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Abstract. Bearing in mind the notion of monotone vector field on Riemannian manifolds, see
[12–16], we study the set of their singularities and for a particular class of manifolds develop
an extragradient-type algorithm convergent to singularities of such vector fields. In particular, our
method can be used for solving nonlinear constrained optimization problems in Euclidean space,
with a convex objective function and the constraint set a constant curvature Hadamard manifold.
Our paper shows how tools of convex analysis on Riemannian manifolds can be used to solve some
nonconvex constrained problem in a Euclidean space.
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1. Introduction

Extensions of concepts and techniques for optimization in �n to Riemannian
manifolds are natural. It has been done frequently in the last few years, with
theoretical objectives and also in order to obtain effective algorithms, see [4, 6,
7, 18, 19, 23] and [25]. By using these extensions it is possible to solve some
nonconvex constrained optimization problems in Euclidean spaces, after rewriting
them as convex problems on Riemannian manifolds.

The extragradient algorithm was proposed first by G.M. Korpelevich, see [11].
In [8], this method was used for solving variational inequality problems with
continuous point-to-point monotone operators and convex constraint set. It was
improved in [10]. In [22] were reported preliminary computational experience
of a modification of the extragradient algorithm. It was extended to solving
problems with monotone point-to-set maps in [2] and in [9]. In this work we recall
the concept of monotone vector fields in Riemannian manifolds, see [12–16],
discuss convex analysis on Hadamard manifolds and propose an extragradient-
type method for finding singularities of monotone vector fields on Hadamard
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manifolds (i.e. complete, simply connected Riemannian manifolds of nonpositive
curvature). It will be also shown how tools of convex analysis on Hadamard
manifolds can solve non-convex constrained problems in Euclidean spaces. To
illustrate this remarkable fact an example will be given.

In Section 2 we introduce some basic concepts, important for our analysis. In
Section 3 we discuss some topics of convex analysis on Hadamard manifolds,
particularly projection mappings onto convex sets. In Section 4 we present the
definition of monotone vector fields on Riemannian manifolds, see [12–16], and
prove some important properties.

In Section 5 we recall the notion of variational inequalities on Hadamard
manifolds, some existence and uniqueness theorems, and analyze the properties
of the solution set of a variational inequality.

In Section 6 we prove some existence and uniqueness theorems for the
singularities of vector fields and analyze the properties of the singularity set.

Finally, in Section 7 we propose the extragradient algorithm for finding
singularities of such vector fields and perform a complete convergence analy-
sis, i.e., we prove that the sequence generated by our algorithm converges to a
singularity of the field when the manifold is a constant curvature Hadamard one
and the field does have singularities.

2. Basics Concepts

In this section we present some basic notation, definitions and properties of
Riemannian manifolds. They can be found in any introductory book on Rieman-
nian Geometry, see [3] and [20]. Throughout this paper, all manifolds are smooth,
connected and paracompact, and all functions and vector fields are smooth.
However, if differentiation is not needed all the results remain true for arbitrary
noncontinuous vector fields.

Given a manifold M , denote by � �M� the space of vector fields over M , by
TpM the tangent space of M at p and by � �M� the ring of functions over M .
The manifold M can be always endowed with a Riemannian metric �·�·�, with
corresponding norm denoted by �·�, to become a Riemannian manifold. The
length (with respect to the metric �·�·�) of a piecewise smooth curve �� �a�b�→M
joining points p and q in M , i.e., such that ��a�=p and ��b�=q, is defined
by L���=∫ b

a
��′�t��dt. Minimizing this length functional over the set of all

such curves joining arbitrary points p and q in M we obtain a distance function
�p�q� �→d�p�q� which induces the original topology of M . The metric induces
a map f ∈� �M� �→gradf ∈� �M� which associates to each f its gradient via
the rule �gradf �X�=df �X�, X∈� �M�. Let � be the Levi-Civita connection
associated to �M�����. If � is a curve joining points p and q in M , then, for
each t∈ �a�b�, � induces an isometry (relative to ���) P��t�� TpM→T��t�M , the
so-called parallel transport along � from x to ��t�. When the reference to a
curve joining p and q is not necessary, we use the notation Pp�q . We say that
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� is a geodesic when ��′�
′ =0, in this case ��′� is constant. We say that � is

normalized if ��′�=1. The restriction of a geodesic to a closed bounded interval
is called a geodesic segment. A geodesic segment joining p and q in M is said
to be minimal if its length equals d�p�q�. Let �� �a�b�→M be a normalized
geodesic segment. A differentiable variation of � is, by definition, a differentiable
mapping 	� �a�b�×�−
�
�→M satisfying 	�t�0�=��t�. The vector field along
�, defined by V �t�= �	

