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Face Recognition With Radial Basis Function (RBF)
Neural Networks
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Abstract—A general and efficient design approach using aradial ables in facial images acquired under real-world scenarios [1].
basis function (RBF) neural classifier to cope with small training As stated by Mosest al. [2], “The variations between the im-
sets of high dimension, which is a problem frequently encountered ages of the same face due to illumination and viewing direction
in face recognition, is presented in this paper. In order to avoid are almost always larger than image variations due to changes

overfitting and reduce the computational burden, face features are . he f identitv.” Thi kes f L hal
first extracted by the principal component analysis (PCA) method. in the face identity.” This makes face recognition a great chal-

Then, the resulting features are further processed by the Fisher's lenging problem. In our opinion, two issues are central to face
linear discriminant (FLD) technique to acquire lower-dimensional recognition:

discriminant patterns. A novel paradigm is proposed whereby data 1) \what features can be used to represent a face under envi-
information is encapsulated in determining the structure and ini- ronmental changes?

tial parameters of the RBF neural classifier before learning takes 2 H lassi f . based he ch
place. A hybrid learning algorithm is used to train the RBF neural ) How to classify a new face image based on the chosen

networks so that the dimension of the search space is drastically re- representation?
duced in the gradient paradigm. Simulation results conducted on For 1), many successful face detection and feature extrac-
the ORL database show that the system achieves excellent perfor-tion paradigms have been developed [3]-[12]. The frequently
mance both in terms of error rates of classification and learning jged approaches are to use geometrical features, where the rel-
efficiency. ative positions and shapes of different features are measured
Index Terms—Face recognition, Fisher’s linear discriminant, [3], [4]. At the same time, several paradigms have been pro-
ORL database, principal component analysis, radial basis function posed to use global representation of a face, where all features
(RBF) neural networks, small training sets of high dimension. of a face are automatically extracted from an input facial image
[5]-12]. It has been indicated in [4] that these algorithms with
global encoding of a face are fast in face recognition. In [5],
- ) ~singular value decomposition (SVD) of a matrix was used to
M ACHINE recognition of human face from still and videogxtract features from the patterns. It has been illustrated that
I images has become an active research area in the CQgular values of an image are stable and represent the alge-
munities of image processing, pattern recognition, neural ngfxic attributes of an image, being intrinsic but not necessarily
works and computer vision. This interest is motivated by widgsjple. The eigenface approach of describing the features of a
applications ranging from static matching of controlled formafce was presented in [6]. The key idea is to calculate the best
photographs such as passports, credit cards, driving licens@gyrdinate system forimage compression, in which each coordi-
and mug shots to real-time matching of surveillance video inate is actually an image thatis called an eigenpicture. However,
ages presenting different constraints in terms of processing fige eigenface paradigm, which uses principal component anal-
quirements [1]. Although researchers in psychology, neural sgkis (PCA), yields projection directions that maximize the total
ences and engineering, image processing and computer Visightter across all classes, i.e., across all face images. In choosing
have investigated a number of issues related to face recognijgg projection which maximizes the total scatter, the PCA re-
by human beings and machines, it is still difficult to design a@ins unwanted variations caused by lighting, facial expression,
automatic system for this task, especially when real-time idenfjnq other factors [7]. Accordingly, the features produced are not
fication i§ required. The reasons for this difficulty are tWOjf0|fjhecessarily good for discrimination among classes. In [7], [8],
1) Face images are highly variable and 2) Sources of variabilifye face features are acquired by using the fisherface or discrim-
include individual appearance, three-dimensional (3-D) posgant eigenfeature paradigm. This paradigm aims at overcoming
facial expression, facial hair, makeup, and so on and these fags drawback of the eigenface paradigm by integrating Fisher's
tors change from time to time. Furthermore, the lighting, backnear discriminant (FLD) criteria, while retaining the idea of the
ground, scale, and parameters of the acquisition are all vafjgenface paradigm in projecting faces from a high-dimension
image space to a significantly lower-dimensional feature space.
Instead of using statistical theory, neural-networks-based fea-
Manuscript received March 29, 1999; revised March 5, 2001 and Decembgfe extraction has been reported recently [9]-[12]. The goal of
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work can serve as the input layer of another neural network ~ # (igh-dimensional datz)

classify face images. Original data

In many pattern recognition systems, the methodology fr —
quently used is the statistical approach, whereby decisionthe o7 ﬁﬁﬁgﬁ‘:" Most discriminating
derived from statistics of input patterns is used to design a cl 3 gr feature P Y
sifier [13]. Although this paradigm has been successfully a PCA FLL,—>[ RBF neural classifier }—»
plied to solve various problems in pattern classification, it thoSt expressive

difficulty in expressing structural information unless an appr features
priate choice of features is made possible. Furthermore, this.
proach requires much heuristic information to design a clas

fier [14]. Neural-networks-based paradigms, as new means
implementing various classifiers based on statistical and stru..
tural approach, have been proven to possess many advantages
for glas§|f|cat|on because of their learning abllltyland gOO(_j geEl’g. 1. Schematic diagram of RBF neural classifier for small training sets of
eralization [9]-{12], [14]-[16]. Generally speaking, multilay-high dimension.

ered networks (MLNSs), usually coupled with the backpropaga-
tion (BP) algorithm, are most widely used in face recognition
[9]. Yet, two major criticisms are commonly raised against the
BP algorithm: 1) It is computationally intensive because of its
slow convergence speed and 2) there is no guarantee at all that
the absolute minima can be achieved. On the other hand, RBF . : )
neural networks have recently attracted extensive interestsinthe ~ r&ining sample size must be quite large [30]. It has been
community of neural networks for a wide range of applications further pointed out that the sample size needs to increase

[17]-{29]. The salient features of RBF neural networks are as ~ €xPonentially in order to have an effective estimate of
follows. multivariate densities as the dimension increases [31].

