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ABSTRACT: We develop a computational approach to analyze and design piezoelectric
energy harvesting systems composed of layered plates and shells connected to an electrical
circuit. The finite element method is used to model the coupled electromechanics of the piezo-
electric harvesting structure and a lumped parameter model for the dynamics of the electrical
circuit. We assume the harvester is subjected to a prescribed harmonic base excitation and that
the structural and electrical responses are linear. We use topology optimization to design the
layout of a multilayer structure consisting of structural, piezoelectric, and electrode layers,
as well as the electrical circuit. The flexibility of our formalism admits the definition of
specific system-level objectives, e.g., maximize the power harvested, in an algebraic fashion.
After describing our analysis and design approaches, we present examples that demonstrate
the versatility of our approach and show how it can be used to explore general behavior and
develop overarching design principles for piezoelectric energy harvesting devices. For the
objective of maximizing the power harvested, we investigate: (i) optimal designs for various
piezoelectric to substrate thickness ratios, (ii) the effect of mass loading on optimal design, and
(iii) the sensitivity of designs to shape variations.
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INTRODUCTION

T
HE use of piezoelectric materials incorporated into
structures to harvest energy from ambient vibra-

tions has received significant attention over the last
decade with the overarching goal of eliminating or redu-
cing the need of external power sources or batteries to
power remotely operated devices. The interest in vibra-
tional energy harvesting has been motivated by advances
in low-power electronic components such as wireless
sensors and actuators, as well as advances in technolo-
gies that make it possible to fabricate such devices at
ever smaller sizes. Additional motivation is provided
by the desire to develop increasingly sophisticated multi-
functional materials, e.g., materials that simultaneously
provide structural and power functionality. As one of
three methods used to convert mechanical vibrational
energy to electrical energy, piezoelectric transduction,
in contrast to electromagnetic and electrostatic trans-
duction (Williams and Yates, 1996), is a viable means

to achieve this goal because it can be directly incorpo-
rated into, or even replace structural components. The
interest in piezoelectric energy harvesting is reflected in a
number of authoritative reviews that have been written
in recent years (Sodano and Inman, 2004; duToit et al.,
2005; Beeby et al., 2006; Anton and Sodano, 2007;
Priya, 2007; Cook-Chennault et al., 2008; Erturk and
Inman, 2008a); extensive details regarding applications,
experimental techniques, and modeling and design
approaches can be found within these references.

Many piezoelectric energy harvester configurations
consist of a flat cantilever beam covered with piezoelec-
tric patches on one or both sides. This harvester is con-
nected to a vibrating structure, usually at its base, in such
a manner that the vibrational signature and energy of the
structure is transferred to the piezoelectric energy har-
vester. Flat beam and plate structures are typically used
for these problems because they allow for a large gener-
ation area (the larger the area, the larger the charge pro-
duction) that can be actively strained by the vibration of
the structure, ease of analysis, and ability to be ‘tuned’ to
the host structure vibration signature. Generally, the
vibrational input to the harvester is broadband, although
most harvesting strategies have focused on a single
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resonant frequency of the harvester, where vibrational
energy is the greatest. The description of the entire
energy harvesting process requires an understanding of
(i) the mechanical vibrations of the structure, the (ii) elec-
tromechanics of the piezoelectric transduction, and (iii)
the dynamic behavior of the electrical circuit, which are
all three coupled. The first is well-known, while the incor-
poration of the second and third are the heart of the
energy harvesting research community. Many models of
varying complexity, including lumped-parameter ideali-
zations, analytical approaches based on beam theory,
and numerical approaches using the Rayleigh-Ritz or
finite element method have been developed; the state-
of-the-art of which is reviewed by Erturk and Inman
(2008a). Less effort appears to have been focused on
the circuit analysis and design specifically for piezoelec-
tric energy harvesting. A number of authors (Ottman
et al., 2002; Ottman et al., 2003; Lesieutre et al., 2004;
Lefeuvre et al., 2005a, 2007; Shu and Lien, 2006a, b; Shu
et al., 2007) provide sophisticated circuit designs for
charging a battery with a piezoelectric energy harvester;
Lefeuvre et al. (2005b) provide a comparison of some of
these approaches.
Most piezoelectric energy harvesting approaches to

date focus on the electromechanics of the piezoelectric
transduction and use a transient or steady-state vibra-
tional signature, usually at resonance, as input for the
base excitation of the piezoelectric harvesting structure
which is often coupled one-way to a simple external har-
vesting circuit. However, important aspects of this prob-
lem are often neglected. Erturk and Inman (2008b) and
Erturk et al. (2009) demonstrate that while traditional
lumped parameter analysis approaches provide much of
the basic understanding, they lack important information
about the coupled electromechanics, e.g., the existence of
strain nodes at different resonances or the feedback of the
circuit dynamics to the structural response. In their inves-
tigations of strain nodes (where the surface strain changes
sign), they find that if an electrode crosses the strain node
then charge cancellation occurs, degrading the perfor-
mance of the piezoelectric harvester. This finding is also
reported by Kim et al. (2005a, b) for circular plates which
they rectify by changing the piezoelectric polarization to
match the strain state and allow energy to be harvested
from both tensile and compressive strain regions without
cancellation. On the circuit side, complex rectifying and
converting circuits have been created and optimized
(Lefeuvre et al., 2005a, 2007), and in some cases include
fully coupled feedback (Lesieutre et al., 2004; Elvin and
Elvin, 2009), but for simplification purposes are modeled
with a single or multiple degree-of-freedom lumped elec-
tromechanical model at resonance. While their techni-
ques properly model the circuit dynamics and circuit
feedback, they oversimplify the mechanical model.
A proper representation of the mechanical response is
necessary for optimizing the power of harvesting systems.

The use of optimization techniques to design the
material layouts of piezoelectric systems for actuation
or resonator systems has been studied previously. For
example, Donoso and Bellido (2009) use topology
optimization to find the polarization layout for piezoelec-
tric plate actuators and sensors, while Abdalla et al.
(2005) optimize the layout of a compliant mechanism to
maximize the efficiency of load transfer from a piezoelec-
tric stack actuator. Other piezoelectric actuator design
methodologies using topology optimization have been
reported by Carbonari et al. (2007a,b), and Drenckhan
et al. (2008). Donoso and Sigmund (2009) use shape opti-
mization to find thickness and width profiles of piezo-
electric layers on a cantilever bimorph to minimize tip
deflections both statically and dynamically. Ha and
Cho (2006) maximize the piezoelectric coupling strength
by finding optimal material layouts for piezoelectric reso-
nators, and Kang and Tong (2008a, b) use topology opti-
mization to find the layout of structural and piezoelectric
layers, as well as the electric actuation voltages, to control
the displacement field of piezoelectric plates. Zheng et al.
(2009) use topology optimization to maximize mechani-
cal to electrical energy conversion in a static sense for
piezoelectric plates, and Elka and Bucher (2009) opti-
mally distribute electrodes to tailor electromechanical
modal filtering. Frecker (2003) provides a review of
some of the earlier uses of optimization with piezoelectric
actuators and structures.

