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Effects of oxygen plasma ashing on barrier dielectric SiCN films have been studied for various ashing conditions. According to
X-ray photoelectron spectra analyses;-&), bonds appear at the surface of SiCN film afterplasma ashing. The formation of

the oxidized layer, SI@CN, at the surface of the SiCN film effectively reduces the leakage current as a consequence. The leakage
conduction of the SICN films has been investigated to be Schottky emission at the fields between 0.4 and 1.2 MV/cm. Also, the
increase of Schottky barrier height between SiCN and the metal is calculated to be 42 me\, gitasr@a ashing.
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Low-k materials and Cu wiring are currently used to reduce recorded by a VG Escalab MKII spectrometer using Mg #253.6
the resistance-capacitancéRC) delay caused by multilevel eV) radiation, and it was utilized to study the surface composition of
interconnects. However, copper diffusion in low-dielectrics re-  SiCN films. The infrared spectrometry was performed from 400 to
sults in large leakage current and premature dielectric breakdown.4000 cn? using a FTIR spectrometer calibrated to an unprocessed
Thus, copper interconnect lines must be encapsulated from the subare p-type wafer as the background, for determining the chemical
rounding barrier dielectric layers to provide reliable products. Somestructure of the SiCN film. The dielectric constants and leakage
reports show that SiC-based dielectrics own good barrier capabilitycurrent of the SIiCN films were investigated using capacitance-
and are suitable for back-end-of-li@EOL) manufacturing®* Dual voltage (C-V) and current-voltagdl-V) measurements on metal-
damascene is the standard structure for Cu metallizatiomo pat- insulator-semiconductofMIS) structures, Al/SICN/Si, with a gate
terning and two etch steps are currently implemented in dual-electrode area of 0.0053 émA Keithley model 82 C-V meter at 1
damascene to fabricate the trench and via structures in dielectriciHz was used to measure the dielectric constant of the films. The

prior to metal deposition and chemical mechanical polist®P)  current-voltage characteristics of the SiCN films were investigated
steps. The required patterns transferred to the dielectric thin fimsyy an HP4156.

are fabricated by lithography and plasma etching techniqugs. O
plasma ashing applied to photoresist removal usually causes silica-
based lowk materials to increase both leakage current and dielectric
constant due to the oxidation of-SiCH or Si—H groups®® How- Figure 1 shows the FTIR spectra of as-deposited SiCN and the
ever, the major functional groups of SiC-based barrier dielectrics aresample with @ plasma treatment for 6 min, respectively. The main
Si—CH, Si—C—Si, and Si—H bonds. The barrier dielectric films, peaks of the SiCN films are the-SiC stretching bond at 780 cm,
SIiCN, are also used as the etch stop in dual-damascene structure fgi—N at 890 cm 2, Si—CH,—Si near 990 cmt, Si—CHs bend-
Cu wiring? In the formation of trench patterning steps, the etch stoping near 1245cm!, Si—H stretching near 2100 cM, C—H
layer is always subjected to the, Plasma exposure in the via-first stretching near 2960cm, and N—H stretching near
or trench-first procedures. In this paper, the effects gfplasma 3340 cnmit.1%*After the O, plasma ashing process, the intensity of
ashing on SiCN barrier dielectrics, witk = 4.4, deposited by the main peaks remains as before plasma treatments, which makes
PECVD, has been demonstrated. Theplasma ashing process was the surface of the SiCN film hydrophobic and is unlike general
applied to the sample of SiCN to investigate its impact on the SiCNlow-k films that are degraded in insulating characteristics and be-
film during photoresist stripping. come hydroscopi€?® Moreover, the Si-O bonding is observed to
increase near 1070 crh with O, plasma ashing for 6 min, as indi-
cated in the inset of Fig. 1. Note that the thicknesses of SiCN were
The SICN films were deposited with a tri-methyl-silane source almost unchanged after,(plasma treatments. The dielectric con-
and NH; using a plasma-enhanced chemical vapor depositionstant of the @ plasma treated film is decreased from the initial value
(PECVD) system. The deposition temperature was 350°C. The prespf 4.4 to 4.2.
sure in the chamber was kept at 3 Torr during the deposition pro-  xps spectra were performed to realize theglasma influence
cesses. The SiCN films were deposited on p-type silicon wafers withy, the surface of SICN films. The main peaks fos,i~100 eV),
a resistivity of 15-25(0)-cm. O, plasma ashing was operated at a gj,  (~145eV), G, (~285eV), N (~400 eﬁ/) and Q,

