
Accepted Manuscript

A data placement strategy in scientific cloud workflows

Dong Yuan, Yun Yang, Xiao Liu, Jinjun Chen

PII: S0167-739X(10)00020-8
DOI: 10.1016/j.future.2010.02.004
Reference: FUTURE 1843

To appear in: Future Generation Computer Systems

Received date: 30 May 2009
Revised date: 26 November 2009
Accepted date: 1 February 2010

Please cite this article as: D. Yuan, Y. Yang, X. Liu, J. Chen, A data placement strategy in
scientific cloud workflows, Future Generation Computer Systems (2010),
doi:10.1016/j.future.2010.02.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2010.02.004

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

A Data Placement Strategy in Scientific Cloud Workflows

Dong Yuan, Yun Yang, Xiao Liu, Jinjun Chen
Faculty of Information and Communication Technologies,

Swinburne University of Technology
Hawthorn, Melbourne, Australia 3122

{dyuan, yyang, xliu, jchen}@swin.edu.au

ABSTRACT
In scientific cloud workflows, large amounts of application data need to be stored in distributed data
centres. To effectively store these data, a data manager must intelligently select data centres in which these
data will reside. This is, however, not the case for data which must have a fixed location. When one task
needs several datasets located in different data centres, the movement of large volumes of data becomes a
challenge. In this paper, we propose a matrix based k-means clustering strategy for data placement in
scientific cloud workflows. The strategy contains two algorithms that group the existing datasets in k data
centres during the workflow build-time stage, and dynamically clusters newly generated datasets to the
most appropriate data centres - based on dependencies - during the runtime stage. Simulations show that
our algorithm can effectively reduce data movement during workflow execution.

Keywords-data management; scientific workflow; cloud computing;

1. INTRODUCTION
Running scientific workflow applications usually need not only high performance computing

resources but also massive storage [18]. In many scientific research fields, like astronomy [17], high-
energy physics [35] and bio-informatics [39], scientists need to analyse terabytes of data either from
existing data resources or collected from physical devices. During these processes, similar amounts of
new data might also be generated as intermediate or final products [18]. Workflow technologies are
facilitated to automate these scientific applications. Scientific workflows are typically very complex.
They usually have a large number of tasks and need a long time for execution. Nowadays, popular
scientific workflows are deployed in grid systems [35] because they have high performance and massive
storage. However, building a grid system is extremely expensive and it is not available for scientists all
over the world to use.

The emergence of cloud computing technologies offers a new way to develop scientific workflow
systems. Since late 2007 the concept of cloud computing was proposed [47] and it has been utilised in
many areas with some success [8] [25] [10] [38]. Cloud computing is deemed as the next generation of
IT platforms that can deliver computing as a kind of utility [11]. Foster et al. made a comprehensive
comparison of grid computing and cloud computing [23]. Some features of cloud computing also meet
the requirements of scientific workflow systems. First, cloud computing systems can provide high
performance and massive storage required for scientific applications in the same way as grid systems,
but with a lower infrastructure construction cost among many other features, because cloud computing
systems are composed of data centres which can be clusters of commodity hardware. Second, cloud
computing systems offer a new paradigm that scientists from all over the world can collaborate and
conduct their research together. Cloud computing systems are based on the Internet, and so are the
scientific workflow systems deployed on the cloud. Dispersed computing facilities (like clusters) at
different institutions can be viewed as data centres in the cloud computing platform. Scientists can
upload their data and launch their applications on scientific cloud workflow systems from anywhere in
the world via the Internet. As all the data are managed on the cloud, it is easy to share data among
scientists. Research into doing science on the cloud has already commenced such as early experiences
like Nimbus [31] and Cumulus [46] projects. The work by Deelman et al. [20] shows that cloud
computing offers a cost-effective solution for data-intensive applications, such as scientific workflows
[29].

By taking advantage of cloud computing, scientific workflow systems could gain a wider utilisation;
however they will also face some new challenges, where data management is one of them. Scientific
applications are data intensive and usually need collaborations of scientists from different institutions
[6], hence application data in scientific workflows are usually distributed and very large. When one task
needs to process data from different data centres, moving data becomes a challenge [18]. Some
application data are too large to be moved efficiently, some may have fixed locations that are not
feasible to be moved and some may have to be located at fixed data centres for processing, but these are
only one aspect of this challenge. For the application data that are flexible to be moved, we also cannot
move them whenever and wherever we want, since in the cloud computing platform, data centres may

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

belong to different cloud service providers that data movement would result in costs. Furthermore, the
infrastructure of cloud computing systems is hidden from their users. They just offer the computation
and storage resources required by users for their applications. The users do not know the exact physical
locations where their data are stored. This kind of model is very convenient for users, but remains a big
challenge for data management to scientific cloud workflow systems.

In this paper, we propose a matrix based k-means clustering strategy for data placement in scientific
cloud workflow systems. Scientific workflows can be very complex, one task might require many
datasets for execution; furthermore, one dataset might also be required by many tasks. If some datasets
are always used together by many tasks, we say that these datasets are dependant on each other. In our
strategy, we try to keep these datasets in one data centre, so that when tasks were scheduled to this data
centre, most, if not all, of the data they need are stored locally.

Our data placement strategy has two algorithms, one for the build-time stage and one for the runtime
stage of scientific workflows. In the build-time stage algorithm, we construct a dependency matrix for
all the application data, which represents the dependencies between all the datasets including the
datasets that may have fixed locations. Then we use the BEA algorithm [37] to cluster the matrix and
partition it that datasets in every partition are highly dependent upon each other. We distribute the
partitions into k data centres, where the partitions have fixed location datasets are also placed in the
appropriate data centres. These k data centres are initially as the partitions of the k-means algorithm at
runtime stage. At runtime, our clustering algorithm deals with the newly generated data that will be
needed by other tasks. For every newly generated dataset, we calculate its dependencies with all k data
centres, and move the data to the data centre that has the highest dependency with it.

By placing data with their dependencies, our strategy attempts to minimise the total data movement
during the execution of workflows. Furthermore, with the pre-allocate of data to other data centres, our
strategy can prevent data gathering to one data centre and reduces the time spent waiting for data by
ensuring that relevant data are stored locally.

The remainder of the paper is organised as follows. Section 2 presents the related work. Section 3
gives an example and analyses the research problems. Section 4 introduces the basic strategy of our
algorithms. Section 5 presents the detailed steps of the algorithms in our data placement strategy.
Section 6 demonstrates the simulation results and the evaluation. Finally, Section 7 addresses our
conclusions and future work.

2. RELATED WORK
Data placement of scientific workflows is a very important and challenging issue. In traditional

distributed computing systems, much work about data placement has been conducted. In [49], Xie
proposed an energy-aware strategy for data placement in RAID-structured storage systems. Stork [33] is
a scheduler in the Grid that guarantees that data placement activities can be queued, scheduled,
monitored and managed in a fault tolerant manner. In [15], Cope et al. proposed a data placement
strategy for urgent computing environments to guarantee data robustness. At the infrastructure level,
NUCA [28] is a data placement and replication strategy for distributed caches that can reduce data
access latency. However, none of them focuses on reducing data movement between data centres on the
Internet. As cloud computing has become more and more popular, new data management systems have
also appeared, such as Google File System [24] and Hadoop [3]. They all have hidden infrastructures
that can store the application data independent of users’ control. Google File System is designed mainly
for Web search applications, which are different from workflow applications. Hadoop is a more general
distributed file system, which has been used by many companies, such as Amazon and Facebook. When
you push a file to a Hadoop File System, it will automatically split this file into chunks and randomly
distribute these chunks in a cluster. Furthermore, the Cumulus project [46] introduced a scientific cloud
architecture for a data centre. And the Nimbus [31] toolkit can directly turn a cluster into a cloud and it
has already been used to build a cloud for scientific applications. Within a small cluster, data movement
is not a big problem, because there are fast connections between nodes, i.e. Ethernet. However, the
scientific cloud workflow system is designed for scientists to collaborate, where large scale and
distributed applications need to be executed across several data centres. The data movement between
data centres may cost a lot of time, since data centres are spread around the Internet with limited
bandwidth. In this work, we try to place the application data based on their dependencies in order to
reduce the data movement between data centres.

Data transfer is a big overhead for scientific workflows [41]. Though popular scientific workflow
systems have their data management strategies, they did not focus on reducing data movement. For the
build-time stage, these systems mainly focus on data modelling methods. For example, Kepler [35] has
an actor-oriented data modelling method that works for large data in a grid environment, Taverna [39]
and ASKALON [48] have their own process definition language to represent their data flows. For the

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

runtime stage, most of the scientific workflow systems adopt some data grid systems for their data
management. For examples, Kepler uses the SRB [7] system, while Pegasus [17] and Triana [14] adopt
the RLS system [12], Gridbus [9] has a grid service broker [45] where all data are deemed as important
resources. Data grids primarily deal with providing services and infrastructure for distributed data-
intensive applications that need to access, transfer, and modify massive datasets stored in distributed
storage resources [44]. However, these systems do not consider the dependencies between data in
scientific workflows either at build-time or runtime and they also can not reduce data movement. Some
researches in grid computing have addressed the importance of data dependency for the large-scale
scientific applications, although they did not focus on workflow data management. The Filecules project
[21] groups the files based on the dependencies. Using real workload experiments data, the authors
demonstrated that filecules grouping is a reliable and useful abstraction for data management in science
Grid. BitDew [22] is a distributed data management system for desktop Grid. Different from data centres
in the cloud that aim to provide services to users, desktop Grid aims to make use of the idle computing
and storage resources in the desktop computers. In BitDew, the data placement dependency is denoted
by a data attribute called “affinity”, which is pre-defined by users. However, in cloud computing, all the
applciation data are hosted in the data centres, where anyone can use the cloud services and upload their
data. Letting users define the data dependencies for the scientific cloud workflows is clearly impractical.