In this article we develop a general methodology to
analyze and design piezoelectric energy harvesting sys-
tems based on multilayer plate and shell structures with
piezoelectric layers coupled to an external harvesting cir-
cuit. Although our approach admits shells, we will refer
to the structures as plates in the following, even if they
are curved. We assume that both the structural and elec-
trical responses of the harvester and circuit are linear and
excited by a harmonic base motion, allowing for time-
harmonic analysis of the harvesting system. We use the
finite element method to model the fully coupled compo-
nents of the piezoelectric harvesting structure, namely the
structural dynamics, electromechanics, and electrode
conduction, while a lumped parameter approach is used
to model the circuit dynamics (Figure 1). Here we model
the feedback of the circuit to the piezoelectric structure as
well as the response of the circuit. We use a piezoelectric
layered plate formulation similar to that described by
Marinkovic et al. (2007), and extend this approach for
design optimization. After describing our modeling
approach, we present a methodology to optimally
design piezoelectric energy harvesting systems following
a topology optimization approach. Topology optimiza-
tion is a computational technique used to determine the
layout, or topology, of a structure or material such that a
prescribed objective is maximized orminimized subject to
design constraints. Our approach facilitates the design of
piezoelectric energy harvesters by tailoring the layout,
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both in the plane and through the thickness, of multilayer
structures consisting of structural layers, piezoelectric
layers, electrodes, and electrical circuit parameters.
Objectives can be formulated in a flexible algebraic
manner, and include for example, open circuit voltage
and power output/dissipation. To the best of our knowl-
edge, our work is the first methodology for the optimal
design of piezoelectric harvesting systems by using topol-
ogy optimization to design both the layout of piezoelec-
tric and structural materials on layered plate structures as
well as the harvesting circuit to which it is connected.
This paper is organized as follows: the following sec-

tion details the mechanical, piezoelectric, electrode, and
circuit models and their formulation in the finite element
method/lumped parameter approach, including how the
various fields are coupled. After a description of our
analysis and design approaches, we validate our model-
ing approach by comparison to experiments in the liter-
ature for both beam and plate structures. Finally, we
demonstrate the versatility of our approach and explore
the behavior of piezoelectric energy harvesting systems
with numerical examples.

ANALYSIS AND DESIGN FORMULATIONS

Field Equations

Our piezoelectric energy-harvesting model can be sepa-
rated into three sub-models: the mechanics and coupled
electromechanics of the piezoelectric structure, electrical
conduction in the electrode, and the electrical circuit
model. These sub-models are then coupled through
their individual electrical interface conditions. The elec-
trodes are explicitly modeled so that electrical connectiv-
ity is maintained between desired parts of the model (e.g.,
the piezoelectric material and circuit), especially as the
model changes during the topology optimization proce-
dure. In the piezoelectric mechanical/electrical model, the
mechanical and electric field equations of the layered
plate piezoelectric structure are written as:

r � T ¼ �€u ð1Þ

r �D ¼ 0 ð2Þ

where T is the stress tensor, q is the mass density, u
is the displacement vector, and D is the electrical

displacement vector. The mechanical and electrical fields
are coupled through the piezoelectric constitutive law:

T ¼ cES� eE

D ¼ eTSþ eSE
ð3Þ

where cE is the stiffness tensor at constant electric field,
S is the strain tensor, e is the piezoelectric coupling
tensor, eS is the dielectric tensor at constant strain,
and E is the electric field vector. Following Kirchhoff
plate theory where the out-of-plane normal (3-direc-
tion), shear, and inter-layer stresses are neglected
ðT33 ¼ 0,S32 ¼ S31 ¼ 0Þ, and by neglecting the in-plane
electric fields ðE1 ¼ E2 ¼ 0Þ the constitutive law can be
reduced. Similar to Marinkovic et al. (2007), the consti-
tutive equation for the i-th layer can be written as:
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where the primed notation �ð Þ0 indicates the coefficients
are reduced, which are written as:
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Using Kirchhoff kinematics, we assume that the
strains through the total thickness can be written as
the sum of the midplane strains S00 and the product of
the curvatures j with the distance from the midplane zc
(i.e., S0 ¼ S00 þ zcj). We also assume a constant electric

Dynamic
displacement/

force

Piezoelectric structure

Structure Piezoelectric
coupling

Electrodes Electrical
circuit

Figure 1. Components of a piezoelectric harvesting structure as well as their coupling, including the coupling to (dash-dot line) and feedback
from (dotted line) the circuit.
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field and linear potential �ðiÞ through the thickness
of each layer (i.e., E0

ðiÞ
¼ E

ðiÞ
3 ¼ �

d
dz �
ðiÞ). Applying

Hamilton’s principle for the layered system of piezoelec-
tric equations results in:

Z
S

Xn
i

Z h
ðiÞ
þ

h
ðiÞ
�

S0ð Þ
T

QðiÞS0 � e0ðiÞE0
ðiÞ
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þ uT�ðiÞu

þ E0
ðiÞ
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e0
ðiÞ
S0 þ e0ðiÞE0

ðiÞ
� �

dzdS

¼

Z
S

uT t̂� �ðiÞ
� �T

qðiÞdS ð6Þ

where the Neumann boundary conditions are:

t̂ ¼ T � n̂

qðiÞ ¼ �DðiÞ � n̂
ð7Þ

and t̂ are surface tractions, n̂, is the unit surface normal,
and qðiÞ is the charge per unit area of the i-th piezoelec-
tric layer. The total charge q

ðiÞ
piezo produced by the piezo-

electric layer material is then:

q
ðiÞ
piezo ¼

Z
S

qðiÞdS ð8Þ

where the integration is over the in-plane surface area.
See Marinkovic et al. (2007) for a similar treatment of
the coupled piezoelectric equations.
In the electrode electrical conduction model only

in-plane conduction is considered on a per-layer basis.
The field equations for each electrode layer are devel-
oped using Maxwell’s equations under quasi-static
assumptions:

r �DðiÞ ¼ �ðiÞe ð9Þ

r �HðiÞ ¼ J
ðiÞ
f þ

_DðiÞ ð10Þ

with charge density qe, magnetic field H, and free cur-
rent density Jf. The constitutive law (Ohm’s law) for
electric conduction is:

J
ðiÞ
f ¼ �

ðiÞEðiÞe ð11Þ

with conductivity r(i). Assuming an irrotational electric
field such that EðiÞe ¼ �r�

ðiÞ, integrating Equation (10)
over the volume of the electrode, and combining with
Equations (9) and (11), yields:

_q
ðiÞ
electrode ¼

Z
_�ðiÞe dV ¼

Z
r � �ðiÞr�ðiÞdV ð12Þ

where q
ðiÞ
electrode is the total charge in the i-th electrode.

