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Abstract

The paper presents an architecture of an anomaly detection system based on the paradigm of artificial immune systems (AISs). Incom-
ing network traffic data are considered by the system as signatures of potential attackers by mapping them into antigens of AISs either
using some parameters of network traffic or headers of selected TCP/IP protocols. A number of methods of generation of antibodies
(anomaly detectors) were implemented. The way of anomaly detection depends on the method of antibodies generation. The paper pre-
sents results of an experimental study performed with use of real data and shows how the performance of the anomaly detection system
depends on traffic data coding and methods of generation of detectors.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Artificial immune systems; Anomaly detection; Detectors generation; Traffic data coding; TCP/IP protocols

1. Introduction

Security of information and computational resources is
currently one of main research activities in the area of com-
puter networks. Designing intrusion detection systems
(IDSs) is one of answers to security issues. Anomaly detec-
tion and misuse detection are two major approaches in
attempt to solve the intrusion detection problem. Anomaly
detection, which is the subject of this study, relies on build-
ing models from network data and discovering variations
from the model in the observed data.

Currently used commercial IDS systems are usually sig-
nature-based (see, e.g. [1]). Signatures in such systems
require to be periodically updated and modified to cope
with attacks, but this approach does not prevent new kinds
of attacks. For this reason other approaches are currently
investigated to use them in IDSs. The most common
approach is based on building a statistical model of a sys-

tem behavior (e.g. [2]). Data mining and machine learning
methods are also currently applied (see, e.g. [3–5]), as well
methods using visualization (see, e.g. [6]). Increasing inter-
est in application of naturally inspired algorithms, such as
genetic algorithms (GA) and particle swarm search (see,
e.g. [7]) or combining evolutionary algorithms with fuzzy
set theory (see, e.g. [8]) can be observed.

Immune systems are naturally existing mechanisms
which are responsible for detecting and coping with intrud-
ers in living organisms. Artificial immune systems (AISs)
are computational models inspired by immune systems
and therefore are currently one of the most promising nat-
ure-inspired technique used for IDSs [9–14,5] and we fol-
low this approach. The purpose of this project was to
study and compare effectiveness of methods of network
traffic coding requested by immune systems paradigm
and methods of generation of detectors (antibodies), and
their work with different matching functions.

The remainder of the paper is organized as follows. The
next section presents a background on AISs. Section 3 con-
tains a description of an architecture of AIS-based anomaly
detection system including issues of traffic data coding and
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the choice of matching functions. Section 4 describes meth-
ods used for generation of antibodies. Section 5 contains
results of experimental study of the system and last section
concludes the paper.

2. Artificial immune systems

Artificial immune system (AIS) is a computational tech-
nique inspired by ideas coming from immunology and used
to develop adaptive systems capable to solve different
domain problems. AIS has recently become one of the
most popular research tools studied and applied to solve
problems in the field of computer security, in particular
to detect computer viruses [15] or intruders in computer
networks [12]. It also has been applied to solve scheduling
problem [16], build decision support systems [17] or solve
function optimization and combinatorial optimization
problems [18].

While a general computational model inspired by immu-
nology is currently a subject of a research, two basic
notions – antigen and antibody are important and widely
applied. Antigens are foreign invaders which attack in
some way a considered system. Antibodies are a part of
the system which are responsible for detection and elimina-
tion of antigens. Antibodies detect antigens by matching
them. A number of antibodies is much smaller than the
number of antigens, so matching is never perfect but only
partial. One of purposes of AIS-based system is to develop
and keep relatively small number of antibodies, which are
able to detect in reliable way a big number of antigens,
including antigens which have never been seen before.

3. AIS-based anomaly detection system

3.1. A general overview of the system

The general scheme of AIS-based anomaly detection
system working in a single node of a network is presented
in Fig. 1. It is assumed that external users can have an
access to resources and services which are opened to them,
using network communication system by sending and

receiving messages, which constitute network traffic.
Incoming network traffic is only the source, which contains
both an authorized access and attempts to unauthorized
access to resources and services.

