
Automated Facial Action Coding System for Dynamic Analysis
of Facial Expressions in Neuropsychiatric Disorders

Jihun Hamma, Christian G. Kohlerb, Ruben C. Gurb,c, and Ragini Vermaa

Jihun Hamm: jihun.hamm@uphs.upenn.edu; Christian G. Kohler: kohler@upenn.edu; Ruben C. Gur: gur@upenn.edu;
Ragini Verma: ragini.verma@uphs.upenn.edu
aDepartment of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania,
Philadelphia, PA 19104, USA
bDepartment of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA
19104, USA
cPhiladelphia Veterans Administration Medical Center, Philadelphia, PA 19104, USA

Abstract
Facial expression is widely used to evaluate emotional impairment in neuropsychiatric disorders.
Ekman and Friesen’s Facial Action Coding System (FACS) encodes movements of individual
facial muscles from distinct momentary changes in facial appearance. Unlike facial expression
ratings based on categorization of expressions into prototypical emotions (happiness, sadness,
anger, fear, disgust, etc.), FACS can encode ambiguous and subtle expressions, and therefore is
potentially more suitable for analyzing the small differences in facial affect. However, FACS
rating requires extensive training, and is time consuming and subjective thus prone to bias. To
overcome these limitations, we developed an automated FACS based on advanced computer
science technology. The system automatically tracks faces in a video, extracts geometric and
texture features, and produces temporal profiles of each facial muscle movement. These profiles
are quantified to compute frequencies of single and combined Action Units (AUs) in videos,
which can facilitate statistical study of large populations in disorders affecting facial expression.
We derived quantitative measures of flat and inappropriate facial affect automatically from
temporal AU profiles. Applicability of the automated FACS was illustrated in a pilot study, by
applying it to data of videos from eight schizophrenia patients and controls. We created temporal
AU profiles that provided rich information on the dynamics of facial muscle movements for each
subject. The quantitative measures of flatness and inappropriateness showed clear differences
between patients and the controls, highlighting their potential in automatic and objective
quantification of symptom severity.
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1. Introduction
Abnormality in facial expression has been often used to evaluate emotional impairment in
neuropsychiatric patients. In particular, inappropriate and flattened facial affect are well-
known characteristic symptoms of schizophrenia (Bleuler (1911); Andreasen (1984a);
Shtasel et al. (1992); Walker et al. (1993); Kohler et al. (1998); Gelber et al. (2004); Gur et
al. (2006)). Several clinical measures have been used to evaluate these symptoms
(Andreasen (1984a,b); Kring et al. (1993); Kring and Sloan (2007)). In these assessments, an
expert rater codes the facial expressions of a subject using a clinical rating scale such as the
SANS (Scale for the Assessment of Negative Symptoms; Andreasen (1984a)), or ratings of
positive/negative valence or prototypical categories such as happiness, sadness, anger, fear,
disgust and surprise, which are recognized across cultures in facial expressions (Eibl-
Eibesfeldt (1970); Ekman and Friesen (1975); Izard (1994)). However, affective impairment
from neuropsychiatric conditions often results in 1) ambiguous facial expressions which are
combinations of emotions, and 2) subtle expressions which have low intensity or small
change, as demonstrated in Figure 1. Consequently, such expressions are difficult to
categorize as one of the prototypical emotions by an observer.

Ekman and Friesen (1978a,b) proposed the Facial Action Coding System (FACS), which is
based on facial muscle change and can characterize facial actions that constitute an
expression irrespective of emotion. FACS encodes the movement of specific facial muscles
called Action Units (AUs), which reflect distinct momentary changes in facial appearance.
In FACS, a human rater can encode facial actions without necessarily inferring the
emotional state of a subject, and therefore one can encode ambiguous and subtle facial
expressions that are not categorizable into one of the universal emotions. The sensitivity of
FACS to subtle expression differences was demonstrated in studies showing its capability to
distinguish genuine and fake smiles (Del Giudice and Colle (2007)), characteristics of
painful expressions (Prkachin and Mercer (1989); Craig et al. (1991); Prkachin (1992);
Rocha et al. (2003); Larochette et al. (2006); Lints-Martindale et al. (2007)), and depression
(Reed et al. (2007)). FACS was also used to study how prototypical emotions are expressed
as unique combinations of facial muscles in healthy people (Ekman and Friesen (1978a);
Gosselin et al. (1995); Kohler et al. (2004)), and to examine evoked and posed facial
expressions in schizophrenia patients and controls (Kohler et al. (2008)), which revealed
substantial differences in the configuration and frequency of AUs in five universal emotions.

Notwithstanding the advantages of FACS for systematic analysis of facial expressions, it has
a major limitation. FACS rating requires extensive training, and is time consuming and
subjective thus prone to bias. This feature makes investigations on large samples difficult.
An automated computerized scoring system is a promising alternative, which aims to
produce FACS scores objectively and fast. Our group described computerized measurements
of facial expressions with several approaches (Verma et al. (2005); Alvino et al. (2007);
Wang et al. (2008)). Verma et al. (2005) and Alvino et al. (2007) quantified regional
volumetric difference functions to measure high-dimensional face deformation. These
measures were used to classify facial expressions, and produce clinical scores that showed
correlations with Video SANS ratings. However, these methods required human operators to
manually define regional boundaries and landmarks in face images, which is not suitable for
large sample studies. Wang et al. (2008) proposed a fully automatic method of analyzing
facial expressions in videos by quantifying the probabilistic likelihoods of happiness,
sadness, anger, fear, and neutral for each video frame. Case studies with videos of healthy
controls and patients with schizophrenia and Asperger's syndrome were reported. However,
the method had limited applicability in case of ambiguous or subtle expressions as shown in
Figure 1, since it used only four universal emotions.
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In this study, we present a state-of-the-art automated FACS system that we developed to
analyze dynamic changes of facial actions in videos of neuropsychiatric patients. In contrast
to previous computerized methods, the new method 1) analyzes dynamical expression
changes through videos instead of still images, 2) measures individual- and combined-facial
muscle movements through AUs instead of a few prototypical expressions, 3) performs
automatically without requiring interventions from an operator. These advantages facilitate a
high-throughput analysis of large sample studies on emotional impairment in
neuropsychiatric disorders.