The final sub-model, the electrical circuit, is assumed
to be linear and can be generalized as a RLC circuit with

a series resistance R, capacitance C, and inductance L
subject to a potential difference ��. The circuit
dynamics are described by:

�� ¼
1

C
qcircuit þ R _qcircuit þ L €qcircuit ð13Þ

where qcircuit is the electric charge.
The equations of the three sub-models are combined

by common Dirichlet boundary conditions and by the
conservation of charge within the system:

qpiezo þ qelectrode þ qcircuit ¼ 0 ð14Þ

which depends on the connectivity of the sub-models
and combines Equations (8), (12), and (13), integrated
in time assuming a time-harmonic response, to fully
couple the piezoelectric harvesting structure, the electro-
des, and the electric circuit.

Finite Element Formulation

We use the finite element method to discretize the
equations for the electromechanics of the piezoelectric
structure as well as the electrodynamics of the electro-
des, while for the circuit we use a lumped parameter
model. A four-node layered finite element is used
where the layers may consist of either pure structural,
piezoelectric, or electrode layers. The structural layers
are built from four overlapping composite triangular
elements (Hemez, 1994) composed of coupled 9-dof
assumed natural deviatoric strain membrane (Felippa,
2003) and 9-dof bending (Militello and Felippa, 1991)
triangular elements, resulting in 24 structural degrees of
freedom per element. The piezoelectric layers use the
same structural components coupled to the electric
field via piezoelectric coupling (Marinkovic et al.,
2007). In the formulation of the layered element, the
middle in-plane strains, curvatures, and electric field
are assumed constant and integration through the thick-
ness is performed in a piece-wise manner using constant
constitutive properties for each layer (Hemez, 1994).
An arbitrary number of potential degrees of freedom
may exist per node through the thickness, allowing
for multiple, independent piezoelectric layers. Figure 2
illustrates an example layer configuration showing the
location of potential degrees of freedom on a layer basis
and the linear interpolation of potential through the
thickness.

Under time harmonic assumptions
ðu ¼ uee

i!t,� ¼ /ee
i!tÞ, with excitation frequency x, the

resulting piezoelectric finite element system with struc-
tural damping can be written as:

�!2Meue þ i!Ceue þ Keue þ?e/e ¼ fe

?T
e ue þ Cp/e ¼ qe

ð15Þ
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where Me,Ce,Ke,?e,Cp, ue,/e, fe, qe are the elemental
mass, damping, stiffness, piezoelectric coupling, and
capacitance matrices, with the elemental nodal displace-
ment, potential, force, and charge vectors.
The electrode layers conduct electricity in the plane

of the element between voltage degrees of freedom of
the same electrode layer with finite conductivity as
described by Equation (12). Each electrode layer is dis-
cretized with a four-node bi-linear finite element (Bathe,
2007), which when combined under time harmonic
assumptions yields:

i!
�1

!2
)e

� �
/e ¼ qe ð16Þ

where )e is the elemental electrode conduction matrix
for all the electrodes.
The time-harmonic electric circuit Equation (13) can

be written as:

�!2RM
e þ i!RC

e þ RK
e

� �
/e ¼ qe ð17Þ

where:
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e ¼

L

1
C� !

2L
� �2

þ !Rð Þ
2
RI,

RC
e ¼

�R

1
C� !

2L
� �2

þ !Rð Þ
2
RI;

RK
e ¼

1
C

1
C� !

2L
� �2

þ !Rð Þ
2
RI

ð18Þ

and RI connects the potential field degrees of freedom in
the lumped parameter formulation. Using Equation (14)
to connect Equations (15), (16), and (17) yields the final
system of equations:

~K
u

/

� �
¼

K11 K12

K21 K22

� 	
u

/

� �
¼

f

0

� �
ð19Þ

where:

K11 ¼ �!
2Mþ i!Cþ K

K12 ¼ ?

K21 ¼ ?
T

K22 ¼ �!
2RM þ i!

�1

!2
þ RC

� �
þ RK þ Cp

� �
ð20Þ

for which the matrices are assembled in the global sense
with global system matrix ~K. The mechanical response
of the structure is described by K11, which changes with
the layout of materials both layer-wise and in the plane
of the plate structure. The matrices K12 and K21 are the
piezoelectric coupling matrices, which couple the struc-
tural and electrical responses and vary with piezoelectric
material layout. The dynamics of the electrical response
are provided by the interaction of the circuit matrices
RM, RC, and RK with the piezoelectric capacitance
matrix Cp, which varies with the material layout, and
the electrode matrix W, which varies with the electrode
conductivity and topology.

Topology Optimization Formulation

We formulate design problems by a general nonlinear
program with objective z, inequality constraints gj, and
equality constraints hk being twice differentiable func-
tions of design variables si:

max
si

z si, u sið Þ,/ sið Þð Þ i ¼ 1 . . . ns

s:t: ~K sið Þ
u sið Þ

/ sið Þ

 !
¼

f

0

 !

gj sið Þ � 0 j ¼ 1 . . . ng

hk sið Þ ¼ 0 k ¼ 1 . . . nh

si � si � si

ð21Þ

where there are ns design variables bounded by the lower
and upper box constraints si and si, respectively, ng
inequality constraints and nh equality constraints. The
system matrix is a direct function of the design variables,
~K ¼ ~K sið Þ, and the solution vectors are implicit functions
of the design variables, u ¼ u ~K sið Þ

� �
,/ ¼ / ~K sið Þ

� �
Following a material-based topology optimization
approach, the material properties of one or a group of

