots can develop a set of shared semi-
blance [23]. Family resemblance is the observation otic symbols in a bottom-up fashion by engaging in
that seemingly different things are called the same adaptive language games. The semiotic symbols the
without being ambiguous, like the meaninggames robots construct are defined by physical anchors be-
Where soccer and chess are typical games, a game likeween referents and meanings, and between meanings
swinging is not typical. Swinging lies near the border and forms, which yield a non-physical anchor between
of the ‘conceptual space’ of games, e.g. referent R1 in form and referent. The use of semiotic symbols allows
Fig. 6(right). It has no direct resemblance with games a profitable optimization to find, track and (re)acquire
like soccer and chess, e.g. R2 and R3—but it has someanchors between forms and referents, rather than be-
resemblance with other games that in turn do have re- tween forms and sensory images as proposed in the
semblance with soccer and chess. Such categorizationoriginal description of the anchoring probldBi.
process can be explained with the one-to-many rela- The experiments show how a consistent construc-
tion of semiotic symbols is positively influenced by
their use in language. Through the use of language,
the forms are shared externally to the robots. In addi-
tion, the robots share the reference of their communi-
cation through the received feedback. These external
factors, together with the internal adaptations influence
the way the robots organize their conceptual spaces.
Thus their conceptual development is influenced to a
large extent by their language use, hence providing
Fig. 6. lllustration of two semiotic relations between referent R, @n argument in favor of a weak interpretation of the
meaning M and form F. The left figure shows the continuum of ~Sapir-Whorf thesis as discussed[#j.
possible views of P of referent R as displayed as a rectangle. Some  To further broad our understanding on the emer-
part of the rectangle may be interpreted by M1 and another by gence of semiotic symbol systems in language use,

M2. When both meanings relate to the same form, this mechanism dditi | hi ired th f
solves the problem of object constancy. The right figure shows addiional research 1S required on the emergence o

how the model may explain family resemblance. The ovals should COMpositionality as this is one of the key aspects of hu-
be interpreted as Venn diagrams of the meanings M1 and M2.  man language use. Future research should concentrate
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on how compositional structures can be grounded in
the sensorimotor flow through grammatical language
use. In addition, more research is required to design

robotic applications that are capable of verifying the

P. Vogt/Robotics and Autonomous Systems 43 (2003) 109-120

the Science of Symbolism, Routledge & Kegan Paul Ltd.,
London, 1923.

[11] C.S. Peirce, Collected Papers, vol. I-VIII, Harvard University
Press, Cambridge, MA, 1931 (volumes were published from
1931 to 1958).

effectiveness of their language use in order to provide [12] D.K. Roy, A.P. Pentland, Learning words from sights and

corrective feedback autonomously. Although further

research is required to improve and scale the model,
adaptive language games provide a potentially valu-
able technology for a bottom-up approach towards an-

choring semiotic symbols.
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Abstract

Traditional symbolic reasoning systems are typically built on a transaction model of computation, which complicates the
process of synchronizing their world models with changes in a dynamic environment. This problem is exacerbated in the
multi-robot case, where there are nawvorld models keep in synch. In this paper, we describe an inference grounding and
coordination mechanism for robot teams based on tagged behavior-based systems. This approach supports a large subset c
classical Al techniques while providing a novel representation that allows team members to share information efficiently. We
illustrate our approach on two problems involving systematic spatial search.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Autonomous mobile robots; Multi-robot teams; Behavior-based control

1. Introduction dination approach based on periodic knowledge-base
broadcast. Finally, we describe an implementation of

Autonomous robots that reside in complex, dynamic this approach that was used on two tasks involving

environments must anchor the abstract representationssystematic spatial search.

they use to actual physical objects. The world around

the robot continually changes, and its sensory systems

must track those changes. In turn, the robot's con- 2. World model synchronization

trol systems must be ready to alter plans and actions

to suit its changing model of the world. Traditional When changes in the environment occur often, the

symbolic reasoning systems are typically built on a world model must also be updated frequently, or the

transaction-oriented model of computation. Knowl- reasoning system will operate on stale data. Addition-

edge about the world, or the “world model”, is stored ally, assertions in the world model database can be

in a database of assertions in some logical language,dependent on other assertions. For example, the asser-

indexed perhaps by predicate naf@@]. Populating tion that an area is safe could depend on the assertion

this database from a highly dynamic environment is that the robot does not currently observe any preda-

a difficult and non-trivial problen{13]. In this pa- tors in the area. If the latter assertion is withdrawn,

per, we argue that the issue of world model synchro- then the former must be too. Hence, each update from

nization is even more problematic in a cooperative the perceptual systems can trigger a cascade of fur-

multi-robot team, and we propose an alternative coor- ther transactions, resulting in additional load on the

system. In principle, modifying such a system to track

"+ Corresponding author. Fax:1-847-491-5258. changes m_the environment would require recoerg
E-mail addresseskhoo@cs.northwestern.edu (A. Khoo), dependencies between stored assertions and their jus-
ian@cs.northwestern.edu (1. Horswill). tifications such that when the perceptual system added
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or retracted an assertion, the reasoning system couldthe database andis the number of nodes (which, in
enumerate and update the set of existing assertionsour case, is equivalent to the number of robots) in the

affected by the change. This is a sufficiently compli-
cated process that we know of no implemented phys-
ical robots that do it.

Keeping the knowledge-base synchronized with
the external environment becomes even more difficult
in cooperative activity. Rather than one robot with a
single knowledge-base, we now hamerobots with
n knowledge-bases to keep consistent both with the
world and with one another. While others have shown

that there exist cases in which agents can achieve co-

operation despite discrepancies in their world models
[22], there is currently no concrete theory on what
tasks are achievable despite inconsistent world mod-
els. Therefore, we conservatively assume that failure
to properly coordinate the knowledge-bases could
lead tosystem delusiofil?], i.e. the databases are
now inconsistent, and there is no obvious way to
repair them, resulting in failure to coordinate activity.
An analysis of asynchronous peer-to-peer replicated
databases by Gray et §l.1] suggests that a potential
problem exists. Aconflict occurs when two different

system.

The critical point here is that the number of con-
flicts encountered by the system increases with the
third power of the number of nodes or robots. As
Gray et al. point out, “having the reconciliation rate
rise by a factor of 1000 when the system scales up
by a factor of 10 is frightening”. While the two mod-
els are not exactly analogous, there is sufficient over-
lap between the problem of synchronizing different
knowledge-bases and the issue of distributed database
replication to elicit concern.

Furthermore, note that message propagation times
are not presently part of the conflict model as pre-
sented above. If message delays were added to the
model, then each transaction would last longer, hold
more resources and generate more conflicts. Moreover,
mobile robots necessarily communicate via wireless
links, which are well known to have higher error rates
[9,26], and hence higher message delays, than their
wired counterparts. This analysis suggests that we
could potentially face serious scalability issues for any

databases attempt to update the same object, or racephysical multi-robot system with a database-driven
to install their updates at other databases. Wheneverknowledge model. The work necessary to reconcile

conflicts occur, the replication mechanism must detect
this and somehow reconcile the two transactions so
that their updates are not lost. Under the following
simple assumptions

e The databases are updated through lazy group repli-
cation, i.e. the originating database updates its en-
tries, and then propagates the update to other repli-
cas asynchronously.

Each node updates any other database location with
equal probability.

o All nodes impose an equal load on the system.

e There are a fixed number of objects per transaction.

Gray et al. were able to show that the conflict rate
per second is:

o=,

wherer is the number of transactions per second ini-
tiated by each nodea is the number of locations
updated per transactionis the time required to com-
plete an updates is the number of distinct entries in

r2a3tn3
)

the conflicts that could arise as team members tried
to communicate knowledge to other members could
eventually overwhelm the robots, or leave them badly
out of synch.

3. Related work

Recent progress has been made towards the devel-
opment of a formal framework for anchoring symbols
[7,8]. However, most implemented physical systems
take the approach of equipping the symbolic system
with a set of domain-dependent epistemic actions that
fire task-specific perceptual operators to update spe-
cific parts of the knowledge-base. The programmer
designing the knowledge-base is responsible for en-
suring that the proper updates are done, i.e. the right
epistemic actions are fired at the appropriate times.
This alleviates some of the difficulties of getting infor-
mation into the knowledge-base in a timely manner.
However, any mistakes by the programmer will lead
to inconsistencies between the knowledge-base used
by the symbolic system and the external environment.
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Tiered architectures, such 48,4,6], that combine plemented as feed-forward circuits. This simplifies
symbolic and behavior-based systems inherit thesethe communication structure necessary to maintain
model coherency issues, because their symbolic layercoordination between team members. Essentially com-
still relies on a database-driven world model for its munication in these behavior-based multi-robot con-
reasoning process. As we pointed out in the previous trollers is reduced to virtual wires connecting the ap-
section, these issues are exacerbated in a cooperativgropriate circuitry on one team member to another’s
environment where multiple knowledge-bases have to (seeFig. 1). The wires carry relevant information from
be synchronized. a robot to its counterparts. Conversely, each robot
We feel that these knowledge-base synchronization views its teammates simply as additional sensory in-
issues have led to a paucity of physical multi-robot put, and integrates the incoming information as appro-
systems utilizing symbolic reasoners. There has beenpriate. Conveniently, virtual wires can be simulated
excellent work done on coordination protocols for co- on physical robots using a broadcast communication
operative agent®] in the multi-agent community, and mechanism such as User Datagram Protocol (UDP).
these protocols have been successfully used for agent However, this convenience is not without cost. The
teamwork in simulation environmenf23]. However, strengths of the behavior-based approach are also
the only physical multi-robot team that utilizes both a its weakness. Circuit semantics impose a proposi-
symbolic reasoner (in a tiered architecture) and active tional representation on the reasoning system, i.e.
communication that we know of is the DIRA system representations without predicate/argument structure.
[21]. Propositional representation makes most reasoning
Most existing multi-robot controllers implemented and planning tasks both difficult and clumsy since
on physical systems focus on extending traditional they require redundant copies of the system for each
behavior-based techniqugd to a team environment  possible argument to a predicate or actifi8].
(for example se¢3,10,19). Behavior-based systems Since most multi-robot controllers are extensions
allow rapid response to changes in the environment of behavior-based techniques, they inherit the same
due to tight sensor—actuator integration. Many of these issues from the basic underlying architecture.
behavior-based systems also obey circuit semantics, Some systems have attempted to solve the syn-
which means their control programs are generally im- chronization problem through techniques other than

s

Robot 1

/n n

N\

D) e W P

Robot 2 Robot 3

Fig. 1. Communication via virtual wires.
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active communication. Wi5] proposes an approach a tracker is dynamically allocated to it and tagged
that achieves coordination through teammate obser-with the name of the role. Since the number of roles
vation and plan inference. Ronald Kube and Zhang is relatively small, we can represent the extensions of
[17] utilizes stochastic techniques that allow the in- unary predicates as bit-vectors, with one bit represent-
dividual robots to achieve a global goal through the ing each role. This representation allows inference
use of simple non-interference behaviors. Some sys-to be performed using bit-parallel operations in a
tems in the robocup small-sized robot league utilize a feed-forward network.
traditional symbolic reasoner that relies on a central  Alternatively, for commodity serial hardware, we
shared world moddPR4]. In this case, reasoningis per- can represent a unary predicate extension using a
formed at a central server location where the master single machine word. Inference rules can then be com-
knowledge-base is located, and then actions are trans-piled directly into straight-line machine code consist-
mitted to the individual robots. Little, if any, reasoning ing only of load, store, and bit-mask instructidds].
is done on the client side. While more limited than a full logic-programming
In this paper, we only consider team models where system, it does allow us to express much of the kinds
members are fully autonomous entities with indepen- of inference used on physical robots today. The infer-
dent decision making ability, i.e. the robots are not ence rules can be completely rerun on every cycle of
reliant upon a central reasoner. Each robot is responsi-the system'’s control loop, allowing the robots to re-
ble for deciding its own course of action. Furthermore, spond to contingencies as soon as they are sensed. The
we are focusing on domains where passive communi- compiled code is sufficiently efficient that inference is
cation or stochastic techniques are insufficient. That effectively free—1000 Horn clauses of five conjuncts
is, team members will have to coordinate through the each can be completely updated at 100 Hz using less
use of explicit communication. than 1% of a current CPU. In short, role-passing af-
fords us the ability to implement traditional inference
rules using circuit semantics.
4. HIVEMind In addition to allowing very fast inference, this
representation allows for very compact storage of a
While designing our current multi-robot control ar-  robot’s current set of inferences. Unary predicates
chitecture, we wanted to utilize as many useful fea- are stored in one machine word. Function values are
tures of traditional symbolic Al systems as possible represented using small arrays indexed by role. This
on our robots. Specifically, we would like to have the compactness, combined with the circuit semantic na-
ability to utilize predicate/argument structure in our ture of role-passing, allows us to take full advantage of
representations. However, we also wanted to avoid im- simplified communication mechanism described pre-
porting the model coherence and database synchro-viously, i.e. virtual wires connecting team members.
nization issues that symbolic systems encounter. ThatIn fact, for the kinds of tasks currently implemented
is, the symbols utilized in our inference rules should by multi-robot teams, the representation we use is
be tightly anchored to updates from the sensory sys- sufficiently compact to allow all function and predi-
tems as well as incoming information from other team cate values of a robot to fit into a single UDP packet.
members. Robots can therefore share information by periodi-
Our efforts in this direction have resulted in HIVE- cally broadcasting their entire knowledge-base, or at
Mind (Highly Interconnected Very Efficient Mind), least all those predicates and functions that might be
a multi-robot control architecture that supports very relevant to other team members.
efficient sharing of symbolic information between Knowledge-base broadcast is a simple communica-
team members. The HIVEMind architecture is built tion and coordination model that provides each robot
on role-passingl3], a type of tagged behavior-based with transparent access to every other robot’s state, es-
system [16]. Role-passing provides the developer tablishing akind of “group mind”. It allows the team to
with a limited set of domain-independent indexical efficiently maintain a shared situational awareness and
variables (called roles) such agent patient source to provide hard real-time response guarantees; when
destination etc. When a role is bound to an object, ateam member detects a contingency, other members
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are immediately informed and respond within one n distinct sets of inputs, one generated internally, and
update cycle without the need for negotiation proto- the rest received from the robot's teammates. These
cols. Moreover, since HIVEMind systems are based distinct inputs are first fused into a single set of inputs:
on role-passing, multi-robot controllers implemented

using this architecture have greater representationalK = plk1, k2, ... kn),

power and flexibility than pure behavior-based sys- | hare thek; are the tuples of inputs from each rohiét,
tems with p_rop_ositi_onal representations._ That is, ig the final fused tuple, anglis the some aggregation
our communication is not based on passing propo- fnction that performs the fusion. For example, if a
sitional values such asee- bl ue-object or  hadicylar component of the input was a proposition,
see-red-obj ect, but rather predicates such as g 59gregation function might simply OR together the
see-obj ect (X) . Furthgrmore, since all relevant corresponding components of the Thus the robot
team knowledge is continuously being rebroadcast, \yqd believe the proposition if and only if some robot
each member's knowledge-base converges to thep,y evigence for it. In more complicated cases, fuzzy

same state within O(1) time of joining the HIVE- |q4ic or Bayesian inference could be used. Real-valued
Mmd. This means that. team member_s can be brqught data is likely to require task-specific aggregation. For
online and integrated into the HIVEMind very easily, example

allowing us to add or subtract team members dynam-

ically. This also implies that, should communication o The team is assigned to scout an area and report the
fail for some time, the team would very rapldly return number of enemies observed. Each team member
to a common state when it is restored. has a slightly different count of enemy troops. In
Fig. 2 shows an abstract HIVEMind configuration this case, the best solution is probably to average
for a two-robot team. Each team member has its own  the disparate counts.
inference network. The network is driven both by its ¢ The task is “converge on the target”. Each robot's
own sensory system and by the incoming data fromthe  sensors report a slightly different position for the
other team members. Outputs from the current robot's  target. In this situation, it appears to make sense that
sensory systems are fed into aggregation functions on  each team member rely on its own sensor values
other team members. The output from those aggre- to track the target and only rely on other robots
gation functions is then fed into the inference rules when the robot's own sensors are unable to track

which drive the motor behaviors. the target, e.qg. the target is out of sight.
The aggregation functions are used to combine in-

formation from teammates and sensors into a single Fig. 3 shows how aggregation is performed in the
coherent output for the inference rules to reason over. actual system. As packets arrive on from other robots,
In ann robot team, each robot’s inference network has they are unpacked into buffers for their respective

Robot 1
Sensory Aggregation Inference Behaviors
Systems Functions Rules
Sensory Aggregation Inference .
Systems Functions Rules Behaviors
Robot 2

Fig. 2. Abstract view of HIVEMind.
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Fig. 3. Implementation of HIVEMind virtual wires.

Inference Rulaes

robots, replacing whatever data had been stored previ-their sensors and actuators. Therefore, we feel that
ously for that robot. In parallel with this process, the there is plenty of available bandwidth for communi-
main control loop of the robot aggregates the inputs cation in the foreseeable future. As robots develop
from each robot and reruns the inference rules on the more complicated sensoria, it may be necessary to use
result. These inference rules then enable and disablemore complicated protocols, perhaps involving multi-
low-level behaviors for sensory-motor control. Since ple packets, or packets that only contain updates for
the main control loop is performing real-time control, wires whose values have changed since the last trans-
it runs much faster than the 1 Hz update used for com- mission. For the moment, however, these issues are
munication (10 Hz in our current implementation). moot.

The entire HIVEMind can be considered a single,  Given the current single-packet-protocol, the aggre-
parallel control network whose components happen gate bandwidth required for coordination is bounded
to be distributed between the different robot bodies by 1 KB/robot/s, or about 0.1% of a current RF LAN
being controlled. Wires crossing between bodies are per robot. Thus robot teams on the order of 100 robots
simulated using the RF broadcast mechanism, so thatshould be practical from a communication standpoint.
each member of the team is “connected” to every However, hardware failure limits most current robot
other member in a web-like structure of virtual wires. teams to less than 10 members, so scaling limits are
In our current implementation, each robot broadcasts difficult to test empirically.
its sensory data and state estimates in a single UDP It may seem inefficient for each robot to have its
packet at predefined intervals. Presently, broadcastsown separate copy of the inference network. However,
are made every second. Faster or slower rates could beto have a single robot perform each inference and share
used when latency is more or less critical. However, the results would require much more complicated co-
1Hz has worked well for our applications. To reiter- ordination protocol$5] analogous to the multi-phase
ate, we expect that currently implementable robot sys- commit protocols used in distributed database systems.
tems could store all the sensory inputs to the inference Since communication bandwidth is a scarce resource
system in a single UDP packet (1024 bytes). Current and inference in our system is essentially free, it is
autonomous robots are severely limited in their task more efficient for HIVEMind robots to perform re-
capabilities, and hence their communication needs, by dundant computation.
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5. Implementation 5.3. User console

5.1. Overview The Command Console for the HIVEMind team is
based on the Cerebus proj&th]. It provides a natural

We have implemented the HIVEMind system on a language interface for the human user and allows com-

robot team that performs two tasks: mands such as ‘find green ball’ or ‘announce “talk at

7! to be entered. The taskisboundtothet i vi ty

role, and any arguments are bound to other appropri-

ate roles, e.g. green would be boundatoj ect in

the former example. The current bindings are repre-

dsented in a list form and transmitted on a virtual wire
to all members to the team. The console appears as

verge on its location, another robot to other team members, albeit one that

e Town crier: This task involves making announce- is not doing any physical work. The user console also

ments in the same known environment. The team provides status information in the form of display win-
cooperatively travels to each Iandmark. on a map dows based on the broadcast knowledge it is receiving

and makes an announcement at every landmark. from other team memb'er.s. Using t.his interflace', the hu-
man commander can inject new information into the

In both cases a human user is responsible for indi- team, as well as receive data about the current state of

cating the current task to perform and supplying any the “group mind”.

required parameters for that task, e.g. the properties of

the object to be found in the former task. The human 5.4. Perceptual systems

interacts with the team through a user console, which

appears as an additional, albeit non-performing, mem-  The sensory and memory systems are divided into

ber of the team. When user input is entered into the “pools”, which are useful abstractions for grouping

console, that information is passed through the virtual perceptual systems or descriptions of objects. Note

wires to all team members. We have tested both tasksthat we do not make any unique claims about pools;

with a two robot team. The code for this system was they are simply convenient abstractions for imple-

written in a combination of GRL14] and Scheme,  menting role-passing. The pools drive the inference

although low-level vision operators were written in rule network, which in turn drives the low-level be-

e Find object: The team systematically searches for
a brightly colored object in a known environment.
Team members explore the environment in a sys-
tematic manner until one of the team members lo-
cates the object or all searchable space is exhauste
When the object is found, all team members con-

C++. haviors that actually control the robdtig. 4 shows a
high-level view of the system. The action pool stores
5.2. Hardware a set of reified user-defined plans that can be bound

to roles at runtime. These plans can then be run by

The robotic bases used in this experiment are first calling the role to which they are bound. For exam-
generation Real World Interface (RWI) Magellan ple, thefi nd plan is bound to the rolacti vity
bases. The Magellan provides sonars, infrared sensorsvhen the user enters “find green ball” at the console.
and bump switches; a total of 16 each, arrayed around The binding is passed via virtual wire to the indi-
the circular base. Vision is provided by a ProVideo vidual team members. So, when the control system
CCD camera, connected by a Nogatech USB video callsact i vi ty, it would run thef i nd plan. There
capture adaptor cable to a laptop. The laptops are are currently two plans in the action poéli nd and
Dell Latitudes with Pentium Il 450 MHz processors, announce.
384 MB of RAM and 11 GB hard drives. They run The color pool stores color coordinates of different
Windows98, and communicate with the base through objects in a format suitable for use by the visual track-
a serial cable. Remote communication is provided by ing system. The color of a desired object can be spec-
Lucent Orinoco Silver wireless Ethernet cards that ified by binding a given color description in the pool
feature an 11 Mbps data transfer rate under the IEEE to the role of the object. For example, when the user
802.11b standard. directs the team to seek a green ball, the term green
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Fig. 4. Control flow from sensors to behaviors in a single robot.

is bound to an appropriate role. The bindings are then e The current role bindings, including bindings for
automatically passed over the network to the robots. the current activity or task, and any bindings for
The color pool presently contains descriptions for red,  pertinent arguments.

green, and blue objects, and is only used for the find e A bit-vector specifying the set of landmarks that the
object task. robot has personally visited.

