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Chapter 1

Prologue

This Habilitationsschrift can be read in various ways by different people.

• People working in the area of parameterized complexity can hopefully
find main ideas leading to efficient parameterized algorithms presented
in a new way. This may spark new research, hopefully leading to more
and more useful examples of parameterized algorithms.

• Practitioners having to cope with computationally hard problems will
find an exposition how they can cast their everyday heuristic method-
ologies into the framework of parameterized algorithmics. They will
be hopefully able to write up their own parameterized analysis of their
heuristics, and working in this somewhat more abstract framework will
then help them introduce improvements in their algorithms.

By addressing two audiences, we also express the hope that both “worlds”
may come together to share their experiences. Especially, we are convinced
that if more and more heuristic ideas are made public (often enough, we
fear that such “straightforward ideas” are considered not to be publishable)
in order to spike their mathematical in-depth analysis in the parameterized
framework. This way, mathematicians and algorithm theorists can help ex-
plain why in many cases simple heuristics do work well on concrete instances
of computationally hard problems.

1.1 Why practitioners may wish to continue

reading

First, I should at least try to describe what “practitioner” may mean in this
context. In fact, there are different possible interpretations:

9
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• A programmer should benefit from the fact that this Habilitations-
schrift pays special attention to presenting algorithms in a unifying
way by means of pseudo-code. Those program fragments should be
relatively easily translatable into real programs.

The reason for being that explicit in the presentation of the algorithms
(and this also contrasts with many other research papers and mono-
graphs on algorithmics) is that we are often under the impression that
the typical implicit presentation of algorithms, cast within the scheme
of a proof, often only indicating “other similar cases” along the mathe-
matical argument, is not helpful for the propagation of the often clever
algorithmic ideas. We hope that this style of the Habilitationsschrift
helps proliferate the ideas of parameterized algorithmics into real-world
programs, a step that is mostly still lacking (as is the fate also for many
clever algorithmic ideas according to our experience and according to
talks with people that write “everyday pieces” of software).

• A user might get some insights what is currently possible in terms of
algorithm development.

By giving appropriate feedback, software companies might use more
and more of the techniques presented in this Habilitationsschrift (and
also other books on algorithmics) to improve their products.

• A manager might have found himself / herself a couple of times in the
situation sketched in [199, page 3], where some of his employees excuse
themselves by pointing to the fact that

“I can’t find an efficient algorithm, but neither can all these
famous people.”

This Habilitationsschrift shows that sometimes there might be a way
out (without relying on possibly better known techniques like approx-
imation, randomization or pure heuristics) if one has to cope with a
combinatorially hard problem: namely parameterized algorithmics.

If any practitioner finds that his / her area of interest in underrepresented
in this Habilitationsschrift, please bear two things in mind:

• the graph theoretical problems we chose to tackle can be often find in
disguise in applications (sometimes, this will be hinted at throughout
the Habilitationsschrift);
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• the concrete applications that we describe are due to personal expe-
rience based on personal contacts; different contacts and backgrounds
would have probably led to different case studies.

However, I would warmly welcome any concrete pointers to problem
classes that might be suitable to the presented approach.

1.2 Standard notations

Although we do present all necessary notions in this Habilitationsschrift, let
us utter a cautious caveat: standard notions from elementary set theory and
logic will be used without further explanation; however, their explanation
should be obtainable from practically any textbook on elementary mathe-
matics. Since some denotations sometimes vary in different books, we review
them in what follows:

• N denotes the set of natural numbers, including zero. finally check for
consistent use• R denotes the set of real numbers.

R≥1 = {x ∈ R | x ≥ 1}.
R>0 = {x ∈ R | x > 0}.

Of crucial importance for the understanding of the running time estimates
given in this Habilitationsschrift are the following (again rather standard)
notations.

We write “an algorithm A has running time O(f(n))” if

• a and b are constants independent of n,

• n is a (specified) way of measuring the size of an input instance,

• f : N → R>0,

• I is an arbitrary input of size n, and

• A uses t ≤ af(n) + b time steps on a standard random access machine
(RAM) when given input I.

We will not actually specify what a RAM is; a definition can be found in any
standard text in algorithmic complexity. For most purposes, it is enough to
envisage a RAM as being your favorite desktop or laptop computer. Tech-
nology will only influence the constants a and b.

This is the core of the well-known concept of O-notation in algorithmics.
Observe that the constants a and b suppressed in this notation may play two
different roles:
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• They may hide specifics of the hardware technology; this hiding is
wanted in order to be able to compare different algorithms (rather
than different hardware technologies).

• They may also hide peculiar points of the algorithmics. In the algo-
rithms that are described in this Habilitationsschrift, this second point
will not be important, either. However, notice that there are some ele-
ments in the development of exact algorithms for hard problems where
these constants do play a big role. This is true in particular for algo-
rithms directly taken from the graph minor approach.1 From a practical
point of view, large constants due to the algorithms themselves are kind
of malicious, so they should not be hidden by the O-notation.

From time to time we will also use the related Ω(·)− and o(·)−notations.
Since they are not at the core of this Habilitationsschrift, we refrain from
giving detailed definitions here.

For exact algorithms of hard problems (that seemingly inherently have
superpolynomial running times), a different notation has been established.

We write “an algorithm A has running time O∗(f(n))” if

• p is a polynomial dependent on n,

• f : N → R>0 is a superpolynomial function (usually, an exponential
function), and

• A has running time O(f(n)p(n)).