M

E

E

E

S

P

P

φ1

φ2

φ3

Figure 2. An example construction of a piezoelectric layered ele-
ment composed of (S) structural, (P) piezoelectric, (E) electrode,
and (M) mass layers. An arbitrary number of potential degrees of
freedom �, marked by blue circles, may exist through the
thickness.
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finite elements are defined as smooth functions of the
design variables si such that the lower bound si corre-
sponds to one particular material and the upper bound
si to a second material. Intermediate values si < si < si
correspond to an artificial composite material. In gen-
eral, the interpolation of the material properties as a
function of the design variables is chosen such that
the optimization problem (21) converges to a solution
with all optimization variables being at or near the
upper and lower bounds. For the design of piezoelectric
energy harvesters studied in this article, we have
observed that the nature of the optimization drives the
optimization variables to the upper/lower bounds.
Reasons for this behavior will be discussed later.
Therefore we use simple linear interpolations to define
the mass density, the stiffness coefficients, the piezoelec-
tric coupling constant, as explicit functions of the
optimization variables:

�ðiÞ ¼ �ð1Þ ��ð0Þ
� �

siþ�ð0Þ 0� si� 1

Q
ðiÞ
k, l¼ Qð1Þk, l�Qð0Þk, l

� �
siþQð0Þk, l i¼ 1 . . . ns�1ð Þ

e031ðiÞ ¼ e0ð1Þ31� e0ð0Þ31

� �
siþ e0ð0Þ31

ð22Þ

where the subscripts 0 and 1 denote the lower and
upper bounds for the variable corresponding to design
variable values of si¼ [0,1]. It is possible with our frame-
work, but not explored in our examples, to additionally
treat the electrode conductivity as variable as a means to
design the layout of electrodes on the piezoelectric
layers.
When the circuit resistance is also varied we use a

nonlinear interpolation function as follows:

R ¼ Rð0Þ exp ln
Rð1Þ

Rð0Þ

� �
sj

� �
j ¼ ns ð23Þ

This interpolation approach counteracts the large
influence of the resistance on the energy harvesting
performance that dominates over the influence of the
material parameters described above, and thus mitigates
numerical problems when solving the optimization
problem (21).
Note that in our problem-specific formulation the

dielectric permittivity of the piezoelectric layer is not
varied with the other properties of the piezoelectric
layer. This is done as a matter of stabilization of the
optimization method to overcome scaling differences
between the inherent piezoelectric and electrical circuit
problems that appear in the optimization problem (21).
In our study we investigate only a purely resistive
external circuit, although the piezoelectric material

surrounded by electrodes acts as a capacitor thereby
making the whole system act like an RC circuit. In stan-
dard RC circuits, the maximum power is dissipated for
an oscillation frequency ! ¼ 1=ðRCÞ. However, finding
the optimal resistance and capacitance in the case of
piezoelectric harvesting is not as easy as satisfying
the RC-circuit condition, as demonstrated by Erturk
and Inman (2008d) and Renno et al. (2009), although
the behavior is similar. In general, the resistance and
capacitance need to be tuned simultaneously to reach
the optimal circuit power for the harvester. This can
be done by adding or removing piezoelectric material
to change the capacitance and/or by directly changing
the circuit resistance. While in general both types
of modifications are needed to achieve an optimal per-
formance, the optimal circuit problem dominates
over the optimal piezoelectric topology problem driving
the optimization problem to a local minimum and
resulting in a piezoelectric layer that fully covers
the plate. To overcome this issue we keep the dielectric
permittivity of the piezoelectric layer constant, which
yields a constant system capacitance, regardless of piezo-
electric layout. To realize the optimal design, the ficti-
tious contributions of the piezoelectric layer to the
capacitance are translated into to an external capacitor
in parallel with the piezoelectric plate. As a result, in
optimizing the piezoelectric layout, the capacitance
value of this external capacitor is also optimized at the
same time, albeit indirectly. This procedure effectively
isolates the piezoelectric and electrical circuit problems
from each other, thereby allowing the piezoelectric
material layout to change without changing the proper-
ties of the RC-like circuit.

Using the formulation (21), a broad class of
design problems pertaining to piezoelectric energy
harvesting can be formulated and solved. Owing to the
large number of design variables, we solve the optimiza-
tion problem (21) by gradient-based techniques requir-
ing the calculation of gradients of the objective
and constraints with respect to the design variables.
The derivative of the objective, for example, can be
expanded as follows:

dzðsi, uðsiÞ,/ðsiÞÞ

dsi
¼
@z

@si
þ

@z

@/
þ
@z

@ ~K

@ ~K

@/

 !
d/

dsi

þ
@z

@u
þ
@z

@ ~K

@ ~K

@u

 !
du

dsi

¼
@z

@si
�

@z

@/
þ
@z

@ ~K

@ ~K

@/

 !
~K
�1 @ ~K

@si
/

�
@z

@u
þ
@z

@ ~K

@ ~K

@u

 !
~K
�1 @ ~K

@si
u ð24Þ
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Which can be evaluated using either the direct or adjoint
method (Haug et al., 1986).

Formulation of a Specific Objective for Piezoharvesting

The formulation of the optimization problem (21)
is quite general and as such can be used to solve a
wide range of design problems regarding piezoelectric
energy harvesters. In the examples that follow we
apply it to a more restrictive suite of problems that
involve determining the layout of piezoelectric patches
on an elastic substrate to maximize the harvested power
for a given operating frequency (Figure 3). In addition,
we determine the optimal resistance of the harvest-
ing circuit. To this end we formulate the objective
function as:

z ¼
��j j2

2R
ð25Þ

which is a measure of the average power dissipated
by the resistor. The flexibility of our methodology
also admits other objective functions, such as volume-
and mass-specific power density, which may be more
appropriate in some situations; but these are
not explored here. The gradients of the objective can
be written as:

dzðsiÞ

dsi
¼
@z
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dR
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We evaluate the gradients (26) by the adjoint method.
In the examples studied in the following no inequality or
equality constraints are considered. Also, no gradient
filtering or penalization techniques are used, although
these augmentations can be easily included into our
computational framework. We solve the optimization
problem (25) with a sequential quadratic programming
algorithm (Schittkowski, 1985).

ANALYSIS DEMONSTRATION AND MODEL

VALIDATION

We validated our numerical model by analyzing two
problems where analytical solutions and/or experimen-
tal results are given in the literature. The first problem is
a cantilever beam harvester (Erturk and Inman, 2008b,
c, 2009; Erturk et al., 2009) and the second problem a
piezoelectric circular plate (Kim et al., 2005a, b). In both
of these cases, fully covered cantilevers and plates were
considered as well as special cases where only part of the
structure was covered by a piezoelectric patch and/or an
electrode. In all cases we obtained excellent agreement
between our simulation results and the analytical solu-
tions and/or experimental results reported in these
papers. Two illustrative examples are shown here.