The tracker pool consists of a set of trackers that e The bit vector for thesee- obj ect ( X) predicate.
utilize a variant ofk-means clustering for tracking e Anarray representing tHeocat i on( X) function,
blobs of color in the robots visual image. These track-  which give the two nearest landmarks, if known, for
ers can be allocated and bound to a role. The trackers any roleX.
can drive low-level behaviors with image-plane coor-
dinate of the objects they track. In addition, they gen-
erate the low-level predicats®e- obj ect ( X) and
near - obj ect ( X) for input to the inference net-
work. The trackers are used only in the find object task.

The place pool is a probabilistic localization sys-
tem that uses a topological, i.e. landmark-based,
map. Roles can be bound to landmarks and the sys-
tem can determine the next appropriate waypoint in
order to reach a landmark specified by role. The place g, |nferencerules
pool also records the set of landmarks that have been

visited with high probability and can determine the  The inference rules for both tasks are fairly simple.

closest unvisited landmark. The current map con- Thjs is partly due to the continual recomputation of
tains 11 landmarks distributed over the west wing of ixterences, which alleviates the need for some error

the 3rd floor of the Northwestern Computer Science yetection and recovery logic that would otherwise be
Department. necessary. The inference rules for the find object task
are:

All of these are low-level outputs of the various
pools, except for the current role bindings, which
has to be stored on a separate latch on the user con-
sole. When the team is performing the town-crier
task, the latter two communication structures, i.e.
see- obj ect (X) andl ocati on( X), are not uti-
lized for reasoning.

5.5. Communication
1. If see- obj ect ( X) is true, thergot o( X) .
Both tasks require communication of the fol- 2. Ifl ocati on(X) isknown,andee- obj ect ( X)
lowing: is false, thergot o( | ocati on(X)).
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3. Ifl ocati on( X) is unknown, andee- obj ect scribed below as necessary to accomplish its current
( X) is false, thergot o( next - unsear ched- task.
| ocation()).

The inference rules for the town-crier task are: 6.1. Behaviors

1. If at -1 andmar k( X) and not - announced- There are four motor behaviors that drive the
at (X), thenspeak-string(). robot:
2 fl;:t itrgﬁ,()tr;en goto(next - unsear ched- | oc » Approachdrives to an object specified by role. It
' attempts to keep the object in the middle of its visual
The functiomext - unsear ched- | ocati on() image.
returns the current location if there are no new loca- e Turn-to swivels the robot to face a new direction.
tions to travel to.Got o() is a polymorphic action It is used when the robot arrives at a landmark and

keyed by the type of the argument passed to it. If needs to turn in a new direction to reach another
the argument is bound to a location, then the robot landmark.

will navigate to that landmark. If the argument is e Unwedgeactivates when the robot becomes stuck
bound to a color in the color pool, then the robot in some corner unexpectedly. It swivels the robot
approaches the largest object matching that color in  in the direction in which it thinks has the greatest
its view. Got o() activates the four behaviors de- open space so the robot can continue moving.

Fig. 5. Two robots leaving from starting point to perform a task.
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e Follow-corridor navigates the hallways. It tries to  building. The wing consists of a network of six corri-
remain centered in the middle of the corridor to fa- dors spanning an area approximately &r20 m with
cilitate easy recognition of environmental features. an aggregate path length of 50 m. The network of cor-

ridors is represented by 12 landmarks in the topolog-
ical map showing the locations of features such as
corners and intersections. The robots drive at approxi-
mately 1 m/s on straight-aways, although stopping for
ballistic turns at corners and intersections somewhat
reduces their mean velocity. Sensing, inference and
control decisions are each performed at 10 Hz.

In the find object experiments, all team members
were started from a central point at the extreme east
end of the wing Fig. 6). The goal object, a green ball,

6.2. Results was placed out of view, 15-20m from the starting

point. The object was always at least two corridors and

We have tested the system with a three-member three landmarks away from the starting point. When

team consisting of two robots and the command con- the command “find green” was entered on the com-

sole Fig. 5. The team was tested in the west wing mand console, the robots begin a systematic search
of the 3rd floor of the Computer Science Department of the wing for the goal object. Unlike stochastic

The behaviors are arbitrated strictly through a prior-
ity stack. Behaviors that are higher on the stack have
higher priority, and, if active, will be chosen to run
over those of lower priority. Since HIVEMind always
ensures that all team members are up-to-date on the
current situation, each robot always knows the appro-
priate behavior to activate for the current situation and
no conflict between team members arises.

-

Fig. 6. One member of the team locating the target in the find object task.
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search techniques such as foraging, the systematicutilize predicate/argument structure, while avoiding
search guarantees that each landmark is searched athe model coherence and database synchronization
most once and that all landmarks are guaranteed toissues that traditional symbolic and tiered systems
be searched, if necessary. Using a greedy algorithm encounter.
for landmark selection, the team was consistently able  The HIVEMind architecture allows behavior-based
to find the landmark within 30s provided that there systems to abstract over both objects and sensors,
were no catastrophic failures of the place recognition while providing an anchoring approach that is efficient
system. On typical runs, the team found the object in enough in both inference speed and bandwidth con-
approximately 20s. sumption to be usable on physical robotic teams. It
For the town crier task, team members were again presents multi-robot system designers with more pow-
started from a central point at the extreme east end erful representations than behavior-based systems, and
of the wing. The objective was for the robots to go has a simple, efficient model for group coordination
through each landmark at least once, making the an-that consumes very little bandwidth while allowing
nouncement at each landmark that the robots passedeam members to react to opportunities or contingen-
through. If a robot had already spoken at a particu- cies within O(1) time. We believe that the right set of
lar landmark, then no further announcement should representational choices can allow the kinds of infer-
be made there, since we do not wish to inundate any ence presently implemented on robots to be cleanly
nearby offices with multiple announcements. Again, grounded in sensor data and reactively updated by a
barring any catastrophic failures of the place recogni- parallel inference network. By continually sharing per-
tion system, the team was able to complete the task ceptual knowledge between robots, coordination can
successfully. be achieved for little or no additional cost beyond the
The place recognition system is the weak point of communication bandwidth required to share the data.
the current implementation. Minor errors are common The effect is a kind of “group mind” in which robots
and occasional catastrophic failures can cause one ofcan treat one another as auxiliary sensors and effec-
the team members to think that it has traversed its tors. We have currently implemented two tasks utiliz-
intended destination when in fact it has not. While ing HIVEMind: one that finds object, and another that
we are working on improving the place recognition makes announcements. Our current goal is to imple-
system, it should be stressed that the actual control ment a system which finds and traps evading targets
and coordination architecture worked without error.  such as other robots or other humans. This is an es-
pecially interesting task because it requires non-trivial
spatial reasoning about containment and visibility.
7. Conclusions
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Abstract

This paper presents a hybrid approach for tracking humans with a mobile robot that integrates face and leg detection results
extracted from image and laser range data, respectively. The different percepts are linked to their symbolic counterparts
legs and face by anchors as defined by Coradeschi and Saffiotti [Anchoring symbols to sensor data: preliminary report,
in: Proceedings of the Conference of the American Association for Artificial Intelligence, 2000, pp. 129-135]. In order to
anchor the composite objgoersonwe extend the anchoring framework to combine different component anchors belonging
to the same person. This allows to deal with perceptual algorithms having different spatio-temporal properties and provides
a structured way for integrating anchor data from multiple modalities. An evaluation demonstrates the performance of our
approach.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Anchoring; Multi-modal person tracking; Human-robot interaction

1. Introduction media cameras are cheap sensors that can be used
for observing a human instructor to track his position
The increasing availability of mobile robot plat- and recognize gestural instructiof822]. However,
forms with good navigation capabilities provides a despite intensive research in computer vision, the
basis for the exploration of advanced human—robot variations in lighting conditions encountered in dy-
interfaces (HRI). The development of systems with namic environments pose major problems for tracking
natural HRI is an important prerequisite for the humans based on their visual appearance. For exam-
widespread use of robots in home and office environ- ple, the color of a human face changes significantly
ments[1]. However, building powerful interfaces that  if the lighting conditions are varied. A face detection
go beyond a simple dialog-based interaction between process based on color may therefore fail to always
user and robot is challenging. Due to the nature of detect the face in the images of a sequence depicting
mobile systems it is necessary to use sensor devicesa human moving through an office. At the same time
that can be carried on-board a small robot for realiz- there may be background objects entering the field of
ing an HRI. Additionally, the sensing techniques must view of the camera that have a face-like color. Conse-
be non-intrusive, i.e. a human must be allowed to quently, the feature sequence belonging to an image
interact with the robot without having to wear special Sequence may contain false positives (background
equipment (e.g. markers, colored gloves) to enable objects) and false negatives (missed faces).
the robot's sensors to observe him. Standard multi- In order to enable the robot to track humans over
time despite inaccuracies in the feature sequence,
* Corresponding author. Fax:49-521-106-2992. the tracking algorithm can make use of temporal in-
E-mail addressjannik@techfak.uni-bielefeld.de (J. Fritsch). formation and context knowledge. These sources of

0921-8890/03/$ — see front matter © 2003 Elsevier Science B.V. All rights reserved.
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information allow to (1) select the features match- article concludes with a summary of the presented
ing an internal symbolic description of the object to work.

be tracked, and (2) focus processing on a subset of

all features. The latter is especially important if the

sensor capability is limited, the processing power is 2. Related Work

small, or several objects are present.

The anchoringframework by Coradeschi and Saf- Our approach extends work by Coradeschi and Saf-
fiotti [4,5] aims at providing a method for tracking fiotti [4,5], and therefore their anchoring framework is
objects over time by defining a theoretical basis for described in detail isection 3 In this section we will
grounding symbols to percepts originating from phys- concentrate on the related techniques of data associa-
ical objects. The practical capability is demonstrated tion and fusion, as these techniques bear similarities
with examples dealing with a single type of percept to our approach.
obtained by processing camera images. Bar-Shalom and Li discuss if2, Ch. 8.2]differ-

However, in complex environments several different ent types of configurations for multisensor tracking
sensors can generate different types of percepts orig-including a hybrid approach. The so-called Type |
inating from the same physical object. Additionally, configuration denotes a standard single sensor track-
the spatio-temporal properties of the different types of ing system. Type Il configurations perform Type |
percepts can vary significantly. We propose a solution tracking for several sensors and subsequently fuse
to these problems by anchoring a symbol denoting a the individual tracks, while Type Il proposes a direct
composite objedhrough anchoring the symbols of its  synchronoussensor data fusion across multiple sen-
correspondingomponent objectdn this solution, the sors before performing tracking on the fused sensor
composite anchoring module is responsible for fus- data. The Type IV configuration, instead, uses local
ing the data of the component anchors. Our approachdata association for the individual sensors but a global
to integrate several anchoring processes can be easilytracking. However, this configuration still requires
extended to other modalities and allows for parallel synchronous sensor data. For fusing data originating
or distributed anchoring of component symbols. To from sensors at different sites, a hierarchical hybrid
demonstrate our approach we perform person tracking configuration for multisensor—multisite tracking is
by anchoring the symbglersonthrough anchoringthe  proposed.
symbolslegsandfaceto the corresponding percepts. For person tracking using different sensing modal-

In extension to the original use of anchoring for con- ities a variety of approaches and fusion methods have
necting one symbol system to one perceptual system,been developed. Darrell et 46] use a Type Il data
our application concentrates on solving the challeng- fusion method to integrate depth information, color
ing task of tracking composite objects, i.e. humans. segmentation, and face detection results. Fusing the
Therefore, we use a symbol system that only contains individual tracks is done using simple rules. Likewise,
predicate symbols describing the identity of persons Okuno et al[11] use a Type Il configuration to fuse
to be tracked. The use of more predicate symbols in auditory and visual information from talking persons.
the symbol system to support more complex inter- Track fusion is done rule-based, but differently from
actions using, for example, speech (e.g. ‘Follow the [6] thresholds on the track differences are used to
small person with the red shirt’) will be the focus of avoid fusing different tracks. A Type Il configuration
future work. is used by Feyrer and Zd]F] to track persons based

In the following section we will give a review of re-  on vision and laser range data. The two types of sensor
lated work. The original anchoring framework will be data are fused by adding a two-dimensional Gaussian
described irSection 3 The basic idea of the proposed to a potential field representation for each potential
integration framework is presented$ection 4 while person position. After initial selection of the person
Section 5describes some extensions to cope with to be tracked, another Gaussian is added to the po-
multiple composite objects. The application to person tential field at the Kalman filtered position estimate to
tracking is described iSection 6 Section 7presents maintain temporal coherence. Type IV configurations
an extensive evaluation of the complete system. The with sequential processing of the individual sensors
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are often implemented hierarchically. After associat- tions between processes that work on the level of
ing coarse position estimates, a smaller search space isabstract representations of objects in the world (sym-
used for processing more precise sensor data. Schlegebolic level) and processes that are responsible for the
et al. [15] propose vision-based person tracking that physical observation of these objects (sensory level).
uses color information to restrict the image area that These connections must be dynamic, since the same
is processed to find the contour of a human. A more symbol must be connected to new sensor data every
sophisticated method to realize the sequential searchtime a new observation of the corresponding object

space reduction is proposed by Vermaak efdl]. In is acquired.
their approach sound and vision data are sequentially We follow the definition of anchoring proposed by
fused using patrticle filtering techniques. Coradeschi and Saffioffp]. They define anchoring as

Although we perform person tracking using a cam- the problem of creating and maintaining in time the
era and a laser range finder which are on-board a mo-correspondence between symbols and sensor data that
bile robot, we have to perform multisite tracking in a refer to the same physical object. Basically anchoring
hybrid configuration, as different components of a hu- incorporates asymbol systenand aperceptual sys-
man are observed from different positions. In contrast temthat are linked by an anchoFig. 1). The symbol
to the intersite association and overall information system includes a set of individual symbols and a set
fusion proposed iff2] we developed a model-based of unary predicate symbols. Each individual symbol
modular integration scheme that extends the an- has a symbolic description which is a set of predicate
choring framework described iBection 3 Besides symbols. The perceptual system includes a sgieof
enabling classical tracking with multiple sensors at ceptsand a set ofttributes A percept is a structured
different sites, anchoring allows to maintain represen- collection of measurements assumed to originate from
tations for temporarily occluded objects and provides the same physical object. An attribute is a measurable
mechanisms for reacquiring the object. Therefore, property of a percept. The set of attribute-value pairs
anchoring can be understood as an extension to clas-of a percept is called theerceptual signature
sical tracking approaches that defines a framework The role of anchoring is to establish a correspon-
for dealing with missing sensor data in a structured dence between a symbol, which is used to denote an
way. The proposed multi-modal anchoring approach object in the symbol system, and a percept generated
is easy to implement, has transparent structure, andin the perceptual system by the same object. This is
exhibits efficient, low complexity performance. achieved by comparing the symbolic description and

the perceptual signature via a predicate grounding re-

lation g. This relation constitutes the correspondence
3. Anchoring between unary predicates and values of measurable at-

tributes. For exampleg could specify that a symbol

The problem of recognizing objects by linking with the predicatéarge corresponds to a percept, if the
features extracted from sensor data to an internal value of its attributesizeis above a certain threshold.
symbolic representation is especially prominent in an The relationg can be embedded in a functiomatch
autonomous system whose environment is constantly that evaluates whether a given perceptual signature is
changing. Such a system needs to establish connec-consistent to a given symbolic description or not. The

Symbol system Anchor Perceptual system
Iot = (flace, P, Sizeg = 240)| (percepts
symbols face 2 I t
predicate] attribute] value P 1%
) small size <200 )
descriptions sk;ncolor, “|large size >200 signatures
arge .. > Py size = 250

Fig. 1. Linking symbols to sensory data with anchors.
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correspondence between symbol and percept is repre-

sented in an internal data structurecalled anchor.
Since new percepts are generated continuously within
the perceptual system, this relation is indexed by time.

At every moment, the anchow(¢) contains three
elements: a symbol, meant to denote an object inside
the symbol system; a percept,
perceptual system by observing an object; a signature,
providing the estimate of the values corresponding to
the observable properties of the object. The anatisr
groundedat timet, if it contains the percept perceived
at + and the updated signature. If the object is not
observable at and so the anchor isngroundedthen
no percept is stored in the anchor but the signature
still provides the best available estimate.

In order to solve the anchoring problem for a given
symbolx in a dynamic environment three main func-
tionalities have been outlined [4,5]:

e Find. Create a grounded anchor the first time that
the object denoted hy is perceived. The function
matchis used to assure that the symbolic descrip-
tion matches the perceptual signature. In case of
multiple matching percepts, selectioncan either
be made inside the find functionality or by the sym-
bol system.

e Track Continuously update the anchor while ob-

serving the object. In this case the prediction is

achieved by a specifione-step-predicfunction.

The predicted signature is compared to the per-

ceived attributes with anatch-signaturefunction.

This allows to find percepts compatible with the

attributes of the percepts anchored to the symbol

in the previous steps. In case of multiple matching
percepts, theelectfunction is used to choose one
percept.

ReacquireUpdate the anchor when the object has to

be reacquired, i.e. if the anchor is ungrounded. This

is used to locate an object when there is a previous
perceptual experience of it. The experience is used
to predicta new signature which is then compared
to newly acquired percepts. Here, the prediction is
generally more complex than in theack case. If it

is verifiedby usingmatchthat a percept is compati-

ble with the prediction and the symbolic description

then the current signatureupdated Again, in case

of multiple matching percepts, selectfunction is

used to choose one percept for updating.
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For a detailed description of the formal anchoring
framework the interested reader is referreddt®].

4. Multi-modal anchoring

generated inside the 5 g now the literature on anchoring considers

only the special case of connecting one symbol to the
percepts from one sensor. However, the real world
contains objects that cannot be captured completely
by a single sensor. If several sensors are used, the
symbolic description of the object has to be linked
to several different types of percepts acquired from
different modalities.

One solution is the extension of the anchoring def-
inition to link several percepts to a single symbol.
However, with such an approach the integration of
different types of percepts with different processing
times makes it necessary to anchor the individual
percepts asynchronously. Additionally, if the different
percepts relate to different parts of the object the spa-
tial relations between them need to be incorporated
into the predicate grounding relation to obtain a con-
sistent result. Consequently, the resulting algorithm
for this solution may become very complex from an
implementational point of view.