Incoming network traffic should be parameterized in
such a way to be able to define patterns of both malicious
behavior corresponding to invaders (antigens) and autho-
rized behavior. A part of network traffic characterized
the authorized users behavior (training data set) should
be available. It is assumed that the system is able to work
in two modes: learning mode and normal operating mode.
In the learning mode data from training data set are used
to generate a set of antibodies, which model authorized
behavior of users. In the normal operating mode testing
data set – a part of regular incoming network traffic are
used to tune the system, detect anomaly and inform the
Control and decision system about suspicious behavior. In
the case of wrong alarm a set of antibodies should be
modified.

It is assumed that the node of the system is a part of a
TCP/IP network and messages which belong to network
traffic consist with a number of packets created and sent
according to the TCP/IP protocols. The most popular pro-
tocols are TCP, UDP and ICMP (see, Fig. 2a). A packet
containing application data App. data and sent from a giv-
en application to other application is encapsulated, i.e.
headers L4, L3, L2 corresponding to applied protocol are
added to it (see, Fig. 2b).

3.2. Coding antibodies and antigens

The number of packets exchanged between applications
located in network nodes are too big to analyze all of them
from security point of view. What to analyze in incoming
network traffic to be able to detect intruders is an open
research issue. In the system, which is studied in this paper,
two recently emerged ideas are applied.

The first one [13] assumes to use a set of general traffic
parameters such as a number of bytes per second (Bps), a

number of packets per second Pps, and a number of ICMP

packets per second. These values are calculated and
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averaged using small time intervals, using the idea of a
moving window. Because in the network traffic data used
in experiments (see, Section 5) ICMP packets were not
present, therefore, only the two first parameters Bps and
Pps were used. It means that both antibodies and antigens
will be represented in the form of real number vectors
x = {x1,x2} in the 2-dimensional space.

The second idea assumes using [14] full headers of TCP/
IP protocols. In the implementation of the system this idea
was reduced to the analysis of only TCP SYN packets (see,
Fig. 3), i.e. TCP headers with flag S set. Such packets are
sent to establish TCP communication, and can be consid-
ered as good representatives of TCP packets. Under this
approach both antibodies and antigens will be represented
by binary arrays corresponding to headers of TCP SYN
packets.

3.3. Similarity measures between antibodies and antigens

A decision about the degree of matching antibodies and
antigens can be taken in particularly on the base of evalu-
ation of a distance between corresponding antibodies and
antigens. Euclidean or Hamming distances will be used as
measures of similarities between antibodies and antigens
for vector or binary coding of antibodies and antigens,
respectively. These measures can be defined in the follow-
ing way:

• Euclidean distance d (x,y). For two vectors
x = {x1, . . . ,xn} and y = {y1, . . . ,yn} from n-dimension-
al space, the Euclidean distance between them can be
calculated as

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ

2 þ . . .þ ðxn � ynÞ
2

q
; dðx; yÞ 2 h0;1Þ

• normalized Hamming distance fH (X,Y). For
two binary arrays X and Y (X,Y 2 {0,1}N) the
normalized Hamming distance can be evaluated as
fHðX ; Y Þ ¼ 1

N

PN
i¼1X i � Y i; fH 2 h0; 1i, where N – a

number of bits in each array, and ¯ is XOR

operation.

If a distance calculated for a given pair of antigen and
antibody exceeds some threshold, the incoming network
traffic corresponding to the antigen is considered as a traffic
generated by an intruder.

4. Generating antibodies

An important issue for any AIS-based anomaly detec-
tion system is a generation of a set of antibodies, which
will represent a legal network traffic. Such a set should
be enough small, and each antibody should cover rela-
tively large part of a space corresponding to the legal
traffic. The space covered by the set of antibodies can
not be a source of any false alarm. Three methods of
generation of antibodies have been implemented in the
system: positive characterization technique, random gener-

ation of antibodies, and negative characterization

technique.

4.1. Positive characterization technique

The positive characterization (PC) technique [13]
assumes that information about the legal traffic is directly
used to create detectors (antibodies). A number of antibod-
ies is equal to the number of information units describing
the legal traffic. The method is simple and effective in
detecting anomalies, but increasing the number of detectors
may cause the increase of the computational costs of
detecting. Clustering algorithms can be applied to decrease
a number of detectors.