« They are universal approximators [17]. 4) Singular problemlf n is less tham+1, the sample covari-

. They possess the best approximation property [1] ance matrix is singular, and therefore unusable regardless
Y POSSE >t app property j of the true value of the covariance matrix [32].
 Their learning speed is fast because of locally tuned neu-

Sample
information

3) Small-sample effectit has been indicated that small
sample can easily contaminate the design and evaluation
of a proposed system [30]. For applications with a large
number of features and a complex classification rule, the

rons [19]. To circumvent the aforementioned problems, a systematic
« They have more compact topology than other neural négethodology for RBF neural classifier design to deal with small
works [20]. training sets of high-dimensional feature vectors is presented,

Normally, RBF neural networks are widely used for functio@S Shown in Fig. 1. The proposed methodology comprises the
approximation and pattern recognition wherein the pattern d@!lowing parts: 1) The number of input variables is reduced
mension in these applications is usually small. As pointed out Byyough feature selection, i.e., a set of the most expressive fea-
Moody and Darken [19], “RBF neural networks are best suitddres is first generated by the PCA and the FLD is then imple-
for learning to approximate continuous or piecewise continuog€ntéd to generate a set of the most discriminant features so
real-valued mapping where the input dimension is sufficientﬂ?at dlffgrent classes of training data can be separated as far
small.” When RBF neural networks are implemented in fa@® possible and the same classes of patterns are compacted as

recognition, such systems possess the following characteristfl@S€ @s possible; 2) A new clustering algorithm concerning
« Hiah dimension. For example. a 128128 image will category information of training samples is proposed so that
hag\]/e 16384 feaiures Pie, 9 homogeneous data could be clustered and a compact structure

f an RBF neural classifier with limited mixed data could be
* Small sample sets. The samplg pattems are very few c,rhieved; 3) Two important criteria are proposed to estimate the
each class,.say, only one-ten Images per person so gty \yidths of RBF units which control the generalization of
n < v (n s the numbgr O.f training patterns,is the RBF neural classifier; and 4) A hybrid learning algorithmis pre-
grl:(r)nv\tl)r(]a:noglfg]atures), which is more severe than the Ca&nted to train the RBF neural networks so that the dimension

S . ] of the search space is significantly reduced in the gradient par-
Therefore, face recognition is substantially different from claggjgm.

sical pattern recognition problem, for instance, character recog-The rest of this paper is organized as follows. Section I
nition [14], in which there are a limited number of classes withresents the architecture of RBF neural networks and the
a large number of training patterns in each class. This situatigflated design problems when they are used as a classifier.
leads to the following challenges in designing an RBF neurgkction 111 provides the procedure of extracting face features.
classifier: In Section IV, we propose a systemic approach for structure
1) Overfitting problem It has been indicated that if the di-determination and initialization of RBF neural networks. A
mension of the network input is comparable to the sizeybrid learning algorithm is developed in Section V. Experi-
of the training set, the system is liable to overfitting anehental results are demonstrated in Section VI. In Section VII,
result in poor generalization [16]. we discuss some important issues concerning performances of
2) Overtraining problem High dimension of the network the proposed approach and provide more insights into several
input results in complex optimal processing and slow comaradigms, which are closely related to our proposed paradigm.
vergence. Hence, it is likely to cause overtraining. Finally, conclusions are drawn in Section VIII.
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Fig. 2. RBF neural networks.

Il. RBF NEURAL NETWORKS

An RBF neural network, shown in Fig. 2, can be considered
as a mappingit” — R°.

Let P € R" be the input vector an@; € k" (1 < ¢ < u) be
the prototype of the input vectors. The output of each RBF unit
is as follows:

v

(b)
Fig.3. Two-dimension patterns and clustering: (a) conventional clustering, (b)
R(P)=R,(|P-Cy|) i=1,...,u (1) clustering with homogeneous analysis.

where|| - || indicates the Euclidean norm on the input space. 4 _
Usually, the Gaussian function is preferred among all possible Classj
radial basis functions due to the fact that it is factorizable. Hence ’
P—Cj|?

R;(P) = exp {—w

7

P

(e
- Class ¥

whereo; is the width of theith RBF unit. Thejth outputy, (P)
of an RBF neural network is

A 4

Fig. 4. Effect of Gaussian widths in clustering.

yi(P) = ZRi(P) X w(j,4) &) [21], are a logical approach to solve the problems [19], [22].
=1 However, it should be noted that these clustering approaches
whereRy = 1, w(yj, ) is the weight or strength of thigh re- are inherently unsupervised learning algorithms as no category
ceptive field to thejth output andw(j, 0) is the bias of theith  information about patterns is used. As an illustrative example,
output. In order to reduce the network complexity, the bias eé@nsider a simple training sétx, v ) illustrated in Fig. 3. The
not considered in the following analysis. black and white data points reflect the corresponding values as-
We can see from (2) and (3) that the outputs of an RBF neusaimed by the dependent varialgle If we simply usek-means
classifier are characterized by a linear discriminant functioolustering approach without considerigg, two evident clus-
They generate linear decision boundaries (hyperplanes) in tees as shown in Fig. 3(a) are achieved. This brings about signif-
output space. Consequently, the performance of an RBF neucaht misclassification initially. Although the clustering bound-
classifier strongly depends on the separability of classes in #uges are modified in the subsequent learning phase, this could
u-dimensional space generated by the nonlinear transformateasily lead to an undesired and highly dominant averaging phe-
carried out by the; RBF units. nomenon as well as to make the learning less effective [21].
According to Cover’s theorem on the separability of patterri® preserve homogeneous clusters, three clusters as depicted in
wherein a complex pattern classification problem cast inFg. 3(b) should be created. In other words, a supervised clus-
high-dimensional space nonlinearly is more likely to be linearkgring procedure which takes into consideration the category in-
separable than in a low-dimensional space [33], the numbermation of training data should be considered.
of Gaussian nodes > r, wherer is the dimension of input ~ While considering the category information of training pat-
space. On the other hand, the increase of Gaussian units reays, it should be emphasized that the class memberships are
result in poor generalization because of overfitting, especiallypt only depended on the distance of patterns, but also depended
in the case of small training sets [16]. It is important to analyzen the Gaussian widths. As illustrated in Fig./4,is near to
the training patterns for the appropriate choice of RBF hiddéine center of clasg in Euclidean distance, but we can select
nodes. different Gaussian widths for each cluster so that the peint
Geometrically, the key idea of an RBF neural network is thas greater class membership to clagban that to clasg.
partition the input space into a number of subspaces which dieerefore, the use of class membership implies that we should
in the form of hyperspheres. Accordingly, clustering algorithmaropose a supervised procedure to cluster the training patterns
(k-means clustering, fuzzy-means clustering and hierarchicabnd determine the initial Gaussian widths, and this work will be
clustering) which are widely used in RBF neural networks [19¢laborated in Section IV.
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[ll. EXTRACTION OF FACE FEATURES Thus, the feature vector? for any query face images in the