The closest workflow research to ours is the Pegasus workflow system which has proposed some
data placement strategies [13] [42] based on the RLS system. The strategies are: first, pre-allocate the
required data to the computation resource where the task will execute; second, dynamically delete the
data that will no longer be used by tasks. These strategies are only for the runtime stage of scientific
workflows and can effectively reduce the overall execution time and the storage usage of the workflows.
Furthermore, in [32], the authors proposed a data placement scheduler for distributed computing
systems. It guarantees the reliable and efficient data transfer with different protocols. These works
mainly focus on how to move the application data, and they can not reduce the total data movement of
the whole system. However, our work aims to reduce data movement. Our strategy is for both build-time
and runtime stages of scientific workflows and we design specific algorithms to automatically place and
move the application data.

In cloud computing systems, the infrastructure is hidden from users. Hence, for most of the
application data, the system will decide where to store them. Dependencies exist among these data. In
this paper, we initially adapt the clustering algorithms for data movement based on data dependency.
Clustering algorithms have been used in pattern recognition since 1980s [30], which can classify
patterns into groups without supervision. Today they are widely used to process data streams [27]. In
many scientific workflow applications, the intermediate data movement is in data stream format and the
newly generated data must be moved to the destination in real-time. We adapt the k-means clustering
algorithm for data placement. When new data is generated by a task, we dynamically calculate the
dependencies of the new data with the K data centres, and move the new data to the centre with highest
dependency. The simulation results of this paper show that with our data placement strategy, the data
movement between data centres is significantly reduced compared to random data placement.

3. SCIENTIFIC CLOUD WORKFLOW DATA MANAGEMENT

3.1. A Motivating Example
Scientific applications often need to process terabytes of data. For example, the ATNF1 Parkes

Swinburne Recorder (APSR) [2] is a next-generation baseband data recording and processing system
currently under development in collaboration by Swinburne University of Technology and ATNF. The
data from the APSR streams at a rate of one gigabyte per second. The researchers at Parkes process the
data with a local cluster of servers and do their research. All the data are stored locally at Parkes and
they are not available to other institutions. If researchers at other institutions need the data resources
from the Parkes Radio Telescope, they have to contact the researchers at Parks and request for the data.
Researchers at Parkes will check the local repositories to see if the existing data resources could fulfill
the requirements. In this situation communications often suffer from low efficiency because researchers
are from different projects and the requirements are usually complex. Sometimes researchers even have
to go to Parkes and bring back the data that they need on hard disks. Sharing data resources in this
manner is obviously inefficient and hence not desirable.

With cloud computing technologies, we can turn the Parkes cluster into a data centre on a cloud
computing platform that can offer services to researchers all over the world. The cloud computing
platform is built on the Internet, which is how the data centres are connected to each other. All the data
are managed by the cloud data management system. The researchers can access the existing data
resources, upload application data and launch their applications via the cloud service. By doing this, the

1 ATNF refers to the Australian Telescope National Facility.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

resources at Parkes will be fully utilised, since data can be sent to other data centres for different
applications as needed. On the other hand, researchers at Parkes will be able to do more scientific
research by retrieving useful data from other data centres around the world. All these data sending and
retrieving operations are hidden from the researches. In another word, via cloud computing platform,
researchers can utilise data resources from other institutions without knowing where the data are
physically stored. Hence, on a cloud computing platform, data centres should have the ability to host
each other’s data. For example, if some particular data at Parkes are frequently retrieved by another data
centre, the system will store these data on that data centre instead. Furthermore, if many applications at
Parkes need the same data from another data centre, the system will also move those data to Parkes for
storage.

The Parkes Radio Telescope was setup in 1961. For over 40 years, the Parkes cluster has
accumulated a large amount of data resources in different formats and sizes. Normally, data can be
moved to other data centres, but if the size of the data is very large, moving them via the Internet will be
inefficient. To transport terabytes of data, the most efficient way is for a delivery company to ship the
hard disks [5]. If an application needs the majority of its data from Parkes, it is preferable that it is
executed locally and retrieves data from elsewhere. For example, some research projects may need to
process the raw data recorded from the telescope by APSR, in order to get some specific results.

3.2. Problem Analysis
Scientific cloud workflows run on the cloud platform, which is composed of many distributed data

centres on the Internet (like Parkes cluster) and each connection between data centres has limited
bandwidth. Tasks sometimes need to process more than one dataset that may be stored in different data
centres. Because of the bandwidth constraints, the movement of datasets between data centres would be
the bottle-neck of the system. In [26], the authors proposed a new protocol for data transportation that
could provide gigabits of bandwidth. However, it has not been widely supported by the Internet. The
popular cloud systems, such as Amazon EC2 [1], still have limited bandwidth [34]. It charges $0.10 to
$0.15 per gigabyte to move data in to and out of Amazon Web Services over the Internet. Another
approach to deal with the bottle-neck of large data transfer is to divide the tasks, i.e. for the tasks that
need to process many distributed datasets, we split them to many smaller and parallel sub-tasks, and
schedule them to different datasets. Map-Reduce technology [16] is a typical and successful paradigm. It
gains great success in the Google File System and Hadoop, as well as in scientific applications [36].
However, Map-Reduce is more applicable to be used within one data centre, since it needs huge
interconnected bandwidth, such as the shuffle step that occurs between the Map procedure and the
Reduce procedure. Furthermore, in scientific applications, many tasks must use more than one datasets
together and can not be further divided, such as the All-Pairs problem [38]. Therefore, data movement is
inevitable. In light of this, we have to place the datasets that are needed by the same task in the same
data centre as much as possible, so as to minimise data movement when the task is executed. The
placement of datasets among data centres is not trivial.

Normally, a cloud computing system needs to decide in which data centres the application data are
stored. Most datasets are flexible about where they are stored since they are independent of users. The
cloud computing system can automatically store the application data based on some data placement
strategies. However, in scientific cloud workflow systems, some data are not such flexible. They have to
be stored in some particular data centres due to different reasons. Some common scenarios are
demonstrated below.

First, some data may need to be processed by special equipment. In some scientific projects, many
special types of equipment are utilised. Some data can only be processed by particular equipment since
they are in certain formats, e.g. the signal from Parkes Radio Telescope can only be processed by the
equipment at Parkes, such as the ASPR. These data have to be stored where the required equipment is
located.

Second, some data are naturally distributed and too large to be moved efficiently. For example, the
raw data files recorded by ASPR are usually terabytes or even petabytes in size. They are naturally
stored in Parkes, and impossible to move to other locations via the Internet.

Another reason that some data must be placed at a particular data centre is about the ownership. Data
are considered as an important and valuable resource in many scientific projects. The cloud computing
platform offers a new paradigm for cooperation that institutions can easily share their valuable data
resources by placing a charge on them. So the data with limited access rights have to be stored in
particular data centres.

No matter what the reason that the data must be stored in a particular data centre, we call these
datasets as fixed location datasets in general. As such, we call the datasets that the system can flexibly
decide where to store flexible location datasets. The data placement strategy not only has to place the

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

flexible location datasets, but also has to take into account the impact of the fixed location datasets.
Some challenges exist in the data placement strategy as discussed below.

First, in scientific workflows, both tasks and datasets could be numerous and make up a complicated
many-to-many relationship. One task might need many datasets and one dataset might be needed by
many tasks. Furthermore, new datasets will be generated during the workflow execution. One dataset
generated by a task might be used by several later tasks. So the data placement strategy should be based
on these data dependencies.

Second, the scientific cloud workflow system is a dynamic computing environment. Many workflow
instances will run in the system simultaneously. Some instances might need long time execution and
some might be short. New workflow instances could deploy to the system and completed instances
could be removed from the system anytime. So the relationships between datasets and tasks will change
often and the placement of datasets has to be changed accordingly.

Third, the data management in scientific cloud workflow systems is opaque to users, that means
users do not know where and how the data been stored. In the cloud environment, users only pay for the
computation and storage resources that they need and give the application data to the system for
processing. Because the cloud systems are built on the service oriented architecture (SOA), the users just
use the dynamic cloud services and do not know the infrastructure of the system. Hence, the data
placement has to be automatic.

4. BASIC STRATEGIES FOR DATA PLACEMENT
For scientific workflow data management, there are two types of data we have to deal with.

