
Byzantine Replication Under Attack ∗†

Yair Amir1, Brian Coan2, Jonathan Kirsch1, John Lane1
1 Johns Hopkins University, Baltimore, MD.{yairamir, jak, johnlane}@cs.jhu.edu

2 Telcordia Technologies, Piscataway, NJ. coan@research.telcordia.com

Technical Report CNDS-2008-1 - March 2008
http://www.dsn.jhu.edu

Abstract

Existing Byzantine-resilient replication protocols satisfy
two standard correctness criteria, safety and liveness, inthe
presence of Byzantine faults. In practice, however, faulty
processors can, in some protocols, significantly degrade
performance by causing the system to make progress at
an extremely slow rate. While “correct” in the traditional
sense, systems vulnerable to such performance degradation
are of limited practical use in adversarial environments.

This paper argues that techniques for mitigating such
performance attacks are needed to bridge this “practicality
gap” for intrusion-tolerant replication systems. We propose
a new performance-oriented correctness criterion, and we
show how failure to meet this criterion can lead to perfor-
mance degradation. We present a new Byzantine replication
protocol that achieves the criterion and evaluate its perfor-
mance in fault-free configurations and when under attack.

Keywords: Byzantine, replication, fault tolerance,
performance, attacks

1 Introduction

Existing Byzantine-resilient state machine replication
(SMR) protocols satisfy two standard correctness criteria
in the presence of Byzantine faults: safety and liveness.
Safety means that two servers remain consistent replicas of
one another, while liveness means that each update is exe-
cuted eventually. Since no asynchronous Byzantine agree-
ment protocol can always be both safe and live [14], systems

∗This publication was supported by grants 0430271 and 0716620 from
the National Science Foundation. Its contents are solely the responsibility
of the authors and do not necessarily represent the official view of Johns
Hopkins University or the National Science Foundation.

†This is the extended version of the paper published in the 2008
IEEE/IFIP International Conference on Dependable Systemsand Net-
works [3].

requiring strong consistency semantics are usually designed
to meet safety in all executions, while guaranteeing liveness
only during periods of sufficient synchrony and connectiv-
ity [13] or in a probabilistic sense [5,23].

Designers of practical Byzantine-resilient replication
systems recognize that real systems are not completely
asynchronous. Rather, these systems exhibit extended peri-
ods of stability (synchrony), possibly interspersed with pe-
riods of instability. Realistic Byzantine-resilient replication
systems generally guarantee liveness in a sufficiently stable
subset of the set of all asynchronous executions. In this pa-
per we observe that during stable periods, the system can
satisfy much stronger performance guarantees. Thus, when
the network is stable, there is a potential gap in the type
of performance that is promised by existing protocols (i.e.,
eventual execution of each update) and the type of perfor-
mance that is attainable.

In Byzantine environments, faulty processors can exploit
this gap to degrade system performance to a level far be-
low what would be achievable with only correct proces-
sors. Specifically, a small number of faulty processors can
cause the system to make progress at an extremely slow
rate. While “correct” in the traditional sense (both safety
and liveness are met), systems vulnerable to such perfor-
mance degradation are of limited practical use in adversarial
environments.

We experienced this problem first hand during a red-
team experiment conducted on our Steward system [4]. Al-
though the system survived all of the tests according to
the metrics of safety and liveness, we observed that it was
slowed down to twenty percent of its potential performance
in one experiment. After analyzing the attack, we found
that we could in fact slow the system down to roughly one
percent of its potential performance. Thus, our provably
correct system, which achieves high performance in fault-
free configurations, could be made effectively unusable in
practice under a relatively simple attack. This experience
led us to conclude that liveness is a necessary but insuffi-

cient correctness criterion for achieving high performance
Byzantine replication under attack. This paper argues that
newperformance-orientedcriteria are needed.

Preventing the type of performance degradation experi-
enced by Steward requires addressing what we call aByzan-
tine performance failure. Previous work focused on Byzan-
tine failures in the value domain (where a faulty processor
tries to subvert the protocol by sending incorrect or con-
flicting messages) and the time domain (where messages
from a faulty processor do not arrive within protocol time-
outs, if at all). Processors exhibiting performance failures,
however, send correct messages slowly but without trigger-
ing protocol timeouts; they are thus correct in both of the
traditional domains, despite having the potential to signif-
icantly degrade performance. Performance failures have
been considered in benign environments [11, 25]. To the
best of our knowledge, we are the first to (1) propose a use-
ful performance-oriented metric to evaluate Byzantine pro-
tocols and (2) present a SMR protocol that performs well
according to this metric.

Byzantine protocols whose progress is driven by mes-
sages from a large number of correct processors (e.g.,
[5, 22]) are less vulnerable to performance degradation due
to performance failures. The voting in such protocols masks
performance failures, in addition to value and timing fail-
ures, because no collection of faulty processors can prevent
the correct processors from moving forward. For efficiency,
however, other protocols rely on select processors to per-
form certain tasks correctly and in a timely manner, reduc-
ing the number of messages that must be sent in the com-
mon case. These protocols typically use cryptographic tools
and timeouts to restrict the adversary in the value and time
domains, respectively, but they do not address performance
failures.

In this paper we focus on this latter class of Byzantine
SMR protocols, which we refer to asleader-basedproto-
cols. These protocols (e.g., [2, 4, 8, 16, 18, 21, 29]) rely
on a leader to coordinate the global ordering and are thus
vulnerable to performance degradation caused by a slow
leader. The problem is magnified in environments (such as
wide-area networks) where it is difficult to predict the type
of performance that should be expected of the leader. We
demonstrate this vulnerability through analysis and experi-
mental evaluation of BFT [8], the first leader-based Byzan-
tine fault-tolerant SMR protocol to achieve practical perfor-
mance in fault-free executions.

By applying the understanding gained from our expe-
rience with BFT, we developed a new Byzantine fault-
tolerant SMR protocol, Prime (Performance-oriented Repli-
cation In Malicious Environments), resilient to performance
degradation under attack. Prime has two key properties: (1)
The resources required by the leader for global ordering are
bounded and independent of system throughput, enabling

non-leader servers to aggressively monitor the leader’s per-
formance, and (2) Non-leader servers compute a threshold
level of acceptable performance, which is a function of cur-
rent network latencies, against which they judge the leader.
Prime meets a new performance-oriented correctness crite-
rion, BOUNDED-DELAY , which makes a stronger guaran-
tee than traditional liveness criteria. We present experimen-
tal results showing that Prime performs competitively with
BFT in fault-free configurations and performs an order of
magnitude better when under attack. Our results show that
the performance of Prime when under attack is within a rea-
sonable factor of its fault-free performance.

The remainder of this paper is presented as follows. Sec-
tion 2 presents our system model and describes the service
properties provided by our system. Section 3 describes the
vulnerabilities of existing leader-based protocols to perfor-
mance degradation under attack, using BFT as a case study.
We present the Prime protocol in Section 4, and we analyze
its properties in Section 5. Section 6 presents experimental
results for our new system. Section 7 details related work,
and Section 8 concludes the paper.

2 System Model and Service Properties

We consider a system consisting ofN servers, which
communicate by passing messages. Each server is uniquely
identified from the setR = {1, 2, . . . , N}. We assume
a Byzantine fault model. Servers are eithercorrect or
faulty; correct servers follow the protocol specification,
while faulty servers can deviate from the protocol speci-
fication arbitrarily. We employ digital signatures, and we
make use of a cryptographic hash function to compute mes-
sage digests. We denote a messagem signed by serveri as
〈m〉σi

, and we denote a digest ofm as D(m). We assume
that all adversaries, including faulty servers, are computa-
tionally bounded such that they cannot subvert these cryp-
tographic mechanisms.