Therefore, we propose a modular approdeig (2)
that allows to anchor a symbol of a composite object
by distributed anchoring of the corresponding compo-
nent objects based on the related percepts originating
from multiple modalities. This modular approach
provides a structured way for simple integration of

Anchoring of composite object
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_Predicates. Attributes
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Fig. 2. Multi-modal anchoring.
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additional component anchors and facilitates parallel anchoring process establishes a grounded anchor sim-
anchoring of different types of percepts. The infor- ply if its symbolic description matches the perceptual
mation provided by the individual perceptual systems signature. Hence, the composite anchor is initialized
of the component anchors is collected by a composite and from now on data about the composite object is
anchoring process for integration. The combined data provided to its component anchoring processes as fol-
is again stored in an anchor structure, the so-called lows: thematchfunction of every component anchor
composite anchor. is extended to additionally make sure that the com-
The main difference to original anchoring is that position relations provided by the composition model
the symbol corresponding to the composite object has of the composite object are satisfied. Therefore, the
no direct perceptual counterpart. Every time a compo- predicatepart-of-Sis added to the symbolic descrip-
nent anchoring process has chosen a new percept fortion of the component anchors whefés the symbol
updating its anchor, the percept is linked to the sym- of the corresponding composite object. After a com-
bol of the composite object. The composite anchoring ponent anchoring process has executed its extended
process then calculates its own perceptual signature bymatch the composite anchoring process can perform
incorporating the signature of the component anchor. its own matchto check whether its symbolic descrip-
Usually, this signature can only be used to update a tion matches the corresponding perceptual signature
subset of the available attributes of the composite an- of the processed percept.
chor, because the associated percept originates only The motion modealescribes the motion behavior of
from the perceptual system of a component object.  the composite object and allows to predict its position.
The main functionalitiedind, track, andreacquire Together with the spatial relations provided by the
defined in the original anchoring do not directly exist composition model a component anchoring process
for the composite anchor module. These functions can predict the position of its underlying component
are carried out by the component anchoring processesobject. Especially for steerable sensors which allow
that also initiate updates of the composite anchor. The to select the desired field of view it may be necessary
composite object is anchored/grounded, if at least one to use information about the composite object. In this
component object is anchored/grounded. Because ev-case a steerable sensor can be pointed into the direction
ery component anchor module has different predicate where a percept is expected in order to establish the
symbols, it also contains its own predicate grounding corresponding component anchor.
relation. The predicate grounding relation of the com-  The fusion modet used for integrating the various
posite anchor module embodies the correspondencesignatures of the component anchors in the compos-
between predicates concerning the composite objectite anchor. Every time a component anchoring process
and attribute data calculated from attribute values has processed new percepts, it sends its new signature
originating from the different component anchoring to the composite anchor module. This signature refers
processes. to the point of time in the past when the corresponding
In order to coordinate all component anchoring sensor data was acquired. Since the different percep-
processes, it must be ensured that the different sen-tual systems achieve different processing speeds, the
sors observe the same composite object. The com-composite anchor module does not always receive the
ponent anchoring processes have to be supplied withattribute data from component anchors in correct tem-
position estimates for the composite object, and the poral order. In order to ensure that the attribute data
composite anchoring process has to fuse the informa-is fused to the signature of the composite anchor at
tion supplied by the component anchors. Therefore, the appropriate point of time, the composite anchoring
a composition modela motion model and afusion process maintains a list containing all signatures sorted
modelare provided. in chronological order. New attribute data is inserted
The composition modetontains the spatial re- in the list and the signature of the composite anchor is
lationships between the composite object and its updated for the corresponding point of time based on
components. It ensures that the individual anchoring the fusion model. If the list already contains entries
processes only select percepts that are compatiblethat are newer than the inserted one, then the fusion of
with the composite object. At startup, a component the signatures of the composite anchor is repeated for
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the subsequent points of time. The underlying speci- the number of the percept which is selected fonttie

fication of the fusion itself is domain dependent. anchor. Note, that the entries of the list have to be pair-
wise different in order to describe a consistent result.
The total score of an overall selection is defined as the

5. Anchoring multiple composite objects sum of the scores corresponding to the assignments.
The aim is to find the optimal result, which is the se-

Usually, more than one object has to be tracked lection yielding the maximum total score. The corre-
simultaneously. Then, several anchoring processesSPonding searchis realized using a search tree: the root
have to be run in parallel to keep track of the dif- Of the tree is given by the empty list, whose list entries
ferent objects. In this case, multi-modal anchoring are all undefined. For every successive node the num-
as described in the previous section may lead to the Per of undefined entries decreases by 1. The leaves of

following conflicts between the individual composite the search tree contain all possible overall selections.

anchoring processes: Since the maximum of all scores assigned by an an-
_ ~chor is known, the total score of a partially undefined

e A percept is selected by more than one anchoring jist can be estimated optimistically. Hence, the search

process. can be efficiently realized using the' Algorithm.
e The anchoring processes try to control a steerable However, the number of percepts not necessarily co-
sensor contradictorily. incides with the number of anchors. If there are more

In order to resolve these two problemssupervising ~ @nchors than percepts, not every anchor is assigned a
moduleis introduced, which manages all composite Percept and therefore is not updated. If there are more
anchoring processes. It coordinates the selection of Percepts than anchors, not every percept is assigned to
percepts and schedules access to steerable sensor@n anchor. The remaining percepts are used to estab-
The supervising module grants access to steerablelish new anchors. Additionally, an anchor that was not
sensors only to the composite anchoring process updated for a certain period of time will be removed
which holds the so-callednchor of interestThe de- Py the supervising module.
cision which is the anchor of interest depends on the
intended application. o ] _

In order to coordinate the selection of percepts the & Person tracking in a dynamic environment
selectfunctionalities of the individual component an-
chor modules have to be modified. These modules no N order to prove the feasibility of our multi-modal
longer select percepts individually. Instead, they as- anchoring approach, we demonstrate its use for per-
sign to every percept a score, which is the higher the SON tracking with a mobile robot. Person tracking is
better a percept fits the anchor. Based on these scored Prerequisite for every HRI and has to be realized
an overall selection can be performedg. 3). Any with the available on-board sensors which often can
possible selection result can be expressed as a list ofcapture only a part of the human body due to the usu-

assignments, where thah entry of the list contains  ally small distance between the human and the robot.
Our robot can observe a person with a camera and a

laser range finder. Based on the skin-colored regions
PD extracted from camera images the face of a person
can be detected and identified. The beam from the
laser range finder is at leg-height and, consequently,
P2 human legs can be detected. In this section we will

i == Anchor -
first present our mobile system. Then, the algorithms
to extract the leg and face percepts will be described.

(D= Anchor |=—»te]
Finally, component anchoring and anchoring of the

Sy~ Anchor k—-
Perceptual composite object person is explained.

Symbols Anchoring System 1 .
Our hardware platformFg. 4) is a PeopleBot from
Fig. 3. Modification ofselectin component anchor modules. ActivMedia with two on-board PCs (Pentium IIl, 850

Pi3
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interacting with the robot. For robot navigation we

use the ISR (Intelligent Service Robot) control soft-

ware developed at the Center for Autonomous Sys-
tems, KTH, Stockholnj10].

6.1. Detection of human pairs of legs in 2D laser
scans

In mobile robotics 2D laser range finders are often
used, primarily for robot localization and obstacle
avoidance. A laser range finder mounted at the height
of legs can also be applied to detect persdng. 5
shows a sample laser scan with a person standing in
front of the robot. The legs result in a characteristic
pattern.

Detecting legs in laser scans was already consid-
ered for mobile systems. [16] for every object fea-

Fig. 4. Our PeopleBot following a person. tures like diameter, shape, and distance are extracted
from the laser scan. Then, fuzzy logic is used to de-
termine which of the objects are pairs of legs[1@]

and 500 MHz, respectively). The first PC is used for local minima in the range profile are considered to be
controlling the motors and the on-board sensors while pairs of legs. Since other objects (e.g. trash bins) pro-
the second one is used for image processing. Both duce patterns similar to persons, additionally moving

PCs run Linux and are linked with a 100 Mb Ether- objects are distinguished from static objects.

net. A SICK laser range finder is mounted at the front ~ Our approach for the detection of human legs is

at a height of approximately 30 cm. Measurements based on laser scans with an angular resolution of
are taken in a horizontal plane, covering a 18eld 0.5°. Generally, persons can be located by two closely
of view. A pan-tilt color camera (Sony EVI-D31) is  positioned segments. A segment within a laser scan
mounted on top of the robot at a height of 140 cm for consists of consecutive reading points with similar

acquiring images of the upper body part of humans distance values, which usually result from a smooth
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Fig. 5. A sample 2D laser scan. The arrow marks a pair of legs.
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surface of a single object. Large differences of distance mounted on top of the robot. The detection is mod-
values are due to edges or occlusions. Thus, singleeled as an image scanning process, that repeatedly ex-
human legs are mostly observed as single segments. tracts sub-images for classification. To speed up the
The detection of pairs of legs consists of three steps: scanning process, the search space in the image is re-
segmentatiopclassification andgrouping In the first stricted to regions of skin color. Since we are deal-
step the laser scan is split into segments. Each segmentng with images obtained from a camera on a mobile
consists of a maximum number of successive reading robot, the task of color segmentation is challenging:
points, where the differences of the distance values
of two consecutive points are below a given threshold
(chosen as 75 mm). In the following step each segment
is classified a$eg or non-leg based on the following
features: number of reading poiris), mean distance
(), standard deviation of the distancgg, width in In order to detect color regions under varying lighting
world coordinates in a direction perpendicular to the conditions, an adaptive color segmentation algorithm
laser beaniw), and distances to the adjacent segments has to be used. Probably the most famous adaptive im-
(d1 andd>). We obtained satisfying results using the age segmentation system is the Pfinder (person finder)

e A moving robot encounters lighting conditions of
high variability.

e There is no constant background in images as the
robot acts in an unstructured environment.

following conditions to classify a segment lag). system[23] for tracking a single, completely visible
human wearing homogeneously colored clothes in
n>4) A (u<3000mm A (0 <40mm front of a static background. In Pfinder, the color of ev-
A(BOMM < w < 250 mm ery background pixel and each body part (head, torso,

arms, hands, legs, and feet) is modeled as a Gaus-
Amax(dy, d2) > 250 mm sian in YUV color space. Additionally, the positions
A(Min(dy, do) > —50 mm). of body parts are described by Gaussians in image

i ) i i coordinates.

In the final step single legs are grouped into pairs de- o the task of skin color segmentation the related

pending on their distance in world coordinates, which | A\FTER systen{12] uses similar techniques to track

is chosen to be below 500 mm. _ the face of a single user with a pan-tilt camera. Here
In certain cases one leg of a person is occluded by 5 Gayssian mixture is used to model the background

the other one, and thus only a single leg will be de- \arations. In order to detect a face in arbitrary back-
tected. In order not to discard this information, tes- grounds captured by a moving camera, recent ap-

ceptsgenerated_ by this perceptual sgbsystem inclgde proaches avoid explicit background model[ag, 18}
all detected pairs of legs, and all single legs which ever, these approaches are limited to single faces.
are not part of a pair. Thattributescomputed for a Different from the approaches above our goal is
percept are the direction giyen in the local coordingte the tracking of several skin-colored image regions
system of the robot, the distance, and a flag, which 5 may he subjected to different lighting conditions.
indicates whether the percept is a pair of legs or not. s js realized by modeling every skin-colored re-
The arrow inFig. Smarks a pair of legs detected with i \yith a separate Gaussian distribution. In order to
our approach in the sample laser scan. stabilize the adaptation step, we use context informa-
tion from face detection to restrict updating to regions
6.2. Detection of human faces in color images containing faces and select image areas of face size
for adapting the color models. In the following we
Face detection is very important for human-robot give a short overview of our adaptive skin color seg-
interaction: at first, the detection of a face is a reli- mentation approach, more detailed information can
able indicator for the presence of a person. In addi- be found in[8]. Note, that for skin color segmenta-
tion, much information is extractable from a face, e.g. tion on the mobile robot no region-of-interest (ROI)
person identity or gaze direction. is used and the complete image is segmented as the
The perceptual subsystem that performs face detec-uncertainty for determining ROIs on a mobile robot
tion processes color images from the pan-tilt camera is too high to be reliable enough.
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For color representation the r—g color space is used scalings by using the following method: the center of
as it is well suited for representing skin color over a the initial sub-imagéx, y) coincides with the COM of
wide range of lighting conditiong4]. For the special  the skin-colored region. There and at the two neighbor-
case of modeling a person’s face a Gaussian distribu-ing positions(x + 1, y) and(x, y + 1) the correspond-
tion has been shown to be sufficigi#]. For every ing reconstruction errors for the extracted sub-images
pixel the skin probability is calculated as the maximum are computed. The next position of the scanning pro-
of the individual probabilities of the Gaussian mod- cess is chosen accordinggteepest gradient descent
els. The resulting skin probability image is binarized This process stops if a face is detected or a local min-
with an empirically determined threshold of 0.2 and imum is reached. In the latter case the process contin-
a connected components analysis yields skin-colored ues with sub-images of a new siz&4.5%, followed

regions.

In order to prevent the color models from adapt-
ing to skin-colored background objects a face veri-
fication step is carried out on all regions found. For
face detection we apply theigenface methqdper-
ating on gray-level images. Any image with a size
of n x m pixel can be considered as a point in an

by +15%).

For all image regions that are found to contain a
face updating of the color model is performed. In or-
der to stabilize the updating process an empirically
determined global skin color distribution is used for
filtering out non-skin pixels. Based on a theoretical
model Storring et al[19] have shown that the over-

nmdimensional space. Faces lie in a subspace of theall skin color distribution occupies a shell-shaped area
overall image space. Kirby and Sirovi¢d] demon- in r—g color space that is calleskin locus Simi-
strated how Principal Component Analysis (PCA) can lar to Soriano et al[18] we determined the skin lo-
be used to efficiently represent human faces. Later, cus for our camera empirically with hand-segmented
Turk and PentlangR0] applied this technique to face training images[8]. With all pixels in an elliptical
detection. PCA finds the principle components of the image area at a detected face position that lie in-
distribution of the face images, which are caltegen- side the skin locus, local Gaussian parameters are cal-
faces They span a subspace (face space) representingculated and used to smoothly update the Gaussian
possible face images. We use a face space computednodel:
from a set of sample face images having a size of
37 x 43 pixel. These samples only contain the central finew = Yitiocal + (1 — ¥)iloids
parts of faces (eyes, nose and mouth) so that variancesy, .. — % oca + (1 — ) Zoi.
of the background are excluded. In addition, the im-
ages are preprocessed using histogram equalization inFor our system running at approximately 3Hz a
order to compensate varying lighting conditions. learning rate ofy = 0.6 has been shown to provide
Before a given image can be classified it has to be good results for persons moving in a standard office
rescaled to the size of the sample images and prepro-domain.
cessed. The resulting image is then reconstructed by The perceptsgenerated by this perceptual subsys-
a weighted sum of eigenfaces. The resulting residual tem are the skin-colored regions classified as face. For
error is small if the given image is a face image and every percept a set @fttributesis computed: with the
large otherwise. Hence, for classification an empiri- position information from the pan-tilt camera the an-
cally determined threshold can be used to distinguish gle of the face relative to the robot is calculated. The
face from non-face images. detected face size is used to estimate the distance
In order to decide whether a segmented region of of the person: assuming that sizes of heads of adult
skin color originates from a face, a sub-image at the humans only vary to a minor degree, the distance is
position of the region has to be extracted and classi- proportional to the reciprocal of the size. The height
fied with the eigenface method. However, the center of the face above the ground is also extracted by using
of mass (COM) of the region does not necessarily co- the distance and the camera position.
incides with the center of the face due to inaccuracy  Additionally, a face identification step is performed
of segmentation. Therefore, the area at the region haswith a slightly enhanced version of the method pro-
to be scanned at different positions and with varying posed in[20]. Each individual is represented in face
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space by a mixture of several Gaussians with diag- Anchoring of composite object
. . . Symbols Anchor Percepts
onal covariances. Practical experiments have shown
. B . _ H h i h
that the L_lse.of. 4—§ Gaussians Ieads. to satisfying re- - _‘Slgrl}gtture Bﬁg;ﬁén,e&;gtjc-t; A
sults in discrimination accuracy requiring only small 2 ¢ o
ini i i i Person models e
amounts of training matengl. The mixture densities [Composttio] [Motion] [Eusion]
are estimated from the projections of up to 50 sam- —]
ple images per individual. The performance of the

identification process has been evaluated in an exper- /J legs %ﬁ@'

iment with nine individuals. For a test set of 76 im-

Laser legs

ages a recognition rate of 89% could be achieved.

When accepting a rejection rate of 20%, over 96% @5_.—.?@%

of the images classified were assigned to the correct Anchoring of component objects
individual.

Face region

Fig. 6. Anchoring a person by anchoring the legs and the face.
6.3. Anchoring component objects

The characteristics of the anchoring processes for data is processed asynchronously by the composite
the components legs and face are reflected in their anchoring processrig. 6 shows the framework for
three main functionalities. Thend functions of the anchoring the composite objgmerson The composi-
leg and face anchor modules anchor only percepts in tion modelused describes empirically defined person
front of the robot, if their distance to the robot is less relations Fig. 7).
than 3m. Additionally, the selected leg percept must  All attributes of the multi-modal anchoring of per-
match the predicatis-pair. If the face anchor module  sons that correspond to spatial positions are described
is linked to the anchor of interest, it is first checked in by Gaussian distributions instead of scalar values. This
thefind function whether the field of view of the cam-  allows to model uncertainty for positions. For the at-
era overlaps with the person position provided by the tributes of percepts the variance of the Gaussian can be
anchor of interest. If necessary, the camera is pointed determined from the measuring inaccuracy of the cor-
to the direction where the face percept is expected. responding sensors. Timotion modebtefines how a
The functionalitiedrack andreacquireof the anchor position can be predicted for timé + 1) based on the
modules for legs and face are rather similar. All these known position at time(i): the mean value remains
functions try to anchor percepts close to the predicted unchanged (no velocity assumed) while the variance
position while considering restrictions given by the increases linearly with time, expressing increasing un-
composition model of the person. More specifically, certainty.
the track functions predict the current percept’'s po- The attribute values contained in the signature list
sition based on the last known position. In contrast, of the composite anchor module are updated by mul-
the prediction of theeacquirefunctions is based on tiplying the Gaussian of each attribute value with the
the person position obtained from the person anchor Gaussian representation of the corresponding attribute
module. If the face anchoring process tracks or tries values from new percepts. This results in the follow-
to reacquire the face of the person of interest, the ing update formulas that are calculated in fhsion
camera is steered to make sure that the position of
the predicted percept does not move out of the field

of view. +/-80em { F—EH—47 (- +/~200m
6.4. Anchoring composite objects @ -

+/— 30cm l et

h [
frontal view

j +/— 40cm

H
\ l

The person anchoring module receives individual SO
side view

signatures originating from the leg and the face an-
choring processes. It is important to note that this Fig. 7. The composition model for matching consistent percepts.
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Fig. 8. A schematic example for anchoring a person.

model
Hi(i—1)0p + UpOti—1)
M) =
O1i—1) + 0p
O(i—1)0)
o1y = _oni—1%
O1i—-1) + 0p

The resulting mean valug,; is a weighted sum of
the old mean valug,;—1y and the mean value of the
perceptup. Since the weights are given by the vari-
ances of the old position in the signature list and the
percept, the mean value corresponding to the smaller
variance (more certainty) has a greater effect.

The person attribute values that are updated with the

signatures of the grounded component anchors are the

angle¢, and distancej, relative to the robot, the face
height/p and the person nami,. The initialization
of the valuespp anddp, is carried out if a component
anchor is grounded for the first time. The attribute val-
ueshp and Np can only be initialized after receiving
the first signature from the face anchoring process.
During normal operation the person’s fusion model
makes sure that the person’s position is smoothly up-
dated by anchored legs and faces. In contigsgnd
Np can only be updated by processing face signatures.
In order to illustrate the concept a schematic exam-
ple for anchoring one person is shownFkig. 8 de-
picting six consecutive time steps at the beginning of
an anchoring process:

1 . Person anchoring is started and all component an-
choring processes perform théind. The leg de-

1.

13

The face detection generates a face percept and
the face anchor becomes grounded. The face an-
choring process switches frofind to track and

the person anchor is updated accordingly.

Again, the leg detection generates a leg percept.
Based on thérackfunction, the leg anchor as well
as the person anchor are updated.

In this time step, new laser range data is processed
but no matching leg percept is found by the leg an-
choring process. Therefore, it switches friack

to reacquire No updating of the person anchor
takes place.

A new camera image is processed but no face per-
cept matching the prediction of the person posi-
tion is found. Thus, the face anchoring process
also switches fromntrack to reacquire Now the
person is ungrounded since neither the legs nor
the face are grounded.

In the new laser range data a leg percept matching
the predicted person position is found. Now the
legs as well as the person are grounded again.

7/

15 :

16 -

7. Results

We implemented the extended anchoring framework
in an object-oriented manner using+&- and added
the person tracking functionality to the ISR software
[10] on the behavior level. When the robot is instructed
to track persons the tracking behavior is started in

tection generates a leg percept and the legs areparallel with other behaviors necessary, for example,

anchored for the first time. The leg anchoring pro-
cess switches fronfind to track Subsequently,
the person position contained in the composite an-
chor module is initialized and the person becomes
grounded. Now, thénd of the face anchor module

is able to point the camera into the right direction.

obstacle avoidance. The tracking behavior initializes
the person anchoring process.