First is the existing data that exists before the workflow execution starts. This type of data mainly
includes the resource data from the existing file systems or databases and the application data from users
as input for processing or analysis.

Second is the generated data that are generated during the workflow execution. This type of data
mainly includes the newly generated mediate and result data, as well as the streaming data dynamically
collected from scientific devices during the workflow execution.

We propose this taxonomy because we will treat these two types of data at the workflow build-time
and runtime respectively with different algorithms. This taxonomy only indicates the generation time of
the datasets. When the generated data moves to a data centre and is stored, it becomes existing data. The
most important common feature is that both types of data might be very large. They can not and should
not be stored and moved wherever and whenever we want, since the cloud system has the bandwidth
constraints.

The application data of scientific workflow could also have a variety of formats (e.g. XML data,
complex objects, raw data files, tables in relational databases). But in this paper, we do not consider the
structure of the data, since it is not the main focus of this paper and we will treat all data in the same
way.

In scientific workflows, moving data to one data centre will cost more than scheduling tasks to that
centre [3]. Hence, our basic strategy is to have a reasonable placement of data in distributed data centres
first, so that when tasks are scheduled to the appropriate data centres, almost all the datasets they need
are in local storage. In this work we analyse the dependencies between datasets. Based on this
dependency, we adapt the k-means clustering algorithm to cluster datasets to the proper data centres.

In scientific cloud workflow systems, many workflow instances will run simultaneously, each of
which have complex structures. Large numbers of tasks will access large numbers of datasets and
produce large output data. In order to execute a task, all required datasets must be located on the same
data centre, and this may require some movement of datasets. Furthermore, if two datasets are always
used together by many tasks, they should be stored together in order to reduce the frequency of data
movement. Here, we say that these two datasets have dependency. In other words, two datasets are said
to be dependent on each other if they are both used by the same task. The more tasks there are that use
the same datasets, the higher the dependency between those datasets. We denote the set of datasets as D
and the set of tasks as T. 2 To represent this dependency, we give every dataset a task set in addition to its
size. So, every dataset has two attributes denoted as <TDdi ∈ i, si>, where is the set of tasks that
will use dataset d

TTi ⊂

i, si denotes the size of di. Furthermore, we use dependencyij to denote the dependency
between datasets di and dj. We say that the datasets di and dj have dependency if there are tasks that will
use di and dj together and the quantity of this dependency is the number of tasks that use both di and dj.

2 All the denotations are listed at the end of the paper.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

()jiij TTCountdependency ∩=

In this work, our k-means clustering data placement strategy is based on this dependency that can
cluster the datasets into different data centres. The strategy has two stages: build-time and runtime.

At the build-time stage, the main goal of the algorithm is to set up k initial partitions for the k-means
algorithm. We use a matrix based approach to cluster the existing datasets into k data centres as the
initial partitions.

At the runtime stage, the main goal of the algorithm is to cluster the newly generated datasets to one
of the k data centres based on their dependencies, which will be calculated dynamically.

We have to design different algorithms for build-time and runtime stages to treat the existing data
and generated data respectively, mainly because of the dynamic nature of the cloud environment. Even
though we know the size and related tasks of the datasets that will be generated during the workflow
execution, it is not practical to calculate their dependencies and assign them a data centre at build-time
stage. This is because the scientific workflows have a large number of tasks and need a long time for
execution. It is very hard to predict when a certain dataset will be generated in a dynamic cloud
environment. If we assign the generated data a data centre at the build-time stage, then when the data are
actually generated the data centre might have not enough available storage to store them. Furthermore, it
is impractical and inefficient to reserve the storage for the generated data at the build-time stage. This is
because the data might not be generated until the end of the scientific workflow and it would be a waste
of the reserved storage space during this time.

5. MATRIX BASED K-MEANS CLUSTERING STRATEGY FOR DATA PLACEMENT

t4t2

t1

d1

t5t4

t3

t2

d3

d2

d4 d5

d1
d3

d2
d4

d5

d1 d3 d2 d4 d5

p1

p2

p3

...

...

...

...

...

...

...

. . .

p1

p1

p3

p2

p3

p2

t1 t3

t5

d2

d5

Build-time Stage

Runtime Stage

A Simple Instance

ti diWorkflow Task Dataset Data Flow Pi : Partition of Datasets

Figure 1. Example of data placement

In this section we will intricately discuss our data placement strategy. In Fig. 1, there is an example
of a simple workflow instance, and it shows the two stages of our strategy. The data flows in the
workflow instance, for example, from dataset d1 to tasks t1 and t2 mean that d1 will be used by both t1
and t2; and data flows from t1 to t2 and t3 mean that the dataset generated by t1 will be used by both t2 and
t3. During the build-time stage, we partition the existing datasets into several partitions, denoted as
p1,p2…pn, based on their dependencies, and distribute these partitions into different data centres. During

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the runtime stage, tasks may retrieve datasets from other data centres as needed, and we also pre-allocate
generated datasets to the appropriate data centres.

5.1. Build-Time Stage Algorithm
During the build-time stage, we use a matrix model to represent the existing data. We pre-cluster the

datasets by transforming the matrix, and then distributing the datasets to different data centres as the
initial partitions for the k-means clustering algorithm, to be used during the runtime stage. The build-
time stage algorithm has two steps and the pseudocode is shown in Fig. 4.

Step 1: Setup and cluster the dependency matrix.
First, we calculate the data dependencies of all the datasets and build up a dependency matrix DM

(Line 3 in Fig. 4), where DM’s element DMij = dependencyij. dependencyij is the dependency value
between datasets di and dj, as we defined in the previous section. It can be calculated by counting the
tasks in common between the task sets of di and dj, which are denoted as Ti and Tj. Specially, for the
elements in the diagonal of DM, each value means the number of tasks that will use this dataset. In our
algorithm, DM is an n × n symmetrical matrix where n is the total number of existing datasets. If we
take the simple workflow instance in Fig. 1 as an example (with only 5 datasets, namely d1 to d5, in the
system initially), the dependency matrix DM is shown in Fig. 2.

21010

12020

00212

12131

00212

5

4

3

2

1

54321

d

d

d

d

d

ddddd

DM =

d1.T1={t1, t2}

d2.T2={t2, t3, t4}

d3.T3={t1, t2}

d4.T4={t3, t4}

d5.T5={t4, t5}
()ji TTCount ∩=

DMij

= dependencyij

Figure 2. Build up dependency matrix

The dependency matrix (i.e. DM) is dynamically maintained at the runtime. When new datasets are
generated by tasks or added to the system by users, we calculate their dependencies with all the existing
datasets and add them to DM.

Next, we use the BEA (Bond Energy Algorithm) to transform the dependency matrix DM (Line 4 in
Fig. 4). BEA was proposed in 1972 [37] and has been widely utilised in distributed database systems for
the vertical partition of large tables [40]. It is a permutation algorithm that can group the similar items
together in the matrix by permuting the rows and columns. In our work, it takes the dependency matrix
(DM) as input, and generates a clustered dependency matrix (CM). In CM, the items with similar values
are grouped together (i.e. large values with other large values, and small values with other small values).
We define a global measure (GM) of the dependency matrix:

∑ ∑= = +− += n
i

n
j jijiij DMDMDMGM 1 1 1,1,)(

The permutation is done in such a way as to maximise this measure. The detailed algorithm of
permutation could be found in [40]. Fig. 3 shows the CM of the example DM after the BEA
transformation.

21010

12020

00212

12131

00212

5

4

3

2

1

54321

d

d

d

d

d

ddddd

21100

12200

12311

00122

00122

5

4

2

3

1

54231

d

d

d

d

d

ddddd

DM = CM =
BEA

Figure 3. BEA transformation of dependency matrix

In this step, we do not consider the difference between fixed location datasets and flexible location
datasets. If there are some fixed location datasets in the system, they will be arbitrarily scattered in the
columns and rows of the dependency matrix, since we built up the matrix by calculating dependencies
between all the datasets. After the BEA transformation, all the datasets, including the fixed location
datasets, are clustered by their dependencies.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Build-time Stage Algorithm

Input: D: set of existing datasets d1, d2, … dn

DC: set of data centres dc1, dc2, … dcm

Output: K: set of data centres with initial datasets

01. K=Ø; FP=Ø; NFP=Ø; //Initialization. FP: set of partitions that have fixed location datasets
//NFP: set of partitions that have not fixed location dataset

02. For (every dci in DC) i_csi=csi * λini ; //Calculate initial available storage of all data centres
03. DM = dependency ij = Count (Ti ∩ Tj) ; //Step 1: setup DM
04. CM = BEA (DM) ; //Step 1: BEA transformation
05. if (CM contains fd) //Step 2 starts. Check the existence of fixed location datasets
06. Partition&Classify (CM) //Sub-step 1: partition CM and classify the partitions in to FP and NFP
07. if (CMT contains fd & the fd belong to different dc)
08. Partition&Classify (CMT) ; //Recursively partition and classify CMT

09. else if (CMT contains fd)
10. add CMT to FP ; //CMT has fixed location datasets , add to FP
11. else add CMT to NFP ; //CMT has not fixed location datasets, add to NFP
12. if (CMB contains fd & the fd belong to different dc)
13. Partition&Classify (CMB) ; //Recursively partition and classify CMB

