
FIND: Faulty Node Detection for Wireless Sensor Networks
∗

Shuo Guo
Department of Electrical and

Computer Engineering
University of Minnesota, Twin

Cities

sguo@umn.edu

Ziguo Zhong
Department of Computer Science

and Engineering
University of Minnesota, Twin

Cities

zhong@cs.umn.edu

Tian He
Department of Computer Science

and Engineering
University of Minnesota, Twin

Cities

tianhe@cs.umn.edu

Abstract
Wireless Sensor Networks (WSN) promise researchers a

powerful instrument for observing sizable phenomena with
fine granularity over long periods. Since the accuracy of
data is important to the whole system’s performance, detect-
ing nodes with faulty readings is an essential issue in net-
work management. As a complementary solution to detect-
ing nodes with functionnal faults, this paper proposes FIND,
a novel method to detect nodes with data faults that neither
assumes a particular sensing model nor requires costly event
injections. After the nodes in a network detect a natural
event, FIND ranks the nodes based on their sensing read-
ings as well as their physical distances from the event. FIND
works for systems where the measured signal attenuates with
distance. A node is considered faulty if there is a significant
mismatch between the sensor data rank and the distance rank
Theoretically, we show that average ranking difference is a
provable indicator of possible data faults. FIND is exten-
sively evaluated in simulations and two test bed experiments
with up to 25 MicaZ nodes. Evaluation shows that FIND
has a less than 5% miss detection rate and false alarm rate in
most noisy environments.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Net-

work Operations

General Terms
Algorithms, Design, Management

Keywords
Wireless Sensor Networks, Data Fault Detection

∗This research was supported in part by NSF grants CNS- 0626609,
CNS-0626614 and CNS-0917097.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’09, November 4–6, 2009, Berkeley, CA, USA.
Copyright 2009 ACM 978-1-60558-748-6 ...$5.00

1 Introduction
Wireless Sensor Networks (WSNs) have been used in

many application domains such as habitat monitoring [22],
infrastructure protection [26], and scientific exploration [24].
The accuracy of individual nodes’ readings is crucial in these
applications, e.g., in a surveillance network [8], the read-
ings of sensor nodes must be accurate to avoid false alarms
and missed detections. Although some applications are de-
signed to be fault tolerant to some extent, removing nodes
with faulty readings from a system with some redundancy
or replacing them with good ones can still significantly im-
prove the whole system’s performance and at the same time
prolong the lifetime of the network. To conduct such after-
deployment maintenance (e.g., remove and replace), it is es-
sential to investigate methods for detecting faulty nodes.

In general, wireless sensor nodes may experience two
types of faults that would lead to the degradation of per-
formance. One type is function fault, which typically re-
sults in the crash of individual nodes, packet loss, routing
failure or network partition. This type of problem has been
extensively studied and addressed by either distributed ap-
proaches through neighbor coordination [15] or centralized
approaches through status updates [18, 21]. The other type
of error is data fault, in which a node behaves normally in all
aspects except for its sensing results, leading to either signif-
icant biased or random errors. Several types of data faults
exist in wireless sensor networks. Although constant biased
errors can be compensated for by after-deployment calibra-
tion methods, random and irregular biased errors can not be
rectified by a simple calibration function.

One could argue that random and biased sensing errors
can be addressed with outlier detection, a conventional tech-
nique for identifying readings that are statistically distant
from the rest of the readings. However, the correctness of
most outlier detection relies on the premise that data follow
the same distribution. This holds true for readings such as
temperatures, which are considered normally uniform over
space. However, many other sensing readings (e.g., acoustic
volume and thermal radiation) in sensor networks attenuate
over distance, a property that invalidates the basis of existing
outlier-based detection methods [6].

This paper proposes FIND, a novel sequence-based de-
tection approach for discovering data faults in sensor net-
works, assuming no knowledge about the distribution of
readings. In particular, we are interested in Byzantine data

faults with either biased or random errors, since simpler fail-
stop data faults have been addressed sufficiently by existing
approaches, such as Sympathy [18]. Without employing the
assumptions of event or sensing models, detection is accom-
plished by identifying ranking violations in node sequences,
a sequence obtained by ordering IDs of nodes according to
their readings of a particular event.

The objective of FIND is to provide a blacklist containing
all possible faulty nodes (with either biased or random error),
in order of likelihood. With such a list, further recovery pro-
cesses become possible, including (i) correcting faulty read-
ings, (ii) replacing malfunctioning sensors with good ones,
or (iii) simply removing faulty nodes from a network that
has sufficient redundancy. As a result, the performance of
the whole system is improved. Specifically, the main contri-
bution of this paper can be summarized as follows:

1. This is the first faulty node detection method that as-
sumes no a priori knowledge about the underlying dis-
tribution of sensed events/phenomena. The faulty nodes
are detected based on their violation of the distance
monotonicity property in sensing, which is quantified
by the metric of ranking differences.

2. FIND imposes no extra cost in a network where read-
ings are gathered as the output of the routine tasks of a
network. The design can be generically used in applica-
tions with any format of physical sensing modality, such
as heat/RF radiation and acoustic/sematic wave, as long
as the magnitude of their readings roughly monotoni-
cally changes over the distance a signal travels.

3. We theoretically demonstrate that the ranking differ-
ence of a node is a provable indicator of data faults and
that if the ranking difference of a node exceeds a speci-
fied bound, it is a faulty node.

4. We extend the basic design with three practical con-
siderations. First, we propose a robust method to ac-
commodate noisy environments where distance mono-
tonicity properties do not hold well; second, we propose
a data pre-processing technique to eliminate measure-
ments from simultaneous multiple events; and third, we
reduce the computation complexity of the main design
using node subsequence.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related work. After introducing preliminaries
in Section 3, Section 4 presents the detailed main design.
Section 5 provides additional techniques to deal with sev-
eral practical issues. Sections 6 and 7 present the perfor-
mance evaluation results from both test bed implementation
and simulations. Section 8 concludes the paper.

2 Related Work
In general, faults in a sensor network can be classified

into two types. One is function fault [3, 11, 27], in which ab-
normal behaviors lead to the breakdown of a node or even a
network as a whole. The other type of fault is data fault, in
which a node behaves as a normal node in the network but
generates erroneous sensing readings. This kind of faulty
node is difficult to identify by previous methods because all

its behaviors are normal except the sensor readings it pro-
duces. Faulty readings would degrade the performance of
the network significantly, so it is important to correct or re-
move them from the network. One way to solve this problem
is after-deployment calibration such that a mapping func-
tion (mostly linear) [1, 2, 7, 16, 17, 25] is developed to map
faulty readings into correct ones. Although the parameters
of the mapping function are obtained in different ways, ad-
ditional assumptions such as sensing model [7, 25], dense
deployment [2, 7], similarity of readings among neighbors
[2, 16], and availability of ground truth result (highly ac-
curate nodes) [16, 17] are much needed. Thus, the perfor-
mance of existing calibration methods not only highly de-
pends on the correctness of the proposed model but also ex-
hibits significant degradation in a real-world system in which
too-specific additional assumptions no long hold. Outlier
detection is a conventional method for identifying readings
that depart from the norm. For example, Ding [6] proposes
detecting faulty nodes by determining if the difference be-
tween a node’s reading and its neighbors’ is above a thresh-
old. However, its correctness is based on the assumption that
neighboring nodes have similar readings. For many phenom-
ena of interest (e.g., thermal radiation and acoustic signals)
in sensor networks, such an assumption does not hold, be-
cause these signals attenuate over space.

This paper proposes a faulty node detection method that
can be generically and effectively applied as long as the sen-
sor readings roughly reflect the corresponding distance. By
removing or correcting faulty nodes detected by the proposed
method, the performance of a networking system can be sig-
nificantly improved.

3 Model and Assumptions
We consider a network model where N sensor nodes are

deployed in an area of interest. Nodes are localized [4, 13,
28, 29] and their positions are available at a base station. In
this paper, we consider an event-driven model in which sen-
sor nodes are roughly global synchronized to detect incom-
ing events nearby and obtain corresponding sensing read-
ings. Similar to recent centralized approaches for network
fault detection [12, 18, 23], we assume the sensing readings
are collected to the base station. To be generic, we also in-
troduce our design conceptually independent of the type of
event used.

3.1 Assumption on Monotonicity
Many recent studies [10,20,31] indicate that the environ-

ment is a dominating factor that affects the sensing and com-
munication characteristics in sensor networks. It is therefore
unrealistic to assume a particular mathematical model that
describes the relationship between the sensing reading atten-
uation and the distance a signal travels. In this work, we take
a much weaker assumption that the readings can generally
reflect the relative distance from the nodes to the event. In
other words, normally the sensing readings monotonically
change as the distance becomes further. Although this as-
sumption can be violated locally with environment noise, the
general trend holds.

