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ABSTRACT 
In scientific cloud workflows, large amounts of application data need to be stored in distributed data 
centres. To effectively store these data, a data manager must intelligently select data centres in which these 
data will reside. This is, however, not the case for data which must have a fixed location. When one task 
needs several datasets located in different data centres, the movement of large volumes of data becomes a 
challenge. In this paper, we propose a matrix based k-means clustering strategy for data placement in 
scientific cloud workflows. The strategy contains two algorithms that group the existing datasets in k data 
centres during the workflow build-time stage, and dynamically clusters newly generated datasets to the 
most appropriate data centres - based on dependencies - during the runtime stage. Simulations show that 
our algorithm can effectively reduce data movement during workflow execution. 

Keywords-data management; scientific workflow; cloud computing; 

1.  INTRODUCTION 
Running scientific workflow applications usually need not only high performance computing 

resources but also massive storage [18]. In many scientific research fields, like astronomy [17], high-
energy physics [35] and bio-informatics [39], scientists need to analyse terabytes of data either from 
existing data resources or collected from physical devices. During these processes, similar amounts of 
new data might also be generated as intermediate or final products [18]. Workflow technologies are 
facilitated to automate these scientific applications. Scientific workflows are typically very complex. 
They usually have a large number of tasks and need a long time for execution. Nowadays, popular 
scientific workflows are deployed in grid systems [35] because they have high performance and massive 
storage. However, building a grid system is extremely expensive and it is not available for scientists all 
over the world to use. 

The emergence of cloud computing technologies offers a new way to develop scientific workflow 
systems. Since late 2007 the concept of cloud computing was proposed [47] and it has been utilised in 
many areas with some success [8] [25] [10] [38]. Cloud computing is deemed as the next generation of 
IT platforms that can deliver computing as a kind of utility [11]. Foster et al. made a comprehensive 
comparison of grid computing and cloud computing [23]. Some features of cloud computing also meet 
the requirements of scientific workflow systems. First, cloud computing systems can provide high 
performance and massive storage required for scientific applications in the same way as grid systems, 
but with a lower infrastructure construction cost among many other features, because cloud computing 
systems are composed of data centres which can be clusters of commodity hardware. Second, cloud 
computing systems offer a new paradigm that scientists from all over the world can collaborate and 
conduct their research together. Cloud computing systems are based on the Internet, and so are the 
scientific workflow systems deployed on the cloud. Dispersed computing facilities (like clusters) at 
different institutions can be viewed as data centres in the cloud computing platform. Scientists can 
upload their data and launch their applications on scientific cloud workflow systems from anywhere in 
the world via the Internet. As all the data are managed on the cloud, it is easy to share data among 
scientists. Research into doing science on the cloud has already commenced such as early experiences 
like Nimbus [31] and Cumulus [46] projects. The work by Deelman et al. [20] shows that cloud 
computing offers a cost-effective solution for data-intensive applications, such as scientific workflows 
[29].    

By taking advantage of cloud computing, scientific workflow systems could gain a wider utilisation; 
however they will also face some new challenges, where data management is one of them. Scientific 
applications are data intensive and usually need collaborations of scientists from different institutions 
[6], hence application data in scientific workflows are usually distributed and very large. When one task 
needs to process data from different data centres, moving data becomes a challenge [18]. Some 
application data are too large to be moved efficiently, some may have fixed locations that are not 
feasible to be moved and some may have to be located at fixed data centres for processing, but these are 
only one aspect of this challenge. For the application data that are flexible to be moved, we also cannot 
move them whenever and wherever we want, since in the cloud computing platform, data centres may 
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belong to different cloud service providers that data movement would result in costs. Furthermore, the 
infrastructure of cloud computing systems is hidden from their users. They just offer the computation 
and storage resources required by users for their applications. The users do not know the exact physical 
locations where their data are stored. This kind of model is very convenient for users, but remains a big 
challenge for data management to scientific cloud workflow systems.  

In this paper, we propose a matrix based k-means clustering strategy for data placement in scientific 
cloud workflow systems. Scientific workflows can be very complex, one task might require many 
datasets for execution; furthermore, one dataset might also be required by many tasks. If some datasets 
are always used together by many tasks, we say that these datasets are dependant on each other. In our 
strategy, we try to keep these datasets in one data centre, so that when tasks were scheduled to this data 
centre, most, if not all, of the data they need are stored locally.  

Our data placement strategy has two algorithms, one for the build-time stage and one for the runtime 
stage of scientific workflows. In the build-time stage algorithm, we construct a dependency matrix for 
all the application data, which represents the dependencies between all the datasets including the 
datasets that may have fixed locations. Then we use the BEA algorithm [37] to cluster the matrix and 
partition it that datasets in every partition are highly dependent upon each other. We distribute the 
partitions into k data centres, where the partitions have fixed location datasets are also placed in the 
appropriate data centres. These k data centres are initially as the partitions of the k-means algorithm at 
runtime stage. At runtime, our clustering algorithm deals with the newly generated data that will be 
needed by other tasks. For every newly generated dataset, we calculate its dependencies with all k data 
centres, and move the data to the data centre that has the highest dependency with it.  

By placing data with their dependencies, our strategy attempts to minimise the total data movement 
during the execution of workflows. Furthermore, with the pre-allocate of data to other data centres, our 
strategy can prevent data gathering to one data centre and reduces the time spent waiting for data by 
ensuring that relevant data are stored locally. 

The remainder of the paper is organised as follows. Section 2 presents the related work. Section 3 
gives an example and analyses the research problems. Section 4 introduces the basic strategy of our 
algorithms. Section 5 presents the detailed steps of the algorithms in our data placement strategy. 
Section 6 demonstrates the simulation results and the evaluation. Finally, Section 7 addresses our 
conclusions and future work.  

2. RELATED WORK 
Data placement of scientific workflows is a very important and challenging issue. In traditional 

distributed computing systems, much work about data placement has been conducted. In [49], Xie 
proposed an energy-aware strategy for data placement in RAID-structured storage systems. Stork [33] is 
a scheduler in the Grid that guarantees that data placement activities can be queued, scheduled, 
monitored and managed in a fault tolerant manner. In [15], Cope et al. proposed a data placement 
strategy for urgent computing environments to guarantee data robustness. At the infrastructure level, 
NUCA [28] is a data placement and replication strategy for distributed caches that can reduce data 
access latency. However, none of them focuses on reducing data movement between data centres on the 
Internet. As cloud computing has become more and more popular, new data management systems have 
also appeared, such as Google File System [24] and Hadoop [3]. They all have hidden infrastructures 
that can store the application data independent of users’ control. Google File System is designed mainly 
for Web search applications, which are different from workflow applications. Hadoop is a more general 
distributed file system, which has been used by many companies, such as Amazon and Facebook. When 
you push a file to a Hadoop File System, it will automatically split this file into chunks and randomly 
distribute these chunks in a cluster. Furthermore, the Cumulus project [46] introduced a scientific cloud 
architecture for a data centre. And the Nimbus [31] toolkit can directly turn a cluster into a cloud and it 
has already been used to build a cloud for scientific applications. Within a small cluster, data movement 
is not a big problem, because there are fast connections between nodes, i.e. Ethernet. However, the 
scientific cloud workflow system is designed for scientists to collaborate, where large scale and 
distributed applications need to be executed across several data centres. The data movement between 
data centres may cost a lot of time, since data centres are spread around the Internet with limited 
bandwidth. In this work, we try to place the application data based on their dependencies in order to 
reduce the data movement between data centres.  

