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Abstract

Applying attractor reconstruction techniques and other chaotic mea-
surements, it is shown that the long-term dynamics of a vertical,
underactuated, two-degrees-of-freedom robot called Pendubot may
exhibit complex dynamics including chaotic behavior. These tech-
niques use only the measurement of some available variable of the
system, and the resulting reconstruction allows us to identify unsta-
ble periodic orbits embedded in the chaotic attractor. In this paper,
we also propose a parameter-perturbation-like control algorithm to
stabilize the behavior of the Pendubot to force its dynamics to be
periodic. We control this device using only the measurement of one
of its angular position coordinates and consider that the system may
be seen as five-dimensional (a non-autonomous, four-dimensional
system), taking the amplitude of a sinusoidal external torque as the
perturbation parameter. We change this parameter to stabilize one
of the equilibrium points in the so-called Lorenz map. The main ad-
vantage of the method proposed here is that it can be implemented
directly from time series data, irrespective of the overall dimension
of the phase space. Also, reconstructions of the attractor based on
the measurements are shown, as well as some experimental results
of the controlled system.

KEY WORDS—Pendubot, chaos control, underactuated
robot, delay coordinates

1. Introduction

Chaotic dynamics have been widely studied in several disci-
plines during the last decades. A chaotic signal is generated
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by a deterministic dynamical system, but because of its sensi-
tivity to initial conditions, it is long-term unpredictable. Some
methods have been developed to analyze and calculate some
important parameters of a chaotic system; Lyapunov expo-
nents and some other geometrical characteristics (Parker and
Chua 1989) are of great use in analyzing this complex behav-
ior. Some of these techniques need a mathematical model of
the system. In practice, it is frequent that a model is not avail-
able, and the only information is given by some measurements
obtained directly from the system from which the fundamen-
tal dynamical parameters must be calculated. However, this
is not a trivial problem.

In this sense, some techniques have been proposed to re-
construct an attractor from a time series obtained from the
measurement of a system variable. One of these techniques
that is often used, giving interesting and useful results, is the
so-called delayed coordinates method. The application of this
technique to analyze the complex behavior of a real system,
an underactuated mechanical manipulator, is the first of two
objectives of this paper.

Chaotic oscillations are a particular kind of irregular and
unpredictable behavior commonly considered as undesirable;
this is the reason for trying to eliminate them from the over-
all behavior of a system. Stabilizing a periodic motion in a
chaotic system does not require a great amount of energy for
the control action since the attractor contains an infinite num-
ber of unstable periodic orbits embedded in it. There exist
some applications in which the main goal is to transform an
irregular motion into a regular one, for instance, in power
electronics devices (Baillieul, Brockett, and Washburn 1980).
Chaos suppression has been achieved in several experimental
preparations for controlling some medical pathologies such
as cardiac arrhythmia (Garfinkel et al. 1992) or in regulating
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voltage peaks in the brain in epileptic crisis (Gluckman et al.
1996).

For mechanical systems, irregular oscillations are partic-
ularly undesirable because of the possibility of mechanical
damage. Another reason to stabilize periodic orbits is that, in
some robotics applications, it is required to follow a desired
periodic trajectory, for example in walking robots (Canudas
de Wit, Roussel, and Goswami 1997).

Underactuated manipulators arise in a number of important
applications such as free-flying space robots, hyper-redundant
manipulators, snake-like robots, and manipulators with struc-
tural flexibility, among others. Previous work on modeling
and control of such manipulators can be found in Chirikjian
and Burdick (1991), Jain and Rodríguez (1991), Rodríguez,
Kreutz-Delgado, and Jain (1991). An important goal in ma-
nipulator control is to perform tasks involving the exact track-
ing of some desired trajectory. The exact tracking depends on
the nature of the designed control algorithm after a proper
analysis of the particular device dynamics. The absence of
an actuator transforms the robot into an underactuated de-
vice that may lead to a malfunction of the system, to an erro-
neous tracking of the desired trajectory and in some cases to
instability. Moreover, underactuated robots may exhibit rich
dynamical behaviors including chaos (Alvarez-Gallegos, Al-
varez, and González-Hernández 1997; González-Hernández,
Alvarez-Gallegos, and Alvarez 2001).

