STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLVI, Number 3, September 2001

A NOTE ON τ -QUASI-INJECTIVE MODULES

SEPTIMIU CRIVEI

Abstract. Let τ be a hereditary torsion theory. We mention a characterization of τ -quasi-injective modules, as fully invariant submodules of their τ -injective hull, and we give some properties for such modules. Moreover, the paper studies when τ -quasi-injective modules are quasi-injective or not, in the case of the hereditary torsion theory τ_D whose τ_D -torsion class consists of all semiartinian modules and τ_D -torsionfree class consists of all modules with zero socle.

1. Preliminaries

Throughout this paper we will denote by R an associative ring with nonzero identity and by τ a hereditary torsion theory on the category R-mod of left R-modules. All modules considered in the paper will be left unital R-modules.

A module A is said to be semiartinian if every non-zero homomorphic image of A contains a simple submodule [6, Chapter I, Definition 11.4.6]. Let A be a module and let B be a submodule of A. Then A is semiartinian if and only if B and A/B are semiartinian [6, Chapter I, Proposition 11.4.8].

A submodule B of a module A is said to be τ -dense (τ -closed) in A if A/B is τ torsion (τ -torsionfree). A non-zero module A is called τ -cocritical if A is τ -torsionfree and each of its non-zero submodules is τ -dense in A.

A module A is said to be τ -injective if $Ext^1_R(B, A) = 0$ for every τ -torsion module B. A module A is τ -injective if and only if A is a τ -closed submodule of its injective hull [5, Proposition 8.2]. The class of τ -injective modules is closed under taking direct products, direct summands and extensions [5, Proposition 8.4]. For any module A, we will denote by E(A) and $E_{\tau}(A)$ the injective hull and the τ -injective hull of A respectively.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16S90; Secondary 16D70.

Key words and phrases. τ -quasi-injective module, τ -injective hull, fully invariant submodule

SEPTIMIU CRIVEI

In this paper, a non-zero module which is the τ -injective hull of each of its non-zero submodules will be called minimal τ -injective.

For additional information on torsion theories we refer to [5].

2. Some properties

A module A is said to be τ -quasi-injective if whenever B is a τ -dense submodule of A, any $g \in Hom_R(B, A)$ can be extended to $h \in End_R(A)$ [1, Definition 4.1.19].

Remarks. a) Every quasi-injective module is τ -quasi-injective.

b) Every τ -injective module is τ -quasi-injective.

c) A ring R is a τ -quasi-injective R-module if and only if it is τ -injective.

d) If A is a τ -torsion τ -quasi-injective module, then A is quasi-injective.

The following theorem gives a characterization of τ -quasi-injective modules similar to the well known characterization of quasi-injective modules, which are fully invariant submodules of their injective hulls.

Theorem 2.1. Let A be a module. Then A is τ -quasi-injective if and only if A is a fully invariant submodule of $E_{\tau}(A)$.

Proof. We may suppose that $A \neq 0$. Denote $K = End_R(E_\tau(A))$.

Assume first that A is τ -quasi-injective and let $f \in K$. Denote $g = f|_A$ and $B = g^{-1}(A)$. Consider the following commutative diagram

where i, j, k are inclusion monomorphisms and $u : B \to A$ is defined by u(b) = g(b)for every $b \in B$.

We will show that B is a τ -dense submodule of A. The homomorphism ginduces a monomorphism $w: A/B \to E_{\tau}(A)/A$, defined by w(a+B) = g(a) + A for 34 every $a \in A$. Then A/B is τ -torsion because $E_m(A)/A$ is τ -torsion. Hence B is a τ -dense submodule of A.

Since A is τ -quasi-injective, there exists $v \in End_R(A)$ such that vi = u. By τ -injectivity of $E_{\tau}(A)$, there exists $h \in K$ such that hj = kv. Thus $h(A) \subseteq A$. Assume $(h - f)(A) \neq 0$. Then $(h - f)(A) \cap A \neq 0$ and there exist $x, y \in A, y \neq 0$ such that y = (h - f)(x). It follows that (h - f)(x) = v(x) - f(x) = y, hence $f(x) = v(x) - y \in A$. Then $x \in B$ and y = v(x) - f(x) = 0, contradiction. Therefore, (h - f)(A) = 0, i.e. $f(A) = h(A) \subseteq A$. Hence A is a fully invariant submodule of $E_{\tau}(A)$.