To check the validity of our assumption, we conducted
two outdoor experiments: one on radio signals and the other

0 10 20 30

0

10

20

30

 X Axis (m)

 Y
 A

x
is

 (
m

)
 Event 1

 Event 2

Sensor Nodes

Events

(a) Network Layout

5 10 15 20 25
−95

−90

−85

−80

−75

−70

−65

Distance (m)

R
S

S
 (

d
B

m
)

Average RSS
RSS of Event 1
RSS of Event 2

(b) RSS vs. Distance

Figure 1. RSS of Radio Signals

on acoustic signals. In the first experiment, 49 nodes are
placed on a parking lot as shown in Fig.1(a). Each node
generates an event by broadcasting a packet 100 times with
0dBm sending power, and all the other nodes recorded the
received signal strength (RSS) for this event upon receiving
this packet. In Fig.1(b), which plots the relationship between
RSS and distance, the solid line shows the average RSS un-
der different distances based on all event-node pairs. Each
dashed line is the RSS of a single event (depicted by the tri-
angle and circle symbols in Fig.1(a)) measured by different
nodes. It can be seen from the figure that for a fixed distance,
the RSS of different events have a large variance compared
with the average RSS. For example, at distance 7m, the RSS
difference of the two events is nearly 20dBm, which causes a
more than 10m ranging error: a big error given that the com-
munication range is only 25m. As a result, even if a mathe-
matical model can be derived to closely match the solid curve
of average RSS, the behavior of individual events still has a
large variance that makes this model ineffective. For each
dashed line, on the other hand, the RSS decreases as the dis-
tance increases except for only a few points, which means the
monotonicity of the RSS of a single event generally holds.

0 1 2 3 4
0

5

10

15

20

 X Axis (m)

 Y
 A

x
is

 (
m

)

 Line 1 Line 2

Sensor Nodes

Events

(a) Network Layout

0 2 4 6 8 10 12
0

10

20

30

40

Distance (m)

D
e
la

y
 (

m
s
)

Average Delay

Line 1

Line 2

(b) Delay vs. Distance

Figure 2. Propagation Time of Acoustic Signals

In the second experiment, 20 sensor nodes are placed in
two lines and an acoustic signal is generated as shown in
Fig.2(a). Fig.2(b) plots the delay of the nodes that receive
the acoustic signal; to simplify the comparison, the delay is
normalized such that the first node receives the signal with
delay 0. Similar to experiment one, the delay of different
lines for the same distance has a large variance, especially
when distance increases, but the monotonicity still holds for
both lines: a longer distance experiences a longer delay.

Based on the analysis above, we conclude that the mono-
tonicity assumption is more accommodating to real world
environments than the assumption based on a more specific
model.

4 Main Design
The main idea of FIND is that it considers a node faulty

if its readings violate the distance monotonicity significantly.
The significance of violation is quantified by the metric of

ranking difference between a detected sequence and a dis-
tance sequence, as will be defined later.

1. The first stage is map division, in which the map is
divided into a number of subareas named faces based
on the topology of the network as shown in Fig.3.
Each face is uniquely identified by a distance sequence,
which is denoted as a sequence of sensor node IDs (e.g.,
2-1-3-4-5 in Fig.3). Within a distance sequence, the
IDs are sorted in order of nodes’ distances from an
arbitrary point within this face. Map division can be
pre-computed before detecting faulty nodes such that a
number of distance sequences can be obtained and con-
sidered as the ground truth for the events taken place in
corresponding subareas.

2

1

4

5

3

2

1

4

5

3
1-2-3-5-4

5-3-4-1-2

4-5-3-2-1

2-1-3-4-5

1-3-2-5-4

5-4-3-2-1

4-3-5-2-1

1-2-3-4-5

4-3-2-5-1

2-3-1-4-5

3-1-2-5-4

2-3-4-1-5

5-4-3-1-2

3-5-4-2-1

3-4-5-2-1

3-2-1-4-5

1-3-5-2-4

3
-4
-2
-5
-1

3
-1
-5
-2
-4

3
-5
-1
-4
-2

3
-2
-4
-1
-5

3-5-4-1-2

3
-2
-4
-5
-1

5-3-1-4-2

3
-5
-1
-2
-4 5-3-4-2-1

1 2 3 4 5 : Sensor �odes

Figure 3. First Stage: Map Division

2. The second stage is detection sequence mapping. As
shown in Fig.4, a number of events appear in the moni-
tored region and are detected by the sensor nodes. For a
single event, the sensing result of each node (e.g., the
received signal strength or time-of-arrival) varies de-
pending on how far the node is away from the event. A
detected sequence is then obtained by ordering the sens-
ing results of all the sensor nodes. Without knowing the
location of the event, this detected sequence is mapped
with one of the distance sequences corresponding to the
face in which the event most likely takes place, yield-
ing an estimated sequence. As shown in Fig.4, the same
mapping process is repeated for all the events such that
an estimated sequence is obtained for every detected se-
quence after this stage.

2

1

4

5

3

1-3-2-4-5

3-4-5-1-2

4-3-2-5-1

2-1-3-4-5

Detected Sequences

1-2-3-4-5

1-3-2-5-4

3-4-5-2-1

4-5-3-2-1

2-1-3-4-5

3-1-2-5-4

…

5-3-4-1-2

3-1-5-2-4

Distance Sequences

: Events

Figure 4. Second Stage: Detection Sequence Mapping

3. The third stage is fault detection. As shown in Fig.5.,
after a sufficient number of mappings becomes avail-
able, a blacklist is then obtained by analyzing the in-
consistencies between the detected sequences and the
estimated sequences.

1-3-2-4-5

3-4-5-1-2

4-3-2-5-1

2-1-3-4-5

Detected Sequences

1-3-2-5-4

5-3-4-1-2

4-5-3-2-1

2-1-3-4-5

Estimated Sequences Sequence

Analysis

Faulty �odes

5

Figure 5. Third Stage: Fault Detection

The detailed design of each stage is presented next.

4.1 Map Division
The goal of the first stage is to divide the map into a num-

ber of subareas, named faces, each of which can be identified
by a node sequence indicating the distance between this face
and all sensor nodes.

(a) (b)

2

1

3

Div(1, 2)

Div(2, 3)

Div(1, 3)

1

2

Div(1, 2)

s2: 2-1

s1: 1-2 s1: 1-2-3

s2: 2-1-3

s3: 2-3-1

s4: 3-2-1

s5: 3-1-2

s6: 1-3-2

Figure 6. Examples of Map Division

As shown in Fig.6(a), for two sensor nodes 1 and 2, the
perpendicular bisector Div(1,2) divides the area into two
subareas. For any position point below Div(1,2), node 1 is
closer than node 2, so the distance sequence is 1-2. For any
position point above Div(1,2), node 2 is closer than node 1,
so the distance sequence is 2-1. We call the subarea consist-
ing of all position points with identical distance sequences a
face.

Since crossing a perpendicular bisector reverses the order
of two node IDs, each face is identified by the unique dis-
tance sequences. Also, according to the geometry study [5],

for a network of N sensor nodes, there are C2
N = N(N−1)

2 per-

pendicular bisectors that divide the graph into O(N4) faces.
This is a much smaller number than the number of all pos-
sible node sequences n!. Due to the effect of faulty nodes
and environment noise, a detected sequence with faulty read-
ings would violate the physical geometry constraint that is
imposed on distance sequences. As a result, a detected
sequence can be arbitrary sequenced among n! sequences.
Thus it is essential to map the detected sequence reliably
with one of the distance sequences, which is shown next.

4.2 Detection Sequence Mapping
To detect the violation of distance monotonicity, we need

to first obtain the ground truth about the distance relation-
ship. If the location of an event is known, such a ground
truth can be trivially obtained by calculating the distances
between the event and the nodes that detect it. Unfortunately,
the locations of natural events are normally unavailable and
it is necessary to obtain the ground truth using the sensing re-
sults. Formally, given the detected sequence of an event, the
objective of the second stage is to estimate the face where
an event takes place. This is essentially a mapping process
between a detected sequence to the distance sequence that re-
flects the ground truth about the distances’ relationship. With
this ground truth, we can further quantify the severity of the
violation in Section 4.3.

Let the N sensor nodes divide the map into M faces, iden-
tified by a set of distance sequences V = {s1,s2, · · · ,sM}.
Suppose s̄ is a detected sequence from a single event and s
is the distance sequence corresponding to the face where the
event takes place. It is clear that without knowing where the
event is, s is a random variable whose sample space is V . If
{A1,A2, · · · ,AM} further denotes the size of the M faces, the

prior distribution of s (i.e., the probability that an event takes
places within the ith face) can be computed as the following:

Pr(s = si) = Pr(si) =
Ai

∑M
j=1 A j

,1 ≤ i≤M (1)

Eq.1 can be interpreted as: without any further information,
the probability that an event appears within a face is in pro-
portion to the size of that face. Then, s can be estimated by
the method of Maximum A Posteriori (MAP) estimation as

ŝMAP(s̄) = argmax
s

Pr(s|s̄)

= argmax
si∈V

Pr(s̄|si)Pr(si)
M

∑
k=1

Pr(s̄|sk)Pr(sk)

= argmax
si∈V

Pr(s̄|si)Pr(si) (2)

where the second equality comes from Bayes’ Theorem and
the third equality holds because the denominator does not
depend on s so that it plays no role in optimization.