A. Principal Component Analysis (PCA) most discriminant sense can be calculated as follows:

Let a face imageZ; be a two-dimensionat: x m array of P=El ina U" 2. (10)
intensity values. An image may also be considered as a vector
of dimensionm?2. Denote the training set of face images by ~ Remarks:

Z = (Z1,22,...,%y) C Rm**n and we assume that each 1) From (7), we seeank(S,,) < min{r,c¢(n’ — 1)}. In
image belongs to one efclasses. Define the covariance matrix order to prevents,, from becoming singular, the value
as follows [6], [13]: of » should be no more tham — c.
N 2) Also we can see from (6) thednk(S;,) < min{r,c—1}.
1 v AT Accordingly, there are at most— 1 nonzero generalized
a n ;(ZZ %= 2) eigenvectors. In other words, the FLD transforms thu-
T @) mension space int@: — 1)-dimension space to classify

classes of objects.
where ® = (®,,®,...,®,) C fr*xn and 7 — 3) I_t shou!d be nqteq that the l_:LD is a linear Fransforma-
tion which maximizes the ratio of the determinant of the
between-class scatter matrix of the projected samples to
the determinant of the within-class scatter matrix of the
projected samples. The results are globally optimal only
for linear separable data. The linear subspace assumption
is violated for the face data that have great overlappings
[34]. Moreover, the separability criterion is not directly
related to the classification accuracy in the output space
x=u"z (5) [34]. o
4) Several researchers have indicated that the FLD method
achieved the best performance on the training data, but
B. Fisher's Linear Discriminant (FLD) generalized poorly to new individuals [35], [36].
Therefore, RBF neural networks, as a nonlinear alternative
ith good generalization, have been proposed for face classifi-
ation. In the sequel, we will use the feature vectBrimstead
f their corresponding original datéa in Sections IV-VIII.

(1/n) >, Z;. Then, the eigenvalues and eigenvectors of the
covariancel’ are calculated. Let/ = (U, Us,...,U,.) C

R xn (r < n) be ther eigenvectors corresponding to the
r largest eigenvalues. Thus, for a set of original face images
Z C R™Xn their corresponding eigenface-based feature
X C R"*™ can be obtained by projecting into the eigenface
space as follows:

tion for class discrimination but dimension reduction. Accor
ingly, the FLD is applied to the projection of the set of trainin%
samples in the eigenface spa&e = (Xi,Xo,...,X,) C
=" The paradigm finds an optimal subspace for classifj-
cation in which the ratio of the between-class scatter and tLVe' STRUCTUREDETERMINATION AND INITIALIZATION OF RBF
within-class scatter is maximized [7], [8], [13]. Let the between- NEURAL NETWORKS

class scatter matrix be defined as A. Structure Determination and Choice of Prototypes

Actually, the PCA paradigm does not provide any inform%—/

e From the point of view of face recognition, a set of optimal
Sp=>_ n(X'-X)(X' - X)" (6) boundaries between different classes should be estimated by
i=1 RBF neural networks. Conversely, from the point of view of
RBF neural networks, the neural networks are regarded as a
mapping from the feature hyperspace to the classes. Each pat-
< _. . tern is represented by a real vector and each class is assigned for
Sw=> Y (X-X)(X-X)" (7)  a suitable code. Therefore, we set:
=1 Xicn  the number of inputs to be equal to that of features (i.e.,

- n ; ; the dimension of the input space);
whereX = (1 ., X, isthe mean image of the ensemble, ’
(1/n) EFl J g  the number of outputs to be equal to that of classes (see

andX’ = (1/n") Z}il X' is the mean image of thih class, Fig. 2).
n" is the number of samples in thin class, and is the number
of classes. The optimal subspaé,,;im.1 by the FLD is deter-
mined as follows [7], [8], [13]:

and the within-class scatter matrix be defined as

It is cumbersome to select the hidden nodes. Different ap-
proaches revolving around increasing or decreasing the com-
plexity of the architecture have been proposed [19]—-[28]. Many

|ETSBE| researchers have illustrated that the number of hidden units de-
Eoptimal = arg max m =[e1,€2,...,6c—1] (8) pends on the geometrical properties of the training patterns as
’ w well as the type of activation function [24]. Nevertheless, this is
where[er, ea, . .., e._1] is the set of generalized eigenvector§ti" an open issue in_ implementing RBF neural networks. Our
of Sz and Sy corresponding to the — 1 largest generalized Proposed approach is as follows.
eigenvalues\;, i = 1,2,...,c—1,i.e., 1) Initially, we set the number of RBF units to be equal to

that of the outputy, = s, i.e., we assume that each class
SgE; = \SwkE;, i=1,2,....¢—1. 9) has only one cluster.



