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Abstract

In this paper we present theLandmark Model , a model for
time series that yields new techniques for similarity-based
time series pattern querying. TheLandmark Model does
not follow traditional similarity models that rely on point-
wise Euclidean distance. Instead, it leads toLandmark
Similarity , a general model of similarity that is consistent
with human intuition and episodic memory.
By tracking different specific subsets of features of land-
marks, we can efficiently compute differentLandmark
Similarity measures that are invariant under correspond-
ing subsets of six transformations; namely, Shifting, Uni-
form Amplitude Scaling, Uniform Time Scaling, Uniform
Bi-scaling, Time Warping and Non-uniform Amplitude Scal-
ing. A method of identifying features that are invariant un-
der these transformations is proposed. We also discuss a
generalized approach for removing noise from raw time se-
ries without smoothing out the peaks and bottoms. Beside
these new capabilities, our experiments show thatLand-
mark Indexing is considerably fast.

1. Introduction

Time series data is ubiquitous in science, engineering
and business. Recently there has been a surge of interest
in managing this kind of data, and in processing similarity-
based queries in time series databases. Data mining and
knowledge discovery in time series databases[11] have also
enjoyed this interest.

Research in similarity-based pattern querying can be
classified by three criteria: the similarity model, the data
representation, and the index structure. The similarity
model defines the semantics of pattern queries. Although
the similarity of two time series is directly computable, for�Currently with Candle Corp., El Segundo, CA 90245

most similarity models this is too expensive in practice. In-
stead, features with good properties are extracted from the
raw data to form feature sets, which then can be compared
for similarity. Each feature set is used to represent a portion
of the original time series. Then feature sets are indexed
and stored based on multi-dimensional indexing structures.
For example, the pioneering work by Agrawal et al[1] and
Faloutsos et al[10] uses Euclidean distance as the similar-
ity model, the coefficients of the moving-window Discrete
Fourier Transform (DFT) as the data representation, and anR�-tree as the index structure.

The similarity model has been extended in many differ-
ent directions: taking time warping into account [4, 15, 14,
17]; allowing amplitude shifting [9, 15, 7]; allowing time
series segments of different amplitude scales to be similar
[9, 2, 8, 7]. Some work also takes smoothing or noise re-
moval into account. Rafiel et al[14] proposed a similarity
measurement based on moving averages. Agrawal et al[2]
suggested eliminating gaps before time series segments are
compared.

Even the simplest similarity measures are often too ex-
pensive to apply on raw data. The situation grows worse
as the similarity model is made invariant under transfor-
mations to the data (see Section 2.3). Assuming the to-
tal length of the time series in a database isN , the search
space isO(N) for fixed-length pattern querying andO(N2)
for variable-length pattern querying. With a linear time
comparison algorithm, the overall time complexity can beO(N2) andO(N3) respectively. For example, [4] uses
an algorithm withO(N3) time complexity to handle time
warping. Real time series databases are not queryable with-
out a sub-linear time algorithm. So various feature extrac-
tion methods have been proposed in order to provide an ‘in-
dexable’ search space. The majority of these [10, 1, 9, 14, 7]
use a few DFT coefficients for each time window. Wavelet
coefficients are used in [5]. Shatkay [15] suggested break-
ing sequences into meaningful subsequences and represent-
ing them using real-valued functions.
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Figure 1. Instances of Double Bottompattern. These charts are found by our prototype.

Given a good data representation, the final issue is how to
choose an indexing structure with good performance. TheR-tree,R+-tree,R�-tree and simple inverted files are com-
mon choices.

Although previous work has generalized the similarity
model in different directions, there is no apparent way to
unify all this work under a generalized similarity model.

The above arguments can be illustrated by the following
brief example: Figure 1 show some instances of the double
bottom pattern. Humans can spot the resemblance between
these charts almost immediately, which means these charts
are similar to some degree although they are noisy and have
different levels, scales, and time spans. To our best knowl-
edge, currently there is no technique that can efficiently sup-
port pattern querying using the similarity model implicit in
these charts.

