Byzantine Replication Under Attack *f

Yair Amir!, Brian Coas, Jonathan Kirsch John Lané
! Johns Hopkins University, Baltimore, MBQyairamir, jak, johnlang@cs.jhu.edu
2 Telcordia Technologies, Piscataway, NJ. coan@resealabrdia.com

Technical Report CNDS-2008-1 - March 2008
http://www.dsn.jhu.edu

Abstract requiring strong consistency semantics are usually degign
to meet safety in all executions, while guaranteeing ligsne
Existing Byzantine-resilient replication protocols sy only during periods of sufficient synchrony and connectiv-
two standard correctness criteria, safety and livenestén ity [13] or in a probabilistic sense [5, 23].
presence of Byzantine faults. In practice, however, faulty —Designers of practical Byzantine-resilient replication
processors can, in some protocols, significantly degradesystems recognize that real systems are not completely
performance by causing the system to make progress alsynchronous. Rather, these systems exhibit extended peri
an extremely slow rate. While “correct” in the traditional ods of stability (synchrony), possibly interspersed wigi p
sense, systems vulnerable to such performance degradationods of instability. Realistic Byzantine-resilient regltion
are of limited practical use in adversarial environments. systems generally guarantee liveness in a sufficientlyestab
This paper argues that techniques for mitigating such subset of the set of all asynchronous executions. In this pa-
performance attacks are needed to bridge this “practigalit per we observe that during stable periods, the system can
gap” for intrusion-tolerant replication systems. We prggo ~ satisfy much stronger performance guarantees. Thus, when
a new performance-oriented correctness criterion, and we the network is stable, there is a potential gap in the type
show how failure to meet this criterion can lead to perfor- of performance that is promised by existing protocols,(i.e.
mance degradation. We present a new Byzantine replicationeventual execution of each update) and the type of perfor-
protocol that achieves the criterion and evaluate its perfo mance that is attainable.

mance in fault-free configurations and when under attack. In Byzantine environments, faulty processors can exploit
this gap to degrade system performance to a level far be-
Keywords: Byzantine, replication, fault tolerance, low what would be achievable with only correct proces-
performance, attacks sors. Specifically, a small number of faulty processors can
cause the system to make progress at an extremely slow
1 Introduction rate. While “correct” in the traditional sense (both safety

and liveness are met), systems vulnerable to such perfor-
mance degradation are of limited practical use in adveakari

Existing Byzantine-resilient state machine replication onvironments.

(SMR) protocols satisfy two standard correctness criteria We experienced this problem first hand during a red-

in the presence of Byzantine faults_: safety and I|ve_ness. eam experiment conducted on our Steward system [4]. Al-
Safety means that two servers remain consistent replicas o hough the system survived all of the tests according to

one another, while liveness means that each update is €X&he metrics of safety and liveness, we observed that it was

cuted eventually. Since no asynchronous Byzantine a9r€€515wed down to twenty percent of its potential performance

ment protocol can always be both safe and live [14], systems;, o experiment. After analyzing the attack, we found

*This publication was supported by grants 0430271 and 0TL&6m that we cou_Id in fact _SIOW the system down to roughly one
the National Science Foundation. Its contents are solelyehponsibility percent of its potential performance. Thus, our provably
of the authors and do not necessarily represent the offi@al of Johns correct system, which achieves high performance in fault-

Hopkins University or the National Science Foundation. - : : :
tThis is the extended version of the paper published in the8 200 free configurations, could be made effectively unusable in

IEEE/IFIP International Conference on Dependable Systants Net- practice under a relative_ly simplg attack. This eXpe_riencg
works [3]. led us to conclude that liveness is a necessary but insuffi-

cient correctness criterion for achieving high performeanc non-leader servers to aggressively monitor the leader’s pe
Byzantine replication under attack. This paper argues thatformance, and (2) Non-leader servers compute a threshold

newperformance-orientedriteria are needed. level of acceptable performance, which is a function of cur-
Preventing the type of performance degradation experi-rent network latencies, against which they judge the leader
enced by Steward requires addressing what we @&yizan- Prime meets a new performance-oriented correctness crite-

tine performance failurePrevious work focused on Byzan- fion, BOUNDED-DELAY, which makes a stronger guaran-
tine failures in the value domain (where a faulty processor tee than traditional liveness criteria. We present expenim
tries to subvert the protocol by sending incorrect or con- tal results showing that Prime performs competitively with
flicting messages) and the time domain (where message8FT in fault-free configurations and performs an order of
from a faulty processor do not arrive within protocol time- magnitude better when under attack. Our results show that
outs, if at all). Processors exhibiting performance faityr ~ the performance of Prime when under attack is within a rea-
however, send correct messages slowly but without trigger-sonable factor of its fault-free performance.

ing protocol timeouts; they are thus correct in both of the ~ The remainder of this paper is presented as follows. Sec-
traditional domains, despite having the potential to gigni tion 2 presents our system model and describes the service
icantly degrade performance. Performance failures haveproperties provided by our system. Section 3 describes the
been considered in benign environments [11, 25]. To the Vulnerabilities of existing leader-based protocols tofqer
best of our knowledge, we are the first to (1) propose a use-mance degradation under attack, using BFT as a case study.
ful performance-oriented metric to evaluate Byzantine pro We present the Prime protocol in Section 4, and we analyze

tocols and (2) present a SMR protocol that performs well its properties in Section 5. Section 6 presents experirhenta
according to this metric. results for our new system. Section 7 details related work,

Byzantine protocols whose progress is driven by mes- 2nd Section 8 concludes the paper.
sages from a large number of correct processors (e.g.,
[5,22]) are less vulnerable to performance degradation due2 System Model and Service Properties
to performance failures. The voting in such protocols masks
performance failures, in addition to value and timing fail- We consider a system consisting df servers, which
ures, because no collection of faulty processors can ptevencommunicate by passing messages. Each server is uniquely
the correct processors from moving forward. For efficiency, identified from the sefR = {1,2,...,N}. We assume
however, other protocols rely on select processors to per-a Byzantine fault model. Servers are eittenrect or
form certain tasks correctly and in a timely manner, reduc- faulty; correct servers follow the protocol specification,
ing the number of messages that must be sent in the comwhile faulty servers can deviate from the protocol speci-
mon case. These protocols typically use cryptographistool fication arbitrarily. We employ digital signatures, and we
and timeouts to restrict the adversary in the value and timemake use of a cryptographic hash function to compute mes-
domains, respectively, but they do not address performancgage digests. We denote a messagsigned by server as

failures. (m),,, and we denote a digest of as D¢n). We assume
In this paper we focus on this latter class of Byzantine that all adversaries, including faulty servers, are comput
SMR protocols, which we refer to deader-basegroto- tionally bounded such that they cannot subvert these cryp-

cols. These protocols (e.g., [2, 4, 8, 16, 18, 21, 29]) rely tographic mechanisms.
on a leader to coordinate the global ordering and are thus The consistency of our new protocol, Prime, is given in
vulnerable to performance degradation caused by a slowthe following two properties:
leader. The problem is magnified in environments (such as
wide-area networks) where it is difficult to predict the type DEF_'}’:“T'ON 2.1 sAFETY: If two correct servers execute
of performance that should be expected of the leader. Wethei"" update, then these updates are identical.
demonstrate this vulnerability through analysis and exper
mental evaluation of BFT [8], the first leader-based Byzan-
tine fault-tolerant SMR protocol to achieve practical perf
mance in fault-free executions. Prime guarantees safety and validity in all executions,
By applying the understanding gained from our expe- including those in which the network is asynchronous and
rience with BFT, we developed a new Byzantine fault- may drop or duplicate messages. Like existing leader-based
tolerant SMR protocol, Prime (Performance-oriented Repli Byzantine replication protocols, Prime guarantees ligane
cation In Malicious Environments), resilient to perforrsan only in executions in which the network eventually meets
degradation under attack. Prime has two key properties: (1)certain stability conditions, which we now state. In what
The resources required by the leader for global ordering arefollows, K1, is a known network-specific constant ac-
bounded and independent of system throughput, enablingcounting for latency variability.