Observe that the O∗-notation not only hides additive and multiplicative
constants, but also polynomials. The reason is that within exponential-
time algorithmics, finally the exponential functions that estimate the running
times of the algorithms will dominate any polynomial. However, the caveat
formulated above is even stronger in this context: Large-degree polynomials
might dominate exponential functions for all practically relevant input values.
The astute reader will notice that the polynomials that are suppressed in
the formulation of the run time estimates of our algorithms (when given in
O∗-notation) are all of low degree, which justifies the use of this shorthand
notation.

1.3 What mathematicians can find

Well, it depends what kind of mathematician you are. Let me offer you at
least some possible answers.

1We won’t give details of this approach here but rather refer to [134].
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• Throughout the Habilitationsschrift, you will find many examples of no-
tions that were originally developed for good theoretical reasons, but
later also revealed their usefulness for the development of efficient algo-
rithms. This should give a good stimulus for theoreticians to continue
developing mathematically nice and elegant notions, although even the
purest theoretical ideas often run the risk of getting applied sooner or
later. In the area of graph theory (where most examples of this Habili-
tationsschrift are drawn from), particular such examples are the notions
of treewidth and pathwidth, which originated in the deep mathemati-
cal theory of graph minors, as primarily developed by Robertson and
Seymour.

• Besides developing good definitions, proving good theorems is of course
what mathematics is after. Again, there are numerous examples of deep
theorems that are used as kind of subroutines in this Habilitations-
schrift. Some of them are well known as the Four Color Theorem for
planar graphs established by Appel and Haken, other less well known
(in fact, we use a couple of coloring-type theorems at various places).
Funny enough, the co-author of one of these theorems complained to
us that they did not get properly published their result, since referees
thought it would not be of too much interest. . .

Again, this should be a stimulus for mathematicians to continue proving
nice theorems.

• In fact, although for some of the pure mathematicians this might be
a sort of detour, it would be also nice if some emphasis could be put
on computability aspects of mathematical proofs. Often, proofs can be
actually read as algorithms, but I suspect that programmers would have
hard times deciphering these algorithms. Putting some more effort in
this direction would surely also increase the impact of certain papers,
especially if possible applications are sketched or at least mentioned.

• Finally, and not in the least, mathematicians are and should be prob-
lem solvers by profession. You will find lots of examples to pursue your
research upon reading this Habilitationsschrift. Please report your so-
lutions to concrete problems or results inspired by this text to me; I
would be really interested in such results.
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1.4 Messages to algorithm developers

In fact, and possibly a bit contradictory to what has been said before, there
is a third possible audience: algorithm developers.

In fact, this type of audience has a kind of bridging function between the
two audiences described before, so that some of the comments we have given
before apply here, as well.

However, there are some peculiar things to observe for algorithm devel-
opers when reading this Habilitationsschrift:

• Good mathematical knowledge in the specific area for which algorithms
are to be developed is often beneficial to the development and (maybe
even more) to the analysis of (parameterized) algorithms.

• Real-world problems should be cast into a suitable model expressed in
mathematical terms. Often, graph theory is the key of developing such
a model.

• The status of a combinatorially hard problem in terms of its practical
solvability with the help of parameterized algorithms often depends
on the choice of the parameter. Here, a “good” parameter tends to
be small in practice. So, the choice of a good parameter can only
be determined in close partnership with the actual programmers and
program testers, as well as with the (potential) users. As P. Moscato
once told us (personal communication), referring to a specific problem
of interest in the context of computational biology:

“Whenever I talk with a biologist about this problem, I walk
away with a new parameter.”

It is of utmost importance to keep the possible parameter choices in
mind; because if for one parameterization a certain problem turns out to
be “intractable” in a technical sense, it might be tractable with another
parameterization. This is one of the reasons why the “downsides” of
parameterized algorithmics are not the core of this Habilitationsschrift:
hard problems may turn out to be easy under different parameteriza-
tions.

• In order to actually build a bridge between theory and practice, algo-
rithm developers should not be content with having classified a prob-
lem as “tractable” (here, this would mean “parameterized tractable”);
rather, they should strive to get really good bounds on the running
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times of their algorithms. The better the running times of the algo-
rithms, the more useful are the proposed algorithms. This is true in
particular for the development of exact algorithms for computationally
hard problems: the difference between an O∗(2k) algorithm and an
O∗(1.3k) algorithm is tremendous.

• Conversely, it does not make much sense to strive for smaller and
smaller bases of the exponential terms if this comes at the cost of very
intricate algorithms; rather, one should see if there are actually simple
algorithms which are easy to implement and clearly structured and that
still have good running times. This would surely help proliferate ideas
in the area of exact algorithmics in general, and in the fixed-parameter
area in particular.
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1.6 Keeping up to date

In a fast-growing field as the one of parameterized algorithmics, or more
generally speaking, parameterized complexity and algorithms to denote the
whole area, it is close to impossible to keep up to date with recent develop-
ments. So, our apologies to to everybody whose work is underrepresented if
not completely missed out in this Habilitationsschrift.

The interested reader is advised to follow up overview articles that seem
to appear every second month on this area. We list the survey papers we
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came across that only appeared in the second half of 2004:

• R. Niedermeier gave an invited talk at MFCS in August [307]. In this
context, his Habilitationsschrift [306] is also worth mentioning.

• J. Flum and M. Grohe gave a nice overview on recent developments
of parameterized complexity in the complexity theory column of the
Bulletin of the EATCS (October issue), see [185].

• R. Downey and C. McCartin had an invited talk at DLT in Decem-
ber [138].

We therefore recommend trying to keep up to date by following up recent
conferences and to simply search the internet with appropriate catchwords
from time to time. The special chapter 11 collecting web addresses can be
seen as a starting point for such a research.

The internet is also a good place to look for sources on algorithmics, for
looking up definitions etc., see Site [Chapter 11, Site 1].