�s
�t�0� is called the variational vector field of 	. The first

variational formula of arc length on 	 is then given as follows:

L′��� �= d
ds
L�cs�

∣∣∣∣
s=0

=�V ��′�	ba� (2.1)

where cs�t�=	�t�s� with s∈�−
�
�. A Riemannian manifold is complete if
geodesics are defined for any values of t. Hopf-Rinow’s Theorem, see [3], asserts
that if this is the case, then any pair of points in M , say p and q, can be joined
by a (not necessarily unique) minimal geodesic segment. Moreover, �M�d� is a
complete metric space and bounded and closed subsets are compact. In this paper,
all manifolds are assumed to be complete. The exponential map expp� TpM→M
is defined by expxv=�v�1�x�, where ��·�=�v�·�p� is the geodesic starting at the
point p with velocity v. In this case, it is easy to see that expp tv=�v�t�p� for
any values of t.

A complete, simply connected Riemannian manifold of nonpositive curvature
is called a Hadamard manifold. From now on M will denote a Riemannian
manifold and H will denote a Hadamard manifold. Hadamard’s Theorem, see
[3], asserts that the topological and differential structure of a Hadamard manifolds
coincide with those of an Euclidean space of the same dimension. More precisely,
at any point p∈M , the exponential map expp� TpM→M is a diffeomorphism.
Furthermore, Hadamard manifolds have some geometrical properties similar to
some well-known geometrical properties of Euclidean spaces. We mention now
another property of Hadamard manifolds, similar to a property of the Euclidean
space, which will be used in the sequel.

A geodesic triangle ��p1p2p3� of a Riemannian manifold is the set consisting
of three distinct points p1, p2 and p3 called the vertices and three minimizing
geodesic segments �i+1 joining pi+1 to pi+2 called the sides, where i=1�2�3
�mod3�.

THEOREM 2.1. Let ��p1p2p3� be a geodesic triangle in H . Denote by
�i+1� �0�li+1�→H geodesic segment joining pi+1 to pi+2 and set li+1 �=L��i+1�,

i+1=<���′

i+1�0��−�′
i�li��, where i=1�2�3 �mod3�. Then


1+
2+
3��� (2.2)

l2i+1+l2i+2−2li+1li+2cos
i+2� l
2
i � (2.3)
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and

li+1cos
i+2+licos
i� li+2� (2.4)

Proof. Inequalities (2.2) and (2.3) are proved in [20] Proposition 4.5, p. 223.
Inequality (2.4) is a consequence of (2.3). �

3. Projections onto Convex Set

In this section, we summarize some basic notation, definitions and results on
convex analysis in Hadamard manifolds, which will be useful in the sequel, see
[1, 19–21, 25].

The set C⊂M is said to be convex if contains a geodesic segment � whenever
it contains the end points of �, that is, ���1−t�a+tb� is in C whenever x′ =��a�
and x=��b� are in C, and t∈ �0�1�. From now on C will denote a nonempty,
closed and convex set in a Riemannian manifold. For any p′ ∈H and C⊂H , there
exists a unique p∈C such that d�p′�p��d�p′�q� for all q∈C, that unique point
is called the projection of p′ onto the convex set C and is denoted as �C�p

′�.
The next result gives a characterization of the projection �C .

PROPOSITION 3.1. For any p′ ∈H , there exists a unique projection �C�p
′�.

Furthermore, the following inequality holds for all p∈C:

�exp−1
�C�p

′�p
′�exp−1

�C�p
′�p��0� (3.1)

Proof. See [27]. �

COROLLARY 3.1. Let H be of constant curvature. Given p′ ∈H and s∈Tp′H ,
the set

Lp′�s=
{
p∈H ��exp−1

p′ p�s��0
}
� (3.2)

is convex.
Proof. Take p and q in Lp′�s, p �=q. We will prove that the geodesic segment

