The International Journal of Robotics Research

http://ijr.sagepub.com

Experimental Analysis and Control of a Chaotic Pendubot
Hugo G. Gonzélez-Hernandez, Joaquin Alvarez and Jaime Alvarez-Gallegos
The International Journal of Robotics Research 2004; 23; 891
DOI: 10.1177/0278364904044407

The online version of this article can be found at:
http://ijr.sagepub.com/cgi/content/abstract/23/9/891

Published by:
®SAGE Publications
http://www.sagepublications.com

On behalf of:

M

Multimedia Archives

Additional services and information for The International Journal of Robotics Research can be found at:

Email Alerts: http://ijr.sagepub.com/cgi/alerts

Subscriptions: http://ijr.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations (this article cites 14 articles hosted on the
SAGE Journals Online and HighWire Press platforms):
http://ijr.sagepub.com/cgi/content/refs/23/9/891

Downloaded from http://ijr.sagepub.com at PENNSYLVANIA STATE UNIV on February 12, 2008
© 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://www.ijrr.org/multimedia.html
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/23/9/891
http://ijr.sagepub.com

Hugo G. Gonzalez-Hernandez
Joaquin Alvarez

Centro de Investigacion Cientifica y de Educacion

Superior de Ensenada CICESE

Depto. de Electrénica y Telecomunicaciones, Km. 107 Carr.
Tijuana-Ensenada, 22860 Ensenada, B.C., México
hgonz@cicese.mx

JaimeAlvarez-Gallegos

Centro de Investigacion y de Estudios Avanzados
CINVESTAV-1.P.N. Depto. de Ingenieria Eléctrica
Seccion de Mecatronica Ap. Postal 14-740. 07000,
México, D.F. México

Abstract

Applying attractor reconstruction techniquesand other chaotic mea-
surements, it is shown that the long-term dynamics of a vertical,
underactuated, two-degrees-of-freedom robot called Pendubot may
exhibit complex dynamics including chaotic behavior. These tech-
niques use only the measurement of some available variable of the
system, and the resulting reconstruction allows us to identify unsta-
ble periodic orbits embedded in the chaotic attractor. In this paper,
we also propose a parameter-perturbation-like control algorithmto
stabilize the behavior of the Pendubot to force its dynamics to be
periodic. We control this device using only the measurement of one
of itsangular position coordinates and consider that the system may
be seen as five-dimensional (a non-autonomous, four-dimensional
system), taking the amplitude of a sinusoidal external torque as the
perturbation parameter. e change this parameter to stabilize one
of the equilibrium pointsin the so-called Lorenz map. The main ad-
vantage of the method proposed here is that it can be implemented
directly fromtime series data, irrespective of the overall dimension
of the phase space. Also, reconstructions of the attractor based on
the measurements are shown, as well as some experimental results
of the controlled system.

Experimental Analysis
and Control of a
Chaotic Pendubot

by a deterministic dynamical system, but because of its sensi-
tivity to initial conditions, itis long-term unpredictable. Some
methods have been developed to analyze and calculate some
important parameters of a chaotic system; Lyapunov expo-
nents and some other geometrical characteristics (Parker and
Chua 1989) are of great use in analyzing this complex behav-
ior. Some of these techniques need a mathematical model of
the system. In practice, it is frequent that a model is not avail-
able, and the only information is given by some measurements
obtained directly from the system from which the fundamen-
tal dynamical parameters must be calculated. However, this
is not a trivial problem.

In this sense, some techniques have been proposed to re-
construct an attractor from a time series obtained from the
measurement of a system variable. One of these techniques
that is often used, giving interesting and useful results, is the
so-called delayed coordinates method. The application of this
technique to analyze the complex behavior of a real system,
an underactuated mechanical manipulator, is the first of two
objectives of this paper.