We also question the adequacy of using Euclidean dis-
tance as a similarity measurement. From previous research
it has become clear that ordinary Euclidean distance is a
poor similarity measurement. Its inadequacies are hard to
enumerate, but for example:

1. Euclidean distance works only on same-length seg-
ments. Even a small difference in length requires op-
erations like interpolation in order to align time series
segments. Rafiei and Mendelzon [14] have also ad-
dressed this issue.

2. Euclidean distance can be strongly influenced by scale
(amplitude): similarity in a lower range can be over-
whelmed by mild subsequent dissimilarity in a higher
range. By contrast, similarity among volatile time se-
ries sometimes can be relatively insensitive to scale.
This is exemplified by Figure 1, and particularly by
recent stock market trends: since the second half of
1997, many Internet-related US stocks have followed
similar wild growth patterns.

Beside these drawbacks, the presence ofnoisealso af-
fects the similarity significantly. Noise accompanies almost

every real measurement. Humans usually perceive similar-
ity of patterns with an implicit smoothing procedure. Most
chart readers have long known that every pattern is only rec-
ognizable on certain time scales. In charts with long time
scales, small fluctuations are treated as noise. Smoothing is
an essential issue in defining patterns. Most previous work
does not take smoothing as an integral part of the process of
pattern definition, index construction, and query processing.
Instead, this work tends to apply smoothing techniques first,
and then build an index on the result. But commonly-used
smoothing techniques, such as various kinds of moving av-
erages, either lag or miss the important peaks and bottoms1.
Peaks and bottoms are generally very significant, and have
meaning. Smoothing or removing them can lead to a con-
siderable loss of information. Also, the parameters used in
current smoothing techniques often lack clear meaning.

In this paper, we propose a new technique called the
Landmark Model . Its underlying similarity model,Land-
mark Similarity , is consistent with human intuition and
episodic memory.Landmark Similarity is defined in a
way that a variety of similarity measurements — each in-
variant under (i.e., insensitive to, oblivious of) a subsetof
six basic transformations on time series — can be selected
by users. To accomplish this efficiently we also propose
a new data representation method, a procedure to find a
minimal feature set for any non-degenerate subset of these
transformations. A smoothing technique that can be param-
eterized intuitively is also introduced. Then we reduce the
indexing problem to a string indexing problem.

2. Similarity model and data representation

In most previous work, similarity models and data mod-
els are different. It is then important to establish a connec-
tion between the two. For example, the Parseval theorem
relates point-wise Euclidean similarity with a Fourier se-

1The smoothness of a curve is measured by the frequency of direction
changes. So removing major peaks and bottoms is not necessary when
smoothing a curve.



ries model. This separation also makes completeness (no
false dismissals) and soundness (no false alarms) two seri-
ous issues in pattern querying. Soundness can be guaran-
teed by checking the original data. Completeness is often
more difficult, because when a search through indices fails,
there may be no way to avoid scanning the whole database.
A common strategy is to relax error tolerance and allow
more false alarms in order to reduce or eliminate false dis-
missals. Eventually, both completeness and soundness grow
into performance problems.

This separation between data model and similarity model
is not necessary. In this section, we introduce the concept
of theLandmark Model , which is both a similarity and a
data model.

2.1. Landmark concept

Researchers in Psychology and Cognitive Science have
amassed considerable evidence that human and animals de-
pend onlandmarks in organizing their spatial memory [6].
Research intoepisodic memoryhas also produced results
for organizing memory around ‘landmark events’ [12, 3].
This all conforms to our daily experience. If one is asked
to look at Figure 1(a) for a short period and then duplicate
the chart, a relatively successful strategy is to memorize the
positions of the turning points and reconnect them. These
turning points serve as the landmarks in their charts. The
success of this strategy also implies that humans, to some
extent, consider two charts similar if their turning pointsare
similar and the rest of the charts are curves that connect the
turning points.

Extreme points also are significant to chart readers. Tak-
ing stock prices as an example, every trader would wish
he/she had bought (covered) at every local minimum, sold
(shorted) at every local maximum, and otherwise did little.
The curves between the extreme points are indifferent to the
maximal potential profit or the optimal trading strategy.