The consistency of our new protocol, Prime, is given in
the following two properties:

DEFINITION 2.1 SAFETY: If two correct servers execute
theith update, then these updates are identical.

DEFINITION 2.2 VALIDITY : Only an update that was pro-
posed by a client may be executed.

Prime guarantees safety and validity in all executions,
including those in which the network is asynchronous and
may drop or duplicate messages. Like existing leader-based
Byzantine replication protocols, Prime guarantees liveness
only in executions in which the network eventually meets
certain stability conditions, which we now state. In what
follows, KLat is a known network-specific constant ac-
counting for latency variability.

2

DEFINITION 2.3 PRIME-STABILITY : There is a time after
which the following condition holds for a set of at least
2f + 1 correct servers (the stable servers):

• For each pair of stable servers r and s, there exists a
value Min Lat(r, s), unknown to the servers, such that
if r sends a message to s, it will arrive with delay∆r,s,
where MinLat(r, s)≤ ∆r,s ≤ Min Lat(r, s)∗ KLat.

In those executions in which PRIME-STABILITY is met,
Prime guarantees the following liveness property:

DEFINITION 2.4 PRIME-LIVENESS: If a stable server ini-
tiates an update, all stable servers will eventually execute
the update.

PRIME-LIVENESS is similar to the liveness guarantees
provided by existing leader-based protocols (except that
PRIME-LIVENESS contains a stronger degree of stability).
While it is critical to guarantee that in those executions that
are sufficiently stable each update is eventually executed,
such liveness properties do not guarantee how quickly the
updates are executed when the network is stable. Sys-
tems that solely meet liveness thus provide a very weak
performance-related guarantee.

For this reason, in those executions in whichPRIME-
STABILITY is met, Prime also provides a stronger perfor-
mance guarantee, which we callBOUNDED-DELAY :

DEFINITION 2.5 BOUNDED-DELAY : There exists a time
after which the update latency for any update initiated by
a stable server is upper-bounded.

Prime achievesBOUNDED-DELAY in those executions in
whichPRIME-STABILITY is met, assuming the system is not
overloaded (i.e., given load beyond its maximum through-
put) and when correct servers have sufficient bandwidth
with which to communicate. Indeed, no system (even in
benign environments) can provide latency guarantees when
these conditions are not met due to necessary queuing de-
lays. Our current protocol requires knowledge of this mini-
mal level of bandwidth to ensure that these assumptions are
met. We believe that adaptively setting the bandwidth con-
sumed by correct servers is an important open problem for
Byzantine-resilient systems. Section 5 provides an analysis
of the bound provided by Prime.

We remark that resource exhaustion denial of service at-
tacks may causePRIME-STABILITY to be violated for the
duration of the attack. However, such attacks fundamen-
tally differ from the attacks that are the focus of this paper,
where malicious leaders can slow down the system without
triggering defense mechanisms (see Section 3). Handling
resource exhaustion attacks is a difficult problem that is or-
thogonal and complementary to the solution strategies con-
sidered in this paper.

3 Case Study: BFT Under Attack

In this section we present a theoretical analysis of BFT
[8], a leader-based Byzantine SMR protocol, when under
attack. We chose BFT because (1) it is the standard proto-
col to which other Byzantine protocols are often compared,
(2) many of the attacks that can be applied to BFT (and the
corresponding lessons learned) also apply to other leader-
based protocols, and (3) its implementation was publicly
available. BFT achieves high throughputs in fault-free con-
figurations or when servers exhibit only benign faults. We
first provide background on BFT and then describe two at-
tacks that can be used to significantly degrade its perfor-
mance when under attack. We present experimental results
validating the analysis in Section 6.

BFT assigns a total order to client updates. The proto-
col requires3f + 1 servers, wheref is the maximum num-
ber of servers that may be Byzantine. An elected leader
coordinates the protocol by assigning sequence numbers to
updates. If a server suspects that the leader has failed, it
votes to replace it. When2f + 1 servers vote to replace
the leader, a view change occurs, in which a new leader is
elected and servers collect information regarding pending
updates so that progress can safely resume in a new view.

A client sends its updates directly to the leader. The
leader assigns a sequence number to the update and pro-
poses the assignment to the rest of the servers. It sends a
PRE-PREPAREmessage, which contains the view number,
the assigned sequence number, and the update itself. Upon
receiving thePRE-PREPARE, a non-leader server accepts the
proposed assignment by broadcasting aPREPAREmessage.
The PREPAREmessage contains the view number, the as-
signed sequence number, and a digest of the update. When
a server collects thePRE-PREPAREand2f corresponding
PREPAREmessages, it broadcasts aCOMMIT message. A
server globally orders the update when it collects2f + 1
COMMIT messages. Each server executes globally ordered
updates according to sequence number. A server sends a
reply to the client after executing the update.

3.1 Attack 1: Pre-Prepare Delay

A malicious leader can introduce latency into the global
ordering path simply by waiting some amount of time af-
ter receiving an update before sending it in aPRE-PREPARE

message.The amount of delay a leader can add without be-
ing detected as faulty is dependent on (1) the way in which
non-leaders place timeouts on updates they have not yet ex-
ecuted and (2) the duration of these timeouts.

A malicious leader can ignore updates sent directly by
clients. If a client’s timeout expires before receiving a reply
to its update, it broadcasts the update to all servers, which
forward the update to the leader. Each non-leader server

3

maintains a FIFO queue of pending updates (i.e., those up-
dates it has forwarded to the leader but not yet executed).
A server places a timeout on the execution of the first up-
date in its queue; that is, it expects to execute the update
within the timeout period. If the timeout expires, the server
suspects the leader is faulty and votes to remove it from
power. When a server executes the first update in the queue,
it restarts the timer if the queue is not empty. Note that a
server does not stop the timer if it executes a pending up-
date that is not the first in the queue. The duration of the
timeout is dependent on its initial value (which is imple-
mentation and configuration dependent) and the history of
past view changes. Servers double the value of their timeout
each time a view change occurs. The specification of BFT
does not provide a mechanism for reducing timeout values.

BFT’s queueing mechanism ensures fairness by guaran-
teeing that each update is eventually ordered. However, it
also allows the leader to significantly delay the ordering of
an update without being replaced. To stay in power, the
leader must preventf + 1 correct servers from voting to re-
place it. Thus, assuming a timeout value ofTO, a malicious
leader can use the following attack: (1) Choose a setS of
f + 1 correct servers, (2) For each serverr ∈ S, maintain
a FIFO queue of the updates forwarded byr, and (3) For
each such queue, send aPRE-PREPAREcontaining the first
update on the queue everyTO − ǫ time units. This guar-
antees that thef + 1 correct servers inS execute the first
update on their queue each timeout period. If these updates
are all different, the fastest the leader would need to intro-
duce updates is at a rate off + 1 per timeout period. In the
worst case, thef + 1 servers would have identical queues,
and the leader could introduce one update per timeout.

This attack exploits the fact that non-leader servers place
timeouts only on the first update in their queues. To under-
stand the ramifications of placing a timeout onall pending
updates, consider the following scenario: Non-leader server
s simultaneously initiatesn updates. If servers sets a time-
out on alln updates, thens will suspect the leader if the sys-
tem fails to executen updates per timeout period. Since the
system has a maximal throughput, ifn is sufficiently large,
s will suspect a correct leader. The fundamental problem is
that correct servers have no way to assess the rate at which
a correct leader can coordinate global ordering.