However, one should not completely disregard “older” overview articles.
For example, the papers [137, 136] still contain lots of programmatic material
that hasn’t been properly dealt with in the last couple of years.



Chapter 2

Introduction

This introductory chapter is meant to introduce the basic notions used in
this Habilitationsschrift:

• Sec. 2.1 will acquaint the reader with the basic notions of parameterized
complexity and algorithmics, since this is the basic framework for our
work.

• Sec. 2.3 provides a primer in graph theory, since most problems we
approach in this Habilitationsschrift are drawn from that area (or can
be conveniently expressed in those terms).

• Then, in Sec. 2.4 we make this more concrete by exhibiting some of our
favorite combinatorial graph problems.

• Sec. 2.5 is meant to be an appetizer to show one of the main techniques
of this area: that of data reduction.

2.1 The parameterized landscape

Parameterized complexity has nowadays become a standard way of dealing
with computationally hard problems.

2.1.1 The world of parameterized algorithmics: defini-
tions

In this section, we are going to provide the basic definitions of parameterized
algorithmics.

17
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Definition 2.1 (parameterized problem) A parameterized problem P is
a usual decision problem together with a special entity called parameter.
Formally, this means that the language of YES-instances of P, written L(P),
is a subset of Σ∗×N. An instance of a parameterized problem P is therefore
a pair (I, k) ∈ Σ∗ × N.

If P is a parameterized problem with L(P) ⊆ Σ∗ × N and {a, b} ⊆ Σ,
then Lc(P) = {Iabk | (I, k) ∈ L(P)} is the classical language associated to
P. So, we can also speak about NP-hardness of a parameterized problem.

As classical complexity theory, it helps classify problems as “nice,” or
more technically speaking, as tractable, or as “bad,” or intractable, although
these notions may be misleading to a practical approach, since intractable
does not imply that such problems cannot be solved in practice. It rather
means that there are really bad instances that can be constructed on which
any conceivable algorithm would badly perform. It might also indicate that
the current choice of parameter is not the “right” one.

Since this Habilitationsschrift is focusing on the algorithmic aspects, let us
in the first place define the class of problems that we consider to be tractable
from a parameterized perspective.

Another thing that is worth mentioning is the way how the complexity
of an algorithm is mentioned. In general, we assume a suitable underlying
RAM model. Since the technical details are not really crucial in our setting,
we deliberately refrain from giving more details here, as they are contained
in any textbook on classical complexity theory or algorithmics. Rather, we
assume an intuitive understanding of what an algorithm is and how the
complexity of an algorithm is measured. Hence, we will give all algorithms
in a high-level pseudo-code notation.

When measuring the complexity of an algorithm, it is crucial against what
we measure, i.e., how we measure the size of the input. We already discussed
this issue for “number parameters.” In most cases, a rather intuitive under-
standing of size is sufficient, assuming a suitable encoding of the instance
as a binary encoded string and taking the length of this string as the size
of the instance. Given I, |I| should denote this size measure. However, in
some cases, other size functions make sense, as well. For examples, graphs
are usually measured in terms of the number of edges or in terms of the num-
ber of vertices. In classical complexity, this does not really matter as long
as we only distinguish between say polynomial time and exponential time.
However, these things may become crucial for algorithmics that deals with
algorithms that run in exponential time. Therefore, at some times we will be
more picky and explicitly refer to a size function size(·) to measure the size
size(I) of the instance I. More details are discussed in Chapter 3. Some of
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the following definitions already make use of this function. At this point, it is
sufficient to always think about size(·) as referring to | · |, i.e., the length of a
binary string encoding the instance, where a “reasonable encoding” function
is assumed.

Definition 2.2 (parameterized tractability) A parameterized problem
P is called fixed-parameter tractable if there exists a solving algorithm for
P running in time O(f(k)p(|I|)) on instance (I, k) for some function f and
some polynomial p, i.e., the question if (I, k) ∈ L(P) or not can be decided
in time O(f(k)p(|I|)).

The class of problems collecting all fixed-parameter tractable parameter-
ized problems is called FPT .

A parameter can, in principle, be nearly everything, as detailed in Chap-
ter 3. However, in most examples we consider, the parameter will be a
number. From a theoretical point of view, it does not matter whether such a
number is given in unary or in binary to classify a problem in FPT . However,
this would of course matter for the algorithmics, since the size of a number
considerably differs depending on the encoding. Therefore, let us fix here that
numbers that appear as parameters will be considered as unary-encoded if
not stated otherwise. Hence, the size of the number would correspond to its
numerical value. This can be justified, since in most cases (say for graph
problems) the parameter (say the size of a selection of vertices) is upper-
bounded by the size of a list of items that is explicitly part of the input. As
can be seen above, we already tailored our definitions to the unary encoding
of the “number parameter.”

Assuming some basic knowledge of graph theory on side of the reader
(who might otherwise first wish to browse through Sec. 2.3), we illustrate
the notions with shortly discussing one example in this section:

Problem name: vertex cover (VC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with |C| ≤ k?

Definition 2.3 (Kernelization) Let P be a parameterized problem. A
kernelization is a function K that is computable in polynomial time and
maps an instance (I, k) of P onto an instance (I ′, k′) of P such that

• (I, k) is a YES-instance of P if and only if (I ′, k′) is a YES-instance of
P

• size(I ′) ≤ f(k), and
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• k′ ≤ g(k) for some arbitrary functions f and g.

To underpin the algorithmic nature of a kernelization, K may be referred
to as a kernelization reduction. (I ′, k′) is also called the kernel (of I), and
size(I ′) the kernel size. Of special interest are polynomial-size kernels and
linear-size kernels, where f is a polynomial or a linear function, respectively.