Based on this observation, we define Landmarks in time
series to be those points (times, events) of greatest impor-
tance. The gist of theLandmark Model is to use land-
marks instead of the raw data for processing. Different
landmarks arise in different application domains, and their
definition can range from simple predicates (for example,
local maxima, local minima, inflection points, etc.) to more
sophisticated constructs. Since most important points pos-
sess some mathematical properties, a more generic way is
to categorize them mathematically. We call a point ann-th
order landmark of a curve if then-th order derivative is0 on
the point. So local maxima and minima are first-order land-
marks, and inflection points are second-order landmarks.

The decision as to which kinds of points can be land-
marks amounts to a tradeoff between two extremes. The
more different types of landmarks in use, the more accu-
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Figure 2. Cisco stock price from 6/1/1998 to
11/30/1998. The original time series, and the
two time series reconstructed from first-order
landmarks and from 4 DFT coefficients.

rately a time series will be represented, and hence the more
detail patterns are defined. However, using fewer landmarks
will result in smaller index trees. The decision about where
to balance this tradeoff should be based on the nature of the
data.

In our empirical study in stock market data, this decision
was resolved easily. As shown in Table 1, even for IBM
stock (which is supposed to be comparably more stable than
other stocks),1384 points out of2854 — almost half of the
records — are either local minima or maxima. Also, the
normalized error (Appendix B) is reasonably small when
the curve is reconstructed from the landmarks. So, for the
rest of this paper, we restrict discussion to only “first-order
landmarks” (although in other applications different land-
marks might be more useful).

A somewhat surprising fact about landmarks is that
the more volatile the time series, the less significant the
higher-order landmarks. Only slowly changing time series,
in which the distances between extrema are long, require
higher-order landmarks for accurate reconstruction.

Given a sequence of landmarks, the curve can be re-
constructed by segments of real-valued functions. In Ap-
pendix A, we show how to reconstruct time series from a
sequence of landmarks. Figure 2 shows the time series re-
constructed from landmarks and DFT. Note that the DFT
uses only 4 coefficients to represent the window of length128 we have chosen. In a time series of lengthn, there are
roughly 4n coefficients to be processed because the DFT
has to be performed on every trailing window. Our study
of stocks in S&P500 index shows the average number of
landmarks is less thann=2, regardless of the time span2.

2The4nDFT coefficients andn=2 landmarks are not the actual amount
of information that needs to be stored.
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Figure 3. Minimal Distance/Percentage Prin-
ciple

The Landmark Model has another desirable property
that all the peaks (local maxima) and bottoms (local min-
ima) are preserved, while they are typically filtered out by
both the DFT and DWT (being captured in coefficients of
higher frequencies), as shown in Figure 2.

2.2. Smoothing

Real world data are usually noisy. Even for the most typ-
ical pattern like Figure 1, one cannot expect smooth transi-
tions from each major landmark (for example, the two bot-
toms and the local maximum between them) to the next.
Low-pass filters like the DFT and moving averages are often
introduced to eliminate noise in these transitions. Moving
averages, like the DFT, tend to smooth out peaks and bot-
toms along with noise. Moving averages are also known to
belagging indicators, which have a phase delay comparing
to the original data.

While there are infinitely many possible ways to
classify landmarks, we introduce theMinimal Dis-
tance/Percentage Principle (MDPP). MDPP is a smooth-
ing process that can be implemented as a linear time al-
gorithm. It is defined as follows: Given a sequence of
landmarks(x1; y1); � � � ; (xn; yn), a minimal distanceD and
a minimal percentageP , remove landmarks(xi; yi) and(xi+1; yi+1) ifxi+1 � xi < D and

j(yi+1 � yi)j(jyij+ jyi+1j)=2 < P:
We useMDPP(D,P ) to represent this process.