14. else if (CMB contains fd)
15. add CMB to FP ; //CMB has fixed location datasets, add to FP
16. else add CMB to NFP ; //CMB has not fixed location datasets, add to NFP
17. for (every data centre dc i in DC) //Sub-step 2: distribute the partitions with fixed location datasets
18. if (dci has fd) //Choose the data centre dci that has fixed location datasets
19. for (every fdj in FDi) //Go through all the fixed location datasets belong to dci

20. find CMj in FP ; //Pick out the partitions that contain these fixed location datasets from PF
21. add CMj to Pi ; //Setup the partitions set P for dci

22. calculate ; //The total size of the partitions in P
23. while (psi > i_csi) //Further partition if the size of P is too large for dci

24. find CMk in Pi , where ; //Largest partition in P
25. remove CMk from Pi ;
26. BinaryPartition (CMk) ; //Partition CMk and update the partitions sets
27. if (CMkT contains fd) add CMkT to Pi ;
28. else add CMkT to NFP ;
29. if (CMkB contains fd) add CMkB to Pi ;
30. else add CMkB to NFP ;
31. calculate ; //New size of P after partition
32. distribute all CMj in Pi to dci ; //Distribute datasets
33. update dci to K ;
34. i_csi = i_csi– psi ;
35. else add CM to NFP ; //CM do not contain fixed location datasets
36. for (all the partitions CMi in NFP) //Sub-step 3: distribute the partitions without fixed location datasets
37. Partition&Distribute (CMi) //Partition and distribute CMi

38. if () //Size of CMiT is small enough for some data centres
39. find dc j from DC, //Find the best data centre
40. where ;
41. distribute CMiT to dc j ; //Distribute datasets
42. update dcj to K ;
43. i_csj = i_csj– dsiT ;
44. else Partition&Distribute (CMiT) ; //Recursively partition and distribute CMiT

45. if () //Size of CMiB is small enough for some data centres
46. find dc j from DC, //Find the best data centre
47. where ;
48. distribute CMiB to dcj ; //Distribute datasets
49. update dcj to K ;
50. i_csj = i_csj – dsiB ;
51. else Partition&Distribute (CMiB) ; //Recursively partition and distribute CMiB

52. Return K ;

()Tj
m
ji dscscs >= =1min

()Bj
m
ji dscscs >= =1min

j
m
jT csds 1max =<

j
m
jB csds 1max =<

∑ ∈=
ij Pcm ji dsps

∑ ∈=
ij Pcm ji dsps

iPcmk dsds
ii∈= max

Figure 4. Build-time stage algorithm

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Step 2: Partition and distribute datasets.
In this step we will distribute the datasets to data centres as the initial k partitions for the k-means

clustering algorithm at the runtime stage. We denote the set of data centres as DC. As shown in Fig. 1,
we partition the clustered dependency matrix and place the corresponding datasets to different data
centres. However, each dataset di has a size si and each data centre dcj also has a storage capacity
denoted as csj. To find the best partitioning of datasets matching the data centres’ storage is an NP-hard
problem, since it could be reduced to the Knapsack Packing Problem. Here, we develop a recursive
binary partitioning algorithm to find the approximate best solution.

First, we partition CM into two parts {d1, d2…dp} and {dp+1, dp+2…dn}, which maximises the
following measurement:

()21 11 11 1 ∑ ∑∑ ∑∑ ∑ = +=+= +== = −∗= p
i

n
pj ij

n
pi

n
pj ij

p
i

p
j ij CMCMCMPM

This measurement, PM, means that datasets in each partition have higher dependencies with each
other and lower dependencies with the datasets in the other partitions. Based on this measure we can
simply calculate all PMs for p=1, 2…n-1, and choose p such that it has the maximum PM value as the
partition point.

After one partition, the CM forms two new clustered matrices, we denote the top one as CMT, which
contains the dependencies of datasets DT = {d1, d2…dp} and the bottom one as CMB, which contains the
dependencies of datasets DB = {dp+1, dp+2…dn}. Every clustered matrix represents a partition of datasets
and we denote the total size of the datasets it contains as ∑ == n

i isds 1
. Hence the ds for CMT and CMB are

 and respectively. ∑ == p
i iT sds 1 ∑ +== n

pi iB sds 1

Next, we distribute datasets to data centres by recursively partitioning the clustered dependency
matrix.

For each of the data centres, we introduce a percentage parameter λini to denote the initial usage of
their storage capacity, which means that the initial size of datasets in data centre dci could not exceed csi

* λini. The reason we can not fill the data centre with their maximum storage is that in scientific
workflows, the generated data can also be very large. We have to reserve sufficient space in data centres
to store those data during the workflow execution. λini is an experience parameter. The value of λini
should depend on what kinds of applications are running on the system, because the generated data of
different applications might have different sizes. Furthermore, we also assume that the data centres can
host all the application data in the system, i.e. ()∑ ∑= = ∗<n

i
m
i iniii css1 1 λ .

To distribute the datasets, we have to examine whether there are fixed location datasets in the system
(Line 5 in Fig. 4). If the system does not have fixed location datasets (Line 35 in Fig. 4), we will
recursively partition the sub-matrices CMT and CMB until the size of the sub-matrix can fit into one of
the data centres’ initial storage size limits (ds <= csi * λini). Then we distribute the datasets in this sub-
matrix into this data centre, and add the reference of this data centre (dci) to K, where K is a set of data
centres. When the partitioning of CM finishes, all the initial datasets are moved to proper data centres.
We take the data centres in K as the initial partitions of the k-means clustering algorithm.

If there are fixed location datasets in the system, the distribution process is more complicated. For a
fixed location dataset fdi, we denote it as <Ti, si, dc>, where the additional attribute dc is the data centre
where this dataset has to be stored. And we use FD to denote the set of the fixed location datasets a data
centre has. For a data centre that does not have fixed location datasets, FD is empty. The distribution is
conducted as the three following sub-steps.

Sub-step 1 (Line 6-16 in Fig. 4), we classify fixed location datasets and flexible location datasets in
different partitions. We also need to recursively partition the sub-matrices CMT and CMB. The stop
condition is that the sub-matrix does not have fixed location datasets or all the fixed location datasets it
has belong to one data centre. We add the partitions that do not have fixed location datasets to a set
named NFP and the partitions have fixed location datasets to a set named FP.

Sub-step 2 (Line 17-34 in Fig. 4), we distribute the partitions with fixed location datasets in FP. We
need to check the data centres’ information. For the data centres that have fixed location datasets, we
pick out the partitions that contain these fixed location datasets from FP, denote as P. Then, we calculate
the total size of these partitions, denote as ps, where ∑ ∈= PCM ii

dsps . If these partitions can fit into this

data centre, we store them. If not, we recursively pick the largest partition from P, binary partition it and
move the part that does not have fixed location datasets to NFP, until these partitions can fit into the data
centre.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Sub-step 3 (Line 36-51 in Fig. 4), we distribute the partitions that only contain flexible location
datasets in NFP. We start with the largest one and go through all the partitions in NFP by their size. For
every partition, we distribute it to the data centres by recursive binary partitioning.

5.2. Runtime Stage Algorithm
At the runtime stage, we use the k-means clustering algorithm to dynamically cluster the generated

data to one of the k data centres based on their dependencies. And when new workflows are deployed to
the system or some data centres become overloaded, we also have to adjust the data placement among
data centres. The pseudocode of the runtime stage algorithm is shown in Fig. 5.

For the generated data, some of them could be valuable resources that can be utilised by other
workflows, but most of them are temporal data. They are generated by the preceding tasks in the
workflows and will be used by the subsequent tasks. They do not need permanent storage and will be
deleted after the workflows have finish execution. In many scientific applications, the temporal data are
in large volumes [19]. Some researches demonstrated that timely removal of these temporal data can
save a lot of runtime storage space [42]. In our work, we dynamically check and delete the obsolete
temporal data before every round of task scheduling. The runtime stage algorithm contains the following
two steps.

Step 1: Data pre-allocation by the clustering algorithm.
In this step, the first thing we have to do is task scheduling (Line 2-3 in Fig. 5). Scheduling is a very

important issue in scientific workflow systems, especially for computation intensive and/or data
intensive applications. Much research has been done into scheduling workflows [43] [52]. However,
task scheduling is not the main focus of this paper. Therefore, our scheduling strategy is quite straight
forward. We just follow the philosophy of “moving data to a data centre will cost more than scheduling
tasks to that centre”, and schedule tasks based on the placement of datasets. We periodically monitor the
state of all the workflow tasks and dynamically schedule the ready tasks to the data centre which has the
most datasets they require. Here, a task is ready if all the datasets it needs are existing data (i.e. have
been generated).

When tasks have been executed, new datasets will be generated. The system will then decide where
to put these datasets: either store them locally or allocate them to other data centres. In our work, the
system will cluster the newly generated datasets to the data centre that has the highest dependency with
them (Line 4-12 in Fig. 5). We define the dependency between dataset di and data centre dcj as dc_depij,
which is the sum of the dependencies of di with all the datasets in dcj.