ERet al. FACE RECOGNITION WITH RBF NEURAL NETWORKS 701

2) For each RBF unik, &k = 1,2,...,u, the center is se- @ o
lected as the mean value of the sample patterns belonging

to classk, i.e., @

R U I g
C nk;a k=1,2,...,u (11) @
whereP¥ is theith sample belonging to clagsandn* is
the total number of training patterns in class ? ‘
3) For any clasg, compute the Euclidean distanégfrom
the meanC* to the furthest point”*( f) belonging to >
classk, i.e., |
(b)
di. = ||P(f) = C¥|. 12 A

4) For any clasg:
* Calculate the distana&:(%, j) between the mean of
classk and the mean of other classes as follows:

4

de(k,j) = |C* = CI|| j=1,2,....s, j#£k (13)

* Find
(0

Qin(k, ) = argmin(de(k, j)) i=1,2,...,s, j#k Fig.5. Clusters and distribution of sample patternsd(a} d; < duin(k, 1).
l (b)dr +di > dumin(k, 1) and|dy, —d;| < duin(k.1). (€)dr +di > dumin(k, 1)
(14)  and|dy + di| > duin(k. 1).
» Check the relationship betweeh,:,(k,!) anddy,
di.

Case 1)No overlappinglf dy, +d; < dmin(k, 1), 4
classk has no overlapping with other
classes [see Fig. 5(a)].

Case 2)OverlappingIf di, + d; > dpin(k,1),
class £ has overlapping with other
classes and misclassification may occu
in this case. Fig. 5(b) represents the
case thatdy, + d; > dmin(k,1) and
|d, — di] < dmin(k, 1), while Fig. 5(c) Fig. 6. Splitting of one class into two clusters.
depicts the case thd+d; > dpin(k,1)

4
v

. _ _and|dk = di| 2 duin(k, ). regions while the amount of overlapping is controlled by the
5) Splitting Criteria: widths of RBF units [22], [24]. If no overlapping occurs, the
i) Embody Criterion If classk is embodied in class system will not give meaningful outputs for inputs between the
I completely, i.e.dy + di > dumin(k,?) and|dy — inputs for which the system is designed, i.e., the RBF units do
di| > dumin(k, 1), classl will be splitinto two clus- not generalize well. However, if the widths are too large, the
ters, see Fig. 6. interaction of different classes will be great and the output be-

ii) Misclassified Criterion If class% contains many longing to the class will not be so significant [25], while the
data of other classes (in the following experimenbutput of other classes may be large so that it will lead to mis-
this implies that if the number of misclassified datlassification greatly. Hence, our goal is to select the widths in
in classk is more than one), then classwill be  such a way that they would minimize overlapping of nearest
split into two clusters. neighbors of different classes to preserve local properties, as

If classk satisfies one of the above conditions, clasaell as maximize the generalization ability of the network [25].

k will be split into two clusters in which the centers ardHere, we present a general approach to select the widths of an
calculated based on their corresponding sample patteRBF neural classifier according to two criteria.

according to (11). o 1) Majority Criterion: The majority criterion can be de-
6) Repeat (2)—(5), until all the training sample patterns meet ~ gcriped as follows: In any class, each datum should have
the above two criteria. more than 50% confidence level for the class it belongs
. to. The detailed calculations are presented as follows:
B. Estimation of Widths First, d;., the distance from the mean to the furthest

Essentially, RBF neural networks overlap localized regions  point belonging to clash, is calculated according to (11)
formed by simple kernel functions to create complex decision and (12).
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Next, define the widtho® of classk considering the GivenR € " and? = (11,15, .., T,)T € R¥*", where

confidence level as n is the total number of sample patterfisjs the target matrix
. ds, (15) consisting of “1's” and “0’s” with exactly one per column that
ok = . oo . . ; .
W g identifies the processing unitto which a given exemplar belongs,

find an optimal coefficient matri¥/* € R*** such that the
whereg is called the confidence coefficient, which lies ingrror energyETE = (T — Y)Y(T - Y) is minimized. This

the ranged.5 < 8 < 1. problem can be solved by the LLS method [15]
2) Overlapping Criterion The overlapping criterion can be
described as follows: For any claksthe choice ob*, W* = T(RY R)~*R* 1)
considering the overlapping of the nearest cldssleter-
mined by

whereRT is the transpose @k, andR+ = (RT R)~'R% is the
o® =0 X dpin(k, 1) (16) Pseudoinverse af.

wherey is an overlapping factor that controls the overlag. Modification of Parameters of RBF Units

of different classesd,,in(%,1) is the minimum distance

between the center of claBsnd centers of other classes
Then, the width of clask is finally determined by El

0% = max (rf"fv, U]’;) . a7) s

1 2
i _ - L1 _
The key idea of this approach is to consider not only the E = 2 Z (tk yk) t=1,2,...,n (22)
intra-data distribution but also the inter-data variations. =1
In order to efficiently determine the wid#*, the pa-

, _ wherey! andt. represent thesth real output and the target
rametem could be approximately estimated as follows: Y x rep P d

E outputy}, can be calculated readily from (22)
=V | ln 38|
NS (18) OE! . .
Z mm( ’ ) 8—l = - (tk - yk) . (23)
h=1 Yr

The choice of 3 is determined by the distribution
(de(k, ), dy ) of sample patterns. If the data are scattered For the internal nodes (centérand widtheo), the error rate

largely, but the centers are close, a smialshould be can be derived by the chain rule as follows [15]:
selected as demonstrated in Table IV. Normallylies

in the range).7 < 5 < 1.8. The best values of andn ACY(i,j) = — gﬂ
are selected when the best performance is achieved for aCY(i, 5)
training patterns. IE' dy;, IR,
B 8yk 8Rl 8CI(L J)
V. HYBRID LEARNING ALGORITHM i _172’ o j=1,.
The adjustment of RBF unit parameters is a nonlinear process . .
while the identification of weightv(¢, 5) is a linear one. Though _252 (% w'(k, 5) - R,
we can apply the gradient paradigm to find the entire set of .
optimal parameters, the paradigm is generally slow and likely . (Lvl) — C'(4,5) (24)
to become trapped in local minima. Here, a hybrid learning al- (05)2
gorithm, which combines the gradient paradigm and the linear aEl
least square (LLS) paradigm to adjust the parameters, is pre- == 5
sented. J
_ OF' 9y, 8R§» PR
A. Weight Adjustment =" Q—%WW J= hEnu
Let » and s be the number of inputs and outputs respec- [EE=xezlE:
tively, and suppose that RBF units are generated according —252 tl “(k,j)- R l' BT
to the above clustering algorithm for all training patterns. For ("j)
any input?;, the jth outputy;, of the system is (25)
y]i,(g) - Z w(j, k) X Ry, (19) whereAC! (4, j) is the central error rate of thith input variable
el of the jth prototype at théth training patternAa]l» is the width
or error rate of thejth prototype at théth pattern,P(¢,1) is the

sth input variable at thé&h training pattern and is the learning
Y =WR. (20) rate.