Figure 3 illustrates how MDPP works. Figure 4 shows
the effect of MDPP while using different distances and per-
centages. Table 1 shows how the parameters affect the
number of remaining landmarks and the normalized error.
The real power of theLandmark Model and MDPP can
be illustrated by the last cell in Table 1. We can use1:8%
(52=2854) of the original points to represent the whole time
series with only5:1% normalized error. This is not a spe-
cial case. Our studies on financial data shows almost every
stock with sufficiently long history gives similar results.

The parameters of MDPP have intuitive meaning. For
example, if a stock trader trades once a week (5 business

days) and regards a5% gain or loss as significant, then
he/she simply uses MDPP(5, 5%) to smooth the data. This
approach ensures that no price movement larger than5% is
smoothed out.

In contrast, the DFT does not scale as well as the MDPP.
Figure 5 shows the error generated from DFT and MDPP.
This is a fair comparison because the DFT must be per-
formed on every trailing window (assuming the DFT is per-
formed on all elements in a sliding fixed-size window).
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(a) Varying the MDPP distance parameter
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Figure 4. Sensitivity of the Minimal Distance/
Percentage Principle.

A difficult decision to make with the DFT approach is
which window size to choose. In contrast, MDPP is almost
invariant of the window size. In fact, neither raw landmarks
nor MDPP is based on moving windows, so the length of
time series has very little effect on the quality of theLand-
mark Model .

The MDPP preserves the offsets of each landmark. It is
possible to design different smoothing methods that remove
the ‘noisy’ segments and support a similarity model similar
to the one introduced by Agrawal et al[2].



D/P 2% 4% 6% 8% 10% 12% 14% 16% 18%
2 612/1.5% 526/1.7% 516/1.8% 516/1.8% 512/1.8% 512/1.8% 512/1.8% 512/1.8% 512/1.8%
4 414/2% 244/2.5% 220/2.6% 206/2.7% 204/2.7% 204/2.7% 204/2.7% 204/2.7% 202/2.7%
6 410/2.0% 194/2.9% 158/3.0% 136/3.2% 132/3.2% 130/3.2% 128/3.2% 128/3.2% 126/3.2%
8 410/2.0% 178/3.2% 136/3.5% 110/3.7% 102/3.9% 96/4% 94/4% 94/4% 94/4%
10 410/2.0% 174/3.3% 126/3.6% 102/3.9% 88/4.3% 84/4.3% 82/4.3% 82/4.3% 82/4.3%
12 410/2.0% 174/3.3% 126/3.6% 102/3.9% 82/4.4% 76/4.4% 74/4.4% 74/4.4% 74/4.4%
14 410/2.0% 172/3.3% 122/3.8% 98/4.1% 78/4.6% 68/4.8% 66/4.7% 66/4.7% 66/4.7%
16 410/2.0% 166/3.4% 116/4% 90/4.3% 70/4.8% 60/5% 58/4.9% 58/4.9% 58/4.9%
18 410/2.0% 166/3.4% 114/4.0% 86/4.5% 64/5% 54/5.2% 52/5.1% 52/5.1% 52/5.1%

Table 1. The number of remaining landmarks and the normalize d error generated by MDPP with
different minimal distances(D) and minimal percentages(P ). The original data contains 2854 closing
prices of IBM. The number of raw landmarks is 1384. For exampl e, after applying MDPP(2,2%), the
number of remaining landmarks is 612 and the normalized error is 1:5%.
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2.3. Transformations

A similarity measure isinvariant under a family of
transformations if applying them to time series never al-
ters similarity. As previously mentioned, the more trans-
formations included in a similarity model, the more power-
ful the similarity model. Most related work has considered
two or three transformations. In this paper, we consider six.
Given an univariate time seriess, assumef(t) is a contin-
uous function obtained by interpolating between the points
in s. The transformations are each defined as a family of
functionals:

1. ShiftingSHk(f) such thatSHk(f(t)) = f(t) + k wherek is a
constant.

2. Uniform Amplitude ScalingUASk(f) such thatUASk(f(t)) = k f(t) wherek is
a constant.

3. Uniform Time ScalingUTSk(f) such thatUTSk(f(t)) = f(k t) wherek is
a positive constant.

4. Uniform Bi-scalingUBSk(f) such thatUBSk(f(t)) = k f(t=k) wherek
is a positive constant.

5. Time Warping (or Non-uniform Time Scaling)TWg(f) such thatTWg(f(t)) = f(g(t)) whereg is
positive and monotonically increasing.

