
Hidden semi-Markov models (HSMMs)

Kevin P. Murphy
www.ai.mit.edu/∼murphyk

20 November 2002

Abstract

A semi-Markov HMM is like an HMM except each state can emit a sequence of observations. In this paper, we
provide a unified review of inference and learning in a variety of different kinds of semi-Markov HMMs, including
explicit-duration HMMs, segment HMMs, and multigrams. We also discuss some important implementation details,
such as avoiding underflow, which are often glossed over.

1 Segment models

1.1 Representation

A semi-Markov HMM (more properly called a hidden semi-Markov model, or HSMM) is like an HMM except each
state can emit a sequence of observations. Let Y (Gt) be the subsequence emitted by “generalized state” Gt. The
“generalized state” usually contains both the automaton state, Qt, and the length (duration) of the segment, Lt. We
will define Y (Gt) to be the subsequence yt−l+1:t. After emitting a segment, the next state is Gtn

, where tn =
t + Lt. Similarly, denote the previous state by Gtp

. Let Y (G+
t) be all observations following Gt, and Y (G−

t) be all
observations preceeding Gt, as in Figure 1.

Each segment Ot(q, l)
def
=P (Y (Gt)|Qt = q, Lt = l) can be an arbitrary distribution. If P (Y (Gt)|q, l) =

∏t

i=t−l+1 P (yi|q),
this is an explicit duration HMM [Fer80, Lev86, Rab89, MJ93, MHJ95]. If P (Y (Gt)|q, l) is modelled by an HMM
or state-space model (linear-dynamical system), this is called a segment model [GY93, ODK96]. In computational
biology, P (Y (Gt)|q, l) is often modelled by a weight matrix or higher-order Markov chain (see e.g., [BK97]). In this
paper, we are agnostic about the form of P (Y (Gt)|q, l).

It is possible to approximate a variable-duration HMM by adding extra states to a regular HMM (see [DEKM98,
p69]), i.e., a mixture of geometric distributions. However, our main interest will be segment models, which are strict
generalizations of variable-duration HMMs.

For the relationship between semi-Markov HMMs, pseudo-2D HMMs, hierarchical HMMs, etc., please see [Mur02].
(Essentially, with a pseudo-2D HMMs, we know the size of each segment ahead of time; an HHMM is a generalization
of a segment model where each segment can have subsegments inside of it, each modelled by an HMM.)

We can represent a variable-duration HMMs as a DBN as shown in FIgure 2. We explicitly add QD
t , the remaining

duration of state Qt, to the state-space. (Even though Qt is constant for a long period, we copy its value across every

Q
t

QTQtn

Y(Qt)Y(Q-
t

)
t

Y(Q)+

Qtp1Q

Figure 1: A segment model.

1

time slice, to ensure a regular structure.) When we first enter state i, QD
t is set to a value from from qi(·); it then

deterministically counts down to 0. When QD
t = 0, the state is free to change, and QD

t is set to the duration of the
new state. We can encode this behavior by defining the CPDs as follows:

P (Qt = j|Qt−1 = i, QD
t−1 = d) =

{

δ(i, j) if d > 0 (remain in same state)
A(i, j) if d = 0 (transition)

P (QD
t = d′|QD

t−1 = d, Qt = k) =

{

pk(d′) if d = 0 (reset)
δ(d′, d − 1) if d > 0 (decrement)

Since we have expanded the state space, inference in a variable-duration HMM is slower than in a regular HMM.
The naive approach to inference in this DBN takes O(TD2Q2) time, where D is the maximum number of steps we
can spend in any state, and Q is the number of HMM states. However, we can exploit the fact that the CPD for QD is
deterministic to reduce this to O(TDQ2).

Q1 Q2 Q3

QD
1 QD

2 QD
3

Y1 Y2 Y3

Figure 2: A variable-duration HMM. Qt represents the state, and QD
t represents how long we have been in that state

(duration).