Earlier works on stabilization of periodic orbits can be
found in Chen and Dong (1998), Ott, Grebogi, and Yorke
(1990a), and Hunt (1992); however, most of them were
designed for systems described by three differential equa-
tions yielding two-dimensional Poincaré or Lorenz maps
(Lorenz 1963; Peitgen, Jürgens, and Saupe 1992). For higher-
dimensional systems there are some approaches (Ott, Grebogi
and Yorke 1990b; Ding et al. 1996), but a general framework
has not been established yet; moreover, these methods are
only capable of imposing a particular dynamics for the stabi-
lization. The method developed in this paper deals with both
problems: control of higher-dimensional systems, and impos-
ing a desired dynamics for the stabilization.

In order to stabilize periodic orbits in a chaotic attractor, it
is necessary to approximate the dynamics of the system in a
lower-dimensional space where a periodic orbit may be seen
as a fixed point; Ott, Grebogi, and Yorke (1990a) suggest the
use of a Poincaré map for finding this fixed point. In this paper,
we report on the use of Lorenz maps, instead of Poincaré maps,
for the local identification of the dynamics around the periodic
unstable orbits of the attractor. It has been proposed earlier
(Alvarez, Alvarez-Gallegos, and González-Hernández 1999)
that the use of this type of map allows better identification
schemes and avoids ill-conditioned identification problems.

The second part of this paper shows the application of the
proposed parameter perturbation method to control the com-
plex dynamics of the Pendubot. Given a time series obtained
from some measured variable of the Pendubot, which displays

an irregular behavior, the objective is to force its dynamics to
a periodic motion.

The main contributions in this paper are the analysis of the
dynamics of an underactuated robot and the proposal of a new
method to stabilize periodic orbits embedded in the chaotic
attractor of this device. The analysis and the control action
were implemented on the real system.

The characterization of the dynamical behavior of the sys-
tem is accomplished without an explicit dynamical system
model, using only a time series generated from the measure-
ments of one of the variables of the system. First, the largest
Lyapunov exponent of the time series is computed, and then
the fractal dimension and the frequency spectrum for deter-
mining the chaotic nature of the measured signal are obtained.

The analysis is accomplished by using an embedded co-
ordinates method, again using only a time series. We use the
average mutual information (AMI; Abarbanel et al. 1993) in
order to choose the delay time factor for the coordinates and
the percentage of false nearest neighbors (PFNN) (Abarbanel
and Kennel 1993) to find the embedding dimension of the
attractor to be reconstructed.

Finally, in this paper we propose a framework for designing
flexible control laws for the stabilization of periodic orbits
embedded in higher-dimension chaotic attractors from system
measurements. In this way, flexibility means the capability to
impose arbitrary dynamics with the proposed control law.This
control law is applied directly to a real system.

The paper is organized as follows. In Section 2 we give
some useful concepts on dynamical systems and some tools
to analyze chaotic behavior from time series. In Section 3 we
analyze the dynamics of the Pendubot. Section 4 deals with the
control strategy. In Section 5 experimental results are shown
and, finally, Section 6 contains some concluding remarks.

2. Analysis of Chaotic Systems

There are no analytical solutions for equations describing
chaotic phenomena; even an approximate solution is not easy
to find. Some analysis techniques for this type of system in-
volve perturbation methods (Naifeh and Balachandran 1995)
for setting approximate solutions. Once we have these ap-
proximate solutions it is possible to compute some other de-
scriptors of their behavior. We call chaotic descriptors to those
quantities used to measure the “degree of chaotic behavior”
of the system. Among others, Lyapunov exponents, Lorenz
maps, and local dimension of the attractor are some descrip-
tors that give information about the dynamical behavior of the
system.

Let us consider a system described by

.
x = f (t, x, µ) (1)

wherex ∈ �n is the state,f : � × �n × �q −→ �n is aCr

(r ≥ 1) vector field, andµ denotes the system parameters.
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The solution of eq. (1) is some vector functionx = x(t) that
describes the trajectories in the state space constructed with
its coordinates. Depending on the parameter values, some sys-
tems may display different steady states, ranging from equi-
librium points to chaotic attractors.