We applied the automated FACS method to videos from eight representative
neuropsychiatric patients and controls as illustrative examples to demonstrate its potential
applicability to subsequent clinical studies. Qualitative analysis of the videos provides
detailed information on the dynamics of the facial muscle movements for each subject,
which can aid diagnosis of patients. From the videos, we also computed the frequencies of
single and combined AUs for quantitative analysis of differences in facial expressions.
Lastly, we used the frequencies to derive measures of flatness and inappropriateness of
facial expressions. Flat and inappropriate affect are defining characteristics of abnormalities
in facial expression observed in schizophrenia and these measures can serve to quantify
these clinical characteristics of neuropsychiatric disorders.

In Section 2, we provide a background review of literature on advances in computerized
facial expression recognition systems. In Section 3, we describe the details of our automated
FACS system and methods of qualitative and quantitative analysis. In Section 4, we describe
pilot data of healthy controls and psychiatric patients, and report the result. We discuss the
results and our overall conclusions from the work in Section 5.

2. Background
In this section we briefly summarize advances in the literature on automated facial
expression recognition. There is a large volume of computer vision research regarding
automatic facial expression recognition. Early work focused on classifying facial
expressions in static images into a few prototypical emotions such as happiness, sadness,
anger, fear and disgust. However, there has been a growing consensus that recognition of
prototypical emotions is insufficient to analyze the range of ambiguous or subtle facial
expressions. Consequently, a new line of research focuses on automated rating of facial
AUs. Here we review recent work on automatic FACS systems, and refer the reader to
Pantic and Rothkrantz (2000b); Fasel and Luettin (2003); Tian et al. (2005); Pantic and
Bartlett (2007) for a general review of automated facial expression recognition.

An automated facial action recognition system consists of multiple stages, including face
detection/tracking, and feature extraction/classification. Most of the existing approaches
have these stages in common, but differ in the exact methods used in each of the stages. We
review the literature separately for the two stages.

2.1. Face Detection and Tracking
Automated face analysis, whether for videos or for images, starts with detecting facial
regions in the given image frame. Detecting facial regions in an unknown image has been
studied intensively in computer vision, and successful methods are known (Viola and Jones
(2001); Lienhart and Maydt (2002); Yang et al. (2002)). After determining the face region,
further localization of facial components is required to align the faces to account for
variations in head pose and inter-subject differences. Several facial action recognition
methods bypass exact localization of facial landmarks and use only the centers of eyes and
mouth to roughly align the faces, while other methods rely on accurate locations of
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landmarks. Landmarks are usually localized and tracked with a deformable face model,
which matches a pre-trained face model to an unknown face. The likelihood of face
appearance is maximized by deforming the model under a learned statistical model of face
deformations. Various types of deformable face models have been proposed, including
Active Shape Model (ASM: Cootes et al. (1995)), Active Appearance Model (AAM: Cootes
et al. (2001)), Constrained Local Model (CLM: Cristinacce and Cootes (2008)), Pictorial
Structure (PS: Felzenszwalb and Huttenlocher (2005)), and variations of these models. The
geometric deformation determined by landmark locations can be used with a pattern
classifier such as Support Vector Machine (Schoelkopf and Smola (2001)) to detect facial
actions directly (Lucey et al. (2007); Kotsia and Pitas (2007); Wang et al. (2008)). However,
facial actions cause both geometric and texture changes in a face (Ekman and Friesen,
(1978b,a)), and therefore more sophisticated methods of feature extraction and classifiers are
required for a state-of-the-art system.

2.2. Feature Extraction and Classification
Automated facial action recognition seeks to identify good features from images and videos
that capture facial changes, and deploys accurate methods to recognize their complex and
nonlinear patterns. Fasel and Luettin (2000) used subspace-based feature extraction followed
by nearest neighbor classification to recognize asymmetric facial actions. Lien et al. (2000)
used a dense optical flow and high-gradient components as features and a combination of
discriminant analysis and Hidden Markov Models (HMM) for recognition. Pantic and
Rothkrantz (2000a) and Tian et al. (2001) used a detailed parametric description of facial
features and Neural Networks to achieve accurate AU recognition with a high-quality
database of facial actions (Kanade et al. (2000)). Notably, the process is not fully automated.
Pantic and Rothkrantz (2000a) used a sophisticated expert-system to infer the states of
individual and combined AUs for still images. Littlewort et al. (2006); Bartlett et al. (2006);
Valstar and Pantic (2006) used a large number of Gabor features with Adaboost classifier
(Friedman et al. (1998)) to achieve accurate AU recognition, and applied the method to
analyze videos. The combination of Gabor features with boosted classifiers proved
successful, and our proposed system is built on the framework of these approaches.