Q1 Q2 Q3

F1 F2 F3

QD
1 QD

2 QD
3

Y1 Y2 Y3

Figure 3: A variable-duration HMM with explicit finish nodes. Qt represents the state, and QD
t represents how long

we have been in that state (duration), and Ft is a binary indicator variable that turns to indicate that QD
t has finished.

To facilitate future generalizations, we introduce deterministic “finish” nodes, that “turn on” when the duration
counter reaches 0. This is a signal that Qt can change state, and that a new duration should be chosen. See Figure 3.
We define the CPDs as follows:

2

P (Qt = j|Qt−1 = i, Ft−1 = f) =

{

δ(i, j) if f = 0 (remain in same state)
A(i, j) if f = 1 (transition)

P (QD
t = d′|QD

t−1 = d, Qt = k, Ft−1 = 1) = pk(d′)

P (QD
t = d′|QD

t−1 = d, Qt = k, Ft−1 = 0) =

{

δ(d′, d − 1) if d > 0
undefined if d = 0

P (Ft = 1|QD
t = d) = δ(d, 0)

Note that P (QD
t = d′|QD

t−1 = d, Qt = k, Ft−1 = 0) is undefined if d = 0, since if QD
t−1 = 0, then Ft−1 = 1, by

construction.

τ

Q1 Q2 Q
τ

l2 l
τ

l1 ...
...

...X
1

X
2

Xl1
Xl1+1 Xl1+l2

XΣli
X
T

Figure 4: A schematic depiction of a segment model. The Xt nodes are observed, the rest are hidden. The Xt’s within
a segment need not be fully connected. Also, there may be dependencies between the observables in adjacent segments
(not shown). This is not a valid DBN since the li’s are random variables, and hence the structure is not fixed. Thanks
to Jeff Bilmes for this Figure.

The basic idea of a segment model is that each HMM state can generate a sequence of observations, as in Figure 1,
instead of just a single observation, The difference from a variable-duration HMM is that we do not assume the
observations within each segment are conditionally independent; instead we can use an arbitrary model for their joint
distribution. The likelihood is given by

P (y1:T) =
∑

τ

∑

q1:τ

∑

l1:τ

li
∏

i=1

P (τ)P (qi|qi−1, τ)P (li|qi)P (yt0(i):t1(i)|qi, li)

where τ is the number of segments, li is the length of the i’th segment (that satisfies the constraint
∑τ

i=1 li = T), and
t0(i) =

∑i−1
j=1 lj + 1 and t1(i) = t0(i) + li − 1 are the start and ending times of segment i.

A first attempt to represent this as a graphical model is shown in Figure 4. This is not a fully specified graphical
model, since the Li’s are random variables, and hence the topology is variable. To specify a segment model as a DBN,
we must make some assumptions about the form of P (yt:t+l|q, l). Let us consider a particular segment and renumber
so that t0 = 1 and t1 = l. If we assume the observations are conditionally independent,

P (y1:l|Qt = k, l) =

l
∏

t=1

P (yt|Qt = k)

3

Q1 Q2 Q3

F1 F2 F3

QD
1 QD

2 QD
3

Q2
1 Q2

2 Q2
3

Y1 Y2 Y3

Figure 5: A segment model where each segment is modelled by an HMM.

we recover the variable-duration HMM in Figure 3. (If p(l|q) is a geometric distribution, this becomes a regular
HMM.) Note that the number of segments is equal to the number of transitions of the Qt nodes, or equivalently, the
number of times Ft turns on. By considering all possible assignments to Qt and QD

t (and hence to Ft), we consider
all possible segmentations of the data.