6. Non-uniform Amplitude ScalingNASg(f) such thatNASg(f(t)) = g(t) where for
everyt, g0(t) = 0 if and only if f 0(t) = 0.

These transformations can be composed to form new
transformations. The composition order is flexible, in the
sense that for any two transformationsFu andGv , there ex-
ist alternativeu0 andv0 such thatFu Æ Gv = Gu0 Æ Fv0 .
The composition is also idempotent, in the sense that for
any transformationF and parametersu andv, there exists
a parameterw such thatFw = Fu Æ Fv . With these two
properties, we can use basic transformations to represent a
composite transformation.

The purpose of introducing these transformations is not
actually to perform them, but instead to extend the seman-
tics of similarity to ‘ignore’ them. For example, time series
segmentsf1(t) and f2(t) are similar (actually: identical)
moduloShiftingif there exist a constantk such that for allt in the domain,f1(t) = f2(t) + k. Putting it another way,
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Figure 6. The six transformations in the Landmark Model

the set of functions that are similar modulo Shifting isin-
variantunder Shifting transformations. There is no need to
find a specific value for a constantk or functiong in the
definitions above. In Section 3 we will show that not every
composition is meaningful.

2.4. Landmark similarity

The error tolerance in most similarity models is a single
value� that is computed from pointwise differences in am-
plitude. This simple error measurement is no longer suffi-
cient when transformations like Uniform Time Scaling and
Uniform Bi-scaling are taken into account. In theLand-
mark Model , drift on the time axis also can be significant.
Furthermore, the scales on the amplitude-axis and time-
axis are incomparable, which means the 2-dimensional Eu-
clidean distance is meaningless. Hence we must generalize
the dissimilarity measurement.

Definition 1 Given two sequences of landmarksL =hL1; � � � ; Lni andL0 = hL01; � � � ; L0ni whereLi = (xi; yi)
andL0i = (x0i; y0i), the distance between thek-th landmarks
is defined by�k(L;L0) = (Ætimek (L;L0); Æampk (L;L0)) where

Ætimek (L;L0) = ( j(xk�xk�1)�(x0k�x0k�1)j(jxk�xk�1j+jx0k�x0k�1j)=2 if 1 < k � n0 otherwiseÆampk (L;L0) = ( 0 if yk = y0kjyk�y0kj(jykj+jy0kj)=2 otherwise

The distance between the two sequences is�(L;L0) = (jjÆtime(L;L0) jj; jjÆamp(L;L0) jj) = (Ætime; Æamp)
wherejj � jj is a vector norm, viewing bothÆtime(L;L0) andÆamp(L;L0) asn-vectors. The max normjjÆ jj1 = maxk Æk
often works well on financial time series.

Abusing language, we useÆ = (Ætime; Æamp) to denote
the distance between two time series segments when the pa-
rameters are clear from context. We define(Ætime; Æamp) �(Æ0time; Æ0amp) if Ætime � Æ0time andÆamp � Æ0amp.

Lemma 1 The landmark distance function satisfies the tri-
angle inequality. That is, for any landmark sequencesL,L0, andL00, �(L;L00) � �(L;L0) + �(L0; L00). Given
fixed MDPP parameters, since each time series segment is



mapped to a unique sequence of landmarks, the inequality
property also applies.

With this dissimilarity measurement, we now can define
the similarity in theLandmark Model .

Definition 2 A landmark similarity relationis a binary re-
lation on time series segments defined by a 5-tupleLMS =hD;P; T; �time; �ampi where D and P are MDPP pa-
rameters,T is a set of basic transformations,�time is
an error tolerance on the time-axis and�amp is an er-
ror tolerance on the amplitude-axis. Given two time se-
ries segmentss1 and s2, let L1 and L2 be the land-
mark sequences afterMDPP (D;P ) smoothing. Then(s1; s2) 2 LMS if and only if jL1j = jL2j and
there exist two parameterized transformationsT1 andT2 of T such thatÆtime(T1(L1); T2(L2)) < �time andÆamp(T1(L1); T2(L2)) < �amp.