Other groups focused on exploiting probabilistic dependency between AUs (Cohen et al.
(2003b,a); Zhang and Ji (2005); Tong et al. (2007, 2010)). It is observed that certain AUs,
for example, Inner Brow Raiser (AU1) and Outer Brow Raiser (AU2), usually accompany
each other. Therefore, presence or absence of either AU can help to infer the state of the
other AU under ambiguous situations. The probabilistic dependency between AUs was
formally modeled by Bayesian Networks, which were learned from observed data. The idea
was further extended to handle temporal dependency of AU as well by Dynamic Bayesian
Networks. Tong et al. (2007, 2010) achieved state-of-the-art results for Cohn-Kanade
(Kanade et al. (2000)), ISL (Tong et al. (2007)), or MMI (Pantic et al. (2005)) databases.
However, training a dynamical model requires a large amount of data manually labeled by
experts, which could be prohibitive. Dynamical aspects of facial expressions were also
emphasized in Yang et al. (2007); Koelstra et al. (2010), where features for AU were
defined from the temporal changes of face appearance. Although a fully dynamical approach
has theoretical merits, currently available databases are usually restricted to typical scenarios
– posed expressions from a few prototypical emotions or instructed combinations,
performed by healthy controls. These scenarios show clear onset, peak, and offset phases.
Since dynamics of evoked facial expressions of neuropsychiatric patients are unknown,
models learned from a limited training data of healthy controls can be biased and may not be
suitable. We therefore do not model such dependency, and classify each AU independently
and for each frame.
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3. Methods
In this section, we describe the details of the automated FACS system and its application to
video analysis. The section is divided into three subsections. In Section 3.1 (Image
Processing), we describe how face images are automatically processed for feature extraction.
In Section 3.2 (Action Unit Detection), we explain how we train Action Unit classifiers and
validate them. In Section 3.3 (Application to Video Analysis), we show how to use the
classifiers to analyze videos to obtain qualitative and quantitative information about
affective disorders in neuropsychiatric patients.

3.1. Image Processing
3.1.1. Face Detection and Tracking—In the first stage of the automated FACS system,
we detect facial regions and track facial landmarks defined on the contours of eyebrows,
eyes, nose, lips, etc. in videos. For each frame of the video, an approximate region of a face
is detected by the Viola-Jones face detector (Viola and Jones (2001)). The detector is known
to work robustly for large inter-subject variations and illumination changes. Within the face
region, we search the exact location of facial landmarks using a deformable face model.
Amongst the various types of deformable face models, we use Active Shape Model (ASM)
for several reasons. ASM is arguably the simplest and fastest method among deformable
models, which fit our need to track a large number of frames in multiple videos.
Furthermore, ASM is also known to generalize well to new subjects due to its simplicity
(Gross et al. (2005)). We train ASM with manually collected 159 landmark locations from a
subset of still images that are also used for training AU classifiers. Typical number of
landmarks in publicly available databases ranges between 30 and 80. We use 159 landmarks
to accurately detect fine movement of facial components (Figure 2). ASM performs better
with more landmarks in the model (Stegmann et al. (2003)). When we track landmarks from
videos, a face is often occluded by hand or leaves the camera view angle. Such frames are
discarded from the analysis automatically. The estimated locations of landmarks for all
frames in a video can be further improved by using a temporal model as in Wang et al.
(2008). We use a Kalman filter, which combines the observed landmark locations (these are
inherently noisy) with the predicted landmarks locations from a temporal model (Wikle and
Berliner (2007)). Sample video tracking results are shown in Figure 2. Since the movement
of landmarks is also caused by head pose change unrelated to facial expression, it is
important to extract the relevant features only as explained in the following sections.

3.1.2. Feature Extraction—We use the detected landmark locations to extract two types
of features for AU detection: geometric and texture. Previous facial expression recognition
systems typically used either geometric or texture features, not both. We use both features
because they convey complementary information. For example, certain AUs can be detected
directly from geometric changes: Inner/Outer Brow Raiser (AU1/2) causes displacements of
eyebrows, even when the associated texture changes (increased horizontal wrinkles in the
forehead) are not visible. However, when Inner Brow Raiser (AU1) is jointly present with
Brow Lowerer (AU4), the geometric displacement of eyebrows is less obvious. In that case,
texture changes (increased vertical wrinkles between eyebrows) provide complementary
evidence of the presence of AU4.

We extract the two features separately and combine them in the classification stage. To
define geometric features, we create a landmark template from the training data by
Procrustes analysis (Mardia and Dryden (1998)). Starting with the averaged landmark
locations as a template, we align landmarks from all training faces to the template, and
update the template by averaging the aligned landmarks. This procedure is repeated for a
few iterations. From the landmark template, we create a template mesh by Delaunay
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triangulation, which yields 159 vertices and 436 edges. Deformation of face meshes
measured by compression and expansion of the edges reflects facial muscle contraction and
relaxation.

To extract geometric features of a test face, we first align the face to the template by
similarity transformations to suppress within-subject head pose variations and inter-subject
geometric differences. Next, we use differences of edge lengths between each face and a
neutral face of the same person, formed into a 436-dimensional vector of geometric features,
thereby further emphasizing the change due to facial expressions and suppressing irrelevant
changes. Figure 3 demonstrates the procedure for extracting geometric features.