DEFINITION 1. (Chaotic Attractor) (Wiggins 1990). Con-
sider aCr (r ≥ 1) autonomous vector field on�n, which
defines a system like that given by eq. (1). Denote the flow
generated by eq. (1) asφ(t, x), and assume that� ⊂ �n is
a compact set, invariant underφ(t, x). Then� is said to be
chaotic if it has the following properties.

1. Sensitive dependence on initial conditions. There exists
ε > 0 such that, for anyx ∈ � and any neighborhood
U of x, there existsy ∈ U and somet > 0 such that
|φ (t, x) − φ (t, y)| > ε.

2. Topological transitivity. For any two open setsU, V ⊂
�, there exists somet ∈ � such thatφ (t, U)∩V �= ∅.

Systems that show this behavior are called chaotic. They
are not easy to analyze due to the absence of tools allowing a
good understanding of the phenomena. In recent years, many
techniques have been developed for the analysis of the dy-
namics of this type of system. Some of these techniques are
given below, but before we give some definitions and a useful
theorem.

DEFINITION 2. (Correlation Dimension). LetAbe a bounded
subset of�n andC(r) a function proportional to the probabil-
ity that two arbitrary points on the orbit in state space are sepa-
rated no more thanr (for constructingC(r); see, for example,
Parker and Chua 1989). Then, the correlation dimension is
defined by (Grassberger and Procaccia 1983):

Dc (A) = lim
r→0

logC(r)

log(r)
. (2)

Typically, this quantity is not an integer number for a
chaotic attractorA. When this situation occurs it is said that
A is a fractal set.

THEOREM 1. (Whitney’s Theorem) (Guillemin and Pollack
1974). LetA be a compactCr (r > 2) manifold with dimen-
sion Dc(A) as defined in Definition (2). Then there is aCr

embedding ofA in �ceil(2Dc(A)+1).

Paraphrasing, suchDc(A)-dimensional manifolds may
be diffeomorphically mapped to the Euclidian space
�ceil(2Dc(A)+1). Hence, the Euclidian space�ceil(2Dc(A)+1) is large
enough to contain a diffeomorphic copy of theseDc(A)-
dimensional manifolds. Actually, this is a maximum bound;
particularly it is possible to embed a chaotic attractor in a
smaller dimension.

DEFINITION 3. (Embedding Dimension). The dimensiondE,
called the embedding dimension, is the dimension for which

the attractor is fully unfolded, i.e., the dimension in which
two points far away from each other in the original space
are not projected near each other in the observation space.
Generically,dE ≤ ceil(2Dc(A) + 1).

It is not always possible to find mathematical models like
eq. (1) to describe the behavior of a chaotic system, but it
is usually possible to measure at least one of the variables
involved in its evolution. Some methods for analyzing the
chaotic phenomena use time series obtained from these mea-
surements. Based on the embedding theorem, these methods
reconstruct the attractor, and calculate some important system
parameters (Eckmann and Ruelle 1985; Fraser and Swinney
1986; Kennel, Brown, and Abarbanel 1992; Abarbanel and
Kennel 1993; Abarbanel et al. 1993). By applying this theo-
rem, it is possible to reconstruct the attractor if the embedding
dimension is previously determined. Therefore, a first prob-
lem is to find this dimension from a time series. A method to
solve this problem, called delayed coordinates, is discussed
in what follows.

1.1. Attractor Reconstruction

Let us consider a system modeled by eq. (1). We assume that
a time series obtained by sampling some signals is available
from the system. This signal may depend indirectly on the
statex, via a mapg, therefores = h(g(x)) with h : �n −→ �
a function that relates the state with the variable which is
being measured. Ifg is a diffeomorphism, thenξ = g(x) can
be used as a system state. Sinceh is a scalar function, then
s measures only a projection ofx onto a one-dimensional
space. In order fors to be useful for the reconstruction of
a topological equivalent attractor, the maph ◦ g should be a
submersion from�n to�, which means that the statex should
be observable through the measurements.