The evaluation of our system was carried out in
an office room, more specifically in an area having
a size of approximately.80 m x 3.40m. The room
was equipped with wooden furniture, which was
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Fig. 9. Scenario: first setup (left); second setup (right).

challenging for the face recognition, because the color
of wood is similar to skin color. We realized two se-
tups Fig. 9). In the first setup only two persons were
present, one in the middle of the room standing still
(P2) and one guiding the robotP(). The task forPy

Throughout the tests, the laser range finder provided
new laser range data at a rate of 4.6 Hz to the leg detec-
tion algorithm. The processing time necessary for gen-
erating leg percepts and anchoring was negligible. The
adaptive skin-color segmentation processed images

was to become the person of interest by approaching with a size of 18% 139 pixels. For each skin-colored

the robot &1 m). Then, P; had to guide the robot
around P, and to leave the room through the door,
while looking towards the camera as long as possible.
The resulting trajectory had a length of approximately
7.5m. The second setup was similar to the first one,
but three additional personBs—Ps were placed at
predetermined locations in the room, not affecting
the trajectory resulting from the first setup; was
instructed to try to regain the attention of the robot in
case that the robot log®;. If this was not possible,
because the robot tried to follow one of the other per-
sons, then the experiment was interpreted as failure.
Both experiments were carried out with ten different
subjects.

region the face detection was carried out. The pro-
cessing time of the face detection and identification
system depends on the number of skin-colored regions
present in the image. On average the face percepts
were provided at a rate of 3.1 Hz. Again, the time nec-
essary for updating component and composite anchor
was negligible. Together, the person attributes were
updated with an average rate of 7.7 Hz due to the asyn-
chronous anchoring of the different types of percepts.
The first setupTable 1) was accomplished after an
average time of 55 s. The robot lost three people once,
but they were able to regain the attention of the robot
to complete the run. On average 95.3% of the time a
person was grounded. The legs were grounded 92.1%

Table 1

Results of the first setup witt?; and P,

Run t(s) vg (M/s) Lost Person grounded (%) Legs grounded (%) Face grounded (%) Legs/step Face/step
1 39 0.19 0 99.7 98.9 63.1 1.78 0.76
2 62 0.12 0 96.6 93.8 36.4 1.71 0.90
3 52 0.14 1 95.4 83.5 51.0 1.72 0.57
4 56 0.13 0 99.3 93.8 54.1 1.79 0.59
5 81 0.09 1 96.4 95.7 34.7 1.63 0.40
6 32 0.23 0 99.2 98.7 51.1 1.87 0.78
7 90 0.08 1 80.9 73.2 22.0 1.94 0.49
8 51 0.15 0 99.2 98.8 56.5 1.75 0.70
9 42 0.18 0 98.0 97.9 35.7 1.79 0.45

10 44 0.17 0 88.6 87.1 16.3 1.60 0.39

Average 55 0.14 — 95.3 92.1 42.1 1.76 0.60
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Table 2

Results of the second setup with—Ps

Run t(s) vy (M/s) Lost Person grounded (%) Legs grounded (%) Face grounded (%) Legs/step Face/step
1 60 0.13 2 93.6 91.5 27.7 2.63 0.41
2 43 0.17 0 96.7 95.0 20.7 2.61 0.32
3 The robot lostP; and tried to follow P3
4 51 0.15 0 98.7 90.4 66.0 2.49 0.74
5 a7 0.16 0 96.2 94.5 7.1 2.52 0.20
6 The robot lostP; and tried to follow P,
7 77 0.10 0 99.8 97.5 72.0 2.59 0.85
8 74 0.10 0 93.4 92.6 20.3 2.63 0.22
9 61 0.12 0 97.7 96.1 36.4 2.55 0.56
10 42 0.18 0 86.1 84.2 11.9 2.73 0.26

Average 57 0.13 - 95.3 92.7 32.8 2.59 0.45

of the time, the face 42.1%. On average 1.76 legs anding processes. We demonstrated the performance of
0.6 faces were processed in every computation step byour approach with a person tracking application for
the corresponding perceptual systems. a mobile robot. In the current implementation laser
The time needed to successfully perform the task of range data and color images are processed to find
the second, more complex setdpble 9 took only 2 s percepts for the symbolsgsandface Our extended
more per run on average. For this setup we expectedanchoring framework allows for multi-modal tracking
more percepts to be computed, because more person®f humans. Through taking advantage of the different
were present. This was in fact true for the legs, but sensor capabilities in terms of precision and informa-
not for the face. The persons guiding the robot were tion content a more complete representation of tracked
taking care of not colliding with one of the persons persons is maintained. Therefore, our approach forms
P>—Ps and, therefore, looked at the camera less of- the basis for more advanced human-robot interaction.
ten. This resulted in a correspondingly lower face de-
tection rate. On average the face was grounded only
32.8% of the time. The legs and the whole person were Acknowledgements
grounded for approximately the same time (95.3 and
92.7%) as in the first setup. Runs 3 and 6 resulted ina  This work has been supported by the German Re-
failure. A recovery was not possible even though the search Foundation within the Collaborative Research
face identification would have indicated the mistake. Center ‘Situated Artificial Communicators’ and the
This is because an active search for a specific person,Graduate Programs ‘Task Oriented Communication’
which goes beyond the reacquire functionality of an- and ‘Strategies and Optimization of Behavior’.
choring, is not part of the current implementation.
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Abstract

There is a growing interest in both the robotics and Al communities to give autonomous robots the ability to interact
with humans. To efficiently identify properties from its environment (be it the presence of a human, or a fire extinguisher or
another robot of its kind) is one of the critical tasks for supporting meaningful robot/human dialogues. This task is a particular
anchoring task. Our goal is to endow autonomous mobile robots (in our experimBrismr 2DX) with a perceptual
system that can efficiently adapt itself to the context so as to enable the learning task required to physically ground symbols.
In effect, Machine Learning based approaches to provide robots with an ability to ground symbols heavily rely on ad hoc
perceptual representation provided by Al designers. Our approach is in the line of meta-learning algorithms, that iteratively
change representations so as to discover one that is well-fitted for the task. The architecture we propose is based on a widely
used approach in constructive induction: the Wrapper-model. Experiments using the PLIC system to have a robot identify
the presence of humans and fire extinguishers show the interest of such an approach that dynamically abstracts a well-fitted
image description depending on the concept to learn.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Anchoring; Meta-learning; Change of representation; Object identification

1. Introduction: anchoring symbols and ability to identify physical entities and relate them to
identifying objects perceptual symbols that are used by humans (to refer
to these same physical entities). To perform this task,
Recent works in both robotics and artificial intel- the robot has to ground these symbols to its percepts
ligence have shown a growing interest in providing (i.e., its sensor data). Recently, the termanthoring
mobile robots with the ability to interact and commu- [1] has emerged to describe thailding and main-
nicate with humans. One of the main challenges in tenance of the connection between sensor data and
designing such robots is to give them the ability to the symbols used by a robot for abstract cognition
perceive the world in a way that is useful or under- As a matter of fact, anchoring is an important issue
standable to us. One approach is to give the robot thefor any situated robot performing abstract reasoning
based on physically grounded symbols. Amongst oth-
—_— . . ers, anchoring plays an important role to communicate
* Corresponding author. Present address: LIP6-CNRS, Unigersit

P&M Curie, Boite 169, 4, Place Jussieu, 75232 Paris Cedex 6, OF r€late to either other robots or humans.
France. There are tasks, such as object manipulation

E-mail addressnicolas.bredeche@lip6.fr (N. Bredeche). or functional imitation, where anchoring requires
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explicitly recognizing objects and localizing them Itis clear that a great part of the success of the learn-
in the three-dimensional space. Fortunately, such aning task per se depends on the representation chosen
object recognitiontask is not necessarily required [5]. Having an Al designer providing the robots with

to achieve anchoring. In applications such as hu- an adequate representation has a major drawback: it is
man/object tracking, face and object identification, a fixed, ad hoc representation. Any change of setting
or grounded robot-human communicatioobject (a museum instead of an Al lab) may require a new

identificationis enough. Informally, taecognizean perceptual description. In order to overcome this draw-
object often requires from the robot to match its per- back, our main objective is to endow an autonomous
cepts with a known model of the objef2]. This robot with the ability to dynamically abstract from its

task has been studied for a few decades now and ispercepts different representations, well suited to learn
known to be difficult in unknown environments. On different concepts. The intuitive idea is to have the
the contraryjdentifyingthe sole presence of an object robot explore the space of possible examples descrip-
is simpler since its goal is tolassifyor to namean tions (with various colors, resolution, representation
object[3]. As a matter of fact, there exist many easy formalisms, etc.) so as to discover for each concept
to use and reliable descriptions for characterizing the a well-fitted representation. The underlying intuition
presence of an object. To identify the presence of a being that for anchoring the symbbuman beinga
fire in a room, one does not have necessarily to vi- robot does not need the same visstanuli that might
sually recognize it. Smelling smoke, hearing cracks, be necessary to identify @owerplug on a wall.
feeling heat, seeing dancing shapes on a wall are dif- Section 2presents a concrete setting in which this
ferent ways of identifying the presence of a fire. For problem occurs and pinpoints why adapting one’s
an autonomous robot, the ability to identify objects representation may be useful to increase learning accu-
is a first step towards more complex tasks and may racy.Section 4explains our approach based on abstrac-
be built by regularly checking for the object. Identi- tion operators applied to visual information provided
fying objects is therefore a simple form of anchoring by the robot. Finally irSection ZandSection 6 a set of
symbols (such afire) to its percepts. real-world experiments describes the interest of such
In this paper, we are concerned with a practical task, an approach and outlines the difference between three
where aPioNeer 2DX mobile robot has to rely on  representations, each one fitted to a different concept
its limited visual sensors to anchor symbols such as (the presence of a human, a fire extinguisher or a box).
human beingmobile robotor fire extinguisher(etc.)
that it encounters while navigating in our laboratory.
Anchoring is then used to support human/robot or 2. Problem settings
robot/robot communication. For instance, an interac-
tion may be engaged ifeuman beings identified,ora ~ 2.1. The MICRBES project
rescue operation may be initialized if a non-responding
ProNeEerR 2DX is identified. Identifying afire extin- The practical task we are concerned which takes
guishermay allow the robot to respond to a query for- place in a wider project called MIGRES|[6], which
mulated by a human. To design an autonomous robot, is a collective robotics experiment started in 1999 and
living in a changing environment such as our labo- involving more than 10 people. This project aims at
ratory, with the identification ability described above studying the long-term adaptation of a micro-society
is a difficult task to program. As such it is a good of autonomous mobile robots in an environment pop-
candidate for a Machine Learning approach, which ulated by a human collectivity: the LIP6 laboratory in

may be easily recasted as a classimahcept learn- Paris. The robots, 1BioNEER 2DX, have to survive
ing task To teach the robot to anchor symbols us- in this environment as well as cohabit harmoniously
ing Machine Learning has proven succes$#ijl To with its inhabitants.

use Machine Learning techniques, the designer has From an individual point of view, they need to

to both define learning examples and a representa-recharge themselves autonomously, build the map of
tion language based on the robot percepts to describetheir environment in order to memorize its charac-
them. teristics and localize themselves, avoid the mobile
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obstacles (human beings, other robots) and the poten-a basis for human—robot interaction-based behaviors

tially dangerous places (stairs, lifts).

From a collective point of view, they have to solve
the spatial conflicts (access to the charging stations,
coordination in navigation), cooperate by sharing
information about the environment (open or closed
rooms, etc.) and abide by some individualized con-
straints in their interactions with human beings (e.g.
learning individual schedules and respect for privacy).

The colony of robots does not have, then, a func-
tional goal, apart from being able to survive in an
eco-system in which it must implement a robust and
adaptive social structure. Thus, by studying robots that
are physically as well as socially situated, MIQSES
works towards two main goals: design a sufficiently
autonomous and versatile robotics basis that can be
used in different applications (distributed surveillance
of buildings, guidance of visitors, etc.) and study,
in collaboration with sociologists, the conditions re-
quired for immerging autonomous mobile robots in a
larger public.

2.2. Anchoring and the building of a perceptual
system

Inside the MICRBES project, we are concerned
with providing the robot with the ability to perform
robot—-human communication about objects in the
world. However, from the robot’s point of view, using
a shared lexicon of human symbols requires some
prerequisites such as grounding these symbols in
order to make sense in the wolfld].

In this paper, we aim at providing eaGdhoNEER
2DX autonomous mobile robot with the ability to
identify (i.e. correctly classify) objects or living beings
encountered in its environment thanks to mecha-
nisms inspired from perceptual learning. As stated in
Section 1 there is a strong difference between object
recognitionandidentificationas stated ifi3]:

e Object recognitiorconsists in finding a familiarity
with an object for which there already existses(-
ally 3D) model known by the system.

e Object identificatiorconsists in classifying or nam-
ing an object, i.e. it requires neither a model of the
object nor complex scene reconstruction algorithms.

This identification ability will serve to build a lex-
icon of grounded human symbols in order to provide

(e.g. dialogue using the lexicon, request tmack or
follow an anchored object, etc.). This paper focus on
the anchoring process while the use of a lexicon for
such tasks will not be described here. It is important to
understand that the anchoring process described here
is independent of any behavior.

In practical, each robot navigates in the environment
during the day and takes snapshots of its field of vi-
sion with its video camera according to three possible
behaviors:

e Wander behaviorThe robot explores its environ-
ment and takes snapshots from time to time. This
behavior is useful to get a set of images that is rep-
resentative of the environment.

e Attention behaviarThe robot takes a snapshot upon
arequest. This enables a supervisor to show specific
scenes.

e Active learner behaviorThe robot explores its en-
vironment and takes snapshots that are supposed to
be interesting according to what it already knows. In
Machine Learning, suchctive learningtechniques
can greatly improve the accuracy of new classifiers
by selecting examples based on the performance of
previously learnt classifiers.

At the end of each day, the robot may report to a su-
pervisor and “ask” her/him what objects (whose sym-
bols may or may not belong to a predefined lexicon)
are to be identified on a subset of taken pictures (with-
out the supervisor pointing at them). It then performs
a learning task in order to create or update the con-
nection between sensory data and symbols which is
referred to as the anchoring process. From a Machine
Learning point of view, the learning tasks produces
classifiers that should then be used to identify symbols
from the sensory datd&ig. 1 describes this process.
The learning task associated to the anchoring is there-
fore characterized by a set of image descriptions and
attached labels. It corresponds to a multi-class concept
learning task.

A key aspect of the problem lies in the definition of
the learning examples (i.e. the set of descriptions ex-
tracted from the images) used by the robot during the
anchoring process. In effect, a first step in any anchor-
ing process is to identify (relevant) information out of
raw sensory data in order to reduce the complexity of
the learning task.
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4.

door! ‘
extinguisher!

T

Fig. 1. The four steps toward lexicon anchoring. As a first step, the robot takes snapshots of its environment whicblextby a
supervisor. The robot tries to associate (learn) the provided label(s) with its percept, and, after a number of such steps take place, it shall
be able to autonomously label a new environment.

extinguisher human human (empty)
box box bookshelf
bookshelf

Fig. 2. Examples of the robot’s visual experience.

The PioNneer2DX mobile robot provides images 3.1. Emergent adaptive lexicon and language

thanks to its LCD video camera while navigating

in the corridors. The images are 160120 wide, Lexicon anchoring is mainly concerned with study-

with a 24 bits color information per pixel. Humans, ing the evolution of a language in a society of agents

robots, doors, extinguishers, ashtrays and other pos-through the emergence of a shared grounded lexicon.

sible targets can be seen among the images as shownn order to build a shared lexicon, a group of agents

in Fig. 2 All these possible targets, as they appear may require a combination of individual adaptation,

in the images, are of different shape, size, orientation cultural evolution, and auto-organizatifsi.

and sometimes they are partially occluded. Finally,  These works do not focus much on the problem

each image is labeled with the names of the occurring of extracting visual percepts. The world is perceived

targets. through few “channels” (such amlor, localization
height width) and discrimination treesare built in-
crementally to disambiguate word8]. In fact, the

3. Related works problem of perceptions is simplified so that it is
possible to study the evolution of language on a

In this section, we will briefly review two research large scale (i.e. grounding meaning in a society of

domains that are more or less related to our problem agents).

setting. We will try to highlight both the specificity While these works achieved very interesting results

of our task and the common concerns between prob- and deals with the grounding of a lexicon, we are not

lem settings. Firstly, we will state the differences with concerned with the same issues. As a matter of fact,

works studying theemergence of language a soci- we consider the anchoring ofgavenlexicon, i.e. how
ety of robots. Then, we will study common concerns to extract relevant information from complex images,
betweencontent-based image retrievahd our iden- instead of themergencef such a lexicon, i.e. lexicon

tification task. adaptation, evolution of grammar or syntax, etc.



N. Bredeche et al./Robotics and Autonomous Systems 43 (2003) 149-162 153

3.2. Content-based image retrieval measure (i.e. one-pass test vs. complex matching
phase). Such classifiers enable nearly costless im-
Our problem setting shares much more in common age classification and can easily be implemented
with that ofcontentbased image retrievdtsir) [10]. in a real-time operating mobile robot.
However the goal irceIr is (roughly) to compute a  (2) cBIR is not a longterm behavior The robot is
similarity measure between two images, the question supposed to navigate in the environment and

as to how the information is extracted remains central constantly update its anchors. Since the world is
in both cases. As a matter of fact, we can learn much dynamic and subject tooncept drifts the robot

by studying the popular approaches usedsm to requires to be able to learn and adapt its anchors
describe an image. There are three main approaches through time (e.g. if a new example of the “chair”
based on: symbol may appear someday).

(3) The images are not collected thanks to a situated
behavior The data collected by the robot are spe-
cific to its location. Due to the properties of such
images, we are concerned with checking if there is
a specific property hidden in the image that would
help to identify an object. As a matter of fact, the
environment of the robot provides very similar im-
ages where global variations are not bounded to
a given object. On the other hancBir is about
retrieving globally similar images among a set of
very different images.

e Global color histogram descriptiorill]. Match-
ing image’s histogram descriptions achieved sur-
prisingly good retrieval results and is considered as
a benchmark to evaluate other approaches. This ap-
proach is simple yet efficient.

e Regionbased similarity [12,13] The similarity
measure is computed by matching regions grown
according to various properties of the images (e.qg.
color and texture propertigs However good re-
sults where achieved using this approach, there are
known drawbacks such as the complexity of match-
ing between images described as sets of regions
and the unreliability of region-growing algorithms. 4. changing the representation of images

e Configural recognition[14]. This approach pro-
vides an efficient way to compare images using 4 1.
spatial properties between regions while limiting
the matching complexity. Only dixed number
of regions according to given configuration are
taken into account. Since themplateis given by
the supervisot, this approach is fitted for retrieval
of images with constant overall organizations (i.e.
scenes (e.g. mountain, sea, etc.) vs. objects).

Initial perceptual representation

We define the role of the robot’s perceptual system
as to extractbstract percept®ut of low-level per-
cepts such as a set of pixels, from the video camera
or sonar values. These abstract percepts provide a rep-
resentation of the perceived world on which further
computation will be based. They can be anything from

The cited approaches can help us defining an image sets of clustered colored regions to a matrix resulting
description mechanism but we should also take into from a Hough transform. The choice of a representa-
account that there are strong differences between an-tion is motivated by finding a good trade-off that re-
choring andceir. These fundamental differences are duces the size of the search space and enhances the
that: expressiveness of the abstract percepts.

As mentioned irSection 2the problem we consider
is that of automatically finding a representation of a
set of labeled images that is well adapted to the learn-
ing of concepts. Let us underline that our goal is not to
achieve the best performance on the particular learn-
ing task mentioned in the previous section. To obtain
the best performance would require that experts in the

1 The values for each component within the fixed template can fi€ld build an ad hoc representation for each concept
also be learnf15]. to learn. On the contrary, we are interested in having

(1) Retrieval is not identificationcBir uses a simi-
larity measure that do not explicitly classify the
example. Moreover, learnt classifiers (set of rules,
decision trees, trained neural networks, etc.) are
faster to apply than computing any similarity
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a robot find by itself the good representation, so that, Feature-vectors are also call@istances as in the
if the context changes or the concept to learn is differ- traditional setting features may be numeric as well
ent, it has the ability to discover by himself the good as symbolic features. Again, the associated learn-
level of representation. We therefore consider the rep- ing task consists in finding a classifiép; such

resentation provided by the sensors adratial rep- that most bags are correctly classified. In this set-

resentation. ting, multiple-instance classifiers are of the form
From the robot’s point of view, each pixel from the  hnyi(b) = h(x1)V - - - Vh(x,) whereb = {x1, ..., x,}

camera is converted into law-level perceptIn the is a bag containingr instances. Thus, an object

initial image representation, where each pixel is de- represented by a bdg will be classified positively
scribed by its positiony y), its hue(the tint of a color by hmuii iff at least one of its instances firds

as measured by the wavelength of light) séduration Multiple-instance learning has been successfully ap-
(term used to characterize color purity or brilliance) plied to various domains including the prediction the
and itsvalue (the relative lightness and darkness of a chemical activity of moleculefl6], and the classifi-
color, which is also refereed to as “tone”). The initial cation of natural scend45].

description of an image is therefore a set of 19200 Within a relational settingthe objects are repre-
(160x 120 pixels) 5-tuplex, y, h, s, v). Each image is  sented by a set of components objects, their features,
labeled by symbols following the process described in and relations between components. In particular, in In-
Section 2(see alsd-ig. 2). Thepositiveexamples ofa  ductive Logic Programminfl7] Prolog facts are used
given concept (e.g. presence of a fire extinguisher) to to describe objects and Background Knowle&gen-
learn correspond to all images labeled positively for codes deductive rules.

this concept. Thenegativeexamples are the images To summarize, in Machine Learning the languages
not labeled fothis concept. As a matter of fact, aneg- used to represent examples fall into three broad cate-
ative example for a given concept can be a positive gories:

example for another concept. The number of positive
examples for each concept may vary greatly depend-
ing on the environment, the exploration of the robot,
etc.