Suppose du is a new generated dataset and Tu is the set of tasks that will use du. First, we calculate the
dependencies of du with all other datasets in the system and add the new row and column to DM for du,
where

{ } niTTCountdependencyDMDM iuuiiuui ,...2,1=∩===

Then we calculate the dependencies of du with all the k data centres, where

kjdependencydepdc
jm dcd umuj ,...2,1,_ == ∑ ∈

With these dependencies, we will select the data centre dch that has the highest dependency with du,
where

)_(max_ 1 uj
k
juh depdcdepdc ==

dch is the data centre in which we will store the dataset du. And we will check the available storage of
dch, before we move du to it.

Here we will introduce a maximum storage usage parameter λmax for data centres, which is a
percentage threshold indicating whether a data centre is overloaded or not. λmax is also an experience
parameter, just like the initial storage usage parameter λini. Hence, the storage that the runtime data can
use of a data centre dci is csi*(λmax-λini). The value of λmax depends on the overall workload of the system.
If the system workload is heavy, λmax has to be set to a larger value. Likewise, if the system workload is
light, λmax is set smaller to prevent too many datasets gathering in one data centre.

We will move the new generated dataset du to the selected data centre dch, if maxλλ huh csscs <+ is
true, where su is the size of du and λ is the current storage usage percentage of dch. Otherwise, we go to
the next step to adjust the data placement.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Run-time Stage Algorithm

Input: T: set of tasks;
DC: set of data centres ;

Output: All the tasks are finished;

01. for (every ready task) //Step 1: data pre -stage by clustering algorithm
02. schedule ti to dcj to execute, //Tasks scheduling
03. where dcj has the most data sets ti needs ;
04. for (every generated data set du of ti) //New datasets generated
05. add du to DM, //Update dependency matrix
06. where ;
07. for (every data centre) //Calculate dependency
08. calculate ;
09. choose dch , //Choose data centre and pre -stage data
10. where ;
11. if ()
12. move du to dch ;
13. else //Step 2: adjust data placement
14. do adjustment
15. CM’= BEA (DM);
16. K’= Build-time Algorithm Step 2 ; //Get new data placement
17. for (all the dc in DC)
18. choose dci, //Choose the most overloaded data centre
19. where ;
20. Compare&Adjust (dc i, dci’) //dci’ is the reference in K’
21. for (all)
22. send dj ; //Send the datasets belong to other data centres
23. for (all)
24. retrieve dj ; //Retrieve the datasets it should have
25. update T for new ready tasks with du ; //For next round scheduling

maxλλ huh csscs <+

{ } niTTCountdependency iuui ,...2,1, =∩=

∑ ∈=
km dcd umuk dependencydepdc _

)_(max_ 1 uj
k
juh depdcdepdc ==

Tti ∈

DCdck∈

jDCdci j
λλ ∈= max

/
ijij dcddcd ∉∧∈

/
ijij dcddcd ∈∧∉

Figure 5. Runtime stage algorithm

Step 2: Adjust data placement among data centres.
During workflow execution, there are two situations that trigger the need to adjust the data placement

among data centres.

The first is when the selected destination data centre dch for the new generated dataset does not have
enough available storage. This means that dch is overloaded. Hence, we have to adjust the datasets
placement to balance the overall workload of the system.

The second is when new workflows are deployed to the system. Together with the new workflows,
new datasets and tasks will be added to the system. The dependencies of the original datasets will
change, since the new tasks might use the existing data in the system. In this situation, we will calculate
the dependencies between the new datasets and the existing datasets, and add them to the dependency
matrix DM. If there are any new tasks which use existing data, they will be added to the task set of the
appropriate existing dataset. For every new dataset, we will find an appropriate data centre for it by
following the procedure in step 1. If the selected data centre is overloaded, we have to adjust the datasets
placement to balance the overall workload of the system.

To adjust the data placement, we need to run some functions from the build-time stage algorithms
(Line 15-16 in Fig. 5). First, we do the BEA transformation to cluster the updated dependency matrix
(DM) and get a new clustered dependency matrix (CM’). Next, we run the algorithm in step 2 of the
build-time stage, but without actual data distribution. We just calculate the new placement of datasets in
the data centres and save the references in a new set of data centres, denoted as K’.

Then we can do the adjustment by comparing the old data placement with the new one in K’ (Line
17-24 in Fig. 5). We start the adjustment from the data centre that has the highest storage load and go
through all the data centres by the storage usage in the decreasing order. For every data centre, we
compare the datasets it currently has with the new datasets in K’. Then we send the datasets that do not
belong to this data centre to the ones they now belong to and retrieve the datasets it should have from
other data centres.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Since λmax represents a percentage of a data centre's total storage space, each data centre will still
have some storage available (100% - λmax) to facilitate data movement during this redistribution. In the
case that λmax is set to 100%, additional temporary storage space may need to be acquired to serve as a
buffer before the adjustment process can be completed. However, this situation rarely happens in the
system, due to the following reasons: 1) in the adjustment process we always select the data centre with
the highest storage usage to adjust as the priority, and send its datasets to other data centres first; 2) the
total size of the datasets in the system is smaller than the total size of the available storage of all the data
centres (()∑ ∑= = ∗<n

i
m
i iniii css1 1 λ), because we have the assumption that the data centres can host all the

application data in the system; and 3) for every data centre we reserve some storage for the runtime
generated datasets (()inics λλ −∗ max), this storage space is not always highly utilised, because we delete
obsolete datasets dynamically. In our system, for every data centre, we reserve runtime storage for
generated datasets as 40% of the initial storage for existing datasets i.e. () %40max =− iniini λλλ . As
addressed in section 6 later, we have run tens of thousands of workflow instances for simulation, and a
situation where we lacked storage for data reallocation did not occur.

The data placement strategy in this section states that when a task is scheduled to one data centre
during workflow execution, that data centre will have most input datasets for that task. Then, only a
small number of datasets have to be retrieved from remote data centres. The simulations in the next
section will show that our data placement strategy can greatly reduce the total data movement during
workflow execution.

6. SIMULATION

6.1. Simulation Environment: SwinDeW-C
SwinDeW-C (Swinburne Decentralised Workflow for Cloud) [52] is developed based on SwinDeW

[50] and SwinDeW-G [51]. It is currently running at Swinburne University of Technology, which is
composed of 10 servers and 10 high-end PCs. To simulate the cloud computing environment, we set up
VMware [4] software on the physical servers and create virtual clusters as data centres. Fig. 6 shows our
simulation environment.

Figure 6. Simulation environment of SwinDeW-C

Every data centre created is composed of 8 virtual computing nodes with storages, and we deploy an
independent Hadoop file system on each data centre. SwinDeW-C runs on these virtual data centres that
can send and retrieve data to and from each other. Through a user interface at the applications layer,
which is a Web based portal, we can deploy workflows and upload application data.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

SwinDeW-C is designed for large scale cloud applications. It has a novel architecture for the cloud
computing environment. However, the presentation of the comprehensive system design of SwinDeW-C
is not the main focus of this paper. In Fig. 7, we only illustrate the key system components of SwinDeW-
C that relate to the data placement strategy.

User Interface Module:
 The cloud computing platform is built on the Internet and a Web browser is normally the only

software needed at the client side. This interface is a Web portal by which users can visit the system and
deploy their applications. The Uploading Component is for users to upload application data and
workflows, and the Monitoring Component is for users, as well as system administrators to monitor
workflow execution.

Data Management Module:
The Data Placement Component is the core component of data management in SwinDeW-C that

facilitates the algorithms in our data placement strategy. The Data Catalogue is used to store the
information of applications which, in a service oriented cloud platform, is a registry for the data services.
By using the catalogue, the system can locate the data needed. Other components in this module, such as
Data Replication Component, Data Synchronisation Component, Meta-data Repository and Provenance
Data Collection are also essential for cloud data management. Since they are not directly related to the
data placement strategy, we do not give their details here.

Other Modules:
The Flow Management Module has a Process Repository that stores all the workflow instances

running in the system. The Task Management Module has a Scheduler that schedules ready tasks to data
centres during the runtime stage of the workflows. Furthermore, the Resource Management Module
keeps the information of the data centres’ usage, and can trigger the adjustment process in the data
placement strategy. For other components in these modules, as well as other modules in SwinDeW-C,
we do not give the details as the work presented here only focuses on the workflow data management.

User Interface
Module

Data Management Module

Data Placement Component

Build-time Stage Agorithm

Runtime Stage Algorithm

Data Replication Component

Data Synchronisation Component

Data
Catalogue

Meta-data
Repository

Provenance
Data

Collection

Flow Management
Module Process

Repository

Task Management
Module

Scheduler

Resource
Management Module

…...

Web Portal Monitoring
Component

Uploading
Component

Figure 7. Related key system components of SwinDeW-C

6.2. Simulation Strategies
The algorithms in our data placement strategy are for the build-time and runtime stages respectively.