Algorithm 1. Random generation of antibodies

ab = generateAntibody()
autoaggressive = true

for each selfExample fi se from selfExampleSet

dist = distance(ab, se)
if dist < threshold

antibodySet.addAntibody(ab)
autoaggressive = false

break

if autoaggressive
ab.destroy()

Acknowledgment number

Urgent pointer

Destination portSource port

Checksum

HL rsvd C E U A P R S F

Options+padding

Window length

Sequence number

Fig. 3. Header of TCP protocol. Only packets TCP SYN (with the flag S
set) are analyzed.
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Fig. 2. TCP/IP network: TCP/IP communication protocols (a), and a
structure of a network packet (b).
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4.2. Random generation of antibodies

In this method [14] information about the legal traffic is
used only as a test set to build a population of detectors,
which are created in a random way (see, Algorithm 1). A can-
didate ab for antibody is created randomly and next com-
pared with each representative se of the legal traffic from
selfExampleSet. If the candidate covers at least one
example of the legal traffic, i.e. the distance dist between it
and se is lower than some threshold than it is included
into the created set antibodySet of antibodies. The final
set antibodySet is usually smaller than the set obtained
using PC.

4.3. Negative characterization technique

Negative characterization (NC) technique [13] pro-
poses to consider antibodies as rules of the following
form:

Rk : if x1 2 hmink
1;maxk

1i and . . . and xn

2 hmink
n;maxk

ni then anomaly;

where Rk is kth rule which can be interpreted as n-dimen-
sional hypercube with mink

i and maxk
i as boundaries of each

ith dimension, and {x1, . . . ,xn} are parameters of a sus-
pected traffic activity (antigen).

In opposite to PC and random generation methods
rules-antibodies are generated in such a way to cover a part
of n-dimensional space not belonging to the legal traffic.
Examples of the legal traffic are n-tuples with a hyperradius
v (considered as a threshold), and can be seen as hyperspheres
in the n-dimensional space. Because not all points of the legal
traffic in this n-dimensional space are known, different hyper-
radiuses v of self-examples (the legal traffic) are used and
rules-hypercubes are generated with different boundaries.
They can intersect and create multilevel subspaces corre-
sponding to different levels of anomalies (see, Section 5).

A standard GA [19] with tournament selection, one-
point crossover and a single bit mutation is used to gener-
ate rules. A single run of GA results in producing a single
rule R = GA (S,v,C, ruleSet), where v-assumed threshold of
hyperspheres corresponding to self-examples from set S,
ruleSet-a set of currently produced rules, and C is a param-
eter of a fitness function.

The fitness function Fit (R) has three components:

(1) a volume of the space covered by a rule
R:volumeðRÞ ¼

Qn
i¼1ðmaxk

i �mink
i Þ, where mink

i and
maxk

i are searched boundary values of the ith
dimension of the hypercube corresponding to the
rule

(2) a penalty – a number of self-examples covered by the
rule:falsePositives(R) = {x 2 Sjx 2 R}, where x

is a self-example from the set S covered by the rule R
(3) a penalty for sharing a volume of the common space

by a new rule R and a rule Rj from the set ruleSet

of rules already generated: overlapðRÞ ¼P
Rj2ruleSetvolumeðR \ RjÞ.

Finally, the fitness function of a searched rule has the fol-
lowing form: Fit (R) = volume (R) � CÆfalsePositives (R) �
overlap (R), where C is a user-defined coefficient.

5. Experimental results

5.1. Data used in experiments

Five experiments have been conducted [21] using the
AIS-based anomaly detection system and their results are
reported below. The main purpose of the experiments
was to study the performance of different methods of gen-
erating the detectors for corresponding coding the network
traffic. The first four experiments were conducted using
intrusion detection data from MIT Lincoln Laboratory
[22] and collected in the network configuration replicated
in experiments as it shown in Fig. 4. In the experiments
240 min of recorded network traffic were used. The first
120 min of the traffic were used as training data, and the
next 120 min were used as testing data. Fig. 5 shows these
data averaged over 60 second time windows, normalized to
the range (0,1), and expressed in packets per second (Pps),
and in bytes per second (Bps), respectively, with the size of
the window equal to 1. Because these data contain only
legal traffic, data containing attacks of the type port scan-

ning were created using the program nmap and added later
to the testing data.