Data transfer is a big overhead for scientific workflows [41]. Though popular scientific workflow 
systems have their data management strategies, they did not focus on reducing data movement. For the 
build-time stage, these systems mainly focus on data modelling methods. For example, Kepler [35] has 
an actor-oriented data modelling method that works for large data in a grid environment, Taverna [39] 
and ASKALON [48] have their own process definition language to represent their data flows. For the 
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runtime stage, most of the scientific workflow systems adopt some data grid systems for their data 
management. For examples, Kepler uses the SRB [7] system, while Pegasus [17] and Triana [14] adopt 
the RLS system [12], Gridbus [9] has a grid service broker [45] where all data are deemed as important 
resources. Data grids primarily deal with providing services and infrastructure for distributed data-
intensive applications that need to access, transfer, and modify massive datasets stored in distributed 
storage resources [44]. However, these systems do not consider the dependencies between data in 
scientific workflows either at build-time or runtime and they also can not reduce data movement. Some 
researches in grid computing have addressed the importance of data dependency for the large-scale 
scientific applications, although they did not focus on workflow data management. The Filecules project 
[21] groups the files based on the dependencies. Using real workload experiments data, the authors 
demonstrated that filecules grouping is a reliable and useful abstraction for data management in science 
Grid. BitDew [22] is a distributed data management system for desktop Grid. Different from data centres 
in the cloud that aim to provide services to users, desktop Grid aims to make use of the idle computing 
and storage resources in the desktop computers. In BitDew, the data placement dependency is denoted 
by a data attribute called “affinity”, which is pre-defined by users. However, in cloud computing, all the 
applciation data are hosted in the data centres, where anyone can use the cloud services and upload their 
data. Letting users define the data dependencies for the scientific cloud workflows is clearly  impractical.  

The closest workflow research to ours is the Pegasus workflow system which has proposed some 
data placement strategies [13] [42] based on the RLS system. The strategies are: first, pre-allocate the 
required data to the computation resource where the task will execute; second, dynamically delete the 
data that will no longer be used by tasks. These strategies are only for the runtime stage of scientific 
workflows and can effectively reduce the overall execution time and the storage usage of the workflows. 
Furthermore, in [32], the authors proposed a data placement scheduler for distributed computing 
systems. It guarantees the reliable and efficient data transfer with different protocols. These works 
mainly focus on how to move the application data, and they can not reduce the total data movement of 
the whole system. However, our work aims to reduce data movement. Our strategy is for both build-time 
and runtime stages of scientific workflows and we design specific algorithms to automatically place and 
move the application data.  

In cloud computing systems, the infrastructure is hidden from users. Hence, for most of the 
application data, the system will decide where to store them. Dependencies exist among these data. In 
this paper, we initially adapt the clustering algorithms for data movement based on data dependency. 
Clustering algorithms have been used in pattern recognition since 1980s [30], which can classify 
patterns into groups without supervision. Today they are widely used to process data streams [27]. In 
many scientific workflow applications, the intermediate data movement is in data stream format and the 
newly generated data must be moved to the destination in real-time. We adapt the k-means clustering 
algorithm for data placement. When new data is generated by a task, we dynamically calculate the 
dependencies of the new data with the K data centres, and move the new data to the centre with highest 
dependency. The simulation results of this paper show that with our data placement strategy, the data 
movement between data centres is significantly reduced compared to random data placement. 

3. SCIENTIFIC CLOUD WORKFLOW DATA MANAGEMENT 

3.1. A Motivating Example 
Scientific applications often need to process terabytes of data. For example, the ATNF1 Parkes 

Swinburne Recorder (APSR) [2] is a next-generation baseband data recording and processing system 
currently under development in collaboration by Swinburne University of Technology and ATNF. The 
data from the APSR streams at a rate of one gigabyte per second. The researchers at Parkes process the 
data with a local cluster of servers and do their research. All the data are stored locally at Parkes and 
they are not available to other institutions. If researchers at other institutions need the data resources 
from the Parkes Radio Telescope, they have to contact the researchers at Parks and request for the data. 
Researchers at Parkes will check the local repositories to see if the existing data resources could fulfill 
the requirements. In this situation communications often suffer from low efficiency because researchers 
are from different projects and the requirements are usually complex. Sometimes researchers even have 
to go to Parkes and bring back the data that they need on hard disks. Sharing data resources in this 
manner is obviously inefficient and hence not desirable.  

With cloud computing technologies, we can turn the Parkes cluster into a data centre on a cloud 
computing platform that can offer services to researchers all over the world. The cloud computing 
platform is built on the Internet, which is how the data centres are connected to each other. All the data 
are managed by the cloud data management system. The researchers can access the existing data 
resources, upload application data and launch their applications via the cloud service. By doing this, the 

                                                           
1 ATNF refers to the Australian Telescope National Facility. 
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resources at Parkes will be fully utilised, since data can be sent to other data centres for different 
applications as needed. On the other hand, researchers at Parkes will be able to do more scientific 
research by retrieving useful data from other data centres around the world. All these data sending and 
retrieving operations are hidden from the researches. In another word, via cloud computing platform, 
researchers can utilise data resources from other institutions without knowing where the data are 
physically stored. Hence, on a cloud computing platform, data centres should have the ability to host 
each other’s data. For example, if some particular data at Parkes are frequently retrieved by another data 
centre, the system will store these data on that data centre instead. Furthermore, if many applications at 
Parkes need the same data from another data centre, the system will also move those data to Parkes for 
storage.  

The Parkes Radio Telescope was setup in 1961. For over 40 years, the Parkes cluster has 
accumulated a large amount of data resources in different formats and sizes. Normally, data can be 
moved to other data centres, but if the size of the data is very large, moving them via the Internet will be 
inefficient. To transport terabytes of data, the most efficient way is for a delivery company to ship the 
hard disks [5]. If an application needs the majority of its data from Parkes, it is preferable that it is 
executed locally and retrieves data from elsewhere. For example, some research projects may need to 
process the raw data recorded from the telescope by APSR, in order to get some specific results.  

3.2.  Problem Analysis 
Scientific cloud workflows run on the cloud platform, which is composed of many distributed data 

centres on the Internet (like Parkes cluster) and each connection between data centres has limited 
bandwidth. Tasks sometimes need to process more than one dataset that may be stored in different data 
centres. Because of the bandwidth constraints, the movement of datasets between data centres would be 
the bottle-neck of the system. In [26], the authors proposed a new protocol for data transportation that 
could provide gigabits of bandwidth. However, it has not been widely supported by the Internet. The 
popular cloud systems, such as Amazon EC2 [1], still have limited bandwidth [34]. It charges $0.10 to 
$0.15 per gigabyte to move data in to and out of Amazon Web Services over the Internet. Another 
approach to deal with the bottle-neck of large data transfer is to divide the tasks, i.e. for the tasks that 
need to process many distributed datasets, we split them to many smaller and parallel sub-tasks, and 
schedule them to different datasets. Map-Reduce technology [16] is a typical and successful paradigm. It 
gains great success in the Google File System and Hadoop, as well as in scientific applications [36]. 
However, Map-Reduce is more applicable to be used within one data centre, since it needs huge 
interconnected bandwidth, such as the shuffle step that occurs between the Map procedure and the 
Reduce procedure. Furthermore, in scientific applications, many tasks must use more than one datasets 
together and can not be further divided, such as the All-Pairs problem [38]. Therefore, data movement is 
inevitable. In light of this, we have to place the datasets that are needed by the same task in the same 
data centre as much as possible, so as to minimise data movement when the task is executed. The 
placement of datasets among data centres is not trivial. 