Given V = {s1,s2, · · · ,sM}, the new objective is to find a
distance sequence si ∈ V that maximizes Eq.2. For any si ∈
V , Pr(si) is already given in Eq.1. The only unsolved prob-
lem is how to compute the conditional probability Pr(s̄|si),
which is covered by the rest of this section.

4.2.1 Recursive Computation of Pr(s̄|si)
Suppose α denotes the defective rate of the sensor nodes.

Given N-node sequences s̄ and si, we compare whether the
nodes of the same ranking in s̄ and si are identical. Suppose
s̄[k] and si[k] denote the kth node in s̄ and si respectively.
Then, we compare if s̄[k] = si[k] holds for any 1≤ k ≤ N.

When s̄[k] = si[k] holds for all 1≤ k≤N, s̄ and si are com-
pletely the same. In this case, there are two possibilities: all
the nodes are normal or w faulty nodes (1≤w≤N) still exist
but “luckily” did not change the sequence for this particular
case. Then the conditional probability can be computed as

Pr(s̄|si = s̄) = (1−α)N +
N

∑
w=1

Cw
N(

α

N
)w(1−α)(N−w)

= (1−α+
1

N
α)N (3)

where (1− α)N is the probability that all nodes are nor-

mal. Cw
N(α

N
)w(1−α)(N−w) is the probability that w nodes

are faulty nodes. It is worth noting that there is a coefficient
1
N

along with α. This is because a faulty node may shift
to anywhere with N possible outcomes of equal probability
without additional information and the detected sequence s̄
is just one of the N possible outcomes for any faulty node.
For example, faulty node 3 may cause the distance sequence
1-2-3 to become the detected sequences 3-1-2,1-3-2 or 1-2-

3. Then for each of them the probability is 1
3 α(1−α)2, given

that node 3 is faulty.
When s̄ and si are identical, the conditional probability

Pr(s̄|si) can be computed by Eq.3. When s̄ and si are not the
same, a recursive method is used. The basic idea is to con-
vert the two sequences into identical sequences whose con-

Subsequence matched, stop!

Case 1: Case 2:6

1 2 3 4 5 7 8 9

2 3 5 4 8 971
k

l

k=4

l=5Si’

S’

k

7 8 9

3 4 5

Si”

S”

1 2

7 8 91 2

1 2 3 7 8 9
1 2 3 7 8 9

Si”

S”
1 2 3 4 7 8 9
1 2 3 4 7 8 9

Si’
S’

is faulty are faulty

Case 1-1: is faulty 5 Case 1-2: is faulty 4

5
5

Recursive Process

Si 1 2 3 4 5 6 7 8 9

1 2 6 3 5 4 7 8 9
l

S k=3

l=6

Subsequence matched, stop! Subsequence matched, stop!

Figure 7. The Conditional Probability Computation

ditional probability can be computed by Eq.3 after removing
possible faulty nodes.

To illustrate this process, we use a running example
shown in Fig.7 Suppose s̄[1..k− 1] = si[1..k− 1] and s̄[k] 6=
si[k] are the first unmatched nodes. Also suppose the kth
node in s̄ is the lth node in si. As shown in Fig.7, k is 3 and l
is 6. Then, there are two possibilities.

1. Case 1: The kth node in s̄ (which is also the lth node
in si) is a faulty node, i.e., node 6 is a faulty node in
the example. A pair of new sequences can be obtained
by removing the faulty node (node 6) from the original
sequences. In this example, s′i is 1-2-3-4-5-7-8-9 and
s̄′ is 1-2-3-5-4-7-8-9. Given that node 6 is faulty, the
original conditional probability Pr(s̄|si) depends on the
new conditional probability Pr(s̄′|s′i).

Formally, define subsequence s′i as the original distance
sequence without the lth node (si[1..(l − 1)] + si[l +
1..N]). Also, define subsequence s̄′ as the detected se-
quence without the kth node (s̄[1..k− 1]+ s̄[k + 1..N]).
Then, the conditional probability Pr(s̄|si) can be com-
puted by the following equation:

Pr(s̄|si, s̄[k]is faulty) =
1

N
Pr(s̄′|s′i) (4)

where, the coefficient 1
N

indicates that s̄ is one of the N

possible outcomes that node s̄[k] is faulty.

2. Case 2: The kth node in s̄ is a normal node. In this case,
the nodes in si from k to l−1 must be faulty nodes. In
the example in Fig.7, if node 6 is normal, nodes 3, 4 and
5 must be faulty nodes. Given s̄[k] is faulty, a new pair
of sequences can be obtained by removing the nodes
that are determined to be either faulty or normal from
the original sequences. In the example, nodes 3, 4, 5,
and 6 are all removed and the new sequences s′′i and s̄′′

are both 1-2-7-8-9. Then, the original conditional prob-
ability Pr(s̄|si) depends on the new conditional proba-
bility Pr(s̄′′|s′′i) as well as the probability that si[k..l−1]
are faulty nodes.

Define subsequence s′′i as the original distance sequence
without the nodes from k to l, (si[1..k−1]+si[l+1..N]).
Also, define subsequence s̄′′ as the original detected
sequences without the corresponding l− k + 1 nodes.
Similarly, the conditional probability Pr(s̄|si) can be
computed by the following equation:

Pr(s̄|si, s̄[k]is normal) = (
1

N
α)l−kPr(s̄′′|s′′i) (5)

Based on the law of total probability, the final conditional
probability is computed by the following equation:

Pr(s̄|si) = Pr(s̄|si, s̄[k]is normal)Pr(s̄[k]is normal)

+Pr(s̄|si, s̄[k]is faulty)Pr(s̄[k]is faulty)

= (4) ·α+(5) · (1−α) (6)

Eq.6 is recursive. The recursive process continues until
the two sequences are identical. As shown in the example in
Fig.7, the original sequences first generate two pairs of sub-
sequences. The second pair has identical sequences s̄′′ and s′′i
whose conditional probability can be computed by Eq.3 and
stops generating new subsequences. The first pair, however,
does not have identical s̄′ and s′i so that it generates two pairs
of new sequences. The process stops because both of the
two new pairs have identical sequences and the conditional
probability can be computed by Eq.3.

By computing conditional probability for every possible
si ∈ V using Eq.3, the MAP estimation can be finally cal-
culated by Eq.2. It is worth noting that the complexity of
computing Pr(s̄|si) is exponential (O(2N)) to the length of
the sequence N. However, in reality an event can not be
detected by all sensor nodes in the network. The length of
the detected sequence is no greater than the number of sen-
sor nodes within sensing range, which is much smaller than
N. Also, the length of detected sequence can be controlled
below a certain bound L (e.g., 10) by selecting the top L
nodes in the detected sequence so that the complexity is up-
per bounded by 2L (1024 if L = 10). We will discuss the
issue of subsequence estimation in Section 5.

4.2.2 A Note on α Sensitivity:
The MAP estimation uses the defective rate α as an input

parameter. Although α can be estimated from the manufac-
turer’s product specification sheet (e.g., Mean Time Between
Failure (MTBF)) or the statistical testing result of samples,
α would be affected by the in-situ factors such as severe
weather and physical damage. Therefore it is important to
investigate whether the correctness of MAP estimation is
sensitive to the inaccuracy of the α value. When s̄ and si

are identical, from Eq.3 we can see the conditional proba-
bility Pr(s̄|si) is approximately (1−α)N which is close to 1
when α is small and N is large. For each pair of unmatched
nodes, there is at least one faulty node so that at least one
(1−α) is replaced by α

N
for both Case 1 and Case 2 ac-

cording to Eq.4, Eq.5 and Eq.6. Since α
N

<< (1−α), the
distance sequence that has the least unmatched nodes with
s̄ is most likely to maximize Pr(s̄|si) and becomes the esti-
mated sequence of the MAP estimation. In brief, an inac-
curate α value does not affect the correctness of the map-
ping as long as α

N
<< (1−α) holds. We note α is normally

1-3-2-4-5

3-4-5-1-2

4-3-2-5-1

2-1-3-4-5

Detected Sequences

1-3-2-5-4

5-3-4-1-2

4-5-3-2-1

2-1-3-4-5

Estimated Sequences

Event

�ode

Total

1 2 3 4 5

0 0 0 1 1

0 0 0 0 0

0 0 1 1 2

0 1 1 0 2

0 1 2 2 5

Figure 8. A Simple Example of Ranking Difference

small (e.g., HMC1002 magnetic sensors used in the mica se-
ries have MTBF of 50000 hours [9]), and thus the inequality
α
N

<< (1−α) actually holds very well in practice.

4.3 Detection Using Ranking Differences
Given the detected sequences from the measurement of

a number of events and their corresponding estimated se-
quences, the objective of the third stage is to find a list
of nodes in descending order of likelihood of being faulty
nodes. We define ranking difference as the difference a node
ranks in a detected sequence and its corresponding estimated
sequence. In Section 4.3.1, we develop two theorems to state
why we can use the average ranking difference as a provable
indicator of possible data faults. In Section 4.3.2, we present
how to develop a detection algorithm based on the theoretical
analysis in Section 4.3.1 to finally find the blacklist.

