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The development of autonomous vehicles for urban driving has seen rapid progress in
the past 30 years. This paper provides a summary of the current state of the art in
autonomous driving in urban environments, based primarily on the experiences of the
authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the
approaches that different teams used in the DUC, with the goal of describing some of
the challenges that the teams faced in driving in urban environments. The paper also
highlights the long-term research challenges that must be overcome in order to enable
autonomous driving and points to opportunities for new technologies to be applied in
improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic
vehicles operating in human environments.
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1. Introduction

The field of autonomous driving has a rich history, with early demonstrations in
the 1980s and 1990s showing the viability of building cars that can control their
own motion in complex environments such as highways and urban streets (see
Dickmanns (2002) and Thorpe et al. (1988) for excellent reviews of this early
work). Advances in sensing and computation technologies have further spurred
interest in autonomous driving and many advances have been made in the past
decade, as evidenced, for example, by the series of competitions sponsored by
the US Department of Defense (Defense Advanced Research Projects Agency
(DARPA) 2007). In this article, we attempt to summarize the current state
of the art, describe some of the major research challenges that remain to
be solved and indicate some of the opportunities for the application of these
exciting technologies.

Modern autonomous vehicles are capable of sensing their local environment,
classifying the types of objects that they detect, reasoning about the evolution
of the environment and planning complex motions that obey the relevant rules
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of the road. Although less well developed, substantial progress has also been made
in reacting to ‘unexpected’ situations where failures can occur in the vehicle
systems or agents in the external environment do not behave as predicted by
internal models. The ability to navigate autonomously in these complex situations
is accomplished by combining a variety of technologies from different disciplines
that span computer science, electrical engineering, robotics and controls, to name
a few. Demonstration vehicles such as those developed by Dickmanns and his
group (Dickmanns 2002), the CMU Navlab (Thorpe et al. 1988; Sukthankar et al.
1997) and the DARPA Grand Challenge (DGC) vehicles have all succeeded in
combining these technologies into working systems.

As one recent example of the state of the art in autonomous driving, the
three DGC competitions, held in March 2004, October 2005 and November 2007,
involved hundreds of autonomous vehicles that demonstrated varying levels of
capability. In the first and second competitions, vehicles had to demonstrate
their ability to navigate in an off-road, desert environment, travelling up to 150
miles (240 km) at speeds of up to 50 mph (80 km h−1) using sensory information
to determine where it was safe to drive. In the first competition, only five
vehicles travelled more than a mile, with the vehicle travelling the farthest
only travelling approximately 12 km (7 miles). By the second competition, three
vehicles were able to complete 212 km (132 miles) of driving with no human input.
The third round of the competition shifted to urban driving, with six vehicles
completing approximately 60 miles of driving in environments that included
city streets, parking lots, traffic intersections and both human and robotically
controlled vehicles.

The contributions of this paper are to give a brief overview of some
of the main technologies and architectures that have been used to achieve
autonomous driving, describe some of the lessons that we have learned
in implementing autonomous navigation systems and, most importantly,
describe some of the upcoming challenges and opportunities that we see
for the field. Our insights are motivated by our participation in the DGC
competition, as well as our research interests in autonomy, robotics and
control. We focus specifically on autonomous vehicles operating in traffic
and touch on some of the interesting dynamics that arise from interactions
between vehicles.

The paper begins with a more detailed description of the 2007 DARPA
Urban Challenge (DUC) competition, focusing on the main approaches,
architectures and lessons from the competition. We then describe some of the
challenges facing autonomous driving, especially those related to driving in
environments with traffic and humans. Finally, we provide a description of
some of the opportunities for autonomous vehicle technologies in the short and
medium term.

2. Approaches and lessons from the 2007 DUC

We begin with a brief summary of the 2007 DUC, focused on the approaches
taken by the authors’ teams and some of the experiences and lessons based on
our participation in the competition.
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(a) Urban challenge overview

The DUC was announced in June 2006 as the third in the DGC series of
competitions. While the first two DGC competitions focused on driving in off-
road (desert) environments, the third DGC competition was based on urban
driving. At the time of the initial announcement, a set of basic driving scenarios
was described, including navigation on roads with other traffic, operation at
intersections with precedence rules and parking in parking lots. To participate
in the final race, teams had to pass a site visit in April 2007 that tested basic
autonomous functionality and a qualification event in October 2007 (just before
the race).

The basic specifications for all of the DGC competitions were that the vehicles
had to operate completely autonomously, with no human input. A route network
definition file (RNDF), which included GPS locations for intersections and
selected waypoints, plus specifications of the number of lanes and directions on
road segments, was provided ahead of time, with a description of the tasks that
needed to be carried out. In the case of the urban challenge, the tasks were given
as individual ‘missions’ that consisted of reaching a set of checkpoints in a certain
order. The vehicles had to plan their routes to the checkpoints using available
roads, including the ability to re-plan if the route was blocked. GPS positioning
was available, although signals could be blocked by buildings or trees. The only
other input into the vehicle was a ‘E-Stop’ unit that signalled whether the vehicle
was allowed to run autonomously and allowed the race organizers to pause or
disable a vehicle remotely.

The site visits consisted of a set of six basic tests that included safety
demonstrations, lane following, mission planning and intersection operations. The
safety demonstration consisted of bringing the vehicle to a speed of 32 km h−1

(20 mph) and then showing that it could be brought to a stop within a distance
of 20 m using the remote E-Stop unit. Additional tests were used to verify that
the vehicle could travel down a road with marked lane lines, stop at intersections,
interact with stopped and moving vehicles on the road (going in either direction)
and properly operate at intersections with a variety of patterns of arrivals of other
vehicles. A typical site visit course is shown in figure 1a.