�� �0�1�→H starting at p and ending at q (i.e., ��0�=p and ��1�=q) is con-
tained in Lp′�s, i.e., ��t�∈Lp′�s for all t∈ �0�1�. Since H is of constant curvature
there is a two dimensional total geodesic submanifold N of H containing p′, p
and q. Hence, exp−1

p′ ��t� is contained in the two dimensional pointed convex cone
of Tp′H spanned by exp−1

p′ p and exp−1
p′ q. It follows that, for each t∈ �0�1�� there

are some a�b�0 such that exp−1
p′ ��t�=aexp−1

p′ p+bexp−1
p′ q. Since p�q∈Lp′�s,

we have that �exp−1
p′ ��t��s�=a�exp−1

p′ p�s�+b�exp−1
p′ q�s��0. Then, by (3.2),

��t�∈Lp′�s for all t∈ �0�1�. �
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The set Lp′�s plays a fundamental role in the convergence proof of the
Extragradient Method. Observe that the boundary of Lp′�s is

�Lp′�s=�p∈H ��exp−1
p′ p�s�=0�� (3.3)

and if p�Lp′�s then �Lp′�s �p�∈�Lp′�s.

4. Monotone Vector Fields

In this section we recall the concept of monotone vector fields on Riemannian
manifolds, see [12–16] and [5].

DEFINITION 1. A vector field X on M is said to be monotone if for all distinct
p and q in M

��′�0��P−1
p�qX�q�−X�p���0� (4.1)

where � is a geodesic, linking p and q, ��0�=p. If (4.1) is satisfied with strict
inequality for all p and q, then X is said to be strictly monotone. The vector field
X is strongly monotone if there is some � such that for all p, q∈M

��′�0��P−1
p�qX�q�−X�p����l���2� (4.2)

where � is a geodesic segment joining p to q, with ��0�=p and ��1�=q.

In Hadamard manifolds, inequality (4.1) is equivalent to

�exp−1
p q�P

−1
p�qX�q�−X�p���0� (4.3)

and (4.2) to

�exp−1
p q�P

−1
p�qX�q�−X�p����d�p�q�2� (4.4)

The previous definition extends to Riemannian manifolds the concept of monotone
operators in �n.

PROPOSITION 4.1. The vector field X on M is monotone if and only if the
function ��X���� �→� defined by

��X����t�=��′�t��X���t���� (4.5)

is increasing for all geodesic � in M .
Proof. Let � be a geodesic and X a vector field inM . Let �=��X���. Let t1 and

t2 be two different points in �. Define 	�t�=��t1+t�t2−t1��, a reparametrization
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of �. Let q=��t1�, p=��t2� and Pq�p be the parallel transport from q to p along
	. Since Pq�p is an isometry, we have

�t2−t1����t2�−��t1�� = �t2−t1����′�t2��X���t2���−��′�t1��X���t1����
= �	′�1��X�p��−�	′�0��X�q��
= �P−1

q�p	
′�1��P−1

q�pX�p��−�	′�0��X�q��
= �	′�0��P−1

q�pX�p�−X�q���
Monotonicity of X implies

�t2−t1����t2�−��t1��=�	′�0��P−1
q�pX�p�−X�q���0�

Therefore, ��X��� is increasing for all geodesic �.
Reciprocally, let p�q∈M two different points, and � a geodesic linking q and

p. Let Pq�p be the parallel transport from q to p along �. Then,

��′�0��P−1
q�pX�p�−X�q�� = �P−1

q�p�
′�1��P−1

q�pX�p��−��′�0��X�q��
= ��′�1��X���1���−��′�0��X���0���
= �1−0����1�−��0���

Since ��X��� is increasing, we have

��′�0��P−1
q�pX�p�−X�q��=��X����1�−��X����0��0�

Thus, X is monotone. �

The equivalence in Proposition 4.1 will free us from some algebraic
manipulations which are necessary when Definition 1 is used. Besides, it makes
explicit the geometric meaning in Definition 1. The proof of the following
proposition, see [24, 26] and [19], will exemplify this point.

PROPOSITION 4.2. The function f � M→� is convex if and only if its gradient
field, gradf , is monotone.

Proof. Consider the function �=f 
�� �→�, where � is a geodesic of M .
Then � is convex if and only if �′ is monotone. By the chain rule of differentiation
and (4.5), �′ =��′�gradf 
��=��gradf ���. Thus, �=f 
� is convex if and only if
��gradf ��� is monotone. Therefore, by Proposition 4.1, f is convex if and only if
gradf is monotone. �

Proposition 4.2 provides a class of monotone vector fields, namely, those
which are gradients of convex functions. For more relations between different
kinds of generalized convex functions and generalized monotone vector fields on
Riemannian manifolds see [12]. For examples of monotone vector field which
are not of gradient type, see [14–16].
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5. Variational Inequalities on Hadamard Manifolds

In this section we recall some results of [17], that are an important first step in
developing algorithms to solve variational inequalities on Hadamard manifolds.