Cantilever Beam

The first validation example follows the study of
Erturk and Inman (2009) who use a vibrating bimorph
cantilever beam connected to a circuit for energy har-
vesting. They develop an analytical model that compares
favorably with experimental data. Here we compare
their validated analytical model to our finite element
model for the same setup thereby validating our model
as well. The setup for the cantilever bimorph consists of
0.14mm thick brass beam surrounded by 0.26mm PZT-
5A piezoelectric layers and two 0.006 kg tip masses. The
beam is 50.8mm long and 31.8mm wide. The material
properties can be found in Erturk and Inman (2009).
In order to reproduce their results derived from beam
theory with our plate formulation we use a Poisson’s
ratio of zero in our calculations.

The two piezoelectric layers are connected in series
with each other and with an external circuit consisting
of a resistor of variable resistance as shown in Figure 4.
Our finite element model consists of a 25� 15 element
mesh of the layered piezoelectric plate elements
described earlier. A structural layer is sandwiched
between two piezoelectric layers. At the bottom and
top, electrode layers with a conductivity of 1.0e4X�1

are placed; the conductivity is large enough to model
nearly perfect conduction, but small enough to prevent
numerical issues due to ill-conditioned system matrices.
The connections between electrodes are modeled with
resistive elements, one with the load resistance and the
other with a negligible resistance to connect the two
inner layers. Lumped masses are included at the beam
tip and mass proportional damping of 2.7% is applied,
as determined from Erturk and Inman’s experiments.
Frequency sweeps are performed for harmonic base
excitation and the output power through the resistor is
calculated for resistivities of 1, 33, and 470 kX. Figure 5
shows the power frequency response functions (FRFs)

Electrode

Electrode

Substrate

Piezoelectric ?
?

Circuit
??

Figure 3. Illustration of the problem setup using topology optimiza-
tion to determine the layout of the piezoelectric layer and the circuit
parameters.
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plotting the output power normalized to the square of
acceleration, g2, over the excitation frequency. The
results are in excellent agreement with Erturk and
Inman’s analytical solution. The largest output power
is obtained for 33 kX, suggesting that there is an optimal
resistance for the external circuit that maximizes the
output power.

Clamped Circular Plate

In the second example we consider the static deforma-
tion of a R2¼ 25mm diameter circular plate that is
clamped at the outer edge and consists of a 0.127mm
thick piezoelectric PZT-5H layer on a 0.508mm thick
aluminum substrate. The material properties are given
in Table 1. An external static pressure is applied to one
side of the plate and the resulting open circuit voltage is
calculated. This problem can be considered a special
case of our dynamic finite element model (19) such
that !! 0 and R!1. In order to increase the voltage
generated by the plate, the material in the PZT-5H layer
is arranged such that the piezoelectric polarization
(polarity) changes sign/direction (i.e., the coupling con-
stant changes sign) at R1. Figure 6(a) shows the problem
setup. This problem was studied by Kim et al. (2005a,
b), who provided an analytical solution and carried out
supporting experiments. Our finite element model con-
sists of a mesh of 18,000 elements, which was determined
to be adequate by a mesh refinement study. Our finite
element results are in good agreement with the published
experimental data as shown in Table 2.
To study the influence of the layout of the

piezoelectric layer on the performance of the structure,
we vary the radius R1 and plot the open circuit voltage
as a function of R1/R2 in Figure 6(b). The open cir-
cuit voltage is maximum for R1/R2¼ 0.7. Plotting the
mean curvature (arithmetic mean of in-plane curvatures)
as a function of radius in Figure 6(c) shows that curva-
ture changes sign at r/R2¼ 0.7. To avoid charge and
voltage cancellation, the polarity of the piezoelectric
material needs to switched at R1/R2¼ 0.7. This finding

is consistent with Erturk and Inman (2008b) and
Erturk et al. (2009).

Instead of determining the optimum value of R1/R2

through a parameter sweep, we use this example to test
our design methodology and let the optimizer find the
optimum material distribution. The optimization prob-
lem is defined to maximize the open circuit voltage by
finding the optimal distribution of two materials that
differ only in the sign of their piezoelectric coupling
coefficients. The design variables interpolate the piezo-
electric coupling constant linearly from a positive value
to a negative value (i.e., it is either poled upward or
downward). While for this axisymmetric problem it
would be sufficient to consider only the variation of
polarization as a function of radius, in our setup of
the optimization problem the design variables define
the polarity in the piezoelectric layer independently in
each element. Figure 6(d) shows this optimal distribu-
tion which has a corresponding optimal open circuit

f

b L

R

Poling direction

Poling direction

Substructure
Piezoelectric
Electrode

Figure 4. Schematic of a cantilever bimorph used for validation of our modeling approach.
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Figure 5. Power FRF for a piezoelectric bimorph cantilever beam
for resistances of 1, 33, and 470 kX. Finite element calculations are
shown as open symbols while the analytical solutions are shown as
solid lines.
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voltage of 9.31V at about R1/R2¼ 0.71 (an estimate
because of the finite element discretization), which cor-
relates well with the analytical optimal solution provided
by Kim et al. (2005a).
It is noteworthy that the optimized material distribu-

tion in Figure 6(d) lacks any intermediate design vari-
ables i.e., si 6¼ 0 or 1. All optimization variables converge
to their upper or lower limit without penalizing interme-
diate values. The clear spatial separation of the material
distribution can be explained by the desire to have all
regions of piezoelectric material produce as much charge
as possible. As the charge generation depends on the
sign of the curvature, the material domains are clearly
separated and the design variables are at their extreme

values yielding the maximum piezoelectric coupling
coefficients.

In this example, the layout of the piezoelectric layer
has a negligible effect on structural response due to
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Figure 6. (a) Problem setup of a circular plate with a pressure load, (b) open circuit voltage as a function of polarization reversal radius, (c)
mean curvature of the plate as a function of radius, (d) optimal piezoelectric polarization layout using topology optimization (red � positive
polarization, blue � negative polarization).

Table 1. Material properties used in examples.

Mass density Stiffness properties Piezoelectric properties

Piezoelectric (PZT-5H) � ¼ 7500 kg=m3 cE
11 ¼ cE

22 ¼ 127 GPa e31 ¼ �6:62 N=C
cE

12 ¼ 80:2 GPa e33 ¼ 23:2 N=C
cE

13 ¼ cE
23 ¼ 84:7 GPa " s

33 ¼ 1:27e� 8 F=m
cE

33 ¼ 117 GPa
Aluminum substrate � ¼ 2700 kg=m3 E ¼ 73:0 GPa, � ¼ 0:33
Mass layer � ¼ 7500 kg=m3 E ¼ 0 GPa

Table 2. Generated VOC (in V) vs R1/R2

for DP^ 9.65 kPa.