3.2 Attack 2: Timeout Manipulation

One of the main benefits of BFT is that it ensures safety
regardless of synchrony assumptions. The authors justify
the need for this property by noting that denial of service
attacks can be used by a malicious adversary to violate tim-
ing assumptions. While a DoS attack cannot impact safety,
it can be used to increase the timeout value used to detect
a faulty leader. During the attack, the timeout doubles with

each view change. If the adversary stops the attack when a
malicious leader is in power, then that leader will be able to
slow the system down to a throughput of roughlyf + 1 up-
dates perTO, whereTO is potentially very large, using the
attack described in the previous section. This vulnerability
stems from the inability of BFT to reduce the timeout and
adapt to the network conditions after the system stabilizes.

4 The Prime Protocol

In this section we present Prime, a new Byzantine fault-
tolerant state machine replication protocol designed to mit-
igate the types of attacks described in Section 3. Prime re-
quires3f + 1 servers to toleratef Byzantine faults.

4.1 Prime Ordering Protocol

Prime uses a rotating coordinator protocol to assign a
total order to client updates. The servers execute the up-
dates according to this total order, and they thus remain
replicas of one another. Prime establishes the total order
in two phases. In the first phase, each server disseminates
its updates to the other servers and coordinates an agree-
ment protocol, whichpreordersthose updates that it orig-
inated. Each preordering agreement protocol coordinated
by a different server operates independently and in paral-
lel. A preordered update,u, is bound to apreorder identi-
fier, (o, i), whereu is theith update preordered by servero.
Thus, the preordering phase enables correct servers to con-
sistently refer to updates using their preorder identifiers. In
the second phase, an elected leader coordinates a global or-
dering protocol, which establishes a total order on batches
of preordered updates. The final total order on updates is
achieved by deterministically assigning an order to the up-
dates in each batch based on their preorder identifiers.

Preordering Phase: When originating servero re-
ceives updateu from one of its clients, it sends a〈PO-
REQUEST, seq, u, o〉σo

message,req, to all servers, where
seq is a local sequence number thato increments each
time it sends a newPO-REQUEST. We refer to this
local sequence number as apreorder sequence number.
Upon receivingreq, each correct server,i, sends a〈PO-
ACK, seq, D(u), o, i〉σi

message to all other servers ifi has
not previously received aPO-REQUEST from o with se-
quence numberseq. A set consisting ofreq and2f match-
ing PO-ACK messages constitutes apreorder-certificate,
which is proof that the correct servers agree that preorder
identifier (o,seq) is uniquely bound tou.

Each server,i, maintains a vector, POAru[], where
PO Aru[o] contains the maximum sequence number,n,
such thati has preorder-certificates for all preordered up-
dates with identifiers (o,j), with j ≤ n. Each server,
i, periodically broadcasts a〈PO-ARU, vec, i〉σi

message,

4

1. Form1 = 〈PO-ARU, vec1, i〉σi
andm2 = 〈PO-ARU, vec2, i〉σi

, we
say that:

• m1 is at least as up-to-date asm2 when
(∀j ∈ R)[vec1[j] ≥ vec2[j]].

• m1 is more up-to-date thanm2 whenm1 is at least as up to date
asm2 ∧ (∃j ∈ R)[vec1[j] > vec2[j]].

• m1 andm2 areconsistentwhenm1 is at least as up to date as
m2, or m2 is at least as up to date asm1.

2. For originating servero and preorder sequence numberpo seq,
PreorderProof Exists(o, po seq, 〈PRE-PREPARE,*,*,pm,l〉σl

) is true
iff:

• |{i : i ∈ R ∧ pm[i][o] ≥ po seq}| ≥ 2f + 1

3. M(pp = 〈PRE-PREPARE,∗, seq,∗, ∗〉σ∗
) =

{(o, s) : o ∈ R ∧ s ∈ N ∧ PreorderProof Exists(o,s,pp)}

4. B is a set of blacklisted servers.

5. Forpp = 〈PRE-PREPARE,∗, ∗, ppp, ∗〉σ∗
and

pm = 〈PROOF-MATRIX ,ppm, ∗〉σ∗
, whereppp andppm denote

proof matrices, we say that:

• pp coverspm if ∀i ∈ R− B, ppp[i] is at least as up-to-date as
ppm[i].

6. Preordered update (o,s) is eligible (for execution) iff∃ a globally
orderedPRE-PREPARE,pp, such that (o,s) ∈ M(pp)

Figure 1: Definitions and terminology used by the Prime ordering protocol.

wherevec is its local POAru vector. ThePO-ARU message
serves as a cumulative acknowledgement for preordered up-
dates. Given twoPO-ARU messages,m1 andm2, Figure
1 defines what it means form1 to be at least as up-to-
date asm2, more up-to-datethanm2, andconsistentwith
m2. Each server stores the most up-to-date, consistentPO-
ARU message received from each other server in a vector,
Last PO Aru[], indexed by server identifier. We describe
how we blacklist faulty servers that sendPO-ARU messages
that are not consistent when we present the Suspect-Leader
protocol, below.

Global Ordering Phase: Prime’s global ordering phase
is similar to BFT and uses three message rounds (see Sec-
tion 3). While BFT establishes a total order onPRE-
PREPAREmessages containing updates, Prime’s global or-
dering phase establishes a total order onPRE-PREPARE

messages containingproof matrices. Each proof matrix is
a vector ofPO-ARU messages. A correct leader,l, peri-
odically sends a〈PRE-PREPARE, v, seq, pm, l〉σl

message,
wherev is the current view number,seq is a global se-
quence number, andpm is the leader’s LastPO Aru vector
(which is a proof matrix).pm[o] is either aPO-ARU mes-
sage signed by servero or a null vector of length|R|, in-
dicating thato has not yet cumulatively acknowledged any
preorder-certificates.

We now explain how a server obtains a total order on
updates from the totally ordered stream ofPRE-PREPARE

messages. Call this stream ofPRE-PREPAREmessagesT =

P R O O FM A T R I XP OR E Q U E S T P OA C K P OA R U P R EP R E P A R E P R E P A R E C O M M I TN oA tt ack(A)
A tt ack(B)

L P OR E Q U E S T P OA C K P OA R U P R EP R E P A R E P R E P A R E C O M M I TL A g g r e g a t i o nD e l a yL = L e a d e r=OO
O = O r i g i n a t o r

Figure 2: Common case operation of Prime (f = 1). Part A shows the
messages and protocol rounds when the leader is correct. Part B shows
the delay added by a malicious leader that performs well enough to stay
in power. The malicious leader ignoresPO-ARU messages and sends its
PRE-PREPAREto only one correct server.

〈T1, T2, . . .〉. Intuitively, globally ordering aPRE-PREPARE

message expands the set of preordered updates that are el-
igible for execution. LetM map a globally orderedPRE-
PREPARE, pp, to a set of preordered updates,P , whereP
contains those preordered updates, (o, s), for which Pre-
order Proof Exists(o, s, pp) is true (see Figure 1). LetL be
a function that lexicographically orders the elements ofP
by their preorder identifiers. Then the final total order,U ,
on updates is obtained byU = L(M(T1)) || L(M(T2) −
M(T1)) || L(M(T3) − M(T2)) . . ., where|| denotes con-
catenation and− denotes set difference.