Here, the parameters (centers and widths) of the prototypes
are adjusted by taking the negative gradient of the error function

output at thelth pattern, respectively. The error rate for each
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C. Learning Procedure TABLE |
i i i Two PASSES IN THEHYBRID LEARNING PROCEDURE
In the forward pass, we supply input data and functional sig-

nals to calculate the output; of the jth RBF unit. Then, the Forward pass Backward pass
weight W is modified according to (21). After identifying the Weight LLS Fixed
weight, the functional signals continue going forward till they . peri—e Fixed Gradiont descent

error measure is calculated. In the backward pass, the errc
propagate from the output end toward the input end. Keeping tl
weight fixed, the centers and widths of RBF nodes are modified
according to (24) and (25). The learning procedure is illustrat
in Table I.
Remarks:
1) If we fix the parameters of the RBF units, the weights fourgagiaai i
by the LLS are guaranteed to be global optimum. Accor1. -t
ingly, the dimension of the search space is drastically ... - E.|...
duced in the gradient paradigm so that this hybrld learnirse

Signals Node outputs Error rate

paradigm.
2) It is well known that the learning ratgis sensitive to the
learning procedure I is small the BP algorithm will

speed will be slow since the gradlent must be calculatéa

many times. On the other hand,&fis large, convergence &
speed will be very fast initially, but the algorithm will &
oscillate around the optimum value. Here, we propose t

approach so that will be reduced gradually. We compute » "'

S = Ina‘X(leax N ’Yia lein) (26)

wherelryax, Irmin are maximum and minimum learningfe:
rates, respectively, is the number of epochs, andis a
descent coefficient which lies in the rangec v < 1.
3) As the widths are sensitive to the generalization of an R

adjustment than for center modification (twice as that ._ ;
center modification). —li-

4) As the system with high dimension is liable to overtralnlng:g 7 The ORL face database.
the early stop strategy in [24] is adopted.

training and testing patterns were exchanged and the experiment
was repeated one more time. Such procedure was carried out
A. ORL Database several times.

Our experiments were performed on the face datab
which contains a set of face images taken between April 19
and April 1994 at the Olivetti Research Laboratory (ORL) The structure of RBF neural networks and parameters of pro-
in Cambridge University, U.K. There are 400 images of 4types are obtained according to the algorithm shown in Sec-
individuals. For some subjects, the images were taken t@n IV. In order to test how the clustering algorithm works, the
different times, which contain quite a high degree of variabilitgata distributions on six simulations are illustrated in Table Il
in lighting, facial expression (open/closed eyes, smiling/noand the misclustering number based on different dimensions of
smiling etc), pose (upright, frontal position etc), and facidkature patterns in six runs of simulations before learning are
details (glasses/no glasses). All the images were taken againgitad in Table 11l. We see from Table Il that there are a total of
dark homogeneous background with the subjects in an uprigiie classes which are in well-separated distribution as depicted
frontal position, with tolerance for some tilting and rotation ofn Fig. 5(a) and 235 classes are distributed as shown in Fig. 5(b)
up to 20. The variation in scale is up to about 10%. All thevhen the dimension of the feature vectors is 39. The separation
images in the database are shown in Fig. 7. of data becomes better and better as the dimension decreases.

In the following experiments, a total of 200 images were raeorrespondingly, the clustering performance is better when the
domly selected as the training set and another 200 imagesyagber of feature vectors reduces, as shown in Table IIl. How-
the testing set, in which each person has five images. Next, g, as we will see later, it does not imply that the recognition

1The ORL database is available from http//www.cam-orl.co. uk/faceperformance will improve along with reduction in the dimen-
database.html. sion. We also find from Table Il that the maximum misclus-

VI. EXPERIMENTAL RESULTS

ZeCIustering Error Before Learning
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TABLE 1 TABLE I
DATA DISTRIBUTION BASED ON THE PROPOSEDAPPROACHBEFORELEARNING CLUSTERING ERRORS FORTRAINING PATTERNS BEFORELEARNING (THE
(THE RESULTSARE OBTAINED BASED ON SIX SIMULATIONS) RESULT IS THE SUM OF SIX SIMULATIONS)
Feature Data distribution Feature No. of | No. of | Maximum  number  of
dimension No of | No of well- | No of overlapping dimension clusters | misclustering | misclustering within a class
clusters separated classes classes 39 40 18 2
39 40 5 235 35 40 11 1
35 40 19 221 30 40 5 1
30 40 48 192 25 40 2 1
25 40 96 144 20 40 0 1
20 40 140 100 10 40 0 1
10 40 187 53
TABLE IV

SPECIFIED PARAMETERS AND CLASSIFIED PERFORMANCE
tering number within a class for each simulation is one except

) X . N Training phase Testing
for one case which occurred when the dimension is 39. We cig,,.. phase
conclude that the clustering paradigm presented is good fOr ¢ gimension [Noof B 7 Epochs | RMSE* NOM +*
cases. RBF units

39 40 0.5~0.6 1.0~12 20~200 | 0.049~0.046 5

C. Error of Classification After Learning 35 0 055-0.65 | 1.0-1.2 | 20-200 | 0.048~0.045 5

After the structure of RBF neural networks and parameters ( * 0 055-07 | 078-11 | 20-120 | 0.047-0.041 2

prototypes are selected, the hybrid learning algorithm present_2 90 |07-085 09514 | 20150 | 0020045 | 2

. . . . 20 40 08-~09 1.1-1.6 20~150 | 0.052~0.042 6
in Section V is employed to train the network. One run of the

L. . . 10 40 0.8~0.95 0.9~1.9 20~150 | 0.058~0.041 9

recognition results is shown in Table IV.