Chaotic oscillations are a particular kind of irregular and
unpredictable behavior commonly considered as undesirable;

KEY WORDS—Pendubot. chaos control. underactuatdifis is the reason for trying to eliminate them from the over-

robot, delay coordinates

1. Introduction

all behavior of a system. Stabilizing a periodic motion in a
chaotic system does not require a great amount of energy for
the control action since the attractor contains an infinite num-
ber of unstable periodic orbits embedded in it. There exist
some applications in which the main goal is to transform an

Chaotic dynamics have been widely studied in several disGzegyular motion into a regular one, for instance, in power
plines during the last decades. A chaotic signal is generatgflctronics devices (Baillieul, Brockett, and Washburn 1980).
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Chaos suppression has been achieved in several experimental
preparations for controlling some medical pathologies such
as cardiac arrhythmia (Garfinkel et al. 1992) or in regulating
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voltage peaks in the brain in epileptic crisis (Gluckman et aan irregular behavior, the objective is to force its dynamics to
1996). a periodic motion.

For mechanical systems, irregular oscillations are partic- The main contributions in this paper are the analysis of the
ularly undesirable because of the possibility of mechanicdlynamics of an underactuated robot and the proposal of a new
damage. Another reason to stabilize periodic orbits is that, method to stabilize periodic orbits embedded in the chaotic
some robotics applications, it is required to follow a desiredttractor of this device. The analysis and the control action
periodic trajectory, for example in walking robots (Canudasere implemented on the real system.
de Wit, Roussel, and Goswami 1997). The characterization of the dynamical behavior of the sys-

Underactuated manipulators arise in anumber ofimportatgm is accomplished without an explicit dynamical system
applications such as free-flying space robots, hyper-redundambdel, using only a time series generated from the measure-
manipulators, snake-like robots, and manipulators with struments of one of the variables of the system. First, the largest
tural flexibility, among others. Previous work on modeling_yapunov exponent of the time series is computed, and then
and control of such manipulators can be found in Chirikjiathe fractal dimension and the frequency spectrum for deter-
and Burdick (1991), Jain and Rodriguez (1991), Rodriguemining the chaotic nature of the measured signal are obtained.
Kreutz-Delgado, and Jain (1991). An important goal in ma- The analysis is accomplished by using an embedded co-
nipulator control is to perform tasks involving the exact trackerdinates method, again using only a time series. We use the
ing of some desired trajectory. The exact tracking depends axmerage mutual information (AMI; Abarbanel et al. 1993) in
the nature of the designed control algorithm after a properder to choose the delay time factor for the coordinates and
analysis of the particular device dynamics. The absence thie percentage of false nearest neighbors (PFNN) (Abarbanel
an actuator transforms the robot into an underactuated dmd Kennel 1993) to find the embedding dimension of the
vice that may lead to a malfunction of the system, to an err@attractor to be reconstructed.
neous tracking of the desired trajectory and in some cases toFinally, in this paper we propose a framework for designing
instability. Moreover, underactuated robots may exhibit ricHexible control laws for the stabilization of periodic orbits
dynamical behaviors including chaos (Alvarez-Gallegos, Akmbedded in higher-dimension chaotic attractors from system
varez, and Gonzdalez-Hernandez 1997; Gonzalez-Hernandemasurements. In this way, flexibility means the capability to
Alvarez-Gallegos, and Alvarez 2001). impose arbitrary dynamics with the proposed control law. This

Earlier works on stabilization of periodic orbits can becontrol law is applied directly to a real system.
found in Chen and Dong (1998), Ott, Grebogi, and Yorke The paper is organized as follows. In Section 2 we give
(1990a), and Hunt (1992); however, most of them wersome useful concepts on dynamical systems and some tools
designed for systems described by three differential equia-analyze chaotic behavior from time series. In Section 3 we
tions yielding two-dimensional Poincaré or Lorenz mapanalyze the dynamics of the Pendubot. Section 4 deals with the
(Lorenz 1963; Peitgen, Jurgens, and Saupe 1992). For higheontrol strategy. In Section 5 experimental results are shown
dimensional systems there are some approaches (Ott, Grebai, finally, Section 6 contains some concluding remarks.
and Yorke 1990b; Ding et al. 1996), but a general framework
has not been established yet; moreover, these methods
only capable of imposing a particular dynamics for the stabf-

lization. The method developed in this paper deals with bOT’H1ere are no analytical solutions for equations describing

problems: control of higher-dimensional systems, and 'MPORRaotic phenomena; even an approximate solution is not easy

ing a desired dynamics for the stabilization. 1o find. Some analysis techniques for this type of system in-