R1/R2 Experiment Analysis

0.40 5.31� 0.014 5.61
5.61� 0.014

0.72 8.84� 0.039 9.29
9.26� 0.010
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static pressure loading. The regions with positive and
negative curvature can be determined and, neglecting
small piezoelectric effects, the layout of the piezoelectric
layer can be aligned with the curvature distribution.
We show in the following section that this procedure
is not applicable to problems where the structural
response depends on the layout of piezoelectric material.
In this case our optimization approach provides a use-
ful tool to find the optimum distribution of piezoelectric
material.

APPLICATION EXAMPLES

In this section we present four examples that demon-
strate the capabilities of our approach. In particular we
focus on a suite of examples that cannot yield solutions
through analytical beam or plate analysis methods.
We show how adding a piezoelectric energy harvesting
layer can drastically change the response of a system and
that simply placing material in regions of positive or
negative curvature will not necessarily yield a design
that effectively harvests energy. Optimal designs
that overcome this problem using our methodology are
presented and discussed. We then show how the param-
eters of the harvesting circuit, namely the resistance,
affect the power output of the energy harvesting
system. This is followed by a study of how adding a
mass layer with negligible stiffness to the structure
changes the response and the optimal design of the
plate structure and how it can improve results more
than optimizing the piezoelectric layer alone. The final
example demonstrates that our technique is applicable
to a curved base structure and illustrates the versatility
of our approach as not only a design tool, but also as a
tool for investigating physical trends associated with
optimally designed structures. Our intent is to show
how our approach and tools can be used to explore
the general behavior and develop overarching principles
through the study of a suite of particular problems in
piezoelectric energy harvesting.

Clamped Square Plate � Thickness Effects

Here we consider the design of a 10� 10 cm
clamped square plate as shown in Figure 7. The plate is
clamped at the middle two-fifths of one side and is
subject to a harmonic excitation of 575Hz at the clamped
location normal to the plane of the plate, actuated as a
unit displacement. The objective of the example is to
determine the optimal layout of piezoelectric material
on top of a substrate such that the power dissipated by
a constant 1 kV resistor is maximized. The initial design
for the optimization problem is a plate fully covered with
piezoelectric material. This optimization problem is

solved for six different thickness ratios of piezoelectric
to substrate materials. The piezoelectric is transversely
isotropic PZT-5H with thicknesses of
hp¼ [0.001, 0.025, 0.1,0.2, 0.3, 0.5]mm, while the sub-
strate is aluminum with a constant thickness of
hs¼ 1mm. The material properties are given in Table 1.
The finite element model is discretized into a 25� 25 ele-
ment mesh. It was found that for undamped structures,
the sudden phase change in voltage and displacement at
resonance creates a non-smooth optimization landscape
that cannot be traversed efficiently by gradient-based
algorithms. In order to alleviate this problem, as well as
make it more practical, mass proportional damping of
1% is included in the problem.

The resulting optimal material layouts are shown in
Figure 8. As the thickness ratio increases the optimal
design gradually changes. The designs optimized for
the largest and smallest thickness ratios significantly
differ. For a thin piezoelectric layer the material layout
in the piezoelectric layer closely matches the signs of the
strain distribution computed for a plate without piezo-
electric layer (Figure 8). With increasing thickness the
material layout differs increasingly from this strain dis-
tribution as the piezoelectric layer adds stiffness and
mass thereby changing the dynamic response of the
structure.

In general, it cannot be guaranteed that the optimiza-
tion problems considered in this study are convex and
the optimization process converges to the global mini-
mum. To address the latter issue, the optimization pro-
blems were tested for local optima by starting the
optimization process from a number of random initial
designs, all of which converged to the same solution.
These mimina results suggest, but do not prove, that
the optimization problem is globally convex and the
solutions obtained are at least strong local minima.

The relationship between thickness ratio and optimal
design is studied further by taking each piezoelectric
pattern of Figure 8 (designs A�F), varying the piezo-
electric thickness from hp/hs¼ 0.001�0.5, and computing
the power generated in each case. These results are
shown in Figure 9, where the output power for each
design is normalized to the power output of the optimal
design for that thickness ratio. For each thickness ratio
the maximum power is produced by the design opti-
mized for that thickness. This situation is not as intuitive
as it might seem as evidenced by the non-monotonic
behavior when moving away from the diagonal (which
represents the family of optimal designs) in Figure 9,
e.g., design D at hp/hs¼ 0.5 or design F at hp/hs¼ 0.2.
The results also suggest an increasing sensitivity to
design changes as thickness ratio increases, for example
in the noticeable drop in power output between designs
F and E at hp/hs¼ 0.5. Although the two designs have
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somewhat similar features, the power output is signifi-
cantly different because of the change in structural
response caused by the additional thickness of the piezo-
electric layer.

The absence of intermediate design variables is also
seen in this example, as was the case with the circular
plate example. The difference here is that the structural
properties change along with the coupling coefficient,
while at the same time the structure is experiencing feed-
back from the external circuit. As a result, a complex
interplay between structural response, charge produc-
tion, and charge utilization occurs. Regardless of the
complexity, the results suggest that for the objective
function used the piezoelectric coupling coefficients con-
verge to their extreme values thereby maximizing charge
output.

Figure 10 shows FRFs of the output power encom-
passing the second through fourth modes for the fully
covered and optimal plate designs for each of the thick-
ness ratios. The FRFs for the fully covered plates show
the general trend that an increase in thickness results in
an increase in output power as well as a change in the
response where the third mode shifts to lower frequen-
cies. The driving frequency for this problem is consis-
tently located between the second and third bending
modes for these cases. For the optimal designs, the
degree to which the FRF changes increases with