4.3.1 Average Ranking Difference
Here we show that by using the average ranking differ-

ence, we can effectively identify faulty nodes. We mainly
prove the following two statements:

1. A node with a larger average ranking difference has a
higher probability of being a faulty node.

2. The majority of faulty nodes can be obtained by select-
ing nodes whose ranking differences are above a lower
bound.

Suppose n is the number of detected sequences available
at the base station. In Section 4.2, the MAP estimation
method maps these detected sequences {s̄1, s̄2, · · · , s̄n} with
the distance sequences in V as the estimations of where the
events take place. Suppose the estimated sequences are de-
noted as {ŝ1, ŝ2, · · · , ŝn} (ŝi is short for ŝiMAP). We call each s̄i

and the corresponding ŝi a sample. n is also named the sam-
ple size. Again, without data faults, the detected sequence
s̄i and the corresponding estimated sequence ŝi are identical
for any sample. In this case, there is no ranking difference
for any node since the rankings of any node in s̄i and cor-
responding ŝi are the same. When faulty nodes are present,
these two sequences are no longer identical and the rankings
of some nodes in the two sequences are no longer the same,
leading to non-zero ranking differences.

We start with the simple example in Fig.8 to see how av-
erage ranking difference works, while formal definitions and
theoretical proof will be shown later. In Fig.8, four detected
sequences are mapped with their estimated sequences and
the ranking differences can be computed by comparing the
rankings of each node in the two sequences. Let us take the
square event as an example. For the square event, the de-
tected sequence is 3-4-5-1-2 and the estimated sequence is
5-3-4-1-2, where nodes 1 and 2 have the same rankings such

1 2 3 4 5 6

1 2 3 4 5 6

1 4 2 3 5 6

di = [0 1 1 2 0 0]

di (4)=2

1 2 3 4 5 6

1 2 3 4 5 6

6 5 1 4 2 3

di = [2 3 3 0 3 5]

d'i (6)=5

(a) Single Faulty �ode (b) Multiple Faulty �odes

Faulty

�ormal

d'i (5)=4
d'i (4)=2

Figure 9. Ranking Differences Affected By Faulty Nodes

that their ranking differences are 0. Node 3 and 4 both shift
by one and their ranking differences are 1. Node 5 ranks
the first in estimated sequence and the third in detected se-
quence, and thus its ranking difference is 2. The ranking
differences of all the nodes in all events are shown in Fig.8.
In this example, node 5 is a faulty node, with all its readings
lower than expected. The figure offers a couple of insights.
First, as a faulty node, node 5 has a non-zero ranking differ-
ence in most events due to its faulty reading. Second, node
5 also changes some normal nodes’ rankings. However, a
faulty node at most changes normal nodes’ rankings by 1.
Third, for different events, the sets of normal nodes whose
rankings are changed by node 5 are different. From these in-
sights, it is not difficult to explain that the total (or average)
ranking difference of node 5 is the largest, as shown in Fig.8.

Formally, we define the ranking difference di(k) for node
k in sample i by the following equation, which is quite
straightforward:

di(k) = |R(ŝi,k)−R(s̄i,k)|,1≤ k ≤ N (7)

where R(∗,k) denotes the ranking of node k in sequence ∗.
Then, the average ranking difference of node k in the n sam-
ples (denoted as D(k)) is computed by averaging di(k):

D(k) =
1

n

n

∑
i=1

di(k) (8)

D(k) is also known as the sample mean of the ranking differ-
ences. Based on these definitions the first theorem is devel-
oped as follows:

THEOREM 4.1. A node q is faulty if its average ranking
difference D(q) is greater than a bound B given by

B =
Ne

N−1
(µe + Ne) (9)

where Ne is the number of faulty nodes in an N-node net-
work, µe is the arithmetic mean of the average ranking dif-
ference of faulty nodes, and D(q) is calculated under a suffi-
cient large sample size.

PROOF. For simplicity, suppose the nodes labeled from 1 to
Ne are faulty nodes and all the rest of the nodes are normal
nodes. The ranking difference of the kth node in any sample
is a random variable and can be denoted as d(k).

First, consider the case when there is only one faulty node.
We observe that a single faulty node k, with ranking differ-
ence d(k), may make at most d(k) nodes’ ranking change by
one. As the example shown in Fig.9(a), faulty node 4 origi-
nally shifts to its left by 2 and changes two nodes’ rankings

(node 2 and 3) by 1. Since node 4 is the only faulty node,
its final ranking difference d(4) is 2, which is equal to its
original shift in this case.

When there are another Ne − 1 faulty nodes present, a
faulty node’s final ranking difference can be further changed
by other faulty nodes, while the number of nodes it affected
is still equal to its original shift. Fig.9(b) shows an example
to illustrate the maximum possible number of nodes whose
ranking differences are affected by a faulty node with rank-
ing difference d(k). In this example, faulty node 4 originally
shifts to its left and makes itself a ranking difference of 2
(this is its original shift d′(4) = 2). The number of nodes
it affected is two (node 2 and 3), which is equal to d′(4).
Then nodes 5 and 6, both of which are also faulty nodes,
shift to the very left of the sequence and reduce node 4’s
ranking difference to 0 (this is node 4’s final ranking differ-
ence d(4) = 0). However, it can be seen from the figure that
node 2 and 3’s ranking differences are 3, which are the re-
sults caused by all the three faulty nodes. This indicates that
node 4’s effect on node 2 and 3’s ranking differences still
remains. Thus, the number of nodes affected by node 4 is
still equal to its original shift d′(4) instead of its final rank-
ing difference d(4). Given the final ranking difference d(k)
of any node k, its maximum possible original shift d′(k) is
d(k)+Ne−1, which happens when all other faulty nodes af-
fect k’s ranking in the same direction that is opposite to k’s
original shift direction just as shown in this example. As a
result, the maximum number of nodes affected by node k is
d(k)+ Ne−1.

Based on this analysis, the probability that a node’s rank-

ing is changed by node k is upper bounded by
d(k)+Ne−1

N−1 .
Also, a normal node never changes its ranking itself. Then,
given d(k), the expected ranking difference of a normal node

p caused by node k, denoted as dk(p), can be computed as

E(dk(p)|d(k)) ≤ 0 · (1−
d(k)

N−1
)+1 ·

d(k)+Ne−1

N−1

=
d(k)+Ne−1

N−1
,∀(Ne +1)≤ p≤ N (10)

Taking expectations on both sides yields

E(dk(p))≤
E(d(k))+ Ne−1

N−1
, ∀(Ne +1)≤ p≤ N (11)

Then, the expected ranking difference of any normal node
p caused by all the Ne faulty nodes is upper bounded by

E(d(p)) ≤
Ne

∑
k=1

E(dk(p)) =
∑

Ne

k=1(E(d(k))+ Ne−1)

N−1

≤
Neµe + N2

e

N−1
, ∀(Ne +1)≤ p≤ N (12)

where µe is the mean of average ranking difference of all
faulty nodes and is given by

µe = E(
∑

Ne

k=1 d(k)

Ne

) =
∑

Ne

k=1 E(d(k))

Ne

(13)

The first inequality in Eq.12 holds since the maximum to-
tal ranking change caused by Ne faulty nodes happens when
all the faulty nodes make node p move to the same direction.

When the sample size is sufficiently large, sample mean
becomes a good estimator for the expectations in Eq.12. By
replacing the expectations with sample mean we get

D(p)≤
Ne

N−1
(µe + Ne), ∀(Ne + 1)≤ p ≤ N (14)

Let B denote the upper bound Ne
N−1 (µe + Ne) on the right

hand side of Eq.14. Then, the average ranking difference of
any normal node p is upper bounded by B. Also, if a node
q has an average ranking difference D(q) > B, it must be a
faulty node.

Theorem 4.1 provides a sufficient condition for node q
being a faulty node (i.e., D(q)≥B implies q is a faulty node).
At the same time, it also provides a necessary condition for
node p being a normal node (i.e., if p is normal, D(q) ≤ B
holds). It is worth noting that none of these conditions are
both sufficient and necessary, which is a tricky part in the
proof of the next theorem.

Based on Theorem 4.1, we develop Theorem 4.2 showing
how the entries in D correlated with the probability that the
corresponding nodes are faulty.
THEOREM 4.2. Given the network in Theorem 4.1 and D as
the ranking difference vector, suppose Pr(k = “F”) denotes
the probability that node k is a faulty node. Then, for any
node p and q satisfying D(p) < D(q):

Pr(p = “F”)≤ Pr(q = “F”) (15)

The conclusion of this theorem is straightforward. We leave
the detailed proof to appendix A.1.

From Theorem 4.1 and 4.2, it is clear that if we order all
the nodes by their corresponding average ranking differences
in D, we obtain a list of nodes in descending order of their
probability of being faulty nodes.

4.3.2 Detection Algorithm
In the previous section we concluded that ordering the

nodes by their average ranking differences yields a node se-
quence in order of the likelihood of their being faulty nodes.
Then, if the number of faulty nodes Ne is known, the top Ne

nodes on the list are the best estimation of faulty nodes ac-
cording to Theorem 4.2. If the node sequence is denoted as
n1-n2-· · · -nN , then {n1,n2, · · · ,nNe} are best estimations of
faulty nodes.