In order to stabilize periodic orbits in a chaotic attractor,'lglolve perturbation methods (Naifeh and Balachandran 1995)

is necessary to approximate the dyna_mic_:s of t_he system | setting approximate solutions. Once we have these ap-
Iowe?dln(;eng(i.n(z;lttspcgacebwh_ere Zserl'fd'iggg't may be ?? oximate solutions it is possible to compute some other de-
as a fixed point, tt, 15rebogl, and rorke ( ; a) Sugges %riptors of their behavior. We call chaotic descriptors to those
use ofa Poincare map for finding thls_flxed point. |I’?thIS pape uantities used to measure the “degree of chaotic behavior”
we reporton the use of Lorenz maps, instead of Poincaré ma Prhe system. Among others, Lyapunov exponents, Lorenz

for the local identification of the dynamics around the periOdiFnaps and local dimension of the attractor are some descrip-

unstable orbits of the attractor. It has been proposed earl [ Lo - ; -
. ! s that give information about the dynamical behavior of the
(Alvarez, Alvarez-Gallegos, and Gonzalez-Hernandez 199 9 y

that the use of this type of map allows better identification

schemes and avoids ill-conditioned identification problems.
The second part of this paper shows the application of the X = f(t x, 1) 1)

proposed parameter perturbation method to control the com-

plex dynamics of the Pendubot. Given a time series obtainggherex e 9" is the statef : % x H" x R — R isaC”

from some measured variable of the Pendubot, which dlSp'aMS > 1) vector field, andu denotes the system parameters.

.r%\nalysisof Chaotic Systems

Let us consider a system described by
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The solution of eq. (1) is some vector functiorn= x(¢) that the attractor is fully unfolded, i.e., the dimension in which
describes the trajectories in the state space constructed witto points far away from each other in the original space
its coordinates. Depending on the parameter values, some sy® not projected near each other in the observation space.
tems may display different steady states, ranging from equeenericallyd; < ceil(2D.(A) + 1).

librium points to chaotic attractors. It is not always possible to find mathematical models like

DerINITION 1. (Chaotic Attractor) (Wiggins 1990). Con- eq. (1) to describe the behavior of a chaotic system, but it
sider aC” (r > 1) autonomous vector field ofi”, which is usually possible to measure at least one of the variables
defines a system like that given by eq. (1). Denote the floimvolved in its evolution. Some methods for analyzing the
generated by eq. (1) as(r, x), and assume that C %" is chaotic phenomena use time series obtained from these mea-
a compact set, invariant undg«z, x). ThenA is said to be surements. Based on the embedding theorem, these methods
chaaotic if it has the following properties. reconstruct the attractor, and calculate some important system
arameters (Eckmann and Ruelle 1985; Fraser and Swinney
586; Kennel, Brown, and Abarbanel 1992; Abarbanel and
U of x, there existy € U and some > 0 such that Kenn_e! 1993;_Abarbanel et al. 1993). By applying this thep-
6 (. x) — & (1. y)| = €. rem, it is p0§5|ble t.o reconstruct _the attractor if the embeddmg
dimension is previously determined. Therefore, a first prob-
2. Topological transitivity. For any two open séfsV ¢  lemiis to find this dimension from a time series. A method to
A, there exists somee R suchthatp (¢, U)NV £ @. solve this problem, called delayed coordinates, is discussed
in what follows.
Systems that show this behavior are called chaotic. They
are not easy to ar_1a|yze due to the absence of tools aIIowmq:aL Attractor Reconstruction
good understanding of the phenomena. In recent years, many
techniques have been developed for the analysis of the dyet us consider a system modeled by eq. (1). We assume that
namics of this type of system. Some of these techniques ar¢ime series obtained by sampling some sigrialavailable
given below, but before we give some definitions and a usefftbm the system. This signal may depend indirectly on the
theorem. statex, viaa mayg, therefore = h(g(x)) withha : R — R

DEFINITION 2. (Correlation Dimension). Let be abounded a function that relates the state with the variable which is
s | being measured. { is a diffeomorphism, thei = g(x) can

subset ofi” andC (r) a function proportional to the probabil- 6 used as a svstem state. Sinde a scalar function. then
ity that two arbitrary points on the orbit in state space are sep%— Y : '