DEFINITION 2.2 VALIDITY : Only an update that was pro-
posed by a client may be executed.

DEFINITION 2.3 PRIME-STABILITY: There is a time after 3 Case Study: BFT Under Attack
which the following condition holds for a set of at least

2f + 1correct servers (the stable servers): In this section we present a theoretical analysis of BFT
[8], a leader-based Byzantine SMR protocol, when under
attack. We chose BFT because (1) it is the standard proto-
col to which other Byzantine protocols are often compared,
(2) many of the attacks that can be applied to BFT (and the
corresponding lessons learned) also apply to other leader-
based protocols, and (3) its implementation was publicly
available. BFT achieves high throughputs in fault-free-con
figurations or when servers exhibit only benign faults. We

e For each pair of stable servers r and s, there exists a
value MinLat(r, s), unknown to the servers, such that
if r sends a message to s, it will arrive with delay ,,
where MinLat(r, s) < A, ¢ < Min_Lat(r, S)* Krqz.

In those executions in whichRPME-STABILITY is met,
Prime guarantees the following liveness property:

DEFINITION 2.4 PRIME-LIVENESS:. If a stable server ini- first provide background on BFT and then describe two at-
tiates an update, all stable servers will eventually execut tacks that can be used to significantly degrade its perfor-
the update. mance when under attack. We present experimental results

validating the analysis in Section 6.

PRIME-LIVENESS is similar to the liveness guarantees BFT assigns a total order to client updates. The proto-
provided by existing leader-based protocols (except thatcol requires3f + 1 servers, wherg is the maximum num-
PRIME-LIVENESS contains a stronger degree of stability). per of servers that may be Byzantine. An elected leader
While it is critical to guarantee that in those executiorat th coordinates the protoc0| by assigning sequence numbers to
are sufficiently stable each update is eventually executedypdates. If a server suspects that the leader has failed, it
such liveness properties do not guarantee how quickly theyotes to replace it. Whef + 1 servers vote to replace
updates are executed when the network is stable. Systhe |eader, a view change occurs, in which a new leader is
tems that solely meet liveness thus provide a very weakelected and servers collect information regarding pending

performance-related guarantee. updates so that progress can safely resume in a new view.
For this reason, in those executions in whieRIME- A client sends its updates directly to the leader. The

STABILITY is met, Prime also pI‘OVideS a Stronger perfor- leader assigns a sequence number to the update and pro-

mance guarantee, which we cabUNDED-DELAY: poses the assignment to the rest of the servers. It sends a

PRE-PREPAREMessage, which contains the view number,
the assigned sequence number, and the update itself. Upon
receiving theeRE-PREPARE a non-leader server accepts the
proposed assignment by broadcastirgRr& PAREMessage.
Prime achieveBOUNDED-DELAY in those executionsin | '€ PREPAREMessage contains the view number, the as-
whichPRIME-STABILITY is met, assuming the systemisnot Signed sequence number, and a digest of the update. When
overloaded (i.e., given load beyond its maximum through- & Server collects there-PREPAREaNd2f corresponding

put) and when correct servers have sufficient bandwidth PREPAREMESsages, it broadcastcamMmiT message. A

with which to communicate. Indeed, no system (even in S€rver globally orders the update when it collezfs+ 1

benign environments) can provide latency guarantees wherf OMMIT messages. Each server executes globally ordered

these conditions are not met due to necessary queuing dedPdates according to sequence number. A server sends a

lays. Our current protocol requires knowledge of this mini- "€PIY t0 the client after executing the update.

mal level of bandwidth to ensure that these assumptions are

met. We believe that adaptively setting the bandwidth con-3.1 Attack 1: Pre-Prepare Delay

sumed by correct servers is an important open problem for

Byzantine-resilient systems. Section 5 provides an aislys A malicious leader can introduce latency into the global

of the bound provided by Prime. ordering path simply by waiting some amount of time af-
We remark that resource exhaustion denial of service at-ter receiving an update before sending it iPRE-PREPARE

tacks may causeRIME-STABILITY to be violated for the message.The amount of delay a leader can add without be-

duration of the attack. However, such attacks fundamen-ing detected as faulty is dependent on (1) the way in which

tally differ from the attacks that are the focus of this paper non-leaders place timeouts on updates they have not yet ex-

where malicious leaders can slow down the system withoutecuted and (2) the duration of these timeouts.

triggering defense mechanisms (see Section 3). Handling A malicious leader can ignore updates sent directly by

resource exhaustion attacks is a difficult problem that-is or clients. If a client’s timeout expires before receiving plye

thogonal and complementary to the solution strategies con-o its update, it broadcasts the update to all servers, which

sidered in this paper. forward the update to the leader. Each non-leader server

DEFINITION 2.5 BOUNDED-DELAY: There exists a time
after which the update latency for any update initiated by
a stable server is upper-bounded.

maintains a FIFO queue of pending updates (i.e., those up-each view change. If the adversary stops the attack when a
dates it has forwarded to the leader but not yet executed)malicious leader is in power, then that leader will be able to
A server places a timeout on the execution of the first up- slow the system down to a throughput of rougffily- 1 up-

date in its queue; that is, it expects to execute the updatedates pefl’O, whereT O is potentially very large, using the
within the timeout period. If the timeout expires, the serve attack described in the previous section. This vulnergbili
suspects the leader is faulty and votes to remove it fromstems from the inability of BFT to reduce the timeout and
power. When a server executes the first update in the queueadapt to the network conditions after the system stabilizes

it restarts the timer if the queue is not empty. Note that a

server does not stop the timer if it executes a pending up-4 The Prime Protocol

date that is not the first in the queue. The duration of the

timeout is dependent on its initial value (which is imple-
. ' . . In this section we present Prime, a new Byzantine fault-
mentation and configuration dependent) and the history of X o . :
tolerant state machine replication protocol designed te mi

past view changes. Servers double the value of their timeout h f attacks d ibed in Section 3. Pri
each time a view change occurs. The specification of BFTIga?tet © types of attac Sl escribed in ecflorll - rrime re-
does not provide a mechanism for reducing timeout values.qUIreS3f + 1 servers to tolerat¢ Byzantine faults.
BFTS queueing mechgmsm ensures fairness by guarany 1 preoo Ordering Protocol
teeing that each update is eventually ordered. However, it
also allows the leader to significantly delay the ordering of
an update without being replaced. To stay in power, the
leader must prevernft+ 1 correct servers from voting to re-
place it. Thus, assuming a timeout valuer@, a malicious
leader can use the following attack: (1) Choose aSsef
f + 1 correct servers, (2) For each serveg S, maintain
a FIFO queue of the updates forwarded/hyand (3) For
each such queue, sentPBEPREPAREcCONtaining the first
update on the queue evelD — ¢ time units. This guar-
antees that th¢ + 1 correct servers ity execute the first
update on their queue each timeout period. If these update
are all different, the fastest the leader would need to intro
duce updates is at a rate pf- 1 per timeout period. In the
worst case, th¢ + 1 servers would have identical queues,
and the leader could introduce one update per timeout.
This attack exploits the fact that non-leader servers place
timeouts only on the first update in their queues. To under-
stand the ramifications of placing a timeoutahpending
updates, consider the following scenario: Non-leadereserv
s simultaneously initiatea updates. If serves sets a time-
out on alln updates, theawill suspect the leader if the sys-
tem fails to execute updates per timeout period. Since the
system has a maximal throughputpiis sufficiently large,
s will suspect a correct leader. The fundamental problem is
that correct servers have no way to assess the rate at whic
a correct leader can coordinate global ordering.