The qualifying event consisted of three separate tests, in addition to a basic
vehicle inspection and safety verification (stopping using the E-Stop unit).
The qualifying event was carried out at George Air Force Base in southern
California, an unused military base consisting of suburban streets and buildings.
An overview of the qualification event courses is shown in figure 1b–d. Area A
(figure 1b) tested the ability to operate in traffic and consisted of a road
with approximately 12 cars circling in opposite directions at 16–20 km h−1

(10–15 mph) around a loop. The autonomous vehicles had to cross the oncoming
traffic to turn into and out of a road across the middle of the course,
obeying appropriate traffic rules. Area B (figure 1c) was a long course that
was used to test the ability to plan and execute missions on different types of
roads, navigate and park in parking lots and avoid static obstacles, including
parked cars and areas marked off by traffic cones. Area C (figure 1d) was an
intersection test, with a sequence of increasingly complicated tests involving
different combinations of cars arriving at the intersection before and after the
autonomous vehicle.
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(a)

(b)

(c)

(d)

Figure 1. Overview of the site visit and NQE courses used for the DUC. (a) Site visit course,
(b) NQE area A, (c) NQE area B and (d) NQE area C.

Of the 35 teams that participated in the national qualifying event (NQE),
only 11 teams continued on to the final urban challenge event (UCE). The course
is shown in figure 2, and it included mostly paved roads with one lane in each
direction. It also included parking spaces, a traffic circle, a one way dirt road,
and a four lane separated highway. Each vehicle was required to complete three
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Figure 2. The urban challenge event. (a) Line-up of the 11 cars in the final race. (b) Course map
with several environmental elements noted.

missions, each approximately 30 km long. The individual missions included six
sub-missions which required the cars to achieve a series of checkpoints and return
to the traffic circle area. All 11 qualifying robots were allowed to interact in the
UCE course simultaneously with additional human driven cars.

Of the 11 final teams, only six autonomous vehicles finished all required
missions. The first prize was awarded to ‘Boss’ developed by Tartan Racing,
a team led by Carnegie Mellon University. The second-place finisher was
Stanford Racing Team’s ‘Junior’. In third place was ‘Odin’ from Team
VictorTango at Virginia Tech. Vehicles from MIT, Cornell, and the University
of Pennsylvania/Lehigh also successfully completed the course. Team Oshkosh,
IVS/Honeywell, Team UCF, Team AnnieWay, and CarOLO started the race but
did not finish.

(b) System architectures

A variety of system architectures were used by the teams that participated
in the DGC competitions. In this section we give a brief overview of the main
approaches that were used and some of the trade-offs involved. Much more
detailed descriptions of the architectures of the DGC vehicles are available in
the literature (Iagnemma & Buehler 2006; Iagnemma et al. 2008).
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Figure 3. High level systems architecture for urban driving.

At a high level, most vehicles in the competition decomposed the problem into
four basic subsystems: sensing, perception, planning and control. A sample block
diagram showing these functions is shown in figure 3.

The sensing subsystem was responsible for taking raw data measurements. For
the vehicle, this included GPS, IMU (inertial measurement unit) and odometry
measurements (or an off the shelf system that fused these together); several teams
also included vision for lane and stop line detection. For perceiving the static and
dynamic urban environment, measurements included laser range finders, radar
and cameras. Most teams also segmented the laser (e.g. clustering) and vision
data (e.g. lane finding) in order to produce a data product of smaller size that
was easier to process.

The perception subsystem was responsible for creating usable information
about the vehicle and its environment. Vehicle estimation included pose (inertial
position, velocity, attitude, rates) as well as map relative information (e.g.
the vehicle location within a lane or map); the latter typically used vision
or laser measurements to help to produce map relative estimates. Estimation
of the environment was accomplished in a number of ways, primarily because
of the variations in sensors, computation and resources. For example, most
teams developed monitors around the vehicle (front right, front left, side, etc.)
and estimated/reasoned about elements such as the location, velocity, lane of
other cars, and sensor occlusions. For example, the Cornell team developed a
Rao-Blackwellized particle filter (Miller & Campbell 2007) to accurately track the
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other cars relative to its vehicle with sub-metre accuracy. Additional reasoning
components were then developed using these data to provide the planners with
appropriate information.

The planning subsystem typically included common components such as path
planners, behavioural planners and route (map) planners. These varied, however,
across different implementations. For example, the MIT team used a combination
of a navigator that specifies a goal point and a motion planner that finds a feasible
path to the goal using a unique sampled-based approach called closed-loop rapidly
exploring random tree (Kuwata et al. 2009), while the Cornell and Caltech teams
used optimization based path planners (Hardy et al. 2008). Most behavioural
planners were built around finite-state machine logic, although the Georgia Tech
team used a variety of low-level behaviours and selected based on either high-
level decision-making or lower-level ‘voting’. A key element in most planners
was reasoning about the probabilistic information coming from the perception
subsystem, which was typically accomplished with a finite-state machine. For
special behaviours, such as operation at intersections, zones, and blockages,
custom components were usually designed. Finally, most teams developed an
‘escalation planner’ for anomalies that could occur (such as large perception
mistakes); if this was invoked, a variety of actions were taken, typically after
timers expired, including reducing or removing constraints in planners.

Finally, the control subsystem included the actual actuators and commands to
drive the car; information for the control law would come from some combination
of the higher level planning (i.e. the proposed path), and/or direct sensing in
some cases in order to increase the speed of response and avoid obstacles. The
vehicle actuation varied across the cars and the teams. Smaller cars, such as the
Prius and Jetta, made use of existing drive by wire systems, while larger cars,
such as the Chevrolet Tahoe and Range Rover, typically used retrofitted motor
drives for actuators such as braking and steering. (Each team’s choice of vehicle
was based on their assessment of the probable manoeuvres required, available
resources and partnerships, and ease of modification.)

(c) Competition experiences

The architectures and approaches that were developed by each of the teams
were tested at three stages during the DUC competition: a site visit approximately
six months before the competition, the NQE in the week before the competition
and, for those teams that qualified, the final competition, on 3 November 2007.
In this section we briefly describe how the four team represented by this paper
fared at the NQE and competition.