A kernelization is a proper kernelization if g(k) ≤ k.

A parameterized problem that admits a kernelization is also called ker-
nelizable.

Of course, of uttermost importance are proper kernelizations yielding
linear-size kernels. In fact, this is the best we can hope for when dealing
with hard problems, since sub-linear kernels for NP-hard problems would
mean that P equals NP, see Lemma 9.11.

With one exception, all kernelization reduction that are presented in this
Habilitationsschrift are proper.

Once a kernelization is found, membership of the corresponding problem
in FPT is easy to see:

Algorithm 1 A brute force FPT algorithm from kernelization

Input(s): kernelization function K, a brute-force solving algorithm A for
P, instance (I, k) of P

Output(s): solve (I, k) in FPT -time

Compute kernel (I ′, k′) = K(I, k)
Solve (I ′, k′) by brute force, i.e., return A(I ′, k′).

Interestingly, the converse is also true: each problem in FPT is ker-
nelizable. The corresponding construction is contained in [134] and is not
reproduced, since it is not of any algorithmic interest.

Theorem 2.4 A parameterized problem is in FPT iff it is kernelizable.

In the rest of this Habilitationsschrift, we are mostly sloppy when it comes
to the issue of defining kernelizations. The issue of reduction rules and how
they lead to kernelizations is discussed in Sec. 4.1.

Secondly, we will also accept algorithms as valid kernelizations if they
actually completely solve or even reject the given instance. In our algorithms,
we denote this behavior by, e.g.,

if . . . then YES
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Formally, an algorithm that contains such statements can be interpreted as a
kernelization function by first choosing some small YES- (or NO-) instances in
the beginning and outputting them whenever the algorithm detects that the
given (or transformed) instance can be trivially solved or rejected. Particular
examples for such forms of reductions can be found by (ab)using (non-trivial)
theorems combinatorics, as listed in Sec. 4.4.

Finally, and possibly even more sloppy, we write down reduction rules in
the form:

Let (I, k) be an instance of problem P . If conditions . . . are met,
then reduce the instance to (I ′, k′) with k′ < k.

What we sweep under the carpet is that it might be that k′ might have a
value that is not permitted; e.g., often the parameter is a positive integer,
and therefore k′ < 0 would not be permitted. So, whenever a reduction
rule application would yield an instance that has a parameter which is not
permitted, we would implicitly return NO, in the sense described in the
previous paragraph.

Let us state two simple reduction rules for vertex cover (as the running
example not only of this section) that are usually attributed to S. Buss: 1

Reduction rule 1 Delete isolated vertices (and leave the parameter un-
changed).

Reduction rule 2 (Buss’ rule) If v is a vertex of degree greater than k
in the given graph instance (G, k), then delete v from the instance and reduce
the parameter by one, i.e., produce the instance (G− v, k − 1).2

The soundness of these rules can be “easily” seen by the following obser-
vations.

• If v is a vertex with no neighbors, v can be removed from the graph,
since v will not be part of any minimum vertex cover.

1Let us mention the following historical aside: Although the two reduction rules (in
particular, the second one) listed in the following are generally attributed to a personal
communication of Sam Buss, in particular [64], there is a reference of Evans [158] that
considerably predates the Buss reference. Admittedly, Evans considers a special variant
of vertex cover (namely, the constraint bipartite vertex coverproblem discussed in
detail in Chap. 5) which arises in connection with VLSI reconfiguration, but the reduction
rules are basically the same.

2G− v denotes the graph that is obtained from G = (V,E) by removing v from V and
by removing all edges that contain v. If V` is a vertex set V` = {v1, . . . , v`}, G − V` is
inductively defined: G− V1 = G− v1, G− Vi = (G− Vi−1) − vi for i > 1.
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• If v is a vertex of degree greater than k, v must be in any vertex
cover, since otherwise all neighbors would be in the cover, which is
not feasible, because we are looking for vertex covers with at most k
vertices. Hence, we can remove v from the graph.

More precisely, to actually prove the soundness of the reduction rules, the
following has to be shown (since the polynomial-time computability of the
rules is trivial to see):

Lemma 2.5 Let (G, k) be an instance of vertex cover that contains iso-
lated vertices I. Then, (G, k) is a YES-instance of VC iff (G − I, k) is a
YES-instance of VC.

Lemma 2.6 Let (G, k) be an instance of vertex cover that contains a
vertex v of degree larger than k. Then, (G, k) is a YES-instance of VC iff
(G− v, k − 1) is a YES-instance of VC.

To get acquainted with the proof strategy involved in this kind of reason-
ing, let us formally prove the soundness of Buss’ rule:

Proof. If (G, k) is a YES-instance of vertex cover that contains a
vertex v of degree larger than k, then v must be part of any solution; hence,
(G− v, k − 1) is a YES-instance of VC.

Conversely, if C ′ is a cover verifying that (G− v, k− 1) is a YES-instance
of VC, then C = C ′ ∪ {v} shows that (G, k) is also a YES-instance of VC;
this is true irrespectively of the degree of v.

The very idea of kernelization (as detailed in Chap. 4) now means to
apply the available reduction rules to a given problem instance as long as
possible. This leaves us finally with a reduced instance, as discussed in the
following theorem.

Theorem 2.7 A YES-instance (G, k), with G = (V,E), of vertex cover
to which neither Rule 1 nor Rule 2 is applicable, satisfies |E| ≤ k2 and
|V | < k2.