The initial representation of images, consisting
of hundreds of thousands of pixels, is clearly a
too low-level representation to be used by Machine
Learning algorithms. We shall now analyze different
representations that have been considered in the field
of Computer Vision from the Machine Learning point
of view. These different representations will provide 4.3. Dimensions of abstraction
some directions for investigating automatic changes

e Feature-vectorThe most widely used and for which
efficient algorithms have been devised.

o Relational descriptionThe most expressive repre-
sentation but whose inherent complexify8] pre-
vents from efficient learning.

o Multiple-instance An in-between representation,
more expressive than feature-vector but for which
efficient algorithms do exist.

of representation to improve the learning accuracy. In the perspective of automatically exploring the set
of possible representations of an image, we propose

4.2. Representation languages in Machine to identify particular operators and to experiment with

Learning them. There are countless operators that could be ap-

plied to an image hoping for more accurate learning.
In the traditional setting of Machine Learning, each Operators changing theontrast the resolution the
object is represented byfaature-vector xto which definitionare all possible candidates.
is associated a lab§l). The supervized learning task To improve the learning of concepts, we are in-
consists in finding a classifigrwhich minimizes the terested in transformation that aabstractionsin the

misclassification probability Pf{x) # h(x)] on a sense that they decrease the quantity of information
newly observed example,(f(x)). contained in the imagpb]. Abstraction is considered
Within the multiple-instance setting [16], ob- as a specifichange of representatidhat is arhomo-

jects are represented blags of feature-vectors  morphismfrom one representation to another (here:
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from an image to its description). Starting from the
initial low-level perceptgi.e. the pixels of the image),
the elements obtained after applying thiestraction
operatorswill be referred to asbstract perceptsince
they will be used as representative percepts for further
processing.

The two main dimensions of abstraction that we Fig. 3. An example where specific instances of the operators
shall study areyranularity andstructure Granularity associateand aggregateare sequentially applied to an image.
corresponds to the resolution of the image. Structure
corresponds to the basic element of the image as the
smallest individually accessible portion of the image
to consider, be it a pixel or a complex regidfig. 4
depicts the space of representation changes associate
to these two dimensions and their corresponding ab-
straction operators that we define as:

set of pixels r-percepts s-percepts

5. Automatically changing the representation
(fjor learning

In the previous section two abstraction operators to
change the representation of images were presented.
e The associate operatoffor granularity). It con- The parameter of the associate operators we have con-

sists in replacing a set of pixels with a unique sidered is the number of pixels that are associated to

(mega)pixel that has for ith(s, v) values the aver-  form a (mega)pixel. The parameter of the aggregate

age of the pixels that were associated. This operator operator is the pattern or region structure.

is a built-in operator for the robot as it corresponds ~ With respect to the learning task described in

to a particulaisub-sampling The resultingabstract Section 2 a key issue is to analyze the impact of

perceptswill be referred to as-percepts’ representation changes on learning. The main ques-
e The aggregate operatoffor structure). It consists  tion is related to the choice of one operator and its
in grouping a set of pixels or regions to form a parameters. In Machine Learning, the abundant lit-
pattern. This operation is also referred to as “term erature on feature selection shows that approaches
construction” in the literaturgl9]. The pattern does  fall in two broad categories: ther apper and the

not replace the pixels or regions it is composed of, filter approach[20]. Intuitively, the wr apper

and therefore the resolution or granularity of the approach uses the performance of the learning algo-

image is not changed. What changes is the structurerithm as a heuristic to guide the abstraction. In the

of the image. The aggregate operator may be either following, we present how thew apper approach
data-driven (e.g. growing patterns) or model based can be used to choose the most fitted abstraction. As it

(e.g. applying a predefined mask). For reasons of is an approach that attempt to learn from the learning

efficiency required by the use of a robot we have process itself it is also referred to asreetalearning

considered an aggregate operator that is applied toapproach.

contiguous pixels forming a particular shape (wedo  We have developed the PLIC system, which is both

not consider region-growing algorithms because of an image description toolkit, a data reformulation

their versatility when using fixed thresholds). The tool, and a Wrapper. PLIC interacts withe#RM1, a

resulting abstract perceptswill be referred to as multiple-instance rule learnethat generates classi-

s-percepts’ fiers as decision rules (s¢21] for a full description
of RirpM1). For example, a typical classifier would

Fig. 3illustrates how one can use these operators by be (Using a s-percept such as the one sedfign3

showing a practical example where specific instances
of the associate and aggregate operators are sequene HYPOTHESIS: HUMAN.
tially applied to extract a new description from an im- e TRUE:- PVALUE<=9, P2SATURATION>=27.

age. e TRUE:- P2HUE<=203, PISATURATION<=3,
P3VALUE<=165.
2 r-percepts, as imesolution percept e TRUE:- PSHUE<=198, P1x>=6, P1y>=2.

3 s-percept, as istructural percept ® DEFAULT FALSE.
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Fig. 4. The space of image representation obtained by applying the associate operator (changswtier) and the aggregate operator

(changing thestructure.

where rl, P2, P3 are the corresponding embedded
r-percepts. RpM1 cross-validates learnt classifiers in
order to evaluate the average error rate on unknown
data. This is generally a reliable estimation of the
classifier’'s accuracy on future data.

With the help of RepM1, PLIC applies the operators
as follows:

(1) Association operatorThe horizontal dimension
in Fig. 4is difficult to explore since object iden-
tification is independent of scaling. Since there is
no “better” resolution and that every resolutions
should be useful, PLIC describes each image by
using the associate operator for several image res-
olutions (namely 1x 1, 4x 3, 8 x 6, 16 x 12,
32x24%). The idea behind thiswlti-granularities
approachis to learn classifiers that are invariant
to resolutions and object size variations.

(2) Aggregation operator PLIC uses its Wrapper
component in order to explore the vertical dimen-
sion in Fig. 4. Exploring the vertical dimension
is used to select between different structural pat-
terns to apply with the aggregate operator. The
Wrapper-based component explores different
s-percepts iteratively as synthesized is shown in

4 We were not able to go further due to memory limitations.

Fig. 5 An initial s-percept is chosen (at first, it
embeds only one r-percept), and the image is re-
formulated in a multiple-instance representation
using this structure; then, the concepts are learnt
using this representation. Based on the results
with cross-validation of the learning algorithm,

a new structure is devised by adding a contigu-
ous r-percept. The heuristic for creating a new
structure is based on the fact that for the current
s-percept, all the embedded r-percepts are used in
at least one decision rule of the rule set with the
accuracy being better than at the previous level.
For example, the rule set we saw before would be
extended (all three embedded r-percepts are used).

PLIC uses RepM1 to learn severatlassifiersfor
each object to be identified (e.g. one classifier for each
s-percepts). Each classifier is learnt thanks to a fixed
number of positive and negative examples during a
batch learning sessiorHowever these classifiers are
cross-validated, it is possible that the robot may en-
counter new occurrences of the object. For example,
people may change clothes, objects may be moved or
replaces, the environment can vary greatly during the
day (e.g. daylight vs. artificial light), etc.

Fortunately, all these classifiers can be combined in
order to evaluate which one have to be replaced. PLIC
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Fig. 5. The PLIC system Wrapper component.

RAules

addressesnchoring in the long-ternby increasing lexicon contains three symbols to anchor:
or decreasing each classifiergeight depending on
the accuracy of its prediction when new images are
presented. Many on-_lme Iearn!ng_ algorlthms can be (2) Fire extinguisher They can be found in the corri-
used suc_h as the weighted majority algoritf28] or dor of our lab
even a simple perceptron. Ag a consequence, we can(g) Box Various boxes that stand alone or piled up.
easily replace outdated classifiers by the newly learnt
classifiers whenever there is a batch learning session. As explained inSection 2 a supervisor “names”
For a given concept, such a session can be launch oncehe occurring targets. Given the symbol to anchor, we
n new images have been labeled with this concept have decided that every batch learning session would
(choosingn is free but may take into account memory be based on the first 25 positively labeled examples
limitation since this is a batch learning task where all and 25 randomly selected negative examples (no bias).
positive and negative examples are handled at the sameThe size of the corresponding descriptions depends on
time as opposed to on-line learning). the operators. For example, a learning set may vary
from approximately 2 KB (with a global histogram
description for each image) to 3MB (with an asso-

(1) Human A single person with different kind of
clothes.

6. Experiments ciate operator set to 32 24 and an aggregation oper-
ator with s-percepts that embed 4 r-percepts). Among
6.1. Experimental setup the positive examples, about 50% are labeled with

one object, 15% with two objects and 5% with three
To evaluate the interest of abstracting visual per- objects.

cepts from a Machine Learning point of view, a num- Three independent sets of experiments are pre-
ber of different experiments have been carried out. The sented. The first one illustrates the impact of the
experiments presented are based on the images aceoperator associate used to build a multi-granularities
quired by aP1oNEErR2DX mobile robot in the corridor ~ descriptions. The second studies the impact of the ag-
of the LIP6 laboratory (Paris, France). The objects as gregate operator based on an arbitrarily selected gran-
they appear in the images are different in shape, size, ularity. The multiple-instances rule learnerrR:rM1
orientation and are sometimes partially occluded. The was used on the descriptions obtained from these
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Images Wlt_h a 1Q'f0|d cross-val!datlé_nMoreover, Fig. 6. Four levels of structural configurations (i.e. s-percepts)
each experiment is repeated 10 times in order to get agenerated by PLIC.
good approximation of the results. In Machine Learn-

ing, such a validation is known to compute a good o different ways (i.e. 43, 8x 6, 16x 12 and 3 24
approximation of what will be the real accuracy of yepresentations) that generates four distinct examples.
the classifiers (i.e. the object identification accuracy). Clearly, object identification depends on the object
RippERMI returns a set of rules (i.e. a classifier) that g4 its accuracy is subject to change through time
covers the positive examples. Finally, we describe the g, experience. While the multi-granularity approach
use of weights to evaluate classifiers obtained at the 4o ot always yield the best results, there are good

previous steps and show the benefits of updating the chances that its classifiers will prove more robust in
anchor of an object through time. time than other classifiers.

6.2. Evaluating automatic changes of granularity 6.3. Experiments on automatic changes
of structure

To begin with, we performed a simple learning task
using RppER [23], a well-known supervized learn- PLICs Wrapper tool was used with the heuristic
ing algorithm, with a learning set consisting of the described inSection 5in order to generate up to a
populaf global histogram descriptions of the images. maximum of 4 r-percepts per s-percept. The possible
This will serve as a baseline to evaluate the impact of structural configurations are shown ig. 6. Each
choosing a specific granularity. structural configuration is applied from every single

Table 1shows the object identification accuracy r-percept to generate the learning sets. Thex324
for the three conceptsAccording to the results, it  resolution was chosen in order to show the potential of
is not clear which resolution is better. The experi- Structural reformulationfable 2shows the best results
ment with the global histograms sometimes yields bet- achieved for each structural level of complexity.
ter results that experiment with finer grain. Moreover, ~ Results from the experiments show that for all the
the multi-granularities approach seems to yield only objects, the highest accuracy is achieved by one of the
slightly better results than other approach and is even most complex structural configurations, which is not
worse for the easy-to-learn “box” concept. Neverthe-
less, the multi-granularities approach produces classi- Table 2
fiers that are resolution independent: each classifier is Object detection accuracy (%): best results for each structure level
learnt on a dataset where each image is described in Human Extinguisher  Box

e A . . . Global histogram  61.83 64.72 77.78
Cross-validation is a widely used data-oriented evaluation of (baseline)

the learning generalization error. The dataset is divided into a Level 1

e ra 72.5 70.28 56.67
earning and a training set. Level 2 735(22) 7333 (22) 60 (2.2)
6 At least incBIr
: Level 3 76.67 (3.5) 73.33 (3.4)  76.7 (3.4)

7 Learning duration is less than 10s standard deviation is about

% Level 4 80.8 (4.10) 80.8 (4.3) 85.33 (4.16)
0.
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Fig. 7. Three snapshots taken during a tracking behavior (with identification).

surprising. However the structural configurations are
still quite simple, the identification accuracy for each
object rose between 8 points (human detection) and

29 (!) points (box detection).

Eventhough the impact of modifying the aggrega-

possible to grasp new object’s properties or to take
better snapshots. This sometimes results in learn-
ing better classifiers that can slightly increase the
global identification accuracy for an object. In our

experiments, we empirically evaluated this as less

tion operator depends on the concept to learn (same as  than a 5% growth in object identification accura-

the association operator), structural reformulation is

clearly an efficient way to improve classifiers for an-
choring. The classifier shown iBection 5was learnt

from a reformulated dataset using the “3.3” s-percept.
This classifier demonstrates that relations between the

embedded r-percepts are taken into account.
6.4. On-line learning and updating anchors

We saw previously that PLIC andi®ErRMI require
a fixed number of examples duringbatch learning
session As a consequence, thebatch learning al-
gorithmsbuild efficient classifiers as long as exam-

ples are representative of the world. Given the world
is dynamic and unstable, we have to update the an-
chors from time to time. An interesting approach is
to combine an on-line learning algorithm such as the

well-known weighted majority algorithnm{22] with

our batch learning algorithms. Such an on-line learner

would:

e Provide a global detection prediction by aggregating

the weighted classifiers predictions.

e Improve the global performance of a set of classi-
fiers in the long-term by evaluating them (classifiers

with a low accuracy are replaced by new ones).

We experimented this algorithm during several
batch learning sessions and it proved to be efficient

thanks to the following characteristics:

(1) It naturally improves classifiersEach learning

session is based on a specific set of data. If the

cies for different kind of redundant objects.

(2) It performs long-term adaptation to concept drifts
We experimented on the tracking by identifica-
tion of a human being dressed in grey and black.
The robot built its classifiers during two learn-
ing sessions. Then, the robot was made unable to
track the target because the human dressed in blue
and white. After two other learning sessions, new
classifiers were built and the robot could track
the human target again. What is important here
is that some of the old classifiers still remained.
These few classifiers relied akinandhair col-
ors, which are constant human features.

Fig. 7 shows three snapshots taken during tracking
human (and other objects). Different classifiers were
used depending on the image. On the firstimage, clas-
sifiers identified a human based oshirt, hair and
skin colors using different structures. A box is also
identified. On the second image, human detection re-
lies simply on the color of the skin. Finally, the third
image shows an example of wrong detection on the
right part of the picture due to an unknown environ-
ment (bureau vs. corridor). Nevertheless, the human
is also detected thanks to skin-based classifiers and a
“t"-like structure classifier that covers the face (skin
and hair).

7. Conclusion

In this paper we have addressed the problem of

robot’s environment is (more or less) stable, it is using automatic abstraction of visual percepts by an
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autonomous mobile robot to improve its ability to
learn anchors [1]. This work finds its application

in a real-world environment within the MIGRES
multi-robots project[6], where anchors provides a
basis for communication between tReoNEEr 2DX
robot and its human interlocutor. In the approach we
proposed the robot starts with the initial low-level
representation of the images it perceives with its LCD
video camera, and iteratively changes their represen-
tation so as to improve the learning accuracy. Be-

N. Bredeche et al./Robotics and Autonomous Systems 43 (2003) 149-162

gered by a decrease of performance of the acquisition
of new examples? How to compare the application of
operators that change the resolution and operators that
change the structure? A central question for any life-
long learning system, integrating abstraction abilities,
is to decide whether to continue &xploitits current
representation oexplore new representations at the
risk of loosing resources if no better ones is found.

tween the low-level pixel representation and a global Acknowledgements
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abstract space) found by the system depends of the
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It is also clear that as the number of examples in-
creases, different reformulations might perform better.
Creating high-level abstract percepts does not only im-
prove accuracy, it makes object identification faster for
the robot. This is true as long as the abstraction pro-
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Abstract

The paper describes a system for open-ended communication by autonomous robots about event descriptions anchorec
in reality through the robot’s sensori-motor apparatus. The events are dynamic and agents must continually track changing
situations at multiple levels of detail through their vision system. We are specifically concerned with the question how
grounding can become shared through the use of external (symbolic) representations, such as natural language expressions
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction appears necessary because human communication is
open-ended as well. Humans may invent new mean-
The work reported in this paper is part of a ings and new expressions for these meanings or adapt
larger research effort towards grounded open-ended existing expressions to serve new purposes as part of
self-generated communication among rojé® and a normal conversatiof®].
grounded open-ended natural language-like commu- Grounded verbal communication is an enormously
nication between humans and rob§it8]. Grounded challenging task which requires the integration of
means here that the communication is about the sharedmany capabilities, including speech and language pro-
environment in which speaker and hearer are situatedcessing. We believe that there is no single sweeping
and which has to be perceived and interpreted au- principle that will make a non-grounded Al system
tonomously by both participants through a perceptual grounded. It is definitely not the case that one can
apparatus. This contrasts with natural language in- simply attach a vision/action module to a logic-based
terfaces to purely symbolic information systems like reasoning system to obtain a grounded agent, nor that
databasef3] or communication systems for software one can simply put a conceptual system on top of a
agentg[4] in which the agents have full access to an behaviour-based robot. Instead, grounding is a matter
accurate and complete representation of the environ-of embodiment and very careful design, as well as
ment and each others’ internal stat&pen-ended tight integration of many components at many differ-
means that the communication conventions are not ent levels. Nevertheless, it is possible to identify a set
fixed in advance but they are negotiated and adaptedof issues that need to be dealt with and general design
to suit the communication needs of the partners. This principles or strategies.

This paper starts with an introduction into the
mponding author. Present address: SONY Computer Sci- grpundmg ISSU€ In ,an attempt to Clea.r up pOSSIbIg ter-
ence Laboratory, Paris, France. minological confusions. It then describes very briefly
E-mail address: steels@arti.vub.ac.be (L. Steels). a system that we have built which is a combination

0921-8890/03/$ — see front matter © 2003 Elsevier Science B.V. All rights reserved.
Pll: S0921-8890(02)00357-3
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and integration of two subsystems reported on ear- developed the new concept of aa-y position indica-
lier: the PERACT systenb], designed for the visual tor for a display system” in the form of a box rolling
recognition of actions, and the EVOLAN syst¢a0], over the table, it was called a mouse by analogy with
designed for exploring the symbolisation of event the shape of a real mouse and now the whole world
description in multi-agent simulations. This paper calls it that way. This shows that inferential coding
focuses mainly on the visual processing and event can potentially express an open-ended set of mean-
categorisation that anchor symbols in the world. We ings because the coding conventions can be adapted
next turn to a discussion of the underlying design as the needs arise.
principles and end with some conclusions. The information structures typically used in com-
puters are examples of Shannon codings, and further
called I-representations. No intelligent interpreter is
2. Terminological issues assumed and so interpretation is straightforward and
automatic. There is even a question whether one can
There has been a big debate in Al and cognitive sci- speak of interpretation. All the information is in the
ence on whether intelligence requires symbolic repre- message itself and the coding is fixed. There is no
sentationg8], and if so how these representations are need to go through a complex process of disambigua-
supposed to be related to the world through a sensorytion or the guessing of meaning. The production and
apparatus and how this relation is acquifédl, 13]. interpretation of E-representations clearly requires in-
For the purposes of clarifying this discussion, we formation processing, both to code the meaning that
have found it useful to make a number of new distinc- needs to be expressed and the partial structures (such
tions. Generally speaking, representations code mean-as syntactic structures) generated as part of the pro-
ings, i.e. features of the environment relevant to the duction and interpretation process (which sometimes
agent. We can distinguish internal and external rep- even involves a model of the listener). But this does
resentations. Internal representations occur when thenot necessarily imply that the brain internally uses
physical structures are located inside computer memo- E-representations. We do not want to go into that
ries or in brains. External representations are physical discussion here, except to point out that often philoso-
structures outside the individual: marks on a piece of phers, anthropologists, artists, etc. use the term rep-
paper, sounds, gestures, objects. Communication be-resentation in the sense of (external) E-representation
tween two agents always requires external representa-whereas computer scientists or Al researchers use
tions. it in the sense of (internal) I-representations. Our
Another useful distinction which has been intro- more precise terminology is proposed to avoid this
duced by Sperber and Wilson, is that between Shan- confusion.
non coding and inferential coding, which gives rise  The term grounding applies to all possible represen-
to a distinction between information representations tations, and the opposite of a grounded representation
(I-representations) and expressive representationsis a formal representation, like an uninterpreted alge-
(E-representations), respectively. Natural language ut- bra. A grounded representation has intentionality; it
terances are clear examples of inferential coding and is about objects and situations in the world. This im-
thus of E-representatiorf48]. The interpreter is as-  plies that the agent needs processes to establish and
sumed to be intelligent and capable to infer meaning maintain this relation. For example, there might be
from mere hints. As a consequence the representa-internal I-representations in the form of data struc-
tion can be more compact because the interpretertures (or states in neural networks) that code for the
shares sufficient context and background knowledge colour, position, shape, size, trajectory, speed of move-
to make the appropriate inference. Most importantly, ment, etc. of an object in the world and these could
the representation need not be exclusively based onbe constructed and maintained by a vision system that
established conventions but can be the outcome of ais segmenting images, tracking them, and computing
negotiation process. Thus analogy is heavily used in their properties in real time. External representations
natural language to invent a way for expressing a new could also be grounded, in the sense that a description
meaning. For example, soon after Douglas, Engelbart produced by one agent could be about an object or
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situation in reality and the other agent has to ground external E-representations, i.e. how a population of
the meaning of this description in his own perception agents, each with a grounded representation system,

of reality in order to understand it. can evolve agreement on how their respective inter-
A key issue, and the one we try to solve in the exper- nal representations are coordinated through external
iments discussed in this paper, is hewared ground- representations. Other papers describing our approach

ing can occur. This is a big problem because the agents(see, for exampl§l9,22)) have focused mainly on the

do not have access to each other’s internal states (i.e.language part, whereas this paper focuses exclusively

each other’s internal representations). We argue thaton the anchoring components, i.e. the vision and track-

shared grounding can be established through a nego-ing system that generates the internal representations

tiation process embedded in language games. So theto be expressed.