Let us now consider a time seriess(t) from a system vari-
able obtained at regular time intervals of lengthτs from an
initial time t0 to a final timetf = t0 + Nτs ; let us denote this

time series bys(k)
def= s(t0 + kτs), k = 0, 1, ...N . Theorem 1

tells us that ifs can be given by a submersionh ◦ g, then
the geometric structure of the system dynamics can be re-
constructed using scalar measurementsh(g(x(k))) in a state
space built by vectors of the form:

y = [
h ◦ g0 (x) , h ◦ g1 (x) , . . . , h ◦ gd−1 (x)

]
(3)

wheregj = gj−1 ◦ g, g0 = id. This reconstruction can be
implemented with arbitrary smooth functionsh andg. A typ-

ical selection forg is the time-delay operator,gi(x(k))
def=

x(k−Ti). Since the time series is obtained at regular time inter-
vals, thenTi = iT ,T ∈ Z+ andh◦gi(x(k)) = h(x(k−iT ) =
s(k − iT ), then

y(k) = [s(k), s(k − T ), . . . , s(k − (d − 1)T )] (4)
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whereT is the time delay andd is the dimension of the re-
construction. If the system has an attractor with dimension
dE (A), thend is finite and by Theorem 1, is not greater than
ceil(2Dc(A)+1). A successful reconstruction depends on an
appropriate selection of parametersT andd = dE. In the fol-
lowing sections some tools for computing these parameters
are described.

1.2. Average Mutual Information

Before formally describing the idea of mutual information, we
have to consider some restrictions. Theoretically, provided
exact and noise free information and a large enough value
of d, attractor reconstruction can be implemented with an
arbitrary value of the time delayT . However, this is not a
realistic situation and we need an appropriate tool in order to
compute the value of the time delayT . First, if theT period is
too short, both signals (the original time series and its delayed
version) would not be independent enough to be considered as
coordinates and, secondly, ifT is too large, every connection
between these coordinates would be numerically subject to be
random like one with respect to the other. A useful measure
for determining this parameter is the AMI.

The mutual information (MI) between a measurementai ,
taken from a measurements setA = {ai}N

i=0 and a measure-

mentbj , taken from another setB = {
bj

}N

j=0
is defined as

(Abarbanel et al. 1993):

IM
(
ai, bj

) = log2

[
PAB

(
ai, bj

)
PA (ai) PB

(
bj

)
]

(5)

wherePAB is a joint probabilistic density, andPA and PB

are individual probability densities. Therefore, the average
mutual information is defined as

PIMAB =
∑
i,j

PAB

(
ai, bj

)
IM

(
ai, bj

)
. (6)

Applying this definition over the time seriess(k) and its
delays(k − T ),

PIM(T ) =
N∑

k=0

P (s (k) , s (k − T )) Pm (k, T ) (7)

where

Pm (k, T ) = log2

[
P (s (k) , s (k − T ))

P (s (k)) P (s (k − T ))

]
. (8)

We propose to use a value ofT which is near to the mini-
mum of the AMI (Abarbanel et al. 1993). Due to the multiple
minima of this function we suggest taking the first one.

1.3. Global False Nearest Neighbors

Attractor reconstruction is based upon the idea that the mea-
sured variable is a projection of an unknown system. If this is

a continuous and finite-dimensional dynamical system, then
any observed intersection of the trajectory in the projection
can be removed by increasing the dimension of the space in
which the signal is represented. This can be done by choosing
an appropriate value for the dimensiond, i.e., the embedding
dimensiondE. A proposed method to compute this dimension
is the technique called false nearest neighbors (FNN).

The nearest points to the reconstruction vector (4) in ad-
dimensional space is the nearest vector toy(k) and it will be
denoted as

yNN(k) = [sNN(k), sNN(k − T ), . . . , sNN(k − (d − 1)T )] .