At the NQE, the Georgia Tech vehicle (shown in figure 4) first attempted
area C. The run was fairly successful, albeit a bit cautious and slow as the vehicle
was treating obstructions on the side of the road (e.g. barrels) as parked vehicles
that require a full-fledged lane-changing manoeuvre for their negotiation. The
next test, area A, was less successful in that a GPS failure caused the vehicle
to believe that it was stationary, while in reality it was driving straight into
a concrete rail. The car was quickly repaired and moved to area B. There,
the car did not go far since one result of the crash was that all the sensors
were uncalibrated. A night of calibration and programming left the car ready
for area C again, which it cleared without problems. However, the two failed
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Figure 4. The Georgia Tech vehicle Sting 1 at NQE test area C.

attempts (areas A and B) the previous day caused the Georgia Tech team to be
taken out of the competition. Both of these failed attempts can to a certain
degree be attributed to the complexity of the system, with unforeseen error
modes and connections between modules having a negative impact on the overall
performance of the system.

Caltech’s vehicle, Alice, encountered several unexpected issues in its testing.
One set of problems arose from the tight spacing at several points in the course,
where concrete barriers and other obstacles did not allow Alice to traverse a
section of road while maintaining the required 1 m spacing to each side of the
vehicle. In order to proceed through the area, Alice had to progress through a
series of internal planning failures before finally driving with reduced buffers on
each side of the vehicle, causing very slow (but mostly correct) progress. This was
fixed in subsequent runs by reducing the size of the buffers that Alice maintained
on its sides. A more serious bug was detected in area B, the traffic merging
test, related to the way that intersections were handled by the planning logic.
While the intersection handling logic was active, another part of the higher-level
logic planner could switch into a new state if it detected a nearby vehicle (e.g.
one of the human-driven cars was predicted to collide with Alice or its buffer
region). This change in state de-activated the intersection handler and could
cause the vehicle to enter the intersection when the path became clear (without
invoking the proper merge logic). This bug was very difficult to fix (and test) in
the field and eventually caused Alice to execute some very unsafe behaviour on
the second attempt at area A, and it was disqualified from the competition. Alice
was able to successfully complete area B on a second attempt, as well as almost
all of area C.

The MIT NQE experience started well in area B, but then had some issues
in area A (miscalculation of the time gap between oncoming cars led to a very
conservative behaviour at one of the intersections) and area C (executed the
precedence checking at the intersections very well, but went around an added
road block rather than performing a U-turn as desired). The area A issues were
resolved on the second attempt, but, even though Talos was still progressing, it
ran out of time on the second attempt of area B (took a long detour) and went
off-road again at the first blockage in area C. Fortunately these problems were
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resolved, and areas B and C were completed on the third attempt, and MIT was
included in the UCE. The final event went well, and despite several incidents with
other robots (discussed later), Team MIT finished fourth.

The Cornell NQE experience included one flawless run in area C, and two
runs in both areas A and B. In area A, Cornell had a conservative time gap
for merging in the first run, which caused the vehicle to complete only several
loops of the course; this time gap was then reduced, and nearly 10 loops were
completed in the second run. In first area B run, the primary issue Cornell had
was driving through the ‘Gauntlet’ area, with parked cars on both sides. Because
of the large size of the Chevrolet Tahoe from Cornell, Cornell had to move over
the centreline; however, Cornell’s path planner had a constraint that did not
allow this, so a U-turn manoeuvre was started. After the initial area B run, Team
Cornell slightly adjusted the centreline spacing parameters in the online path
planning optimization, which allowed Cornell to successfully complete area B
during the second run. In the UCE, Cornell was one of six vehicles to finish
the challenge. Several incidents are discussed later, but the primary performance
item of note was a faulty throttle during the final mission that capped the speed
between 10 and 15 km h−1.

Many other issues affected the overall performance of the vehicles, including
sensor noise, environmental complexity and other sources of uncertainty. Each
team chose specific approaches to deal with these sources of potential error,
including failures in both sensing and actuation systems. More details are
available in technical papers and reports about the individual vehicles (Burdick
et al. 2007; Leonard et al. 2008; Miller et al. 2008).

The 2007 DUC was won by Carnegie Mellon University (Urmson et al. 2008),
with second place going to Stanford (Montemerlo et al. 2008) and third place to
Virginia Tech (Bacha et al. 2008). The other team to finish the course was the
University of Pennsylvania/Lehigh (Bohren et al. 2008).

3. Challenges in autonomous driving

In this section, we describe some of the future research directions that remain
open challenges in order to integrate autonomous vehicles into existing road and
transportation networks. We have broken this down into six overlapping areas
where we believe the most research is required.

(a) Systems integration

Developing robust autonomous vehicles poses several integration challenges.
There are numerous constraints on the navigation system that must be addressed,
such as the location, field of view, and mounting type for the sensors, and cooling
and power for the computer system. Many of the DGC vehicles had numerous
sensors for full coverage, but a key challenge for the future is to determine how
autonomous driving can be accomplished with fewer, cheaper and conformal
mounted (thus limited field of view) sensors.

Software integration was challenging because of the large number of sensor
processing, navigation, planning, control, and safety processes that must run
simultaneously. Enabling asynchronous operations using tools such as MIT’s
lightweight communications and marshalling (Huang et al. 2009) proved to be
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Figure 5. Robots in a traffic jam: view from Team Cornell’s vehicle (as a driver would see). (a) Team
Cornell’s vehicle approaches the traffic jam, and begins to pass a stopped vehicle deemed disabled.
(b) Team Cornell’s car moves into the opposite lane to make a pass, but gets trapped in the wrong
lane as the 30 m gap closes. Other vehicles pass Team Cornell’s car as it waits for the intersection
to clear.

very beneficial. Efficiently handling the load on each processor can also be
difficult. A further challenge is to ensure that the integration of the hardware and
software is done in such a way as to ensure sufficient robustness to component
(e.g. sensor or computer) failures.