‘symbols’ that we are trying to see grounded are ex-

ternal symbols used in language-like communication,

they are not internal symbols used in some cognitive 3. Grounded language communication

process. Not only are we interested in single sym-

bols (words) but also, and particularly, in the shared  The robotic installation used for the present pa-

grounding of the meaning of grammatical structures. per is displayed irFig. 1 and similar to that used in

By negotiation we mean that agents invent representa-earlier ‘talking heads’ experimen{22]. It consists

tional conventions, try them out with others, and adapt of two SONY pan-tilt cameras (EVI-D31) each con-

their set of conventions based on the feedback on suc-nected to a computer, which runs the PERACT sys-

cess or failure in communication. tem. The computers are Bi-Xeon 1.7 GHz machines
There has been quite a lot of work (as illustrated by running Linux Redhat 7.1. The language-specific

this special issue, as well as the papefd 6j) on how aspects of the system (parsers, producers, etc.)

a single agent can ground his internal I-representationsrun on a third computer (Mac G4 with Common

in reality by a sensory-motor apparatus. But there has LISP) with communication through a local area

been little work so far on shared grounding through network.

Fig. 1. Robotic installation used for the experiments reported in this paper. It consists of two steerable cameras capturing images of
dynamic scenes. The captured images are shown on separate monitors.
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3.1. Language games Additional typical events handled by the system are:
the red ball rolls against the green block. The hand
The robots engage in interactions which we call slides the pyramid against the blue box. The hand
language gamd49]. A language game is a routinised, puts the red cube on top of the green one. A yellow
situated interaction between two agents. The inter- ball rolls down a ramp. Because the world consists of
action not only involves verbal communication, i.e. dynamically changing situations, classified as events,
the parsing and producing of utterances, but also the this work is strongly related to other research on visual
grounding of internal representations through sensory event classificatiofil4,17], temporal world modelling
processing, and, most importantly, steps for learning [2], and the conceptual analysis of event expression in
new aspects of language if necessary: new words, newnatural languagef3].
meanings for existing words, new phrases. We believe
that human-robot communication is best structured 3.2. The semiotic cycle
in terms of language games because human language
interpretation requires a strong sense of context. The To play a description game requires that the speaker
utterance does not contain all the information nec- perceives the situation by capturing streams of im-
essary for its interpretation. Words are ambiguous, ages with the camera, represent the result of sensory
many things are left unsaid, and the speech signal is processing as a series of facts in memory, and then
notoriously difficult to decode. Because the language conceptualise the event and the objects in terms of
game makes the communication more predictable androles and event types. Next the speaker must map
provides a framework for semantic inference, it pro- this conceptualisation into an utterance, which in-
duces the strong constraints needed to make verbalcludes choosing words for the predicates identifying
communication doable and enables social learning the objects and the event, and applying the rules of
[21]. grammar. The hearer must lookup the words and
The present paper focuses on one game only, decode the grammatical structures, reconstruct a
namely a description game in which one agent (the semantic structure, and interpret it in terms of his
speaker) describes to another agent (the hearer) arown world model. The language game succeeds if
event in the world. The hearer gives feedback whether the utterance produced by the speaker describes an
he agrees with the description or not. Some snapshotsevent in the recent past. The whole process is called
of a typical example of a scene is shownkhig. 2 the semiotic cycle (an extension and adaptation of
There is a hand which moves towards a (red) object the well-known ‘semiotic triangle’) and displayed in
and picks it up. An adequate description is: “The hand Fig. 3
picks up the red object”. Notice that the background  The internal conceptual representation con-
consists of an unaltered typical office environment sists of a series of facts represented in first-order
with different sources of light (daylight and artificial predicate—calculus, following standard practices in
light). The action takes place at a normal pace and symbolic Al [15]. A typical set of facts generated
the dialog takes place as a commentary on the actionsfrom visual processing for an event in which a red
in real time. ball moves away from a green ball is:

Fig. 2. Snapshots of a typical event handled in the experiment: a hand grasping an object.
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Fig. 3. The semiotic cycle: left, processes carried out by the speaker; right, processes carried out by the hearer.

(nmove- away ev- 1) (nove- away- pati ent ever, (green obj-3) is distinctive because obj-3 is the
ev-1obj-1) only green object in the context. The lexicon asso-
(nmove- away- sour ce ev-1 obj - 2) ciates words with predicates (for example, the word
(greenobj-2) “green” with the predicate ‘green’) and grammatical
(bal | obj-2) (hand obj-4) (redobj-1) rules map additional aspects of meaning such as the
(bal | obj-1) predicate—argument relations into syntactic structures.
(1 arger obj -1 obj-2) (box obj-3) The speaker assembles all of this into a complete ut-
(next-toobj-1obj-3) terance and the hearer uses the same rules in reverse

to come up with a semantic structure.

The semantic structure as reconstructed by the
hearer from parsing the utterance consists of a
predicate—calculus expression with variables that can
be matched against the facts in fact memory, again
e A time stamp indicating when the fact arrived into  following standard practises in natural language se-

memory. This is used for implementing forgetting: mantics. For example, for the utterance “the red ball

after a certain time period ‘old’ facts are erased and moves away”, this expression looks as follows:

can no longer be the subject of a language commu-

nication. (nove- away ?event) (nove- awnay-

o A timeperiod which specifies the start and end point patient ?event ?obj ect)

of a fact (when known). This makes it possible to (7 &d ?obj ect) (bal | ?obj ect)

use the temporal interval calcul{® for represent-

ing and reasoning about actions and time.

e A certainty indication assigned by the vision system
to this fact.

Speaker and hearer see the situation from different
angles, which often implies that there is no complete
equivalence in their world models.

Each fact has three additional information items:

When this expression is matched against the fact
memory shown earlier, a unique coherent set of bind-
ings of all variables is obtained:

Before making an utterance, the speaker chooses ((event . ev-1) (object . obj-1))
(randomly) a recent event plus a set of objects related This is considered as an appropriate interpretation
to this event (for example, ev-1, obj-1 and obj-2). For and therefore the game succeeds. The game fails
each object and for the event itself, the speaker thenwhen there is no such interpretation or when there
seeks a predicate or conjunctive combination of pred- is more than one set of possible bindings for all the
icates, that are distinctive for the object or the event. variables.

Distinctive means that the predicate (or combination)  This paper does not further discuss the (very com-
is only valid for the intended object but not for any plex) language component, nor how words or gram-
other object in the context. Thus (ball obj-3) is not matical rules are invented and learned as part of the
distinctive for obj-3 in the above example, because game (sedg19] for more details). Instead, we focus
both obj-1 and obj-2 are described as such. How- on how agents establish the relation between the real
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world as captured by the cameras and their internal information on the PERACT system can be found in
world models. [6].

The vision system can be decomposed into three
subsystems. The first one attempts to detect and track
visual units at different hierarchical levels. The second
subsystem detects and tracks events, again at differ-
ent hierarchical levels. The third subsystem consists
of feature detectors that attempt to find qualitative de-
scriptions for units at different levels of the object or
e First of all, the environment which generates input event hierarchy. The result of all these processes is a

to the system consists of the dynamically changing set of streams, reporting objects and their properties

unpredictable real world. Agents have to keep up dynamically in response to a changing world. There is
with the dynamics of the environment and produce gz (short term) memory of these streams that is kept as
responses within available sensory and computa- they unfold. This is called the visual memory. Some
tional resources. It follows that not just anything can  of the descriptions flow automatically into the robot's
be Computed but resources need to be allocated infact memory (particu|ar|y those that are at a h|gher

a dynamic fashion depending on the requirements |evel and whose certainty is beyond a threshold) and

of the communicative situation. these are used by the conceptualisation system to con-
e Second, because the images are unconstrained, withstruct or interpret semantic structures.

natural and changing daylight, the results of visual

processing are necessarily going to be noisy. For ex-

ample, segments found on the basis of colour seg-
mentation may suddenly disappear or change when

light conditions are slightly changing, a condition Th'e first step in grounding is to detect and ‘latch
in the world (like a hand touching an object) may onto’ regions in the image that are generated by ob-

during a short instant of time change because of J&cts oOf interest in the environment. This results in a
unstable segmentation, part of an event may not be deictic representatiofi] which establishes and moni-
perceived due to failures in lower level visual pro- tors indexical references between internal symbols and

cessing, etc. So we need a way to handle noise, for external objects. A first innovation of the work pre-
example by using top-down expectations. sented here is that this tracking not only takes place

« Third, because the communication is open-ended, it fOr @ single object, but for an open-ended set of ob-
will be necessary to adapt the visual processing to jects at different hierarchical levels—as long as they

3.3. Issuesin grounding
There are a number of very difficult grounding is-

sues which need to be handled within the context of
this application:

4.1. Detecting and tracking spatio-temporal units

the needs of the communication partners, which im- &€ part of the same Spatip—temppral context. Thg de-
plies that at least some of it will have to be learned. tection and _tracklng of units at dlﬁerent _hlerarchlcal
Another thing which has to be learned is what the levels _constltutes the backbone of the_V|S|on system. It
vision system ‘tells’ the language system. starts in a bottom-up manner from the images captur_ed
by the camera, and goes through various processing
steps, first to extract spatial regions, and then to con-

nect them in time to get spatio-temporal continuities

(seeFig. 4).
More concretely the following layers are present:

4. Visual processing

We now focus on the set of visual interpretation pro-
cesses that the agents use to relate the external dynam¢l) Image streams: At the first bottom layer, there is

ically changing real world with the internal conceptual an influx of images (at a rate of 24 s and with a
world models and with the meaning of natural lan- size of 160x 120 pixels) supplied by the camera
guage expressions. Rather than detailing the many vi- in the LUV colour space.

sion algorithms that have been used (which are most of (2) Figure/ground separation: The next step is to
the time well-known state of the art algorithifi€]), identify regions that may correspond to objects

we focus on the general architectural principles. More in the scene, thus distinguishing figure(s) from
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Fig. 4. Flow of treatment from raw image to segmented objects.

background. This is currently implemented by (5) Temporal tracking: The first four layers all work

comparing the captured image with a stored im-
age of the background. All zones where the pixels
are not identical to the background are marked
as zones of interest. This avoids processing the
complete image in subsequent layers. The back-
ground needs to be learned prior to further visual
processing but is updated whenever there are
significant changes.

Occupancy grid: Constructing an occupancy grid
is a well known technique used in mobile robotics
for navigation and path planning. An occupancy
grid is a cellular representation of the environment
that contains in each cell information about the
probability that there is an object presdap®].

We use a similar technique here. Prior to routine
visual processing, probabilistic colour histograms
are learned for each of the possible objects that
may appear in a scefig]. These histograms make

it possible to calculate the probability that a certain
pixel belongs to a particular object. The occupancy
grid collects these probabilities for all pixels in
each zone of interest and assigns the pixel to the
object with the highest probability, if it is greater
than a minimal threshold. Note that relying on
colour histograms for object recognition clearly
limits the types of scenes and object sets we can
handle, but as our main goal is on exploring shared
grounding, we do not seek absolute competence
in vision.

Satial region growing: The resolution of the oc-
cupancy grid is then reduced (for efficiency) and
next used by a region growing algorithf24] to

on streams of single images. The next layers work
on multiple images with the goal of tracking the
same object over time. Because objects are iden-
tified using the histogramming technique, it is rel-
atively easy to know whether they re-occur in the
image and to compute their centre so that a tra-
jectory can be established. No sophisticated re-
gion tracking (by trying to match parts of regions
from one image to the next) is performed, which
of course restricts the number of objects of the
same colour that can be handled.

Obviously, this vision system has a number of clear
limitations. The background has to be learned prior to
visual processing and has to be updated when there is
a significant change. The frame rate of the camera is
low (24 images/s), so that fast actions (such as a ball
being dropped onto the table) cannot be detected. Ob-
jects which can participate in scenes have to be learned
in advance. There is only a small set of objects (typi-
cally seven depending on their colour histograms) that
can be used simultaneously in the same set of scenes.
Nevertheless, this system is adequate enough for our
main purposes (namely experiments in grounded lan-
guage communication). Work continues to improve its
reliability and speed by integrating additional vision
algorithms, but the strong temporal constraintimposed
by the real world puts a limit on how much visual pro-
cessing can be done with available hardware. Right
now the system computes all visual information at a
rate that keeps up with the frame rate of the camera.

group the zones of interest into regions that corre- 4.2. Event detection and tracking

spond to objects. The result of this layer is there-
fore a stream of ‘best’ hypotheses for each object’s
coarse spatial occupancy.

The next set of visual processes is concerned with
the detection and tracking of events. The task is similar
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to that of detecting objects, in the sense that deictic

representations are constructed and maintained. The

main difference is that grouping is based on changes
in the properties of objects rather than on invariances.
Event detection is organised in different layers:

(1) Detecting change: The first layer produces a
stream of properties of objects that change over
time. Specifically, it produces qualitative descrip-
tions for:

¢ Movement of an object, which is signalled if
the centre of gravity of an object has changed
significantly in between two image frames.
Contact between two objects which is signalled
if the regions of the objects concerned touch
each other for a significant time period.
Approach between objects which is triggered if
the distance between the centres of gravity of
two objects is becoming significantly smaller
between image frames.

Front positioning of one object with respect

to an objecty which is signalled ifx is moving
towardsy, andy is located within a cone ema-
nating fromx.

A stream of Boolean values for these descriptions
are produced for all the objects in the scene, to-
gether with an indication of their certainty.
Detecting events: The next layer groups these re-
sults in time. Moments when the same configura-
tion of qualitative descriptors holds are grouped
together in blocks. For the scenes showfiig. 2,

two objects are being tracked: 0 (a hand) and 1 (a
red object), and the following properties: the hand
moves (MO0), object-1 moves (M1), object-1 and
the hand touch each other (T10), they approach
each other (A10), object-1 moves in front of the
hand (F10) or the hand moves in front of object-1
(FO1). The description streams generated in con-
junction with Fig. 2is as follows, where the num-
ber in front of each line indicates the number of
time steps that the same configuration of descrip-
tions holds.

[MO M1 Ti10 A10 F10 F01]

)

13[1 1 ]
12 [ 1 ]
701 1 1 1]
6 [ 1 ]
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Blocks of time in which the same configuration
holds are called micro-events. For example, the
first micro-event is one where the hand moves and
approaches an object. The second micro-event is
one where the hand is touching the object. In the
third micro-event the hand and the object move,
the hand still touches the object and the hand is
moving fronted with respect to the object. In the
final micro-event the hand still touches the ob-
ject but neither the hand nor the object move.
Micro-events are generated as soon as they have
been found, in other words when the configura-
tion of qualitative descriptors changes for a sig-
nificantly long time.

The final layer is concerned with the detection of
events. Events are sequences of micro-events. For
example, the pick-up event fRig. 2, involving a
hand and an object, is defined as a sequence of
three micro-events: (1) the hand moves towards
the object, (2) the hand touches the object, and
(3) both move away together. Processes concerned
with recovering such events use a library of event
definitions which is matched against the stream of
micro-events.

3)

4.3. Qualitative descriptors

The final set of processes consists of pattern detec-
tion algorithms which detect significant features about
the objects or events at different levels of the hier-
archy. These algorithms look at the stream of units
and compute properties of single objects (such as size,
shape, colour, texture, etc.) or properties of multiple
objects (such as respective geographical locations and
change in locations). They output the result as streams
of qualitative descriptions with a certainty indication.
The algorithms use standard techniques from compu-
tational geometry and pattern recogniti.

The qualitative descriptors are integrated in a flex-
ible architecture that makes it possible to add new
detectors at any time at any level of the object or
event hierarchy or reschedule their usage, partly driven
by top-down expectations. Concretely each descrip-
tor runs as a separate parallel process (implemented
as POSIX threads). Each process gets time-slices to
advance its computation. Certain algorithms require
more resources than others, and so ‘quick’ algorithms
yield early results which can already be used at higher
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levels and may be sufficient for the purpose of lan- trigger the activation or re-activation of pattern detec-
guage communication. Processes may be pre-emptedors on specific stretches of the object or event streams.
when their results are no longer relevant. They may also cause the reconfiguration of pattern de-
tectors to change priorities and give more computer
time to requested information. Finally, they can change
the set of descriptors that is sent by default from the
In the discussion so far we assumed that information vision system to the fact memory.
flows only in a bottom-up manner: from the images Here are two concrete examples where this facility
captured by the camera via a whole set of processesis used:
to the facts in memory. But this is a simplification that
does not work for two reasons:

4.4. Top-down information flow

(1) Indeciding what to say, the speaker must find a dis-
tinctive description to refer to an object. Suppose

1. Each of the processing steps discussed may yield that there are two objects in memory, obj-1 and

an unreliable result. For example, it is seldom the
case that the qualitative descriptors which provide
the basis for the detection of micro-events yields
a clean set of outputs so that the micro-event is
neatly defined as a block in time. Instead, the con-
figuration is interspersed with very short moments
when some of the descriptors do not hold. If we
would only perform strict bottom-up processing we
cannot deal with this kind of noise. Our solution
has been to introduce for each pattern detector a
top-down influence from the next level up. The user
of the results of a pattern detectors monitors the
certainty of recognition and the constancy of a pat-
tern over time, so that small glitches can be elimi-
nated and weak hypotheses discarded.

. There is so much visual information in the image
that it is impossible to extract fast enough every-
thing that could possibly be extracted. Moreover, as
little as possible should be put into the fact mem-
ory to avoid overloading or slowing down symbolic
processing. However, occasionally more process-

ing at lower levels is necessary: because an object2)

being tracked on the basis of colour disappears tem-
porarily from view, or because the continuation of
an action which was taking place in fact does not
take place, because the listener needs to use infor-
mation about the shape of an object which was not
yet computed by the vision system, etc. In these
situations, it must be possible to assign more re-
sources to the processes taking place at a specific
layer and perform additional computation.

We have addressed these issues by introducing the

obj-2, and that facts in the fact memory only say
that they are both red, perhaps because colour was
the only property computed so far with sufficient
certainty. The speaker cannot discriminate between
the objects and so a request is issued to the vision
system to stimulate computation of other qualita-
tive descriptors for obj-1 and obj-2, that might yield

a distinctive description. There are pattern detec-
tors for colour, shape, texture, size, position, etc.
with default priorities. Some of them may not have
had enough resources to come up with a reliable
conclusion, others may have such a low priority
that they were not started at all. When the request
comes, more computational power is given to these
pattern detectors. Moreover, they do not necessar-
ily operate over the image stream as it is entering
the system but on past stretches as recorded in vi-
sual memory. When the pattern detectors produce
more results, they are sent to the language system,
turned into facts in memory and used in a new at-
tempt for discrimination.

The hearer may be sent an utterance that uses a set
of properties which are not yet in the fact memory.
For example, the hearer may have been asked to
identify “the ball next to the green cube” but his
fact memory may have recorded only that there is
a green and a red object. Again a request is gener-
ated to the hearer’s vision system to go after more
information. This request can be precise: compute
information about shape for these specific objects
given the hypothesis that it can be ball or a cube.

It would be desirable to enrich the power of the

notion of requests. Requests can be sent from the lan-top-down flow of constraints on vision processing, for
guage system to the vision system, and the vision sys- example, by predicting the position of objects in future
tem can internally also generate requests. Requestgime steps and use that as hypotheses for the pattern
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detectors, but this is not done yet in the current im- anism is responsible for allocating scarce com-
plementation. putation resources. The system discussed in this
paper uses a variety of means to achieve this: fig-
ure/ground computation at a very early stage, a
thread-based implementation of feature detectors
with varying and dynamically modifiable priorities
partly steered by the vision system.

5. Design principles for grounding

We now attempt to extract some of the lessons
learned from our designs and experimentations with
the grounded communication system briefly described
in the previous section. We do not claim that these
principles are unique to the system discussed here, on

the contrary, we try to capture the ‘best practice’ in . . :

the field. ing external representatlops not only need a physical

body and low-level behaviours but also a conceptual

1. Indexical representations: The first important prin-  world model which must be anchored firmly and dy-
ciple is to introduce a continuous detection and namically by the robot in the environment through
tracking of objects and events. The vision system its sensori-motor apparatus. We argued that there is
described here latches onto an object or event andnot a simple sweeping theoretical principle to turn
keeps tracking it as much as possible. This results in a system that uses conceptual world models into a
a dynamic deictic representation which maintains grounded system. Instead many processes must be
streams of indexical references, even if objects or carefully integrated. We described an implemented
events change. system that has attempted to do so in the context of

2. Description streams: The second important prin-  experiments in grounded open-ended language com-
ciple is the introduction of description streams munication among robots as well as between humans
which produce and monitor properties of objects and robots. We also proposed a set of design princi-
and events in time. The streams start from the ples that capture the principles that we have used in
images flowing in through the camera at a steady our design.
rate and continues all the way up to facts spilling
into the fact memory. The units to which the de-
scriptions apply are assembled, first spatially then Acknowledgements
temporally, at many different hierarchical levels.