The next simplest segment model is to model each segment P (y1:l|Qt = k, l) using an HMM, i.e.,

P (y1:l|Qt = k, l) =
∑

q1:l

πk(q1)P (y1|Qt = k, Q2
1 = q1)

l
∏

τ=2

Ak(qτ−1, qτ)P (yt|Qt = k, Q2
τ = qτ)

where Q2
t represents the state of the HMM within this particular segment. We can model this as a DBN as shown in

Figure 5. (Naturally we could allow arcs between the Yt arcs, as in an autoregressive HMM.) The CPDs for Qt, QD
t

and Ft are the same as in Figure 3. The CPD for Yt gets modified because it must condition on both Qt and the state
within the segment-level HMM, Q2

t . The CPD for Q2
t is as follows:

P (Q2
t = j|Q2

t−1 = i, Qt = k, Ft−1 = f) =

{

π2
k(j) if f = 0 (reset)

A2
k(i, j) if f = 1 (transition)

It is straightforward to use other models to define the segment likelihood P (y1:l|Qt = k, l), e.g., a second-order
Markov model, or a state-space model.

1.2 Forwards-backwards

We define the following quantities for generalized state variables, by analogy with a regular HMM:

αt(g)
def
= P (Gt = g, Y (Gt), Y (G−

t))

βt(g)
def
= P (Y (G+

t)|Gt = g)

4

We can recursively compute αt as follows. (Equation 9 of [ODK96].)

αt(g) =
∑

g′

P (Gt = g, Gtp
= g′, Y (G−

t), Y (Gt))

=
∑

g′

P (Y (Gt)|Gt = g, Gtp
= g′ , Y (G−

t))P (Gt = g, Gtp
= g′, Y (G−

t))

=
∑

g′

P (Y (Gt)|Gt = g)P (Gt = g|Gtp
= g′, Y (G−

t))P (Gtp
= g′, Y (G−

t))

=
∑

g′

P (Y (Gt)|Gt = g)P (Gt = g|Gtp
= g′)P (Gtp

= g′, Y (G−
t))

= Ot(g)
∑

g′

P (g|g′)αtp
(g′)

Similarly, we can recursively compute βt as follows. (Equation 10 of [ODK96].)

βt(g) =
∑

g′

P (Y (G+
tn

), Y (Gtn
), Gtn

= g′|Gt = g)

=
∑

g′

P (Y (G+
tn

)| Y (Gtn
) , Gtn

= g′, Gt = g)P (Y (Gtn
), Gtn

= g′|Gt = g)

=
∑

g′

P (Y (G+
tn

)|Gtn
= g′)P (Y (Gtn

)|Gtn
= g′, Gt = g)P (Gtn

= g′|Gt = g)

=
∑

g′

βtn
(g′)Otn

(g′)P (g′|g)

These equations reduce to the regular HMM equations if Y (Gt) = Yt, tp = t − 1, etc.
The equations above cannot be implemented, since tn and tp are random variables. Hence we will rewrite them

explicitely using the fact that Gt = (Qt, Lt). But first we will introduce an extra variable, that will allow us to be much
more precise and concise than most papers that discuss semi-Markov HMMs. Let Ft = 1 if there is a segmentation
boundary at t (F for finish). A segmentation boundary is usually interpreted to mean Qt+1 6= Qt, although one could
imagine leaving state Qt, and re-entering it at the next time step, resetting the duration. Then

αt(q, l)
def
= P (Qt = q, Lt = l, Ft = 1, y1:t)

= P (yt−l+1:t|q, l)
∑

q′

∑

l′

P (q, l|q′, l′)αt−l(q
′, l′)

and

βt(q, l) = P (yt+1:T |Qt = q, Lt = l, Ft = 1)

=
∑

q′

∑

l′

βt+l′(q
′, l′)P (yt+1:t+l′ |q

′, l′)P (q′, l′|q, l)

We can see that the forwards-backwards algorithm has complexity O(TQ2L2). But if we make the standard
assumption that

P (q, l|q′, l′) = P (q|q′)P (l|q)

then we can reduce the complexity to O(TQ2L) as follows.1

We start with the backwards equation.