Proof. Due to Rule 2, every vertex has degree bounded by k. Since (G, k)
is a YES-instance, there is a selection of k vertices that cover all edges E.
But each vertex can cover at most k edges, so that |E| ≤ k2 follows. Since
Rule 1 is not applicable, the number of vertices of G is basically bounded by
the number of edges of the graph.

Theorem 2.7 allows to state the following kernelization rule in the form of
a little program 2; observe that the ELSIF-branch codifies a third reduction
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rule whose correctness follows from the preceding theorem. Theorem 2.7 then
also shows the kernel size that is claimed in Alg. 2.

Algorithm 2 A kernelization algorithm for vertex cover, called Buss-
kernel
Input(s): A vertex cover instance (G, k)
Output(s): an instance (G′, k′) with k′ ≤ k, |E(G′)|, |V (G′)| ≤ (k′)2, such

that (G, k) is a YES-instance of VC iff (G′, k′) is a YES-instance

if possible then
Apply Rule 1 or Rule 2; producing instance (G′, k′).
return Buss-kernel(G′, k′).

else if |E(G)| > k2 then
return (({x, y}, {{x, y}}), 0) {encoding NO}

else
return (G, k)

end if

To explicitly show that vertex cover belongs to FPT , we can consider
Alg. 3. This allows us to state:

Algorithm 3 A kernelization algorithm for vertex cover, called VC-
kernelization-based
Input(s): A vertex cover instance (G, k)
Output(s): YES iff (G, k) is a YES-instance of VC.

Let (G′, k′):=Buss-kernel(G, k). Let G′ = (V,E).
if k′ ≤ 0 then

return (k′ = 0 AND E = ∅)
else

for all C ⊆ V , |C| = k do
if C is a vertex cover of G′ then

return YES

end if
end for
return NO

end if

Theorem 2.8 V C ∈ FPT . More specifically, given an instance (G, k) of
vertex cover, the question “(G, k) ∈ L(V C) ?” can be answered in time
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O(f(k) + |V (G)|), where

f(k) =

(
k2

k

)
∈ O(2k

2

).

Proof. The correctness is immediate by Theorem 2.7. That theorem also
shows the claimed bound on the running time. Observe that the reduction
rules themselves can be efficiently implemented.

After having introduced the essential concepts of this Habilitationsschrift,
let us formulate a warning when it comes to interpreting results that are
stated without explicit reference to the “world” of parameterized complexity.
For example, the following can be found in a recent paper dedicated to specific
aspects of graph theory [360, page 338]:

Garey and Johnson [199] proved that testing CR(G) ≤ k is NP-
complete, . . . Testing planarity, and therefore testing CR(G) ≤
k for any fixed k can be done in polynomial time—introduce
at most k new vertices for crossing points in all possible ways
and test planarity.

More specifically, CR(G) is the crossing number of a graph G, i.e., the num-
ber of edge crossing necessarily incurred when embedding G into the Eu-
clidean plane;3 it is however not necessary to understand the exact defini-
tion of this notion for the warning that we like to express. Namely, when
superficially read, the quoted sentence could be interpreted as showing fixed-
parameter tractability of the following problem:

Problem name: crossing number (CRN)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is CR(G) ≤ k?

However, this is not a correct interpretation. Namely, how would you in-
terpret or even implement the algorithm sketch in more concrete terms? Our
interpretation of the quoted lines would be as detailed in Alg. 4. However,
the complexity of this algorithm is roughly O(|G|k), and hence this algo-
rithm does not show that crossing number is fixed-parameter tractable.

3There seem to be some intricate problems with the exact definition of what is meant
by a crossing number; papers on this topic should be read with careful scrutiny to see
what definitions the authors adhere to. This is detailed in the paper of Szèkély [360], as
well as in [317]. In fact, the interpretation we detail on the quoted algorithm sketch for
crossing number is referring to the so-called pairwise crossing number.
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Algorithm 4 Determining pairwise crossing numbers

Input(s): Graph G = (V,E), parameter k
Output(s): Is CR(G) ≤ k?

for all sets of k pairs of edges P = {{e1, e
′
1}, . . . , {ek, e′k}} do

Initialize G′ = (V ′, E ′) as G.
for i = 1, . . . , k do

Into G′, we introduce one new vertex xi and new edges fi, gi, f
′
i , g

′
i

that contain xi as one endpoint and that satisfy |fi ∩ ei| = |gi ∩ ei| =
|f ′
i ∩ e′i| = |g′i ∩ e′i| = 1.

Mark ei and e′i.
end for
Remove all marked edges from G′.
if G′ can be drawn without crossings into the plane (planarity test)
then

return YES

end if
end for
return NO.

In fact, to our knowledge, it is open if crossing number is parameterized
tractable. Only if the input is restricted to graphs of maximum degree three,
membership in FPT has been established, see [134, page 444].

Conversely, this caveat does not mean that—albeit it has become sort of
standard to refer to parameterized complexity when stating exact algorithms—
all results that do not reference the parameterized paradigm are necessarily
not interpretable as results in parameterized algorithmics. A good (positive)
and recent example is the tree editing problems investigated in [198], which
show that these problems are in FPT when parameterized by the number
of admissible edit operations (which is also the standard parameter following
the terminology introduced in Chap. 3).

2.1.2 The world of parameterized algorithmics: method-

ologies

A whole toolbox for developing these algorithms has been developed. Marx
(in his recent talk at CCC 2004) compared these tools with a Swiss army
knife, see [Chapter 11, Site 12].

Those tools are, in particular (according to the mentioned slides):

1. well-quasi-orderings;
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2. graph minor theorems;

3. color-coding;

4. tree-width, branch-width etc.;

5. kernelization rules;

6. bounded search tree.

This list is probably not exhaustive but gives some good impression of
the available techniques. This list is ordered by “increasing applicability,” as
will be explained in the following.