Algorithmic integration issues include ensuring that the assumptions are
consistent between the algorithms on what (and the precision/noise levels)
information they are either providing or receiving. This is typically handled using
interface requirements documents, but this was difficult to manage on the time
scales of the DGC, and can also be difficult to predict ahead of time. Testing of the
overall system then becomes paramount to ensure that the overall performance
and robustness meet the specifications.

Determining what information is relevant, and how to display it to any human
occupants or remote supervisors is a further challenge that also needs to be
addressed for an autonomous system to be readily adopted.

(b) Prediction and trust

The recent DUC, despite its enormous success, demonstrated the current
brittleness of robotic intelligence, where small perception mistakes would
propagate into planners, causing near misses, human-assisted restarts, and even
a few small accidents. Fletcher et al. (2008) give a detailed technical account of
collision between MIT and Cornell, which could have been prevented if either
of the cars had anticipated the actions of the other car. As another example,
consider a traffic jam scenario from the DUC (Miller et al. 2008). Figure 5a
shows Team Cornell’s car approaching a traffic jam: a robot was disabled at
the stop line, with two human driven cars behind it. The last of the vehicles left a
large space between it and the other two cars. Unfortunately, this large space was
longer than the 30 m DARPA-specified safety zone (i.e. ‘rule’) that surrounds each
intersection. Because the vehicle was outside the safety zone, Team Cornell’s car
was technically allowed to consider it disabled and pass, according to the rules.
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After waiting 10 s, Team Cornell’s vehicle did exactly that, as shown in figure
5b. But, a human driver, with learned behaviours and practice, would never take
this action because they would ‘anticipate’ that a car would potentially make a
turn, and move towards our vehicle in the opposite lane. This is also exactly what
happened, as shown in figure 5b.

The traffic jam event is unique because no DUC rules were broken: robots
were allowed to pass other disabled robots after waiting for 10 s, provided they
were outside intersection safety zones. Despite following the rules, the decisions
made by the vehicle were still undesirable. Such a situation emphasizes the
importance of higher level reasoning about other vehicles’ behaviour that was not
incorporated into the current state of the art: had Team Cornell’s car anticipated
the motions of the other vehicles, it would never have tried to pass in the
first place.

The analysis of these events generally points to the difficulties in connecting
the currently separate modules for probabilistic perception and deterministic
planning. The current state of the art typically consists of separate approaches
to perception and planning, with relatively little work on integrated intelligent
autonomous systems, much less on the development of a unified, formally
verifiable theoretical framework. The work of Rosencrantz et al. (2003), Brooks
et al. (2006) and Gonzalez & Stentz (2007) used partially observable Markov
decision processes for path planning under uncertainty. But, while the problem
is cast in a formal way, these methods generally require discretization that
does not scale well; recent results have attempted to overcome these challenges
(Pineau et al. 2006).

Before beginning to address anticipating the actions of other vehicles, it is clear
that more reliable perception methods are required. The current state of the art of
tracking from a moving vehicle was in the DUC; Team Cornell developed a formal
Bayesian estimator that could track car-like obstacles reliably for tens of seconds
(Miller & Campbell 2007), to less than 1 m, with less than 0.2 m s−1 accuracy. But,
on occasion, a cement barrier would be mistaken for a car, or a large bush would
be initialized with a strange velocity because of occlusion reasoning. It is clear
that more complex representations and reliability for perception are required.
For example, including object identification information in the estimator, and
selectively incorporating vision sensing could improve these mistakes. Additional
research is also required to handle more complex scenes, with clutter, and
obstacles such as people and bicycles. Improved ground models, representations
and reasoning about sensor returns are potential areas of research to address
these more complex environments. Finally, with reliable tracking and object
classification of tens of seconds or more, one can begin to address the concept
of estimating the behaviour of an object. Human drivers are excellent reasoners
about other drivers’ behaviours, based on their experiences, even with a small
amount of data (eye contact). Areas of research to address this problem include
hierarchical graph models that build upon the reliable, lower level tracking, and
representations to capture the required higher level information for planning.

Given a robust, probabilistic snapshot of the environment, which includes
diverse elements such as tracking, classification and behaviours, one can begin
to consider the concept of anticipating the actions of others, or reasoning
about what others may do, and use this information in planning. One key
question is, what level of abstract is required for anticipation? Perhaps it is just
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position/velocity/shape, which would be helpful in preventing collisions. But,
object identity may give more information, such as reasoning about the potential
motion differences between a person and a telephone pole. Finally, human drivers
still behave in a way that yields an important goal for research: they can
typically tell the difference between a good or dangerous (or unaware) driver,
and can use this information in their own decision making. Research here would
require estimating the behaviours of other drivers, anticipating their potential
actions, and incorporating this (probabilistic) information into planning—no
small task.

Two other issues are worth noting when considering perception and prediction
in intelligent vehicles. The first is the concept of trust. When driving past another
car on the road, a car may come within 1 m of the other car. This is possible
because the drivers both obey certain ‘rules of the road’; just as importantly, both
also ‘trust’ that the other will obey these rules. In the DUC, teams incorporated
trust in various ways, typically by assuming basic rules of the road. But, when
these rules were breached, as in the MIT–Cornell collision (Fletcher et al. 2008),
there were no mechanisms for compensation in order to prevent problems. Areas of
research here include what representations to use for trust, and how to incorporate
trust into both the perception and planning of the vehicle. The second issue is
sensing range, as discussed in §3e.

While the DUC demonstrated that autonomous driving will require more
robust and richer perception outputs of the environment, including anticipating
and reasoning about other obstacles, planners must also be able to handle
uncertainty, as the outputs will always be uncertain. This subject is described
in more detail in the sections below.