βt(i, d
′) =

∑

j

∑

d

βt+d(j, d)P (yt+1:t+d|j, d)P (j|i)P (d|j)

1[Rab89, p280] incorrectly states that the complexity of inference in a variable-duration HMM (a special case of a segment model) is
O(TQ2L2). However, by precomputing P (yt−l+1:t|Q,L), and substituting into Equation 68 of [Rab89], it is easy to see that the complex-
ity is just O(TQ2L), as also pointed out in [MHJ95],

5

Since the RHS is independent of d′, we simplify this to

βt(i) =
∑

j

P (j|i)
∑

d

P (d|j)βt+d(j)P (yt+1:t+d|j, d)

This matches Equation 70 of [GY93].
βt(i) is the probability of future evidence given that we finish in state i at time t. For parameter estimation, it will

be helpful to define a related quantity, β∗
t (i), which is the probability of seeing future evidence given that we start in

state i at t + 1. Following [Rab89] we have:

βt(i)
def
= P (yt+1:T |Qt = i, Ft = 1) =

∑

j

β∗
t (j)A(i, j)

β∗
t (i)

def
= P (yt+1:T |Qt+1 = i, Ft = 1) =

D
∑

d=1

βt+d(i)P (d|i)P (yt+1:t+d|i, d)

The base case if βT (i) = 1.
Now we turn to the forwards equation.

αt(j, d) = P (yt−d+1:t|j, d)
∑

i

∑

d′

A(i, j)P (d|j)αt−d(i, d′)

= P (yt−d+1:t|j, d)P (d|j)
∑

i

A(i, j)

(

∑

d′

αt−d(i, d
′)

)

This matches Equation 69 of [GY93].
There is no need to include the duration in the state space. So if we define

αt(j)
def
= P (Qt = j, Ft = 1, y1:t)

=
∑

d

αt(j, d)

then the above simplifies to

αt(j) =
∑

d

P (yt−d+1:t|j, d)P (d|j)
∑

i

A(i, j)αt−d(i)

which matches Equation 68 of [Rab89]. If we define α∗
t (i) to be the probability of starting in i at t + 1 (The corre-

spondence with [GY93] is as follows: αt(j, 0) = α∗
t−1(j).), then

αt(j)
def
= P (y1:t, Qt = j, Ft = 1) =

∑

d

P (yt−d+1:t|j, d)P (d|j)α∗
t−d(j)

α∗
t (j)

def
= P (y1:t, Qt+1 = j, Ft = 1) =

∑

i

αt(i)A(i, j)

The base case if α∗
0(j) = π(j), the probability of starting in state j.

1.3 Expected sufficient statistics

To compute the transition probability P (Qt|Qtp
) = P (Qt|Qt−1, Ft−1 = 1), we must count transitions that occur

across segment boundaries, not just across neighboring time points. [Rab89, p280] shows how to do this. The maxi-
mum likelihood estimate of the transition matrix is

Âij ∝

T−1
∑

t=1

αt(i)Aijβ
∗
t (j)

6

The normalization constant is whatever is needed to make Aij sum to one for each i, i.e., to make it a stochastic matrix:

Âij =

∑T

t=1 αt(i)Aijβ
∗
t (j)

∑

j′

∑T

t=1 αt(i)Aij′β
∗
t (j′)

In future, we will omit such normalization constants. The initial state distribution is

π̂i ∝ P (Q1 = i|y1:T) ∝ P (Q1 = i)P (y1:T |Q1 = i, F0 = 1) = πiβ
∗
0(i)

We can estimate P (Yt = k|Qt = i) for a discrete output variable-duration HMM as follows.

B̂i,k ∝
∑

t:Yt=k

P (Qt = i|y1:T)

We can compute the numerator as follows (summing over all t for simplicity).