The fifth experiment was conducted using data collected
from the computer network of Institute of Computer Sci-
ence PAS, Warsaw (IPI PAN) and obtained using the pro-
gram tcpdump. The experiments were conducted in offline
mode of the system using a Pentium III 933 MHz, 256MB
RAM, Linux, JDK 1.4.2.

5.2. Experiment 1

In the first experiment traffic data interpreted as the 2-
dimensional vectors {Pps,Bps} were used. Also the Euclid-
ean measure of distance and the PC method for generating
antibodies were applied. During the learning process and
using the training data (the first 120 min) 32 different detec-
tors (see Table 1) have been created.

Fig. 6a shows Euclidean distance between vectors of the
network traffic (antigens) arriving to the system and the near-
est vector-detector from the set of detectors. One can see that
during the first 120 min the distance is equal to 0 – all detec-
tors correspond to training data set. In the remaining
120 min distances between vectors of still legal traffic and
detectors are not greater than 0.25. This value can be consid-
ered as the value of threshold which guarantees the zero level
of false alarms for the testing set of traffic data (see, Fig. 6b).
Fig. 7a shows how found set of detectors and threshold equal
to 0.25 create circles covering the space of the whole (training
and testing sets) legal traffic.
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Fig. 7b shows the behavior of the system in the case
when two attacks of the type of port scanning were added
to the legal traffic. Two attacks were performed using the
program nmap. The first one conducted in the moment
of time equal to 60 when a scanning method connect

was applied, and the next one in time equal to 130 when
a scanning method SYNstealth was used. Corresponding
Euclidean distances are equal to 4.41 and 3.42, respectively.
Both distances are greater than threshold what results in an
alarm.
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Fig. 4. Network configuration used in experiments 1–4.
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Fig. 5. Normalized traffic in router Traffic splitter of the network
configuration during 240 min: in packets/s. (Pps) (a), and in bytes/s.
(Bps) (b).

Table 1
Experiment 1: set of detectors obtained from training set using PC

{0.0000,0.0000} {0.0021,0.0007} {0.0064,0.0023} {0.0128,0.0043}
{0.0128,0.0055} {0.0235,0.0174} {0.0235,0.0192} {0.0267,0.0237}
{0.0267,0.0276} {0.0267,0.0284} {0.0267,0.0324} {0.0277,0.0243}
{0.0277,0.0364} {0.0277,0.0446} {0.0299,0.0504} {0.0309,0.0132}
{0.0491,0.0419} {0.0555,0.0479} {0.0566,0.0404} {0.0619,0.0468}
{0.0705,0.0259} {0.0854,0.0939} {0.1228,0.0418} {0.1282,0.0841}
{0.2895,0.4323} {0.3707,0.1259} {0.4540,1.0000} {0.4925,0.1926}
{0.5213,0.1761} {0.7115,0.2411} {0.7200,0.2435} {1.0000,0.3724}
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Fig. 6. Matching antibodies to the legal traffic (a), and the level of false
alarms as a function of threshold (b).
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It is worth to notice that computational time which is
necessary to generate detectors using PC depends linearly
on the size of training set.

5.3. Experiment 2

In the experiment the random generation method of cre-
ating antibodies is used, and remaining assumptions are the
same as in the previous experiment. The purpose of the
experiment was to see whether a reduction of a number
of detectors is possible without the loss of anomaly detec-
tion quality.

If randomly generated antibodies are in the close prox-
imity to points of the training set they replace them. Using
this method it was possible to reduce the number of anti-
bodies from 32 to 16, i.e. on 50%. The set of new detectors
is shown in Table 2.

The detectors were found by setting a small threshold
equal to 0.05, which was used as radius of circles around

points of the training set (see, Fig. 8a). The circles cover
all 32 detectors found in the previous experiment. Ran-
domly generated detectors are accepted if they fall into cir-
cles, and next they replace all previously found detectors in
corresponding circles. Using data from the testing set one
can find a final threshold, which reduces the number of
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Fig. 7. Antibodies with corresponding threshold cover the legal traffic (a),
and detection of anomalies (b).