(9)

If yNN(k) is a true neighbor ofy(k), then it will be in the
neighborhood of this point due to the dynamics of the sys-
tem. On the other hand, if it is a false neighbor, it appears in
the neighborhood due to a projection onto thed-dimensional
space from a higher-dimensional space. In order to determine
if yNN(k) is a false neighbor ofy(k), the reconstruction di-
mension is increased tod + 1, and the normalized increment
in the Euclidian distance between eq. (4) and eq. (9) in the
new space, with respect to the distance in thed-dimensional
space is given by

δ (k, d) = |s (k − dT ) − sNN (k − dT )|
Rd (T )

(10)

where

R2
d (k) =

d−1∑
j=0

[s (k − jT ) − sNN (k − jT )]2
. (11)

If yNN(k) is a true neighbor then this increment must be
small; if it is not, then it is a false neighbor andd must be
increased. Another criterion, which has to be under consider-
ation is the relative increment of the Euclidian distance with
respect to the nominal size of the attractorRA, in the case
when this size is known approximately,

δA (k, d) = |s (k − dT ) − sNN (k − dT )|
RA

. (12)

If the combination of this criteria is not satisfied, then the
real value ford must be increased (Abarbanel et al. 1993).

The PFNN in thed-dimensional space is given by

PFNN(d) = Number of false neighbors

Total number of reconstructed vectors

× 100%.

(13)

Whend is large enough to unfold the trajectory, PFNN(d)

is very small. Therefore, the embedding dimensiondE is the
minimum value ofd such that PFNN(d) ≈ 0.

Although other criteria have been proposed for the cal-
culation of these couple of important parameters (Abarbanel
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Fig. 1. The Pendubot.

et al. 1993), those described here, in our opinion, offer the
best compromise between easy computation and accurate re-
sults. In later sections the applications of these methods to the
system under study are illustrated. The computation of these
parameters was performed using Matlab® and applied directly
to measurements of the system.

2. The Pendubot

In this section we show the application of the method men-
tioned above to an electromechanical underactuated system.
We have chosen an underactuated mechatronic system that
presents a wide variety of behaviors. The system, called Pen-
dubot (Spong and Block 1995), consists of two rigid links.
Link 1 is directly coupled to the shaft of a 90 V permanent
magnet DC motor mounted to the end of a table; this motor is
the only actuator of the system. Link 2 is coupled to link 1 and
is moved only by the motion of link 1. The angular position
of both links is monitored to a computer via optical encoders,
as shown in Figure 1.

All of our computations were performed on a personal
computer with a D/A card and an encoder interface card. The
control algorithms were programmed directly inC. The volt-
age to the DC motor is supplied via a servo amplifier. There
is a relationship between the supplied voltage and the applied
torque to the DC motor; this relationship was experimentally
found

τ = (
l1w2 + lc1w1

)
cos

[π

2
− (0.2763V + 0.0335)

]
, (14)

whereτ is the applied torque andV is the voltage supplied to
the power amplifier. The parameters used here were measured

Fig. 2. AMI for an amplitudep = 1.91.

directly from the device:l1 = 0.26987 m,w1 = 5.1885 N,
lc1 = 0.13494 m andw2 = 3.2824 N.

We measured the angular position of the second link (the
one without an actuator) while a sinusoidal voltage input of
the form

V = p sin(ωt) (15)

was applied, wherep is an available parameter, which changes
the dynamics of the overall system, andV is given in volts.
The frequency used wasω = 9 rad s−1 and we have varied the
voltage amplitude from 0.1 to 2.9V. In the following, we show
an example of attractor reconstruction applying the average
mutual information criterion for finding a suitableT , and the
false neighbors idea to find the embedding dimensiondE. The
angular position of the second link of the Pendubot has been
sampled every 16 ms, from where we have taken the transients
off.

2.1. Example: Chaotic Attractor

We have analyzed the Pendubot dynamics for an input signal
with amplitudep = 1.91. Figure 2 shows the AMI as a func-
tion of the time delayT . By applying the criterion previously
described, we foundT = 13. Using the FNN technique, the
embedding dimension turns out to bedE = 4; this is shown
in Figure 3. Figure 4 shows the reconstructed attractor.

In order to show that this behavior is chaotic, we have
obtained the correlation dimension (Grassberger and Pro-
caccia 1983; Grassberger 1988) of the attractor, obtaining
Dc(A) = 3.4713 and the largest Lyapunov exponent (LE;
Wolf et al. 1985) asλ1 = 1.41. These fractal dimensions and
positive exponentλ1 indicate that the time series is chaotic.

Although positive LEs also describe noisy signals, we can
say that the behavior of the system for the parameter value
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Fig. 3. PFNN for an amplitudep = 1.91 and a time delay
T = 13.