The first two methods are the most abstract tools. In a certain sense,
they are useful to classify problems as being tractable by the parameterized
methodology, but (as far as we know) they never led to algorithms that can
be really termed useful from a practical point of view. Once a problem has
been classified as tractable, a good research direction is to try to improve the
corresponding algorithms by using the more “practical” methods.

Color coding is a methodology that is helpful for getting randomized pa-
rameterized algorithms. Since this is not the primary interest of this Habili-
tationsschrift, we will neglect this methodology, as well.

The last three methods are of definite practical interest. They comprise
the methods which yielded the best parameterized algorithms in nearly all
cases. They will be in the focus of the exposition of this Habilitationsschrift.
To each of these three methodologies, a chapter of the Habilitationsschrift
will be devoted.

More specifically, treewidth and branchwidth are typical examples of
structural parameters for graphs that are particularly helpful in the sense
that once it is known that a graph has a small treewidth, then problems that
are NP-hard for general graphs can be solved in polynomial, often even in
linear time. We will give details in Chapter 7.

Kernelization rules can be viewed as a method of analyzing data reduction
rules. These have been always successfully used in practice for solving huge
data instances, but parameterized algorithmics offers now a way to tell why
these rules actually work that well. Further introductory remarks can already
be found in this chapter. Note that the very first theorem of this Habili-
tationsschrift, which is Thm. 2.4, says that the basic algorithmic class we
are dealing with can be characterized by algorithms that use kernelization
rules (although the rules leading to that theorem are admittedly of artificial
nature). A worked-out example of this technique is contained in Sec. 2.5.
Further details on this technique are collected in Chapter 4.
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Finally, exact algorithms for computationally hard problems are often if
not mostly based on a clever search through the space of all possibilities.
This naturally leads to the notion of a search tree, and the art of developing
search tree algorithms can be seen as devising clever rules how to work one’s
way through the search space. Chapter 5 collects many ideas how to find
and how to improve on search tree algorithms. More examples can be found
throughout the whole Habilitationsschrift.

We deliberately ignored some techniques that others would find essential
to parameterized algorithmics, notably including techniques related to logic.
However, at several places, the reader will find hints to further reading.

2.2 Is parameterized algorithmics the solu-

tion to “everything”?

Such a bold question cannot be possibly answered affirmatively. So, what can
we find on the downside, the parameterized complexity theory? Let us here
only briefly mention that there does exist a whole area dealing with this. We
will explore more of this in Chapter 9. The reader who is primarily interested
in complexity theory should be warned, however, that this is not the focus
of the present Habilitationsschrift. Rather, (s)he could take Chapter 9 as a
collection of pointers to further reading.

From an algorithmic point of view, the most important notion of param-
eterized complexity is that of a parameterized reduction, since it makes it
possible to link seemingly different problems in a way that algorithms for
one problem can be used to solve another one. Even if the idea to construct
such a simple reduction fails, it often gives us good hints at how to use ideas
from a “solved” problem to tackle a new problem.

Definition 2.9 (Parameterized reduction) Let P and P ′ be parameter-
ized problems. Let g : N → N be some arbitrary function.

A parameterized reduction is a function r that is computable in time
O(g(k)p(size(I))) for some polynomial p and maps an instance (I, k) of P
onto an instance r(I, k) = (I ′, k′) of P ′ such that

• (I, k) is a YES-instance of P if and only if (I ′, k′) is a YES-instance of
P ′ and

• k′ ≤ g(k).

We also say that P reduces to P ′.
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Note that we defined a sort of many-one reduction. More generally speak-
ing, it is also possible to define Turing reductions, see [134, 185]. The corre-
sponding details won’t matter in the remainder of this Habilitationsschrift.

Observe that the kernelization reduction introduced above is a sort of
“self-reduction” and fits into the concept of a parameterized reduction.

Unfortunately, most classical reductions between NP-hard problems turn
out not to be reductions in the parameterized sense, although there are also
some exceptions, as contained in [98, 282].

Let us discuss some simple examples (drawn from graph theory; the reader
who is not so familiar with the corresponding concepts might first wish to
consult the primer contained in Sec. 2.3):

Problem name: clique (CQ)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a clique C ⊆ V with |C| ≥ k?

Alternatively, we may focus on the edges:

Problem name: clique (CQE)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a edge-induced clique C ⊆ E with |C| ≥ k?

Lemma 2.10 clique and clique (edge-induced) are parameterized in-
terreducible.

This simple result is also mentioned in [232] (without reference to param-
eterized complexity); however, since this gives a nice example for an easy
parameterized reduction, we provide a proof in what follows.

Proof. Let G = (V,E) be a graph. For some k, let (G, k) be an instance of
clique. If (G, k) is a YES-instance, then (G, k(k − 1)/2) is a YES-instance
for clique (edge-induced) and vice versa.

Conversely, consider an instance (G, k) of clique (edge-induced). If
(G, k) is a YES-instance, then consider integers k′, k′′ such that

(k′ − 1)(k′ − 2)/2 < k ≤ k′(k′ − 1)/2 =: k′′.

Obviously, (G, k′′) is a YES-instance of clique (edge-induced), as well.
Moreover, if (G, k) is a NO-instance, then (G, k′′) is a NO-instance of clique
(edge-induced), as well.
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Hence, (G, k) is a YES-instance of CQE iff (G, k′′) is a YES-instance of
CQE iff (G, k′) is a YES-instance of CQ.