Table 2
Experiment 2: set of detectors obtained using random generation

{0.0031,0.0382} {0.0036,0.0442} {0.0801,0.0266} {0.0905,0.0678}
{0.1585,0.1081} {0.2528,0.4147} {0.3019,0.4687} {0.3978,0.0873}
{0.4141,0.9784} {0.4933,0.1581} {0.4960,0.1605} {0.4995,0.1823}
{0.5384,0.1407} {0.5500,0.1940} {0.7192,0.2602} {0.9587,0.3621}
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Fig. 8. Generation of detectors using random generation method (a), and
antibodies with corresponding threshold covering the legal traffic (b).
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false alarms to 0. The final value of the threshold for found
set of detectors is equal to 0.2, what means that now circles
better cover the space of self-examples.

The behavior of the system when attacks (the same as in
the previous experiment) are conducted is similar to that
observed in the previous experiment. Computational time
which is necessary for detection is proportional to the size
of detectors, but in opposite to the PC method this time
does not depend on the size of a training set. The consid-
ered method of generation of detectors may give a reason-
able reduction of detection cost if a big number of points in
the training set is close to each other.

5.4. Experiment 3

In this experiment NC method of generation of antibod-
ies is used. Remaining conditions are the same as in the
previous experiments. It was assumed that the two level
system of rules will be searched: one system of rules for
threshold (a radius of spheres of the training set points)
v = 0.10, and the second one for v = 0.25. Searching a sin-
gle rule was conducted using a GA with the following
parameters: a population size of rules was N = 100, a num-
ber of generation L = 200, the probabilities of crossover
and mutation were, respectively, pk = 0.75, pm = 0.003.
Maximal number of rules to be searched was equal to 16.

Fig. 9 shows changing the fitness function values and its
components (with C = 2) corresponding to the best indi-
vidual (detector) in each generation during a run of GA
searching a single rule. One can notice that the best detec-
tor (with the best shape) is found after about 100 genera-
tions. Two sets of rules corresponding to two levels of
the threshold v were found. The level 1 set contains 12 rules
and the level 2 set contains 4 rules. They are shown graph-
ically (rectangles) in Fig. 10 and are listed in Tables 3 and
4, respectively.

In this two level detection system there is not one single
threshold, and a kind of a decision about an alarm depends
on the degree of matching of an antigen to detectors. For
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Fig. 9. Evolving a single rule using GA.

Table 4
Experiment 3: set of detectors (level 2) obtained using NC

{0.7109 ‚ 1.0000,0.6250 ‚ 1.0000} {0.0117 ‚ 0.1953,0.6835 ‚ 1.0000}
{0.7070 ‚ 0.7421,0.5000 ‚ 1.0000} {0.0937 ‚ 0.7070,0.6875 ‚ 0.7460}
{0.0078 ‚ 0.0351,0.5000 ‚ 1.0000}
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Fig. 10. Set of detectors for: v = 0.10 (a), and v = 0.25 (b).

Table 3
Experiment 3: set of detectors (level 1) obtained using NC

{0.5546 ‚ 1.0000,0.5000 ‚ 1.0000} {0.0078 ‚ 0.7148,0.6328 ‚ 0.8789}
{0.0039 ‚ 0.2500,0.5390 ‚ 1.0000} {0.6250 ‚ 1.0000,0.0156 ‚ 0.1367}
{0.0078 ‚ 0.1875,0.1953 ‚ 0.5429} {0.8437 ‚ 0.8945,0.0039 ‚ 0.6367}
{0.7226 ‚ 0.8437,0.3437 ‚ 1.0000} {0.2304 ‚ 0.3515,0.8789 ‚ 1.0000}
{0.3906 ‚ 0.7226,0.3437 ‚ 0.5898} {0.8945 ‚ 1.0000,0.1250 ‚ 0.2382}
{0.2500 ‚ 0.5546,0.5468 ‚ 0.7109} {0.1953 ‚ 0.3789,0.2343 ‚ 0.3242}
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the testing set five false alarms of the level 1 will appear,
and no alarms of the level 2. Scanning attacks discussed
earlier will have caused alarms of the level 2.

Computational cost of generating detectors is much
higher than it was for the previous methods, mainly
because of multiple run of GA. Time of detection is pro-
portional to the number of created detectors.