Fig. 4. Projection of the reconstructed attractor forp = 1.91.

p = 1.91 is chaotic because: (a) the AMI of the signal
has a strict local minimum; (b) the PFNN falls to zero in
some finite dimension (for noise signals, this percentage never
falls to zero); (c) the geometry of the reconstructed attractor
(Figure 4); (d) the signal has a broad frequency spectrum
(Figure 5).

3. Chaos Control Strategy

Recently, control and anticontrol of chaotic systems have been
taken into account in a wide variety of problems arising wher-
ever there are complex behaviors appearing in some physical
or biological system. The different approaches can be grouped
mainly into four categories (Chen and Dong 1998): chaos con-
trol via external action, control engineering approaches, in-

Fig. 5. Frequency spectrum forp = 1.91.

telligent computation approaches, and parameter perturbation
methods.

Our proposal can be considered as a parameter perturba-
tion method. Most of the existing methods were designed
to be implemented in systems described by three differential
equations (Chen and Dong 1998), yielding two-dimensional
Poincaré or Lorenz maps. Ott, Grebogi, and Yorke (1990a)
recommended the use of the Poincaré map instead of the
Lorenz map (Lorenz 1963), but in some cases the use of
these maps leads to an ill-conditioned identification proce-
dure of the local dynamics (Alvarez, Alvarez-Gallegos, and
González-Hernández 1999). Although there are few approx-
imations for higher-dimensional systems (Ott, Grebogi, and
Yorke 1990b; Ding et al. 1996), there is no general frame-
work; moreover, these methods are only capable of imposing
certain dynamics for the stabilization. The method developed
here deals with both problems: higher-dimensional systems
and imposing desired dynamics for the stabilization.

3.1. Method

The main advantage of parameter perturbation methods is that
it is possible to implement them without any prior knowl-
edge about the system equations. This feature makes them
very popular for the experimental control of chaotic systems.
Since a chaotic attractor can be considered as the closure of an
infinite number of unstable periodic orbits (UPOs), the idea
behind these methods is to stabilize one of these UPOs. For
the implementation of the method proposed here it is neces-
sary to identify an unstable periodic orbit of the attractor to
locally characterize its dynamics, to determine the response
of the system, and to calculate the change of the attractor to
external stimulus.

The process of identifying a UPO is done using a map
constructed with delayed versions of a time series obtained
by sampling the consecutive local maxima (or minima) of the
system’s output signal. This map is called the Lorenz map
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Fig. 6. Local maxima used to construct the Lorenz map.

(Lorenz 1963). It provides information about the dynamics
of the original system in a discrete space. Figure 6 shows the
process of sampling local maxima. Some authors (Peitgen,
Jürgens, and Saupe 1992) call this map the “one-dimensional
return map”, because it is reconstructed from only one di-
mension (a measured local maxima); since this map may be
m-dimensional, we prefer to call it the Lorenz map in order
to avoid possible confusion.

It can be seen from Figure 6 that, if the measured signal
has a limit cycle behavior, consecutive local maxima will have
constant values for a stable periodic orbit. In the Lorenz map,
this behavior will be seen as a stablem-dimensional fixed
point. Conversely, due to the chaotic nature of the measured
variable, we expect the appearance of unstable fixed points in
the Lorenz map, corresponding to unstable periodic orbits in
the reconstructed space.

Once we have determined about which unstable fixed point
in the Lorenz map (corresponding to an UPO) we wish to
regulate the behavior, the motion of consecutive points is ob-
served. These points occasionally approach the neighborhood
of the chosen unstable fixed point. Moreover, the unstable
fixed point also moves according to the fixed set of parame-
ters used. If some parameter in this set is changed, then the
location of the unstable fixed point changes as well. Then, in
order to determine the attractor response to external stimulus
it is necessary to introduce a perturbation in the system by
varying one of these parameters. We may distinguish three
stages for the method:

1. perturbation of a fixed point;

2. linearization about the fixed point;

3. determination of the value of the control parameter.