Prime guarantees that for all pairs of globally ordered
PRE-PREPAREmessages,〈PRE-PREPARE, ∗, seq, pm, ∗〉σ∗

and〈PRE-PREPARE, ∗, seq′, pm′, ∗〉σ∗
, whereseq > seq′,

(∀i ∈ R)[pm[i] is at least as up-to-date aspm′[i]]∧ (pm 6=
pm′). This constraint ensures that Prime’s global ordering
phase correctly establishes a global order on preordered up-
dates. The correct servers enforce this guarantee by per-
forming a validity check on eachPRE-PREPAREmessage
before sending a correspondingPREPAREmessage.

Part A of Figure 2 summarizes the path of an update,u,
through the system in the fault-free case. The update is pre-
ordered in two rounds, after which its preordering is cumu-
latively acknowledged inPO-ARU messages. When the net-
work is stable, faulty servers cannot delay the preorderingof
u because correct servers need only wait forPO-ACK mes-
sages from each other to collect a preorder-certificate foru.
In turn, the faulty servers cannot delay how quickly the pre-
ordering ofu is cumulatively acknowledged in thePO-ARU

messages of correct servers. A correct leader sends aPRE-
PREPARE, pp, whose proof matrix includes thesePO-ARU

messages.u will be executed whenpp is globally ordered.
Reconciliation: In Prime, a server sendsPREPAREand

COMMIT messages for aPRE-PREPAREmessage,pp, even
if it has not received those updates that will become eligible
for execution whenpp is globally ordered. Consequently,
although Prime guarantees that at leastf +1 correct servers
receive each eligible update, it makes no guarantees regard-
ing whichcorrect servers have received a particular eligible
update. Malicious servers can attempt to exploit this behav-

5

ior to block execution.
To understand how this is possible, note that a correct

server can only execute the gap-free prefix of the totally or-
dered eligible updates that it possesses. Each time a mali-
cious server originates and preorders updateu, it can inten-
tionally fail to sendu to f correct servers. Ifu becomes
eligible, these servers will block until they recoveru. Note
that, without a reconciliation mechanism, each malicious
server can block execution atf correct servers. Therefore,
whenf ≥ 3, all correct servers can be blocked, because
the number of servers that can be blocked (f2) exceeds
the number of correct servers (2f + 1). In order to pre-
vent these kinds of attacks, Prime incorporates a bandwidth-
efficient and timely update reconciliation mechanism. To-
gether, Prime’s preordering phase and its reconciliation pro-
cedure provide a reliable broadcast service; if updateu be-
comes eligible for execution, reconciliation guarantees that
all correct servers will receiveu. Pseudocode for Prime’s
reconciliation procedure is contained in Figure 3.

Conceptually, the reconciliation procedure operates on
the ordered sequence of updates defined by the total order
U = U1 || U2 || Recall that eachUi is a sequence of
preordered updates that became eligible for execution with
the global ordering ofppi, the PRE-PREPAREglobally or-
dered with sequence numberi. From the wayUi is created,
for each preordered update(o, s) in Ui, there exists a set,
Ro,s, of at least2f + 1 servers whosePO-ARU messages
cumulatively acknowledged(o, s) in ppi. Prime’s recon-
ciliation procedure operates by having2f + 1 servers in
Ro,s send erasure-coded parts of thePO-REQUESTcontain-
ing (o, s) to those servers that have not cumulatively ac-
knowledged preordering it. Note that if|Ro,s| > 2f +1, the
set of2f +1 senders is chosen deterministically. Sincef of
the senders may be faulty, Prime uses an MDS(2f+1,f+1)
maximum distance separable erasure encoding [6], such
that a server needs to receivef +1 out of2f +1 reconcilia-
tion messages to decode the associatedPO-REQUEST. This
guarantees that a correct server will receive enough parts to
be able to decode thePO-REQUEST.

To improve efficiency, each server runs the reconcilia-
tion procedure speculatively; instead of waiting for aPRE-
PREPAREmessage,pp, to be globally ordered, each server
runs Reconcile upon first receivingpp. This proactive ap-
proach allows updates to be recovered in parallel with the
remainder of the global ordering protocol.

Since a correct server will not send a reconciliation mes-
sage unless at least2f + 1 servers have cumulatively ac-
knowledged the correspondingPO-REQUESTmessage, rec-
onciliation messages for a given update are sent to a maxi-
mum off servers. Assuming an update size ofsu, the2f+1
erasure-coded parts have a total size of(2f +1)su/(f +1).
Since these parts are sent to at mostf servers, the amount of
reconciliation data sent per update across all links is at most

/* Reconciliation Procedure run at server i */
Reconcile(seq)
A1. pp ← 〈PRE-PREPARE,*,seq,pm,l〉σl

A2. pp’ ← 〈PRE-PREPARE,*,seq-1,*,l’〉σ
l′

A3. For each PO identifier (o,s) in L(M(pp) - M(pp’))
A4. c ← 0
A5. For j = 1 to N
A6. if pm[j][o] ≥ s
A7. c ← c + 1
A8. if (j = i and c ≤ 2f + 1)
A9. req = 〈PO-REQUEST,s,*,o〉σo
A10. part ← Erasure Encoded Part(req, c)
A11. For r = 1 to N
A12. if Last PO Aru[r][o] < s
A13. SEND to server r:
A14. 〈RECONCILIATION,o,s,c,part,i〉σi

Figure 3: Reconciliation Procedure, used to send erasure-coded reconcili-
ation messages.2f + 1 servers (at leastf + 1 of which are correct) send
erasure-coded parts for each preordered update(o, s). M (line A3) is de-
fined in Figure 1. L (line A3) is a function that lexicographically orders a
set of preordered updates.

f(2f +1)su/(f +1) < (2f +1)su. During preordering, an
update is sent to between2f and3f servers, which requires
at least2fsu. Therefore, reconciliation uses approximately
the same amount of aggregate bandwidth as update dissem-
ination. Note that a single server needs to send at most one
reconciliation part per update, which guarantees that at least
f + 1 correct servers share the cost of reconciliation.

4.2 Detecting Malicious Leaders

A malicious leader can mount two types of performance
attacks against Prime. First, it can propose a global order-
ing on preordered updates slowly by sendingPRE-PREPARE

messages at a slow rate. Some strategies for the leader to
slow down the sending of itsPRE-PREPAREs are illustrated
in Part B of Figure 2. Prime uses theSUSPECT-LEADER

protocol, described below, to detect slow leaders. Second,
even if it sends timelyPRE-PREPARE messages, a mali-
cious leader can intentionally send aPRE-PREPARE, pp,
whose proof matrix does not contain the most up-to-date
PO-ARU messages that it has received. This can prevent
preordered updates that would have become eligible for ex-
ecution whenpp is globally ordered from becoming eligi-
ble. Defending against these two performance attacks al-
lows Prime to meetBOUNDED-DELAY (see Definition 2.5).