To extract texture features, we compute a Gabor wavelet response, which has been used
widely for face analysis (Pantic and Bartlett (2007)). We use Gabor filter banks with 9
different spatial frequencies from 1/2 to 1/32 in units of pixel−1, and 8 different orientations
from 0 to 180 degrees with a 22.5 degree step (Figure 4). Prior to applying the filters, each
face image is aligned to a template face using its landmarks, and resized to about 100–120
pixels. The magnitudes of the filters form a 72-dimensional feature at each pixel of the
image. In Bartlett et al. (2006), the Gabor responses from the whole image were used as
features, whose dimensionality is huge (= 165,888). In Valstar and Pantic (2006), twenty
Regions-of-Interest (ROIs) affected by specific AUs were selected. We also used ROIs to
reduce the dimensionality, but we took the approach further: Gabor responses in each ROI
are pooled by 72-dimensional histograms. This reduces the dimensionality of the features
dramatically and makes the features robust to local deformations of faces and errors in the
detected landmarks locations. Furthermore, AU classifiers can be trained in much shorter
time. The ROIs we use are shown in Figure 5. Similar to geometric features, texture features
also have unwanted within-subject and inter-subject variations. For example, a person can
have permanent wrinkles in the forehead, which, for a different person, appear only when
the eyebrows are raised, and therefore interfere with the correct detection of eyebrow
movements. By taking the difference of Gabor response histograms between each face and a
neutral face of the same person, we measure the relative change of textures. This approach
accounts for newly (dis-)appearing wrinkles as well as deepening of the permanent wrinkles,
instead of simple presence or absence of wrinkles.

3.2. Action Unit Detection
We adopted a classification approach from machine learning to predict the presence or the
absence of AUs. A classifier is a general-purpose algorithm that takes features as input and
produces a binary decision as output. In our case, we feed a classifier the features extracted
from a face (Section 3.1), and the classifier makes a decision whether or not a certain AU is
present in the given face. Three necessary steps of a classification approach include 1) data
collection, 2) classifier training, and 3) classifier validation, as we describe below.

3.2.1. Collecting Training Data—A classifier ‘learns’ patterns between input features
and output decisions from training data, which consist of examples of face images and their
associated FACS ratings, from human raters in this case. Our group has been collecting still
face images of the universal facial expressions. These included expressions in mild,
moderate, and high intensities, in multiple emotions, and in both posed -- subjects were
asked to express emotions -- and evoked -- subjects spontaneously expressed emotions –
conditions from various demographic groups (Kohler et al. (2004), Kohler et al. (2008)).
Note that the rules of FACS are not affected by these conditions since it only describes the
presence of facial muscle movements. These face images were FACS-rated by experts in our
groups. There were three initial raters that achieved FACS reliability from the Ekman lab in
San Francisco. All subsequent FACS raters had to meet inter-rater reliability of > 0.6
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stratified by emotional valence for the presence and absence of all AUs rated on a sample of
128 happy, sad, anger and fear expressions. Two raters - one FACS certified and one FACS
reliable - coded presence and absence of AUs in 3419 face images. Instances where ratings
differed between the two raters were resolved by visual analysis requiring agreement on
absence and presence by both raters. Faces were presented in random order to the raters,
along with neutral images of the same person to serve as a baseline face. Among the AUs
rated, Lip Tightener (AU23) and Lip Pressor (AU24), which both narrow the appearance of
lips, and Lips Part (AU25) and Jaw Drop (AU26), which constitute mouth opening, were
collapsed, since they represent differing degrees of the same muscle movement.

3.2.2. Training Classifiers—We selected Gentle Adaboost classifiers (Friedman et al.
(1998)) from among a few possible choices of classifiers used in the literature. Adaboost
classifiers have several properties that make them preferable to other classifiers for the
problem at hand. First, Adaboost selects only a subset of features, which is desirable for
handling high-dimensional data. Second, the classifier can adapt to inhomogeneous features
(=geometric and texture features) that might have very different distributions. Third, it
produces a continuous value of confidence along with its binary decisions through a natural
probabilistic interpretation of the algorithm as a logistic regression. We train Adaboost
classifiers following Friedman et al. (1998). A total of 15 classifiers are trained to detect
each of the 15 AUs independently, using the training data of face images and their
associated FACS ratings from human raters. Although the manual FACS ratings included
Nasolabial Deepener (AU11), Cheek Pucker (AU13), Dimpler (AU14), and Lower Lip
Depressor (AU16), we did not train classifiers for these AUs because the number of positive
samples of these AUs in our database was too small to train a classifier reliably.

3.2.3. Validation of Classifiers—Before we used the classifiers, we verified the
accuracy of the automated FACS ratings against the human FACS ratings by two-fold cross
validation as follows. We divided the training data into two sets. Subsequently, we trained
the classifiers with one set using both face images and human ratings, and collected the
classifier outputs on the other set using face images only. Then we compared the predicted
ratings with the human ratings on the other set. In particular, we divided the training data
into posed and evoked conditions to validate that the classifiers are unaffected by these
conditions. Table 1 summarizes the agreement rates between automated and manual FACS
ratings for 15 AUs representing the most common AUs employed for facial expressions.
Overall, we achieved an average agreement of 95.9 %. The high agreement validates the
accuracy of the proposed automated FACS.

3.3. Application to Video Analysis
We used the AU classifiers to qualitatively and quantitatively analyze the dynamic facial
expression changes in videos. This includes 1) creation of temporal AU profiles, 2)
computation of single and combined AU frequencies, and 3) automated measurements of
affective flatness and inappropriateness.