To evaluate their performance, we run each workflow instance through 4 simulation strategies:

Random: In this simulation, we randomly place the existing data during the build-time stage and store
the generated data in the local data centre (i.e. where they were generated) at runtime. This simulation
represents the traditional data placement strategies in old distributed computing systems (i.e. clusters
and early grid systems). At that time, data were usually stored in the local node naturally or in the
nodes that had available storages. The temporal intermediate data, i.e. generated data, were also
naturally stored where they were generated waiting for the tasks to retrieve them.
Build-time only: This simulation shows the performance of our build-time algorithm. It is used to
place the existing data at build-time. During the runtime stage we will store the generated data in the
local data centre, as with the Random simulation. In a cloud computing system, data are more flexible

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

than they were in the past; this allows the system can decide where to store them. Our build-time
algorithm places the application data based on their dependencies. This simulation will show the data
movement reduction in the workflows’ execution by using this algorithm.
Runtime only: This simulation shows the performance of the runtime algorithm by randomly placing
the existing data at build-time and by pre-allocating the generated data with our runtime algorithm.
This simulation represents the strategy that some popular grid scientific workflows used [13]. Their
work shows that pre-allocating data to the computing node where the tasks will execute can reduce the
total execution time of the workflow. However, this simulation will show that only pre-allocating data
at runtime stage can not reduce the data movement in workflow execution.
Build & Run: This simulation shows the overall performance of our algorithms both at build-time and
runtime. Our algorithms are specifically designed for scientific cloud workflows. The strategy is based
on data dependency and can automatically place existing data; and cluster generated data to the
appropriate data centres. Comparisons with other strategies will be made with different aspects to show
the performance of our algorithms.

The traditional way to evaluate the performance of a workflow system is to record and compare the
execution time [13] [42]. However, in our work we will count the total data movement instead. The
execution time could be influenced by other factors beside data management, such as bandwidth,
scheduling strategy and I/O speed. Our data placement strategy aims to reduce the data movement
between data centres on the Internet. So we directly take the number of datasets that are actually moved
during the workflow execution as the measurement to evaluate the performance of the algorithms. In a
cloud computing environment with limited bandwidth based on the Internet, if the total data movement
has been reduced, the execution time will be reduced correspondingly. Furthermore, the cost of data
transfer will also decrease.

To make the evaluation as objective as possible, we generate test workflows randomly to run on
SwinDeW-C. This would make the evaluation results independent of any specific applications. As we
need to run the build-time and runtime algorithms separately, we set the number of existing datasets and
generated datasets to be the same for every test workflow. That means that we have the same number of
existing datasets and tasks for every test workflow, and we assume that each task will only generate one
dataset. We can control the complexity of the test workflow by changing the number of datasets. Every
dataset will be used by a random number of tasks, and tasks that use generated datasets must be executed
after the task that generates their input. We can control the complexity of the relationships between the
datasets and tasks by changing the range of this random number. Another factor that would have impact
on the algorithms is the number of fixed location datasets. We can randomly choose some percentage of
datasets from the existing data and randomly select some data centres for them. We will run new
simulations to show the impact on performance. Here we have only included graphs of the simulation
results. The detailed configuration and result reports of the simulations, as well as the source code can all
be found at http://www.swinflow.org/docs/DataPlacement.zip.

6.3. Simulation Results
Fig. 8 shows the data movement when we run workflows with different complexity on different

numbers of data centres. We can see the increases in data movement as the workflows become more
complex and the number of data centres increases. All the values in the figure are the average of running
1000 test workflows with the same parameters.

In Fig. 8 (a), we ran the test workflows with different complexity on 15 data centres. We used 4
types of test workflows with different numbers of datasets. In Fig. 8 (b), we fixed the test workflows’
datasets count to 50, and ran them on different numbers of data centres. Then we changed 10% of the
input datasets to fixed location datasets and ran the same simulation again. The results are shown in Fig.
9.

From the results, we could draw the conclusions that 1) the build-time algorithm can effectively
reduce the total data movement of the workflow execution; 2) the runtime algorithm does not reduce the
total data movement, and even causes more data movement if the existing datasets are placed randomly
and 3) with fixed location datasets added to the system, our algorithms can still work very well with
performance only degrading slightly. The runtime algorithm does not decrease the data movement
because it pre-allocates datasets before scheduling tasks based on their data dependencies. If the existing
datasets are randomly placed, the differing dependencies of the data centres are not obvious. The
increase in data movement is caused by pre-allocation of datasets to the wrong data centres. However, if
the existing datasets were clustered by the build-time algorithm, the performance of the runtime
algorithm would be better.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

50

80

110

140

170

200

230

260

30 50 80 120
Data Sets

D
at

a
M

ov
em

en
ts

Random BuildtimeOnly RuntimeOnly Build&Run

50

60

70

80

90

100

110

5 10 15 20
Data Centres

D
at

a
M

ov
em

en
ts

(a) (b)
Figure 8. Data movements without runtime storage limit and without fixed location datasets

50

80

110

140

170

200

230

260

30 50 80 120
Data Sets

D
at

a
M

ov
em

en
ts

Random BuildtimeOnly RuntimeOnly Build&Run

50

60

70

80

90

100

110

5 10 15 20
Data Centres

D
at

a
M

ov
em

en
ts

(a) (b)
Figure 9. Data movements without runtime storage limit and with 10% of fixed location datasets

However, in the simulation described above, we did not limit the amount of storage that the data
centres had available during runtime. The reason for this is that we wanted to see how the tasks and
datasets were distributed, which indicates the workload balance among data centres. During the
execution of every test workflow instance, we recorded the number of datasets that moved to each data
centre, as well as the tasks that scheduled to that data centre. We also calculated the standard deviation
of the data centres’ usage. Fig. 10 shows the average standard deviation of running 1000 test workflows
on 15 data centres each having 80 existing datasets and 80 tasks, both with and without fixed location
datasets.

From Fig. 10 we can see relatively high deviations in the data centres’ usage in the two simulations
without the runtime algorithm. This means that tasks and datasets are allocated to one data centre more
frequently. This leads to a data centre becoming a super node that has a high workload. By contrast, in
the other two simulations that use the runtime algorithm to pre-allocate the generated data to other data
centres, the deviation of data centre usage is low. This demonstrates that the runtime algorithm can make
a more balanced distribution of the workload among data centres.

In a cloud computing environment, data centres normally have limited storage, especially in some
storage constrained systems. When one data centre is overloaded, we need to reallocate the data to other
data centres. The reallocation will not only cause extra data movement, but will also delay the execution
of the workflow. To count the reallocated datasets, we ran the same test workflows as in Fig. 10 with a
storage limit in every data centre. We limited the runtime storage for generated datasets to 40% of the

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

initial storage for existing datasets i.e. () %40max =− iniini λλλ . In Fig. 11 we show the average data
movement including the data reallocation.

0

2

4

6

8

10

12

14

16

Random BuildtimeOnly RuntimeOnly Build&Run

St
an

da
rd

 D
ev

ia
tio

n
D atasets M o vement T asks Scheduling

0

2

4

6

8

10

12

14

16

Random BuildtimeOnly RuntimeOnly Build&Run

St
an

da
rd

 D
ev

ia
tio

n

(a) Without fixed location datasets (b) With 10% fixed location datasets
Figure 10. Standard deviation of workload among data centres

0

50

100

150

200

250

300

350

Random BuildtimeOnly RuntimeOnly Build&Run

D
at

a
M

ov
em

en
ts

Data Retrieved Data Sent Data Reallocated

0

50

100

150

200

250

300

350

Random BuildtimeOnly RuntimeOnly Build&Run

D
at

a
M

ov
em

en
ts

(a) Without fixed location data (b) With 10% fixed location data
Figure 11. Proportions of 3 types of data movements

From Fig. 11, we can see that a lot of data is reallocated in the simulations without the runtime
algorithm. The least data reallocation occurred when we only use the runtime algorithm. However, the
least data movement in total occurred when using the build-time and runtime algorithms together. In Fig.
11 (a), using both algorithms caused 146.505 movements of datasets on average. Comparing this to the
random simulation, 297.807 datasets movements on average, our algorithms reduce the data movement
by 50.8%. On the other hand, the build-time algorithm and runtime algorithm cause movement of 170.26
and 178.662 datasets on average. Compared to the random situation, they reduce the data movements by
42.8% and 40.0% respectively. In Fig. 11 (b), with 10% fixed location datasets in the system, our
algorithms (Build&Run) can reduce the data movement by 47.4% compared to the Random simulation.

To better evaluate the performance of our algorithms, we give every data centre a runtime storage
limit and run the same simulation workflows as Fig. 8. We get the final results of data movement which
are shown in Fig. 12.