Suppose now that A is a fully invariant submodule of $E_{\tau}(A)$. Let B be a τ -dense submodule of A and let $g \in Hom_R(B, A)$. The module $E_{\tau}(A)/B$ is τ -torsion because $E_{\tau}(A)/A$ and A/B are τ -torsion. Then g extends to $h \in K$ because $E_{\tau}(A)$ is τ -injective. Since $h(A) \subseteq A$, g extends to an endomorphism of A. Therefore A is τ -quasi-injective.

Corollary 2.2. If every τ -injective module is injective, then every τ -quasiinjective module is quasi-injective.

Proof. By Theorem 2.1, if A is a τ -quasi-injective module, then A is a fully invariant submodule of $E_{\tau}(A)$. But $E_{\tau}(A) = E(A)$. Hence A is a fully invariant submodule of E(A), i.e. A is quasi-injective.

Remark. By Theorem 2.1 and in a similar way as for quasi-injective modules, it can be easily shown that the class of τ -quasi-injective modules is closed under taking direct summands and any finite direct sum of copies of a τ -quasi-injective module is τ -quasi-injective.

Theorem 2.3. Let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be a short exact sequence of modules and let $h : B \to A \oplus D$ be a monomorphism, where D is a module. If (hf)(A) is a τ -dense submodule of $A \oplus D$ and $A \oplus D$ is τ -quasi-injective, then the above sequence splits.

Proof. Consider the diagram

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\begin{array}{c} \alpha \\ \alpha \\ A \oplus D & \stackrel{\theta}{--} A \oplus D \end{array}$$

where $\alpha : A \to A \oplus D$ is the canonical injection. Since $(A \oplus D)/(hf)(A)$ is τ -torsion and $A \oplus D$ is τ -quasi-injective, there exists an endomorphism $\theta : A \oplus D \to A \oplus D$ such that $\theta hf = \alpha$. Let $p : A \oplus D \to A$ be the canonical projection and define $\gamma : B \to A$ by $\gamma = p\theta h$. Then $\gamma f = p\theta hf = p\alpha = 1_A$, hence the above sequence splits. \Box

Corollary 2.4. Let $f : A \to B$ be a monomorphism of modules. If B is τ -torsion and $A \oplus B$ is τ -quasi-injective, then $A \oplus B$ is τ -injective if and only if B is τ -injective.

Proof. The "if" part is obvious.

For the "only if" part, in the Theorem 2.3, let $h: B \to A \oplus B$ be the canonical injection. Since B is τ -torsion, A and B/f(A) are τ -torsion. Hence $(A \oplus B)/(hf)(A) \cong$ $(A \oplus B)/f(A)$ is τ -torsion. By Theorem 2.3, f(A) is a direct summand of B, hence A is τ -injective. Therefore $A \oplus B$ is τ -injective.

3. The Dickson torsion theory

In this section we will establish further results in the case of a particular hereditary torsion theory, namely the Dickson torsion theory.

For let \mathcal{T} be the class of all semiartinian R-modules and let \mathcal{F} be the class of all R-modules with zero socle. Then $\tau_D = (\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory. The corresponding Gabriel filter F consists of all τ_D -dense left ideals of R (i.e. all left ideals of R with R/I left semiartinian as an R-module).

An *R*-module *D* is τ_D -injective if any homomorphism from any left ideal $I \in F$ to *D* extends to *R* or equivalently if *D* is injective with respect to every short exact sequence of modules $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$, where *C* is τ_D -torsion (i.e. *C* is semiartinian).

We consider now the following generalization of injectivity for modules. An R-module D is said to be m-injective if for every maximal left ideal M of R the R-module D is injective with respect to the inclusion monomorphism $u: M \to R$ [2, Definition 1].

The notions of τ_D -injectivity and *m*-injectivity are in fact the same [2, Theorem 6]. By this reason, in the sequel we will use the notation *m* instead of τ_D . For instance, injective and quasi-injective modules with respect to the Dickson torsion theory will be called *m*-injective and *m*-quasi-injective modules respectively.

From the general context of torsion theories it follows that every module A has an *m*-injective hull, denoted by $E_m(A)$, contained in E(A), unique up to an isomorphism.

We have seen that every quasi-injective module is τ -quasi-injective. For the Dickson torsion theory we will give several cases when quasi-injectivity and *m*-quasiinjectivity are or are not the same.

Proposition 3.1. Let R be either left semiartinian or left m-cocritical. Then every m-quasi-injective R-module is quasi-injective.

Proof. In both cases every, every non-zero left ideal is *m*-dense in R, hence every *m*-injective module is injective. Now the result follows by Corollary 2.2.

Corollary 3.2. Let R be a commutative noetherian domain with dim $R \leq 1$. Then every m-quasi-injective R-module is quasi-injective.