3.3.1. Temporal Profiles of AU—The AUs are detected for each and every frame of a
video for the whole course of the video, which results in creating temporal AU profiles of
the video. Originally, a classifier outputs binary decision (that is, presence or absence of an
AU), but it also produces the confidence of the decision (that is, the posterior likelihood of
the AU being present) as continuous values in the range of 0 to 1. We use the binary
decisions for quantitative analysis and the continuous values for qualitative analysis. When
we apply the classifiers to a video, we can create continuous temporal profiles of AUs,
which will show the intensity, duration, and timing of simultaneous facial muscle actions in
a video.
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3.3.2. Analysis of AU Frequencies—Various types of measures can be derived from
the AU profiles for quantitative analysis of facial expressions. In Kohler et al. (2008), the
frequencies of single AUs were analyzed to study group differences between healthy people
and schizophrenia patients. AUs were manually rated for a few still images per subject. Our
proposed method enables automatic collection of AUs and computation of single AU
frequencies for the whole video. We compute:

• Frequency of single AUs = number of frames in which an AU is present / total
number of frames

• Frequency of AU combinations = number of frames in which an AU combination
(e.g., AU1+AU4) is present / total number of frames

The AU combination measures the simultaneous activation of multiple action units in facial
expression which is more realistic than isolated movements of single action units, and
therefore provides more accurate information than single AU frequencies.

3.3.3. Flatness and Inappropriateness Measure—In the analysis of facial
expressions, flatness and inappropriateness of expressions can serve as basic clinical
measures for severity of affect expression in neuropsychiatric disorders. For example, in the
SANS (Andreasen (1984a)), a psychiatric expert interviews the patients and manually rates
the flatness and the inappropriateness of the patient’s affect. However the scales are
subjective, require extensive expertise and training, and can vary across raters. By using AU
frequencies from the automated FACS method, we can define objective measures of flatness
and inappropriateness as follows:

• Flatness measure = number of neutral frames in which no AU is present / total
number of frames

• Inappropriateness measure = number of “inappropriate” frames / total number of
frames

To define “inappropriate” frames, we used the statistical study of Kohler et al. (2004), which
analyzed which AUs are involved in expressing the universal emotions of happiness,
sadness, anger, and fear. Specifically, they identified AUs that are uniquely present or absent
in each emotion. AUs that are uniquely present in a certain emotion were called “qualifying”
AUs of the emotion, and AUs that are uniquely absent were called “disqualifying” AUs of
the emotion, as shown in Table 2. Based on this, we defined an image frame from an
intended emotion as inappropriate if it contained one or more disqualifying AUs of that
emotion or one or more qualifying AUs of the other emotions. This decision rule was
applied to all frames in a video to derive the inappropriateness measure automatically.

4. Results
In this section we describe the acquisition procedure for videos of evoked emotions for pilot
data of four healthy controls and four schizophrenia patients representative of variation in
race and gender. We apply the qualitative and quantitative analyses developed in Section 3
to these videos and present preliminary results.

4.1. Subjects
Our group has been collecting still images and videos of healthy controls and patients for a
neuropsychiatric study of emotions under an approved IRB protocol of the University of
Pennsylvania. Participants were recruited from inpatient and outpatient facilities of the
University of Pennsylvania Medical Center. After complete description of the study to the
subjects, written informed consents, including consent to publish pictures, were obtained.
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Four healthy controls and four schizophrenia patients were collected for the pilot study.
Each group was balanced in gender (two males and two females) and race (two Caucasians
and two African-Americans). A summary of the eight subjects and their videos are given in
Table 3.

4.2. Acquiring Videos of Evoked Emotions
We followed the behavioral procedure previously described in Gur et al. (2002) and
subsequently adapted for use in schizophrenia by Kohler et al. (2008). Videos were obtained
for neutral expressions and for five universal emotions that are reliably rated cross
culturally: happiness, sadness, anger, fear, and disgust. Before recording, participants were
asked to describe biographical emotional situations, when each emotion was experienced in
mild, moderate and high intensities, and these situations were summarized as vignettes.
Subsequently, the subjects were seated in a brightly-lit room where recording took place,
and these emotional vignettes were recounted to participants in a narrative manner using
exact wording derived from the vignettes. The spontaneously evoked facial expressions of
the subjects were recorded as videos. Before and between the five emotion sessions, the
subjects were asked to relax and return to a neutral state. Each emotion session lasted about
2 minutes.

4.3. Result I: Qualitative Analysis
We applied the AU classifiers to the videos of evoked emotions, which recorded the
spontaneous response of the subjects to the recounting of their own experiences. This
resulted in continuous temporal profiles of AU likelihoods over the course of the videos. We
compared temporal AU profiles of the subjects for five emotions, and show examples which
best demonstrate the characteristics of the two groups in Figures 6 – 9. The profiles in
Figure 6 represent a healthy control, who exhibited gradual and smooth increase of AU
likelihoods and relatively distinct patterns between emotions in terms of the magnitude of
common AUs such as Inner Brow Raiser (AU1), Brow Lowerer (AU4), Cheek Raiser
(AU6), Lid Tightener (AU7), Lip Corner Puller (AU12), Chin Raiser (AU17), and Lip
Puckerer (AU18). The profiles in Figure 7 represent another healthy control, who displayed
a very expressive face. Different emotions showed distinctive dynamics. For example,
happiness and disgust had several bursts of facial actions, whereas other emotions were
more gradual. The profiles in Figure 8 represent a patient, who showed flattened facial
action ( that is, mostly a neutral expression) throughout the session, with a few abrupt peaks
of individual AUs such as Upper Lid Raiser (AU5), Cheek Raiser (AU6), Lid Tightener
(AU7), Chin Raiser (AU17), and Lip Puckerer (AU18). The profiles in Figure 9 represent
another patient, which are even flatter than the first patient, except for weak underlying
actions of Check Raiser (AU6), Lid Tightener (AU7), and a peak of Brow Lowerer (AU4) in
fear. The temporal profiles of other subjects not shown in these figures exhibited
intermediate characteristics, that is, they were less expressive than the two control examples
but not as flat as the two patient examples.