From Table IV, we can see that: * RMSE—Root Mean Squared Error

1) If the information is sufficient (feature dimension is ** NOM—Number of Misclassifications
larger than 20), the results are stable in each case for

different choice of initial parameter$ and 7 in terms TABLE V
. . g . . CLASSIFIED PERFORMANCES ONSIX SIMULATIONS
of the number of misclassifications. Otherwise, the error
rate will increase drastically. Dimension |39 [35 |30 [25 |20 |10
2) On the other hand, it does not mean that more informa- TomlNOM 136 129 123 |23 127 |58
tion (dimension is larger than 30) will result in higher per-

formance. The reason may be that high dimension will

lead to complexity in structure and increase difficulty TABLE VI

. . L . BESTPERFORMANCES ON6 SMULATIONS (DIMENSION r = 25 OR 30)
in learning. Moreover, the addition of some unimportant

information may become noise and degrade the perfor- Simulation |1 |2 |3 |4 |5 |6

mance. The best results are achieved when the dimension

NOM 2 16 |6 |2 1|6

is 25-30.
3) Along with the increase in the feature dimension, the

training patterns have more overlapping, and a siiall where 4 is the number of experimental runs, each one being

should be selected. performed on random partitioning of the database into two sets,
The total results based on six simulations are summarizednjjglis is the number of misclassifications for tftl run, andu o
Tables V and VI. is the number of total testing patterns of each run. Using the
criterion of F,., comparisons with CNN [11], NFL [37] and
D. Comparisons With Other Approaches M-PCA [38] performed on the same ORL database are shown

Recently, a number of researchers use the ORL databasétdable VII. .
verify their algorittms [11], [12], [29], [37]-[45]. Here, we Here, the best value df,,. for the CNN is based on three
adopt the same definition of average error rdfg,. used in runs of experiments, and the SOM size is 8 and 9. For NFL,

[11], [37], which is given by the best error rate is obtained when the number of feature vec-
tors is 40, and the average error rate is evaluated based on four
Zq: ni runs of experiments. For M-PCA, it was reported that the overall
=me performance is the average of ten runs of experiments. For our
Eave = Cgner (27) proposed paradigm, the best error rate is based on six runs, and

o ) the feature dimension is 25 and 30, respectively. The face fea-
2t should be noted that lies in the rangd.5 < 3 < 1. Even the RMSE

is smaller in the case of < 0.5 when the dimension is 39, the generalizatiorfUr€S are the same as [37], and the way to partition the training
will be very bad. set and query set is the same as the methods in [11] and [37].
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TABLE VI TABLE VIII
ERRORRATES OF DIFFERENT APPROACHES OTHER RESULTSRECENTLY PERFORMED ON THEORL DATABASE
Approach No. of simulations | E,, (%) Approach Error rate (%) | Year
CNN 3 383 PDBNN [12} 4 1997
NFL 4 3125 Point-matching [39] 16 1998
M.PCA 10 54 Pseudo2-D HMM +DCT [43] 0 1999
Our proposcd RBF 3 192 LVQ+RBF+FEC [42] 0.5 1999
PCA+RBF [29] 4.9 2000
FND [44] 1.1 2000
Some other results recently performed on the ORL database
. : UDT [41] 2.5 2001
are listed in Table VIl as references (these results are tabulated
separately from Table VIl because we are not aware of how Wavelet+RBF [45] 37 2001
their experiments are exactly performed). It should be notedthat ~ PCA-+moment invariant [40] 4 2001

some approaches used different number of training data (for ex-
ample, only one training pattern per person is used in [39], [40],

; ; } TABLE IX
and eight patterns per person in [29]); some results were evall.')-ATA DISTRIBUTION RESULTED FROM THE PCA BASED ON THE PROPOSED
uated based on the best performance of one run, such as [41}\PPROACH(THE RESULTSARE OBTAINED BASED ON SIX SIMULATIONS)
[42]; some experiments were performed based on part of the

database [40]. It is not clear how the experiments were carried Feature Data distribution
out and how the performances were evaluated in [12], [43]—[45]. dimension | No. of | No. of well- | No. of overlapping
_It is not fair to compare the performances under different exper- clusters | separated classes | classes
imental conditions. 50 ) 5 57
VII. DISCUSSION 140 40 0 240
. - I 110 40 0 240
Inthis paper, a general and efficient approach for designing an

RBF neural classifier to cope with high-dimensional problems 80 40 0 240
in face recognition is presented. For the time being, many algo- 50 40 2 238
rithms have been proposed to configure RBF neural networks 30 20 3 235

for various applications including face recognition, as shown in
[19]-[29]. Here, we would like to provide more insights into

these algorithms and compare their performances with our pro- TABLE X
posed method. CLUSTERING ERRORS FORTRAINING PATTERNS RESULTED FROM THE PCA

(THE RESULT IS THE SUM OF SIX SIMULATIONS)

A. Face Features, Classifiers, and Performances Feature No. of | No. of | Maximum  number  of

Here, the face features are first extracted by the PCA padimension | clusters | misclustering | misclustering within a class
adigm so that the resulting data are compressed significant— 75 20 g 5
Then, the information is further condensed via the FLD ap

proach. Corresponding to Tables Il and Il in which the pat 140 40 10 2
terns are obtained from the PCAFLD, the data distribution 110 40 17 2
resulting from the PCA and the clustering errors for training pai” 8o 40 17 2
terns based on our proposed approach are tabulated in Tables 50 20 %) 5
and X. Comparing Tables Il and Il with Tables IX and X, we % % = >

have the following observations: 1) Class overlapping graduall
reduces along with decrease in the number of feature vectors
for the data resulting from both the PCA and the PEALD . . . . -

i . more information (more dimensions) result in higher perfor-
methods; 2) For the data from the PCA, the clustering errors . .
. . . . . ance inthe PCA. However, the performance resulting from the
increase along with decrease in the feature dimension, but EA+ ELD is not monotonically imoroved alona with increase
clustering errors decrease for the data from the RGA.D; and y1imp 9