Normally, a cloud computing system needs to decide in which data centres the application data are 
stored. Most datasets are flexible about where they are stored since they are independent of users. The 
cloud computing system can automatically store the application data based on some data placement 
strategies. However, in scientific cloud workflow systems, some data are not such flexible. They have to 
be stored in some particular data centres due to different reasons. Some common scenarios are 
demonstrated below. 

First, some data may need to be processed by special equipment. In some scientific projects, many 
special types of equipment are utilised. Some data can only be processed by particular equipment since 
they are in certain formats, e.g. the signal from Parkes Radio Telescope can only be processed by the 
equipment at Parkes, such as the ASPR. These data have to be stored where the required equipment is 
located.  

Second, some data are naturally distributed and too large to be moved efficiently. For example, the 
raw data files recorded by ASPR are usually terabytes or even petabytes in size. They are naturally 
stored in Parkes, and impossible to move to other locations via the Internet.  

Another reason that some data must be placed at a particular data centre is about the ownership. Data 
are considered as an important and valuable resource in many scientific projects. The cloud computing 
platform offers a new paradigm for cooperation that institutions can easily share their valuable data 
resources by placing a charge on them. So the data with limited access rights have to be stored in 
particular data centres. 

No matter what the reason that the data must be stored in a particular data centre, we call these 
datasets as fixed location datasets in general. As such, we call the datasets that the system can flexibly 
decide where to store flexible location datasets. The data placement strategy not only has to place the 
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flexible location datasets, but also has to take into account the impact of the fixed location datasets. 
Some challenges exist in the data placement strategy as discussed below.  

First, in scientific workflows, both tasks and datasets could be numerous and make up a complicated 
many-to-many relationship. One task might need many datasets and one dataset might be needed by 
many tasks. Furthermore, new datasets will be generated during the workflow execution. One dataset 
generated by a task might be used by several later tasks. So the data placement strategy should be based 
on these data dependencies.  

Second, the scientific cloud workflow system is a dynamic computing environment. Many workflow 
instances will run in the system simultaneously. Some instances might need long time execution and 
some might be short. New workflow instances could deploy to the system and completed instances 
could be removed from the system anytime. So the relationships between datasets and tasks will change 
often and the placement of datasets has to be changed accordingly.  

Third, the data management in scientific cloud workflow systems is opaque to users, that means 
users do not know where and how the data been stored. In the cloud environment, users only pay for the 
computation and storage resources that they need and give the application data to the system for 
processing. Because the cloud systems are built on the service oriented architecture (SOA), the users just 
use the dynamic cloud services and do not know the infrastructure of the system. Hence, the data 
placement has to be automatic.   

4. BASIC STRATEGIES FOR DATA PLACEMENT 
For scientific workflow data management, there are two types of data we have to deal with.  

First is the existing data that exists before the workflow execution starts. This type of data mainly 
includes the resource data from the existing file systems or databases and the application data from users 
as input for processing or analysis.  

Second is the generated data that are generated during the workflow execution. This type of data 
mainly includes the newly generated mediate and result data, as well as the streaming data dynamically 
collected from scientific devices during the workflow execution.  

We propose this taxonomy because we will treat these two types of data at the workflow build-time 
and runtime respectively with different algorithms. This taxonomy only indicates the generation time of 
the datasets. When the generated data moves to a data centre and is stored, it becomes existing data. The 
most important common feature is that both types of data might be very large. They can not and should 
not be stored and moved wherever and whenever we want, since the cloud system has the bandwidth 
constraints.  

The application data of scientific workflow could also have a variety of formats (e.g. XML data, 
complex objects, raw data files, tables in relational databases). But in this paper, we do not consider the 
structure of the data, since it is not the main focus of this paper and we will treat all data in the same 
way.  

In scientific workflows, moving data to one data centre will cost more than scheduling tasks to that 
centre [3]. Hence, our basic strategy is to have a reasonable placement of data in distributed data centres 
first, so that when tasks are scheduled to the appropriate data centres, almost all the datasets they need 
are in local storage. In this work we analyse the dependencies between datasets. Based on this 
dependency, we adapt the k-means clustering algorithm to cluster datasets to the proper data centres.  

In scientific cloud workflow systems, many workflow instances will run simultaneously, each of 
which have complex structures. Large numbers of tasks will access large numbers of datasets and 
produce large output data. In order to execute a task, all required datasets must be located on the same 
data centre, and this may require some movement of datasets. Furthermore, if two datasets are always 
used together by many tasks, they should be stored together in order to reduce the frequency of data 
movement. Here, we say that these two datasets have dependency. In other words, two datasets are said 
to be dependent on each other if they are both used by the same task. The more tasks there are that use 
the same datasets, the higher the dependency between those datasets. We denote the set of datasets as D 
and the set of tasks as T. 2 To represent this dependency, we give every dataset a task set in addition to its 
size. So, every dataset has two attributes denoted as <TDdi ∈ i, si>, where   is the set of tasks that 
will use dataset d

TTi ⊂

i, si denotes the size of di. Furthermore, we use dependencyij to denote the dependency 
between datasets di and dj. We say that the datasets di and dj have dependency if there are tasks that will 
use di and dj together and the quantity of this dependency is the number of tasks that use both di and dj.  

                                                           
2 All the denotations are listed at the end of the paper.  
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( )jiij TTCountdependency ∩=   

In this work, our k-means clustering data placement strategy is based on this dependency that can 
cluster the datasets into different data centres. The strategy has two stages: build-time and runtime.  

At the build-time stage, the main goal of the algorithm is to set up k initial partitions for the k-means 
algorithm. We use a matrix based approach to cluster the existing datasets into k data centres as the 
initial partitions.  

At the runtime stage, the main goal of the algorithm is to cluster the newly generated datasets to one 
of the k data centres based on their dependencies, which will be calculated dynamically. 

We have to design different algorithms for build-time and runtime stages to treat the existing data 
and generated data respectively, mainly because of the dynamic nature of the cloud environment. Even 
though we know the size and related tasks of the datasets that will be generated during the workflow 
execution, it is not practical to calculate their dependencies and assign them a data centre at build-time 
stage. This is because the scientific workflows have a large number of tasks and need a long time for 
execution. It is very hard to predict when a certain dataset will be generated in a dynamic cloud 
environment. If we assign the generated data a data centre at the build-time stage, then when the data are 
actually generated the data centre might have not enough available storage to store them. Furthermore, it 
is impractical and inefficient to reserve the storage for the generated data at the build-time stage. This is 
because the data might not be generated until the end of the scientific workflow and it would be a waste 
of the reserved storage space during this time. 