We also compared the temporal profiles for each emotion by selecting a pair of subjects who
showed different characteristics. Along with the temporal profiles, captured video frames at
10 randomly chosen time points are selected for visualization with the AU likelihoods
indicated by the magnitude of the green bars. Figures 10 – 19 show examples of the
temporal profiles of the representative subjects in happiness, sadness, anger, fear, and
disgust emotions. In happiness, the first subject (Figure 10) showed gradual increase of
Cheek Raiser (AU6), Lid Tightener (AU7), and Lip Corner Puller (AU12), which is typical
of a happy expression (Kohler et al. (2008)), while the second subject (Figure 11) showed
little facial action. In sadness, the first subject (Figure 12) showed a convincing sad
expression which involved typical AUs such as Lip Corner Depressor (AU15) and Chin
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Raiser (AU17), while the second subject (Figure 13) showed little facial action. In anger, the
first subject (Figure 14) showed a relatively convincing angry face, with an increasing Brow
Lowerer (AU4) from 25 (s) to the end, while the second subject (Figure 15) showed
fluctuating levels of Cheek Raiser (AU6), Lid Tightener (AU7), and Lip Corner Puller
(AU12) between 50 (s) and 90 (s). The expression of the second subject looks far from
anger. (More will be discussed in Discussion section with respect to qualifying and
disqualifying AUs.) In fear, the first subject (Figure 16) showed flat profiles with little facial
action, and the second subject (Figure 17) also showed relatively flat profiles, with a brief
period of Cheek Raiser (AU6), Lid Tightener (AU7), and Lip Stretcher (AU20) at around 40
(s), which seems to fail to deliver an expression of fear. In disgust (Figure 18), the first
subject showed a convincing disgustful face through the facial actions of Chin Raiser
(AU17) and Nose Wrinkler (AU9) along with other AUs, while the second subject (Figure
19) showed relatively flat profiles except for a period of Chin Raiser (AU17) at around 70
(s).

4.4. Results II: Quantitative Analysis
We computed the single and combined AU frequencies measured from the videos of the
eight subjects. We show frequencies from one control and one patient in Tables 4 and 5 as
illustrative examples due to space limitation. In single and combined AU frequencies, there
are common AUs such as Cheek Raiser (AU6) and Lid Tightener (AU7) that appear
frequently across emotions and subjects. However there are many other AUs whose
frequencies are different across emotions and subjects. Based on the AU frequencies of all
eight subjects, we consequently derived the measures of flatness and inappropriateness
(Section 3.3.3) to get more intuitive summary parameters of the AU frequencies. Table 6
summarizes the automated measures for each subject and emotion, except for the
inappropriateness of disgust emotion, which was not defined in Kohler et al. (2004). The
table also shows the flatness and inappropriate measures averaged over all emotions.
According to the automated measurement, controls 3, 2, and 4 were very expressive
(flatness = 0.0051, 0.0552, 0.1320), while patients 1, 2, and 4 were very flat (flatness =
0.8336, 0.5731, 0.5288). The control 1 and patient 3 were in the medium range (flatness =
0.3848, 0.3076). Inappropriateness of expression was high for patient 4 and 3
(inappropriateness = 0.6725, 0.3398, 0.3150), and was moderate for patient 1, and control 1
– 4 (inappropriateness = 0.2579, 0.2506, 0.2502, 0.1464, 0.0539). The degree of flatness and
inappropriateness of expressions varied across emotions, which will be investigated in the
future study with a larger population.

5. Discussion
We presented a state-of-the-art method for automated Facial Action Coding System for
neuropsychiatric research. By measuring the movements of facial action units, our method
can objectively describe subtle and ambiguous facial expressions such as in Figure 1, which
is difficult for previous methods that use only prototypical emotions to describe facial
expressions. Therefore the proposed system, which uses a combination of responses from
different AUs, is more suitable for studying neuropsychiatric patients whose facial
expressions are often subtle or ambiguous. While there are other automated AU detectors,
they are trained on extreme expressions and hence unsuitable for use in a pathology that
manifests as subtle deficits in facial affect expression.

We piloted the applicability of our system in neuropsychiatric research by analyzing videos
of four healthy controls and four schizophrenia patients balanced in gender and race. We
expect that the temporal profiles of AUs computed from videos of evoked emotions (Figures
6 – 19) can provide clinicians an informative visual summary of the dynamics of facial
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action. They show which AU or combination of AUs is present in the expressions of an
intended emotion from a subject, and quantifies both intensity and duration.

Figures 6 – 9 visualize dynamical characteristics of facial actions of each subject for five
emotions at a glance. Overall, these figures revealed that the facial actions of the patients
were more flattened compared to the controls. In a healthy control (Figure 6), there was a
gradual buildup of emotions that manifests as a relatively smooth increase of multiple AUs.
Such a change in profile is expected from the experimental design: the contents of the
vignettes progressed from mild to moderate to extreme intensity of emotions. For another
control (Figure 7), there were several bursts and underlying activities of multiple AUs. In
contrast, patients showed fewer facial actions (Figures 8 and 9), and the lack of gradual
increase of AU intensities (Figure 8 and 9). Also the AU peaks were isolated in time and
across AUs (Figure 8). Such sudden movements of facial muscles may be symptomatic of
the emotional impairment. These findings lay the basis for a future study to verify the
different facial action dynamics patterns in schizophrenia patients and other
neuropsychiatric populations.