Let X be a vector field on C⊂H . Then, the problem

find p∈C such that �X�p��exp−1
p q��0 for all q∈C� (5.1)

is called a variational inequality on C.

THEOREM 5.1. If X is continuous and C is compact, then the variational
inequality �5�1� has a solution.

Proof. See [17]. �

COROLLARY 5.1. Let p be a solution of �5�1� and suppose that p∈ int�C�, the
interior of C. Then X�p�=0.

Proof. See [17]. �

The following theorem gives a necessary and sufficient condition for the
existence of solutions. Given a point o∈H , we set CR=C∩�R, where �R is the
closed geodesic ball of radius R and center o. Returning to our X, we notice that,
by the previous theorem, there exist at least one

pR∈CR ��X�pR��exp−1
pR
q��0 for q∈CR� (5.2)

whenever CR �=∅.

THEOREM 5.2. Suppose that X is a continuous vector field on C. A necessary
and sufficient condition so that there should be a solution to (5.1), is that there
should exist an R>0 so that a solution pR∈CR of (5.2) satisfies

d�o�pR�<R� (5.3)

Proof. See [17]. �

From this theorem, we may deduce a sufficient condition for existence. This
condition is useful and introduces the notion of coerciveness.

COROLLARY 5.2. Suppose that X is a continuous vector field on C. Let the
vector field X on C satisfy

�X�p��exp−1
p p0�+�X�p0��exp−1

p0
p�

d�p0�p�
→−� as d�o�p�→+�� p∈C�

(5.4)

for some p0∈C. Then, there exists a solution to (5.1).
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Proof. See [17]. �

Generally, the solution of the variational inequality is not unique. There is,
however, a natural condition which insures uniqueness. Suppose that p�p′ ∈C
are two distinct solutions to (5.1). Then,

p∈C ��X�p��exp−1
p q��0� q∈C�

p′ ∈C ��X�p′��exp−1
p′ q��0� q∈C�

so, setting q=p′ in the first inequality, q=p in the second, and adding the two
we, obtain

�X�p��exp−1
p p

′�+�X�p′��exp−1
p′ p��0�

Hence, a natural condition for uniqueness is that

�X�p��exp−1
p q�+�X�q��exp−1

q p�<0� (5.5)

whenever p�q∈C, p �=q. Which it is easy to see that it is equivalent to the strict
monotonicity of X. Indeed, X strictly monotone implies

�X�p��exp−1
p q�+�X�q��exp−1

q p�
=�Pp�qX�p��P−1

p�q exp−1
p q�+�X�q��exp−1

q p�
=�Pp�qX�p��−exp−1

q p�+�X�q��exp−1
q p�

=−�Pp�qX�p��exp−1
q p�−�−X�q��exp−1

q p�
=−�Pp�qX�p�−X�q��exp−1

q p�
<0�

whenever p, q∈C� p �=q. The converse implication can be proved similarly.

DEFINITION 2. Condition (5.4) of Corollary 5.2 is a coerciveness condition.

EXAMPLE 5.1 (of a coercive vector field). Let p0∈M . It is easy to verify that
vector field X on M defined by X�p�=−exp−1

p p0 is coercive.

DEFINITION 3. Suppose that X is a vector field on C. X is called hemi-
continuous if for every geodesic �� �0�1�→C, and w∈T��0�M the function
t �→�P−1

� �t�X���t���w� is continuous, where P−1
� �t� is the parallel transport along

� from ��t� to ��0�.



SINGULARITIES OF MONOTONE VECTOR FIELDS 141

LEMMA 5.1. Suppose that X is a hemicontinuous, monotone vector field on C.
Then, p satisfies

p∈C ��X�p��exp−1
p q��0 for any q∈C (5.6)

if and only if it satisfies

p∈C ��X�q��exp−1
q p��0 for any q∈C� (5.7)

Proof. See [17]. �

THEOREM 5.3. Suppose that X is a continuous, monotone and coercive vector
field on C. Then, variational inequality (5.6) has a solution and for every q∈C
the set exp−1

q S is closed and convex, where S is the solution set of (5.6).
Proof. See [17]. �

6. Singularities of Monotone Vector Fields

Let be X∈� �M�. We recall that p∈M is called a singularity of X if X vanishes
at p, i.e., X�p�=0. Using the definition it is easy to prove that strict monotone
vector fields has at most one singularity.