T
∑

t=1

P (Qt = i|y1:T) =
∑

t

∑

τ<t

[γ∗
τ (i) − γτ (i)]

where

γt(i)
def
= P (Qt = i, Ft = 1|y1:T)

∝ αt(i)βt(i)

γ∗
t (i)

def
= P (Qt+1 = i, Ft = 1|y1:T)

∝ α∗
t (i)β

∗
t (i)

The reason this works is best explained by example. Consider a 2-state system; let us compute the expected amount
of time spent in state 1, where the posterior probability of being in this state is shown in the second line below.

t 1 2 3 4 5 6 7 8 9
P (Qt = 1|y1:T) 0 1 1 1 0 0 1 1 0
γ∗

t (1) 1 0 0 0 0 1 0 0 0
γt(1) 0 0 0 1 0 0 0 1 0
γ∗

t (1) − γt(1) 1 0 0 -1 0 1 0 -1 0
∑

τ<t γ∗
τ (1) − γτ (1) 0 1 1 1 0 0 1 1 0

Hence
∑

t

∑

τ<t[γ
∗
τ (i) − γτ (i)] = 3 + 2 = 5.

Contrast this with the following, which counts the number of times we enter state i (2 in this example), as opposed
to how long we spend in state i.

T
∑

t=1

P (Qt = i, y1:T) =
∑

t

[

∑

d

α∗
t−d(i)P (d|i)P (yt−d+1:t|i, d)

]

βt(i)

=
∑

t

[

∑

d

αt(i, d)

]

βt(i)

=
∑

t

αt(i)βt(i)

=
∑

t

P (Qt = i, Ft = 1|y1:T)

We can estimate P (d|i) for a non-parametric duration density [Fer80].

P̂ (d|i) ∝
∑

t

P (Qt = i, Dt = d, Ft = 1|y1:T) =
∑

t

α∗
t−d(i)P (d|i)P (yt−d+1:t|i, d)βt(i)

Of course, a tabular representation of P (d|i) might have too many parameters. [Lev86] shows how to fit a gamma
distribution (the M step requires numerical techniques). [MHJ95] show how to fit P (d|i) for any member of the
exponential family.

7

1.4 Avoiding numerical underflow

As in an HMM, αt(q) = P (Qt = q, y1:t) rapidly underflows as t gets large. There are two standard approaches: use
scaling or logs Scaling is much faster, but as we will see, not applicable to HSMMs. Furthemore, [DEKM98, p78]
says scaling may not be enough to avoid underflow if there are many silent states.

1.4.1 Scaling in HMMs

For scaling, we compute α̂t(q)
def
=P (Qt = q|y1:t) as follows:

α̂t(q) =
P (yt|Qt = q, y1:t−1)P (Qt = q|y1:t−1)

P (yt|y1:t−1)

=
1

ct

P (yt|Qt = q)
∑

q′

P (Qt = q, Qt−1 = q′|y1:t−1)

=
1

ct

P (yt|Qt = q)
∑

q′

P (Qt = q|Qt−1 = q′, y1:t−1)P (Qt−1 = q′|y1:t−1)

=
1

ct

Ot(q)
∑

q′

P (q|q′)α̂t−1(q
′)

where
ct

def
=P (yt|y1:t−1) =

∑

q

Ot(q)
∑

q′

A(q′, q)α̂t−1(q
′)

Hence, by the chain rule,

log P (y1:T) = log P (y1)P (y2|y1)P (y3|y1:2) . . . =

T
∑

t=1

log ct

Similarly, we will normalise βt by dividing by dt =
∑

q β̂t(q) at each step. [Rab89] suggests dividing by ct,
but it does not matter which scale factor we use, since the normalizing constants will cancel when we normalize the
posterior:

γt(q) =
1

P (y1:T)
P (Qt = q, y1:T)

=
1

P (y1:T)
P (yt+1:T |Qt, y1:t)P (Qt = q, y1:t)

=
1

P (y1:T)
(Dtβ̂t(q))(Ctα̂t(q))

=
1

Zt

β̂t(q)α̂t(q)

where Ct =
∏t

i=1 ct = P (y1:t), Dt =
∏T

i=t+1 dt and Zt =
∑

q β̂t(q)α̂t(q).