. s measures only a projection af onto a one-dimensional
rated no more than(for constructingC (r); see, for example, y a proj

Parker and Chua 1989). Then, the correlation dimension ygace. In. order fgs to be useful for the reconstruction of
defined by (Grassberger and Procaccia 1983): a topological equivalent attractor, the miap g should be a

submersion frori" to N, which means that the stateshould
log C(r) be observable through the measurement
2 ) . : .
Let us now consider a time serieg) from a system vari
able obtained at regular time intervals of lengthfrom an
Typically, this quantity is not an integer number for ainitial time ¢, to a final timet, = 7, + Nt,; let us denote this
chaotic attractor. When this situation occurs it is said thattime series by (k) % s(t, + kt,), k = 0, 1, ...N. Theorem 1

A'is a fractal set. tells us that ifs can be given by a submersidno g, then

THEOREM1. (Whitney’s Theorem) (Guillemin and Pollack the geometric structure of the system dynamics can be re-
1974). LetA be a compact” (+ > 2) manifold with dimen- constructed using scalar measuremeriigx (k))) in a state

sion D,(A) as defined in Definition (2). Then there igca  SPace built by vectors of the form:

embedding ofd in Reei@PeA+D)
g y=[hog (). hog ().....hog" ()] (3

1. Sensitive dependence on initial conditions. There exi
€ > 0 such that, for any € A and any neighborhood

D, (4) =lim R

Paraphrasing, suclD.(A)-dimensional manifolds may
be diffeomorphically mapped to the Euclidian spacevhereg’ = g/~'o g, g° = id. This reconstruction can be
Reell@P+D Hence, the Euclidian spagee’@>-"+ js large  implemented with arbitrary smooth functiohsndg. A typ-
enough to contain a diffeomorphic copy of theBe(A)- jcal selection forg is the time-delay operatog’ (x (k))

dimensional manifolds. Actually, this is a maximum boundy (x—7;). Since the time series is obtained at regular time inter-
particularly it is possible to embed a chaotic attractor in fals, therl; = iT,T € z*+andhog (x(k)) = h(x(k—iT) =
smaller dimension. stk —iT), then

DErINITION 3. (Embedding Dimension). The dimensign
called the embedding dimension, is the dimension for which ~ Y(*) = [s(k), stk =T), ..., stk—=(d=DT)] (4)
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whereT is the time delay and is the dimension of the re- a continuous and finite-dimensional dynamical system, then
construction. If the system has an attractor with dimensicemy observed intersection of the trajectory in the projection
dr (A), thend is finite and by Theorem 1, is not greater tharcan be removed by increasing the dimension of the space in
ceil(2D.(A) + 1). A successful reconstruction depends on awhich the signal is represented. This can be done by choosing
appropriate selection of parameté&raindd = d;. Inthe fol- an appropriate value for the dimensign.e., the embedding
lowing sections some tools for computing these parameteatsmensiond,.. A proposed method to compute this dimension
are described. is the technique called false nearest neighbors (FNN).

The nearest points to the reconstruction vector (4)dn a
1.2. Average Mutual I nformation dimensional space is the nearest vector o and it will be

. . . . denoted as
Before formally describing the idea of mutual information, we

have to consider some restrictions. Theoretically, providedy (k) = [syy k), syn(k = T), ..., syn(k — (d — DT)].
exact and noise free information and a large enough value (9)

of d, attractor reconstruction can be implemented with an

arbitrary value of the time delay. However, this is not a  If ywv(k) is a true neighbor of (k), then it will be in the
realistic situation and we need an appropriate tool in order f¢ighborhood of this point due to the dynamics of the sys-
compute the value of the time del@y First, iftheT periodis tem. On the other hand, if it is a false neighbor, it appears in
too short, both signals (the original time series and its delaydde neighborhood due to a projection onto éheimensional
version) would not be independent enough to be considereddce from a higher-dimensional space. In order to determine
coordinates and, secondly/ifis too large, every connection if yxv (k) is a false neighbor of (k), the reconstruction di-
between these coordinates would be numerically subject to B€nsion is increased tb+ 1, and the normalized increment
random like one with respect to the other. A useful measut@ the Euclidian distance between eq. (4) and eq. (9) in the