Figure 7 illustrates the operational structure of landmark
similarity.

Extract Raw Landmarks

Smooth with MDPP

Apply Transformation

Compare

Figure 7. The operational structure of Land-
mark similarity. In comparing two time se-
ries segments s1 and s2, we first extract land-
marks and apply MDPP on the raw landmarks.
The dissimilarity of the two time series seg-
ments is the minimal distance error between
the landmark sequences under the given set
of transformations.

3. Data representation

Up to this point, we have used only simple coordinates
of landmarks in modeling time series. But a sequence of
landmarks denoted by coordinates represents only a partic-
ular time series segment. The similarity we seek is to treat
a family of time series segments as equivalent under the six
transformations we introduced. The solution we propose is
to use various features of landmarks that are invariant under
the transformations to represent time series.

Given a sequence of landmarksL1; � � � ; Ln whereLi = (xi; yi), we can define as many features as pos-
sible. In this paper, we use a small feature setF =fy; h; v; hr; vr; vhr; pvg3 for demonstration purposes, de-
fined by:hi = xi � xi�1 vi = yi � yi�1 hri = hi+1=hivri = vi+1=vi vhri = vi=hi pvi = vi=yi.

All these features are generated from the coordinates of
landmarks, but each has different characteristics. In partic-
ular, every feature is invariant under some time series trans-
formations. Table 2 indicates which features are invariant
under each transformation:

The invariant feature set of a composite transformation
is the intersection of the invariant feature sets of its compo-
nents.

By observing the invariant sets, it is easy to see that not
every composition of these transformations is meaningful.
Time series might beover-transformed, and the similarity
relation become a complete relation (in which each seg-
ment is similar to all others) if the time series segments are
long enough. This happens when the transformation has
an empty invariant feature set. For example, under Time
Warping and Non-uniform Amplitude Scaling of a time se-
ries, segments can be transformed to any shape if they are
sufficiently long that the intersection of their invariant set is
empty.

On the other hand, one basic transformation can be sub-
sumed by another transformation. For example, Uniform
Time Scaling is subsumed by Time Warping. A composite
transformation that contains bothUTSandTW is identical
to the transformation withoutUTSas a component.

A family of time series can be reconstructed from the
values of features. AssumeF = fF 1; F 2; � � � ; Fng is a
feature set. Given a multivariate sequenceL = `1; � � � ; `m
where`i = fF 1i ; � � � ; Fni g, we define the quotient function� such that�(L) = ftime series segments j the landmarks ofs

have the same feature value asLg:
3x is used only when a user requires a pattern to appear at certain offset.

We found this happened only rarely, sox is not included in feature list.



y h v hr vr vhr pv
Shifting (SH) � � � � �
Uniform Amplitude Scaling (UAS) � � � �
Uniform Time Scaling (UTS) � � � � �
Uniform Bi-scaling (UBS) � � � �
Time Warping (TW) � � � �
Non-uniform Amplitude Scaling (NAS) � �

Table 2. Invariants of transformations

Abusing language slightly, we let�(F ) denote the fam-
ily of time series segments defined by values in the feature
setF of a sequence of landmarksL, whereL is clear from
context. By observing the dependency relation, we have the
following lemma.

Lemma 2 If F is a set of features, and ‘[’ denotes disjoint
union:

1. �(F [ fy; vg) = �(F [ fyg)
2. �(F [ fh; hrg) = �(F [ fhg)
3. �(F [ fv; vrg) = �(F [ fvg)
4. �(F [ fvhr; y; hg) = �(F [ fy; hg)
5. �(F [ fvhr; h; vg) = �(F [ fh; vg)
6. �(F [ fpv; yg) = �(F [ fyg)
The above lemma should be interpreted as a set of rewrite

rules that reduces the number of features. Having fewer
features to extract and manipulate leads to more efficient
execution.