3.2. Fixed Point Perturbation

The Lorenz map is obtained from sampling consecutive local
maxima of the measured variable, as shown in Figure 6. Let
us denote this sampled signal as{ζ }N

n=1. The explicit nature
of the dynamics of the Lorenz map is unknown; therefore, a
reconstruction of this map is required in order to characterize
the local dynamics around the selected fixed point. Likewise
for attractor reconstruction (4), we apply the delay operator
to this sampled signal to form a vector ofm = dE −1 delayed
coordinates. Now let us define a new vectorz ∈ �m for denot-
ing the discrete time evolution of consecutive local maxima.
This vector is related toζ as

z =




z(1)
n

z(2)
n

...

z(m)
n


 =




ζ (n)

ζ (n − 1)
...

ζ (n − (m − 1))


 . (16)

Then, although explicitly unknown, the Lorenz map asso-
ciated with a specific value of a parameterp can be expressed
by

zn+1 = G (zn, p) . (17)

This map describes the dynamics of the (maximal) sam-
pled values of the original measured signal and it has an
m-dimensional fixed point (related to a periodic orbit in the
original space). The location of this point depends also on the
parameterp:

z = G (z, p) . (18)

If the parameter changes with every iteration, the fixed
point location also changes:

z (pn) = G (z (pn) , pn) . (19)

The change in the location of the fixed point due to a pa-
rameter perturbation can be estimated with a shift vectorb:

b ≡ d

dp
z (p∗) ≈ z (pn+1) − z (pn)

pn+1 − pn

. (20)

Later in this paper, we show the experimental process for
finding the fixed point location and its change.

3.3. Linearization about a Fixed Point

We assume that the behavior of the Lorenz map in a neigh-
borhood of the fixed point is linear. Thus, it is possible to find
anm-dimensional Jacobian matrixA of the form:

A = DzG (zn, pn) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
a(m) a(m−1) a(m−2) · · · a(1)


 .

(21)
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Fig. 7. Displacement of the unstable fixed point due to a
change in a parameter.

Notice that the canonical form of matrixA is due to the
nature of the reconstructed vector (16). On the other hand,
a vectorB = Dp∗G(zn, pn) = [ 0 0 · · · b ]T also can
be obtained, yielding an equation representing the dynamics
aboutz, which can be represented as

(zn+1 − z) = A (zn − z) + B (pn − p∗) , (22)

wherep∗ is the nominal value for parameterp at the chaotic
regime. Because of the chaotic nature of the system, this
linearized version is expected to be unstable, so that ma-
trix A will have at least one unstable eigenvalue. Parameters
a(1), a(2), . . . , a(m) andb should be estimated from experimen-
tal data.

3.4. Determination of the Value of the Control Parameter

Once the required parameters are determined, an approxima-
tion of the local dynamics around the unstable periodic orbit in
the Lorenz map is available. Equation (22) describes a non-
autononous discrete time linear system in which the value
of parameterp in the nth iteration is the actuating external
action.

Now we impose the desired behavior via a state feedback
control law in order to assign new poles to the linearized
controlled discrete system.

pn = p∗ − KT (zn − z) (23)

with K ∈ �m being a constant vector chosen appropriate such
that det(λI − A + BK) be strictly Hurwitz. Stabilizing the
fixed point in this map corresponds to stabilizing an unstable
periodic orbit in the reconstructed space. Other approaches,

Fig. 8. Construction of the Lorenz map for the Pendubot.

such as those reported in Ott, Grebogi, andYorke (1990b) and
Ding et al. (1996), deal with this type of problem, but they do
not provide flexibility for choosing a desired behavior. This
new idea allows us to implement more robust algorithms for
the stabilization of periodic orbits.

4. Experimental Results

As mentioned earlier, the Pendubot is an underactuated, two-
degrees-of-freedom (2-DOF) robotic system whose unique
available actuator is located in the first link. In this section we
show the application of the proposed method to this robotic
system. The input signal used was a sinusoidal torque via a
voltage applied to the servoamplifier (see eqs. (14) and (15)),
with a frequencyω = 9 rad s−1 where the amplitude plays the
role of control parameterp. The available variable is the an-
gular position of the second link and it is denoted byx2(t).All
the experiments were carried out using a PC 486DX2/50 with
a Keithley Metrabyte DAC-02 output data card and a TECH
80-5312B system for input data from the optical encoders.