for determining this parameter is the AMI. new space, with respect to the distance indkdimensional
The mutual information (MI) between a measurement SPace is given by
— N -
taken from a measurements set= {a,.},.:oNanq a measure Is (k — dT) — syy (k — dT)|
mentb;, taken from another st = {b,} _ is defined as 8 (k. d) = RT) (10)
(Abarbanel et al. 1993): ' ¢
» b where
IM (a;, b;) = log, [%] (5) -1
s @) Py (b) Ry =[5 (k= jT) —sux (k= TP (1)

where P,; is a joint probabilistic density, an®, and Py j=0

are individual probability densities. Therefore, the average | yun (k) is @ true neighbor then this increment must be
mutual information is defined as small; if it is not, then it is a false neighbor aadmust be
PIM,s = P (a;.b;)IM(a;. b)) . 6 increased. Another criterion, which has to be under consider-
A Z AB( ") ( ’) © ation is the relative increment of the Euclidian distance with
respect to the nominal size of the attracfy, in the case

Applying this definition over the time seriegk) and its \hen this size is known approximately,
delays(k — T),

iJ

Is (k —dT) — syy (k —dT)|

N 84 (k,d) = (12)
PIM(T) = ZP sk)y,stk=T))P, (k,T) )] R
k=0 If the combination of this criteria is not satisfied, then the
where real value ford must be increased (Abarbanel et al. 1993).

The PFNN in the/-dimensional space is given by

Pm(k,T)=Iogz|: PG®),sk-T1) ] 8)

P(s(k) P(s(k—T)) Number of false neighbors

PFNN(d) =
@ Total number of reconstructed vectorg) 3)

We propose to use a value Bfwhich is near to the mini-
mum of the AMI (Abarbanel et al. 1993). Due to the multiple x 100%

minima of this function we suggest taking the first one. _ )
Whend is large enough to unfold the trajectory, PFM)

is very small. Therefore, the embedding dimensignis the
minimum value ofd such that PFN) ~ 0.

Attractor reconstruction is based upon the idea that the mea-Although other criteria have been proposed for the cal-
sured variable is a projection of an unknown system. If this isulation of these couple of important parameters (Abarbanel

1.3. Global False Nearest Neighbors
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Fig. 2. AMI for an amplitudep = 1.91.

Fig. 1. The Pendubot.

directly from the devicel, = 0.26987 m,w; = 5.1885 N,

I, = 0.13494 m andv, = 3.2824 N.
et al. 1993), those described here, in our opinion, offer the e measured the angular position of the second link (the
best compromise between easy computation and accurate@ae Without an actuator) while a sinusoidal voltage input of
sults. In later sections the applications of these methods to te form
system under study are illustrated. The computation of these
parameters was performed using Matlalnd applied directly
to measurements of the system.

V = psin(wrt) (15)

was applied, whergis an available parameter, which changes
the dynamics of the overall system, alds given in volts.
2. The Pendubot The frequency used was= 9 rad s* and we have varied the
voltage amplitude from 0.1 to 2.9 V. In the following, we show
In this section we show the application of the method meran example of attractor reconstruction applying the average
tioned above to an electromechanical underactuated systenutual information criterion for finding a suitablg and the
We have chosen an underactuated mechatronic system fadde neighbors idea to find the embedding dimengjoiThe
presents a wide variety of behaviors. The system, called Pesrgular position of the second link of the Pendubot has been
dubot (Spong and Block 1995), consists of two rigid linkssampled every 16 ms, from where we have taken the transients
Link 1 is directly coupled to the shaft of a 90 V permanenbff.
magnet DC motor mounted to the end of a table; this motor is
_the only actuator of the sy_stem. L_ink 2is coupledtolink 1 gng_l_ Example: Chaotic Attractor
is moved only by the motion of link 1. The angular position
of both links is monitored to a computer via optical encoder§Ve have analyzed the Pendubot dynamics for an input signal
as shown in Figure 1. with amplitudep = 1.91. Figure 2 shows the AMI as a func-
All of our computations were performed on a personaion of the time delay". By applying the criterion previously
computer with a D/A card and an encoder interface card. Thdescribed, we found = 13. Using the FNN technique, the
control algorithms were programmed directiyin The volt- embedding dimension turns out to Bg = 4; this is shown
age to the DC motor is supplied via a servo amplifier. Theri@ Figure 3. Figure 4 shows the reconstructed attractor.
is a relationship between the supplied voltage and the appliedIn order to show that this behavior is chaotic, we have
torque to the DC motor; this relationship was experimentallgbtained the correlation dimension (Grassberger and Pro-
found caccia 1983; Grassberger 1988) of the attractor, obtaining
- D.(A) = 3.4713 and the largest Lyapunov exponent (LE;
T = (Lhw, + L, w,) COS[E —(0.2763V + 0.0333] ., (14)  Wolf et al. 1985) as.; = 1.41. These fractal dimensions and
positive exponent, indicate that the time series is chaotic.
wherer is the applied torque and is the voltage suppliedto  Although positive LEs also describe noisy signals, we can
the power amplifier. The parameters used here were measusag that the behavior of the system for the parameter value
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Fowes (AR}