6.1. EXISTENCE OF SINGULARITIES

THEOREM 6.1. If X∈� �H� is strongly monotone, then X has at least one
singularity.

Proof. The inequality (4.4) implies that

�X�p��expp
−1q�+�X�q��exp−1

q p�
=�Pp�qX�p��P−1

p�q exp−1
p q�+�X�q��exp−1

q p�
=�Pp�qX�p��−exp−1

q p�+�X�q��exp−1
q p�

=−�Pp�qX�p��exp−1
q p�−�−X�q��exp−1

q p�
=−�Pp�qX�p�−X�q��exp−1

q p�
�−�d2�p�q��

Therefore

�X�p��exp−1
p q�+�X�q��exp−1

q p�
d�p�q�

�−�d�p�q��

Now by using Corollary 5.1 and Corollary 5.2 with C=H it follows that X has
singularities in H . �
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6.2. CONVEXITY OF THE SINGULARITY SET

It is known that the set of singularities of a monotone map A� G→�n, where
G is an open convex subset of �n, is convex, see [28] Theorem 32.C.(b). We
generalize this result for Riemannian manifolds.

THEOREM 6.2. Let �M�g� be a Riemannian manifold, G an open convex set of
M and X a (smooth!) monotone vector field on G. Then the set of singularities
of X is convex.

Proof. If X has at most one fix point we have nothing to prove. Therefore
suppose that X has at least two distinct singularities. Let p, q∈M ; p �=q be
two arbitrary singularities of X and �� �0�l�→M be a unit speed geodesic arc
beginning at p ���0�=p� and ending at q ���1�=q�. We must prove that for all
s∈ �0�l� ��s� is a singularity of X. Suppose that X���s�� �=0. The monotonicity
of X implies that

�X���s����̇�s��=0� (6.1)

Let �t� M→M be the one parameter transformation group generated by X.
Then, by [15] Theorem 3.8(i), �t is nonexpansive for t<0. Since G is open
��s� �=�t���s�� and �t���s��∈G for t<0 sufficiently small. Fix such a t0. By
(6.1) the trajectory �t���s�� is perpendicular to �. Hence there is a nondegenerate
geodesic triangle of vertices p, q, �s=�t0���s��. By the triangle inequality we
have

d�p��s�+d�q��s�>d�p�q�� (6.2)

On the other hand the nonexpansivity of �t0 implies

d�p��s�+d�q��s��d�p���s��+d�q���s��=d�p�q�� (6.3)

But (6.2) is in contradiction with (6.3). Hence we must have X���s��=0. Thus
for all s∈ �0�1� ��s� is a singularity of X. �

Next, we give an example of a non-monotone problem in the usual sense, which
becomes monotone in an appropriate metric. Set �=�p=�p1�p2�∈�2 �p2>0�.
The vector field X� �→�2 given by

X�p1�p2�=�p2sinh�p1��1−cosh�p1��

is not monotone and has zeroes, namely, X�0�p2�=�0�0� for all p2>0.
Endowing � with the Riemannian metric defined by matrix G=�gij�, where

g11�p1�p2�=g22�p1�p2�=
1
p2

� g12�p1�p2�=g21�p1�p2�=0�
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we obtain the upper half-plane model of the Hyperbolic space �2, that is a
Hadamard manifold of constant curvature K=−1. The Christoffel Symbols of
�2 are given by

� 1
11=� 2

12=� 2
21=� 1

22=0� � 1
12=� 1

21=� 2
22=−1/p2 and � 2

11=1/p2�

see [3]. Then, if Y �p1�p2�=�a�p1�p2��b�p1�p2��, it holds that

AY �p1�p2�=
1

p2
2

( �a
�p1

− 1
p2
b �a

�p2
− 1

p2
a

�b
�p1

+ 1
p2
a �b

�p2
− 1

p2
b

)

where AY �p1�p2�Z=�ZY . Then,

AX�p1�p2�=
(
p2cosh�p1�+ 1

p2

(
cosh�p1�−1

)
0

0 1
p2

(
cosh�p1�−1

))�
which is a diagonal positive semidefinite matrix. Then X is monotone in �2, see
[16]. Henceforth, the problem

EXAMPLE 6.1.

find p∈� such that �p2sinh�p1�� 1−cosh�p1��=0�

is non-monotone in � and monotone in �2.
Note that the zeros of the monotone vector field X form a convex set with

respect to the hyperbolic metric.