1.4.2 Scaling in HSMMs

It is not clear how to apply the same scaling tricks to the semi-Markov case. To see the problem, consider

α̃t(j, d)
def
= P (Qt = j, Dt = d|y1:t−d, yt−d+1:t)

=
P (yt−d+1:t|Qt = j, Dt = d)P (Qt = j, Dt = d|y1:t−d)

P (yt−d+1:t|y1:t−d)

=
1

ct,d

Bt,j,dP (Dt = d|Qt = j)
∑

i

Ai,j α̃t−d(i)

8

where

ct,d
def
=P (yt−d+1:t|y1:t−d) =

∑

j

D
∑

d=1

Bt,j,dP (Dt = d|Qt = j)
∑

i

Ai,jP (Qt−d = i|y1:t−d)

and
α̃t(i)

def
=
∑

d

α̃t(i, d)

But this definition of ct,d is nonsensical: d is a free variable on the LHS, but is a bound dummy variable on the RHS
(it is summed out). Indeed, experiments show this method doesn’t work.

The basic problem is we know how to compute P (Qt = j, Dt = d, Ft = 1, y1:t), but not P (Qt = j, Dt = d, Ft =
0, y1:t), since if a segmentation boundary did not occur, we cannot compute the likelihood term for a partial segment.
However, if the model defining the segment is first-order Markov (e.g., in a variable-duration HMM or when each
segment is modelled by an HMM), then Ft = 1 means the observation comes from a new state, otherwise the old
state. Hence scaling can be done, since the denominator is always of the form P (yt|y1:t−1), as in an HMM.

[Lev86, Sec.5] discusses how to scaling for the variable-duration HMM case, although it is not clear that it is
correct. The easiest way to see how to do scaling is to consider the DBN in Figure 3. We have

P (Qt = j, Dt = d, Ft = f |y1:t) =
P (yt|Qt = j, Dt = d, Ft = f, y1:t−1)P (Qt = j, Dt = d, Ft = f, y1:t−1)

P (yt|y1:t−1)

In the variable-duration HMM case, Ft = 1 iff Dt = 0 (no duration left), so we can omit Ft, as shown in Figure 2;
the sum over j and d is easy. In the hierarchical HMM case, we do not have D nodes, but Ft = 1 iff Qt enters an end
state. Hence we can compute the probability of P (Ft = 1|y1:t) and P (Ft = 0|y1:t), so we can sum over f and j.

1.4.3 Logs

For logs, define α̃t(q)
def
= log αt(q). Then we use the following fact: to compute r̃ = log(p + q) from p̃ = log p,

q̃ = log q, we use

r̃ = log(ep̃ + eq̃)

= log(ep̃(1 + eq̃−p̃))

= p̃ + log(1 + eq̃−p̃)

= p̃ + log(ep̃−p̃ + eq̃−p̃)

We pull out the larger of p̃ and q̃; if p̃ > q̃, then exp(q̃ − p̃) is very small, so we can use a small x approximation for
log(1 + x).

1.4.4 Logs in HMMs

For example, the forwards equation for HMMs

αt(j) = Bt(j)
∑

i

αt−1(i)Ai,j

becomes

α̃t(j) = log Bt,j + log
∑

i

αt−1(i)Ai,j

= B̃t(j) + log
∑

expi log(αt−1(i)Ai,j)

= B̃t(j) + logsumexpi(α̃t−1(i) + Ãi,j)

where logsumexpici is a new primitive operator. (Note that if P (Yt|Qt) is a Gaussian, we do not need to compute the
exp term since we use B̃t(j).)