From Fig. 12 we can see that as the number of data centres and datasets increases, the performance
of the build-time algorithm decreases. This is because without the runtime algorithm the datasets and
tasks are gathering on the one data centre. This triggers the adjustment process more frequently, which
costs extra data movements. Furthermore, we ran the same simulation as Fig. 12 under the condition that
the system has fixed location datasets. Fig. 13 shows the data movements when we set the percentage of
fixed location datasets to 10%. We can see our algorithms can still reduce the data movements
significantly. Furthermore, with higher percentages of fixed location datasets in the system, our
algorithms still work, and we will demonstrate this in the next simulation.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

50

100

150

200

250

300

350

400

30 50 80 120
Data Sets

D
at

a
M

ov
em

en
ts

Random BuildtimeOnly RuntimeOnly Build&Run

50

70
90

110
130

150
170

190
210

5 10 15 20
Data Centres

D
at

a
M

ov
em

en
ts

(a) (b)
Figure 12. Data movements with runtime storage limit

50

100

150

200

250

300

350

400

450

30 50 80 120
Data Sets

D
at

a
M

ov
em

en
ts

Random BuildtimeOnly RuntimeOnly Build&Run

50
70
90

110
130
150
170
190
210
230
250

5 10 15 20
Data Centres

D
at

a
M

ov
em

en
ts

(a) (b)

Figure 13. Data movements with runtime storage limit and with 10% fixed location datasets

Fig. 13 has consistent results with Fig. 9, that the fixed location datasets have a negative impact on
the algorithms’ performance. In the algorithms, we try to place the datasets on data centres based on
dependencies, however, the fixed location datasets have to be stored in particular data centres. This will
decrease performance, as fixed location datasets will prevent the algorithms from placing datasets with
their dependencies. However, given the existence of fixed location datasets, our algorithms can still
reduce data movement by placing the flexible location datasets with dependencies. To demonstrate the
impact of fixed location datasets on the algorithms, we conducted another batch of simulations. We ran
1000 test workflows on 15 data centres each having 80 existing datasets and 80 tasks, but with different
percentages of fixed location datasets. As the number of fixed location datasets increases, we can see
their impact on data movement in Fig. 14.

From Fig. 14 (a) we can see that as the percentage of fixed location datasets goes up, the data
movements of the Build-time only and Build & Run simulations go up accordingly; however the
Random and Runtime only simulations keep steady. This means the fixed location datasets primarily
have an impact on the build-time algorithm. This is because all the fixed location datasets are existing
data, which are placed by the build-time stage algorithm. When the percentage reaches 60%, the data
movements of Build & Run simulation even exceeds the Random simulation. This is because the pre-
allocation of datasets in the runtime algorithm causes more data movements, as the build-time algorithm
gets worse. In Fig. 14 (b) it may seem slightly confusing that the data movements of all simulations go
up and then drop, as the percentage of fixed location datasets goes up. This is because when we set the
runtime storage limit, many data movements are caused by data reallocation. However, the fixed
location datasets are not involved in the overload adjustment process. Hence, the data movement

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

decreases. In this figure we can also see that the fixed location datasets may have a negative impact on
the build-time algorithm.

100

110

120

130

140

150

160

170

180

0% 10% 20% 30% 40% 50% 60% 70%
Percentage of Fixed Datasets

D
at

a
M

ov
em

en
ts

Random BuildtimeOnly RuntimeOnly Build&Run

50

100

150

200

250

300

350

0% 10% 20% 30% 40% 50% 60% 70%
Percentage of Fixed Datasets

D
at

a
M

ov
em

en
ts

(a) (b)
Without runtime storage limit With runtime storage limit

Figure 14. Data movements with different percentage of fixed location datasets

7. CONCLUSIONS AND FUTURE WORK
In this paper, we examined the unique features of scientific cloud workflows and proposed a

clustering data placement strategy that can automatically allocate application data among data centres
based on dependencies. Simulations in our cloud workflow system SwinDeW-C indicated that our data
placement strategy can effectively reduce data movement during workflow execution. The build-time
algorithm reduces the amount of data retrieved and the run time algorithm guarantees a balanced
distribution of data and can reduce data movement incurred by data reallocation, even when fixed
location data exist in the system.

In our current work, to guarantee the data reliability, we used Hadoop’s replication mechanism
within a data centre, and among data centres we did not use any replication strategies. The data used in
scientific workflow applications are usually very large and as such it is not efficient to replicate all the
application data in the system. However, replication of frequently used data could also reduce data
movement. In the future work, we will develop some efficient replication strategies for the data
placement algorithm, which could balance the data movement and storage usage. Furthermore, in our
current simulation we measure the reduction of datasets’ movements to evaluate our strategy. In the
future, we will meter the execution time of the workflow as well, which can better demonstrate the
effectiveness of our strategy. To be more comprehensive, we will also incorporate the size of datasets to
calculate the data dependency, and adapt some popular cloud service providers’ pricing models to our
simulation, which will show the cost effectiveness of our strategy.

ACKNOWLEDGMENT
The research work reported in this paper is partly supported by Australian Research Council under

Linkage Project LP0990393. We are grateful to Bryce Gibson and Michael Jensen for the
accomplishment of the simulation work, as well as the carefull English proofreading.

REFERENCES
[1] "Amazon Elastic Computing Cloud, http://aws.amazon.com/ec2/", accessed on 25 November 2009.
[2] "ATNF Parkes Swinburne Recorder, http://astronomy.swin.edu.au/pulsar/?topic=apsr", accessed on 25

November 2009.
[3] "Hadoop, http://hadoop.apache.org/", accessed on 25 November 2009.
[4] "VMware, http://www.vmware.com/", accessed on 25 November 2009.
[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, "Above the Clouds: A Berkeley View of Cloud Computing," University
of California at Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf, Technical
Report UCB/EECS-2009-28, accessed on 25 November 2009.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[6] R. Barga and D. Gannon, "Scientific versus Business Workflows," in Workflows for e-Science, pp. 9-16,
2007.

[7] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC Storage Resource Broker," in IBM Centre for
Advanced Studies Conference, Toronto, Canada pp. 1-12, 1998.

[8] M. Brantner, D. Florescuy, D. Graf, D. Kossmann, and T. Kraska, "Building a Database on S3," in
SIGMOD, Vancouver, BC, Canada, pp. 251-263, 2008.

[9] R. Buyya and S. Venugopal, "The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An
Overview and Status Report," in IEEE International Workshop on Grid Economics and Business Models,
Seoul, pp. 19-66, 2004.

[10] R. Buyya, C. S. Yeo, and S. Venugopal, "Market-Oriented Cloud Computing: Vision, Hype, and Reality for
Delivering IT Services as Computing Utilities," in 10th IEEE International Conference on High
Performance Computing and Communications (HPCC-08), Los Alamitos, CA, USA, 2008.

[11] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility," Future Generation
Computer Systems, vol. in press, pp. 1-18, 2009.

[12] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunszt, M.
Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney, "Giggle: A Framework for
Constructing Scalable Replica Location Services," in ACM/IEEE conference on Supercomputing, Baltimore,
Maryland, pp. 1-17, 2002.

[13] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi, G. Mehta, and K. Vahi, "Data
Placement for Scientific Applications in Distributed Environments," in 8th Grid Computing Conference, pp.
267-274, 2007.

[14] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor, and I. Wang,
"Programming scientific and distributed workflow with Triana services," Concurrency and Computation:
Practice and Experience, vol. 18, pp. 1021-1037, 2006.

[15] J. M. Cope, N. Trebon, H. M. Tufo, and P. Beckman, "Robust data placement in urgent computing
environments," in IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp. 1-
13, 2009.

[16] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Commun. ACM, vol.
51, pp. 107-113, 2008.

[17] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and M. Livny,
"Pegasus: Mapping Scientific Workflows onto the Grid," in European Across Grids Conference, pp. 11-20,
2004.

[18] E. Deelman and A. Chervenak, "Data Management Challenges of Data-Intensive Scientific Workflows," in
IEEE International Symposium on Cluster Computing and the Grid, pp. 687-692, 2008.

[19] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and e-Science: An overview of workflow
system features and capabilities," Future Generation Computer Systems, vol. In Press, Corrected Proof.

[20] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The Cost of Doing Science on the Cloud: the
Montage example," in ACM/IEEE Conference on Supercomputing, Austin, Texas, pp. 1-12, 2008.

[21] S. Doraimani and A. Iamnitchi, "File grouping for scientific data management: lessons from experimenting
with real traces," in Proceedings of the 17th international symposium on High performance distributed
computing Boston, MA, USA: ACM, 2008, pp. 153-164.

[22] G. Fedak, H. He, and F. Cappello, "BitDew: a programmable environment for large-scale data management
and distribution," in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Austin, Texas, pp.
1-12, 2008.

[23] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid Computing 360-Degree Compared," in
Grid Computing Environments Workshop, GCE '08, pp. 1-10, 2008.

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file system," SIGOPS Oper. Syst. Rev., vol. 37, pp.
29-43, 2003.

[25] R. Grossman and Y. Gu, "Data Mining Using High Performance Data Clouds: Experimental Studies Using
Sector and Sphere," in SIGKDD, pp. 920-927, 2008.

[26] R. Grossman, Y. Gu, M. Sabala, and W. Zhang, "Compute and storage clouds using wide area high
performance networks," Future Generation Computer Systems, pp. 179–183, 2008.

[27] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan, "Clustering data streams: Theory and
practice," IEEE Transactions on Knowledge and Data Engineering, vol. 15, pp. 515-528, 2003.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, "Reactive NUCA: near-optimal block placement
and replication in distributed caches," in Proceedings of the 36th annual International Symposium on
Computer Architecture, ISCA '09, Austin, TX, USA, pp. 184-195, 2009.