5. MATRIX BASED K-MEANS CLUSTERING STRATEGY FOR DATA PLACEMENT 
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Figure 1. Example of data placement 

In this section we will intricately discuss our data placement strategy. In Fig. 1, there is an example 
of a simple workflow instance, and it shows the two stages of our strategy. The data flows in the 
workflow instance, for example, from dataset d1 to tasks t1 and t2 mean that d1 will be used by both t1 
and t2; and data flows from t1 to t2 and t3 mean that the dataset generated by t1 will be used by both t2 and 
t3. During the build-time stage, we partition the existing datasets into several partitions, denoted as 
p1,p2…pn, based on their dependencies, and distribute these partitions into different data centres. During 
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the runtime stage, tasks may retrieve datasets from other data centres as needed, and we also pre-allocate 
generated datasets to the appropriate data centres.  

5.1. Build-Time Stage Algorithm 
During the build-time stage, we use a matrix model to represent the existing data. We pre-cluster the 

datasets by transforming the matrix, and then distributing the datasets to different data centres as the 
initial partitions for the k-means clustering algorithm, to be used during the runtime stage. The build-
time stage algorithm has two steps and the pseudocode is shown in Fig. 4. 

Step 1: Setup and cluster the dependency matrix. 
First, we calculate the data dependencies of all the datasets and build up a dependency matrix DM 

(Line 3 in Fig. 4), where DM’s element DMij = dependencyij. dependencyij is the dependency value 
between datasets di and dj, as we defined in the previous section. It can be calculated by counting the 
tasks in common between the task sets of di and dj, which are denoted as Ti and Tj. Specially, for the 
elements in the diagonal of DM, each value means the number of tasks that will use this dataset. In our 
algorithm, DM is an n × n symmetrical matrix where n is the total number of existing datasets. If we 
take the simple workflow instance in Fig. 1 as an example (with only 5 datasets, namely d1 to d5, in the 
system initially), the dependency matrix DM is shown in Fig. 2. 
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Figure 2. Build up dependency matrix 

The dependency matrix (i.e. DM) is dynamically maintained at the runtime. When new datasets are 
generated by tasks or added to the system by users, we calculate their dependencies with all the existing 
datasets and add them to DM.  

Next, we use the BEA (Bond Energy Algorithm) to transform the dependency matrix DM (Line 4 in 
Fig. 4). BEA was proposed in 1972 [37] and has been widely utilised in distributed database systems for 
the vertical partition of large tables [40]. It is a permutation algorithm that can group the similar items 
together in the matrix by permuting the rows and columns. In our work, it takes the dependency matrix 
(DM) as input, and generates a clustered dependency matrix (CM). In CM, the items with similar values 
are grouped together (i.e. large values with other large values, and small values with other small values). 
We define a global measure (GM) of the dependency matrix: 

∑ ∑= = +− += n
i

n
j jijiij DMDMDMGM 1 1 1,1, )(  

The permutation is done in such a way as to maximise this measure. The detailed algorithm of 
permutation could be found in [40]. Fig. 3 shows the CM of the example DM after the BEA 
transformation. 
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Figure 3. BEA transformation of dependency matrix 

In this step, we do not consider the difference between fixed location datasets and flexible location 
datasets. If there are some fixed location datasets in the system, they will be arbitrarily scattered in the 
columns and rows of the dependency matrix, since we built up the matrix by calculating dependencies 
between all the datasets. After the BEA transformation, all the datasets, including the fixed location 
datasets, are clustered by their dependencies. 
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Build-time Stage Algorithm

Input: D: set of existing datasets d1, d2, … dn

DC: set of data centres dc1, dc2, … dcm

Output: K: set of data centres with initial datasets

01. K=Ø; FP=Ø; NFP=Ø; //Initialization. FP: set of partitions that have fixed location datasets
//NFP: set of partitions that have not fixed location dataset

02. For (every  dci in DC) i_csi=csi * λini ; //Calculate initial available storage of all data centres
03. DM = dependency ij = Count (Ti ∩ Tj) ; //Step 1: setup DM
04. CM = BEA (DM) ; //Step 1: BEA transformation
05. if (CM contains fd) //Step 2 starts.  Check the existence of fixed location datasets
06.     Partition&Classify (CM) //Sub-step 1: partition CM and classify the partitions in to FP and NFP
07. if (CMT contains fd & the fd belong to different dc)
08. Partition&Classify (CMT) ; //Recursively partition and classify CMT

09. else if (CMT contains fd)
10. add CMT to FP ; //CMT has fixed location datasets , add to FP
11. else add CMT to NFP ; //CMT has not fixed location datasets, add to NFP
12. if (CMB contains fd & the fd belong to different dc )
13. Partition&Classify (CMB) ; //Recursively partition and classify CMB

14. else if (CMB contains fd)
15. add CMB to FP ; //CMB has fixed location datasets, add to FP
16. else add CMB to NFP ; //CMB has not fixed location datasets, add to NFP
17. for (every data centre dc i in DC) //Sub-step 2: distribute the partitions  with fixed location datasets
18. if (dci has fd) //Choose the data centre dci that has fixed location datasets
19. for (every fdj in FDi) //Go through all the fixed location datasets belong to dci

20. find CMj in FP ; //Pick out the partitions that contain these fixed location datasets from PF
21. add CMj to Pi ; //Setup the partitions set P for dci

22. calculate                                ; //The total size of the partitions in P
23. while (psi > i_csi) //Further partition if the size of P is too large for dci

24. find CMk in Pi , where    ; //Largest partition in P
25. remove CMk from Pi ;
26. BinaryPartition (CMk) ; //Partition CMk and update the partitions sets
27. if (CMkT contains fd) add CMkT to Pi ;
28. else add CMkT to NFP ;
29. if (CMkB contains fd) add CMkB to Pi ;
30. else add CMkB to NFP ;
31. calculate                              ; //New size of P after partition
32. distribute all CMj in Pi to dci ; //Distribute datasets
33. update dci to K ;
34. i_csi = i_csi– psi ;
35. else add CM to NFP ; //CM do not contain fixed  location datasets
36. for (all the partitions CMi in NFP) //Sub-step 3: distribute the partitions without fixed location datasets 
37. Partition&Distribute (CMi) //Partition and distribute CMi

38.     if (                          ) //Size of CMiT is small enough for some data centres
39. find dc j from  DC, //Find the best data centre
40.              where ;
41.              distribute CMiT to dc j ; //Distribute datasets
42. update dcj to K ;
43. i_csj = i_csj– dsiT ;
44.     else Partition&Distribute (CMiT) ; //Recursively partition and distribute CMiT

45.     if (                          ) //Size of CMiB is small enough for some data centres
46.          find dc j from  DC, //Find the best data centre
47.              where ;
48.          distribute CMiB to dcj ; //Distribute datasets
49. update dcj to K ;
50. i_csj = i_csj – dsiB ;
51.     else Partition&Distribute (CMiB) ; //Recursively partition and distribute CMiB

52. Return K ;

( )Tj
m
ji dscscs >= =1min

( )Bj
m
ji dscscs >= =1min

j
m
jT csds 1max =<

j
m
jB csds 1max =<

∑ ∈=
ij Pcm ji dsps

∑ ∈=
ij Pcm ji dsps

iPcmk dsds
ii∈= max

 
Figure 4. Build-time stage algorithm 
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Step 2: Partition and distribute datasets. 
In this step we will distribute the datasets to data centres as the initial k partitions for the k-means 

clustering algorithm at the runtime stage. We denote the set of data centres as DC. As shown in Fig. 1, 
we partition the clustered dependency matrix and place the corresponding datasets to different data 
centres. However, each dataset di has a size si and each data centre dcj also has a storage capacity 
denoted as csj. To find the best partitioning of datasets matching the data centres’ storage is an NP-hard 
problem, since it could be reduced to the Knapsack Packing Problem. Here, we develop a recursive 
binary partitioning algorithm to find the approximate best solution.  