Percentage of Fake Nearest Neighbom

Fregpeenoy | {rd]

* _ _ Fig. 5. Frequency spectrum fpr= 1.91.

[Himenmen

Fig. 3. PENN for an amplitude = 1.91 and a time delay

T =13.
telligent computation approaches, and parameter perturbation
methods.

Our proposal can be considered as a parameter perturba-
tion method. Most of the existing methods were designed
to be implemented in systems described by three differential
equations (Chen and Dong 1998), yielding two-dimensional
Poincaré or Lorenz maps. Ott, Grebogi, and Yorke (1990a)
recommended the use of the Poincaré map instead of the
Lorenz map (Lorenz 1963), but in some cases the use of
these maps leads to an ill-conditioned identification proce-
dure of the local dynamics (Alvarez, Alvarez-Gallegos, and
Gonzalez-Hernandez 1999). Although there are few approx-
imations for higher-dimensional systems (Ott, Grebogi, and

L Yorke 1990b; Ding et al. 1996), there is no general frame-
fk-Th g4 - L work; moreover, these methods are only capable of imposing
| ' certain dynamics for the stabilization. The method developed
here deals with both problems: higher-dimensional systems
Fig. 4. Projection of the reconstructed attractorfoe 1.91.  and imposing desired dynamics for the stabilization.

3.1. Method

The main advantage of parameter perturbation methods is that

p = 191 is chaotic because: (a) the AMI of the S|gna{t is possible to implement them without any prior knowl-

has a strict local minimum; (b) the PFNN falls to zero in ; .
N : N . edge about the system equations. This feature makes them
some finite dimension (for noise signals, this percentage never : .
very popular for the experimental control of chaotic systems.
(Figure 4); (d) the signal has a broad frequency SpeC,[ru(r%rnir)c_eachaotic attractor can be_consider_ed asthe closur_e ofan
(Figure 5)’ |nf|n_|te number of unstqble perlo_cyc orbits (UPOs), the idea
' behind these methods is to stabilize one of these UPOs. For
the implementation of the method proposed here it is neces-
3. Chaos Control Strategy sary to identify an unstable periodic orbit of the attractor to
locally characterize its dynamics, to determine the response
Recently, control and anticontrol of chaotic systems have beehthe system, and to calculate the change of the attractor to
taken into account in a wide variety of problems arising wheexternal stimulus.
ever there are complex behaviors appearing in some physicalThe process of identifying a UPO is done using a map
or biological system. The different approaches can be groupednstructed with delayed versions of a time series obtained
mainly into four categories (Chen and Dong 1998): chaos cohy sampling the consecutive local maxima (or minima) of the

trol via external action, control engineering approaches, isystem’s output signal. This map is called the Lorenz map
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s . , , , . 3.2. Fixed Point Perturbation

i | : The Lorenz map is obtained from sampling consecutive local
a3 Lowd | maxima of the measured variable, as shown in Figure 6. Let
— us denote this sampled signal @g"_;. The explicit nature
: of the dynamics of the Lorenz map is unknown; therefore, a
reconstruction of this map is required in order to characterize
the local dynamics around the selected fixed point. Likewise
for attractor reconstruction (4), we apply the delay operator
to this sampled signal to form a vectoref= d; — 1 delayed
coordinates. Now let us define a new vectar )" for denot-
ing the discrete time evolution of consecutive local maxima.
This vector is related t¢ as

aal— S S ' L z ¢ (n)
z® (=1

Arnaibed poadion of linkl 2 i i

811 0] z

(16)