Prime uses a rotating coordinator protocol to assign a
total order to client updates. The servers execute the up-
dates according to this total order, and they thus remain
replicas of one another. Prime establishes the total order
in two phases. In the first phase, each server disseminates
its updates to the other servers and coordinates an agree-
ment protocol, whictpreordersthose updates that it orig-
inated. Each preordering agreement protocol coordinated
by a different server operates independently and in paral-
#el. A preordered updates, is bound to greorder identi-

ier, (o,1), whereu is theith update preordered by server
Thus, the preordering phase enables correct servers to con-
sistently refer to updates using their preorder identifigrs
the second phase, an elected leader coordinates a global or-
dering protocol, which establishes a total order on batches
of preordered updates. The final total order on updates is
achieved by deterministically assigning an order to the up-
dates in each batch based on their preorder identifiers.

Preordering Phases When originating serven re-
ceives update: from one of its clients, it sends @0
REQUEST, seq, u, 0),, messageyeq, to all servers, where
seq is a local sequence number thatincrements each
time it sends a newPO-REQUEST We refer to this
tij)caI sequence number aspaeorder sequence number

pon receivingreq, each correct servei, sends &Po-
ACK, seq, D(u), o,1),, message to all other serverg ifias
not previously received ®0-REQUEST from o with se-
3.2 Attack 2: Timeout Manipulation quence numbeteq. A set consisting ofeq and2f match-
ing PO-ACK messages constitutes paeorder-certificate

One of the main benefits of BFT is that it ensures safety which is proof that the correct servers agree that preorder
regardless of synchrony assumptions. The authors justifyidentifier (o,seq) is uniquely bound tax.
the need for this property by noting that denial of service Each server;, maintains a vector, P@ru[], where
attacks can be used by a malicious adversary to violate tim-PO.Aru[o] contains the maximum sequence numbey,
ing assumptions. While a DoS attack cannot impact safety,such thati has preorder-certificates for all preordered up-
it can be used to increase the timeout value used to detectlates with identifiersdj), with 5 < n. Each server,

a faulty leader. During the attack, the timeout doubles with 4, periodically broadcasts & 0-ARU, vec,i),, message,

3

1. Form; = (PO-ARU, vec1, i), andmsa = (PO-ARU,vecz, i)o,; , WE
say that:
e mj is at least as up-to-date aso when
(V5 € R)[vecr[j] > veca[5]].

e m; ismore up-to-date thamsg whenm; is at least as up to da
asmo A (3j € R)[vecy[7] > veca[7]].

0]

e mj andme areconsistenivhenm; is at least as up to date as

ma, Ofr my is at least as up to date as; .

2. For originating serves and preorder sequence numperseq
PreorderProof Exist§o, po_seq (PRE-PREPARE**,pm,l),,) is true
iff:

o |{i:i € R Apml[i]lo] > po_seq}| > 2f +1
3. M(pp = (PREPREPARE %, s€q, *, *)o,) =
{(0,s) : 0 € R N s € NA PreorderProofExistgo,s,pp) }

4. B is a set of blacklisted servers.

5. Forpp = (PRE-PREPARE *, *, Ppp, *)o, and
pm = (PROOFMATRIX , ppm, *) o, , Wherep,, andp,., denote
proof matrices, we say that:

e pp coverspm if Vi € R — B, pppli] is at least as up-to-date &
ppm[d]-

6. Preordered update,6) is eligible (for execution) iff3 a globally
orderedPRE-PREPARE pp, such thatd,s) € M(pp)

n

Figure 1: Definitions and terminology used by the Prime andgprotocol.

wherevec is its local PQAru vector. ThePO-ARU message

PO
ARU

PO PO

PRE
REQUEST ACK PREPARE PREPARE COMMIT

—

L = Leader
O = Originator

— Aggregation
Delay

(@]

No Attack (A)

PO
ARU

PO
ACK

PROOF
MATRIX

PRE

PO
REQUEST PREPARE PREPARE COMMIT
L

Attack (B)

Figure 2: Common case operation of Primfe£ 1). Part A shows the
messages and protocol rounds when the leader is corredt.BRdiows
the delay added by a malicious leader that performs well gimaa stay

in power. The malicious leader ignore®-ARU messages and sends its
PRE-PREPAREO only one correct server.

(Ty,Ts,...). Intuitively, globally ordering @RE-PREPARE
message expands the set of preordered updates that are el-
igible for execution. LetM map a globally orderedrRe
PREPARE pp, to a set of preordered updated, where P
contains those preordered updates, s, for which Pre-
order_Proof_Existgo, s, pp) is true (see Figure 1). Lt be
a function that lexicographically orders the elementg of
by their preorder identifiers. Then the final total ordér,
on updates is obtained by = L(M (1T1)) || L(M(Tz) —
M(Ty)) || L(M(T3) — M(T%)) ..., where|| denotes con-
catenation and- denotes set difference.

Prime guarantees that for all pairs of globally ordered
PRE-PREPARE messages(PRE-PREPARE x, seq, pim, *) .

serves as a cumulative acknowledgement for preordered upand (PRE-PREPARE *, seq, pm’, %), , Whereseq > seq/,

dates. Given twaO-ARU messagesy; andms, Figure
1 defines what it means fon; to be at least as up-to-
date asms, more up-to-datéhanms, andconsistenwith

mso. Each server stores the most up-to-date, consistent

(Vi € R)[pml[i] is at least as up-to-date gg.’'[i]] A (pm #
pm’). This constraint ensures that Prime’s global ordering
phase correctly establishes a global order on preordered up
dates. The correct servers enforce this guarantee by per-

ARU message received from each other server in a vectorforming a validity check on eachRE-PREPARE message

Last PO Aru[], indexed by server identifier. We describe
how we blacklist faulty servers that serd-ARU messages

before sending a correspondingEPAREMeESSage.
Part A of Figure 2 summarizes the path of an update,

that are not consistent when we present the Suspect-Leadefrough the system in the fault-free case. The update is pre-

protocol, below.
Global Ordering Phase: Prime’s global ordering phase

ordered in two rounds, after which its preordering is cumu-
latively acknowledged iro-ARU messages. When the net-

is similar to BFT and uses three message rounds (see Secowork is stable, faulty servers cannot delay the preordering

tion 3). While BFT establishes a total order GRE

u because correct servers need only waitHOrACK mes-

PREPAREMessages containing updates, Prime’s global or- sages from each other to collect a preorder-certificate for

dering phase establishes a total order RRE-PREPARE
messages containirgoof matrices Each proof matrix is
a vector ofPO-ARU messages. A correct leadér,peri-
odically sends aPRE-PREPARE v, seq, pm, 1), message,
wherew is the current view numbegeq is a global se-
guence number, angn is the leader’s LasPO_Aru vector
(which is a proof matrix).pm/[o] is either aPo-ARU mes-
sage signed by serveror a null vector of lengthR|, in-
dicating thato has not yet cumulatively acknowledged any
preorder-certificates.