First, we partition CM into two parts {d1, d2…dp} and {dp+1, dp+2…dn}, which maximises the 
following measurement:  

( )21 11 11 1 ∑ ∑∑ ∑∑ ∑ = +=+= +== = −∗= p
i

n
pj ij

n
pi

n
pj ij

p
i

p
j ij CMCMCMPM  

This measurement, PM, means that datasets in each partition have higher dependencies with each 
other and lower dependencies with the datasets in the other partitions. Based on this measure we can 
simply calculate all PMs for p=1, 2…n-1, and choose p such that it has the maximum PM value as the 
partition point.  

After one partition, the CM forms two new clustered matrices, we denote the top one as CMT, which 
contains the dependencies of datasets DT = {d1, d2…dp} and the bottom one as CMB, which contains the 
dependencies of datasets DB = {dp+1, dp+2…dn}. Every clustered matrix represents a partition of datasets 
and we denote the total size of the datasets it contains as ∑ == n

i isds 1
. Hence the ds for CMT and CMB are 

 and  respectively. ∑ == p
i iT sds 1 ∑ +== n

pi iB sds 1

Next, we distribute datasets to data centres by recursively partitioning the clustered dependency 
matrix.  

For each of the data centres, we introduce a percentage parameter λini to denote the initial usage of 
their storage capacity, which means that the initial size of datasets in data centre dci could not exceed csi 

* λini. The reason we can not fill the data centre with their maximum storage is that in scientific 
workflows, the generated data can also be very large. We have to reserve sufficient space in data centres 
to store those data during the workflow execution. λini is an experience parameter. The value of λini 
should depend on what kinds of applications are running on the system, because the generated data of 
different applications might have different sizes. Furthermore, we also assume that the data centres can 
host all the application data in the system, i.e. ( )∑ ∑= = ∗<n

i
m
i iniii css1 1 λ .  

To distribute the datasets, we have to examine whether there are fixed location datasets in the system 
(Line 5 in Fig. 4). If the system does not have fixed location datasets (Line 35 in Fig. 4), we will 
recursively partition the sub-matrices CMT and CMB until the size of the sub-matrix can fit into one of 
the data centres’ initial storage size limits (ds <= csi * λini). Then we distribute the datasets in this sub-
matrix into this data centre, and add the reference of this data centre (dci) to K, where K is a set of data 
centres. When the partitioning of CM finishes, all the initial datasets are moved to proper data centres. 
We take the data centres in K as the initial partitions of the k-means clustering algorithm.  

If there are fixed location datasets in the system, the distribution process is more complicated. For a 
fixed location dataset fdi, we denote it as <Ti, si, dc>, where the additional attribute dc is the data centre 
where this dataset has to be stored. And we use FD to denote the set of the fixed location datasets a data 
centre has. For a data centre that does not have fixed location datasets, FD is empty. The distribution is 
conducted as the three following sub-steps. 

Sub-step 1 (Line 6-16 in Fig. 4), we classify fixed location datasets and flexible location datasets in 
different partitions. We also need to recursively partition the sub-matrices CMT and CMB. The stop 
condition is that the sub-matrix does not have fixed location datasets or all the fixed location datasets it 
has belong to one data centre. We add the partitions that do not have fixed location datasets to a set 
named NFP and the partitions have fixed location datasets to a set named FP. 

Sub-step 2 (Line 17-34 in Fig. 4), we distribute the partitions with fixed location datasets in FP. We 
need to check the data centres’ information. For the data centres that have fixed location datasets, we 
pick out the partitions that contain these fixed location datasets from FP, denote as P. Then, we calculate 
the total size of these partitions, denote as ps, where ∑ ∈= PCM ii

dsps . If these partitions can fit into this 

data centre, we store them. If not, we recursively pick the largest partition from P, binary partition it and 
move the part that does not have fixed location datasets to NFP, until these partitions can fit into the data 
centre.  
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Sub-step 3 (Line 36-51 in Fig. 4), we distribute the partitions that only contain flexible location 
datasets in NFP. We start with the largest one and go through all the partitions in NFP by their size. For 
every partition, we distribute it to the data centres by recursive binary partitioning.   

 

5.2. Runtime Stage Algorithm 
At the runtime stage, we use the k-means clustering algorithm to dynamically cluster the generated 

data to one of the k data centres based on their dependencies. And when new workflows are deployed to 
the system or some data centres become overloaded, we also have to adjust the data placement among 
data centres. The pseudocode of the runtime stage algorithm is shown in Fig. 5. 

For the generated data, some of them could be valuable resources that can be utilised by other 
workflows, but most of them are temporal data. They are generated by the preceding tasks in the 
workflows and will be used by the subsequent tasks. They do not need permanent storage and will be 
deleted after the workflows have finish execution. In many scientific applications, the temporal data are 
in large volumes [19]. Some researches demonstrated that timely removal of these temporal data can 
save a lot of runtime storage space [42]. In our work, we dynamically check and delete the obsolete 
temporal data before every round of task scheduling. The runtime stage algorithm contains the following 
two steps. 

Step 1: Data pre-allocation by the clustering algorithm. 
In this step, the first thing we have to do is task scheduling (Line 2-3 in Fig. 5). Scheduling is a very 

important issue in scientific workflow systems, especially for computation intensive and/or data 
intensive applications. Much research has been done into scheduling workflows [43] [52]. However, 
task scheduling is not the main focus of this paper. Therefore, our scheduling strategy is quite straight 
forward. We just follow the philosophy of “moving data to a data centre will cost more than scheduling 
tasks to that centre”, and schedule tasks based on the placement of datasets. We periodically monitor the 
state of all the workflow tasks and dynamically schedule the ready tasks to the data centre which has the 
most datasets they require. Here, a task is ready if all the datasets it needs are existing data (i.e. have 
been generated).  

When tasks have been executed, new datasets will be generated. The system will then decide where 
to put these datasets: either store them locally or allocate them to other data centres. In our work, the 
system will cluster the newly generated datasets to the data centre that has the highest dependency with 
them (Line 4-12 in Fig. 5). We define the dependency between dataset di and data centre dcj as dc_depij, 
which is the sum of the dependencies of di with all the datasets in dcj.  