3. Noise reduction: It is well known that real images This research was done at the Sony Computer Sci-
taken from relatively unprepared real world situ- ence Laboratory in Paris. We are grateful to several
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We apply this principle through the whole system
and at all levels.

6. Conclusions
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Abstract

This paper deals with the anchoring of one of the most influential symbolic formalisms used in cognitive robotics, namely
the situation calculusto a conceptual representation of dynamic scenarios. Our proposal is developed with reference to a
cognitive architecture for robot vision. An experimental setup is presented, aimed at ohitatigliigent monitoringoperations
of a robotic finger starting from visual data.
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1. Introduction conceptual representation of dynamic scenes. We dis-
cuss in particular hovections situationsand fluents

A cognitive architecture for robot vision has been may be anchored (in the sense of anchoring developed
proposed by the authors[i#-6]; it is aimed atthe rep- by Coradeschi and Saffioff,11]) to the representa-
resentation of knowledge extracted from visual data in tions at the conceptual level, which are in turns gen-
both static and dynamic scenarios. One of the main as-erated starting from the robot perceptions (for an up
sumptions underlying the design of this architecture is to date survey on different perspectives on anchoring
the need of a principled integration of the approaches se€[10]).
developed within the artificial vision community and The main motivation for choosing the situation cal-
the symbolic, propositional systems developed within culus lies in the fact that it is one of the simplest, more
symbolic knowledge representation (KR) in Al. Such powerful and best known logic formalisms for the rep-
an integration is based on the introduction ofan- resentation of knowledge about actions and change.
ceptual levelof representation, intermediate between It was primarily developed by McCarthy and Hayes
the processing of visual data and declarative, proposi- [22]; for up to date and exhaustive introductions see
tional representations. [28,27] Nowadays, it is a widely adopted formalism

This paper deals with the anchoring of one of the in the cognitive roboticsliterature; efficient Prolog
most influential symbolic formalisms adopted in cog- implementations have been propo$&d,13,21] sim-
nitive robotics, namely thaituation calculusto the plified versions of the situation calculus are used by

working mobile robotg43,14,18]

" Corresponding author. The following discussion is based on an experimen-

E-mail addresseschella@unipa.it (A. Chella), frix@distunige.it ~ tal Setup aimed at obtaining an intelligent visual con-
(M. Frixione), gaglio@unipa.it (S. Gaglio). trol of a robotic finger starting from visual data. The
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Fig. 1. The robotic finger used in the experimental setup. The

terminal phalanxa, the middle phalanb and the upper phalanx
¢ are shown. Fig. 3. The robotic finger picks up a simple torus-shaped object.

finger has been entirely developed at the Robotics Lab-
oratory, Department of Computer Engineering, Uni-
versity of Palermo. It is made up by three phalanxes:
a terminal phalana, a middle phalany and an upper
phalanxc (seeFig. 1).

The finger is driven by schematic behavidfg,
and performs articulated movements, such as push-
ing a ball Fig. 2) or picking up torus-shaped objects
(Fig. 3). The system is equipped with a video camera
that acquires the movements of the objects and of the
finger itself, in order to perfornintelligent monitor-
ing operations. The acquired visual data are anchore
to symbolic descriptions of the finger operations.

The system takes in input a sequence of images cor-
responding to subsequent phases of the evolution of

the scene (the movements of the robotic finger and
their effects on the whole scene), and produces in out-
put a declarative description of the scene, formulated
as a set of assertions written in the formalism of the
situation calculus.

Such a symbolic description may be employed to
perform high-level inferences, e.g. those needed to
generate complex long-range plans, or to perform
causal and diagnostic reasoning about the system
operations. Symbolic assertions may also be used to
dgenerate explanations of the operations of the finger,

in order to perform high-level teleautononsj.

The paper is organized as follows. In the next sec-
tion, the main assumptions underlying the cognitive
architecture are summarized. The third section is de-
voted to a synthetic description of the conceptual level
representation of motion. The fourth section shows in
details how the situation calculus is anchored to the
conceptual representation. The last section discusses
the proposed framework, and compares it to some rel-
evant frameworks for anchoring described in the liter-
ature. Short conclusions follow.

2. The cognitive architecture for visual
perception: an overall view

The existing attempts to integrate visual perception
with propositional KR are mostly oriented towards
natural language interpretation, with particular empha-
Fig. 2. The robotic finger pushes a ball. sis on man—machine interaction. They face only in a
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are anchored to sensory data by mapping them on the
representations in the conceptual area. The purpose of
the subsequent discussion is to show how a conceptual
representation can be used to anchor the sentential rep-
resentations of the situation calculus to the perceptual

\ activities of a robotic system in a theoretically well

Anchoring

founded way.

3. Conceptual spaces for representing motion

// As previously stated, representations in the concep-
SENSORY tual area are couched in terms o€anceptual space

DATA [15] that provides a principled way for relating high
Fig. 4. The three areas of representation and the relations amonglevel’ |II’IQUIStIC formalisms on t_he one hand, with low
them. level, unstructured representation of data on the other.
In this sense, we claim that conceptual spaces are a
valuable tool for anchoringj7]. A conceptual space
marginal way the general aspects of knowledge rep- CS is a metric space whose dimensions are in some
resentation (sef] for a review). way related to the quantities processed in the subcon-

Our proposal is based on the hypothesis that a prin- ceptual area. Dimensions do not depend on any spe-
cipled integration of the approaches of artificial vi- cific linguistic description. In this sense, a conceptual
sion and of symbolic KR requires the introduction space comes before any symbolic-propositional char-
of an intermediate representation between these twoacterization of cognitive phenomena. In particular, a
levels. Such a role is played byamnceptual spage  conceptual space devoted to the representation of the
according to the approach proposed by Peter Gar- motion of geometric shapes is taken into account in
denfors[15]. In our architecture, this intermediate, the present paper.
conceptual representation is the place where the an-
choring occurs, and where the anchoring procedures3.1. Dynamic conceptual space
operate.

The architecture is organized in thremmputational The termknoxeldenotes a point in a conceptual
areas Fig. 4schematically shows the relations among space. From the mathematical point of view, a knoxel
them. Thesubconceptuahrea is concerned with the Kk is a vector in CS; from the conceptual point of view,
low-level processing of perceptual data coming from itis an epistemologically simple element at the consid-
the sensors. We call it “subconceptual” because here ered level of analysis. In the case of static scgdpsa
information is not yet organized in terms of concep- knoxel coincides with a 3D primitive shape, described
tual structures and categories. The subconceptual aredn terms of some constructive solid geometry (CSG)
includes a 3D model of the perceived scenes. Even schema. For example, the robotic fingErg; 1) may
if such a kind of representation cannot be considered be described by three knoxels, corresponding respec-
“low-level” from the point of view of artificial vision, tively to the terminal phalana, the middle phalank
it still remains below the level of conceptual catego- and the upper phalarnx
rization. In order to represent dynamic scenes, we adopted

In the linguistic area, representation and process- an intrinsicallydynamic conceptual spac&he main
ing are based on the formalism of the situation calcu- assumption behind such a dymamic CS is that simple
lus. In theconceptuabrea, the data coming from the motions are categorized in their wholeness, and not as
subconceptual area are organized in conceptual catesequences of static frames. According to this hypoth-
gories, which are still independent from any linguis- esis, every knoxel corresponds to a simple motion of
tic characterization. The symbols in the linguistic area a 3D primitive.
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Formally, a knoxelk can be decomposed in a set
of componentsy;(f), each of them associated with a
degree of freedom of the moving primitive shape. In
other words:

K = [x1(0), x2(0), ..., x, (O], (1)

wheren is the number of degrees of freedom of the
moving 3D primitive (e.g. a phalanx of the finger). In

turn, each motion; () may be considered as the result
of the superimposition of a set of elementary motions

fi:

xi(t) =Y X, fi(0). (2)
J

In this way, it is possible to choose a set of basis
functionsf]’.(t), in terms of which any simple motion
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jectory of the whole finger shown iRig. 3is repre-
sented as a composite motion made up by the knox-
elsky (the motion of the terminal phalare), ki, (the
motion of the middle phalank) andk; (the motion

of the upper phalang). Note that in composite sim-
ple motions the (simple) motions of their components
occur simultaneously. In this case, the configuration
of the conceptual space is completely described by
the three knoxels participating to the motion of the
finger:

CS: {ka, kbv kC} (3)

To consider the composition of several (simple or com-
posite), motions arranged according to some temporal
relation (e.g. a sequence), the notiorsttictured pro-

cessis introduced. A structured process corresponds

can be expressed. Such functions can be associateqq, 5 series of different configurations of knoxels in
to the axes of the dynamic conceptual space as itshe conceptual space. In the transition between two

dimensions. Therefore, from the mathematical point
of view, the resulting CS is aunctionalspace.

In the domain under investigation, the chosen set of

basis functions are the first low frequency harmonics,
according to the well-known Discrete Fourier Trans-
form (DFT, see[25]). By a suitable composition of
the trigonometric functions of all of the geometric pa-
rameters, the overall motion of a 3D primitive is rep-
resented as a point in the functional space.
A single knoxel in CS therefore describessian-

ple motion i.e. the motion of a primitive shape. A
composite simple motiois a motion of a composite

object (i.e. an object approximated by more than one
primitive shapes, as is the case of the robot finger).

A composite simple motion is represented in the CS
by the set of knoxels corresponding to the motions of
its components. For example, the first part of the tra-

subsequent different configurations, there is a change
of at least one of the knoxels in the CS which is the
consequence of a change in the motion of the corre-
sponding 3D primitives. We call “scattering” such a
transition from one knoxel to another. It corresponds
to a discontinuity in time, and is associated with an
instantaneous event.

In the case of the finger, a scattering occurs, e.g.
when the finger has reached its upmost position, and
begins to move downwards to pick up the object. In
the CS representation, this amounts to say that knoxel
ka (i.e. the upward motion of the terminal phalanx) is
replaced by knoxek),, and, similarly, knoxel&p and
kc are replaced bk, andk;. The new CSconfigu-
ration is

CS = {kq. kp, k¢ (4)

Fig. 5. The CAD model of the robot finger.
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The occurred scattering may be described by the or- to bending. For example, if we skts) = 0 at points,
dered set of the two CS configurations, before and af- the snake becomes second-order discontinuous at that

ter the scattering:

(CS CS) = ({ka, kb, Kc}, k3, Kp, kch. ®)

3.2. Extraction of knoxels from image sequences

In the current experimental setup, the role of the
subsymbolicarea is the extraction of the knoxel pa-
rameters describing the 3D motion of the finger parts.
This operation is based on an a priori 3D CAD model
of the finger Fig. 5).

In order to extract the finger contours, the images

point, and generates a corner.
The image functional determines which features
have a low image energy, and hence attract the con-

tours. In general, this functional is made up by three

terms:

Eimage = WiineTiine + Wedgefedget+ WtermEterm,
(10)

where thew’s are constant weights. The three terms
respectively correspond to lines, edges and termina-

acquired by the camera are processed by an algorithMijons, In the version of the model adopted for this

based orsnakeq?2]. A snake is a curve that searches
the image under the influence of forces driven by the
local distribution of the gray levels. Briefly, when the

snake reaches the contour of an object, itis attracted by Eimage= Eedge= —(Go * V2I(x, y))2.
the contour itself, and it adapts its shape to the shape

of the object. When the object moves or changes its
shape, the snake continues to adapt itself in order to
track the object.

Formally, a snake is described in a parametric form
by the following equation:

v(s) = (x(5), y(5)), (6)

wherex(s) andy(s) are the coordinates along the shape
contour ands the normalized arc length:

s €[0,1]. (7)

example, only the edge functional is present, which
attracts the snake to points with a high edge gradient:

(11)

This corresponds to the image functional proposed
by Kass et al[19]. It is a scale-based edge operator
that increases the locus of attraction of energy mini-
mum. G, is a Gaussian of standard deviation sigma
which controls the smoothing process prior to edge
operator. Minima 0fEgqge lies on zero-crossing of
G * V2I(x, y) which defines the edges.

In order to extract the Regions of Interest (ROI)
of the scenes before the application of the snake al-
gorithm, some standard filtering operations are per-
formed (sedrig. 6): starting from the acquired image

The snake model adopted for this example reflects the(a) the noise is reduced by a5 median filter (b)

geometric constraints imposed by the 3D model. The
energyEsnakeOf @ contour is defined as

1
Esnakdv(s)) = /0 (Eint(v(s)) + Eimage(v(s)) ds. (8)

The energy integral is a functional since the variable
is in its turn a function (the shape contour). The inter-
nal energyEjn; is formed from a Tikhonov stabilizer
and is defined by

du(s)? 2

ds?

du(s)?
ds?

where| - | is the Euclidean norm.
The first-order continuity term, weighted bys), let

Eint(v(s)) = a(s) + b(s) ; ©)

then the moving parts are detected by means of the
Canny algorithm (c) and the image intensities between
frames are subtracted in order to individuate the ROIs
(d).

Fig. 7 shows the snake being attracted by the upper
phalanx. As a first step, the snake initialize its posi-
tion and dimensions by individuating the finger con-
tours; then, it tracks the position of the finger during
the evolution of the scené-ig. 8). The geometric in-
formation obtained in this way is sent to a 3D CAD
system that generates a VRML animated model of the
evolution of the finger operation&ig. 9.

Finally, the data concerning the movement of each
phalanx are sent to a software module that performs

the snake behave elastically. The second-order curva-the DFT, in order to generate the knoxel configuration

ture term, weighted b¥(s), let the snake be resistant

of the conceptual space.
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Fig. 6. The filtering operation to individuate the ROI of the finger.

L= L 1
100 200 300 400 500 600

Fig. 7. The snake attracted by the upper phalanx.

4. Anchoring situation calculus to conceptual
spaces

In order to anchor linguistic area expressions to
structures in the conceptual space aaehoring func-
tion @ associates expressions of the situation calculus
to their counterpart in the conceptual space.

4.1. Anchoring actions and situations

The basic idea behind the situation calculus is that
the evolution of a state of affairs is modeled in terms
of a sequence of situations. The world changes when
someactionis performed. So, given a certain situation
S1, performing a certain actiom will result in a new
situationS». Actions are the sole sources of change of
the world: if the situation of the world changes from,
say,S;_1 to §;, then some action has been performed.
The initial situationSg models the initial state of the
domain under consideration.

The situation calculus is based on the language of
predicate logic. Situations and actions are denoted by
first-order terms. The two place functidotakes as its
arguments an action and a situatioh:= do(a, S;_1)

In the linguistic area, the evolution of the concep- denotes the new situatio$y obtained by performing
tual space is represented in terms of logic assertionsthe actiona in the situations;_1.

expressed in thsituation calculugormalism. Indeed,

Classes of actions can be represented as functions.

the representation adopted by the situation calculus is For example, the one argument function symbol
in many respects homogeneous to the conceptual rep-pick up(x) could be assumed to denote the class of

resentation described in the previous section.

the actions consisting in picking up some object
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Fig. 8. The snake tracking the motion of the finger.

Given a first-order termp denoting a specific ob-  situations derive from different situations, they are in
ject, the termpick.up(o) denotes the specific action their turn different, in spite of their similarity.
consisting in picking up. Therefore, a generic situatidf is individuated by

In terms of conceptual spaces, an actioge mapped the unique sequence of actioG®, a1, ..., a,—1, a,)
on a suitable scattering of knoxels, corresponding to an that generates the corresponding sequence of situa-
ordered paifCS_1, CS), where C$_1 and C$ are tions starting form the initial situatiog. As a con-
the configurations of the knoxels, respectively, before sequences; is anchored to the sequence of knoxel

and after the scattering: configurations generated by the sequence of scattering
®(a) = (CS_1,CS). (12) corresponding to the actions:

The initial situationSy corresponds to the initial con-  @(S;) = (CS,CSy,...,CS_1,CS). (14)
figurations of knoxels C§in the conceptual space:

It should be noted that the formula = do(a, S;_1)
P(S0) = (C)- (13) means that the actiom generates the new situation
According to the situation calculus, a situation fully (CS,CS, ..., CS_1, CS) starting from the old one
describes the state of affairs of the domain under con- (C&, CSy, ..., CS_1).

sideration. Different sequences of actions lead to dif- As an example, consider again the finger scenario.
ferent situations. In other words, it can never be the Suppose that the terminal phalanx of the finger ini-
case that performing some action starting form differ- tially rests in the positiorp;. The initial situationSyp

ent situations can result in the same situation. If two is anchored to the configuration €S {ka, kp, K¢},
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Fig. 9. The VRML model of the motion of the finger.

wherek, corresponds the terminal phalanx, d&pdk figuration C$ = {kZ, kp, k¢} is generated. This sec-
to the other to two phalanxes, all in rest state. Now ond scatteringCS;, CSy) corresponds to the instanta-
the terminal phalanx begins to move from positjon neous actioend move_terminalphalanxtphy, p1, p2).
towards positiorpz (suppose that the two other pha- The knoxelk corresponds again to a rest state of
lanxes do not change their position). When the motion the phalanx, but now in the positiopy. The new
of the phalanx starts, a scattering occurs in the con- situation S, is now anchored to the configuration
ceptual space, and the knoXg| changes its position. (CS, CS, CS).

Therefore the new configuration of knoxels is{CS

{k. Kn, kc} and the new situatiors; is anchored to  4.2. Anchoring fluents

the sequencéCS, CSy).

Such a scattering corresponds to an (instanta- As a state of affairs evolves, it can happen that prop-
neous) action that is represented by the formula erties and relations change their values. In the situation
start move_terminalphalanxtphy, p1, p2)  (where calculus, properties and relations that can change their
tphy is the individual constant denoting the terminal truth value from one situation to another are called
phalanx). The knoxek} corresponds to the motion (relational)fluents An example of fluent could be the
of the phalanx. During all the time in which the pha- property of being in motion: it can happen thatitis true
lanx remains in such a motion state, the;@G&mains that a certain object is in motion in a certain situation,
unchanged (provided that nothing else is happening and it becomes false in another. Fluents are denoted by
in the considered scenario), akg continues to be  predicate symbols that take a situation as their last ar-
active in it. gument. For example, the fluent corresponding to the

When the motion of the phalanx ends in the position property of being in motion can be represented as a two
p2, a further scattering occurgy disappears, and a  place relatiorin_motion(x, s), wherein_motiono, S1)
new knoxelk} becomes active. Therefore, a new con- is true if the objecb is in motion in the situatior$.
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Given a situation, a relational fluert is, in gen- to relational fluents. For example, the process of
eral, anchored to a set of (sets of) knoxels. For exam- moving the finger fromp; to p» corresponds to the
ple, the fluenin_motior(x, s) is anchored to the set of  fluent moving_finger f1, p1, p2,s). A formula like
knoxels that correspond to moving shapes in the CS moving_fingen f1, p1, p2, S1) is true if in situationS;
configurations that correspond to a situatiom flu- the finger f1 is moving from positionp; to position
entapproachingx, y, s) is anchored to the set of or-  p,. The anchoring of processes immediately follows
dered pairs of knoxels that represent pairs of shapesfrom the anchoring of actions and fluents without
approaching each other in the CS configurations that particular modifications of the function.
correspond to a situatian And so on.

In the finger example, a fluemhoving_terminal 4.4. Anchoring concurrent actions
phalanxx, p1, p2, s) is anchored to the set of knox-
els moving from a poins to a pointpz in the CS Traditional situation calculus does not allow to ac-
configurations that correspond to a situation count for concurrency. Actions are assumed to occur
In general, the anchoring functiah for fluents be- sequentially, and it is not possible to represent several
haves as follows: instantaneous actions occurring at the same instant.
®(f(F, 5)) = (Kta, kta, ..., ktnl, (15) In the considered setup, this limitations is too severe.

When a scattering occurs in a CS it may happen that
wheref is a fluentx are all the arguments gf except more knoxels are involved. This is tantamount to say
for the last, andckt; are all the knoxels, or knonxel  that several instantaneous actions occur concurrently.
t-uples, that satisfy the fluent in the situations. This is the case, e.g. of the motion of the finger de-

The geometric structure of conceptual spaces, and scribed in the previous paragraph. The trajectory of the
the fact that the distance between points in a concep-whole finger can be represented as a composite mo-
tual space can be interpreted as a measure of theirtion made up by three knoxelk; (the motion of the
similarity [15] make it possible to account for proto- terminal phalanx)ky, (the motion of the middle pha-
typical effects between the instances of a fluent: given |anx) andk. (the motion of the upper phalanx). More
a fluent f, and provided that the sets to whighis in general, according to this terminologypmposite
anchored in the different situations correspondat simple motionsare motions of composite objects. A
ural conceptg7], more central points correspond to composite simple motion corresponds in a CS to the
“prototypical”, or “better” instances of . Many forms set of the knoxels corresponding to the motions of its
of inference can take advantage from this feature of components. The beginning and the end of a com-

the conceptual representation. posite simple motion always involve the scattering of
more than one knoxel. Therefore, composite simple
4.3. Anchoring actions with temporal duration motions always entail some form of concurrency.