However, Ne is normally unknown a priori. In other
words, we do not know how many faulty nodes there are in a
network until we detect them. Therefore, we need to design
a detection algorithm in this section to estimate what Ne is;
i.e., given n1-n2-· · · -nN which consists of all nodes, we want
to find a cutting point k such that {n1,n2, · · · ,nk} are the esti-
mation of faulty nodes. The detection algorithm is designed
based on Theorem 4.1 and 4.2.

The basic idea is to find all the nodes whose ranking dif-
ferences are above B and consider them faulty. Specifically,
we want to find a node nk such that the ranking differences of
all the nodes from nk+1 to nN are no greater than B and all the
nodes from n1 to nk are greater than B. Then, {n1,n2, · · · ,nk}
forms the estimation of faulty nodes.

Formally, nk is a node that satisfies D(nk+1)≤ B < D(nk)

where B = Ne
N−1 (µe + Ne), Ne is estimated by k and µe is es-

Algorithm 1 Detection Algorithm

Input: Sorted node sequence n1-· · · -nN, average ranking
differences D

Output: The Blacklist {n1, · · · ,nk}
1: Blacklist ← /0
2: µe← 0,Ne← 0,B← 0
3: for j← 1 to N do
4: if D(n j)≤ B then
5: Break
6: else

7: µe←
(µeNe+D(n j))

Ne+1 ,Ne← Ne + 1

8: B← Ne
N−1 (µe + Ne)

9: Blacklist ← Blacklist +{n j}
10: end if
11: end for
12: Return Blacklist

timated by
∑k

i=1 D(ni)
k

. The pseudo-code of the detection al-
gorithm is shown in Algorithm 1. This is a greedy selection
algorithm. Initially the blacklist is empty (Line 1) and Ne, µe

and B are set to 0 (Line 2). Starting from n1 (which is the
node with the largest average ranking difference) and check
the nodes one by one (Line 3) until the ranking difference of
a node is no greater than B (Line 4 and 5). Specifically, a
node can be added into the blacklist if and only if its ranking
difference is greater than B. After adding a new node into
the blacklist, Ne, µe and B are updated (Line 7 to 9). Then,
an estimation of faulty nodes {n1, · · · ,nk} can be obtained if
this loop breaks at node nk+1.
Uniqueness: An important feature of this detection algo-
rithm is its uniqueness. Given a node sequence and the corre-
sponding average ranking differences, there is only one cut-
ting point k. This is proved in Appendix A.2. Then, by using
Algorithm 1, a unique blacklist consisting of all the nodes
{n1,n2, · · · ,nk} whose ranking difference is above B can be
constructed.

5 Practical Issues
In this section we discuss and address some practical is-

sues that compensate to the basic design of FIND. In Section
5.1 we develop a technique to reduce the effect of high level
noise on detection algorithm and Section 5.2 discusses how
to eliminate data measured from multiple events to preserve
the good performance of FIND. In Section 5.3 we discuss
how to apply the MAP estimator on subsequences rather than
full sequences of length N.

5.1 Detection in Noisy Environments
In Section 4.3.2, a detection algorithm is designed under

the assumption of a low noise level: Given a node sequence
n1-n2-· · · -nN in descending order of their ranking differences
in D, a cutting point k is found so that D(nk+1 ≤ B < D(nk)
and {n1-n2-· · · -nk} forms an estimation of faulty nodes.

This algorithm works well when the environment has a
low noise level, especially when the defective rate α is small.
As discussed before, the smaller α is, the further B is away
from µe and the less chance that a faulty node can be miss
detected. However, one problem arises when applying this

algorithm in an environment with a high noise level. In such
an environment, a normal node may sometimes behave as a
faulty node due to noise, resulting in a larger ranking differ-
ence than previously. Especially when α is small, B is small
such that the ranking differences of some normal nodes may
exceed B. To address this issue, we use a simple statistical
method to filter out some possible normal nodes in estima-
tion {n1-n2-· · · -nk}.

Given the estimation {n1-n2-· · · -nk}, all the rest nodes
{nk+1-· · · -nN} are considered normal nodes. Then, the sam-
ple mean and the sample variance of the ranking difference
of normal nodes can be computed as

µ̂ =
∑N

i=k+1 D(ni)

N− k
, σ̂2 =

∑N
i=k+1(D(ni)− µ̂)2

N− k−1
(16)

Then, the nodes whose ranking differences are no greater
than µ̂+ 3σ̂ are removed from the blacklist.

5.2 Simultaneous Events Elimination
We present the main design assuming that a node detects

one event at a time. However, since we cannot control natural
events, it would be the case that multiple events are detected
by sensor nodes at the same time. In this case, the resulting
node sequences are no longer correlated to any distance se-
quence most of the time. For example, for radio signals, the
RSS measured by a sensor node will be equal to the sum of
the RSS of two single events; for acoustic signals, the de-
lay measured by a sensor node will be equal to the delay of
the event that arrives earlier. Including such sequences into
FIND will bring detection error since ranking difference is
no longer a good metric to identify faulty nodes. As a re-
sult, eliminating data from multiple events is very important
to preserve high confidence in detection.

A pre-processing of data is designed where Longest Com-
mon Subsequences (LCS) is used to identify multiple events.
(If two sequences are 1-2-3-4-5 and 4-1-3-5-2, the LCS is 1-
3-5.) When noise is absent, the measured sequence s̄ is just
one of the distance sequences with αN faulty nodes shifts
to left or right. No matter how they shift, the rest (1−α)N
normal nodes still keep their original order thus the LCS be-
tween s̄ and its corresponding distance sequence is at least
(1−α)N long. By computing the LCS between s̄ and all dis-
tance sequences we get the longest LCS of s̄. Then, the node
sequences measured from multiple events can be filtered out
if the length of their longest LCS is shorter than (1−α)N.
In practice, this bound can be lower due to the presence of
noise. We evaluate the pre-processing design in Section 7.

5.3 Subsequence Estimation
When the network size N is large, a single event can be

detected only by the sensor nodes within the sensing range.
As a result, the length of the detected sequence s̄ is less than
N most of the time. On the other hand, even if a full de-
tected sequence (of length N) is available, a truncated s̄ is
still needed due to the exponential complexity of Eq.6.

Suppose L is set as the upper bound of the length of de-
tected sequences. Then any detected sequence s̄ is either of a
length no greater than L or is truncated by selecting only the
first L nodes so that the complexity of computing the condi-
tional probability is upper bounded by 2L. Given s̄, the dis-

(a) On Radio Signals (b) On Acoustic Signals

Figure 10. Outdoor Experiments Using Two Types of Events: Radio and Acoustic Signals

tance sequences si is also truncated accordingly. In our de-
sign, the distance sequences are truncated to length 2L (later
we will see why 2L is a better choice than L).

The estimation for subsequences is very similar to the es-
timation for full sequences as presented in Section 4.2 where
the objective is to find an si ∈V that maximizes Eq.2. Again,
the conditional probability Pr(s̄|si) needs to be computed,
the only difference being that s̄ and si are no longer of the
same length as they were in Section 4.2. Previously, the re-
cursion in Eq.6 stops when current s̄ and si are identical and
their conditional probability can be computed by Eq.3. If
they are not identical, the first unmatched nodes s̄[k] 6= si[k]
are found and possible faulty nodes (either s̄[k] in case 1 or
si[k..l] in case 2) are removed from both sequences so that
they are closer to identical. For subsequences, however, there
are two new problems. First, s̄ and si are not identical most of
the time since initially they are of different lengths. Second,
given the first unmatched node s̄[k] 6= si[k], there is no guar-
antee that there exists an si[l] (as in full sequence case) such
that s̄[k] = si[l] since si is also truncated. Based on these ob-
servations, we make the following changes for the recursive
computation process for Pr(s̄|si):

1. The condition for terminating the recursion has been re-
laxed to that si can be truncated to s̄ after removing a
number of nodes from the back, in contrast to the previ-
ous requirement that si and s̄ are completely identical.
Then the corresponding conditional probability is com-
puted by Eq.3 with N replaced by the length of s̄. For
example, if s̄ is 1-2-3-4-5 and si is 1-2-3-4-5-6-7, the
recursion stops since si can be further truncated to 1-2-
3-4-5 and the conditional probability can be computed
by Eq.3, replacing N with 5. However, if s̄ remains 1-2-
3-4-5 but si is 1-3-4-5-6-7 or 6-1-2-3-4-5, the recursion
does not stop.

2. For each pair of unmatched nodes s̄[k] 6= si[k], if s̄[k]
does not exist in si, it is considered faulty directly as in
case 1, in contrast to the previous method where both
cases are considered.