In Chapter 9, we will be more explicit about the complexity classes (i.e.,
the classes of problems) that are not amenable to the parameterized ap-
proach. At this stage, it is sufficient to know that the lowest complexity
class thought to surpass FPT is called W[1] (according to the exposition
in the monograph [134]). All those classes are closed under parameterized
reductions.

Since it is well-known that clique is W[1]-complete, we may deduce:

Corollary 2.11 clique (edge-induced) is W[1]-complete.

Of course, taking the NP-completeness of clique for granted, the proof
of Lemma 2.10 also shows that clique (edge-induced) is NP-complete.

Now, consider the following two related problems:

Problem name: vertex clique complement cover (VCCC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex clique complement cover C ⊆ V with
|C| ≤ k?

Here, C ⊆ V is a vertex clique complement cover in G = (V,E) iff
V −C induces a complete graph (i.e., a clique). Similarly, C ⊆ E is a clique
complement cover in G = (V,E) iff E − C induces a complete graph.

Problem name: clique complement cover (CCC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a clique complement cover C ⊆ E with |C| ≤ k?

The latter problem has been studied in [34] under the viewpoint of ap-
proximation; in actual fact, a weighted version was examined in that paper.

The following is an easy consequence from the definition (also see [232]:

Lemma 2.12 • C is a vertex clique complement cover of G = (V,E) iff
V \ C induces a clique in G iff C is a vertex cover of Gc.

• C is a clique complement cover of G = (V,E) iff E \C induces a clique
in G.
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However, the induced translation from say clique to vertex clique
complement cover or from clique (edge-induced) to clique com-
plement cover (or vice versa) is not a parameterized reduction; in fact,
the status of the problems is quite different: while vertex clique com-
plement cover (and clique complement cover, as we will later see4)
is in FPT (combining Lemma 2.12 with Theorem 2.8), CQ and CQE are
W[1]-complete and hence not believed to lie in FPT .

2.3 A primer in graph theory

Most examples in this Habilitationsschrift will be basically graph theoretic
questions, although not all problems (at first glance) are of graph theoretic
nature. The reason is that graph theory offers a very nice framework of
stating combinatorial problems of any kind.5 Therefore, in this section, we
briefly introduce some basic notions related to graphs (and hypergraphs).
Reader familiar with graph theory may skip this section and return to it
whenever some possibly non-familiar notions are used throughout the text;
the index will help find the appropriate place of definition.

A graph G can be described by a pair (V,E), where V is the vertex set
and E is the edge set of G. Abstractly speaking, E is a relation on V . If this
relation is symmetric, then G is an undirected graph, otherwise (and more
general) we also speak of a directed graph. A loop is an edge of the form (x, x).
If an undirected graph contains no loops, its edge set can be also specified
by a set of 2-element subsets of V . We therefore often use set notation to
denote edges. Specifically, this is true for hypergraphs as defined below, so
that undirected graphs (even those containing loops) become special cases of
hypergraphs.

If not stated otherwise, graphs in this Habilitationsschrift will be undi-
rected and without loops. Edges are then alternatively denoted as (x, y),
{x, y} or simply xy, whatever is more convenient in the concrete example.

As mentioned, undirected graphs can be generalized to hypergraphs. A
hypergraph G is specified by a pair (V,E), where V is the vertex set and E
is the hyperedge set, i.e., a set of subsets of V . If e is a hyperedge, |e| is
its hyperedge size. For convenience, we often refer to hyperedges simply as
edges. To underline the duality of vertices and hyperedges in hypergraphs,

4Bar-Yehuda and Hochbaum [34, 232] indicate that clique complement cover has
a direct connection to vertex cover; however, we believe that this is not true, as we will
detail in Sec. 6.3.

5A nice selection of such “applied problems” modeled by graphs can be found in [283],
although that book rather focuses on Graph Drawing than on Graph Theory as such.
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we sometime also refer to the hyperedge size as hyperedge degree.
The following notions mostly apply both to (undirected) graphs and to

hypergraphs:

• V (G) denotes the set of vertices of G.

• E(G) denotes the set of edges of G.

• P (G) denotes the set of paths of G, where a path is a sequence of edges
p = e1e2 . . . ek with ei∩ei+1 6= ∅ for i = 1, 2, . . . , k−1; k is also referred
to as the length of the path. A path p = e1e2 . . . ek is called a simple
path if ei ∩ ei+1 ∩ ej 6= ∅ iff j = i or j = i + 1 for i = 1, 2, . . . , k − 1,
and j = 1, 2, . . . , k. Two vertices x, y are connected iff there is a path
between them. A connected component, or simple said a component, is
a set of vertices C in a graph such that each pair of vertices x, y ∈ C is
connected. A graph is called connected if it contains only one connected
component.

A simple path p = e1e2 . . . ek is a cycle iff e1 ∩ ek 6= ∅; k is also referred
to as the length of the cycle.

A cycle of length k is usually abbreviated as Ck. A simple path of
length k that is not a cycle is usually abbreviated as Pk.

• If G is a (hyper-)graph, then (V ′, E ′) is called a subgraph of G iff
V ′ ⊆ V (G) and E ′ ⊆ E(G).

A graph is called cycle-free or acyclic if it does not contain a cycle as
a subgraph.

A subgraph (V ′, E ′) of G = (V,E) is vertex-induced (by V ′) iff

∀e ∈ E : e ⊆ V ′ ⇐⇒ e ∈ E ′.

In other words, E ′ contains all edges between vertices in V ′ that are
mentioned in G. We also write G[V ′] to denote G′. A subgraph (V ′, E ′)
of G = (V,E) is edge-induced (by E ′) iff V ′ =

⋃
e∈E′ e. We also write

G[E ′] to denote G′.