(c) Interactions between agents

Research on improved sensing, control and decision algorithms will
undoubtedly make autonomous driving more reliable in the future. However,
increases in capabilities and infrastructure for supporting inter-vehicle
communications will also play an important role. With the increased inter-vehicle
communications, new types of algorithms will be possible that not only rely on the
individually perceived world, but also on the shared experience between vehicles.
Examples where this increased communications capability can be potentially
useful include (i) by sharing information about driving decisions and intentions,
a more safe coexistence between autonomous vehicles should be possible, (ii)
the available information can be propagated through the network of cars to
avoid hazards/obstructions/inconveniences such as accidents, traffic jams and ice-
patches, and (iii) the fuel economy of the overall traffic network can be improved
(in conjunction with smarter fuel systems) by propagating information about
driving conditions. We will here discuss some of these issues.

In order for autonomous driving to reach its full potential, it is vitally
important that the cars cooperate in the sense that they agree on traffic rules,
whose turn it is to drive through an intersection, and so forth. For this, robust
agreement protocols must be developed. Recent work on how to make multiple
vehicles agree on common state variables, e.g. using consensus or gossip algorithm
(Boyd et al. 2006; Olfati-Saber et al. 2007), provides a promising starting point
for this undertaking.
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When running such agreement algorithms, it is conceivable that not all vehicles
will cooperate. They may, for example, be faulty, or simply driven by human
operators, and such vehicles must be identified and isolated in order to balance
autonomy with human inputs. This will be true on individual cars, but even more
so in mixed human–robot networks. Questions of particular importance (that will
have to be resolved using the available interconnections) include the following.
(i) Safety: autonomous cars must be able to identify human-driven cars and then
not drive into them even though they may violate the robot driving protocol.
(ii) Opportunism on behalf of the human drivers: people are already driving badly
on the road when the other cars are driven by people. How will they act if no-one
is driving? This needs to be taken into account by the autonomous cars (i.e. not
only will people not follow the ‘correct’ protocol—they might be outright hostile).
(iii) Collaborative versus non-collaborative driving: how should non-cooperative
vehicles be handled in an algorithmically safe yet equitable manner?

It should also be noted that humans rely almost entirely on non-verbal
communication cues when signalling intent in traffic. An additional challenge
when understanding how to structure inter-vehicle interactions is thus to try to
capture this non-verbal communications aspect. For instance, the vehicles must be
able to estimate which mode of operation neighbouring cars are in (not just their
physical states such as positions and velocities) in order to be able to adequately
predict and plan for upcoming manoeuvres.

To facilitate inter-vehicle communications and cooperation, it is important that
an effective information-exchange infrastructure is in place. In fact, a vehicle-to-
vehicle (V2V) communication technology is already under development (together
with V2I—vehicle-to-infrastructure) as part of the Vehicle Infrastructure
Integration initiative. The basic idea is to equip the vehicles with both
transmission and reception capabilities, and to have them transmit automatically
over the established ad hoc networks, e.g. based on short-distance wireless
radio channels.

Some of the proposed uses of the V2V and V2I networks include using shared
information for ensuring safe operation, avoiding traffic congestion and enabling
more fuel efficient modes of operation (for a representative sample, see Bana &
Varaiya 2001; Wu et al. 2004; Santa et al. 2008; Economist 2009).

In fact, using the V2V communications networks, information about pile-ups,
traffic congestion, dangerous driving conditions, and so forth, will be propagated
to vehicles, and the vehicles themselves will act as routers for enabling the needed
multi-hop capabilities. In conjunction with this, network routers will be placed
along main traffic arteries. The fact that such networks are already in the pipe-
line has implications for autonomous driving, in that certain aspects of the needed
infrastructure are both economically and politically within reach.

(d) Learning

The DUC also demonstrated the limitations of robot cars to robustly learn
from prior experiences and/or mistakes, which is a key characteristic for long-
term operations envisaged for the future. For example, during the NQE, many
teams discovered corners in the RNDF files, in particular near intersections, that
caused difficulties for the route planners and the RNDF files had to be manually
tweaked before the missions. Furthermore, few, if any, teams updated the RNDF
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Figure 6. (a) Location of Cornell’s vehicle (black square) during the 53 emergency brake slams it
performed during the DUC. (b) Location of Cornell’s vehicle (black square) during the 10 times it
went into blockage recovery during the DUC.

database to re-align the road network in real time. For example, the MIT team
used a system that was designed to use locally perceived information in preference
to potentially inaccurate map data to navigate a road network while obeying the
road rules. However, during the course of the UCE and NQE, many of the roads
were traversed multiple times (10–20 for some), providing ample data to update
the prior map information (encoded in the RNDF). For example, had there been
time to implement this type of update it might have been particularly useful
during the multiple slow descents of the MIT vehicle in the dirt road section.
Some teams implemented a basic form of this adaptation using online updates
of the safe speed to drive and the time estimates to traverse sections of the
road network.

With the breadth of sensor data, from which important driving decisions must
be made, learning from perception mistakes is a particularly important area. As
an example, consider figure 6, which shows the DUC course (map), along with
an overlay of 53 instances of emergency brake slams (figure 6a) during the final
event by Team Cornell’s vehicle, along with 10 instances of blockage recovery
(i.e. on-line debugging; figure 6b). What is significant is not the number of these
instances, but their repeatability over multiple passes near the same areas. Many
of the commands occurred where a single concrete barrier jutted out from the
others, making it appear (to the perception algorithms) that it was another car.
Team Cornell’s car went through the same brake/debug procedure at every pass
in order to be safe; however, a human would have learned over time that the
mistake (and subsequent plan) was repeatable, and could be learned.

Team MIT also had several incidents with other slowly moving vehicles that
were incorrectly classified as static. Some approaches to address this issue appear
in the literature, but these were thought to be too difficult with the complex sensor
suite and scene geometries in the DUC, so these were not pursued and a simpler
classification approach based on a minimum speed threshold was used. This
approach worked well in testing and during the NQE, but complications appeared
during the UCE during the numerous interactions with other autonomous
vehicles. These complications included the collision with Cornell (Fletcher et al.
2008). Since these mistakes were repeated several times during the UCE for
similar reasons, it is probable that a human operator would have learned from
these mistakes, and thus it is plausible that a correction to this behaviour could
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have been learned autonomously. However, there clearly is a trade-off in safety
versus conservatism, and using learning algorithms in situations such as this
where failure is not acceptable is a significant algorithmic challenge.