7. Extragradient Method

The problem from Example 6.1 can not be solved by the usual Extragradient
algorithm, because the vector field is not monotone. In this section we extend
the extragradient-method so that it can be applied to the problem of finding
singularities of monotone vector fields in constant curvature Hadamard manifolds,
in particular it solves the problem from Example 6.1, if there exist one.

We will prove that the sequence generated by our algorithm converges to a
singularity of the vector field.

7.1. STATEMENT OF THE ALGORITHM

We study the following algorithm for finding singularities of a continuous mono-
tone vector field X defined on a constant curvature Hadamard manifold H .
The algorithm requires exogenous parameters �, �− and �+ such that 0<�<1,
0<�−��+, and an exogenous sequence ��k�, satisfying �−��k��

+.
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The Algorithm

1. Initialization. p0∈H .
2. Iterative step.

(a) Stopping criterion. If X�pk�=0 then STOP, otherwise continue.
(b) Selection of qk and tk

Define the geodesic

�k�t�=exppk−tX�pk�� (7.1)

and the function

�k�t�=��′
k�t��X��k�t���� (7.2)

Compute

lk=min�l�0 ��k�2
−l�k��−��X�pk��2�� (7.3)

Set

tk=2−lk�k� (7.4)

and

qk=�k�tk�� (7.5)

(c) Definition of pk+1

Define

Lk=�p∈H ��exp−1
qk
p�X�qk���0�� (7.6)

and

pk+1=
∏

Lk
�pk�� (7.7)

7.2. CONVERGENCE ANALYSIS

We start by establishing that our algorithm is well defined.

LEMMA 7.1. If X�pk� �=0 then tk is well defined, i.e., the Armijo search for tk
in (7.3) is finite.

Proof. Since X is monotone and continuous, and the parallel transport is an
isometry, there exits � >0 such that

�k�t�=��′
k�t��X��k�t����−��X�pk��2� ∀t∈�0���� (7.8)

because �′
k�t�=−Ppk�k�t�X�pk�. Take lk such that �k2

−lk ∈�0���. Then �k��k2
−lk �

satisfies (7.8). �

In a complete metric space �M�d�, the sequence �pk�⊂M is said to be Féjer
convergent to the nonempty set U ⊂M when
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d�pk+1�y��d�pk�y�� (7.9)

for all y∈U and k�0.

LEMMA 7.2. In a complete metric space, �M�d� if �pk�⊂M is Féjer convergent
to a nonempty set U ⊂M , then �pk� is bounded. If furthermore a cluster point p
of �pk� belongs to U then limk→+�pk=p.

Proof. Take p∈U . Inequality (7.9) implies d�pk�p��d�p0�p� for all k. There-
fore �pk� is bounded. Take a subsequence �pkj � of �pk� such that limk→+�pkj =p.
By (7.9), the sequence of positive numbers �d�pk�p�� is decreasing and it has a
subsequence, namely �d�pkj �p��, which converges to 0. Thus, the whole sequence
converges to 0, i.e., limk→+�d�pk�p�=0, implying limk→+�pk=p. �

From now on S=�p∈H �X�p�=0� is the set of singularities of X. Next we will
prove that, if S is nonempty, then the sequence �pk� generated by the procedure
(7.1)–(7.7) is Féjer convergent to S.

LEMMA 7.3. Suppose that the Algorithm doesn’t stop at iteration k. If S �=∅,
then for all p∗ ∈S

d�pk+1�p∗�<d�pk�p∗�� (7.10)

Proof. Define

Lk=�p∈H ��exp−1
pk
p�X�pk���0�� (7.11)

Since H is a constant curvature Hadamard manifold, by Corollary 3.2, Lk is
convex. If p∗ is a singularity of X then, by (4.3), �exp−1

pk
p∗�X�pk���0, i.e.,

p∗ ∈Lk. Observe that �Lk=�p∈H ��exp−1
pk
p�X�pk��=0� is the boundary of Lk

and if p �∈Lk then �Lk
�p�∈�Lk.

If the Algorithm doesn’t stop at iteration k, then pk �∈Lk, pk+1=
∏
Lk
�pk� and

d�pk+1�pk� �=0. Take p∗ ∈S. By Proposition 3.1,

�exp−1
pk+1

p∗�exp−1
pk+1

pk��0� (7.12)

Consider the geodesic triangle ��pkpk+1p∗�. By Theorem 2.1

d2�pk�p∗� � d2�pk+1�p∗�+d2�pk+1�pk�−
−2d�pk+1�p∗�d�pk+1�pk�cos�
�� (7.13)

where 
=<��exp−1
pk+1

p∗�exp−1
pk+1

pk�. The inequality (7.13) implies that

d2�pk�p∗��d
2�pk+1�p∗�+d2�pk+1�pk�−�exp−1

pk+1
p∗�exp−1

pk+1
pk�� (7.14)
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It follows from (7.12) and (7.14) that

d2�pk�p∗��d
2�pk+1�p∗�+d2�pk+1�pk��

Since d�pk+1�pk� �=0, we get the statement of the lemma. �

We present next the main convergence result on our algorithm.