Fig. 6. Local maxima used to construct the Lorenz map. z(;") ¢ n— ('m — 1)
Then, although explicitly unknown, the Lorenz map asso-
ciated with a specific value of a paramegeran be expressed

(Lorenz 1963). It provides information about the dynamicgy
of the original system in a discrete space. Figure 6 shows the Zup1 = G (24, P) - 17)
process of sampling local maxima. Some authors (Peitg
Jirgens, and Saupe 1992) call this map the “one-dimensio

return map”, because it is reconstructed from only one d n-dimensional fixed point (related to a periodic orbit in the

mension (_a measured local maX|_ma); since this map may ﬁginal space). The location of this point depends also on the
m-dimensional, we prefer to call it the Lorenz map in Ordebarametep'

to avoid possible confusion.

It can be seen from Figure 6 that, if the measured signal z2=G(z,p). (18)
has a limit cycle behavior, consecutive local maxima will have
constant values for a stable periodic orbit. In the Lorenz ma
this behavior will be seen as a staltedimensional fixed
point. Conversely, due to the chaotic nature of the measured Z2(p) =G @Z(Pn),Pu)- (29)
variable, we expect the appearance of unstable fixed points in . . . .
the Lorenz map, corresponding to unstable periodic orbits in The change in 'the location Of. the f|xeq point QUe to a pa-
the reconstructed space. rameter perturbation can be estimated with a shift vegtor

Once we have determined about which unstable fixed point b= i_( o~ Z(Pur1) —2(pa) (20)
in the Lorenz map (corresponding to an UPO) we wish to - o|pZ P Pust — Pn
regulate the behavior, the motion of consecutive points is ob- ater in this paper, we show the experimental process for
served. These points occasionally approach the neighborh %ing the fixed point’ location and its change
of the chosen unstable fixed point. Moreover, the unstable '
fixed point also moves according to the fixed set of parame-_ . L ) )
ters used. If some parameter in this set is changed, then t%'lé Linearization about a Fixed Point

location of the qnstable fixed point changes as well. Th.en, We assume that the behavior of the Lorenz map ina neigh_
order to determine the attractor response to external stimulgsrhood of the fixed point is linear. Thus, it is possible to find

it is necessary to introduce a perturbation in the system B ;:-dimensional Jacobian matrik of the form:
varying one of these parameters. We may distinguish three

is map describes the dynamics of the (maximal) sam-
d values of the original measured signal and it has an

If the parameter changes with every iteration, the fixed
Bbint location also changes:

stages for the method: 8 é 2 8
1. perturbation of a fixed point; A = D:G (z,, p,) = : : : :

; P ; - 0 0 o - 1

2. linearization about the fixed point; A

3. determination of the value of the control parameter. (21)
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Fig. 7. Displacement of the unstable fixed point due to &ig- 8. Construction of the Lorenz map for the Pendubot.
change in a parameter.

Notice that th ical f ¢ matrik is due to th such as those reported in Ott, Grebogi, and Yorke (1990b) and
© 'C? ha N canomcz orm o {ga rO 'Sh ue ﬁ ﬁ Ding et al. (1996), deal with this type of problem, but they do
nature of the reconstructed vector (16). On the other anr‘fiot provide flexibility for choosing a desired behavior. This

— —_— PR T - . .
a VeCtofB n D.P*Q(Z"’ P = [.0 0 b I" also can new idea allows us to implement more robust algorithms for
be obtained, yielding an equation representing the dynamlﬁ,ise stabilization of periodic orbits

aboutz, which can be represented as

(Zn+l - Z) - A (Zn - z) + B (pn - p*) 5 (22)
wherep* is the nominal value for parametgrat the chaotic 4. Experimental Results

regime. Because of the chaotic nature of the system, thjs . . .
linearized version is expected to be unstable, so that nfas mentioned earlier, the Pendubot is an underactuated, two-

trix A will have at least one unstable eigenvalue. Paramet ggrees-of-freedom (2-DOF;) robotic system whose unique

a®.a®. ... a™ andb should be estimated from experimen-ava'lable actuqtor_ls located in the first link. In this se_ctlon we