9

1.4.5 Logs in HSMMs

For HSMMs, the forward equation
αt,j =

∑

d

Bt,j,dDj,dα
∗
t−d,j

where
α∗

t,j =
∑

i

Ai,jαt,i

becomes
α̃t,j = logsumexpd(B̃t,j,d + D̃j,d + α̃∗

t−d,j)

where
α̃∗

t,j = logsumexpi(Ãi,j + α̃t,i)

Similarly, the backward equation
βt,i =

∑

j

β∗
t,jAi,j

where
β∗

t,i =
∑

d

βt+d,jBt+d,j,d

becomes
β̃t,i = logsumexpjjβ̃

∗
t,j + Ãi,j

where
β̃∗

t,i = logsumexpdβ̃t+d,j + B̃t+d,j,d

2 Multigrams

2.1 Representation

A multigram [DB95, DB97] is a special case of a segment model in which (1) the segments are independent, so the
transition matrix is uniform and (2) each segment is a deterministic string. We will call the segment strings “words”,
and the collection of all such words a “lexicon”; note, however, that the words might in fact correspond to single
symbols or whole phrases.

The likelihood of a sentence is given by

αt
def
=P (y1:t, Ft = 1)

def
=
∑

n

P (n)
∑

w1:n:

w1:n=y1:t

n
∏

i=1

P (wi)

Let us compare an n-gram with an n-multigram, which is a multigram whose lexicon is all strings of length 1 to n.
Consider n = 3, alphabet {a, b, c, d} and sequence abcd. The 3-gram gives it probability

P (abcd) = P (a)P (b|a)P (c|ab)P (d|bc)

whereas the 3-multigram gives it probability

P (abcd) = P (a)P (bcd) + P (a)P (bc)P (d) + P (a)P (b)P (cd) + P (a)P (b)P (c)P (d)

+P (ab)P (cd) + P (ab)P (c)P (d) + P (abc)P (d)

To keep the number of parameters tractable, not all possible strings need appear in the lexicon. This is a model
selection (structure learning) issue.

10

A segment model also sums over segmentations, but uses an HMM to compute the probability of each segment
(rather than storing this as a parameter):

P (abcd) =
∑

q1,q2

P (q1)P (l1 = 1|q1)P (a|q1)

×P (q2|q1)P (l2 = 3|q2)P (bcd|q2)

+
∑

q1,q2,q3

P (q1)P (l1 = 1|q1)P (a|q1)

×P (q2|q1)P (l2 = 2|q2)P (bc|q2)

×P (q3|q2)P (l3 = 1|q3)P (d|q3)

+ · · ·

2.2 Inference

In the multigram case, the equations simplify as follows.

αt(w)
def
= P (Qt = w, Ft = 1, y1:t)

= P (yt−|w|+1:t|w)
∑

w′

P (w|w′)αt−|w|(w
′)

= P (yt−|w|+1:t|w)
∑

w′

αt−|w|(w
′)

= Ot(w)αt−|w|

where P (w|w′)
def
=1, Ot(w)

def
=P (w)δ(w, yt−|w|+1:t), and αt

def
=P (y1:t, Ft = 1) =

∑

w αt(w). Hence

αt =
∑

w:w=yt−|w|+1:t

P (w)αt−|w|

=

min{W,t}
∑

l=1

αt−l

∑

w:w=yt−l+1:t

P (w)

where W is the length of the longest word, and α0
def
=1. This matches [dM96, p80]. Typically there will 0 or 1 words

which match any given subsequence. Hence

αt =

min{W,t}
∑

l=1

αt−lP (yt−l+1:t)

Since there is no state, αt = P (y1:t, Ft = 1). It is not clear how to scale this, since it is a joint probability, and it
seems hard to compute P (y1:t, Ft = 0). Hence we use logs:

log αt = log
∑

l

exp(log αt−l + log P (yt−l+1:t))

= logsumexpl(α̃t−l + P̃ (yt−l+1:t))