THEOREM 7.1. Suppose that S �=∅. Then, either the sequence �pk� generated
by procedure (7.1)–(7.7) stops at some iteration k, in which case pk∈S, or �pk�
converges, and its limit belongs to S.

Proof. It follows from (7.2)–(7.5) that

�Ppk�qk�−X�pk���X�qk���−��X�pk��2�

Multiplying this inequality by tk, we get

�Ppk�qk�−tkX�pk���X�qk���−��tkX�pk���X�pk���
Then, by (7.1) and (7.5),

�Ppk�qk�−tkX�pk���X�qk���−�d�pk�qk��X�pk��� (7.15)

Since �pk� is Féjer convergent to S �=∅ andX is continuous, by using the definition
of qk it follows that �pk�, �X�pk��, �qk� and �X�qk�� are bounded. Take a conver-
gent subsequence �pkj � of �pk� such that limj→�pkj = p̂ and set q̂= limj→�qkj . In
the proof of Lemma 7.2, we proved that d2�pk+1�pk��d

2�pk�p∗�−d2�pk+1�p∗�,
for all p∗ ∈S. Then, limj→�pkj = p̂ implies that limj→�pkj+1= p̂. By (7.15),

�Ppkj �qkj �−tkjX�pkj ���X�qkj ���−�d�pkj �qkj ��X�pkj ��� (7.16)

By (7.1) and (7.5)

�Ppkj �qkj �−tkjX�pkj ���X�qkj ��=�exp−1
qkj
pkj �X�qkj ��� (7.17)

By definition of pkj+1

�exp−1
qkj
pkj+1�X�qkj ��=0� (7.18)

Since limj→�pkj = p̂ and limj→�pkj+1= p̂, we get, using (7.17) and (7.18),

lim
j→�

�Ppkj �qkj �−tkjX�pkj ���X�qkj �� = lim
j→�

�exp−1
qkj
pkj �X�qkj ��

= lim
j→�

�exp−1
qkj
pkj+1�X�qkj ��

= 0�
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Then, (7.16) implies that

lim
j→�

d�pkj �qkj �=d�p̂�q̂�=0� (7.19)

or

lim
j→�

�X�pkj ��=�X�p̂��=0� (7.20)

Suppose that (7.19) holds. Then, is also holds that

lim
j→�

tkj�X�pkj ��= lim
j→�

d�pkj �qkj �=d�p̂�q̂�=0�

We consider again two cases. Either (7.20) holds or limj→� tkj =0. Suppose
that limj→� tkj =0. Then, there exits j̃ such that lkj >2, for all j� j̃.

Define the sequence �q̃kj � as q̃kj =exppkj ��kj �2tkj ��. By (7.3),

�kj �2tkj �>−��X�pkj ��2� (7.21)

Taking limits in (7.21) as j goes to �, we get −�X�p̂���−��X�p̂��. Since
0<�<1, �X�p̂��=0, i.e., p̂∈S, and by Lemma 7.2 limk→�pk= p̂. �

7.3. EXAMPLE

LetM=�n where �n is the n dimensional hyperbolic space of constant sectional
curvature K=−1. Consider the following model for �n:

�n=��=��1������n��n+1�∈�n+1 ��n+1>0 and �����=−1��

where for the vectors �=��1������n+1�, �=��1������n+1�∈�n+1, �����=�1�1+
···+�n�n−�n+1�n+1. The metric of �n is induced from the Lorentz metric �����
of �n+1 and it will be denoted by the same symbol. Then a normalized geodesic
�x of �n starting from x��x�0�=x� will have the equation

�x�t�=�cosht�x+�sinht�v� (7.22)

where v= �̇x�0�∈Tx�n is the tangent unit vector of � in the starting point. We
also have