3) The data from the PCA- FLD are still overlapping without in the feature dimension, and the best performance is a little de-

. . S 8ase in PCA+ FLD because of information logs.Table XI
complete separation unless the feature dimension is less thancé . . .
I[lustrates the performances by using different face features and

However, the FLD indeed alleviates the class overlapping as eY;

idenced in comparing Tables IX and I classifiers.
Different face features are then used for testing by diﬁ‘erentAs foreshadowed earlier, the FLD is a linear transformation

classifiers. Figs. 8 and 9 illustrate the effect of data dimensi?rrl]d the data resulting from this criterion are still heavily over-

resulted from the PCA and the PGAFLD methods on perfor- apping. Itis also indicated in [34] that this separability criterion
mance classified by the nearest neighbor method. We see théthis is also indicated in several papers, for example, [35] and [36]
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0.17 T T T TABLE XI
015 L PERFORMANCE COMPARISONS OFVARIOUS FACE FEATURES AND CLASSIFIERS
015 b ] Classifier Face No of | Feature Error
014 b ] Features clusters dimension rate (%)
% 013 Nearest neighbor PCA _ 170 9
E Classifier PCA+FLD _ 25 9.75
012 E
RBF neural PCA 40 170 475
011 E
classifier PCA+FLD 40 25 1.92
0.1t r k
L L . h
0.08 50 100 150 200
P attern dimension
A
Fig. 8. Errorrate as a function of pattern dimension in PCA (this is the avera Linear classifier

result of two runs).

EANPEN
0.14 . & = Btill misclassify by
» A 4~ RBF classifier
. ~ ©
N
o ™ ~

\ Nonlinear classifier

4

Error rete

Fig. 10. An RBF neural classifier versus a linear classifier.

10 15 20 25 30 s 40  B. Training Samples versus Performances
P attern dim ension

Due to the fact that there are very small sample patterns for
Fig. 9. Error rate as a function of pattern dimension in PEALD (this is each face in the ORL database. and further. as mentioned in
the average result of two runs). . R ! . ' . .
Section | that similarities between the different face images with
the same pose are almost always larger than those between the
is not directly related to the classification accuracy in the outpsame face image with different poses, the choice of training data
space. Accordingly, nonlinear discriminant analysis is neces-consequently very crucial for generalization of RBF neural
sary for classification among which neural networks are one e&tworks. If the training data are representative of face images,
the popular approaches [15]. the generalization of RBF neural classifier implies to interpolate
The advantage of neural classifiers over linear classifierstite testing data. Otherwise, it means to predict the testing data.
that they can reduce misclassifications among the neighborhoodrrom the viewpoint of images, it is shown that the proposed
classes as shown in Fig. 10. However, this ability will gradwpproach is not as sensitive to illumination (see Fig. 11), as
ally decrease along with increase in the feature dimension. \Wher paradigms do [2], [6]. Usually, the proposed method also
can see from Table XI that the performance gained by the P@#scounts the variations of facial pose, expression and scale
+ FLD is better than that obtained from the PCA. This is bevhen such variations are presented in the training patterns. If
cause the FLD can alleviate data overlapping, and reductithe training patterns are not representative of image variations
in the number of feature dimension moderates the architectuwbich appear during the testing phase, say, upward, then the
complexity of the RBF neural classifier and reduces the corface turning up in the testing phase will not be recognized
putational burden significantly in order to avoid overtrainingorrectly, as shown in Fig. 11. According to this principle,
and overfitting. However, for those data falling into nonneareahother database consisting of 600 face images of 30 individ-
classes as shown in Fig. 10, the neural classifier still cannot clasls, which comprise different poses (frontal shots, upward,
sify correctly. downward, up-right, down-left and so on), and high degree
It has been reported in [11] that error rates of the multilayerf variability in facial expression, has been set up by us. All
networks (MLNSs) classifier are 41.2% and 39.6% respectivellie images were taken under the same background with the
on the ORL database when the features are extracted by the F€golution of 160« 120 pixels. A total of 300 face images, in
and the SOM respectively. Our proposed approach, which is difhich each person has ten images, were selected to represent
ferent from the MLN, wherein a particular supervised learnindifferent poses and expressions as the training set. Another 300
paradigm is employed, is a tremendous improvement over tingages were used as the testing set. Our results demonstrated
results of MLN, CNN [11] and the RBF method shown in [29]that the success rate of recognition is 100%.
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HH'E". 3 = TABLE Xl

-

B -

CLUSTERING ERRORS FORTRAINING PATTERNS BY OTHER CLUSTERING
ALGORITHMS (THE RESULT IS THE SUM OF SIX SIMULATIONS)

Feature No. of clusters | K-means Median ORBF [23]
@ dimension clustering [19] | operation [26]
39 40 1050 22 464

P - A T
% " = 5 35 40 968 16 446
i . F -|I. - ¥ 30 40 756 3 388
L i I “:i = = 25 40 508 3 378
- : 20 40 378 2 324
(b) 5

10 40 300 18

Fig.11. Anexample of incorrect classification: (a) training images and (b) test

images.
TABLE XIlI
CLUSTERING ERRORS FORTRAINING PATTERNS CONSIDERING WIDTHS
C. Initialization versus Performances CHOSEN BY DIFFERENT METHODS (THE RESULT IS THE SUM OF SIX
SIMULATIONS)