Suppose to represent within the situation calculus

In the ordinary discourse, actions may have a tem- the whole motion of the finger. According to what
poral duration. For example, the action of moving stated before, moving the finger is represented as a pro-
from a certain spatial location to another takes some cess, that is started by a certain action, stayt move_
time. In the situation calculus, all actions in the strict finger, and that is terminated by another action, say
sense are assumed to be instantaneous. Actions thaendmove_finger. (For sake of brevity, here we omit
have a duration may be represented as processes, thahe arguments of the actions.) The process of moving
are initiated and are terminated by instantaneous ac-the finger is represented as a fluemwing_fingen(s),
tions (sed?26; 27, Chapter j] Suppose to represent that is true if in the situatiors the finger is mov-
the action of moving the robot fingef; from point ing. The scattering in the CS corresponding to both
p1 to point py. In the terminology of the situation start move finger and end move finger involve three
calculus, this is a process that is initiated by an in- knoxels, namelyks, kp and k¢, that correspond,
stantaneous action, satart move_finger f1, p1, p2), respectively, to the motions of the phalanxes. Con-
and is terminated by another instantaneous action, saysider e.g.start move_finger. It is composed by three
endmove_fingen f1, p1, p2). Processes correspond concurrent actions, sastart move_terminalphalanx



184 A. Chella et al./Robotics and Autonomous Systems 43 (2003) 175-188

start move_middle phalanx and start move_upper sponds to the resting ball. In this situation, the fluents
phalanx each of them corresponding to the scattering quietfingernSo) andquietball(Sg) hold.
of one knoxel in the CS (resjig, kp andkc). When the camera perceives the motion of the finger,

Extensions of the situation calculus that allow for a scattering occurs in the conceptual space, and a new
a treatment of concurrency have been proposed in theconfiguration Cg = {kj, ki, k¢, K} is generated, in
literature[16,23,26,28] We adopt the approach devel- which the scattering of first three knoxels represents
oped in[16] and[26], according to which a two ar-  the beginning of the composite motion of the whole
gument function+ is added to the language. Given finger. The last knoxel, corresponding to the resting
two actions as its arguments, produces an action as  ball, remains unchanged.
its result. In particular, itz; anda, are two actions, In the linguistic area, this scattering corresponds
a1 + az denotes the action of performing anday to an occurrence of the instantaneous composite
concurrently. According to this approach, an action is action start move_finger. The new situationS; =
primitive if it is not the result of performing other ac-  do(start move_finger, Sp) (i.e. the situation resulting
tions concurrently. Iz is a complex action such that from performing inSp the actionstart move_finger)
a=ai+ax+ -+ ay,, then we write that;; € a for corresponds in the CS to the sequence of configu-
eachi such that 1< i < n. rations {CS, CS1}. In the new situation, the fluents

In our approach, primitive actions correspond to the moving_fingerS1) andquietball(S1) hold.
scattering of a single knoxel in the CS; the contem- At a certain time point, the camera perceives the
porary scattering of several knoxels corresponds to a finger touching the ball. A new scattering occurs, that
complex action resulting from concurrently perform- affects the knoxel corresponding to the ball. The con-
ing different primitive actions. For example, the mo- figuration of the conceptual space becomes; ES
tion of the whole finger can be represented by defining {kj, k;,, k¢, Ky} in which the last knoxel scattered to a

two non-primitive actions in the following way: new position corresponding to the motion of the ball.
In the linguistic area, the new scattering corresponds
start move finger= start move_terminalphalanx to an occurrence of the instantaneous agtioshball.
+ start move_middle phalanx The current situation is noW, = do(pushball, S1),

which corresponds to the sequence of CS configu-
rations{CS, CS, CS}. In this situation, the fluents
moving_fingen(Sz) andpushedball(S»2) hold.

Then, the finger stops its motion and a new rest

+ start move_upperphalanx

endmove_finger= end move_terminal phalanx

+ endmove_middle phalanx state begins. A further scattering occurs, involv-
+ endmove_uppetphalanx ing the knoxels that corrspond to the phalanxes of
the finger. The CS configuration becomes:3CS
generated by the listed six primitive actions. {k%, kg, k¢, k’q}. Note that the last knoxel remains in

The anchoring functiom does not need any mod- jts previous position; this because the ball went out
ification; the main difference from the previous cases the visual field of the camera, and, in such cases, the
is that the scatteringCS -1, CS), correspondingto a  system assumes that objects indefinitely remain in the
complex action, involves a change in the position of motion state they were observed the last time.

more than one knoxel in the conceptual space. Now the current situation i$3 = do(stopmove.
finger, S2) and it corresponds to the sequence of CS
4.5. The anchoring system at work configuration§CSy, CS;, CS, CS3}). In this situation,

the fluentsquietfingen S3) andpushedball(S3) hold.

To describe the system at work, consider the as- In the above example, the conceptual space is di-
sertions generated from the sequence of the fingerrectly linked to the environment through perception:
pushing a ball. The initial situatioy corresponds  all the entities represented in the CS have a precise
to an initial configuration C& = {ka, kp, K¢, Kg} counterpart in the external world as perceived by the
in which the first three knoxels correspond to the agent. The symbols generated at the linguistic area
finger phalanxes at rest, and the last knoxel corre- summarize the operations of the finger according to
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the situation calculus formalism. In this way, the con- Presently, we presupposeap-downdesign, in the
ceptual and the linguistic area describe the finger op- sense that the designer of the system is responsible for
erations at two different levels of representation: the several tasks: choosing the dimensions of the concep-
symbolicone (at the linguistic area) and thaalogue tual space, defining the predicates that describe at the
one at the conceptual area. symbolic level the actions and the fluents, and so on.
An important improvement would consist in adding
someself-organizatiorcapabilities. For example, the
5. Discussion system should be able txplorethe CS and discover
interesting structures of knoxels that can be linked to
In the last few years, the problem of anchoring new symbols in the linguistic area, e.g. by means of
symbols to data coming out of sensors became aa system similar of th&SHarchitecture proposed by
relevant topic in autonomous robotics, and several Kuipers[20].
proposals have been developed. In particular, a model A related improvement would consist in adding the
which presents similarities with our approach is due capability of learning sequences of actions by expe-
to Coradeschi and Saffiotti. Briefly, our linguistic area rience and imitation, as proposed by Nicolescu and
corresponds to theBymbol systepand our subsym-  Mataric[24]. In our model, a sequence of actions cor-
bolic area corresponds to thé®erceptual systemnin responds to a sequence of scatterings in the CS. Such
addition, our architecture includes a further level (the sequences could be learned by the system, e.g. by
conceptual area), which is missing in their model. means of suitable recurrent neural networks.
This choice allows the system to anchor symbols to  Presently, or model has been developed having in
representations with a rich geometric structure that mind a single robotic agent. An interesting research
can support various forms of reasoning, thus relieving topic concerns a generalization towards a multiagent
the linguistic formalism of many tasks. architecture. Each agent would be endowed with its
In our model, symbols are not anchored only to own conceptual and linguistic areas, and the passing
static objects (as in the approach by Coradeschi andof messages among agents may be aimedctnaer-
Saffiotti), but also to temporal entities, such as fluents, genceof conceptual spaces. This generalization would
situations and actions. Fluents, actions and situationsbe useful for the anchoring of the multiagent exten-
are “high-level” symbolic terms; they summarize the sions of the situation calculus proposed by Shapiro
dynamics of the scene, as represented by the dynam-et al.[29].
ics of the knoxels in the conceptual space. Another  Multiagent architectures may also pldgnguage
advantage of our approach is that the use of the CSgamesof the kind described by Steel@l] and
dispense us from defining “low-level” sensor fluents Sierra-Santibafef30]. The cooperation and compe-

[33]. tition among the agents may allow them to suitably
According to Coradeschi and Saffiotti, anchoring in- build their conceptual space by taking into account
volves two issues: thepresentationahnd theproce- only the dimensions of the CS relevant to the com-

duralissues. In this paper we primarily face the former. petitions. In this way, the CS evolution would be
As far as procedural issues are concerned, Coradeschidetermined by the interaction of the agents.

and Saffiotti introduce aracking and areacquiring

functionality, in order to follow and update the link

between symbols and percepts. Currently, in our ar- 6. Conclusions

chitecture, the procedural aspects are delegated to the

subconceptual area. For example, the snake algorithms In the above sections, a possible interpretation of
have the burden of tracking and eventually reacquir- the language of the situation calculus in terms of con-
ing the primitive shapes corresponding to the knoxels. ceptual spaces is suggested. In this way, the situation
An interesting line of research may be the formaliza- calculus can be adopted as the formalism for the lin-
tion of the prediction and updating capabilities typical guistic area of the model, with the advantage of using
of the Kalman filters in the terms of conceptual space a powerful, well understood and widespread formal
representations. tool.
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In recent years, in the field afognitive robotics
various formalisms based on situation calculus have
been proposed, such §%2,13,21] They allow the Thanks to Gigina Aiello, Edoardo Ardizzone, Ron
programmer to describe the robot operations at an Arkin, Christian Balkenius, Shimon Edelman, Peter
high level of abstraction, and account for concur- Gardenfors, Donatella Guarino, Lars Kopp, Yves Les-
rent processes with priorities, interrupts, reactivity perance, Fiora Pirri, Ray Reiter, Alessandro Saffiotti,
to exogenous events and so on. Some of such for-Pino Spinelli and Luc Steels for having discussed
malisms, although in simplified versions, have been with us over the years, the topics of this paper. Ig-
tested on working robots for various tasks, such as, nazio Infantino and Francesco Raimondi contributed
among others, mail delivery applicatiofs8], inter- to the hardware and software implementation of the
active museum guidg8] and control of mobile man-  system. This work has been partially supported by the
ipulators[14]. Project “Efficient robot vision algorithms for the auto-

In many of these systems, perception is taken into matic recognition of objects in the International Space
account only in a marginal way: it is modelled by Station” sponsored by the Italian Space Agency (ASI).
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Book review
Evans’Varieties of Reference and the anchoring problem

Michael L. Anderson
Institute for Advanced Computer Sudies, University of Maryland, College Park, MD 20742, USA

To think about how to anchor abstract symbols to calls Russell's Principle: “The principle is that a sub-
objects in the world is to become part of a tradition ject cannot make a judgment about something, unless
in philosophy with a long history, and an especially he knows which object the judgment is about” (p. 89).
rich recent past. It is to ask, with Wittgenstein, “What A judgment is here construed as something very gen-
makes my thought about him, a thought abbium?” eral, of the form:(a is B. Given the generality of the
and thus it is to wonder not just about the nature of account, it seems fairly clear that the ability to make—
referring expressions or singular terms, but about the to determine the truth of—some such judgments is
nature of referring beings. With this in mind | hereby necessary for autonomous systems (even when this
endeavor—briefly, incompletely, but hopefully still ability is not implemented in the form of a per se
usefully—to introduce what in my judgment is the symbolic reasoner). Insofar as this is true—and given
single best philosophical starting-point for those in- that Russell’s principle is correct (I will not delve into
terested in understanding the referential connections Evans’ interesting and convincing defense)—any au-
between symbols and the world, and the cognitive, tonomous system must know (or have the ability to
epistemic, and linguistic capacities which support discover) which thing in the worlda) is.
them: The Varieties of Reference by Gareth Evans. This hardly seems objectionable. The trouble, as

It is worthwhile first of all to note, as the title in- Evans himself admits, is in spelling out what such
dicates, that it is thearieties of reference that are of  knowledge amounts to. He suggests that the condi-
interest. It is Evans’ contention that no single theory tion for knowing which thing(a) is might be met by
can account for our various use of singular terms; al- an agent who: (1) possesses the knowledge of some
though the different kinds of reference share certain discriminating feature ofa), or (2) has the ability to
features, and rely on related cognitive, linguistic and locate(a) in her vicinity, or (3) has the capacity to rec-
epistemic capacities, it appears that, rather than beingognize(a), that is, the disposition to identify one (and
a class defined by necessary and sufficient criteria for only one) object aga). Of course, even this speci-
membership, they form a family of abilities, united, fication of conditions leaves ample room for alternate
like a thread, by its overlapping fibers. interpretations (Evans spends some time on an effec-

Evans does not defend this claim so much as dis- tive critique of the photograph and causal theories of
play it in his account. Much of the underlying vari- reference, demonstrating the inadequacy of their ver-
ety in reference can be brought out by considering the sions of the above criteria) but it does neatly and natu-
guiding principle of the work as a whole, which Evans rally suggest three varieties of reference deserving of

further investigation: (1) information-based reference,
E-mail address mikeoda@cs.umd.edu (M.L. Anderson). (2) demonstrative refe_renge, and (3) recognition-
1 Gareth Evans, The Varieties of Reference, Clarendon Press, based reference, to which list Evans adds some other
Oxford, 1984, xiii+ 418 pages, ISBN 0-19-824686-2. items, of which self-reference is the most important.

0921-8890/03/$ — see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0921-8890(03)00022-8
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Taking each in turn, and roughly, an information- challenges!); one must connect with the right sym-
based thought abouy#) “is the result of a belief about  bol, in the right way, so as to support appropriate
how the world is which the subject has because he reasoning about, and reaction to, the objects of the
has received information (or misinformation) from world.
the object” (p. 121). In this case, the reference is to  In addition to recommendinghe Varieties of Ref-
the object from which the information derives, even erence as the single best philosophical resource for
in the case where that information is mistaken, as in those interested in this immense project, | have also
the famous case of referring to ‘the man holding the compiled a brief bibliography of core readinds-12],
champagne’, whose glass is in fact full of sparkling and a longer list of other useful and important work
cider. The paradigm case of demonstrative reference[13—64] It is my hope that the collective encounter
is the simple ‘this’, but also includes ‘that’, ‘here’,  with these works can help build a Lingua Franca of
‘there’, and all like descriptionless, indexical identi- anchoring, without which the collaborative effort re-
fications. Finally (I shall here ignore self-reference, quired to advance understanding in this difficult area

although Evans’ account of it is interesting, and will be much hindered.

the relation he describes between ‘here’-thoughts
and ‘I'-thoughts is central to his overall account)

recognition-based reference deals with the case where

an agent refers to an object previously encountered
and remembered. Evans writes: “[I]f a subject is dis-
posed to identify a particular object as the object of
his thought, and in so doing is exercising a genuine
recognitional capacity stemming from the encounter
or encounters from which the memory information
that saturates the thought derives, then, it seems to
me, that object is the object of his thought, irrespec-
tive of whether or not it can be identified by means of
any descriptions which the subject might otherwise
have” (p. 269).

It is likely that Evans’ discussions of demonstrative
and recognition-based reference will have the mostim-
mediate relevance to those involved in understanding
anchoring. And in this regard it is worth mentioning
what | take to be Evans’ greatest strength, considered
from the standpoint of one interested in the behav-
ior of autonomous, embodied agents: his insistence on
situating reference in the larger context of being and
acting in the world. | am impressed in particular with
his argument that demonstrative reference requires of
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In his book,Conceptual Spaces. The Geometry of (e.g., concerned with functional or social aspects, or
Thought!, Peter Gardenfors proposes the notion of deriving from scientific categorizations, as is the case,
conceptual space as a way to overcome the opposition for example, ofmass).
between the traditional, symbolic representations of Each quality dimension has a particular geometric
“good old-fashioned” artificial intelligence on the one structure (typically, a topological or a metric struc-
side, and the connectionist, subsymbolic representa-ture). For example, theveight dimension is presum-
tions on the other side. Conceptual spaces would offer ably isomorphic to the half-line of real non-negative
a third kind of approach to knowledge representation numbers. Other quality dimensions have different
in the cognitive sciences. structures: thdwe dimension of thecolor domain is

The conceptual space approach is based on a gedikely to be circular; there can be discrete dimensions,
ometric treatment of concepts and knowledge repre- and so on.
sentation. According to Gardenfors, concepts are not In any case, the form of a conceptual space strictly
independent of each other, and are structureddoto depends on the cognitive structure and abilities of a
mains. Examples of possible domains are shape, color, given class of agents. For example, the color domain
taste, sound, the domain of kinematic properties, the in non-human animals, or in artificial agents with dif-

domain of dynamic properties, and so oncéncep- ferent kind of sensors can deeply differ from the hu-
tual space is structured as a set of domains. Each do- man color domain. Moreover, in human beings certain
main is in its turn defined in terms of a setafality dimensions can be assumed to be innate, other to de-
dimensions. For example, the domain ablor could pend from cultural factors.

be made up by such dimension hse, saturation According to Gardenfors, given a certain con-
andbrightness, the dimensions of the domain tefste ceptual space individual objects are represented as

could beswest, bitter, saline and sour. Other exam- points: every object is characterized by a set of val-
ples of quality dimensions for some possible domain ues, one value for each dimension of the domains
could betemperature, weight, time, pitch. Quality di- constituting the conceptual space. The values of the
mensions can be either more or less tightly connected dimensions are the coordinates of the point represent-
to observable properties, or more abstract in nature ing the object. As a consequence of the geometric
- structure of the dimensions, a notion dfstance

* Corresponding author. can be defined between the points of a space. The
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Concepts are represented aggions in a concep- most forms of spatial and causal reasoning are likely to
tual space: a concept corresponds to the region of thebe performed at the conceptual level, taking advantage
space in which are located the points that share cer-from the geometric structure of conceptual spaces. In
tain features at some degree. (Gardenfors distinguishesthis perspective, the role of the symbolic level could
betweenproperties, which are based on a single do- be primarily concerned with communication, and with
main, andconcepts, which involve different domains.  some special forms of abstract reasoning.

For sake of simplicity, we shall not consider this dis- Let us consider now the relevance of conceptual
tinction in the following.) The geometric structure of spaces for anchoring. Anchoring has to do with con-
conceptual spaces and the interpretation of distance innecting symbols and sensor data that refer to the
terms of similarity allows for a geometric treatment same physical object, and with preserving such a
of concepts. Different geometric properties of regions correspondence as the environment or the state of
correspond to different kinds of concepts. A special the agent change. Sensor data pertain to the subcon-
role in Gardenfors’ theory is played by so calleat- ceptual level. Conceptual spaces act as an intermedi-
ural concepts, which correspond to convex regions in ary between symbols and subconceptual processing.
a conceptual space. In the case of natural concepts,Therefore, conceptual spaces are a good candidate for
conceptual spaces allow to account for prototypical the study and formalization of anchoring.

effects: given a certain convex region representing a We said before that individual objects correspond
natural concept, the central points of the region cor- to points in a conceptual space. This is certainly true
respond to “better”, or “more typical’ instances of from a synchronic point of view. However, in a di-
the category, the peripheral points correspond “less achronic perspective, objects can be more profitably
typical” instances. seen adrajectories in conceptual spaces. As a given

Such a geometric treatment of concepts is employed state of affairs evolves, the properties of the involved
by Gardenfors in order to face many problems within objects change: if an object moves, its spatial coordi-
the field of the cognitive sciences. Examples taken nates are modified; it can happens that objects alter
from the book include categorization, concept forma- their shape or color during the course of time, and so
tion, concept learning, induction, metaphors, lexical on. As the properties of objects are modified, the points
semantics for natural languages. representing them in a conceptual space move, and

Symbolic, subsymbolic and conceptual approaches describe a certain trajectory. Such trajectories usually
must not be intended as competing paradigms. Rather,have relevant geometrical properties, they show im-
according to Gardenfors, they correspond to different, portant regularities. For example, as far as the changes
coexisting levels of representation within a cognitive of some object are gradual the corresponding trajec-
system. Subsymbolic (or subconceptual) level is the tory is smooth, physical laws constrain the change of
lowest level of representations, directly connected to the values of the various dimensions, and so on.
perception; in it information is represented in terms of  In our opinion, anchoring could take great advan-
neural patterns of activation. The linguistic level is the tage from a geometric formulation in terms of con-
most abstract one. The conceptual level (i.e., the level ceptual spaces. Let us consider two typical anchoring
of conceptual spaces) is situated between symbols andfunctionalities, namelytracking and reacquiring.
subsymbolic patterns. In particular, the conceptual Tracking consists in keeping a symbol aligned to the
level can be seen as an internal semantic level for the corresponding perceptual data as such data change in
symbolic representations: symbolic expressions are time. Rather than some form matching of (possibly
given a meaning in terms of geometric structures in complex) symbolic descriptions to perceptual data,
conceptual spaces. In this perspective, symbol ground-tracking could be more fruitfully seen as a form of in-
ing can be achieved through the geometric represen-ference at the conceptual level, that takes advantages
tations of the conceptual level, which, in their turn, from the geometric structure of conceptual spaces.
are connected to action and perception through the Starting from the geometric properties of the corre-
subsymbolic computations at the subconceptual level. sponding trajectory, hypotheses can be made concern-

Many forms of inference can be accounted for at ing the future evolution of a given object. Figuring out
the conceptual level. In particular, it is our opinion that the evolution of an object (its future position, or the
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way in which his features are going to change) could
allow to keep its symbolic representation aligned to
the corresponding perceptual data. In this spirit, track-
ing can be considered as a matter of extrapolating

trajectories in a conceptual space.

Reacquiring has to do with recognizing an object
that has been re-observed after some time (for exam-
ple, after that it has been occluded for a while behind
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