Suppose s̄[k] 6= si[k] are the first pair of unmatched
nodes. k is no greater than L since the length of s̄ is up-
per bounded by L. If the node s̄[k] exists in si as in the
previous full sequence case, the computation process
remains the same. If it does not exist in si, its ranking
in the si before truncation (denoted as l) must be larger
than the length of truncated si, which is 2L. Then the

ranking difference of this node is l− k which is greater
than L. Again for node s̄[k], there are two possibilities:
faulty or normal. Consider the case when it is normal.
Then, s̄[k] is a normal node with ranking difference of
l−k > L, which indicates that there are at least L faulty
nodes (since a faulty node can cause a normal node’s
ranking change by at most 1). This case can be ignored
because the probability that there are more than L faulty
nodes is small, especially when α is small. As a result,
truncating si to length of 2L allows us to only consider
the case s̄[k] is faulty when s̄[k] does not exist in si.

By making these two changes, the method presented in
Section 4.2 can be easily applied to subsequence estimation.

6 System Evaluation
We evaluate FIND using data from real world experi-

ments. In the first experiment, we detect data faults for ra-
dio signal in RSS measurements while for the second experi-
ment, we detect synchronization errors that causes inaccurate
delay measurements for acoustic signals.

6.1 Performance Evaluation
We evaluate the performance of FIND in two scenarios.

In the first scenario, an accurate α is assumed so that the
first αN nodes with the largest ranking differences are se-
lected as faulty nodes without using the detection algorithm
in Algorithm 1. This scenario is used as the performance up-
per bound for testing the effectiveness of our ranking differ-
ence based design. In the second scenario, accurate α is un-
available and Algorithm 1 is used for selecting faulty nodes
whose ranking differences are greater than B (α is still used
for computing Pr(s̄|s) but it can be less accurate). Also, the
statistical method presented in Section 5.1 is used for further
refining the blacklist. To distinguish between these two sce-
narios, we name the first ideal scenario α-based detection (or
α-detection for short), the second one B-based detection (or
B-detection for short).

Two metrics are used for evaluating FIND: false negative
rate and false positive rate. The former is defined as the pro-
portion of faulty nodes that are reported as normal, which is
also known as miss detection rate. The latter is defined as the
proportion of normal nodes that are reported as faulty, which
is also known as the false alarm rate.

6.2 On Radio Signal
We deploy 25 MicaZ nodes in grids (5×5) on a parking

lot, as shown in Fig.10(a). The distance between each row
and column is 5m. Broadcasting events, identified by their

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

49 Events

39 Events

29 Events

19 Events

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

49 Events

39 Events

29 Events

19 Events

(b) False Positive Rate

Figure 11. α-Detection

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

49 Events

39 Events

29 Events

19 Events

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

49 Events

39 Events

29 Events

19 Events

(b) False Positive Rate

Figure 12. B-Detection

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Node ID

A
v
e
ra

g
e
 R

a
n
k
in

g
 D

if
fe

re
n
c
e

(a) 19 Events

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Node ID

A
v
e
ra

g
e
 R

a
n
k
in

g
 D

if
fe

re
n
c
e

(b) 49 Events

Figure 13. Ranking Difference

unique event ids, are generated one by one. In the experi-
ment, the sending power of each event is adjusted to 0dBm
such that the communication range is around 25m. Upon
receiving a broadcasting packet, MicaZ nodes measure the
RSS and record it together with event id. The number of
events generated varies from 19 to 49.

After recording the RSS of all the events, we randomly se-
lect 1 to 5 nodes and inject errors (either biased or random)
into their readings, corresponding to a 4% to 20% defective
rate. According to Fig.1(b), where the RSS from the events
of the same distance may have a difference of as large as
20dBm, the injected errors are at least 20dBm above or be-
low the normal readings. Fig.11 and Fig.12 plot the false
negative rate and false positive rate for α- and B-detection
given different number of events. It can be seen from the
figure that except for 19 events, the false negative rate of
both α- and B-detection are below 6%. For false positive
rate, B-detection is below 5% for most cases, a little higher
than that of α-detection, which is below 3%. Noting that
α-detection always selects αN nodes into the blacklist, its
false positive rate is closely correlated to its false negative
rate. B-detection, however, selects nodes based solely on the
detection algorithm. Its false positive rate curves are more
irregular than those of α-detection. Since the network size is
only 25, a 5% false positive rate means fewer than 1.3 nor-
mal nodes are inaccurately reported faulty on average, which
is still a good performance. We also observe that the perfor-
mance of 19 events has a significant degradation compared
with the other three scenarios, especially for the false nega-
tive rate. This is because with 19 events, only 19 truncated
detected sequences are available so that a faulty node may
appear in only a small portion of them, leading to a low rank-

ing difference. With the effect of noise, such a faulty node is
difficult to be detected since it does not have a high enough
ranking difference due to limited number of events. When
the number of events becomes 29 or higher, the false nega-
tive rate decreases since the faulty nodes appear enough of
times in detected sequences.

Fig.13(a) and (b) plot the examples of average ranking
differences of all the 25 nodes with an 8% defective rate
when 19 events and 49 events are given. In (a), the faulty
nodes are nodes 12 and 23, while in (b), the faulty nodes
are 12 and 24. It can be seen from the figures that these
faulty nodes can be easily identified by their average rank-
ing differences since in these two examples, the two faulty
nodes have the highest ranking difference. Also, with more
events, the detection becomes easier. The horizontal line in
both figures show the average ranking difference of normal
nodes. Comparing (a) and (b), we observe that when there
are 19 events, the normal nodes have an average ranking dif-
ference of about 2.2, which is larger than that when there are
49 events, which is 1.8. This is because with more events,
more detected sequences become available and more faulty
nodes appear in these truncated sequences. Thus, it is easier
for the detection algorithm to avoid the effect of noise.

6.3 On Acoustic Signal
We deploy 20 MicaZ nodes in grids (4× 5) as shown in

Fig.10(b). The distance between each row and column are
set to 1.5m. All nodes are equipped with microphones to
receive 4KHz acoustic signals generated by a speaker and
record corresponding timestamps. Before generating the
acoustic signal, all the nodes are synchronized.

After recording the timestamps for 18 events, we inject
errors into 1 to 4 nodes, corresponding to a 5% to 20% de-

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

α−Detection

B−Detection

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

α−Detection

B−Detection

(b) False Positive Rate

0 5 10 15 20
0

2

4

6

8

10

Node ID

A
v
e
ra

g
e
 R

a
n
k
in

g
 D

if
fe

re
n
c
e

(c) Ranking Differences

Figure 14. Experiment Results on Acoustic Events

fective rate. The errors are at least 10ms, which correspond
to a distance of about 3.5 meters. Fig.14(a) plots the false
negative rate of α- and B-detection, and for α below 0.1, the
false negative rate is less than 5%. For α greater than 0.1, the
false negative rate is about 10% higher than that of the first
experiment using 29 or more events, but is close to that us-
ing 19 events. In Fig.14(b), B-detection has a false positive
rate of around 8%. Again, for this small-scale network with
20 nodes, this indicates that about 1.6 normal nodes are in-
accurately considered faulty on average, which is tolerable.
α-detection still has a low false positive rate as expected.

Fig.14(c) shows the average ranking differences of the 20
nodes where node 11 and 15 are faulty nodes. From this
figure we can see the average ranking differences of nor-
mal nodes is nearly 5, which is much larger than that in the
first experiment, indicating a higher noise level. The noise in
this experiment is higher due to the limited quality of micro-
phones equipped on MicaZ nodes. Also, the limited power
of the speaker causes many nodes to miss the signal even
if they are nearby. However, even with severe noise, FIND
performs well especially when α is below 0.1.

7 Large Scale Simulation Study
The results of the system evaluation indicate that FIND

can be efficiently and effectively applied to real-world sys-
tems with very good performance. Two implementations on
radio and acoustic events indicate FIND is generic and com-
patible with different event modalities. However, physical
test beds can only investigate a limited design space. In or-
der to understand the performance of FIND under diversified
settings, in this section, we provide extensive simulation re-
sults as a complementary study.

7.1 Simulation Setup
In the simulation, both the sensor nodes and events are

randomly generated on the map. If not specified, 100 nodes
are randomly deployed on a 250m× 250m map. The sensing
range is 25m and the sample size (the number of generated
events) is 50. L is set to 10, and thus the complexity of com-
puting Pr(s̄|si) is bounded by 103. All the data are based on
100 runs.

We use the logarithmic distance path loss model [14, 19]
to simulate received signal strength, and the received signal
strength of the ith node Si can be formulated as

Si ∝−10βlog(
di

d0
)+ Xi (17)

where di is the distance between node i and event. d0 is the
reference distance and is set to 1m. β is the signal fading fac-
tor and is set to 4 as in [30]. Xi is a random noise whose unit
is dB and follows a 0-mean normal distribution with variance
σ2

X . In the simulation, σX is changed from 0 to 8 to evaluate
FIND in different environments, and the default value is 4.
For faulty nodes, faulty readings are at least 3σX away from
their normal readings.