With the prior knowledge of qualifying and disqualifying AUs for each emotion, we can use
the temporal profiles to further aid the diagnosis of affective impairment. Figures 10 and 11
show the profiles of two subjects in happiness. In the first subject, Cheek Raiser (AU6) and
Lip Corner Puller (AU12), which constitute the qualifying AUs of happiness (Table 2), are
gradually increasing toward the end of the video, along with Lid Tightener (AU7), which is
neither qualifying nor disqualifying. No disqualifying AU is engaged in producing the
happiness expression. In contrast, the profiles of the second subject were almost flat. Figures
12 and 13 show the profiles of two subjects in sadness. With the first subject, the qualifying
AU of Chin Raiser (AU17) weakly activated from 30 (s). Although Lip Corner Depressor
(AU15) is not a uniquely qualifying AU for sadness, its presence seems to help deliver the
sad expression. The profiles of the second subject were flat and showed the weak presence
of several AUs (AU6, AU7, AU18, AU23) which are neither qualifying nor disqualifying.
Figures 14 and 15 show the profiles of two subjects in anger. The first subject showed
moderate activation of Lid Tightener (AU7) and Brow Lowerer (AU4). These two are
neither qualifying nor disqualifying AUs, but they indicate an emotion of a negative valence.
The second subject demonstrated an inappropriate expression throughout the duration of the
video, which looks closer to happiness than anger. The presence of Cheek Raiser (AU6) and
Lip Corner Puller (AU12) in time 50(s) – 100 (s), which constitute the qualifying AUs of
happiness, strongly indicates inappropriateness of the expressions, as is Chin Raiser (AU17)
at 100 (s) and 200 (s). Figures 16 and 17 show the profiles of two subjects in fear. The first
subject exhibited underlying activity of Cheek Raiser (AU6) and Lid Tightener (AU7)
which are inappropriate for fear. The second subject displayed flat expressions except for
Cheek Raiser (AU6), Lid Tightener (AU7), Lip Corner Puller (AU12), and Lip Stretcher
(AU20) at around 40 (s), which constitute an inappropriate expression for fear. Lastly,
Figure 18 and 19 show the profiles of two subjects in disgust. The first subject was very
expressive and showed multiple peaks of Inner Brow Raiser (AU1), Brow Lowerer (AU4),
Cheek Raiser (AU6), Lid Tightener (AU7), Nose Wrinkler (AU9), Chin Raiser (AU17), and
Lip Tightener (AU23). In contrast, the second subject showed flat profiles except for a brief
period of Chin Raiser (AU17) at around 70 (s). We conclude from these findings that the
proposed system automatically provides informative summary of the videos to study the
affective impairment in schizophrenia, which is much more efficient than manually
examining the whole videos by an observer.

The AU profiles from the pilot study were also analyzed quantitatively. From the temporal
profiles, we computed the frequency of AUs in each emotion and subject, independently for
each AU (Table 4), and jointly for AU combinations (Table 5). AU combinations measure
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the simultaneous activation of multiple facial muscles, which will shed light on the role of
synchronized facial muscle movement in facial expressions of healthy controls and patients.
This synchrony cannot be answered by studying single AU frequencies alone. The
quantitative measures will allow us to statistically study the differences in facial action
patterns between emotions and in multiple demographic or diagnostic groups. Such
measures have been used in previous clinical studies (Kohler et al. (2004, 2008)) but were
limited to a small number of still images instead of videos due to the impractically large
amount of effort in rating all individual frames manually.

Lastly, we derived the automated measures of flatness and inappropriateness for each
subject and emotion. Table 6 shows that the healthy control has both low flatness and low
inappropriateness measures, whereas patients exhibited higher flatness and higher
inappropriateness in general. However, there are intersubject variations, for example, control
1 showed a lower inappropriateness but a slightly higher flatnesss than the patient 3. These
automated measures of flatness and inappropriateness also agreed with the flatness and
inappropriateness from visual examination of the videos (Table 3). The correlation between
the automated and the observer-based measurements will be further verified in a future study
with a larger sample size. Compared to qualitative analysis, the flatness and
inappropriateness measures provide detailed automated numerical information without an
intervention of human observers. This highlights the potential of the proposed method to
automatically and objectively measure clinical variables of interest, such as flatness and
inappropriateness, which can aid in diagnosis of affect expression deficits in
neuropsychiatric disorders. It should be noted that while we have acquired the videos with a
specific experimental paradigm adopted from former studies, the method we have developed
is general and applicable to any experimental paradigm.