Suppose du is a new generated dataset and Tu is the set of tasks that will use du. First, we calculate the 
dependencies of du with all other datasets in the system and add the new row and column to DM for du, 
where 

{ } niTTCountdependencyDMDM iuuiiuui ,...2,1=∩===  

Then we calculate the dependencies of du with all the k data centres, where  

kjdependencydepdc
jm dcd umuj ,...2,1,_ == ∑ ∈

 

With these dependencies, we will select the data centre dch that has the highest dependency with du, 
where 

)_(max_ 1 uj
k
juh depdcdepdc ==  

dch is the data centre in which we will store the dataset du. And we will check the available storage of 
dch, before we move du to it. 

Here we will introduce a maximum storage usage parameter λmax for data centres, which is a 
percentage threshold indicating whether a data centre is overloaded or not. λmax is also an experience 
parameter, just like the initial storage usage parameter λini. Hence, the storage that the runtime data can 
use of a data centre dci is csi*(λmax-λini). The value of λmax depends on the overall workload of the system. 
If the system workload is heavy, λmax has to be set to a larger value. Likewise, if the system workload is 
light, λmax is set smaller to prevent too many datasets gathering in one data centre. 

We will move the new generated dataset du to the selected data centre dch, if maxλλ huh csscs <+  is 
true, where su is the size of du and λ is the current storage usage percentage of dch. Otherwise, we go to 
the next step to adjust the data placement. 
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Run-time Stage Algorithm

Input: T: set of tasks;
DC: set of data centres ;

Output: All the tasks are finished;

01. for (every ready task           ) //Step 1: data pre -stage by clustering algorithm
02.     schedule ti to dcj to execute, //Tasks scheduling
03.          where dcj has the most data sets ti needs ;
04.     for (every generated data set du of ti) //New datasets generated
05.         add du to DM, //Update dependency matrix
06.             where ;
07.         for (every data centre                ) //Calculate dependency
08.             calculate                                                                ;
09.         choose dch , //Choose data centre and pre -stage data 
10.             where ;
11.         if (                              )
12.             move du to dch ;
13.         else //Step 2: adjust data placement
14.             do adjustment
15.         CM’= BEA (DM);
16. K’= Build-time Algorithm Step 2 ; //Get new data placement
17. for (all the dc in DC)
18. choose dci, //Choose the most overloaded data centre
19. where   ;
20. Compare&Adjust (dc i, dci’) //dci’ is the reference in K’
21. for (all                                  )
22. send dj ; //Send the datasets belong to other data centres
23. for (all                                  )
24. retrieve dj ; //Retrieve the datasets it should have
25.     update T for new ready tasks with du ;     //For next round scheduling

maxλλ huh csscs <+

{ } niTTCountdependency iuui ,...2,1, =∩=

∑ ∈=
km dcd umuk dependencydepdc _

)_(max_ 1 uj
k
juh depdcdepdc ==

Tti ∈

DCdck∈

jDCdci j
λλ ∈= max

/
ijij dcddcd ∉∧∈

/
ijij dcddcd ∈∧∉

 
Figure 5. Runtime stage algorithm 

Step 2: Adjust data placement among data centres. 
During workflow execution, there are two situations that trigger the need to adjust the data placement 

among data centres.  

The first is when the selected destination data centre dch for the new generated dataset does not have 
enough available storage. This means that dch is overloaded. Hence, we have to adjust the datasets 
placement to balance the overall workload of the system.  

The second is when new workflows are deployed to the system. Together with the new workflows, 
new datasets and tasks will be added to the system. The dependencies of the original datasets will 
change, since the new tasks might use the existing data in the system. In this situation, we will calculate 
the dependencies between the new datasets and the existing datasets, and add them to the dependency 
matrix DM. If there are any new tasks which use existing data, they will be added to the task set of the 
appropriate existing dataset. For every new dataset, we will find an appropriate data centre for it by 
following the procedure in step 1. If the selected data centre is overloaded, we have to adjust the datasets 
placement to balance the overall workload of the system. 

To adjust the data placement, we need to run some functions from the build-time stage algorithms 
(Line 15-16 in Fig. 5). First, we do the BEA transformation to cluster the updated dependency matrix 
(DM) and get a new clustered dependency matrix (CM’). Next, we run the algorithm in step 2 of the 
build-time stage, but without actual data distribution. We just calculate the new placement of datasets in 
the data centres and save the references in a new set of data centres, denoted as K’.  

Then we can do the adjustment by comparing the old data placement with the new one in K’ (Line 
17-24 in Fig. 5). We start the adjustment from the data centre that has the highest storage load and go 
through all the data centres by the storage usage in the decreasing order. For every data centre, we 
compare the datasets it currently has with the new datasets in K’. Then we send the datasets that do not 
belong to this data centre to the ones they now belong to and retrieve the datasets it should have from 
other data centres.  
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Since λmax represents a percentage of a data centre's total storage space, each data centre will still 
have some storage available (100% - λmax) to facilitate data movement during this redistribution. In the 
case that λmax is set to 100%, additional temporary storage space may need to be acquired to serve as a 
buffer before the adjustment process can be completed. However, this situation rarely happens in the 
system, due to the following reasons: 1) in the adjustment process we always select the data centre with 
the highest storage usage to adjust as the priority, and send its datasets to other data centres first; 2) the 
total size of the datasets in the system is smaller than the total size of the available storage of all the data 
centres ( ( )∑ ∑= = ∗<n

i
m
i iniii css1 1 λ ), because we have the assumption that the data centres can host all the 

application data in the system; and 3) for every data centre we reserve some storage for the runtime 
generated datasets ( ( )inics λλ −∗ max ), this storage space is not always highly utilised, because we delete 
obsolete datasets dynamically. In our system, for every data centre, we reserve runtime storage for 
generated datasets as 40% of the initial storage for existing datasets i.e. ( ) %40max =− iniini λλλ . As 
addressed in section 6 later, we have run tens of thousands of workflow instances for simulation, and a 
situation where we lacked storage for data reallocation did not occur.  

 

The data placement strategy in this section states that when a task is scheduled to one data centre 
during workflow execution, that data centre will have most input datasets for that task. Then, only a 
small number of datasets have to be retrieved from remote data centres. The simulations in the next 
section will show that our data placement strategy can greatly reduce the total data movement during 
workflow execution. 

6. SIMULATION 

6.1. Simulation Environment: SwinDeW-C 
SwinDeW-C (Swinburne Decentralised Workflow for Cloud) [52] is developed based on SwinDeW 

[50] and SwinDeW-G [51]. It is currently running at Swinburne University of Technology, which is 
composed of 10 servers and 10 high-end PCs. To simulate the cloud computing environment, we set up 
VMware [4] software on the physical servers and create virtual clusters as data centres. Fig. 6 shows our 
simulation environment.   

 
Figure 6. Simulation environment of SwinDeW-C 

Every data centre created is composed of 8 virtual computing nodes with storages, and we deploy an 
independent Hadoop file system on each data centre. SwinDeW-C runs on these virtual data centres that 
can send and retrieve data to and from each other. Through a user interface at the applications layer, 
which is a Web based portal, we can deploy workflows and upload application data.  
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SwinDeW-C is designed for large scale cloud applications. It has a novel architecture for the cloud 
computing environment. However, the presentation of the comprehensive system design of SwinDeW-C 
is not the main focus of this paper. In Fig. 7, we only illustrate the key system components of SwinDeW-
C that relate to the data placement strategy.  