Enforcing up-to-date Pre-Prepare messages: To sim-
plify this section, we first assume that allPO-ARU messages
from the same server are consistent. The section on black-
listing (below) describes subtle issues regardingPO-ARU

messages that are not consistent. Each non-leader server,
i, periodically sends a〈PROOF-MATRIX , pm, i〉σi

message
to the leader, wherepm is i’s Last PO Aru[]. Serveri ex-
pects the leader to includePO-ARU messages that are at least
as up-to-date as those inpm in its nextPRE-PREPARE. To
understand why a non-leader server is justified in this ex-
pectation, note that the leader can simply adopt any of the
PO-ARU messages inpm that are more up-to-date than what

6

it currently has in its LastPO Aru[]. Thus, a correct leader
will send, in its nextPRE-PREPARE, a proof matrix withPO-
ARU messages that are at least as up-to-date as those inpm.
We say that such aPRE-PREPAREcoverspm (see Figure
1). A critical property of Prime, which differs from existing
leader-based solutions, is that the leader requires a bounded
amount of bandwidth and computational resources, inde-
pendent of system throughput, to perform its role as leader;
the size of aPRE-PREPAREis dependent only on the number
of servers, and a singlePRE-PREPAREcan propose a global
ordering on an arbitrary number of preordered updates.

Blacklisting Servers: A correct server always sends
consistentPO-ARU messages. Therefore, a pair of incon-
sistentPO-ARU messages (i.e., two messages that are not
consistent) from serverr constitutes proof thatr is mali-
cious. A correct server that collects this proof addsr to a
set of blacklisted servers,B, and broadcasts the proof, caus-
ing all correct servers to blacklistr. As shown in Figure 1,
when we test if aPRE-PREPAREmessage covers aPROOF-
MATRIX message, we do not comparePO-ARU messages
from blacklisted servers. This is important because, in order
to stay in power, a correct leader may need to send aPRE-
PREPAREmessage that covers allPROOF-MATRIX messages
that it has received. If the leader receivesPROOF-MATRIX

messages that contain inconsistentPO-ARU messages from
serverr, then it may need to include one of these in itsPRE-
PREPARE. By definition, neither inconsistentPO-ARU is at
least as up-to-date as the other, and therefore, the leader may
fail to include the most up-to-datePO-ARU message fromr
in its PRE-PREPARE.

Without a blacklisting mechanism, this can cause a cor-
rect server,c, to suspect a correct leader,l, as follows: Let
m1 andm2 be two inconsistentPO-ARU messages from the
same malicious server. Suppose that: (1)l receivesm1 in a
PROOF-MATRIX message,pm, from c, (2) l receivesm2 in
a PROOF-MATRIX from a server other thanc, and (3) then,
l includesm2 (instead ofm1) in PRE-PREPAREpp. When
serverc receivespp, it assesses whether the leader has per-
formed as expected by checking ifpp coverspm. Sincepp
does not coverpm, c will view the leader as performing
worse than it should. From the way that the Suspect-Leader
protocol works (described below), this can cause a correct
leader to be suspected when it should not be.

Our blacklisting mechanism mitigates attacks in
which a malicious server sends inconsistentPO-
ARU messages. Before a correct server checks
if 〈PRE-PREPARE, ∗, ∗, ppp, ∗〉σ∗

covers 〈PROOF-
MATRIX , ppm, ∗〉σ∗

, where ppp and ppm denote proof
matrices, it first performs the following procedure: for
each serveri in R − B, if ppp[i] is not consistent with
ppm[i], addi to B. This procedure blacklists any servers
whose inconsistentPO-ARU messages may have otherwise
caused the correct server to falsely suspect a correct leader.

Intuitively, when testing if aPRE-PREPAREmessage covers
a PROOF-MATRIX message, correct servers are able to
ignore inconsistentPO-ARU messages before they cause a
correct leader to appear malicious.

Pre-Prepare Flooding: Prime’s mechanism for detect-
ing malicious leaders requires a simple addition to the
global ordering phase to ensure timely global ordering.
Upon receiving aPRE-PREPARE, pp, a correct server broad-
casts it. This guarantees that all correct servers receivepp
within one round from the time that the first correct server
receives it, at which point no faulty server can delay the
correct servers from globally orderingpp. FloodingPRE-
PREPAREs forces a malicious leader to delay sendingPRE-
PREPAREs to all correct servers in order to add unbounded
delay to the global ordering phase. In practice, the rate at
which the leader sendsPRE-PREPAREs can be configured so
that this flooding requires a small bandwidth overhead.

Suspect-Leader Protocol: Since the leader requires
bounded resources to perform its role as leader, if the net-
work is stable, the leader can be expected to send up-to-
datePRE-PREPAREs in a timely manner. To leverage this,
we require a mechanism whereby non-leader servers can
(1) dynamically determine how fast a timely leader should
perform, (2) monitor the performance of the current leader,
and (3) suspect the leader if it is not performing fast enough.
Each time a server sends aPROOF-MATRIX message,pm,
it computes the delay between sendingpm and receiving a
PRE-PREPAREcoveringpm. We call this delay theturn-
around-time(abbreviated TAT) provided by the leader. The
goal ofSUSPECT-LEADER is to force any leader that stays in
power to provide a timely TAT to at least one correct server.

Each correct server,i, locally decides whether to suspect
the leader by computing two values,TAT acceptableand
TAT leader. TAT acceptable is a standard against which
serveri judges the current leader, and TATleader is a mea-
sure of the current leader’s performance. Serveri suspects
the leader if TATleader> TAT acceptable.

TAT acceptable and TATleader are computed so that,
when PRIME-STABILITY holds, SUSPECT-LEADER meets
two key properties.L∗ is the maximum latency between
any two correct servers after the network stabilizes.∆pp is
a value greater than the maximum time between a correct
server sending successivePRE-PREPAREmessages.KLat

(see Section 2) accounts for latency variability. LetB =
2KLatL

∗ + ∆pp. We now state the properties.

PROPERTY4.1 Any server that retains a role as leader
must provide a turn-around time to at least one correct
server that is no more thanB.

PROPERTY4.2 There exists a set of at leastf + 1 correct
servers (the permanent leaders) that will not be suspected
by any correct server if elected leader.

7

/* Initialization, run at start of new view */
A1. For i = 1 to N, TATs If Leader[i] ←∞
A2. For i = 1 to N, TAT Leader UBs[i] ←∞
A3. For i = 1 to N, Reported TATs[i] ← 0
A4. ping seq ← 0

/* RTT Measurement Task, run at server i */
B1. Periodically:
B2. BROADCAST: 〈RTT-PING, view, ping seq, i〉σi

B3. ping seq++
B4. Upon receiving 〈RTT-PING, view, seq, j〉σj

:

B5. SEND to server j: 〈RTT-PONG, view, seq, i〉σi

B6. Upon receiving 〈RTT-PONG, view, seq, j〉σj
:

B7. rtt ← Measured RTT for pong message
B8. SEND to server j: 〈RTT-MEASURE, view, rtt, i〉σi

B9. Upon receiving 〈RTT-MEASURE, view, rtt, j〉σj
:

B10. t ← rtt * KLat + ∆pp

B11. if t < TATs If Leader[j]
B12. TATs If Leader[j] ← t

/* TAT Leader Upper Bound Task, run at server i */
C1. Periodically:
C2. Sorted TATs ← SORT-ASCENDING TATs If Leader[]
C3. α← Sorted TATs[2f+1]
C4. BROADCAST: 〈TAT-UB, view, α, i〉σi

C5. Upon receiving 〈TAT-UB, view, tat ub, j〉σj
:

C6. if tat ub < TAT Leader UBs[j]
C7. TAT Leader UBs[j] ← tat ub

/* TAT Measurement Task, run at server i */
D1. Periodically:
D2. max tat ← Maximum TAT measured this view
D3. BROADCAST: 〈TAT-MEASURE, view, max tat, i〉σi

D4. Upon receiving 〈TAT-MEASURE, view, tat, j〉σj

D5. if tat > Reported TATs[j]
D6. Reported TATs[j] ← tat

/* Suspect Leader Task */
E1. Periodically:
E2. Sorted TAT UBs ← SORT-ASCENDING TAT Leader UBs[]
E3. TAT acceptable ← Sorted TAT UBs[2f+1]
E4. Sorted TATs ← SORT-ASCENDING Reported TATs[]
E5. TAT leader ← Sorted TATs[f+1]
E6. if TAT leader > TAT acceptable
E7. Suspect Leader

Figure 4: SUSPECTLEADER Protocol, used to determine whether a
server should suspect the leader. View numbers refer to the view in the
global ordering protocol.