�u�x�=0� (7.23)

for all u∈Tx�n. Equation (7.22) implies

exptv=�cosht�x+�sinht�v� (7.24)
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for any unit vector v and

exp−1
x y=arccosh�−�x�y�� y+�x�y�x√

�x�y�2−1
� (7.25)

for all x�y∈�n and v∈Tx�n. Let X be a monotone vector field on �n,

Lx=�y∈�n � �X�x��exp−1
x y��0�

and

Mx=�y∈�n � �X�x��exp−1
x y�=0��

Then equations (7.25) and (7.23) imply that

Lx=�y∈�n � �X�x��y��0� (7.26)

and

Mx=�y∈�n � �X�x��y�=0�� (7.27)

Let z∈�n. Then, y=�Lx
z iff y∈Mx and

�exp−1
y z�f �=0� (7.28)

for all unit vectors f ∈TyMx. If f ∈Ty�n is a unit vector then f ∈TyMx

iff f = �̇y�0� where �y is a normalized geodesic in Mx starting from y,
i.e., �y�t�=�cosht�y+�sinht�f and �X�x���y�t��=0. But (7.27) implies that
�X�x���y�t��=0 iff �X�x��f �=0. Hence f ∈TyMx iff

�X�x��f �=0� (7.29)

On the other hand (7.25) implies that (7.28) is equivalent to

�z�f �=0� (7.30)

Since y∈Mx and f ∈Ty�n we have

�X�x��y�=0� (7.31)

and

�y�f �=0� (7.32)

Now consider the case where n=2. For every a∈�3 denote by a1�a2�a3 the
components of a. Hence a=�a1�a2�a3�. Let ã=�a1�a2�−a3�. It is a straight-
forward computation to check that

˜̃a× b̃=−a×b� (7.33)
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where ‘×’ is the vector product of �3. Denote by �·�·� the canonical scalar
product of �3. It is easy to see that

�a�b�=�a�b̃�� (7.34)

for all a�b∈�3. By using (7.34), (7.29) and (7.30) it is easy to see that

f =	1z̃×X̃�x�� (7.35)

for some 	1∈�. Similarly by using (7.34), (7.31) and (7.32)

y=	2f̃×X̃�x�� (7.36)

for some 	2∈�. Equations (7.35), (7.36) and (7.33) imply that

y=	�X�x�×z�×X̃�x�� (7.37)

for some 	∈�. Hence by using the Gibbs formula and (7.34)

y=	��X�x��X�x��z−�z�X�x��X�x���
or equivalently∏

Lx
z=	��X�x��X�x��z−�z�X�x��X�x��� (7.38)

for some 	∈�. 	 can be determined by the condition �y�y�=−1. Thus

	=± 1√
�X�x��X�x���1+�z�X�x��2�� (7.39)

where the sign ± is chosen so that yn+1>0. By using the notations of Section 7
and (7.38) we have that

pk+1=	k��X�qk��X�qk��pk−�pk�X�qk��X�qk���
where by (7.39)

	k=± 1√
�X�qk��X�qk���1+�pk�X�qk��2�

�

by (7.24)

qk = �coshtk�pk−�sinhtk�X�pk��

tk = 2−lk�k�

lk = min�l�0 ��k�2
−l�k��−��X�pk��X�pk����
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and

�k�t�=��sinht�pk−�cosht�X�pk��X��cosht�pk−�sinht�X�pk����

where the sign ± is chosen so that pn+1
k+1>0. If X has fixed points than �pk�k∈�

converges to a singularity of f . In [17] it is proved that the vector field V �x�=
�−x1x3�−x2x3�1−x2

3� is a monotone vector field on �2. The only singularity of
V is (0,0,1). Hence for X=V the extragradient method converges to (0,0,1).

8. Final Remarks

In [2], [8–11] and [22] extragradient-type algorithms are proposed for solving
monotone variational inequality problems in �n. Our algorithm can be used for
solving any constrained problem in �n with monotone vector field (in the sense
defined in Section 4), having a constant curvature Hadamard manifold as con-
straint set. It extends the classical extragradient-type algorithms cited above, since
an Euclidean space �n is a constant curvature Hadamard manifold. We remark
that we use some techniques in the definition and convergence proof of our
algorithm which impose restrictions on the manifold, namely non-positive con-
stant curvature. The same proofs can be given for an arbitrary two dimensional
Hadamard manifold. However, finding all the manifolds on which our method
works remains an open problem. More precisely, it is desirable to determine in
which manifolds, other than constant curvature (or two dimensional) Hadamard
ones, it is possible to define an extragradient method and establish its conver-
gence to a singularity of the vector field. Also, it remains as open problem the
formulation of an extragradient-type algorithm to solve variational inequalities as
defined in (5.1).
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