These examples illustrate some of the challenges for future autonomous driving,
which includes the need to improve the ability of the robots to learn and
adapt to the environment and learn from past experiences at all levels of the
planning architecture.

For example, at a low level this includes learning about the vehicle and core
system capabilities, such as the vehicle dynamics and how these might change over
time, and in particular adapting to hardware or sensor failures (e.g. the stuck
accelerator for Team Cornell) or calibration changes (Bohren et al. 2008). As
mentioned above, it also includes detecting features/properties (e.g. road, curb,
painted lines, sign locations, road surface quality and type) during initial visits,
updating the database, and using that information in later trips. It also includes
learning how to better execute advanced driving skills, such as judging which
lane to be in when driving in heavy traffic, and perhaps recognizing where typical
traffic delays occur and designing more efficient routes at certain times of the day.

Persistent, long-term operations will also be required at the higher level. For
example, each team typically had a mechanism for freeing up the vehicle if
no progress was being made (called an ‘escalation planner’ by Team Cornell,
and ‘failsafe modes’ by Team MIT). These typically involved a relaxation of
the constraints imposed on the planner as the stopped time increased. These
constraints were typically tested extensively in simulation and experiment, but
still occasionally led to some undesirable behaviours. For example, the failsafe
timer relaxed the constraints posed by the roadside curbs when little progress
in front of the full road width blockage added at the end of the test in the
NQE area C. The result was that MIT Talos was able to complete the course by
going around the roadblock instead of doing a U-turn. The U-turn behaviour
was added, but then that caused a detour in a following area B test. More
extensive simulation could be used to identify these types of behaviours, but
this is difficult to do since any change in the planning, perception, or control
systems can lead to a new, unexpected response. Thus, more formal verification
and validation procedures are needed for future autonomous systems (see §3f ).
Furthermore, even though these algorithms were tuned extensively, the process
for relaxing the constraints was typically static once the race started. A future
challenge is to develop more systematic methods for designing the failsafe modes
and enabling the mode switching laws to adapt to the behaviour during previous
‘unsticking’ events.

Trust was discussed previously as a key issue in perception. It is important that
techniques also be developed to adapt the models/trust of other drivers, bikers,
and pedestrians based on a classification of prior meetings. Classification models
of the far-away behaviour can then be updated based on the perceived levels of
safety of recent meeting events (e.g. at intersections and crosswalks).

(e) Scaling up

As autonomous driving transitions from the somewhat constrained DUC
environment to real driving, a number of issues must be addressed, pertaining
to the ‘scaling-up’ of the system; cars will have to go faster and deal with higher
traffic and obstruction (red lights, pedestrians, etc.) densities.
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(a) (b)

Figure 7. Sting sensor coverage producing an effective sensing range of around 80 m, resulting in a
maximum speed of 50 km h−1. (a) Six Prosilica GC 650 colour gigabit Ethernet cameras and three
EVT-300 radars. (b) Five SICK LMS 291 LADARs and forward-looking Riegl LMS-Q120 LADAR.

One clear lesson from the DUC is that autonomous driving in traffic at
50 km h−1 (13.9 m s−1) is significantly different from that at 10 km h−1 (2.8 m s−1).
This is partially owing to the drop in response time needed to support driving
at those speeds. The response time Tresp is roughly an additive function of the
time it takes (i) to sense the environment, (ii) to process the sensor data, (iii) to
reach a control decision, (iv) to command the actuators, (v) for the actuators
to respond and (vi) for the vehicle to respond (see Kelly & Stentz (1998) for a
thorough discussion of this topic). Based on the maximal range D over which the
sensors can detect other vehicles and obstacles (this range is typically obtained
with radars or laser range sensors), a back-of-the-envelope calculation gives that
the maximum speed supported by the system is proportional to D/Tresp. (The
Georgia Tech vehicle’s sensor footprint is shown in figure 7 together with the
maximum effective range associated with the different sensing modalities.) All
four teams represented by the authors performed this type of calculation, reaching
a maximum top speed of between 40 and 50 km h−1. (The maximum speed of the
DUC was 30 mph (48 km h−1).)

For example, Team Cornell’s car showed that initial, fairly uncertain tracking
started at about 150 m range (s ≈ 10 m), followed by more accurate tracking at
60 m (s < 1 m). At 50 km h−1, a car driving towards another car has approximately
two seconds of accurate information to make decisions. At 100 km h−1, a car
has one second of accurate information. Clearly, either computation must be
improved, or anticipation/reasoning algorithms must be able to execute extremely
fast, or sensing must improve its range capability in order to increase the speeds
of the vehicles.

As a consequence, the leap from 50 to 150 km h−1 is going to be highly non-
trivial and, arguably, the hardware and software used in the DUC do not directly
support this leap. For this to be possible, longer range sensing is required,
together with a reduction in Tresp, e.g. by more dedicated perception and decision
algorithms. As vehicle speeds increase, the dynamics of the vehicles will also
become more of an issue, with slipping, skidding, and swerving all of a sudden
playing a role, and full-scale dynamic friction models will be needed to understand
these issues.
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Another aspect of the ‘scaling-up’ phenomenon is the increased traffic density.
As this density increases from the mild suburban driving in the DUC to truly
urban or highway driving, a number of research issues must be resolved. These
issues are quite different if the surrounding cars are travelling in the same
direction (as on highways) or in opposite directions (as in urban driving), and we
will treat these two cases as separate.