Intuitively, Property 4.1 ensures that a faulty leader will
be suspected unless it provides a timely TAT to at least one
correct server. We consider a TAT,t ≤ B, to be timely be-
causeB is within a constant factor of the TAT that the slow-
est correct server might provide. This factor is a function of
the latency variability thatSUSPECT-LEADER is configured
to tolerate. Note that malicious servers cannot affect the
value ofB. Property 4.2 ensures that view changes cannot
occur indefinitely. Prime does not guarantee that the slowest
f correct servers will not be suspected because slow faulty
leaders cannot be distinguished from slow correct leaders.

Figure 4 contains pseudocode forSUSPECT-LEADER.
Serveri initializes its data structures at the beginning of
each new view (Block A). The remaining blocks run in
parallel. In Block B, serveri uses a simple ping proto-
col to measure the RTT to each other server,j. Serveri
sends this measured RTT toj. Using this value,j com-
putes the maximum TAT thati would compute forj if
j were the leader, and stores it in TATsIf Leader[i]. In
Block C, serveri uses TATsIf Leader[] to compute an up-
per bound,α, on the value of TATLeader that any correct

f12f

α

1 f2f

τ

M P

TATs If Leader[] (Sorted) TATLeaderUBs[] (Sorted)

• (∃r ∈ M)[r ≤ B]

• α is the minimum value inM

• Therefore,α ≤ B

• (∃p ∈ P)[p ≤ B]

• τ is the minimum value inP

• Therefore,τ ≤ B

Figure 5: The value of TATacceptable (τ) computed at any correct server
converges to a value whereτ ≤ B. The setsM (left side) andP (right
side) contain thef + 1 highest values in their respective vectors.M must
eventually contain at least one value,v, reported by a correct server, where
v ≤ B. Thus,α ≤ B. Using a parallel argument, the right side shows that
τ ≤ B.

server will compute fori if it were leader. Each server
broadcasts its value ofα and stores the values that it re-
ceives in TATLeaderUBs[]. In Block D, each non-leader
server broadcasts the maximum TAT that the leader has pro-
vided it in the current view and stores the values that it re-
ceives in ReportedTATs[]. In Block E, each server com-
putes TATacceptable using TATLeaderUBs[], computes
TAT Leader using ReportedTATs[], and compares these
values to decide whether to suspect the leader.

We now sketch the proof of Property 4.1. From Block
B, at least2f + 1 cells in serveri’s TATs If Leader[] even-
tually contain values,v, sent by correct servers. By defini-
tion, eachv ≤ B. Figure 5 (left side) illustrates that server
i computes anα such thatα ≤ B (see Line C3). Serveri
stores the values ofα computed by each other server. Thus,
at least2f + 1 of the cells in serveri’s TAT LeaderUBs[]
(Figure 5, right side) eventually containα values from cor-
rect servers (each of which is no more thanB). The right
side of Figure 5 shows that the value of TATacceptable (de-
notedτ) must also eventually be less than or equal toB.

If a malicious leader remains in power, there are at
leastf + 1 servers (at least one of which is correct) for
which TAT leader≤ TAT acceptable always holds. Thus,
at least one correct server collectsTAT-MEASURE mes-
sages fromf + 1 servers (at least one of which is cor-
rect) with valuesv such thatv ≤ TAT acceptable. There-
fore, the malicious leader is providing a TAT,t, such that
t ≤ TAT Acceptable≤ B, to at least one correct server.

We now show that Property 4.2 holds. Since
TAT acceptable is the(2f + 1)st lowest value in
TAT LeaderUBs[], at leastf + 1 correct servers sent val-
ues for α such thatα ≤ TAT acceptable. Each per-
manent leader,l, has a set of at leastf + 1 correct
servers that, ifl is elected, will report TATs,t, with t ≤
α ≤ TAT acceptable. Thus, any correct server will com-
pute TAT leader≤ TAT acceptable and will not suspectl.

8

5 Analysis

In this section we show that in those executions in which
PRIME-STABILITY holds, Prime meets theBOUNDED-
DELAY property (see Definition 2.5).L∗ andB are as de-
fined in Section 4.2.∆agg is a value greater than the maxi-
mum time between a correct server sending any of the fol-
lowing messages successively:PO-ARU, PROOF-MATRIX ,
andPRE-PREPARE.

We first consider the maximum amount of delay that can
be added by a malicious leader that performs well enough
to stay in power. As discussed in Section 4, the time be-
tween a correct server initiating an update,u, and all cor-
rect servers sendingPROOF-MATRIX messages containing
at least2f +1 PO-ARUs that cumulatively acknowledge the
preordering ofu is at most three rounds plus2∆agg. The
malicious servers cannot increase this time beyond what it
would take if only correct servers were participating. By
Property 4.1, a leader that stays in power must provide a
TAT, t ≤ B, to at least one correct server. By defini-
tion, ∆agg ≥ ∆pp. Thus,B ≤ 2KLatL

∗ + ∆agg. Since
correct servers floodPRE-PREPARE messages, all correct
servers receive thePRE-PREPAREwithin three rounds and
one aggregation delay of when thePROOF-MATRIX mes-
sages are sent. All correct servers globally order thePRE-
PREPARE in two rounds from the time,t, the last correct
server receives it. Reconciliation guarantees that all cor-
rect servers receive the update within one round of time
t. Summing the total delays yields a maximum latency of
β = 6L∗ + 2KLatL

∗ + 3∆agg.
If a malicious leader delays an update by more thanB,

it will be suspected and a view change will occur. View
changes require a finite (and, in practice, small) amount of
state to be exchanged among correct servers, and thus they
complete in finite time.SUSPECT-LEADER guarantees that
at most2f view changes can occur before the system settles
on a leader that will remain in power forever. Therefore,
there is a time after which the bound ofβ holds for any
update initiated by a stable server.

6 Performance Evaluation

To evaluate the performance of Prime, we implemented
the protocol and compared it to an available implemen-
tation of BFT. We show results for configurations with 4
servers (f = 1) and 7 servers (f = 2). Prime has sim-
ilar performance to BFT when the systems are run in a
benign environment, which is commonly the only environ-
ment in which Byzantine fault-tolerant replication systems
are benchmarked. When strong attacks are mounted against
both systems, Prime outperforms BFT by more than an or-
der of magnitude.

Testbed and Network Setup: We used a system con-
sisting of 7 servers, organized in a fully connected graph.
Each server ran on a 3.2 GHz, 64-bit Intel Xeon com-
puter. RSA signatures provided authentication and non-
repudiation. Each computer can compute a 1024-bit RSA
signature in 1.3 ms and verify it in 0.07 ms. We emu-
lated the overhead of Cauchy-based Reed-Solomon erasure
codes [6] used for reconciliation. Servers and clients sent
unicast messages. We used the netem utility to place delay
and bandwidth constraints on the links between the servers.
We added 50 ms delay (emulating a US-wide deployment)
to each link and limited the aggregate outgoing bandwidth
of each server to 10 Mbps. Clients were evenly distributed
among the servers and no delay or bandwidth constraints
were set between the client and its server.