Example 1 A user chooses to construct a landmark set
under Shifting, Uniform Time Scaling and Time Warping.
The feature set isfh; v; hr; vr; vhrg \ fy; v; hr; vr; pvg \fy; v; vr; pvg = fv; vrg. By Lemma 2, we can use onlyfvg
as the feature set.

Given a error tolerance(�time; �amp), the range of the
values of an invariantf is bounded, as shown in Figure 8.
We usef� andf+ to denote the lower bound and upper
bound off respectively. Table 3 shows the lower and upper
bounds of the features discussed in this paper.

These lower and upper bounds can be simplified if the
amplitudes of time series elements are always positive.

4. Querying landmark sequences

Unlike other set-oriented data representations, land-
marks are sequential. Based on this fact, landmark se-
quences are more like strings than multi-dimensional ob-
jects. Consequently, string indexing techniques are more
suitable than R-tree-like structures.
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Figure 8. Possible range of a landmark with
error tolerance (�time; �amp) (denoted (dt; da)
in the figure).

Our approach is to adapt spatial indexing structures for
query processing. A major difference between tempo-
ral data sequences and strings is that strings have a well-
defined, fixed alphabet. So, we “construct” an alphabet to
translate landmark sequences to strings. Indexing multi-
dimensional spatial object sequences (in this case, land-
mark sequences) is still a rarely discussed topic. For this
purpose, we propose theS2-Tree [16], an index structure
for subsequence matching of spatial objects. Due to space
limitations, we cannot explain the structure ofS2-Tree in
detail, but very briefly: theS2-Tree is a combination of
two tree structures: (i) the X-tree, which provides a clus-
tering method of spatial objects. TheS2-Tree converts the
spatial objects into binary encodings according to cluster-
ing. A partial order in the binary encodings reveals relation-
ships among the original spatial objects. (ii) The suffix tree,
which implements subsequence matching on sequences of
the binary encodings.

A dominant factor in query processing performance is
the size of the index. In Figure 9, we show the results of
some experiments. The data for experiment is the 10-year
closing price of stocks in the Standard & Poor 500 index.
We use the Java ‘float’ type for prices, so each occupies 4



f Lower Bound Upper Boundyi y�i = min((1� �amp)yi; (1 + �amp)yi) y+i = max((1� �amp)yi; (1 + �amp)yi)hi h�i = (1� �time)hi h+i = (1 + �time)hivi v�i = y�i � y+i�1 v+i = y+i � y�i�1hri hr�i = h�i+1=h+i hr+i = h+i+1=h�ivri vr�i = min(v�i+1=v�i ; v+i+1=v�i ; v�i+1=v+i ; v+i+1=v+i ) vr+i = max(v�i+1=v�i ; v+i+1=v�i ; v�i+1=v+i ; v+i+1=v+i )vhri vhr�i = min(v�i =h�i ; v�i =h+i ) vhr+i = max(v+i =h�i ; v+i =h+i )pvi pv�i = min(v+i =y+i ; v+i =y�i ; v�i =y+i ; v�i =y�i ) pv+i = max(v+i =y+i ; v+i =y�i ; v�i =y+i ; v�i =y�i )
Table 3. The lower and upper bounds of features
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Figure 9. Index size vs. database size

5. Conclusion

In this paper, we have proposed theLandmark Model ,
a new model for similarity-based pattern querying in time
series databases. TheLandmark Model integrates similar-
ity measurement, data representation and smoothing tech-
niques in a single framework. Conceptually, the model is
based on the fact that people recognize patterns in charts
by identifying important points. The idea of using land-
marks also turns out to have good mathematical properties.
Furthermore, landmarks can represent time series more ac-
curately with less information. In contrast, DFT-based tech-
niques require computing low-frequency coefficients for ev-
ery sliding window, which can result in longer processing
time.

We have introduced the Minimal Distance/Percentage
Principle (MDPP) as a smoothing method for theLand-
mark Model . The MDPP parameters are intuitive. We
have shown that the MDPP is scalable and linear-time com-
putable.