On highways, where the flow of the traffic goes in the same direction, new
autonomous driving paradigms will become important beyond the ‘single-car’
paradigm, in which a safety zone is maintained around the vehicle. In fact, on
highways, vehicles are executing provably unsafe manoeuvres all the time, based
on the assumption that the surrounding vehicles are acting in a predictable and
correct manner (like driving in the right direction and not arbitrarily slamming
the brakes). For example, one can use platooning ideas in these environments,
where the vehicles act together in tightly coupled formations. This way of
organizing the driving would support a higher traffic density. Autonomous driving
in platoons will have to rely on inter-vehicle communications in conjunction with
sensing algorithms for its operation, and this line of thinking was at the centre
of the California Partners for Advanced Transit and Highways (PATH) project,
for example (Chang et al. 1991; Darbha 2002).

In urban environments, one can no longer make the assumption that the traffic
flow is (more or less) uniform. Here, the higher traffic and obstruction densities
require better sensing and tracking algorithms in that models of the intentions of
surrounding vehicles are needed in order to be able to predict what they are doing.
And to make matters worse, models are probably needed for how the surrounding
vehicles will react to whatever action one takes as well, which is currently a largely
unexplored area of research.

When driving through an urban environment, it is possible to encounter
pedestrians, dogs, bicycles and other moving objects in addition to other cars.
As such, it is important that the sensing algorithms faithfully manage to track
and classify these obstructions since a collision would be highly undesirable. An
explicit handling of the trade-off between performance and risk will become key
for managing these types of environments in that there is a big difference between
just ‘seeing’ an object and ‘knowing what it is up to’.

(f ) Verification and validation

It is clear from the experiences at the DUC and the technical challenges
described above that a key hurdle for autonomous systems will be the ability
to verify that the system can operate safely and robustly. Safety is particularly
important in any environment in which humans are present and particularly
challenging environments in which humans control the agents that autonomous
vehicles must interact with. The technologies trends and opportunities described
in the previous sections must be integrated and tested in a manner that ensures
proper operation.

Current methods for verifying that a specification is met typically involve
substantial amounts of simulation and testing. Simulations can be very effective
for checking large numbers of operating conditions in which the dynamics of
the system and its environment can be captured by a model of appropriate
complexity. Most simulation-based verification processes are augmented with
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substantial systems testing. As the experiences of the DUC teams indicate, both
of these techniques are essential for proper operation, but also fail to capture
many important situations that can occur during actual operation. None of the
authors’ DUC teams applied formal reasoning about safety and performance of
their system, in part owing to the tight time constraints but also owing to the
lack of good tools that were compatible with the verification problems that arose.
Some post-race formal analyses were performed (Wongpiromsarn & Murray 2008;
Wongpiromsarn et al. 2009a), indicating the potential utility of such approaches.

Improvements in verification require new languages, formalisms and tools
for specification, design and verification of autonomous systems. Existing work
in computer science (algorithms, distributed computing systems, formal logic,
model checkers) and system theory (control systems, signal processing, estimation
theory, game theory) must be combined to handle dynamic operations better
in uncertain, noisy and potentially adversarial environments. New techniques
in hybrid systems (Frehse 2008), model checking (Lamport 2002; Holzmann
2003) and stability certificates (Parrilo 2003) provide promising directions for
future research.

As an example of the types of techniques that can be brought to bear, consider
the problem of navigation through an intersection when other cars are also
present. The logic for handling this situation must properly react to combinations
of other vehicles that are also at the intersection, when they arrive relative to
your vehicle, and how to react if something unexpected happens. Typically, a
fairly complex finite-state machine is used to keep track of the different modes of
operation (queuing, waiting for intersection to clear, etc.), combined with sensor-
based measurements of the actions and timing of other vehicles at the intersection.
Once all of the code is written to implement this logic, it must be tested to verify
proper operation. However, it is not possible to test for every possible combination
of events at the intersection, especially when one starts to consider the complex
dynamics of multiple vehicles stopping and starting as they react to the others.

A formal approach to this problem consists of generating a set of specifications
that capture all of the possible motions at a high level as well as the proper (safe)
operations of the vehicle. For example, we might require that we never proceed
into an intersection if someone else has the right of way while at the same time
requiring that we eventually traverse the intersection (to avoid a ‘solution’ in
which we stop and never proceed). These specifications can be written precisely
using linear temporal logic (Manna & Pnueli 1995), an extension of traditional
logic that allows reasoning about sequences of actions. A specification written in
linear temporal logic might take the form

(finit ∧ �fenv) �⇒ (�fs ∧ ♦fg), (3.1)

where finit is a temporal logic formulate that describes the possible initial
conditions for the system, fenv specifies the possible actions of the environment,
fs describes the safety properties of the system and fg describes the progress
goals. The temporal logic square symbol means that the formula following it
should be true for all times and the diamond symbol means that the formula
should eventually be true. Thus, equation (3.1) can be read as saying that if the
vehicle starts in a given set of initial operating states and the environment satisfies
some specification on its possible actions, the system should always maintain safe
operation and eventually reach its goal.
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A wide variety of tools exist for analysing such systems and verifying their
correct behaviour. For purely discrete systems (no dynamics), two approaches
to verifying temporal logic specifications are theorem proving and model
checking. In theorem proving, one attempts to prove specifications by applying
a sequence of logical steps that prove the desired statement is true. Tools
such as PVS (Owre et al. 1998) allow this to be done in a semi-automated
fashion. An alternative approach is model checking, in which one attempts
to enumerate exhaustively all possible execution sequences and verify that
the given temporal logic specification holds at each step. Tools such as SPIN
(Holzmann 2003) and TLC (Lamport 2002) are able to efficiently enumerate
all possible executions and can be used for quite large systems. The chief
limitation in most existing approaches is the way in which dynamic processes
are modelled and analysed, although symbolic model checkers are now available
(see Pappas (2010) for a good overview) and we have applied these to
several problems related to autonomous motion control (Braman et al. 2007a,b;
Wongpiromsarn et al. 2009a).