7.2 Comparison of α- and B-detection
The false negative rate and false positive rate of α- and

B-Detection, with or without noise, are shown in Fig.15. In
Fig.15(a), the false negative rate (miss detection rate) of all
curves are below 10%. When the defective rate is below 10%
(which is always the case in a well-maintained system), the
miss detection rate of all curves are below 4%. Thus, both α-
and B-detection can effectively detect faulty nodes. Compar-
ing the two solid curves (or the two dashed curves) we can
see α-detection always has a lower false negative rate (thus a
higher detection ratio) than B-detection. This is not difficult
to explain: the only difference between the two detections is
that α-detection utilizes a known α and selects the top αN
nodes directly based on average ranking differences, while
B-detection uses Algorithm 1 to figure out this number. As a
result, α-detection has a better performance since it has more
information. Also, comparing the two curves with squares
(or the two curves with circles), we can see that with the
presence of noise, the performance slightly degrades. How-
ever, both α- and B-detection can still detect more than 90%
of the faulty nodes in a noisy environment. We will study the
impact of noise in the next subsection.

Fig.15(b) shows the false positive rate (false alarm rate)
corresponding to previous 4 scenarios. From this figure we
can see most of the false positive rates are around 1%, mean-
ing that only a small portion of normal nodes are inaccurately
determined faulty, which is a good performance.

7.3 Impact of Noise
We study how noise affects α- and B-detection. In sim-

ulation, the standard deviation of noise σX is changed from
2 to 8. It is worth noting that the unit of σX is dB. As a re-
sult, a small increase in σX is a significant increase in noise.
For example, σX = 4 indicates that more than 30% normal
nodes’ readings are either greater than 2.5 times or less than
40% of the original readings, which is already a high noise
level in sensor networks in which the transmission power is

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

B−Detection,σ
X
=4

α−Detection,σ
X
=4

B−Detection,σ
X
=0

α−Detection,σ
X
=0

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

B−Detection,σ
X
=4

α−Detection,σ
X
=4

B−Detection,σ
X
=0

α−Detection,σ
X
=0

(b) False Positive Rate

Figure 15. α- vs. B-Detection

0 0.05 0.1 0.15 0.2
0

10%

20%

30%

40%

50%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

α−Detection,σ
X
=2

α−Detection,σ
X
=4

α−Detection,σ
X
=6

α−Detection,σ
X
=8

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

α−Detection,σ
X
=2

α−Detection,σ
X
=4

α−Detection,σ
X
=6

α−Detection,σ
X
=8

(b) False Positive Rate

Figure 16. α-Detection vs. Noise

0 0.05 0.1 0.15 0.2
0

10%

20%

30%

40%

50%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

B−Detection,σ
X
=2

B−Detection,σ
X
=4

B−Detection,σ
X
=6

B−Detection,σ
X
=8

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

B−Detection,σ
X
=2

B−Detection,σ
X
=4

B−Detection,σ
X
=6

B−Detection,σ
X
=8

(b) False Positive Rate

Figure 17. B-Detection vs. Noise

low. σX = 8 indicates that more than 30% of normal nodes’
readings are either greater than 6.3 times or less than 15% of
original readings, which is an extremely high noise level.

Fig.16 and Fig.17 are the simulation results of α-detection
and B-detection with different noise levels. It can be seen
from Fig.16(a) and Fig.17(a) that the false negative rate (miss
detection rate) increases as noise level increases, as expected.
When the defective rate α is below 10% (which is always the
case in a well-maintained system), the false negative rate for
σX = 2 and σX = 4 are both below 5%. As the noise level
increases, the false negative rate is still less than 20% even
in extremely noisy environments (σX = 8).

The corresponding false positive rate (false alarm rate) are
plotted in Fig.16(b) and Fig.17(b). It can be seen from the
figures that the false positive rate of α-detection increases
as α increases and the false negative rate increases. This is
because in α-detection, the αN nodes with the largest av-
erage ranking differences are determined to be faulty nodes
so that the number of false alarmed nodes is correlated with
the number of miss detected nodes. On the other hand, the
false positive rate of B-detection is always below 1%. This
is because B-detection detects faulty nodes by the detection
algorithm, and thus the number of miss detected nodes does
not correlate with the false positive rate.

In summary, both α- and B- detection have low false nega-
tive rate and low false positive rate (less than 5% for α≤ 0.1)
in environments with moderate noise. When the network
experiences extremely high noise, B-detection based on de-
tection algorithm is a better method even when α is accu-
rately given. This is because B-detection has a less than 1%
false positive rate, which means that almost all the nodes that
are detected as faulty are actually faulty. The miss detected

nodes may also be detected after correcting or removing the
already detected faulty nodes and applying the whole detec-
tion method again. We leave this topic as future work.

7.4 Impact of Inaccurate α
In a system in the real world, it is always impossible to get

the true defective rate (i.e., accurate α) of the system. In this
subsection we evaluate the performance of FIND with an es-
timated and inaccurate α. Since the α-detection method sim-
ply considers the αN nodes with the largest average ranking
differences as faulty nodes, it no longer provides good per-
formance when α is inaccurate: with a halved α, the false
negative rate is at least halved; with a doubled α, the false
positive rate is at least doubled. As a result, we evaluate only
how inaccurate α affects B-detection.

Fig.18(a) and (b) plot the false negative rate and false pos-
itive rate for using different estimated α values from 25% to
4 times of the true α in B-detection. It can be seen from
Fig.18(a) that except for the curve of using 4α as an esti-
mated defective rate, all the other curves show similar per-
formance. Also, the 4α curve has a higher false negative
rate (miss detection rate) than all the other curves, especially
when α > 0.1. This is because when the estimated α is four
times of that of true α, a node may become more likely to
be faulty instead of normal. For example, if α = 0.2, a node
has a probability of 0.2 to be faulty. But if 0.8 is used, a
node has a probability of 0.8 to be faulty. (In reality, no one
will estimate α = 0.8, but from this simulation we can get
the performance of FIND in very extreme cases.) From this
figure we conclude that a reasonable estimated α does not
degrade the performance of FIND. Fig.18(b) shows the false
positive rate from which we can see the false positive rate of
all curves are all around 1%. Based on this simulation we

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

B−Detection,0.25α

B−Detection,0.5α

B−Detection,α

B−Detection,2α

B−Detection,4α

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

B−Detection,0.25α

B−Detection,0.5α

B−Detection,α

B−Detection,2α

B−Detection,4α

(b) False Positive Rate

Figure 18. Impact of Inaccurate α

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

B−Detection,150m× 150m

B−Detection,200m× 200m

B−Detection,250m× 250m

B−Detection,300m× 300m

B−Detection,350m× 350m

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

B−Detection,150m× 150m

B−Detection,200m× 200m

B−Detection,250m× 250m

B−Detection,300m× 300m

B−Detection,350m× 350m

(b) False Positive Rate

Figure 19. B-Detection vs. Density

0 10% 20% 30% 40% 50% 60%
0

20%

40%

60%

80%

100%

Percentage of Multiple Events

F
a
ls

e
 N

e
g
a
ti
v
e
 R

a
te

Before Pre−Processing

After Pre−Processing

(a) False Negative Rate

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node ID

L
C

S

(b) Length of LCS

Figure 20. Impact of Multiple Events

conclude that the performance of B-detection is insensitive
to the inaccurate estimation of α. When no information of
α in a networking system is available, choosing α ranging
from 2% to 5% will not affect the performance.

7.5 Impact of Network Density
The performance of B-detection in networks with differ-

ent densities are shown in Fig.19. The map size is changed
from 150m× 150m to 350m× 350m while the network size
remains 100. It can be seen from Fig.19(a) that when the
density is reduced from 300m× 300m to 350m× 350m, the
false negative rate increases by around 5%. When the den-
sity is reduced from 250m×250m to 300m×300m, the false
positive rate also increases by around 2%. This is because
with lower density, the number of nodes within the sensing
range of the event becomes smaller and the node sequences
are shorter. As a result, sequence estimation becomes less ac-
curate because less information (shorter sequences) is avail-
able. Also, when the density increases from 200m× 200m
to 150m× 150m, the false negative rate does not increase.
This is because when the density is higher, more nodes are
within sensing range and more nodes have similar distances
from the events. Due to the presence of noise, the proba-
bility that a normal node’s ranking is changed by noise also
becomes higher because there are more nodes nearby with
similar readings. As a result, the false negative rate is lowest
in a network with moderate density, as in 200m×200m and
250m×250m. The false positive rate, as shown in Fig.19(b)
is for most cases around 2%.

7.6 Impact of Simultaneous Events
We study how simultaneous events affect the performance

of FIND. The total number of events is 100 and the percent-
age of simultaneous events (for which the sensing results

are the sum of several individual events) are changed from
10% to 50%. For each sample, if the length of the longest
LCS is less than 75% of its original length, it is discarded.
Fig.20(a) shows the false negative rate of our design with or
without data pre-processing. It can be seen that without pre-
processing, the performance degrades significantly, with a
more than 80% false negative rate. After pre-processing, the
false negative rate reduces to less than 20%. The fewer the si-
multaneous events, the better the performance because more
valid samples can be used without being discarded. Fig.20(b)
shows the longest LCS (normalized by original length) of
the 100 samples where the first 50 samples are from a single
event and the last 50 samples are from simultaneous multiple
events. It is clear that the length of LCS of the first 50 events
is nearly twice that of the last 50, showing the effectiveness
of LCS-based data pre-processing.