We now explain how a server obtains a total order on
updates from the totally ordered streamrE-PREPARE
messages. Call this streamrE-PREPAREMESSsages =

In turn, the faulty servers cannot delay how quickly the pre-
ordering ofu is cumulatively acknowledged in tlmeo-ARU
messages of correct servers. A correct leader sergsEa
PREPARE pp, Whose proof matrix includes thes®-ARU
messages: will be executed whepp is globally ordered.
Reconciliation: In Prime, a server sendREPAREand
COMMIT messages for BRE-PREPAREMeSSagepp, even
if it has not received those updates that will become elgibl
for execution wherpp is globally ordered. Consequently,
although Prime guarantees that at lefast1 correct servers
receive each eligible update, it makes no guarantees regard
ing whichcorrect servers have received a particular eligible
update. Malicious servers can attempt to exploit this behav

ior to block execution. /* Reconciliation Procedure run at server i =/
Reconci l e(seq)

To understand how this is possible, note that a correct| Al. pp « (PREPREPARE *, sed, pm |)o,
~ . _| A2. pp’ <« (PREPREPARE *,seq-1,*,1"),,
server can only execute the.gap free prefix ofthgtotally OF-| %5 For each PO identifier (o.5) in L(Mpp) - Mpp'))
dered eligible updates that it possesses. Each time a malir 4. ¢ — o

cious server originates and preorders updaiecan inten- ALY o 1j]t [OO]N > s
I i AT. c«—c+1
thn_ally fail to sendu to f correct servers. I, becomes " T ande <ot o+ 1)
eligible, these servers will block until they recoverNote D req = (PCé—REQUESTES, *dogﬁﬁ’
: ol .] . t «— _ _| t ,
that, without a reconciliation mechanism, each malicious | a1 Por r —1 to N coderar (rea. e)
H Al2. if Last_.POAru[r][o] < s
server can block execution gtcorrect servers. Therefore, | /% SeND to sotvar & '
when f > 3, all correct servers can be blocked, because| At4. (RECONCILIATION, 0, S, €, part, i),

the number of servers that can be blockgd)(exceeds
the number of correct server8f(+ 1). In order to pre- Figure 3: Reconciliation Procedure, used to send_ erasudeecreconcili-
vent these kinds of attacks, Prime incorporates a bandwidth ﬁg:u?:;fggg%{; - 10?6;3:13;)(?;;?;:@3 ip‘gﬁ";’g'_‘::ﬂa(ﬁ]goggcg Z‘Zr_]d
efficient and timely update reconciliation mechanism. To- fined in Figure 1. L (line A3) is a function that lexicographlly orders a
gether, Prime’s preordering phase and its reconciliation p ~ set of preordered updates.

cedure provide a reliable broadcast service; if upddbe-

comes eligible for execution, reconciliation guarantées t f(2f+1)su/(f+1) < (2f +1)s,. During preordering, an
all correct servers will receive. Pseudocode for Prime’s Update is sent to betweerf and3 f servers, which requires
reconciliation procedure is contained in Figure 3. atleast2fs,. Therefore, reconciliation uses approximately

Conceptually, the reconciliation procedure operates on € Same amount of aggregate bandwidth as update dissem-

the ordered sequence of updates defined by the total ordemat'on: .Nc.>te that a single server.needs to send at most one
U=0U,||Us |.... Recall that each; is a sequence of reconciliation part per update, which guaranteg_sthaaatle
preordered updates that became eligible for execution with/ T 1 correct servers share the cost of reconciliation.

the global ordering opp;, the PREPREPARE(gI0bally or-

dered with sequence numbeiFrom the wayU; is created, 4.2 Detecting Malicious Leaders

for each preordered update, s) in U;, there exists a set,

R, s, of at leas2f + 1 servers whos@0-ARU messages A malicious leader can mount two types of performance

cumulatively acknowledge(b, s) in pp;. Prime’s recon- attacks against Prime. First, it can propose a global order-
ciliation procedure operates by havig + 1 servers in ing on preordered updates slowly by send#REPREPARE

R, s send erasure-coded parts of i@ REQUESTCONtaIN- messages at a slow rate. Some strategies for the leader to
ing (o,s) to those servers that have not cumulatively ac- sjow down the sending of iBRE-PREPARES are illustrated
knowledged preordering it. Note thatR, | > 2f+1,the iy part B of Figure 2. Prime uses tis)SPECTLEADER
setof2f +1 senders is chosen deterministically. Sirfasf protocol, described below, to detect slow leaders. Second,
the senders may be faulty, Prime uses an MIJS(1, f +1) even if it sends timelyPRE-PREPARE messages, a mali-
maximum distance separable erasure encoding [6], suchjous leader can intentionally sendP®E-PREPARE pp,
that a server needs to receife- 1 out of2f +1reconcilia- \hose proof matrix does not contain the most up-to-date
tion messages to decode the associaB®EQUEST This po.aru messages that it has received. This can prevent
guarantees that a correct server will receive enough marts t preordered updates that would have become eligible for ex-
be able to decode theo-REQUEST ecution wherpp is globally ordered from becoming eligi-
To improve efficiency, each server runs the reconcilia- ble. Defending against these two performance attacks al-
tion procedure speculatively; instead of waiting foprRE- lows Prime to meeBOUNDED-DELAY (see Definition 2.5).

PREPAREMeSSsagepp, to be globally ordered, each server Enforcing up-to-date Pre-Prepare messages. To sim-
runs Reconcile upon first receiving. This proactive ap- plify this section, we first assume that atb-ARU messages
proach allows updates to be recovered in parallel with the from the same server are consistent. The section on black-
remainder of the global ordering protocol. listing (below) describes subtle issues regardimgaru
Since a correct server will not send a reconciliation mes- messages that are not consistent. Each non-leader server,
sage unless at lea8ff + 1 servers have cumulatively ac- i, periodically sends & ROOFMATRIX , pm, i),, Message
knowledged the correspondirg-REQUESTmMessage, rec- to the leader, whergm is i's LastPO.Aru[]. Server: ex-
onciliation messages for a given update are sent to a maxipects the leader to incluge-ARU messages that are at least
mum of f servers. Assuming an update size pfthe2 f+1 as up-to-date as those jmn in its nextPREPREPARE TO
erasure-coded parts have a total siz€&gf+ 1)s,,/(f + 1). understand why a non-leader server is justified in this ex-
Since these parts are sent to at mpservers, the amountof pectation, note that the leader can simply adopt any of the
reconciliation data sent per update across all links is &t mo PO-ARU messages ipm that are more up-to-date than what

it currently has in its LasPO_Arul[]. Thus, a correct leader
will send, in its nexPRE-PREPARE a proof matrix withpo-
ARU messages that are at least as up-to-date as thpse in
We say that such arRePREPAREcCOvVerspm (see Figure
1). A critical property of Prime, which differs from existin

Intuitively, when testing if #REEPREPAREMESSage covers
a PROOFMATRIX message, correct servers are able to
ignore inconsistento-ARU messages before they cause a
correct leader to appear malicious.