Attack Strategies: Our experimental results during at-
tack show the minimum performance that must be achieved
in order for a malicious leader to remain in power. Our mea-
surements do not reflect the time required for view changes,
during which a new leader is installed. Since a view change
takes a finite, and, in practice, relatively small, amount of
time, malicious leaders must cause performance degrada-
tion without being detected in order to have a prolonged
effect on throughput. Therefore, we focus on the attack sce-
nario where a malicious leader stays in power indefinitely
while degrading performance.

We use the first attack on BFT described in Section 3.
We present results for a very aggressive yet possible time-
out (300 ms), yielding the most favorable performance for
BFT under attack. To attack Prime, (1) the leader adds as
much delay as possible (without being suspected) to the
protocol, and (2) faulty servers force as much reconcilia-
tion as possible. A malicious leader can add approximately
two rounds of delay to the global ordering phase (see Fig-
ure 2). The malicious servers force reconciliation by not
sending theirPO-REQUEST messages tof of the correct
servers. Therefore, all updates originating from the faulty
servers must be sent to thesef correct servers using the
reconciliation mechanism (Section 4). Moreover, the mali-
cious servers only acknowledge each other’sPO-REQUEST

messages, forcing the correct servers to send reconciliation
messages to them for all messages originating from correct
servers. Thus, all messages undergo a reconciliation step,
which consumes approximately the same outgoing band-
width as update dissemination during preordering. This
reduces the maximum achievable throughput by approxi-
mately half.

Performance Results: Figure 6 shows system through-
put in updates per second as a function of the number
of clients in the 7-server configuration. The clients send
one write update (containing 512 bytes of data), wait for
proof that the update has been ordered, and then submit
their next update. BFT uses an optimization where clients

9

 1300
 1200
 1100
 1000
 900
 800
 700
 600
 500
 400
 300
 200
 100

 0
 0 100 200 300 400 500

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Number of Clients

BFT Fault-Free
Prime Fault-Free

Prime Attack, KL=1
Prime Attack, KL=2

BFT Attack

Figure 6: 7 servers, Throughput (updates/sec) vs. number ofclients, 50 ms
Diameter

 900

 800

 700

 600

 500

 400

 300

 200

 100

 0
 0 100 200 300 400 500

U
pd

at
e

La
te

nc
y

(m
s)

Number of Clients

BFT Fault-Free
Prime Fault-Free

Prime Attack, KL=1
Prime Attack, KL=2

BFT Attack

Figure 7: 7 servers, Latency (ms) vs. number of clients, 50 msDiameter

 1800

 1600

 1400

 1200

 1000

 800

 600

 400

 200

 0
 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Number of Clients

BFT Fault-Free
Prime Fault-Free

Prime Attack, KL=1
Prime Attack, KL=2

BFT Attack

Figure 8: 4 servers, Throughput (updates/sec) vs. number ofclients, 50 ms
Diameter

 900

 800

 700

 600

 500

 400

 300

 200

 100

 0
 0 100 200 300 400 500 600 700

U
pd

at
e

La
te

nc
y

(m
s)

Number of Clients

BFT Fault-Free
Prime Fault-Free

Prime Attack, KL=1
Prime Attack, KL=2

BFT Attack

Figure 9: 4 servers, Latency (ms) vs. number of clients, 50 msDiameter

send updates directly to all of the servers, and the BFT
PRE-PREPAREmessage contains batches of update digests.
When both protocols are not under attack, the throughput
of BFT increases at a faster rate than the throughput of
Prime, because BFT has fewer protocol rounds. BFT’s per-
formance plateaus due to bandwidth constraints at slightly
less than 850 updates per second with about 250 clients.
Prime reaches a similar plateau with about 350 clients.

Throughput results are much different when the two pro-
tocols are attacked. With an aggressive timeout of 300 ms,
BFT can order less than 30 updates per second. With the
default timeout of 5 sec, BFT can only order 2 updates per
second (not shown). Prime plateaus at about 400 updates
per second due to the bandwidth overhead of reconciliation.
The slope of the curve corresponding to Prime under attack
is less steep than when it is not under attack due to the de-
lay added by the malicious leader. We include results with
KLat = 1 andKLat = 2. KLat accounts for variabili-
ties in latency (Section 2). AsKLat increases, a malicious
leader can add more delay to the turn-around time without
being detected. Prime’s throughput continues to increase
until it becomes bandwidth constrained. BFT reaches its

maximum throughput when there is one client per server.
This throughput limitation, which occurs when only a small
amount of the available bandwidth is used, is a consequence
of judging the leader conservatively.

Figure 8 shows similar throughput trends in the 4-server
configuration. When not under attack, both protocols
plateau at higher throughputs than those shown in the 7-
server configuration (Figure 6). Prime reaches a plateau of
1140 updates per second when there are 600 clients. In the
4-server configuration, each server sends a higher fraction
of the executed updates than in the 7-server configuration.
This places a relatively higher computational burden (due
to RSA cryptography) on the servers in the 4-server con-
figuration. Thus, there is a larger difference in performance
when not under attack between Prime and BFT. When under
attack, Prime outperforms BFT by a factor of 30.

Figure 7 shows update latency, at the client, as a function
of the number of clients in the 7-server configuration. When
the protocols are not under attack, BFT has a lower latency
than Prime, due to the differences in the number of protocol
rounds. The latency of both protocols increases at different
points before the plateau due to overhead associated with

10

aggregation. The latency begins to climb steeply when the
throughput plateaus due to update queueing at the servers.
When under attack, the latency of Prime increases due to
the two extra protocol rounds added by the leader. When
KLat = 2, the leader can add approximately 100 ms more
delay than whenKLat = 1. The latency of BFT under at-
tack climbs as soon as more than one client is added to each
server, because the leader can order one update per server
during a timeout period without being suspected. Figure 9
shows a similar trend in the 4-server configuration.

7 Related Work

The protocols considered in this paper use the state ma-
chine approach [17, 26] to achieve replication, in which
replicas execute a totally ordered stream of updates. This
paper focused on leader-based Byzantine fault-tolerant
SMR protocols. Other approaches are possible, such as us-
ing randomization, quorum systems, and hybrid architec-
tures. A thorough analysis of how resilient these systems
are to performance failures is an interesting avenue for fu-
ture research.

Many Byzantine fault-tolerant SMR systems rely on a
leader to coordinate the ordering protocol [2, 4, 8, 16, 18,
21, 29]. The consistency of these systems does not rely
on synchrony assumptions, while liveness is guaranteed as-
suming the network meets certain stability properties. To
ensure that the stability properties are eventually met in
practice, they use exponentially growing timeouts during
view changes. This makes these systems vulnerable to
the type of performance degradation when under attack de-
scribed in Section 3.2. In contrast, Prime uses theSUSPECT-
LEADER protocol to allow correct servers to collectively de-
cide whether the leader is performing fast enough by adapt-
ing to the network conditions once the system stabilizes.

Rampart [24] implements Byzantine atomic multicast
over a reliable group multicast protocol. This is similar
to how Prime uses preordering followed by global order-
ing. Both protocols disseminate updates to2f + 1 servers
before a coordinator assigns the global order. Drabkin et
al. [12] observe the difficulty of setting protocol timeoutsin
the context of group communication in malicious settings.