1) Selection of Gaussian CentersSeveral paradigms have

been proposed for kernel location estimation. The simplest ap- ~ Feature CV | CRV | SCCC I MO | 95 | Ty

proach is to select from the training data as shown in [20], [23], dimension

[25], [28]. Other typical techniques can be found by using clus- 39 4 42 2 70 39 | 23

tering algorithms [19], [21] or median operation [26]. If we also 35 1 3 3 ] B 13

select the same six groups of face data resulting from the PCA 0 5 > 5 % v 2

FLD with a feature dimension of 40, the initial clustering errors

for training data by other clustering algorithms are tabulated in 25 2 | 4 L1310

Table XII. 20 0 0 0 5 6 0
We can see from Table XlI that many data are misclassified by 10 0 0 0 2 1 0

the unsupervised-means clustering method and the regression "The widths are best chosen Tor each case

clustering method [23]. It also implies that these data are signifi-* The widths are best chosen for each case

cantly overlapped. However, the clustering error will be remark-

ably reduced if the category information about patterns is used, TABLE XIV

for example the MRBF paradigm [26] shown in Table XII. an@PENERALIZATION ERRORS FORTESTING DATA BY DIFFERENTINITIAL WIDTHS
’ . . ’ (THE RESULT IS THE SUM OF SIX SIMULATIONS)

our proposed method achieves the best clustering performance

as shown in Table IlI. NOM Total | E,.
2) Determination of Gaussian Widthsthe appropriate €s- Method [Run1 [Run2 |Run3 |Run4 |Run5 |[Run6 | NOM | (g,
timation of widths of Gaussian units is very significant for gen-— 3 5 m 3 7 7 o33
eralization [20'], [22], [24]-[29]. Frequently, the widths are se—= = m m G 2 5 T 5%
lected by heuristics [19], [21], [23], [29]. Also many researcher: = 5 o 5 Z = ERR R
choose the widths as the common variance (CV) (i.e., calculate . = 5 = - - e
over all sample patterns) [20], [33] or the class-related varianc i
(CRV) (i.e., calculated over all the patterns belonging to the col 75 ! 8 8 > > 4 3238
responding class) [24], [27]. Recently, some new methods har 7w 5 6 9 9 2 7 38|37

been proposed to estimate the widths, for example, the Sam The results are obtained when the feature dimension is 30
covariance (i.e., the class-related variance) plus common co* The results are obtained when the feature dimension is 30
variance (SCCC) [32], the minimum distance between cluster
centers (i.e., using ) [25], the median operation (MO) [26], spectively). But their final performances after learning are com-
or the evolutionary optimization [28]. If we use the same sigarable to other paradigms (CV, SCCC and). Theoretically,
groups of data resulting from the PCAFLD, where the cen- the final results should be the same regardless of initial param-
ters are determined by our proposed clustering method, and éers if the learning algorithm is good enough for optimization.
cluster number is still 40, the initial clustering errors in differenthe discrepancies are mainly caused by overfitting and over-
widths chosen by different methods are tabulated in Table Xlttaining due to small sets of patterns with high dimension.
Table XIV illustrates the generalization performance for testing Two unsupervised algorithms with growing structure, i.e.,
patterns performed on the ORL database. ORBF [23] and D-FNN [25] have been employed to test the
Itis shown from Table XIII that the SCCC method is the be€DRL database. Tables XV and XVl illustrate the generalization
method to describe the training patterns. However, a method fesults for the first group data with different clusters. We see
good description of training patterns does not imply that it hdkat the loss of category information will be at the cost of
good generalization, as we see from Table XIV. On the otherore clusters for the comparable performance. However, it
hand, the testing errors before learning for the MO and CR8hould be noted that the increase of clusters is likely to result in
approaches are very high (the total NOM'’s are 95 and 117, mrerfitting, as shown in Table XVI.
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TABLE XV
GENERALIZATION ERRORS FORTESTING DATA BY THE ORBF METHOD

No. of clusters | 40 52 |80 1231150 [172
NOM 15 11 10 | 7 7 7
TABLE XVI

GENERALIZATION ERRORS FORTESTING DATA BY THE D-FNN METHOD

No. of clusters |40 |45 |52

62

89

106

112

125 1 158

NOM 18 |16 (11

8

8

8

9

9 |10

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

choice of structure and parameters of RBF neural networks be-
fore learning takes place, is presented. Finally, a hybrid learning
algorithm is proposed to train the RBF neural networks. Simu-

lation results show that the system achieves excellent perfor-
mance both in terms of error rates of classification and learning
efficiency.

In this paper, the feature vectors are only extracted from
grayscale information. More features extracted from both
grayscale and spatial texture information and a real-time
face detection and recognition system are currently under

D. The Problem of Small Sample Sets

development.
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propriate choice of regularization parameter is time consuming.

Another direct method to improve generalization is to use
more data patterns, i.e., by adding some patterns with noisgy)
[46]. According to the procedure proposed in [46], another set of
training patterns with noise randomly chosen from the uniform [
distribution is replenished. The learning algorithm is executed
with and without adding noise to the inputs. Our experiments(3]
show that if the variance of noise is small, there is no effect on
generalization, whereas large variance of noise will deterioratem
the performance.

High dimension may be one of the reasons that lead to poot®!
generalization. As the values in each dimension vary greatly anqe]
different features have different influences for face recognition,

a uniformly distributed noise may affect some features substan{?]
tially and has no influence on some other features. On the other
hand, different features may have different weights for different g
face features. Therefore, normalization of the inputs should be
taken when the noise is injected into the inputs. (0]

Another reason may be due to the presupposition that the ac-
quisition of generalization capability by noise injection into the
inputs relies on the assumption that the mapping from the inpdt®!
space to the output space should be smooth [46]. For high-di-
mensional classifications, it is not easy to determine whethgr1]
the assumption could be satisfied in advance.

[12]
VIIl. CONCLUSION

It is well known that if the dimension of the network input [13]
is comparable to the size of the training set, which is the usual
case in face recognition, the system will easily bring about overt*!
fitting and result in poor generalization. In this paper, a gen-
eral design approach using an RBF neural classifier for facgs]
recognition to cope with small training sets of high-dimensional
problem is presented. Firstly, face features are first extracte%e]
by the PCA. Then, the resulting features are further projected
into the Fisher’s optimal subspace in which the ratio of the bell7]
tween-class scatter and the within-class scatter is maximized.
novel paradigm, whereby training data information is used in the
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