Pre-Prepare Flooding: Prime’s mechanism for detect-

leader-based solutions, is that the leader requires a leound ing malicious leaders requires a simple addition to the
amount of bandwidth and computational resources, inde-global ordering phase to ensure timely global ordering.
pendent of system throughput, to perform its role as leader;Upon receiving @RE-PREPARE pp, a correct server broad-

the size of ®RE-PREPARES dependent only on the number
of servers, and a singlkeRE-PREPARECanN propose a global
ordering on an arbitrary number of preordered updates.

Blacklisting Servers. A correct server always sends
consistenfro-ARU messages. Therefore, a pair of incon-

casts it. This guarantees that all correct servers reggive
within one round from the time that the first correct server
receives it, at which point no faulty server can delay the
correct servers from globally ordering. FloodingPRE
PREPARE forces a malicious leader to delay sendiRE

sistentPo-ARU messages (i.e., two messages that are notPREPARES t0 all correct servers in order to add unbounded

consistent) from server constitutes proof that is mali-
cious. A correct server that collects this proof adds a
set of blacklisted server$, and broadcasts the proof, caus-
ing all correct servers to blacklist As shown in Figure 1,
when we test if ?REEPREPAREMESSage COVersrROOF
MATRIX message, we do not compa#e-ARU messages
from blacklisted servers. This is important because, irprd
to stay in power, a correct leader may need to serdm
PREPAREMessage that covers aiROOFMATRIX messages
that it has received. If the leader receiFFBOOFMATRIX
messages that contain inconsisteotARU messages from
serverr, then it may need to include one of these irPike
PREPARE By definition, neither inconsisteo-ARU is at

delay to the global ordering phase. In practice, the rate at
which the leader sendsREPREPARE can be configured so
that this flooding requires a small bandwidth overhead.
Suspect-Leader Protocol: Since the leader requires
bounded resources to perform its role as leader, if the net-
work is stable, the leader can be expected to send up-to-
datePRE-PREPARE in a timely manner. To leverage this,
we require a mechanism whereby non-leader servers can
(1) dynamically determine how fast a timely leader should
perform, (2) monitor the performance of the current leader,
and (3) suspect the leader if it is not performing fast enough
Each time a server sendsP&0OOFMATRIX messagepm,
it computes the delay between sending and receiving a

least as up-to-date as the other, and therefore, the leager m PRE-PREPAREcoveringpm. We call this delay theurn-

fail to include the most up-to-dateo>-ARU message from
in its PREEPREPARE

around-time(abbreviated TAT) provided by the leader. The
goal of SUSPECTLEADER s to force any leader that stays in

Without a blacklisting mechanism, this can cause a cor- POWer to provide a timely TAT to at least one correct server.

rect serverg, to suspect a correct leadéras follows: Let
my andmsy be two inconsisterRo-ARU messages from the
same malicious server. Suppose that:/(fBceivesn; in a
PROOFMATRIX messageypm, frome, (2) [receivesns in
aPROOFMATRIX from a server other thaty and (3) then,
lincludesms (instead ofm;) in PREPREPAREpp. When

serverc receivep, it assesses whether the leader has per-

formed as expected by checkingif coverspm. Sincepp
does not covepm, ¢ will view the leader as performing

Each correct servet, locally decides whether to suspect
the leader by computing two valueSAT acceptableand
TAT.leader TAT_acceptable is a standard against which
serveri judges the current leader, and TAdader is a mea-
sure of the current leader’s performance. Seiv&rspects
the leader if TATleader> TAT _acceptable.

TAT _acceptable and TATeader are computed so that,
when PRIME-STABILITY holds, SUSPECFTLEADER meets
two key properties.L* is the maximum latency between

worse than it should. From the way that the Suspect-Leader@ny two correct servers after the network stabilizag, is
protocol works (described below), this can cause a correcta value greater than the maximum time between a correct

leader to be suspected when it should not be.

Our blacklisting mechanism mitigates attacks in
which a malicious server sends inconsisterD-
ARU messages. Before a correct server checks
if (PREPREPARE %, %, ppp, %), ~ COVers (PROOF

MATRIX , Ppm, *)»., Where p,, and p,,, denote proof
matrices, it first performs the following procedure: for
each server in R — B, if p,,[i] is not consistent with
ppm[i], addi to B. This procedure blacklists any servers
whose inconsisterro-ARU messages may have otherwise

server sending successiP@EPREPAREMessages.K ¢
(see Section 2) accounts for latency variability. et=
Kra:L* + Apy,. We now state the properties.

PROPERTY4.1 Any server that retains a role as leader
must provide a turn-around time to at least one correct
server that is no more thaB.

PROPERTY4.2 There exists a set of at leagt+ 1 correct
servers (the permanent leaders) that will not be suspected

caused the correct server to falsely suspect a correctrleadeby any correct server if elected leader.

/= Initialization, run at start of new view */

Al. For i =1 to N, TATs.If_Leader[i] « oo
A2, For i =1 to N, TAT.Leader UBs[i] « oo
A3. For i =1 to N, Reported.TATs[i] < O
Ad. pingseq «— O

/* RTT Measurenent Task, run at server i x/

Bl. Periodically:

B2. BROADCAST: (RTT-PING view, pingseq, i),
B3. pi ng_seq++

B4. Upon receiving (RTT-PING view, seq, j)U].:
B5. SEND to server j: (RTT-PONG Vview, seq, i)ai
B6. Upon receiving (RTT-PONG, view, seq, j)aj:
B7. rtt «— Measured RTT for pong nessage

B8. SEND to server j: (RTT-MEASURE, view, rtt, i)c,i
B9. Upon receiving (RTT- MEASURE, view, rtt, j)(,j:
B10. t «— rtt * Kra+ App

B11l. if t < TATs.If _Leader[j]

B12. TATs_I f Leader[j] «— t

/» TAT_Leader Upper Bound Task, run at server i =/
Cl. Periodically:

c2 Sort ed_-TATs « SORT- ASCENDI NG TATs_I f _Leader[]
C3. a — Sorted.TATs[2f +1]

CA. BROADCAST: (TAT-UB, view, «, 1o,

C5. Upon receiving (TAT-UB, view, tat_ub, j)(,j:

C6 if tat_ub < TAT_Leader _UBs|[j]

c7 TAT_Leader UBs[j] « tat_ub

TAT Measurenent Task, run at server i */
Peri odi cal I y:
max_tat <« Maxi mum TAT neasured this view

TATs If Leader[] (Sorted) TATLeaderUBsJ] (Sorted)

2f 1 f 2f 1 f
| [of]]| []
L 1 L 1

M P

o (Ire M)[r < B
e v is the minimum value in/

e(FpeP)p< B
e 7 is the minimum value P

e Thereforep < B e Thereforey < B

Figure 5: The value of TAJacceptable®) computed at any correct server
converges to a value where < B. The setsM (left side) andP (right
side) contain thg + 1 highest values in their respective vectolg. must
eventually contain at least one valugreported by a correct server, where
v < B. Thus,a < B. Using a parallel argument, the right side shows that
T <B.

server will compute for if it were leader. Each server
broadcasts its value af and stores the values that it re-
ceives in TAT.LeaderUBsJ]. In Block D, each non-leader
server broadcasts the maximum TAT that the leader has pro-
vided it in the current view and stores the values that it re-

ceives in ReportedATs[]. In Block E, each server com-
putes TATacceptable using TALeaderUBsJ[], computes
TAT _Leader using Reporte@ATs[], and compares these
values to decide whether to suspect the leader.

| *

D1

D2

D3. BROADCAST: (TAT- MEASURE, view, nmex-tat, i >U¢
D4. Upon receiving (TAT- MEASURE, view, tat, j)c,j
D5 if tat > Reported.TATs[]]