Proof. By hypotheses, every *m*-injective module is injective [2, Corollary 13]. Now the result follows by Corollary 2.2. \Box

In the sequel we will see that there exist m-quasi-injective modules which are not m-injective and even quasi-injective modules which are not m-injective.

Theorem 3.3. Let A be an m-quasi-injective module which is not m-injective and denote $M = E_m(A)$. Consider the Loewy series of M/A

$$0 = S_0(M/A) \subseteq S_1(M/A) \subseteq \dots \subseteq S_\alpha(M/A) \subseteq S_{\alpha+1}(M/A) \subseteq \dots$$

where, for each ordinal $\alpha \geq 0$,

$$S_{\alpha+1}(M/A)/S_{\alpha}(M/A) = Soc((M/A)/S_{\alpha}(M/A))$$

and if α is a limit ordinal, then

$$S_{\alpha}(M/A) = \bigcup_{0 \le \beta < \alpha} S_{\beta}(M/A).$$

For every ordinal $\alpha \geq 0$, let M_{α} be a submodule of M be such that $S_{\alpha}(M/A) = M_{\alpha}/A$.

37

SEPTIMIU CRIVEI

Then every non-zero proper submodule M_{α} of M is m-quasi-injective, but not m-injective.

Proof. Let $\alpha \geq 1$ be an ordinal such that M_{α} is a proper submodule of Mand let $f \in End_R(M)$. Since A is m-quasi-injective, $f(A) \subseteq A$ by Theorem 2.1. Then f induces an endomorphism $f^* \in End_R(M/A)$. Since $M_{\alpha}/A = S_{\alpha}(M/A)$ is fully invariant [4, 3.11, p.25], $f^*(M_{\alpha}/A) \subseteq M_{\alpha}/A$, therefore $f(M_{\alpha}) \subseteq M_{\alpha}$, i.e. M_{α} is m-quasi-injective. On the other hand, M_{α} is a proper submodule of $E_m(A) = M$, hence M_{α} is not m-injective.

Theorem 3.4. Let S be a simple module which is not m-injective and denote $M = E_m(S)$. Consider the Loewy series of M

$$0 = S_0(M) \subseteq S_1(M) \subseteq \dots \subseteq S_{\alpha}(M) \subseteq S_{\alpha+1}(M) \subseteq \dots$$

where, for each ordinal $\alpha \geq 0$, $S_{\alpha+1}(M)/S_{\alpha}(M) = Soc(M/S_{\alpha}(M))$ and if α is a limit ordinal, then $S_{\alpha}(M) = \bigcup_{0 \leq \beta \leq \alpha} S_{\beta}(M)$.

Then every non-zero proper submodule $S_{\alpha}(M)$ of M is quasi-injective, but not m-injective.

Proof. Let $\alpha \geq 1$ be an ordinal such that $S_{\alpha}(M)$ is a proper submodule of M. Then $S_{\alpha}(M)$ is a fully invariant submodule of M [4, 3.11, p.25], therefore mquasi-injective by Theorem 2.1. Also $S_{\alpha}(M)$ is semiartinian as a submodule of the semiartinian module M. It follows that $S_{\alpha}(M)$ is quasi-injective. Since $M = E_m(S)$ is minimal m-injective, $S_{\alpha}(M)$ is not m-injective.

We have noted that every quasi-injective module is m-quasi-injective. The converse is not true, as we can see in the following example.

Example 3.5. Let R be a unique factorization domain such that every maximal ideal of R is not principal. Then R is an m-injective R-module which is not injective [2, Theorem 15]. Hence R is m-quasi-injective. Since R is quasi-injective if and only if R is injective, it follows that R is not quasi-injective.

References

- [1] P.E. Bland, Topics in torsion theory, Wiley-VCH, Berlin, 1998.
- [2] S. Crivei, *m-injective modules*, Mathematica (Cluj), **40** (63), No.1 (1998), 71-78.
- [3] S. Crivei, *m-injective envelopes of modules*, Mathematica (Cluj) 41 (64) (1999), 149-159.
 [4] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending modules, Pitman Re-
- search Notes in Mathematics Series, Longman Scientific & Technical, 1994.
- [5] J.S. Golan, Torsion theories, Longman Scientific and Technical, New York, 1986.

A NOTE ON $\tau\text{-}\textsc{Quasi-injective}$ modules

[6] C. Năstăsescu, Inele. Module. Categorii, Ed. Academiei, București, 1976.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, "BABEŞ-BOLYAI" UNIVERSITY, 3400 CLUJ-NAPOCA, ROMANIA *E-mail address*: crivei@math.ubbcluj.ro