We have found a chaotic regime by selectingp = p∗ =
0.2589; this value was taken as the nominal parameter, in
such a way that the control objective will be to find a suitable
control actionpn to stabilize an unstable periodic orbit of the
attractor.

Following the procedure described before, the first step is
to find the embedding dimension of the reconstructed attrac-
tor. This embedding dimension was calculated previously in
Section 3 asdE = 4; therefore, the dimension of the Lorenz
map turns out to bem = 3. The signals used for the Lorenz
map construction are shown in detail in Figure 8.
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Fig. 9. Lorenz map for the Pendubot from experimental data.

4.1. Fixed Points of the Lorenz Map

A fixed point in the Lorenz map should satisfy

z = G (z, p∗) . (24)

Because of the use of delayed coordinates in the Lorenz
map, the fixed point has the formz = [

zeq, zeq, . . . , zeq

]T
, i.e.,

it belongs to the linez1 = z2 = z3 in the three-dimensional
Lorenz map shown in Figure 9. Experimentally, we have
foundzeq = 0.2589.

4.2. Local Dynamics

In order to obtain the local stability of the periodic orbit, the
local dynamics around the associated fixed point is estimated.
This procedure consists of finding points close to the fixed
point in the Lorenz map and using a standard mean squared
algorithm in order to identify the local dynamics (22). Results
for the Pendubot using experimental data, consideringm = 3,
are given in what follows. MatrixA was estimated to be

A =

 0 1 0

0 0 1
−2.3901 −1.4653 0.9799


 (25)

andB = [ 0 0 0.2279 ]T. The resulting eigenvalues for
the linearization aroundz wereλ(A) = {−0.8157, 0.8978±
j1.4574}; this denotes instability of the fixed point.

4.3. Control Law

The control law (23) for the parameterp is directly applied
in eq. (15). In order to show the flexibility of the proposed
method, we have arbitrarily chosen a local dynamics such that
λ(A − BK) = {−0.1, −0.2, −0.3}; then, the calculated gain

Fig. 10. Controlled variablex2(t) in steady state.

Fig. 11. Control parameterpn.

vector wasK = [ 2.3841 1.3553 0.5799 ]. This control
law is enabled whenzn is in the neighborhood of the fixed
point to be stabilized. In Figure 10, the controlled angular
position variable is shown in steady state. It can be seen that
the values of the local maxima of the controlled variable are
very close to the calculated fixed point in the Lorenz map
(zeq = 0.2589). Figure 11 shows the corresponding time evo-
lution of the control parameterpn in steady state. Finally, the
reconstructed controlled attractor, which is a double-period
oscillation, is shown in Figure 12.

It is worth mentioning that the design of the control law is
made off-line and about an unstable fixed point of the Lorenz
map of the nonlinear system, but once the appropriate values
for the feedback gain vector are chosen, the control law (23)
is applied directly to the nonlinear system.
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Fig. 12. Projection of the reconstructed attractor for the
controlled system.

5. Concluding Remarks

In this paper we have proposed a procedure to analyze the
complex behavior of an underactuated robot as a first stage for
designing a UPO’s stabilizing control method. These meth-
ods help us to analyze the dynamics of any system requiring
only a measurement of one of its variables. Particularly, they
are useful for extracting information from the system; further-
more, they are the first stage in the application of the method
used here to control chaotic behavior. After the analysis of
several experiments, applying a delayed coordinates method
via AMI and PFNN, Lyapunov exponents, and fractal dimen-
sion techniques to the time series of the measured variable,
we conclude that the Pendubot exhibits chaotic motion.

On the other hand, the proposed method for stabilizing pe-
riodic orbits offers a way to control chaotic systems without
any prior knowledge of the system dynamics. It needs a mea-
sure of only one of the system variables and the availability
of a system parameter which can play the role of a control
input. Another advantage of the method is that it is possible to
impose a desired dynamics for the stabilization of the UPO, al-
lowing the application of some other control techniques such
as optimal, robust or adaptive control over the discrete time
linearization of the local dynamics in the Lorenz map.

The design of the control law was made off-line. A possi-
ble extension of the method for an on-line implementation is
currently under investigation.
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