D6 Reported_TATs[j] « tat

| » Suspect Leader Task =*/

E1l. Periodically:

E2. Sort ed_-TAT_UBs « SORT- ASCENDI NG TAT_Leader _UBs[]
E3. TAT.accept abl e «— Sorted_TAT_UBs[2f +1]

E4. Sort ed_TATs « SORT- ASCENDI NG Report ed_TATs[]
E5. TAT. eader « Sorted_TATs[f +1]

E6. if TAT.l eader > TAT.acceptable

E7. Suspect Leader

We now sketch the proof of Property 4.1. From Block
B, atleastf + 1 cells in servet’s TATs_If _Leader[] even-
tually contain valuesy, sent by correct servers. By defini-
tion, eachv < B. Figure 5 (left side) illustrates that server
Figure 4: SUSPECIEADER Protocol, used to determine whether a ¢ computes amv such that < B (see Line C3). Server
server shou_ld suspect the leader. View numbers refer toiéve m the stores the values of computed by each other server. Thus,
global ordering protocol. at least2f + 1 of the cells in servei's TAT _LeaderUBS]]

Intuitively, Property 4.1 ensures that a faulty leader will (Figure 5, right side) eventually containvalues from cor-
be suspected unless it provides a timely TAT to at least one"€Ct S€rvers (each of which is no more thah The right
correct server. We consider a TAT< B, to be timely be- side of Figure 5 shows that the value of TAEceptable (de-
causeB is within a constant factor of the TAT that the slow- Notedr) must also eventually be less than or equabto
est correct server might provide. This factor is a functibn o
the latency variability thasUSPECTLEADER is configured
to tolerate. Note that malicious servers cannot affect the

value _off.f.P_rolpertyA.Zgnsures that view chhangr(]es clannotat least one correct server collectsT-MEASURE mes-
occur indefinitely. Prime does not guarantee that the SIowes ;0o “fromy + 1 servers (at least one of which is cor-

f correct servers WI!| not b_e suspected because slow faultyrect) with values» such thaty < TAT acceptable. There-
leaders cannot be distinguished from slow correct leaders. fore, the malicious leader is providing a TAT, such that

Figure 4 contains pseudocode feUSPECTLEADER. t < TAT Acceptable< B, to at least one correct server.
Server; initializes its data structures at the beginning of
each new view (Block A). The remaining blocks run in We now show that Property 4.2 holds. Since
parallel. In Block B, servei uses a simple ping proto- TAT _acceptable is the(2f + 1)st lowest value in
col to measure the RTT to each other seryer,Serveri TAT _LeaderUBs[], at leastf + 1 correct servers sent val-
sends this measured RTT jo Using this value,;j com- ues fora such thatae < TAT _acceptable. Each per-
putes the maximum TAT that would compute forj if manent leader], has a set of at leasf + 1 correct
j were the leader, and stores it in TATisLeaderf]. In servers that, if is elected, will report TATs¢, with ¢ <
Block C, server uses TATsIf _Leader[] to compute an up- « < TAT_acceptable. Thus, any correct server will com-
per boundy, on the value of TATLeader that any correct pute TAT leader< TAT _acceptable and will not suspéct

If a malicious leader remains in power, there are at
least f + 1 servers (at least one of which is correct) for
which TAT leader< TAT _acceptable always holds. Thus,

5 Analysis Testbed and Network Setup: We used a system con-
sisting of 7 servers, organized in a fully connected graph.
Each server ran on a 3.2 GHz, 64-bit Intel Xeon com-
puter. RSA signatures provided authentication and non-
repudiation. Each computer can compute a 1024-bit RSA
signature in 1.3 ms and verify it in 0.07 ms. We emu-
. lated the overhead of Cauchy-based Reed-Solomon erasure
codes [6] used for reconciliation. Servers and clients sent
unicast messages. We used the netem utility to place delay
and bandwidth constraints on the links between the servers.
We added 50 ms delay (emulating a US-wide deployment)
to each link and limited the aggregate outgoing bandwidth
of each server to 10 Mbps. Clients were evenly distributed
among the servers and no delay or bandwidth constraints
were set between the client and its server.

In this section we show that in those executions in which
PRIME-STABILITY holds, Prime meets th®OUNDED-
DELAY property (see Definition 2.5)L* and B are as de-
fined in Section 4.2A,,, is a value greater than the maxi-
mum time between a correct server sending any of the fo
lowing messages successivelyo-ARU, PROOFMATRIX,,
andPRE-PREPARE

We first consider the maximum amount of delay that can
be added by a malicious leader that performs well enough
to stay in power. As discussed in Section 4, the time be-
tween a correct server initiating an updateand all cor-
rect servers sendingROOFMATRIX messages containing
atleast f + 1 Po-ARUS that cumulatively acknowledge the _ _)
preordering ofu is at most three rounds pl@s\,,,. The Attack Strate_g|_$: Our experimental results during _at-
malicious servers cannot increase this time beyond what itt@ck show the minimum performance that must be achieved
would take if only correct servers were participating. By N order for amalicious Ieader.to remain in power. Our mea-
Property 4.1, a leader that stays in power must provide asurgmentg do not reflect thg t_|me reqwre_d for view changes,
TAT, t < B, to at least one correct server. By defini- during Whl(_:hanew !eader is mstalle(_j. Since a view change
tion, Augy > App. Thus, B < 2KpuL* + Aggy. Since tgkes aflr_me, and, in practice, relatively small, amount of
correct servers floo®RE-PREPARE messages, all correct ime, malicious leaders must cause performance degrada-
servers receive there-PREPAREWIthin three rounds and ~ tion without being detected in order to have a prolonged
one aggregation delay of when tR&OOEMATRIX mes- effe_cton throughpt_Jt: Therefore, we foqus onthe. atta<.:k.sce—
sages are sent. All correct servers globally ordemtRe- nario where a malicious leader stays in power indefinitely
PREPAREIN two rounds from the timet, the last correct ~ While degrading performance.
server receives it. Reconciliation guarantees that al cor ~We use the first attack on BFT described in Section 3.
rect servers receive the update within one round of time We present results for a very aggressive yet possible time-
t. Summing the total delays yields a maximum latency of out (300 ms), yielding the most favorable performance for
B=06L*4+2KpraL* + 30,4, BFT under attack. To attack Prime, (1) the leader adds as

If a malicious leader delays an update by more tiign ~ much delay as possible (without being suspected) to the
it will be suspected and a view change will occur. View Protocol, and (2) faulty servers force as much reconcilia-
changes require a finite (and, in practice, small) amount oftion as possible. A malicious leader can add approximately
state to be exchanged among correct servers, and thus thefyvo rounds of delay to the global ordering phase (see Fig-
complete in finite time SUSPECTLEADER guarantees that ~ Ure 2). The malicious servers force reconciliation by not
at most2f view changes can occur before the system settlessending theirro-REQUEST messages tg of the correct
on a leader that will remain in power forever. Therefore, servers. Therefore, all updates originating from the fault

there is a time after which the bound @fholds for any servers must be sent to thegecorrect servers using the
update initiated by a stable server. reconciliation mechanism (Section 4). Moreover, the mali-

cious servers only acknowledge each otheCsREQUEST
. messages, forcing the correct servers to send recormiliati
6 Performance Evaluation messages to them for all messages originating from correct
servers. Thus, all messages undergo a reconciliation step,

