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A NOTE ON τ-QUASI-INJECTIVE MODULES

SEPTIMIU CRIVEI

Abstract. Let τ be a hereditary torsion theory. We mention a character-

ization of τ -quasi-injective modules, as fully invariant submodules of their

τ -injective hull, and we give some properties for such modules. More-

over, the paper studies when τ -quasi-injective modules are quasi-injective

or not, in the case of the hereditary torsion theory τD whose τD-torsion

class consists of all semiartinian modules and τD-torsionfree class consists

of all modules with zero socle.

1. Preliminaries

Throughout this paper we will denote by R an associative ring with non-

zero identity and by τ a hereditary torsion theory on the category R-mod of left

R-modules. All modules considered in the paper will be left unital R-modules.

A module A is said to be semiartinian if every non-zero homomorphic image

of A contains a simple submodule [6, Chapter I, Definition 11.4.6]. Let A be a module

and let B be a submodule of A. Then A is semiartinian if and only if B and A/B are

semiartinian [6, Chapter I, Proposition 11.4.8].

A submodule B of a module A is said to be τ -dense (τ -closed) in A if A/B is τ -

torsion (τ -torsionfree). A non-zero module A is called τ -cocritical if A is τ -torsionfree

and each of its non-zero submodules is τ -dense in A.

A module A is said to be τ -injective if Ext1R(B,A) = 0 for every τ -torsion

module B. A module A is τ -injective if and only if A is a τ -closed submodule of its

injective hull [5, Proposition 8.2]. The class of τ -injective modules is closed under

taking direct products, direct summands and extensions [5, Proposition 8.4]. For any

module A, we will denote by E(A) and Eτ (A) the injective hull and the τ -injective

hull of A respectively.
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In this paper, a non-zero module which is the τ -injective hull of each of its

non-zero submodules will be called minimal τ -injective.

For additional information on torsion theories we refer to [5].

2. Some properties

A module A is said to be τ -quasi-injective if whenever B is a τ -dense sub-

module of A, any g ∈ HomR(B,A) can be extended to h ∈ EndR(A) [1, Definition

4.1.19].

Remarks. a) Every quasi-injective module is τ -quasi-injective.

b) Every τ -injective module is τ -quasi-injective.

c) A ring R is a τ -quasi-injective R-module if and only if it is τ -injective.

d) If A is a τ -torsion τ -quasi-injective module, then A is quasi-injective.

The following theorem gives a characterization of τ -quasi-injective modules

similar to the well known characterization of quasi-injective modules, which are fully

invariant submodules of their injective hulls.

Theorem 2.1. Let A be a module. Then A is τ -quasi-injective if and only

if A is a fully invariant submodule of Eτ (A).

Proof. We may suppose that A 6= 0. Denote K = EndR(Eτ (A)).

Assume first that A is τ -quasi-injective and let f ∈ K. Denote g = f |A and

B = g−1(A). Consider the following commutative diagram

0 - B
i- A

j- Eτ (A) - Eτ (A)/A
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u
?

Eτ (A)

k
?

where i, j, k are inclusion monomorphisms and u : B → A is defined by u(b) = g(b)

for every b ∈ B.

We will show that B is a τ -dense submodule of A. The homomorphism g

induces a monomorphism w : A/B → Eτ (A)/A, defined by w(a + B) = g(a) + A for
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every a ∈ A. Then A/B is τ -torsion because Em(A)/A is τ -torsion. Hence B is a

τ -dense submodule of A.

Since A is τ -quasi-injective, there exists v ∈ EndR(A) such that vi = u.

By τ -injectivity of Eτ (A), there exists h ∈ K such that hj = kv. Thus h(A) ⊆ A.