The fully automated nature of our method allows us to perform facial expression analysis in
large scale clinical study in psychiatric populations. We are currently acquiring a large
number of videos of healthy controls and schizophrenia patients for a full clinical analysis.
We will apply the method to the data and present the results in a clinical study with detailed
clinical interpretation.
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Figure 1.
Examples of ambiguous (LEFT), subtle (MIDDLE), and inappropriate (RIGHT) facial
expressions. The left subject is showing an ambiguous expression, where the upper facial
region is showing anger or disgust emotions while the lower facial region is showing a
degree of happiness. The middle subject is exhibiting a subtle expression which is barely
perceived as sadness by an observer. Additionally, the right subject is displaying an
inappropriate expression of happiness when the person is experiencing a disgust emotion. To
accurately describe these ambiguous and/or subtle expressions, we use Facial Action Coding
System to delineate the movements of individual facial muscle groups.
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Figure 2.
Sample tracking result. On each face, yellow dots indicate the locations of 159 landmarks,
and red lines indicate different facial components. Note that accuracy of tracked landmarks
is crucial for videos of spontaneously evoked emotions (disgust in this example), since the
movement of landmarks due to facial expression is very small compared to the overall
movement of the head.
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Figure 3.
Geometric features for Action Unit Classification. Deformation of the face mesh (LEFT)
relative to the mesh at a neutral state (MIDDLE) is computed, and normalized to a subject-
independent template mesh (RIGHT). Green and red edges on the template mesh indicate
compression and expansion of the edges, respectively.
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Figure 4.
Examples of Gabor features of multiple spatial frequencies and orientations from a face
image. Convolution of an image with Gabor wavelets yields high magnitudes around the
structures such as facial contour, eyes and mouth (shown as white blobs in the above
images) due to frequency and orientation selectivity of the wavelets. By taking the
difference of Gabor features between an emotional face and a neutral face, we can measure
the change of facial texture due to facial expressions. Spatial frequency ranges from 1/2 to
1/32 in units of pixel−1, and orientation ranges from 0° to 180° with 22.5° step.
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Figure 5.
Regions-of-interest (ROIs) for extracting texture features for Action Unit Classification. In
each ROI (blue rectangle), a histogram of Gabor features is computed for multiple spatial
frequencies and orientations.
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Figure 6.
Temporal Action Units profiles of Control 3 for five emotion sessions. For each Action
Unit, the graph indicates the likelihood (between 0 and 1) of the presence of the Action Unit,
for the duration of five video (in units of seconds (s)). The subject exhibits gradual and
smooth increase of AU likelihoods over time.
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Figure 7.
Temporal Action Unit profiles of Control 4 for five emotion sessions. The subject exhibits
facial actions in most of the AU. There are bursts of facial actions in happiness and disgust,
while there are more gradual actions in other emotions.
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Figure 8.
Temporal Action Unit profiles of Patient 1 for five emotion sessions. The subject exhibits
little facial action but for a few abrupt peaks of individual AUs such as AU5, 6, 7, 17, and
18.
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Figure 9.
Temporal Action Unit profiles of Patient 4 for five emotion sessions. The subject exhibits
almost no facial action except for AU4, 6, and 7.
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Fig. 10.
Temporal AU profiles of a subject in happiness emotion. TOP: Captured video frames at
several time points (a to j) from the whole duration of the video in units of seconds (s). In
each captured video frame, green bars on the right show the same likelihood of action units
present. Short bars indicate low or no likelihood and longer bars indicate high likelihood.
BOTTOM: The temporal profiles show the likelihood (between 0 and 1) for each Action
Unit for the video. Vertical bars indicate the arbitrarily chosen time points (a to j) near the
local peaks of Action Units. The subject displays gradual increase of AU6, 7, and 12, which
is typical of a happy expression.
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Figure 11.
Temporal AU profiles of another subject in happiness emotion. The subject displays little
facial action.
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Fig. 12.
Temporal AU profiles of a subject in sadness emotion. The subject displays a convincing
sad expression which involves typical AUs such as AU15 and 17.
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Fig. 13.
Temporal AU profiles of another subject in sadness emotion. The subject displays little
facial action.
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Figure 14.
Temporal AU profiles of a subject in anger emotion. The subject displays a relatively
convincing angry face, with an increasing AU4 from 25 (s) to the end.
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Figure 15.
Temporal AU profiles of another subject in anger emotion. The subject inappropriately
displays fluctuating levels of AU6, 7, and 12 between 50 (s) and 90 (s), which is
characteristic of a happy expression.
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Fig. 16.
Temporal AU profiles of a subject in fear emotion. The subject displays little facial action
except for AU7.
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Figure 17.
Temporal AU profiles of another subject in fear emotion. The subject displays little facial
action except for a brief period around 40 (s) involving AU6, 7, and 20, which resembles
more of a happy expression than fear.
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Figure 18.
Temporal AU profiles of a subject in disgust emotion. The subject displays a convincing
disgustful face through weakly present AU9 and 17 along with other AUs.
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Figure 19.
Temporal AU profiles of another subject in disgust emotion. The subject displays little facial
action except for a period of AU17 at around 70(s)
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Table 1

Agreement rates of automated and manual FACS ratings for 15 Action Units

AU No Description Rate (%)

AU1 Inner Brow Raiser 95.8

AU2 Outer Brow Raiser 97.8

AU4 Brow Lowerer 91.0

AU5 Upper Lid Raiser 96.9

AU6 Cheek Raiser 93.0

AU7 Lid Tightener 87.0

AU9 Nose Wrinkler 97.5

AU10 Upper Lip Raiser 99.3

AU12 Lip Corner Puller 97.1

AU15 Lip Corner Depressor 99.2

AU17 Chin Raiser 96.5

AU18 Lip Puckerer 98.6

AU20 Lip Stretcher 97.7

AU23 Lip Tightener 96.9

AU25 Lips Part 95.7
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Table 2

Qualifying and disqualifying Action Units in four emotions (summarized from Kohler et al (2004))

Emotion Qualifying AUs Disqualifying AUs

Happiness AU6, AU12 AU4, AU20

Sadness AU17 AU25

Anger AU9, AU16 AU1

Fear AU2 AU7, AU10
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Table 3

Summary of eight subjects and their videos.

Subject Gender Race Qualitative description of the videos

Control 1 Male Caucasian Mildly expressive, smooth expressions

Control 2 Male African-American Mildly expressive, lack of defined distinction between emotions

Control 3 Female Caucasian Expressive, smooth expressions

Control 4 Female African-American Very expressive, abrupt expressions

Patient 1 Male Caucasian Very flat, intermittent expressions

Patient 2 Male African-American Flat, intermittent expressions

Patient 3 Female Caucasian Mildly expressive, very inappropriate

Patient 4 Female African-American Very flat, mildly inappropriate
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