Strain pattern Optimized designs

No piezoelectric
layer

A
hp/hs = 0.001

D
hp/hs = 0.2

E
hp/hs = 0.3

F
hp/hs = 0.5

C
hp/hs = 0.1

B
hp/hs = 0.025

Figure 8. Comparison of the strain pattern for a plate without a piezoelectric layer with the optimal distribution of piezoelectric material (red) on
an aluminum substrate (blue) for six different ratios of piezoelectric to substrate thickness.
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thickness ratio. As the piezoelectric layer constitutes a
larger fraction of the total structural makeup the more
its variation affects the overall structural response. For
lower thickness ratios with less ability to change the
structural response, the increase in output power is not
caused by changes in the location of the natural frequen-
cies, but the relative influence of the modes at the driv-
ing frequency. This is best seen for hp/hs¼ 0.001 and
0.025. As the thickness ratio increases, however, more
freedom is allowed in the design to shift modes to dif-
ferent frequencies, specifically to move a mode to
toward the driving frequency such that the driving fre-
quency becomes a resonant frequency. This is indicated
in Figure 10 by the gradual shifting of the third mode to
the driving frequency with increased thickness ratio,
whereas more freedom to move the modes allows for
the third mode to get closer to the driving frequency.
As such, designs E and F of Figure 8 are structures with
natural frequencies at the driving frequency of 575Hz
and are akin to tuned cantilever beam harvesters typi-
cally used in energy harvesting applications, but without
the need to change the shape or add an end mass.
In summary, these results show a strong influence of

thickness ratio on the optimal layout of piezoelectric
material on the plate. At larger thickness ratios the
addition/removal of piezoelectric material significantly
changes the mass and stiffness properties of the struc-
ture. In particular in the case that the piezoelectric mate-
rial constitutes a significant proportion of the structure,
the resulting material redistribution changes the struc-
tural modes in such a way that the structure simulta-
neously is ‘tuned’ to the driving frequency and
prevents charge cancellation, Not only do these results
demonstrate the need to treat the coupled piezoelectric
layer as an integral part of the system and its structural

response when considering the design of piezoelectric
energy harvesters, they also demonstrate the manner in
which topology optimization can overcome the limita-
tions of other existing design methods to improve the
power output of such devices.

Simultaneous Piezoharvester and Circuit Design

Here we consider the same edge-clamped square plate
as in the previous example with the exception that the
external circuit resistance is treated as a design variable
along with the piezoelectric properties of the structure.
In the previous example the electrical characteristics of
the circuit were kept constant including the electrical
capacitance of the system. As explained earlier, this is
because the dielectric permittivity of the piezoelectric is
not varied with its other properties, allowing for sepa-
ration of the structural/material layout and electrical
parts of the optimization problem. In this problem, the
plate again is optimized for the six different thickness
ratios with the same harmonic excitation of 575Hz. The
optimization problem is started from an initial design
with a fully covered piezoelectric layer. The material
layout is kept variable along with the resistor to allow
for simultaneous structure and circuit design.

The material distributions converge to same layouts
as obtained previously for a fixed resistivity of 1.0 kX
and shown in Figure 8. Figure 11 shows the power
output of the final optimized material layouts as a func-
tion of circuit load resistance as well as the individual
optimized values for those designs at R¼ 1.0 kX and the
optimal resistances. This figure reveals the RC circuit-
like behavior of power output as a function of resistance
and shows that the final harvesting circuit resistance
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obtained via optimization coincides with the maxima of
those curves. These data are also listed in Table 3, which
provides a comparison of power output for all the
designs including plates fully covered with piezoelectric.
The data show that, while for small thickness ratios the
optimal piezoelectric layout contributes little to improv-
ing the power output, but as the thickness ratio increases
the layout becomes increasingly important. This is par-
ticularly evident in the hp/hs¼ 0.5 design where the
power output is improved by over 75 times. Also
noted are that the optimal resistances between the fully
covered and optimal designs are different even though
the system capacitance is the same. This indicates, along
with the calculated data shown in Table 4, that the opti-
mal resistance obtained by applying the optimal circuit
condition for an RC circuit does not correspond well
with the results from our optimization. This finding is
in agreement with those of Erturk and Inman (2008d)
and shows that obtaining the optimal parameters for
the harvesting circuit is equally important as finding
the proper structural design to provide that power,
and that our approach yields both.

Optimization with a Mass Load

In applications of piezoelectric cantilever beam har-
vesters, it is commonplace to tune the first resonant fre-
quency of the beam to the primary ambient frequency to
which it is exposed, thereby maximizing the transferable
energy. This can be accomplished by altering the length
or width of the beam or adjusting material parameters,
but in practice this is oftenmost easily achieved by adding

a mass to the tip of the beam, which is particularly useful
for manufactured beams with material properties and
dimensions that are unalterable. Here we illustrate how
our topology optimization can be used not only to deter-
mine the layout of the piezoelectric material, but also to
determine how to spatially distribute a layer of non-
stiffening mass to maximize the power output. The prob-
lem setup is the same as that for the first example with
R¼ 1.0 kX, a thickness ratio hp/hs¼ 0.1, and an excita-
tion frequency of 575Hz, but with an extra mass layer
of thickness 0.1mm on top as shown in Figure 12. The
density of the mass layer is the same as that of the piezo-
electric. There is no constraint on placement of the mass
layer so it is possible that extra mass can be placed where
there is no piezoelectric to support it, although this has
little effect on the system response. These results can be
used to determine the placement of an array of lumped
masses or of a high density/low stiffness layer to improve
harvester performance. Our formulation could also be
easily modified to allow for placing larger mass lumps
in specific locations, similar to what is done in practice,
but this option is not studied here.

The optimal material layouts of both the piezoelectric
and mass layer are shown in Figure 12. Interestingly, the
optimal layout of the piezoelectric material bears no
resemblance to the optimal designs without the mass
layer (specifically design C in Figure 8). The power
FRFs of this and design C of Figure 8 are shown in
Figure 13. In both cases, for the optimum designs, the
third mode is shifted toward the driving frequency. As
was shown before, the optimal layout of the piezoelectric
layer alone is not sufficient to move the third mode all

Table 4. Calculated and optimal circuit resistances.

hp/hs

Calculated
piezoelectric system

capacitance (F)

Calculated
optimal resistance

R^1/xC (X)

Fully covered
optimal

resistance (X)

Optimized
design optimal

resistance R (X)

0.001 1.27E-4 2.18 1.59 1.60
0.025 5.08E-6 54.5 35.9 36.6
0.1 1.27E-6 218 114 121
0.2 6.35E-7 435 198 223
0.3 4.23E-7 654 282 309
0.5 2.54E-7 1090 465 591

Table 3. Power output for various designs at a frequency of 575 Hz.

hp/hs

Fully covered
with R^1.0 kX

(W/g2)

Fully covered
with variable

R (W/g2)

Fully covered
optimal

resistance (X)

Optimized
design with

R^1.0 kX (W/g2)

Optimized design
with variable

R (W/g2)

Optimized design
optimal

resistance (X)