Assume (h − f)(A) 6= 0. Then (h − f)(A) ∩ A 6= 0 and there exist x, y ∈ A, y 6= 0

such that y = (h − f)(x). It follows that (h − f)(x) = v(x) − f(x) = y, hence

f(x) = v(x)− y ∈ A. Then x ∈ B and y = v(x)− f(x) = 0, contradiction. Therefore,

(h − f)(A) = 0, i.e. f(A) = h(A) ⊆ A. Hence A is a fully invariant submodule of

Eτ (A).

Suppose now that A is a fully invariant submodule of Eτ (A). Let B be a

τ -dense submodule of A and let g ∈ HomR(B,A). The module Eτ (A)/B is τ -torsion

because Eτ (A)/A and A/B are τ -torsion. Then g extends to h ∈ K because Eτ (A)

is τ -injective. Since h(A) ⊆ A, g extends to an endomorphism of A. Therefore A is

τ -quasi-injective. �

Corollary 2.2. If every τ -injective module is injective, then every τ -quasi-

injective module is quasi-injective.

Proof. By Theorem 2.1, if A is a τ -quasi-injective module, then A is a fully

invariant submodule of Eτ (A). But Eτ (A) = E(A). Hence A is a fully invariant

submodule of E(A), i.e. A is quasi-injective. �

Remark. By Theorem 2.1 and in a similar way as for quasi-injective modules,

it can be easily shown that the class of τ -quasi-injective modules is closed under taking

direct summands and any finite direct sum of copies of a τ -quasi-injective module is

τ -quasi-injective.

Theorem 2.3. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of modules and let h : B → A ⊕ D be a monomorphism,

where D is a module. If (hf)(A) is a τ -dense submodule of A ⊕ D and A ⊕ D is

τ -quasi-injective, then the above sequence splits.

Proof. Consider the diagram
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0 - A
f - B

g- C - 0

A⊕D

α
?

�θ
A⊕D

h
?

where α : A → A⊕D is the canonical injection. Since (A⊕D)/(hf)(A) is τ -torsion

and A⊕D is τ -quasi-injective, there exists an endomorphism θ : A⊕D → A⊕D such

that θhf = α. Let p : A⊕D → A be the canonical projection and define γ : B → A

by γ = pθh. Then γf = pθhf = pα = 1A, hence the above sequence splits. �

Corollary 2.4. Let f : A → B be a monomorphism of modules. If B is

τ -torsion and A⊕B is τ -quasi-injective, then A⊕B is τ -injective if and only if B is

τ -injective.

Proof. The ”if” part is obvious.

For the ”only if” part, in the Theorem 2.3, let h : B → A⊕B be the canonical

injection. Since B is τ -torsion, A and B/f(A) are τ -torsion. Hence (A⊕B)/(hf)(A) ∼=

(A ⊕ B)/f(A) is τ -torsion. By Theorem 2.3, f(A) is a direct summand of B, hence

A is τ -injective. Therefore A⊕B is τ -injective. �

3. The Dickson torsion theory

In this section we will establish further results in the case of a particular

hereditary torsion theory, namely the Dickson torsion theory.

For let T be the class of all semiartinian R-modules and let F be the class

of all R-modules with zero socle. Then τD = (T ,F) is a hereditary torsion theory.

The corresponding Gabriel filter F consists of all τD-dense left ideals of R (i.e. all

left ideals of R with R/I left semiartinian as an R-module).

An R-module D is τD-injective if any homomorphism from any left ideal

I ∈ F to D extends to R or equivalently if D is injective with respect to every short

exact sequence of modules 0 −→ A −→ B −→ C −→ 0, where C is τD-torsion (i.e. C

is semiartinian).

We consider now the following generalization of injectivity for modules. An

R-module D is said to be m-injective if for every maximal left ideal M of R the

R-module D is injective with respect to the inclusion monomorphism u : M → R [2,

Definition 1].
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The notions of τD-injectivity and m-injectivity are in fact the same [2, The-

orem 6]. By this reason, in the sequel we will use the notation m instead of τD. For

instance, injective and quasi-injective modules with respect to the Dickson torsion

theory will be called m-injective and m-quasi-injective modules respectively.