In the backwards pass,

βt(w) =
∑

w′

βt+|w′|(w
′)P (yt+1:t+|w′||w

′)P (w′|w)

=
∑

w′

βt+|w′|(w
′)Ot+|w′|(w

′)

11

Note that βt(w) is independent of w, so we will write it as βt; this is the probability of generating yt+1:T given that
there is a segmentation boundary at t. Hence

βt =
∑

w

βt+|w|Ot+|w|(w)

=
∑

w:w=yt+1:t+|w|

βt+|w|P (w)

=

min{W,T−t}
∑

l=1

βt+lP (yt+1:t+l)

In the log domain, this becomes

log βt = logsumexpl(β̃t+l + P̃ (yt+1:t+l))

The posterior is given by

P (a
w
→ b|y1:T) = P (Qb = w, Ft = 1|y1:T)

=
1

P (y1:T)
αb(w)βb(w)

=
1

P (y1:T)
P (y1:a)P (ya+1:b|w)P (yb+1:T)

=
1

P (y1:T)
αap(w)βb × δ(w, ya:b)

where a = b − |w| and P (y1:T) = αT , which matches Equation 5.4 of [dM96, p.80]. In the log domain, if w = ya:b,
this becomes

log P (a
w
→ b|y1:T) = α̃a + p̃(w) + β̃b − α̃T

The two-slice posterior, assuming w1 = ya:b and w2 = yb+1:c, is given by

P (a
w1,w2
→ c|y1:T) =

1

P (y1:T)
αaP (w1)P (w2)βc

This matches Equation 5.7 of [dM96, p.82]. In the log domain, this becomes

log P (a
w1,w2
→ c|y1:T) = α̃a + P̃ (w1) + P̃ (w2) + β̃c − α̃T

References

[BK97] C. Burge and S. Karlin. Prediction of Complete Gene Structures in Human Genomic DNA. J. Mol. Biol.,
(268):78–94, 1997.

[DB95] S. Deligne and F. Bimbot. Language modeling by variable length sequences: Theoretical formulation and
evaluation of multigrams. In Proc. ICASSP ’95, pages 169–172, Detroit, MI, 1995.

[DB97] S. Deligne and F. Bimbot. Inference of variable-length acoustic units for continuous speech recognition.
In Proc. ICASSP ’97, pages 1731–1734, Munich, Germany, 1997.

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1998.

[dM96] C. de Marcken. Unsupervised language acquisition. PhD thesis, MIT AI lab, 1996.

[Fer80] J. D. Ferguson. Variable duration models for speech. In Proc. Symp. on the Application of HMMs to Text
and Speech, pages 143–179, 1980.

12

[GY93] M.J.F. Gales and S.J. Young. The Theory of Segmental Hidden Markov Models. Technical Report
CUED/F-INFENG/TR.133, Cambridge Univ. Eng. Dept., 1993.

[Lev86] S. E. Levinson. Coninuously variable duration hidden Markov models for automatic speech recognition.
Computer Speech and Language, 1(1):29–45, 1986.

[MHJ95] C. D. Mitchell, M. P. Harper, and L. H. Jamieson. On the Complexity of Explicit Duration HMMs. IEEE
Transactions on Speech and Audio Processing, 3(3), May 1995.

[MJ93] C. D. Mitchell and L. H. Jamieson. Modeling duration in a hidden Markov model with the exponential
family. In Intl. Conf. on Acoustics, Speech and Signal Proc., pages 331–334, 1993.

[Mur02] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, Dept.
Computer Science, UC Berkeley, 2002.

[ODK96] M. Ostendorf, V. Digalakis, and O. Kimball. From HMMs to segment models: a unified view of stochastic
modeling for speech recognition. IEEE Trans. on Speech and Audio Processing, 4(5):360–378, 1996.

[Rab89] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition.
Proc. of the IEEE, 77(2):257–286, 1989.

13