pressure of 500 mtorr, rf power of 300 W, and with ap@as flow (534 ev) are evident in Fig. 2. The peak of @merges conspicu-
rate of 900 sccm at 300°C in the PECVD chamber. The periods Ofously in the samples with Oplasma ashing for 2, 4, and 6 min
time of O, plasma applied to as-deposited SICN were 2, 4, and 6o550tively. On the contrary, the carbon and nitrogen contents of O
min. 'After the plagma treatments, material analyses including theplasma treated sample are reduced with increasing thpl@ma
Fourier transform infrared spectromet&TIR) and n&k analyzer treated time. The enlargement of the Sieak of G plasma treated
were employed to identify the chemical structure and film thickness._ =~ "~ - 1he eniarg ; epP P .

The thickness of SICN films in this study is 100 nm as determined>ICN is shown in Fig. 3. The §jspectra of @ plasma treated SiCN

by the n&k analyzer. The X-ray photoelectron sped®S) were  flms are contributed by the peaks, including—SN bond
(E, = 102 eV), Si—C bond (g = 101eV), Si—O—C bonds

(E, = 101.5eV), and Si-O, bond (§ = 103.4 eV)'*!3 The
* Electrochemical Society Active Member. peak heights of the SiO, bonds significantly rise with the periods
Z E-mail: tcchang@mail.phys.nsysu.edu.tw of treatment after the Oplasma ashing. Also, the intensity of the
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Figure 1. FTIR spectra of SiCN films and the main function groups in the
flm are labeled as SiC (780cm?t), Si—N (890cm!), Si—CH,
(990cmt), Si—O (1070cm?), Si—CH; (1245cml), Si—H
(2100 cmt), C—H (2960 cmt), and N—H (3340 cnl). Sample STD:
no plasma treatment; sample O3; @asma treatment for 6 min. With the,O
plasma ashing, the SiO bonding gets strengthened.

Si—O—C bond is inferred to increase with increasing @lasma
ashing time. On the contrary, the peak heights of both thel$and
Si—C bonds are decreased aftey lasma ashing.
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Figure 3. Enlargement of XPS spectra of,Siat the surface of the non-
plasma-treated and (plasma treated SiCN films. The-SiO, (103.4 eV
and Si—O—C (101.5 eV bonding significantly increase after,@lasma
ashing.

Electrical analyses are implemented by transforming J-E charac-
teristics into an I vs. E“? plot. Figure 5 shows that a logarithm of
leakage currents of STD and,@eated samples are linearly related
to the square root of the applied electric field, which corresponds to
a Schottky mechanisi{:*°The Schottky-Richardson emission gen-

treated SiCN films are shown in Fig. 4. Note that the leakage current
of O, plasma treated samples become smaller than that of the star
dard curve. This phenomenon is distinctly different from the general
silica-based lowk dielectric materials which possess—SC and

Si—H bonds and are easily degraded and result in large leakagt
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Figure 2. XPS spectra at the surface of all samples. The main peaksgre Si
(~100eV), Sjs (~145eV), Gs (~285eV), Ns (~400eV), and @
(~534 eV). The intensity of @ rises obviously with @ plasma ashing.
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Figure 4. J-E curves of all samples. The reduction of leakage current,of O
plasma treated sample was found. The inset shows an energy band-diagram
scheme of the @treated sample. An oxidized layer, SICN, is formed
between the metal and SiCN films after the @asma ashing, which con-
tributes to a high energy barrier.
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Figure 5. In(J) vs. E*2
conduction.

of all samples, showing the Schottky emission type

G13

of the Oy-treated SIiCN films. It is well known that the barrier height
of SiQ, for electrons is larger than that of the $ier SiN,.®As a
consequence, the reduction of leakage current of the SiCN films is
obviously observed in the {plasmatreated samples.

Conclusion

We have studied the Oplasma ashing effects on SiCN barrier
dielectrics for intermetal applications. XPS spectra show that the
Si—0, and Si—O—C bonds appear at the surface of SiCN after O
plasma ashing. With increasing the @lasma ashing time, both the
signals of Si—0, and Si—O—C bonds are significantly strength-
ened. Additionally, the reduction of leakage current gft@ated
SIiCN film is observed due to the formation of a SiO-bond-rich layer,
SiO,CN, at the surface and the increase of the Schottky barrier
height between the metal and SICN in Schottky emission
conduction.
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