Despite the progress in formal verification methods in the computer science,
controls and hybrid systems communities, substantially more research is required
to make these methods applicable to problems at the level of complexity of
future autonomous systems. Research on ‘proof by construction techniques’ (e.g.
Karaman et al. 2008; Kress-Gazit et al. 2009; Wongpiromsarn et al. 2009b) shows
some promise, but still requires very simplified descriptions of the environment
and system dynamics. Issues of robustness in formal verification, which are
particularly important for reasoning about physical processes, have not yet
received substantial attention.

4. Opportunities for autonomous vehicle technologies

While the eventual goal of fully integrated, autonomous vehicles is possible
in the long run, there are several shorter term opportunities for applying the
technologies described above in more limited situations. In this section we describe
some of those opportunities.

(a) Vehicle safety systems

There are more than 40 000 deaths in automobile accidents each year in the
United States alone—many owing to diminished capacity, such as drowsiness,
inattention, incapacitation or intoxication. It is clear that advanced safety
systems, warning systems, security, and new sensing and control systems could
improve these numbers.

Sensing systems have already become standard on many cars. Cameras
pointing out the back of the car turn on when a car is in reverse, thus giving
the driver additional sensed information. Proximity radars coupled with warning
bells at varying frequency announce to the driver that the car is coming closer to
an obstacle.

While these sensing systems are becoming standard on many cars, just as anti-
lock brakes did a number of years ago, a combination of sensing and active control
for safety is making its way into luxury automobiles and trucks. Lane departure
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systems have been developed, typically with vision, which monitors if a car moves
outside of a lane. Range and speed proximity to cars in front of a vehicle are also
being monitored using vision, radar or even lasers. Finally, new technology is
being developed that attempts to monitor a driver’s behaviour, including ‘normal’
versus ‘tired’; key attributes include swerving in and out of the lane, and large
changes in speed.

A key hurdle of these vehicle safety systems has been how to integrate
autonomous override control, where the car actually performs an action in
response to a sudden change in the environment. Automated parallel parking
was recently introduced, which operates the vehicle in close proximity to
others. But, important advancements are on the horizon for cases while
the car is moving, including slowing a car to maintain safe distances while
it is in cruise control (adaptive cruise control), actively moving the car
back into lane upon departure, and applying the brakes when an accident
is imminent.

It is envisioned that more and more safety components will be developed
and integrated (Economist 2008) as sensing systems become cheaper, and active
control systems become more reliable and verifiable. Fully autonomous cars, while
still a way into the future, will be on the horizon soon after.

(b) Intelligent highways and roadway infrastructure

As described in the previous subsection, modern automobiles are increasingly
equipped with electronics and software to modify the dynamics of the vehicle,
including radar-based speed and spacing control systems, chassis control
technologies for stability enhancement and improved suspension characteristics,
active control of suspension and braking, and active restraint systems for safety. In
addition, more sophisticated use of networking and communications devices will
allow enhanced energy management between components and vehicle diagnostics
with owner/dealer notification. These advances are now being built up to
study increased interaction between vehicles and the roadway infrastructure,
as automated highways and self-controlled vehicles move from the research
laboratory into applications.

Several groups around the world have explored the use of distributed control
for problems related to intelligent highway and transportation systems. These
problems include increased interaction between individual vehicles to provide
safer operations (e.g. collision warning and avoidance), as well as interaction
between vehicles and the roadway infrastructure.

A representative example of this class of applications is the California PATH
project (California Partners for Advanced Transit and Highways 2006). In 1997
the PATH project developed and demonstrated a system for allowing cars to be
driven automatically down a freeway at close spacing, as shown in figure 8. By
decreasing the spacing of cars, the density of traffic on a highway can be increased
without requiring additional lanes. Additional work within the PATH project has
looked at a variety of other systems for better managing traffic flow (California
Partners for Advanced Transit and Highways 2006) and this has been followed by
several other highway automation projects (Department of Transportation 2010;
Intelligent Transportation Society of America 2010).
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Figure 8. A platoon of cars driving down the San Diego freeway as part of the PATH project.

These applications are particularly challenging since they begin to link
heterogeneous vehicles through communications systems that will experience
varying bandwidths and latency (time delays) depending on the local
environment. Providing safe, reliable and comfortable operations for such systems
is a major challenge to which many of the problems described in the previous
section are directly applicable.

(c) Fully autonomous driving

Fully autonomous driving concepts have been available for some time for tightly
controlled environments, such as dockyards and loading docks (Durrant-Whyte
1996). For vehicles operating in more dynamic environments, automated driving
is not available, but numerous driver aids, including adaptive cruise control anti-
lock brakes, and skid control have been operational for several years. In addition,
much more advanced driver assistance features have recently entered the market,
such as heads-up displays, active parking, auto-braking to avoid collisions, and
lane assist.

Given this trend, there are many future opportunities for fully autonomous
driving, such as extending of mobility-on-demand systems to enable autonomous
cars, trucks, and buses to travel automatically between locations of high
demand and recharge stations, which would help address issues such as
congestion, space and land use, pollution, and energy use. There is also
an opportunity to develop systems to enable higher density traffic flow and
reduced fuel consumption through platooning (e.g. California PATH) or faster
throughput on urban settings through coordinated vehicle motion/signals and
vehicle re-routing given a detection of traffic snarls. For example, Dickey
et al. (2008) developed a model to predict the traffic flows from the
surrounding intersections with an online signal optimization model to obtain
the signal timing plan for the subsequent cycle. With automated vehicles,
one could imagine an even more sophisticated system that obtains real-
time information/routes from the cars to optimize the traffic flow using
both the traffic signals and by providing route congestion feedback to the
cars themselves.
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5. Conclusions

In this paper, we have presented an overview of the current state of the art in
autonomous vehicles and described some of the upcoming technical challenges and
opportunities as we develop the next generation of robotic navigation systems.
Our perspective has been motivated by our participation in the DUC, where
numerous technologies had to be integrated to develop vehicles capable of driving
in realistic urban environments. We believe that the chances for future research
provide many opportunities for exciting work in robotics, controls, artificial
intelligence and many other systems disciplines.
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