0.001 9.83e-11 3.08e-8 1.59 1.13e-10 3.54e-8 1.60
0.025 5.29e-8 7.34e-7 35.9 5.60e-8 7.62e-7 36.6
0.1 5.37e-7 2.36e-6 114 6.49e-7 2.65e-6 121
0.2 1.25e-6 3.25e-6 198 3.55e-6 8.09e-6 223
0.3 1.78e-6 3.39e-6 282 4.95e-5 7.02e-5 309
0.5 2.51e-6 3.28e-6 465 2.39e-4 2.52e-4 591
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the way to the driving frequency at this thickness ratio,
but the addition of the mass layer provides enough
design freedom to achieve this in the optimal design.
Indeed the added mass layer actually gives more free-
dom than the optimal structure with this same thickness
ratio (i.e., hp/hs¼ 0.2, Figure 8, design C) and mass. The
power output for this design at R¼ 1.0 kX is P¼ 6.34e-
5W/g2 which is greater than the output for a piezoelec-
tric layer twice as thick shown in Table 3. This indicates
that, for our example at least, optimizing an added mass
layer in addition to the piezoelectric layer is more effec-
tive than increasing the thickness of a single piezoelectric
layer and optimizing. The primary reasons for this are
that the piezoelectric layer and mass layer can vary inde-
pendently, which is not possible for the thicker piezo-
electric layer, and that the mass layer increases the
inertia without adding stiffness. These results suggest
two additional methods to ‘tune’ the structure to the
driving frequency and prevent charge cancellation.

Clamped Curved Plate

To further illustrate the versatility of our methodol-
ogy, a series of structures with increasingly curved

shapes are used as a substrate upon which a piezoelectric
layer is deposited for energy harvesting. Curved devices
may be required to accommodate design or configura-
tion constraints. Alternatively, shape imperfections that
occur during fabrication or service may lead to curved
shapes.

The base structure for this example is the same as
the previous problems with a piezoelectric layer to
substrate thickness ratio of hp/hs¼ 0.1, but the curvature
of the base structure is varied as �L/p¼
[0, 0.02, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0] while the surface
area is constant. The structure is clamped and vibrated
as before and as shown in Figure 14. The optimal dis-
tribution of piezoelectric material located on the top of
the plate (the inside of the curve) is sought that max-
imizes the harvested power through a 1.0 kX resistor for
an excitation frequency of 575Hz, which is somewhere
between the second and third bending modes for all
curved structures. Figure 14 shows the optimized designs
for a flat substrate and for two cases of curved sub-
strates. The projections of the curved material layouts
onto a flat plate for all curvatures considered are shown
in Figure 15.

Figure 15 shows that the design changes with increas-
ing base curvature. Some interesting trends are noted,
such as the stark change in design with only a slight cur-
vature added to the plate, which is due to the additional
geometric stiffness and changes in mode shapes. The sig-
nificant change in design as a function of base curvature
implies that the optimal flat plate design is not efficient
for energy harvesting on a slightly curved substrate and
vice-versa. This is verified by the bar plot in Figure 16,
which shows the power output for a given piezoelectric
material layout for each structural curvature normalized
by the power output of the optimal design for that base
curvature, similar to that in Figure 9. The bar plot is
diagonally dominant, meaning that each optimal design
works best for the base curvature it is designed for, and
reveals that the slightly curved design B will produce rel-
atively little power on any base structure it was not
designed for and vice versa. In contrast, curvatures at
and above �L/p¼ 0.1, which all have similar optimal
material layouts as shown in Figure 15, produce similar
amounts of power. As was the case of the flat plate in the
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Piezoelectric
Electrode
Mass layer

(a) (b)

Figure 12. Through-thickness setup for a problem with a mass layer is the same as the flat plate problem but with a to-be-optimized layer of
non-stiffening mass on the top. Optimal distribution of material in the (a) piezoelectric layer (red) and (b) mass layer (green).
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Figure 13. Power FRFs for fully covered and optimized designs with
and without the added mass layer. The optimal design without the
mass layer is the same as in Figure 8 design C.
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first example, these results are related to the locations of
the natural frequencies of the structures relative to the
excitation frequency. Figure 17 shows the relationship
between the natural frequencies of the fully covered and
optimal designs as a function of curvature. For the smal-
ler base curvatures, large changes in natural frequency
occur as a function of base curvature, while at the same
time modes three and four nearly coincide. For larger
base curvatures, however, the changes in natural fre-
quency are less pronounced and the modes distinct.
This correlates well with our earlier observation that
differences in natural frequency and mode shape relative
to the excitation frequency are significant drivers in the
optimization process.
These results have general implications for manufac-

turing or handling of such structures due to the sensitiv-
ity in design to small shape imperfections. For example,

f

(a) (c) (d)(b)

1/k

Figure 14. (a) Problem setup and final material layouts of piezoelectric material (hp/hs¼ 0.1) on a curved substrate for a few different
curvatures: (b) �L/p¼0, (b) �L/p¼ 0.4, (b) �L/p¼ 1.0 (red � presence of piezoelectric material, blue � absence of piezoelectric material).

Figure 15. Optimal material layouts for curvatures ranging from a
flat plate (�L/p¼ 0) to a half cylinder (�L/p¼ 1). (A)�(I) Final material
layouts for curvatures �L/p¼ [0, 0.02, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0]
(red � presence of piezoelectric material, blue � its absence).
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tures fully covered with piezoelectric (solid with diamonds)
and those of optimized designs (dash-dot with squares). The driving
frequency (dashed line � 575 Hz) is consistently between modes
for all curvature values with each mode a different color for
comparison.
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accidental bending or manufacturing flaws may have
significant consequences in the performance of the
piezoelectric harvesting system with small base curva-
ture, but those with high base curvature would be
more robust to such imperfections.

CONCLUSIONS

We presented a general methodology for the analysis
and design of energy harvesting structures made from
layered piezoelectric plates and their associated harvest-
ing circuits using topology optimization. This approach
provides a powerful design tool to determine the mate-
rial layout of structural, piezoelectric, and electrode
components, along with circuit parameters that maxi-
mize the energy harvesting performance of a piezo-
electric harvesting system. Clearly defined material
distributions are obtained without explicit penalization
or nonlinear material interpolation schemes. Example
problems demonstrated the advantages, and in many
cases the necessity, of such a design approach due to
either the lack of an analytical model to fully describe
the structure or the large changes in response that the
introduction of a piezoelectric layer may produce.
In particular, we find that a design methodology solely
based on finding regions of positive and negative strain
is inadequate for design purposes when the piezoelectric
layers significantly change the structural response. We
also find that it is possible for the sensitivity of a har-
vester’s performance to shape imperfections to change
significantly as a function curvature, an important result
when considering design robustness. The proposed
methodology can be easily used to yield detailed designs
for particular problems with application-specific objec-
tives and constraints.
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