To evaluate the performance of Prime, we implemented Which consumes approximately the same outgoing band-
the protocol and compared it to an available implemen- Width as update dissemination during preordering. This
tation of BFT. We show results for configurations with 4 reduces the maximum achievable throughput by approxi-
servers f = 1) and 7 serversf{ = 2). Prime has sim- mately half.
ilar performance to BFT when the systems are run in a Performance Results: Figure 6 shows system through-
benign environment, which is commonly the only environ- put in updates per second as a function of the number
ment in which Byzantine fault-tolerant replication syseem of clients in the 7-server configuration. The clients send
are benchmarked. When strong attacks are mounted againsine write update (containing 512 bytes of data), wait for
both systems, Prime outperforms BFT by more than an or-proof that the update has been ordered, and then submit
der of magnitude. their next update. BFT uses an optimization where clients

1300 T T 900 2
1200 BFT Fault-Free-+-- | y
n _Prime Fault-Freex 800 i
% 1100 | Prime Attack’ =1 e 7 — e
% 1000} Prime Attack, K=2 g~ 1 e 700 R
& 900 f BFT Attack —=— 1 < —ag
"E‘; 800 P i G S S z 600 g-a-a * . % L
=) 700 _‘_ % X % 500 | Koz K Eﬁﬂ_
5 600 P 4 P
a A o 400 Sese o
£ 500 W £ o
3 400} St B B e e g 300 ek ebe kT BET Fault-Frees 4]
= e 2 500 _Prime Fault-Free > |
= Prime Attack, K=1 -
100 L Prime Attack, K=2 -
BFT Attack —=&—
O L L L L
0 100 200 300 400 500
Number of Clients Number of Clients
Figure 6: 7 servers, Throughput (updates/sec) vs. numisgieots, 50 ms . . .
9 ghput (up) Figure 7: 7 servers, Latency (ms) vs. number of clients, 5@mmeter
Diameter
1800 T : . 900 B
BFT Fault-Free: -+ ! /
o 16001 Prime Fault-Freex 800 o
g Prime Attack, K=1 - — ‘)2
@ 1400 r prime Attack, K=2 g~ Z 700 ‘ 4
T 1200} BFT Attack —#gr. ot < 600 S N
A & XXX g pm»»m--mma--a . X
2 1000 & 5 & 500 KK ¢
5 7 X « ')K**)K s XX X
a 800 400 X
£ B y X % S XK
S 600 3" & B 300]
3 K e B R O - - RS- - 2 e g BETEAUIt-Free- 4
<= 400 & géé 2 o0k ook Pk ++_P%me Fault-Free-> |
= ¥ ,§§ Prime Attack, K=1 -
200 fg ﬁ t5 100 F Prime Attack, K=2 ---(--- |
o il BFT Attack —m—
0 100 200 300 400 500 600 700 0 0 100 200 300 400 500 600 700
Number of Clients Number of Clients
Eligl;\:itse.rzl servers, Throughput (updates/sec) vs. num S, 50ms Figure 9: 4 servers, Latency (ms) vs. number of clients, 5@mameter

send updates directly to all of the servers, and the BFT maximum throughput when there is one client per server.
PRE-PREPAREMeSsage contains batches of update digests.This throughput limitation, which occurs when only a small
When both protocols are not under attack, the throughputamount of the available bandwidth is used, is a consequence
of BFT increases at a faster rate than the throughput ofof judging the leader conservatively.
Prime, because BFT has fewer protocol rounds. BFT'S per- rigure 8 shows similar throughput trends in the 4-server
formance plateaus due to bandwidth constraints at slightly configuration. When not under attack, both protocols
less than 850 updates per second with about 250 clientspjateau at higher throughputs than those shown in the 7-
Prime reaches a similar plateau with about 350 clients. server configuration (Figure 6). Prime reaches a plateau of
Throughput results are much different when the two pro- 1140 updates per second when there are 600 clients. In the
tocols are attacked. With an aggressive timeout of 300 ms,4-server configuration, each server sends a higher fraction
BFT can order less than 30 updates per second. With the?f the executed updates than in the 7-server configuration.
default timeout of 5 sec, BFT can only order 2 updates per This places a relatively higher computational burden (due
second (not shown). Prime plateaus at about 400 update&® RSA cryptography) on the servers in the 4-server con-
per second due to the bandwidth overhead of reconciliation.figuration. Thus, there is a larger difference in performeanc
The slope of the curve corresponding to Prime under attackhen notunder attack between Prime and BFT. When under
is less steep than when it is not under attack due to the de&ttack, Prime outperforms BFT by a factor of 30.
lay added by the malicious leader. We include results with Figure 7 shows update latency, at the client, as a function
Kroe = 1land K, = 2. K. accounts for variabili- of the number of clients in the 7-server configuration. When
ties in latency (Section 2). AKX, increases, a malicious the protocols are not under attack, BFT has a lower latency
leader can add more delay to the turn-around time withoutthan Prime, due to the differences in the number of protocol
being detected. Prime’s throughput continues to increaserounds. The latency of both protocols increases at difteren
until it becomes bandwidth constrained. BFT reaches its points before the plateau due to overhead associated with

10

aggregation. The latency begins to climb steeply when thehigh latency environments and (2) how resilient they are to
throughput plateaus due to update queueing at the servergerformance degradation when under attack.

When under attack, the latency of Prime increases due to Byzantine quorum systems [1,10,19,20] can also be used
the two extra protocol rounds added by the leader. Whenfor replication. While early work in this area was restritte
K. = 2, the leader can add approximately 100 ms more to a read/write interface, recent work uses quorum systems
delay than wher<,; = 1. The latency of BFT under at- to provide SMR. The Q/U protocol [1] of Abd-El-Malek et
tack climbs as soon as more than one client is added to eaclal. requires f + 1 replicas for this purpose and suffers per-
server, because the leader can order one update per servésrmance degradation when write contention occurs. The
during a timeout period without being suspected. Figure 9 HQ protocol [10] showed how to mitigate this cost by re-

shows a similar trend in the 4-server configuration. ducing the number of replicas 8f + 1. Since HQ uses
BFT to resolve contention when it arises, it is vulnerable to
7 Related Work the same types of performance degradation as BFT.

A different approach to SMR is to use a hybrid architec-

The protocols considered in this paper use the state ma_ture in which different parts of the system rely on different

. . - . . fault and/or timing assumptions [9, 27, 28]. The different

chine approach [17, 26] to achieve replication, in which - ;
. ._components are therefore resilient to different types of at
replicas execute a totally ordered stream of updates. This : . e .
tacks. We believe leveraging stronger timing assumptions

paper focused on leader-based Byzantine fault-tolerant : o
may allow for more aggressive performance monitoring.