User Interface Module: 
 The cloud computing platform is built on the Internet and a Web browser is normally the only 

software needed at the client side. This interface is a Web portal by which users can visit the system and 
deploy their applications. The Uploading Component is for users to upload application data and 
workflows, and the Monitoring Component is for users, as well as system administrators to monitor 
workflow execution. 

Data Management Module: 
The Data Placement Component is the core component of data management in SwinDeW-C that 

facilitates the algorithms in our data placement strategy. The Data Catalogue is used to store the 
information of applications which, in a service oriented cloud platform, is a registry for the data services. 
By using the catalogue, the system can locate the data needed. Other components in this module, such as 
Data Replication Component, Data Synchronisation Component, Meta-data Repository and Provenance 
Data Collection are also essential for cloud data management. Since they are not directly related to the 
data placement strategy, we do not give their details here.  

Other Modules: 
The Flow Management Module has a Process Repository that stores all the workflow instances 

running in the system. The Task Management Module has a Scheduler that schedules ready tasks to data 
centres during the runtime stage of the workflows. Furthermore, the Resource Management Module 
keeps the information of the data centres’ usage, and can trigger the adjustment process in the data 
placement strategy. For other components in these modules, as well as other modules in SwinDeW-C, 
we do not give the details as the work presented here only focuses on the workflow data management. 

User Interface 
Module

Data Management Module

Data Placement Component

Build-time Stage Agorithm

Runtime Stage Algorithm

Data Replication Component

Data Synchronisation Component

Data 
Catalogue

Meta-data 
Repository

Provenance 
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Web Portal Monitoring 
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Uploading 
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Figure 7. Related key system components of SwinDeW-C 

6.2. Simulation Strategies  
The algorithms in our data placement strategy are for the build-time and runtime stages respectively. 

To evaluate their performance, we run each workflow instance through 4 simulation strategies: 

Random: In this simulation, we randomly place the existing data during the build-time stage and store 
the generated data in the local data centre (i.e. where they were generated) at runtime. This simulation 
represents the traditional data placement strategies in old distributed computing systems (i.e. clusters 
and early grid systems). At that time, data were usually stored in the local node naturally or in the 
nodes that had available storages. The temporal intermediate data, i.e. generated data, were also 
naturally stored where they were generated waiting for the tasks to retrieve them.  
Build-time only: This simulation shows the performance of our build-time algorithm. It is used to 
place the existing data at build-time. During the runtime stage we will store the generated data in the 
local data centre, as with the Random simulation. In a cloud computing system, data are more flexible 
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than they were in the past; this allows the system can decide where to store them. Our build-time 
algorithm places the application data based on their dependencies. This simulation will show the data 
movement reduction in the workflows’ execution by using this algorithm.  
Runtime only: This simulation shows the performance of the runtime algorithm by randomly placing 
the existing data at build-time and by pre-allocating the generated data with our runtime algorithm. 
This simulation represents the strategy that some popular grid scientific workflows used [13]. Their 
work shows that pre-allocating data to the computing node where the tasks will execute can reduce the 
total execution time of the workflow. However, this simulation will show that only pre-allocating data 
at runtime stage can not reduce the data movement in workflow execution. 
Build & Run: This simulation shows the overall performance of our algorithms both at build-time and 
runtime. Our algorithms are specifically designed for scientific cloud workflows. The strategy is based 
on data dependency and can automatically place existing data; and cluster generated data to the 
appropriate data centres. Comparisons with other strategies will be made with different aspects to show 
the performance of our algorithms. 

The traditional way to evaluate the performance of a workflow system is to record and compare the 
execution time [13] [42]. However, in our work we will count the total data movement instead. The 
execution time could be influenced by other factors beside data management, such as bandwidth, 
scheduling strategy and I/O speed. Our data placement strategy aims to reduce the data movement 
between data centres on the Internet. So we directly take the number of datasets that are actually moved 
during the workflow execution as the measurement to evaluate the performance of the algorithms. In a 
cloud computing environment with limited bandwidth based on the Internet, if the total data movement 
has been reduced, the execution time will be reduced correspondingly. Furthermore, the cost of data 
transfer will also decrease.  

To make the evaluation as objective as possible, we generate test workflows randomly to run on 
SwinDeW-C. This would make the evaluation results independent of any specific applications. As we 
need to run the build-time and runtime algorithms separately, we set the number of existing datasets and 
generated datasets to be the same for every test workflow. That means that we have the same number of 
existing datasets and tasks for every test workflow, and we assume that each task will only generate one 
dataset. We can control the complexity of the test workflow by changing the number of datasets. Every 
dataset will be used by a random number of tasks, and tasks that use generated datasets must be executed 
after the task that generates their input. We can control the complexity of the relationships between the 
datasets and tasks by changing the range of this random number. Another factor that would have impact 
on the algorithms is the number of fixed location datasets. We can randomly choose some percentage of 
datasets from the existing data and randomly select some data centres for them. We will run new 
simulations to show the impact on performance. Here we have only included graphs of the simulation 
results. The detailed configuration and result reports of the simulations, as well as the source code can all 
be found at http://www.swinflow.org/docs/DataPlacement.zip.  

6.3. Simulation Results 
Fig. 8 shows the data movement when we run workflows with different complexity on different 

numbers of data centres. We can see the increases in data movement as the workflows become more 
complex and the number of data centres increases. All the values in the figure are the average of running 
1000 test workflows with the same parameters.  

In Fig. 8 (a), we ran the test workflows with different complexity on 15 data centres. We used 4 
types of test workflows with different numbers of datasets. In Fig. 8 (b), we fixed the test workflows’ 
datasets count to 50, and ran them on different numbers of data centres. Then we changed 10% of the 
input datasets to fixed location datasets and ran the same simulation again. The results are shown in Fig. 
9. 

From the results, we could draw the conclusions that 1) the build-time algorithm can effectively 
reduce the total data movement of the workflow execution; 2) the runtime algorithm does not reduce the 
total data movement, and even causes more data movement if the existing datasets are placed randomly 
and 3) with fixed location datasets added to the system, our algorithms can still work very well with 
performance only degrading slightly. The runtime algorithm does not decrease the data movement 
because it pre-allocates datasets before scheduling tasks based on their data dependencies. If the existing 
datasets are randomly placed, the differing dependencies of the data centres are not obvious. The 
increase in data movement is caused by pre-allocation of datasets to the wrong data centres. However, if 
the existing datasets were clustered by the build-time algorithm, the performance of the runtime 
algorithm would be better.  
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Figure 8. Data movements without runtime storage limit and without fixed location datasets 
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Figure 9. Data movements without runtime storage limit and with 10% of fixed location datasets 

However, in the simulation described above, we did not limit the amount of storage that the data 
centres had available during runtime. The reason for this is that we wanted to see how the tasks and 
datasets were distributed, which indicates the workload balance among data centres. During the 
execution of every test workflow instance, we recorded the number of datasets that moved to each data 
centre, as well as the tasks that scheduled to that data centre. We also calculated the standard deviation 
of the data centres’ usage. Fig. 10 shows the average standard deviation of running 1000 test workflows 
on 15 data centres each having 80 existing datasets and 80 tasks, both with and without fixed location 
datasets.  