From the general context of torsion theories it follows that every module

A has an m-injective hull, denoted by Em(A), contained in E(A), unique up to an

isomorphism.

We have seen that every quasi-injective module is τ -quasi-injective. For the

Dickson torsion theory we will give several cases when quasi-injectivity and m-quasi-

injectivity are or are not the same.

Proposition 3.1. Let R be either left semiartinian or left m-cocritical. Then

every m-quasi-injective R-module is quasi-injective.

Proof. In both cases every, every non-zero left ideal is m-dense in R, hence

every m-injective module is injective. Now the result follows by Corollary 2.2. �

Corollary 3.2. Let R be a commutative noetherian domain with dim R ≤ 1.

Then every m-quasi-injective R-module is quasi-injective.

Proof. By hypotheses, every m-injective module is injective [2, Corollary 13].

Now the result follows by Corollary 2.2. �

In the sequel we will see that there exist m-quasi-injective modules which are

not m-injective and even quasi-injective modules which are not m-injective.

Theorem 3.3. Let A be an m-quasi-injective module which is not m-injective

and denote M = Em(A). Consider the Loewy series of M/A

0 = S0(M/A) ⊆ S1(M/A) ⊆ · · · ⊆ Sα(M/A) ⊆ Sα+1(M/A) ⊆ . . .

where, for each ordinal α ≥ 0,

Sα+1(M/A)/Sα(M/A) = Soc((M/A)/Sα(M/A))

and if α is a limit ordinal, then

Sα(M/A) =
⋃

0≤β<α

Sβ(M/A) .

For every ordinal α ≥ 0, let Mα be a submodule of M be such that Sα(M/A) =

Mα/A.
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Then every non-zero proper submodule Mα of M is m-quasi-injective, but not

m-injective.

Proof. Let α ≥ 1 be an ordinal such that Mα is a proper submodule of M

and let f ∈ EndR(M). Since A is m-quasi-injective, f(A) ⊆ A by Theorem 2.1.

Then f induces an endomorphism f∗ ∈ EndR(M/A). Since Mα/A = Sα(M/A) is

fully invariant [4, 3.11, p.25], f∗(Mα/A) ⊆ Mα/A, therefore f(Mα) ⊆ Mα, i.e. Mα

is m-quasi-injective. On the other hand, Mα is a proper submodule of Em(A) = M ,

hence Mα is not m-injective. �

Theorem 3.4. Let S be a simple module which is not m-injective and denote

M = Em(S). Consider the Loewy series of M

0 = S0(M) ⊆ S1(M) ⊆ · · · ⊆ Sα(M) ⊆ Sα+1(M) ⊆ . . .

where, for each ordinal α ≥ 0, Sα+1(M)/Sα(M) = Soc(M/Sα(M)) and if α is a limit

ordinal, then Sα(M) =
⋃

0≤β<α Sβ(M).

Then every non-zero proper submodule Sα(M) of M is quasi-injective, but

not m-injective.

Proof. Let α ≥ 1 be an ordinal such that Sα(M) is a proper submodule of

M . Then Sα(M) is a fully invariant submodule of M [4, 3.11, p.25], therefore m-

quasi-injective by Theorem 2.1. Also Sα(M) is semiartinian as a submodule of the

semiartinian module M . It follows that Sα(M) is quasi-injective. Since M = Em(S)

is minimal m-injective, Sα(M) is not m-injective. �

We have noted that every quasi-injective module is m-quasi-injective. The

converse is not true, as we can see in the following example.

Example 3.5. Let R be a unique factorization domain such that every

maximal ideal of R is not principal. Then R is an m-injective R-module which is not

injective [2, Theorem 15]. Hence R is m-quasi-injective. Since R is quasi-injective if

and only if R is injective, it follows that R is not quasi-injective.
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