SMR protocols. Oth h ible, h -) o
protocols er approaches are possiv’e, such as us The ©-Model [15] assumes that messages in transit si-

ing randomization, quorum systems, and hybrid architec- multaneously experience a bounded ratio of end-to-end de
tures. A thorough analysis of how resilient these systems Yy exp .
lays. PRIME-STABILITY assumes an eventual ratio of de-

are to performance failures is an interesting avenue for fu—Ia s on each link between correct Servers
ture research. 4 '
Many Byzantine fault-tolerant SMR systems rely on a
leader to coordinate the ordering protocol [2, 4, 8, 16,18, 8 Conclusions
21,29]. The consistency of these systems does not rely
on synchrony assumptions, while liveness is guaranteed as- |, this paper we brought to light the vulnerability of cur-
suming the network meets certain stability properties. To yant |eader-based Byzantine fault-tolerant SMR protoimols
ensure that the stability properties are eventually met in performance degradation when under attack. We proposed
practice, they use exponentially growing timeouts during the gounDED-DELAY correctness criterion to complement
view changes. This makes these systems vulnerable tQrrent liveness criteria by requiring the leader to acetim
the type of performance degradation when under attack de4p, order to stay in power. We presented Prime, a new Byzan-
scribed in Section 3.2. In contrast, Prime usessthsPECT tine fault-tolerant SMR protocol, which mee®UNDED-
LEADER protocol to allow correct servers to collectively de- pe| ay and is a first step towards making intrusion-tolerant
cide whether the leader is performing fast enough by adapt-repjication resilient to performance attacks in maliciens
ing to the network conditions once the system stabilizes. yironments. Our experimental results show that Prime per-
Rampart [24] implements Byzantine atomic multicast forms competitively with BFT in fault-free configurations

over a reliable group multicast protocol. This is similar 5,4 an order of magnitude better when under attack.
to how Prime uses preordering followed by global order-

ing. Both protocols disseminate updateio+ 1 servers

before a coordinator assigns the global order. Drabkin et REfErences

al. [12] observe the difficulty of setting protocol timeourts

the context of group communication in malicious settings. [1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
Other Byzantine fault-tolerant protocols [5, 7,22, 23] use J. Wylie. Fault-scalable Byzantine fault-tolerant seesic

randomization to circumvent the FLP impossibility result, In Proceedings of the 20th ACM Symposium on Operating

guaranteeing termination with probability 1. These proto- Systems Principles (SOSP "0ppges 59-74, Brighton, UK,

cols incur a high number of communication rounds during 2] io,gfriir B. Coan. J. Kirsch. and J. Lane. Customizableifau

normal-case operation (even those that terminate in an ex- : e o ’ ' :

ted tant b f d H thev d i tolerance for wide-area replication. Rroceedings of the
pected constant number of rounds). However, they do no 26th IEEE International Symposium on Reliable Distributed

rely on a leader to coordinate the ordering protocol, and Systems (SRDS 'Qages 66—80, Beijing, China, 2007.
thus may not suffer the same kinds of performance vulner- (3; v amir, B. Coan, J. Kirsch, and J. Lane. Byzantine repli-

abilities when under attack. We believe it is an interesting cation under attack. IRroceedings of the 38th IEEE/IFIP
open question to consider (1) whether their performance in International Conference on Depe ndable Systems and Net-
fault-free configurations is sufficiently high, especialty works (DSN '08) Anchorage, AK, USA, June 2008.

11

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-
Rotaru, J. Olsen, and D. Zage. Scaling Byzantine fault-
tolerant replication to wide area networks.Rroceedings of
the 2006 International Conference on Dependable Systems
and Networks (DSN'06)pages 105-114, Philadelphia, PA,
USA, June 2006.

M. Ben-Or. Another advantage of free choice (extended ab
stract): Completely asynchronous agreement protocols. In
Proceedings of the 2nd Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC '83)ages 27-30,
1983.

J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,
and D. Zuckerman. An xor-based erasure-resilient coding
scheme. Technical Report TR-95-048, International Com-
puter Science Institute, August 1995.

C. Cachin and J. A. Portiz. Secure intrusion-toleramiire
cation on the internet. liProceedings of the 2002 Inter-
national Conference on Dependable Systems and Networks
(DSN '02) pages 167-176, Bethesda, MD, USA, June 2002.
M. Castro and B. Liskov. Practical Byzantine fault teler
ance. InProceedings of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI,'§8pes 173—
186. USENIX Association, Co-sponsored by IEEE TCOS
and ACM SIGOPS, 1999.

M. Correia, N. F. Neves, and P. Verissimo. How to tolerat
half less one Byzantine nodes in practical distributed sys-
tems. InProceedings of the 23rd IEEE International Sym-
posium on Reliable Distributed Systems (SRDS’'fapes
174-183, Florianpolis, Brazil, 2004.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. IRroceedings of the 7th Sym-
posium on Operating Systems Design and Implementation
(OSDI '06), pages 177-190, Seattle, WA, Nov. 2006.

F. Cristian. Understanding fault-tolerant distribdisystems.
Communications of the ACN4(2):56—-78, 1991.

V. Drabkin, R. Friedman, and A. Kama. Practical Byzaati
group communication. IRroceedings of the 26th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS '06) page 36, Lisboa, Portugal, 2006.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchronyJournal of the ACM
35(2):288-323, 1988.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Imposisjbi

of distributed consensus with one faulty proceds ACM,
32(2):374-382, 1985.

J.-F. Hermant and J. Widder. Implementing reliable- dis
tributed real-time systems with thbetamodel. InPro-
ceedings of the 9th International Conference on Principles
of Distributed Systems (OPODIS 'Qfages 334-350, Pisa,
Italy, December 2005.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative Byzantine fault tolerance Pimceed-
ings of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP '07)pages 45-58, 2007.

L. Lamport. Time, clocks, and the ordering of events in a
distributed systemCommun. ACM21(7):558-565, 1978.

J. Li and D. Mazieres. Beyond one-third faulty replicgas
Byzantine fault tolerant systems. Rroceedings of the 4th

12

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI '07)pages 131-144, 2007.

D. Malkhi and M. Reiter. Byzantine quorum systenmis-
tributed Computing11(4):203-213, 1998.

D. Malkhi and M. K. Reiter. Secure and scalable replaat

in Phalanx. InProceedings of the the 17th IEEE Symposium
on Reliable Distributed Systems (SRDS ;9%ges 51-58,
West Lafayette, IN, USA, 1998.

J.-P. Martin and L. Alvisi. Fast Byzantine consensus.
IEEE Transactions on Dependable and Secure Computing
3(3):202-215, 2006.

H. Moniz, N. F. Neves, M. Correia, and P. Verissimo. Ran
domized intrusion-tolerant asynchronous servicesPrio
ceedings of the 2006 International Conference on Depend-
able Systems and Networks (DSN'Qgges 568577, 2006.
M. O. Rabin. Randomized Byzantine generalsThe 24th
Annual IEEE Symposium on Foundations of Computer Sci-
ence pages 403-409, 1983.

M. K. Reiter. The Rampart Toolkit for building high-
integrity services. Irselected Papers from the International
Workshop on Theory and Practice in Distributed Systems
pages 99-110, London, UK, 1995. Springer-Verlag.

L. M. R. Sampaio, F. V. Brasileiro, W. Cirne, and J. C. A.
Figueiredo. How bad are wrong suspicions? Towards adap-
tive distributed protocols. IRroceedings of the 2003 Inter-
national Conference on Dependable Systems and Networks
(DSN '03) pages 551-560, San Francisco, CA, USA, 2003.
F. B. Schneider. Implementing fault-tolerant sergicsing

the state machine approach: A tutorifACM Computing
Surveys22(4):299-319, 1990.

M. Serafini and N. Suri. The fail-heterogeneous ardhiteal
model. InProceedings of the 26th IEEE International Sym-
posium on Reliable Distributed Systems (SRDS, 'pajyes
103-113, Beijing, China, 2007.

P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell
Y. Deswarte, R. Stroud, and |. Welch. Intrusion-tolerant
middleware: The road to automatic securili EE Security

& Privacy, 4(4):54-62, 2006.

J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for Byzan-
tine fault-tolerant services. IRroceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSR '03)
pages 253-267, Bolton Landing, NY, USA, October 2003.