From Fig. 10 we can see relatively high deviations in the data centres’ usage in the two simulations 
without the runtime algorithm. This means that tasks and datasets are allocated to one data centre more 
frequently. This leads to a data centre becoming a super node that has a high workload. By contrast, in 
the other two simulations that use the runtime algorithm to pre-allocate the generated data to other data 
centres, the deviation of data centre usage is low. This demonstrates that the runtime algorithm can make 
a more balanced distribution of the workload among data centres.  

In a cloud computing environment, data centres normally have limited storage, especially in some 
storage constrained systems. When one data centre is overloaded, we need to reallocate the data to other 
data centres. The reallocation will not only cause extra data movement, but will also delay the execution 
of the workflow. To count the reallocated datasets, we ran the same test workflows as in Fig. 10 with a 
storage limit in every data centre. We limited the runtime storage for generated datasets to 40% of the 
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initial storage for existing datasets i.e. ( ) %40max =− iniini λλλ . In Fig. 11 we show the average data 
movement including the data reallocation. 
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Figure 10. Standard deviation of workload among data centres 
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Figure 11. Proportions of 3 types of data movements 

From Fig. 11, we can see that a lot of data is reallocated in the simulations without the runtime 
algorithm. The least data reallocation occurred when we only use the runtime algorithm. However, the 
least data movement in total occurred when using the build-time and runtime algorithms together. In Fig. 
11 (a), using both algorithms caused 146.505 movements of datasets on average. Comparing this to the 
random simulation, 297.807 datasets movements on average, our algorithms reduce the data movement 
by 50.8%. On the other hand, the build-time algorithm and runtime algorithm cause movement of 170.26 
and 178.662 datasets on average. Compared to the random situation, they reduce the data movements by 
42.8% and 40.0% respectively. In Fig. 11 (b), with 10% fixed location datasets in the system, our 
algorithms (Build&Run) can reduce the data movement by 47.4% compared to the Random simulation.  

To better evaluate the performance of our algorithms, we give every data centre a runtime storage 
limit and run the same simulation workflows as Fig. 8. We get the final results of data movement which 
are shown in Fig. 12. 

From Fig. 12 we can see that as the number of data centres and datasets increases, the performance 
of the build-time algorithm decreases. This is because without the runtime algorithm the datasets and 
tasks are gathering on the one data centre. This triggers the adjustment process more frequently, which 
costs extra data movements. Furthermore, we ran the same simulation as Fig. 12 under the condition that 
the system has fixed location datasets. Fig. 13 shows the data movements when we set the percentage of 
fixed location datasets to 10%. We can see our algorithms can still reduce the data movements 
significantly. Furthermore, with higher percentages of fixed location datasets in the system, our 
algorithms still work, and we will demonstrate this in the next simulation.  
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Figure 12. Data movements with runtime storage limit 
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Figure 13. Data movements with runtime storage limit and with 10% fixed location datasets 

Fig. 13 has consistent results with Fig. 9, that the fixed location datasets have a negative impact on 
the algorithms’ performance. In the algorithms, we try to place the datasets on data centres based on 
dependencies, however, the fixed location datasets have to be stored in particular data centres. This will 
decrease performance, as fixed location datasets will prevent the algorithms from placing datasets with 
their dependencies. However, given the existence of fixed location datasets, our algorithms can still 
reduce data movement by placing the flexible location datasets with dependencies. To demonstrate the 
impact of fixed location datasets on the algorithms, we conducted another batch of simulations. We ran 
1000 test workflows on 15 data centres each having 80 existing datasets and 80 tasks, but with different 
percentages of fixed location datasets. As the number of fixed location datasets increases, we can see 
their impact on data movement in Fig. 14. 

From Fig. 14 (a) we can see that as the percentage of fixed location datasets goes up, the data 
movements of the Build-time only and Build & Run simulations go up accordingly; however the 
Random and Runtime only simulations keep steady. This means the fixed location datasets primarily 
have an impact on the build-time algorithm. This is because all the fixed location datasets are existing 
data, which are placed by the build-time stage algorithm. When the percentage reaches 60%, the data 
movements of Build & Run simulation even exceeds the Random simulation. This is because the pre-
allocation of datasets in the runtime algorithm causes more data movements, as the build-time algorithm 
gets worse. In Fig. 14 (b) it may seem slightly confusing that the data movements of all simulations go 
up and then drop, as the percentage of fixed location datasets goes up. This is because when we set the 
runtime storage limit, many data movements are caused by data reallocation. However, the fixed 
location datasets are not involved in the overload adjustment process. Hence, the data movement 
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decreases. In this figure we can also see that the fixed location datasets may have a negative impact on 
the build-time algorithm. 
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Figure 14. Data movements with different percentage of fixed location datasets 

 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we examined the unique features of scientific cloud workflows and proposed a 

clustering data placement strategy that can automatically allocate application data among data centres 
based on dependencies. Simulations in our cloud workflow system SwinDeW-C indicated that our data 
placement strategy can effectively reduce data movement during workflow execution. The build-time 
algorithm reduces the amount of data retrieved and the run time algorithm guarantees a balanced 
distribution of data and can reduce data movement incurred by data reallocation, even when fixed 
location data exist in the system. 

In our current work, to guarantee the data reliability, we used Hadoop’s replication mechanism 
within a data centre, and among data centres we did not use any replication strategies. The data used in 
scientific workflow applications are usually very large and as such it is not efficient to replicate all the 
application data in the system. However, replication of frequently used data could also reduce data 
movement. In the future work, we will develop some efficient replication strategies for the data 
placement algorithm, which could balance the data movement and storage usage. Furthermore, in our 
current simulation we measure the reduction of datasets’ movements to evaluate our strategy. In the 
future, we will meter the execution time of the workflow as well, which can better demonstrate the 
effectiveness of our strategy. To be more comprehensive, we will also incorporate the size of datasets to 
calculate the data dependency, and adapt some popular cloud service providers’ pricing models to our 
simulation, which will show the cost effectiveness of our strategy.   
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DENOTATIONS: 
di  dataset 
D  set of datasets 
Di  set of datasets in a partition 
fdi  fixed location dataset 
FD  set of fixed location datasets 
ti workflow task 
T set of workflow tasks 
Ti set of workflow tasks that will use dataset di
dci data centre 
DC set of data centres 
pi partition of datasets 
P set of partitions  
si size of a dataset 
cs size of a data centre 
ds size of a partition 
ps size of a set of partitions 
FP set of partitions that have fixed location datasets 
NFP set of partitions that do not have fixed location datasets 
DM dependency matrix 
CM clustered dependency matrix 
CMi sub clustered dependency matrix 
CMT the top sub clustered dependency matrix after one binary partition 
CMB the bottom sub clustered dependency matrix after one binary partition 
GM global measure of BEA transformation 
PM global measure of binary partition 
depij dependency between datasets di and dj  
dc_depij dependency between dataset di and data centre dcj
K set of data centres with placement of datasets 
λini  initial storage usage parameter of data centres 
λmax  maximum storage usage parameter of data centres 
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