tal data. show the application of the proposed method to this robotic
system. The input signal used was a sinusoidal torque via a
voltage applied to the servoamplifier (see egs. (14) and (15)),

with a frequencyy = 9 rad s* where the amplitude plays the

Once the required parameters are determined, an approxirfl€ Of control parametep. The available variable is the an-
tion of the local dynamics around the unstable periodic orbiti@ular position of the second link and itis denoteddy). All -
the Lorenz map is available. Equation (22) describes a notl€ €xperiments were carried out using a PC 486DX2/50 with
autononous discrete time linear system in which the valgeKeithley Metrabyte DAC-02 output data card and a TECH
of parameterp in the nth iteration is the actuating external 80-5312B system for input data from the optical encoders.
action. We have found a chaotic regime by selecting= p* =

Now we impose the desired behavior via a state feedbalié>89; this value was taken as the nominal parameter, in
control law in order to assign new poles to the linearize@Uch away that the control objective will be to find a suitable

3.4. Determination of theValue of the Control Parameter

controlled discrete system. control actionp, to stabilize an unstable periodic orbit of the
attractor.
pe=p" —K' (z,—2) (23) Following the procedure described before, the first step is

to find the embedding dimension of the reconstructed attrac-
with K € %" being a constant vector chosen appropriate suc¢br. This embedding dimension was calculated previously in
that detAl — A + BK) be strictly Hurwitz. Stabilizing the Section 3 agl; = 4; therefore, the dimension of the Lorenz
fixed point in this map corresponds to stabilizing an unstablaap turns out to be: = 3. The signals used for the Lorenz
periodic orbit in the reconstructed space. Other approachesap construction are shown in detail in Figure 8.
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il el i)

Fig. 9. Lorenz map for the Pendubot from experimental dat&ig.

4.1. Fixed Points of the Lorenz Map

A fixed point in the Lorenz map should satisfy

7=G(z, p"). (24)

Because of the use of delayed coordinates in the Lore
map, the fixed point has the forin= [z,,. Z.,. - . - ,Zeq]T, ie.,
it belongs to the ling; = z, = z3 in the three-dimensional
Lorenz map shown in Figure 9. Experimentally, we hav
foundz,, = 0.2589.

4.2. Local Dynamics

In order to obtain the local stability of the periodic orbit, the
local dynamics around the associated fixed point is estimateu.

This procedure consists of finding points close to the fixefil9-

point in the Lorenz map and using a standard mean squared
algorithm in order to identify the local dynamics (22). Results
for the Pendubot using experimental data, considerirg 3,
are given in what follows. Matrid was estimated to be

0 1 0
A= 0 0 1 (25
—2.3901 —1.4653 Q9799

sl Parddiedis
-

ia

4%
414
A
-Ilﬁ_

re [] T LR =y
152 i L1 a0y 210 Ll Rl rL

D i)

M

10. Controlled variable,(¢) in steady state.

s Eall} 213 a1 L N

4T ]

11. Control parametey,.

vector wask = [ 2.3841 13553 05799 ]. This control
law is enabled when, is in the neighborhood of the fixed
point to be stabilized. In Figure 10, the controlled angular
position variable is shown in steady state. It can be seen that

899

the values of the local maxima of the controlled variable are
andB =[ 0 0 02279 . The resulting eigenvalues for Very close to the calculated fixed point in the Lorenz map

the linearization aroungwerei(A) = {—0.8157 0.8978+
j1.4574; this denotes instability of the fixed point.

(z., = 0.2589). Figure 11 shows the corresponding time evo-
lution of the control parameter, in steady state. Finally, the

reconstructed controlled attractor, which is a double-period

4.3. Control Law

oscillation, is shown in Figure 12.

It is worth mentioning that the design of the control law is
The control law (23) for the parameteris directly applied made off-line and about an unstable fixed point of the Lorenz
in eq. (15). In order to show the flexibility of the proposedmap of the nonlinear system, but once the appropriate values
method, we have arbitrarily chosen a local dynamics such tHar the feedback gain vector are chosen, the control law (23)
A(A — BK) = {-0.1, —0.2, —0.3}; then, the calculated gain is applied directly to the nonlinear system.
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