5.5. Experiment 4

In this experiment binary coding of TCP SYN packets
from traffic data, and the Hamming distance fH as a mea-
sure of distance is used. PC method of generation of anti-
bodies is applied. Detectors are created using 73 TCP SYN
packets, which are in the training set. An example of a
detector in the form of a sequence of bytes is shown in
Table 5.

Fig. 11a shows that a value of the threshold providing
zero level of false alarms in the testing data is equal to
0.165. Fig. 11b shows how the system copes with the scan-
ning type of attacks described earlier. This type of attacks
is characterized by a huge number of TCP SYN packets
which are sent. The figure shows only the end of the con-
nect attack, corresponding to antigens with labels 14–
2350, and the beginning of the attack SYNstealth – anti-
gens with labels 2422–4341. Antigens 2351–2409 are a part
of the training set, and antigens 2410–2421 are only in the
testing set.

One can notice a small difference between distances cor-
responding to the legal traffic from the testing set and the
anomaly traffic. Small differences between the legal traffic
and the attack are the result of features of both IP and
TCP headers. Very frequently some parts (e.g. an address
of a destination) of both headers are the same, what
decreases the differences between a legal traffic and attack.

5.6. Experiment 5

This experiment has been conducted using network traf-
fic data collected during 9 days in a new installed server in
IPI PAN. The data contained about 4.4 millions of pack-
ets, including about 2.5 millions of IP packets. The training
set, a part of the legal traffic was selected on the base of an
interview with the network administrator.

The purpose of the study was to define periods of aver-
aging and methods of data selection, which could provide
the best inside to the most frequently observed attacks:
attempts to connect with ports 135, 139, 145 and 901.
The problem of data selection was solved by choosing for
the analysis only the TCP SYN packets. These packets

were next processed using the PC method and the Euclid-
ean distance.

The most clear results were obtained using 10 min
period analysis. The distances between parameters of the
traffic considered as legal (11 detectors) and the whole traf-
fic (1198 antigens) are shown in Fig. 12. The frequency of

Table 5
Experiment 4: an example of a detector as a sequence of bytes

45 10 00 2c 01 6e 00 00 40 06 a0 6a c2 07 f8 99
ac 10 72 32 04 00 00 17 f0 88 b3 9e 00 00 00 00
60 02 02 00 15 04 00 00 02 04 05 b4
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attacks is high. There are visible periods of activities in
middays, and two attacks conducted from a private com-
puter (the distance equal to 31.5 and 42.4 in two subse-
quent 10 min periods of time). Analysis of all attacks
suggests to set the value of the alarm threshold equal to 4.

6. Conclusions

In this paper, the architecture of the anomaly detection
system based on the paradigm of artificial immune systems
has been presented. A number of methods of traffic data
coding and generation of detectors were studied from the
point of view of their efficiency. The results of experimental
study have shown that while the system is able to detect
anomalies in all considered cases the cost of running the
system highly depends on a method of generation of anti-
bodies. The results summarizing the time of generation of
antibodies and detection are presented in Table 6.

One can see that the faster method of antibodies gener-
ation is the PC method, which directly converts a training
set into the set of detectors. The method of random gener-
ation requires more computational costs. The most expen-
sive is the NC method.

From point of view of detection time the best method of
generation of detectors is the random generation method,
which provides the smallest number of detectors. The time
of detection using NC method is similar, but detectors
require much more storage memory. The PC method seems
to be the weakest. It requires the same memory as NC
method, but the time of detection is much larger.

Results of this study clearly point out that the choice
of a method of detectors generation for a given system
is a matter of a compromise between a requested speed
of the system and available memory. Current research is
directed to find more effective methods of generating
detectors. Promising alternative for searching e.g. rule-
detectors is applying coevolutionary algorithms [20]
instead of GA.
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Table 6
Time of antibodies generation and anomalies detection

Exp. #1 Exp. #2 Exp. #3 Exp. #4 Exp. #5

Generation time 113 ms 121 ms 8750 ms 159 ms 32 ms
Antibodies number 32 16 12 + 5 73 11
Detection time 373 360 360 2360 196
Antigens number 240 240 240 4393 1198
Detection time/

antigen
1.554 1.500 1.500 0.537 0.164
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