8 Conclusions
In this paper we proposed FIND, a faulty node detection

method for wireless sensor networks. Without assuming any
communication model, FIND detects nodes with faulty read-
ings based only on their relative sensing results, i.e., node
sequences. Given detected node sequences, we first pro-
posed an approach to estimate where the events take place
and what the original sequences are. Then we theoretically
proved that the average ranking differences of nodes in de-
tected sequences and original sequences can be used as an
effective indicator for faulty nodes. Based on the theoretical
study, a detection algorithm is developed for finally obtain-
ing a blacklist when an accurate defective rate is unavailable.
Based on extensive simulations and test bed experiment re-
sults, FIND is shown to achieve both a low false negative rate
and a low false positive rate in various network settings.

9 References

[1] L. Balzano and R. Nowak. Blind Calibration of Sensor Networks. In
IPSN’07, 2007.

[2] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A Collab-
orative Approach to In-Place Sensor Calibration. In IPSN’03, 2003.

[3] Q. Cao, T. Abdelzaher, J. Stankovic, and K. W. L. Luo. Declarative
Tracepoints: A Programmable and Application Independent Debug-
ging System for Wireless Sensor Networks. In SenSys’08, 2008.

[4] H.-l. Chang, J.-b. Tian, T.-T. Lai, H.-H. Chu, and P. Huang. Spinning
Beacons for Precise Indoor Localization. In SenSys ’08, 2008.

[5] M. de Bery, O. Cheong, M. van Krevald, and et al. Computational Ge-

ometry: Algorithms and Applications . Springer-Verlag,3rd Edition,
2008.

[6] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized Fault-Tolerant
Event Boundary Detection in Sensor Networks. In INFOCOM, 2005.

[7] J. Feng, S. Megerian, and M. Potkonjak. Model-Based Calibration for
Sensor Networks. In IEEE Sensors, 2003.

[8] T. He and et. al. VigilNet: An Integrated Sensor Network System
for Energy-Efficient Surveillance. ACM Transactions on Sensor Net-

works, Vol. 2(No. 1):Page 1 – 38, February 2006.

[9] Honeywell. 1- and 2-Axis Magnetic Sensor HMC1001 / 1002,
2007. Available at http://www.ssec.honeywell.com/magnetic/
datasheets/hmc1001-2_1021-2.pdf.

[10] J. Hwang, T. He, and Y. Kim. Achieving Realistic Sensing Area Mod-
eling. In SenSys’06, 2006.

[11] M. Khan, H. K. Le, H. Ahmadi, T. Abdelzaher, and J. Han. DustMiner:
Troubleshooting Interactive Complexity Bugs in Sensor Networks. In
SenSys’08, 2008.

[12] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han.
Dustminer: Troubleshooting Interactive Complexity Bugs in Sensor
Networks. In SenSys ’08, 2008.

[13] J. Liu, Y. Zhang, and F. Zhao. Robust Distributed Node Localization
with Error Management. In MobiHoc ’06, 2006.

[14] H. Lord, W. Gatley, and H. Evensen. Noise Control For Engineers.
McGraw Hill Book Co., 1980.

[15] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbe-
havior in Mobile Ad Hoc Networks. In MOBICOM, 2000.

[16] E. Miluzzo, N. Lane, A. Campbell, and R. Olfati-Saber. CaliBree:
A Self-Calibration System for Mobile Sensor Networks. In DCOSS,
2008.

[17] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Har-
vey, J. Jay, E. Kohler, S. Rothenberg, and M. Srivastava. Rapid De-
ployment with Confidence: Calibration and Fault Detection in Envi-
ronmental Sensor Networks. In Technical Report CENS-TR-62, Cen-

ter for Embedded Networked Sensing, 2006.

[18] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Es-
trin. Sympathy for the Sensor Network Debugger. In 3rd Embedded

Networked Sensor Systems, 2005.

[19] T. Rappaport. Wireless Communications, Principles and Practice.
Prentice Hall, 1996.

[20] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis. The Beta
Factor: Measuring Wireless Link Burstiness. In SenSys’08, 2008.

[21] J. Staddon, D. Balfanz, and G. Durfee. Efficient Tracing of Failed
Nodes in Sensor Networks. In 1st ACM International Workshop on

Wireless Sensor Networks and Applications, 2002.

[22] R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler. An Anal-
ysis of a Large Scale Habit Monitoring Application. In SenSys’04,
2004.

[23] G. Tolle and D. Culler. Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks. In EWSN, Feb 2005.

[24] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, S. Burgess,
D. Gay, P. Buonadonna, W. Hong, T. Dawson, and D. Culler. A
Macroscope in the Redwoods. In SenSys’05, November 2005.

[25] K. Whitehouse and D. Culler. Calibration as Parameter Estimation in
Sensor Networks. In WSNA, 2002.

[26] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A Wireless Sensor Network for Struc-
tural Monitoring. In SenSys’04, 2004.

[27] J. Yang, M. Soffa, L. Selavo, and K. W. Clairvoyant. A Comprehen-

sive Source-Level Debugger for Wireless Sensor Networks. In Sen-

Sys’07, 2007.

[28] K. Yedavalli and B. Krishnamachari. Sequence-Based Localization in
Wireless Sensor Networks. IEEE Transactions on Mobile Computing,
7(1), 2008.

[29] Z. Zhong and T. He. Achieving Range-Free Localization Beyond Con-
nectivity. In SenSys’09, 2009.

[30] Z. Zhong, T. Zhu, D. Wang, and T. He. Tracking with Unreliable Node
Sequences. In INFOCOM, 2009.

[31] G. Zhou, T. He, and J. A. Stankovic. Impact of Radio Irregularity on
Wireless Sensor Networks. In MobiSys’04, June 2004.

A Appendix:

A.1 The proof for Theorem 4.2
PROOF. For any node p and node q satisfying D(p) < D(q), they must
belong to one of the following cases:

1. B < D(p) < D(q): According to Theorem 4.1, for any node k, the
probability that k is a faulty node when D(k) > B is 1, regardless of
what D(k) is (as long as it is greater than B). Then, both p and q are
faulty nodes for sure in this case. Pr(p = “F”) = Pr(q = “F”) = 1.

2. D(p) ≤ B < D(q): According to Theorem 4.1, q is a faulty node for
sure since D(q) > B. The probability that p is a faulty node is no
greater than 1. Thus, Pr(p = “F”)≤ Pr(q = “F”) = 1.

3. D(p) < D(q) ≤ B: Without additional information, for any node k

satisfying D(k) ≤ B, the probability that k is a faulty node (denoted
by β) is equal to the percentage of faulty nodes among all the nodes
whose ranking differences are upper bounded by B, regardless of the
value of D(k). Thus, Pr(p = “F”) = Pr(q = “F”) = β in this case.

Summarizing all the three cases, it is not difficult to get Pr(p = “F”)≤
Pr(q = “F”) when D(p) < D(q).

A.2 The Uniqueness of Detection Algorithm
The uniqueness of detection algorithm is given by Theorem A.1:

THEOREM A.1. Given node sequence n1-n2-· · · -nN which is in descend-

ing order of their ranking differences, if {n1,n2, · · · ,nk} is the estimation
of the blacklist such that nk satisfies D(nk+1) ≤ B < D(nk), then this esti-

mation is unique. In other words, there does not exist another estimation

{n1,n2 , · · · ,nk′} where k′ 6= k but satisfies D(nk′+1)≤ B′ < D(nk′).
PROOF. The proof is based on contradiction. Suppose {n1,n2, · · · ,nk′} ex-
ists. Without loss of generality, assume k > k′. Based on definition, µeNe is
the sum of the ranking differences of n1, · · · ,nk and µ′eN′e is the sum of the
ranking differences of n1, · · · ,nk′ . According to B’s definition:

B =
Ne

N−1
(µe +Ne) =

Neµe +N2
e

N−1

=
D(n1)+D(n2)+ · · ·+D(nk′)+ · · ·+D(nk)+N2

e

N−1

>
D(n1)+D(n2)+ · · ·+D(nk′)+N′2e

N−1
= B′ (18)

where the inequality is based on Ne > N′e and D(nk′+1),· · · ,D(nk) are all
non-negative.

Eq.18 shows that B can be considered as a strictly increasing function
of k. On the other hand, D(nk) is decreasing as k increases (n1-n2-· · · -nN

are already sorted in descending order of their average ranking differences).
Both functions are discrete, but they can be treated as samples of continuous
functions. As D(nk+1) ≤ B < D(nk), k is essentially the nearest integer to
the left of the point at which the two functions intersects. Such intersection
is unique given that B is an strictly increasing function of k and D(nk) is
decreasing.

Mathematically, D(nk) ≤ D(nk′+1) (since k > k′ implies k ≥ k′ + 1).
Also, based on the estimation method, nk and nk′ satisfy D(nk+1) ≤ B <

D(nk) and D(nk′+1)≤ B′ < D(nk′). As a result, B < D(nk)≤D(nk′+1)≤ B′,
which contradicts to Eq.18 that B > B′. Thus, nk is unique and the estimation
based on the method of finding all the nodes whose ranking differences are
no less than B is unique.