Other Byzantine fault-tolerant protocols [5,7,22,23] use
randomization to circumvent the FLP impossibility result,
guaranteeing termination with probability 1. These proto-
cols incur a high number of communication rounds during
normal-case operation (even those that terminate in an ex-
pected constant number of rounds). However, they do not
rely on a leader to coordinate the ordering protocol, and
thus may not suffer the same kinds of performance vulner-
abilities when under attack. We believe it is an interesting
open question to consider (1) whether their performance in
fault-free configurations is sufficiently high, especiallyin

high latency environments and (2) how resilient they are to
performance degradation when under attack.

Byzantine quorum systems [1,10,19,20] can also be used
for replication. While early work in this area was restricted
to a read/write interface, recent work uses quorum systems
to provide SMR. The Q/U protocol [1] of Abd-El-Malek et
al. requires5f + 1 replicas for this purpose and suffers per-
formance degradation when write contention occurs. The
HQ protocol [10] showed how to mitigate this cost by re-
ducing the number of replicas to3f + 1. Since HQ uses
BFT to resolve contention when it arises, it is vulnerable to
the same types of performance degradation as BFT.

A different approach to SMR is to use a hybrid architec-
ture in which different parts of the system rely on different
fault and/or timing assumptions [9, 27, 28]. The different
components are therefore resilient to different types of at-
tacks. We believe leveraging stronger timing assumptions
may allow for more aggressive performance monitoring.

The Θ-Model [15] assumes that messages in transit si-
multaneously experience a bounded ratio of end-to-end de-
lays. PRIME-STABILITY assumes an eventual ratio of de-
lays on each link between correct servers.

8 Conclusions

In this paper we brought to light the vulnerability of cur-
rent leader-based Byzantine fault-tolerant SMR protocolsto
performance degradation when under attack. We proposed
theBOUNDED-DELAY correctness criterion to complement
current liveness criteria by requiring the leader to act timely
in order to stay in power. We presented Prime, a new Byzan-
tine fault-tolerant SMR protocol, which meetsBOUNDED-
DELAY and is a first step towards making intrusion-tolerant
replication resilient to performance attacks in maliciousen-
vironments. Our experimental results show that Prime per-
forms competitively with BFT in fault-free configurations
and an order of magnitude better when under attack.

References

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie. Fault-scalable Byzantine fault-tolerant services.
In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 59–74, Brighton, UK,
2005.

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Customizable fault
tolerance for wide-area replication. InProceedings of the
26th IEEE International Symposium on Reliable Distributed
Systems (SRDS ’07), pages 66–80, Beijing, China, 2007.

[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine repli-
cation under attack. InProceedings of the 38th IEEE/IFIP
International Conference on Depe ndable Systems and Net-
works (DSN ’08), Anchorage, AK, USA, June 2008.

11

[4] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-
Rotaru, J. Olsen, and D. Zage. Scaling Byzantine fault-
tolerant replication to wide area networks. InProceedings of
the 2006 International Conference on Dependable Systems
and Networks (DSN’06), pages 105–114, Philadelphia, PA,
USA, June 2006.

[5] M. Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In
Proceedings of the 2nd Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC ’83), pages 27–30,
1983.

[6] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,
and D. Zuckerman. An xor-based erasure-resilient coding
scheme. Technical Report TR-95-048, International Com-
puter Science Institute, August 1995.

[7] C. Cachin and J. A. Portiz. Secure intrusion-tolerant repli-
cation on the internet. InProceedings of the 2002 Inter-
national Conference on Dependable Systems and Networks
(DSN ’02), pages 167–176, Bethesda, MD, USA, June 2002.

[8] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. InProceedings of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI ’99), pages 173–
186. USENIX Association, Co-sponsored by IEEE TCOS
and ACM SIGOPS, 1999.

[9] M. Correia, N. F. Neves, and P. Verı́ssimo. How to tolerate
half less one Byzantine nodes in practical distributed sys-
tems. InProceedings of the 23rd IEEE International Sym-
posium on Reliable Distributed Systems (SRDS’04), pages
174–183, Florianpolis, Brazil, 2004.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. InProceedings of the 7th Sym-
posium on Operating Systems Design and Implementation
(OSDI ’06), pages 177–190, Seattle, WA, Nov. 2006.

[11] F. Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[12] V. Drabkin, R. Friedman, and A. Kama. Practical Byzantine
group communication. InProceedings of the 26th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS ’06), page 36, Lisboa, Portugal, 2006.

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony.Journal of the ACM,
35(2):288–323, 1988.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process.J. ACM,
32(2):374–382, 1985.

[15] J.-F. Hermant and J. Widder. Implementing reliable dis-
tributed real-time systems with thetheta-model. In Pro-
ceedings of the 9th International Conference on Principles
of Distributed Systems (OPODIS ’05), pages 334–350, Pisa,
Italy, December 2005.

[16] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative Byzantine fault tolerance. InProceed-
ings of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP ’07), pages 45–58, 2007.

[17] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Commun. ACM, 21(7):558–565, 1978.

[18] J. Li and D. Mazieres. Beyond one-third faulty replicasin
Byzantine fault tolerant systems. InProceedings of the 4th

USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI ’07), pages 131–144, 2007.

[19] D. Malkhi and M. Reiter. Byzantine quorum systems.Dis-
tributed Computing, 11(4):203–213, 1998.

[20] D. Malkhi and M. K. Reiter. Secure and scalable replication
in Phalanx. InProceedings of the the 17th IEEE Symposium
on Reliable Distributed Systems (SRDS ’98), pages 51–58,
West Lafayette, IN, USA, 1998.

[21] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.
IEEE Transactions on Dependable and Secure Computing,
3(3):202–215, 2006.

[22] H. Moniz, N. F. Neves, M. Correia, and P. Verı́ssimo. Ran-
domized intrusion-tolerant asynchronous services. InPro-
ceedings of the 2006 International Conference on Depend-
able Systems and Networks (DSN’06), pages 568–577, 2006.

[23] M. O. Rabin. Randomized Byzantine generals. InThe 24th
Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 403–409, 1983.

[24] M. K. Reiter. The Rampart Toolkit for building high-
integrity services. InSelected Papers from the International
Workshop on Theory and Practice in Distributed Systems,
pages 99–110, London, UK, 1995. Springer-Verlag.

[25] L. M. R. Sampaio, F. V. Brasileiro, W. Cirne, and J. C. A.
Figueiredo. How bad are wrong suspicions? Towards adap-
tive distributed protocols. InProceedings of the 2003 Inter-
national Conference on Dependable Systems and Networks
(DSN ’03), pages 551–560, San Francisco, CA, USA, 2003.

[26] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial.ACM Computing
Surveys, 22(4):299–319, 1990.

[27] M. Serafini and N. Suri. The fail-heterogeneous architectural
model. InProceedings of the 26th IEEE International Sym-
posium on Reliable Distributed Systems (SRDS ’07), pages
103–113, Beijing, China, 2007.

[28] P. Verı́ssimo, N. Neves, C. Cachin, J. Poritz, D. Powell,
Y. Deswarte, R. Stroud, and I. Welch. Intrusion-tolerant
middleware: The road to automatic security.IEEE Security
& Privacy, 4(4):54–62, 2006.

[29] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for Byzan-
tine fault-tolerant services. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03),
pages 253–267, Bolton Landing, NY, USA, October 2003.

12