[29] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good, "On the Use of Cloud
Computing for Scientific Workflows," in 4th IEEE International Conference on e-Science, pp. 640-645,
2008.

[30] A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: a review," ACM Comput. Surv., vol. 31, pp. 264-
323, 1999.

[31] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa, "Science Clouds: Early Experiences in
Cloud Computing for Scientific Applications," in First Workshop on Cloud Computing and its Applications
(CCA'08), pp. 1-6, 2008.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[32] T. Kosar and M. Livny, "A framework for reliable and efficient data placement in distributed computing
systems," Journal of Parallel and Distributed Computing, vol. 65, pp. 1146-1157, 2005.

[33] T. Kosar and M. Livny, "Stork: making data placement a first class citizen in the grid," in Proceedings of
24th International Conference on Distributed Computing Systems, ICDCS 2004, pp. 342-349, 2004.

[34] H. Liu and D. Orban, "GridBatch: Cloud Computing for Large-Scale Data-Intensive Batch Applications," in
Eighth IEEE International Symposium on Cluster Computing and the Grid, pp. 295-305, 2008.

[35] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, and E. A. Lee, "Scientific workflow
management and the Kepler system," Concurrency and Computation: Practice and Experience, pp. 1039–
1065, 2005.

[36] A. Matsunaga, M. Tsugawa, and J. Fortes, "CloudBLAST: Combining MapReduce and Virtualization on
Distributed Resources for Bioinformatics Applications," in 4th IEEE International Conference on e-Science,
pp. 222-229, 2008.

[37] W. T. McCormick, P. J. Sehweitzer, and T. W. White, "Problem Decomposition and Data Reorganization by
a Clustering Technique," Operations Research, vol. 20, pp. 993-1009, 1972.

[38] C. Moretti, J. Bulosan, D. Thain, and P. J. Flynn, "All-Pairs: An Abstraction for Data-Intensive Cloud
Computing," in IEEE International Parallel & Distributed Processing Symposium, IPDPS'08, pp. 1-11,
2008.

[39] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. R. Pocock, A.
Wipat, and P. Li, "Taverna: A tool for the composition and enactment of bioinformatics workflows,"
Bioinformatics, vol. 20, pp. 3045-3054, 2004.

[40] M. T. Ozsu and P. Valduriez, Principles of distributed database systems: Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1991.

[41] R. Prodan and T. Fahringer, "Overhead Analysis of Scientific Workflows in Grid Environments," IEEE
Transactions on Parallel and Distributed Systems, vol. 19, pp. 378-393, 2008.

[42] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E. Deelman, H. Zhao, R. Sakellariou, K. Blackburn, D.
Brown, S. Fairhurst, D. Meyers, G. B. Berriman, J. Good, and D. S. Katz, "Optimizing Workflow Data
Footprint," Scientific Programming, vol. 15, pp. 249-268, 2007.

[43] S. Venugopal and R. Buyya, "An SCP-based heuristic approach for scheduling distributed data-intensive
applications on global grids," J. Parallel Distrib. Comput., vol. 68, pp. 471-481, 2008.

[44] S. Venugopal, R. Buyya, and K. Ramamohanarao, "A Taxonomy of Data Grids for Distributed Data
Sharing, Management, and Processing," ACM Comput. Surv., vol. 38, pp. 1-53, 2006.

[45] S. Venugopal, R. Buyya, and L. Winton, "A Grid Service Broker for Scheduling Distributed Data-Oriented
Applications on Global Grids," in 2nd Workshop on Middleware in Grid Computing, Toronto, Canada, pp.
75-80, 2004.

[46] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl, "Scientific Cloud Computing: Early
Definition and Experience," in 10th IEEE International Conference on High Performance Computing and
Communications, HPCC '08. , pp. 825-830, 2008.

[47] A. Weiss, "Computing in the Cloud," ACM Networker, vol. 11, pp. 18-25, 2007.
[48] M. Wieczorek, R. Prodan, and T. Fahringer, "Scheduling of Scientific Workflows in the ASKALON Grid

Environment," SIGMOD Record, vol. 34, pp. 56-62, 2005.
[49] T. Xie, "SEA: A Striping-Based Energy-Aware Strategy for Data Placement in RAID-Structured Storage

Systems," IEEE Transactions on Computers, vol. 57, pp. 748-761, 2008.
[50] J. Yan, Y. Yang, and G. K. Raikundalia, "SwinDeW - A P2P-Based Decentralized Workflow Management

System," IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 36, pp. 922-935, 2006.
[51] Y. Yang, K. Liu, J. Chen, J. Lignier, and H. Jin, "Peer-to-Peer Based Grid Workflow Runtime Environment

of SwinDeW-G," in IEEE International Conference on e-Science and Grid Computing, pp. 51-58, 2007.
[52] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, "An Algorithm in SwinDeW-C for Scheduling

Transaction-Intensive Cost-Constrained Cloud Workflows," in 4th IEEE International Conference on e-
Science, pp. 374-375, 2008.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

DENOTATIONS:
di dataset
D set of datasets
Di set of datasets in a partition
fdi fixed location dataset
FD set of fixed location datasets
ti workflow task
T set of workflow tasks
Ti set of workflow tasks that will use dataset di
dci data centre
DC set of data centres
pi partition of datasets
P set of partitions
si size of a dataset
cs size of a data centre
ds size of a partition
ps size of a set of partitions
FP set of partitions that have fixed location datasets
NFP set of partitions that do not have fixed location datasets
DM dependency matrix
CM clustered dependency matrix
CMi sub clustered dependency matrix
CMT the top sub clustered dependency matrix after one binary partition
CMB the bottom sub clustered dependency matrix after one binary partition
GM global measure of BEA transformation
PM global measure of binary partition
depij dependency between datasets di and dj
dc_depij dependency between dataset di and data centre dcj
K set of data centres with placement of datasets
λini initial storage usage parameter of data centres
λmax maximum storage usage parameter of data centres

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Dong Yuan was born in Jinan, China. He received
the B.Eng. degree in 2005 and M.Eng. degree in 2008 both from
Shandong University, Jinan, China, all in computer science.
He is currently a PhD student in the Faculty of Information
and Communication Technologies at Swinburne University of
Technology, Melbourne, Vic., Australia. His research interests
include data management in workflow systems, scheduling and
resource management, grid and cloud computing.

Yun Yang was born in Shanghai, China. He received
the B.S. degree from Anhui University, Hefei, China, in 1984,
the M.Eng. degree from the University of Science and
Technology of China, Hefei, China, in 1987, and the Ph.D.
degree from the University of Queensland, Brisbane, Australia,
in 1992, all in computer science.
He is currently a Full Professor in the Faculty of Information
and Communication Technologies at Swinburne University of
Technology, Melbourne, Vic., Australia. Prior to joining
Swinburne as an Associate Professor, he was a Lecturer and
Senior Lecturer at Deakin University during 1996-1999. Before
that, he was a (Senior) Research Scientist at DSTC Cooperative
Research Centre for Distributed Systems Technology during
1993-1996. He also worked at the Beijing University of
Aeronautics and Astronautics during 1987-1988. He has co-
edited two books and published more than 170 papers on
journals and refereed conferences. His current research
interests include software technologies, p2p/grid/cloud
workflow systems, service-oriented computing, cloud computing,
and e-learning.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Xiao Liu received his master degree in
management science and engineering from Hefei University of
Technology, Hefei, China, 2007. He is currently a PhD student
in Centre for Complex Software Systems and Services in the
Faculty of Information and Communication Technologies at
Swinburne University of Technology, Melbourne, Australia. His
research interests include workflow management systems,
scientific workflow, business process management and data
mining.

Dr. Jinjun Chen received his Ph.D. degree from
Swinburne University of Technology, Australia. His thesis was
granted Research Thesis Execellence Award. He received
Swinburne Vice Chancellor's research award 2008. He is a core
executive member of IEEE Technicial Committee of Scalable
Computing and the coordinator of IEEE TCSC technicial area of
Workflow Management in Scalable Computing Environments. He is
the Editor-in-Chief of Springer book series on Advances in
Business Process and Workflow Management
(http://www.swinflow.org/books/springer/SpringerBook.htm) and
Editor-in-Chief of Nova book series on Process and Workflow
Management and
Applications(http://www.swinflow.org/books/nova/NovaBook.htm).
He has guest edited or is editing several special issues in
quality journals such as in IEEE Transactions on Automation
Science and Engineering. He has been involved in the
organization of many conferences and awarded IEEE Computer
Society Service Award (2007).
He has published more than 50 papers in journals and
conferences such as ICSE2008 and ACM TAAS. His research
interests include Scientific Workflow Management and
Applications, Workflow Management and Applications in Web
Service or SOC Environments, Workflow Management and
Applications in Grid (Service)/Cloud Computing Environments,
Software Verification and Validation in Workflow Systems, QoS
and Resource Scheduling in Distributed Computing Systems such
as Cloud Computing, Service Oriented Computing (SLA and
Composition).