TheLandmark Model supports a very general similar-
ity model that permits similarity comparison modulo six
very natural transformations of time series. This is done

by comparing features that are invariant under these trans-
formations. The flexibility of this model stands in contrast
with the rigidness of similarity models that ignore artificial
transformations and/or a limited number of transformations.
For example, DFT-based techniques permit similarity com-
parison modulo Shifting (by ignoring the0-th coefficient)
and Uniform Amplitude Scaling (by storing normalized co-
efficients instead of their absolute values). However, it is
generally not easy for DFT-based techniques to incoperate
the other four transformations discussed in this paper.

We have proposed a two-dimensional dissimilarity mea-
surement function that considers time drift and amplitude
difference separately. The relation between error tolerance
and invariant features is also designed so that users only
need to work on setting the value of the error tolerance with-
out being distracted by the choice of invariants.

Summarizing, we feel theLandmark Model is intuitive
in several ways. First, it is designed so that every parame-
ter and error tolerance has an intuitive meaning. The sim-
ilarity model is defined relative to transformations which
capture six natural ways that people feel two time series
‘match’. Finally, theLandmark Model does not require
some certain assumptions, such as that several Discrete
Fourier Transform coefficients is a good model for time se-
ries segments, or that similarity based on Euclidean distance
is reasonable.
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Appendix

The concepts introduced in this appendix are not needed in
query processing. Instead, they only serve for demonstrat-
ing the quality of the landmark model. The similarity model
and the data representation introduced in this paper are mu-
tually dependent, i.e. the original time series are identical to
their landmark representations if measured in the landmark
similarity model. To avoid this self-reference in showing
the accuracy of the landmark model, it is necessary to pro-
vide a way to reconstruct a time series from its landmark
representation (like inverting the DFT from a few coeffi-
cients). However, we again need a good point-wise similar-
ity measurement. As remarked in Section 1, the Euclidean
distance has many undesirable properties, so we propose a
new similarity measurement.

A. Reconstructing time teries tegments from
landmarks

Given two first-order landmarks(x1; y1) and (x2; y2),
we use a cubic functionf(x) = ax3 + bx2 + 
x+ d

to interpolate between two landmarks. Since landmarks are
extreme points, we have the curvef(x1) = y1 f(x2) = y2 f 0(x1) = 0 f 0(x2) = 0

To obtain the coefficients, letX = 2666664 x1 3 x1 2 x1 1x2 3 x2 2 x2 13 x1 2 2 x1 1 03 x2 2 2 x2 1 0
3777775 C = 2664 ab
d 3775 Y = 2664 y1y200 3775

and solveXC = Y . We obtaina = �2 y2 � y1x2 3 + 3 x2 x1 2 � x1 3 � 3 x1 x2 2b = 3 (y2 � y1 ) (x2 + x1 )x2 3 + 3 x2 x1 2 � x1 3 � 3 x1 x2 2 ;
 = �6 x1 (y2 � y1 ) x2x2 3 + 3 x2 x1 2 � x1 3 � 3 x1 x2 2d = �x1 3y2 + 3 x1 2y2 x2 + y1 x2 3 � 3 y1 x1 x2 2x2 3 + 3 x2 x1 2 � x1 3 � 3 x1 x2 2
B. Normalized error

Definition 3 Given two sequences of lengthn, X =hxi; � � � ; xni and Y = hyi; � � � ; yni, the normalized dis-
tance function� is defined by:�(X;Y ) = 1n nXi=1 jxi � yij(xi + yi)=2

The normalized distance function has three important
properties:

1. Symmetric:�(X;Y ) = �(Y;X).
2. Invariable to amplitude scale: �(X;Y ) =�(kX; kY ) wherek 6= 0, kX = hkxi; � � � ; kxni andkY = hkyi; � � � ; kyni.
3. Non-accumulative: Assume� is the concatenation op-

erator, X1; X2; Y1 and Y2 are landmark sequences
where jX1j = jY1j and jX2j = jY2j, then�(X1 �X2; Y1 � Y2) � max(�(X1; Y1);�(X2; Y2)).