• N(v) collects all vertices of v that are neighbors of v, i.e., N(v) = {u |
∃e ∈ E(G) : {u, v} ⊆ e}. N(v) is also called the open neighborhood of
v, while N [v] := N(v) ∪ {v} is the closed neighborhood of v. deg(v)
denotes the degree of vertex v, i.e., deg(v) = |N(v)|. If X ⊆ V , we can
also use N(X) =

⋃
x∈X N(x) and N [X] = N(X) ∪X.

• If G is a (hyper-)graph, then a vertex set I is an independent set iff
I ∩N(I) 6= ∅. A set D ⊆ V is a dominating set iff N [D] = V .



32 CHAPTER 2. INTRODUCTION

• If G is a (hyper-)graph, then a mapping c : V → C is a coloring iff, for
all a ∈ C, c1(a) is an independent set. A graph is k-colorable iff there
is a coloring c : V → C with |C| = k. A 2-colorable graph is also called
bipartite. Note that a graph is bipartite iff it does not contain a cycle
of even length as a subgraph.

It is sometimes convenient to link graphs and (binary) matrices.

• If G = (V,E) is a (directed) graph, then A(G) is a binary two-dimen-
sional matrix (called adjacency matrix of G) whose rows and columns
are indexed (for simplicity) by V . Then, A[x, y] = 1 iff (x, y) ∈ E.
Put it in another way, A(G) is the relation matrix associated to the
adjacency matrix. Observe that A(G) is symmetric iff G is undirected.
A(G) contains ones on the main diagonal iff G contains loops.

• If G = (V,E) is a hypergraph, then I(G) is a binary two-dimensional
matrix (called incidence matrix of G) whose rows are indexed by V
and whose columns are indexed by E. Then, I[x, e] = 1 iff x ∈ e.
Conversely, every binary matrix M can be interpreted as the incidence
matrix of some hypergraph G(M). Observe that undirected loop-free
graphs have incidence matrices with the special property that, in each
column, there are exactly two entries that equal one.

• If G = (V,E) is a bipartite undirected graph with bipartization V =
V1 ∪ V2, A(G) has the special form that the submatrices indexed by
V1 × V1 and by V2 × V2 only contain zeros. Moreover, since the graph
is supposed to be symmetric, the submatrix indexed by V1 × V2 is the
transposal of the submatrix indexed by V2×V1. Hence, the information
contained in A(G) can be compressed and stored in a binary matrix
AB(G) which is the submatrix of A(G) indexed by V1 × V2. AB(G) is
also called bipartite adjacency matrix of G. Observe that any binary
matrix M can be interpreted as the bipartite adjacency matrix of some
bipartite undirected graph B(M).

The definitions we gave up to now also provide some good hints how to
represent graphs on computers; either as edge lists (where to each vertex, a
list of incident edges is attached) or as matrices of different types. Although
we are dealing with algorithms on graphs, we won’t we in general too specific
about the actual data structures we use for graphs. All the data structures we
mentioned (and many other conceivable “reasonable” ones) are polynomially
related, so that for the exponential-time algorithms we mostly look at, it
does not so much matter which representation we actually choose.
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Of particular importance are certain (undirected) graph classes in what
follows.6 The possibly simplest non-trivial graph is a tree, i.e., a connected
graph without cycles. A graph that consists of a collection of components
each of which is a tree is known as a forest. A vertex of degree one in a tree
(and more generally, in a graph) are also called a leaf, and any other vertex is
called an inner node. Here, we see another convention followed in this text:
a vertex in a tree is often referred to as a node.

For example, a graph G = (V,E) is cycle-free iff V induces a forest in G
or, in other words, if G is a forest. Then, a tree can be characterized as a
connected forest.

More generally speaking, if G is a class of graphs, then a graph G is
a forest of G iff G = (V,E) can be decomposed into G1 = (V1, E1), . . . ,
Gk = (Vk, Ek), with Vi ∩ Vj = ∅ iff i 6= j and

⋃k
i=1 Vi = V , such that all

Gi ∈ G.

Figure 2.1: An example graph with 12 vertices

Example 2.13 Let us view at a particular example to explain most of the
notions introduces so far. Here and in the following, we consider the graph
with 12 vertices as depicted in Fig. 2.1. This graph has edges that are
(as usually) graphically represented as line segments or (in one case) more
generally as a polygon. The vertices of the graph are represented as circular
blobs.

The following table gives an adjacency matrix of this graph:

6For a nearly complete overview on various graph classes, we refer to [Chapter 11,
Site 8].
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0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 0

This table should be read as follows: the vertices (used as indices of that
binary matrix) are read row by row from the picture (observe that in the
picture there are three rows of vertices, each one containing four vertices),
and in each row, from left to right. Therefore, the fifth column of the matrix
contains the adjacency of the vertex depicted in the leftmost place of the
second row.

We leave it as a small exercise to the reader to write up the incidence
matrix of this graph.

Let us look more closely at the graph to explain some more of the notions
introduced so far. The graph has two connected components, depicted red
and blue in Fig. 2.2(a). The blue component is a tree. Therefore, the graph
induced by the green edges in Fig. 2.2(b) is also induced by the vertices of
that component. Moreover, that component is bipartite.

Since the red component contains a triangle, it is not bipartite.

Similarly, also the graph induced by the red edges in Fig. 2.2(b) is vertex-
induced. More specifically, that subgraph is a cycle of length four. However,
the cycle of length for as given by the outermost four blue edges in Fig. 2.2(b)
is not vertex-induced, since in the corresponding vertex-induced subgraph, a
fifth edge is contained (also colored blue).

One can also define simple operations on graphs.

• If G = (V,E) is a graph, its graph complement is the graph Gc =
(V,Ec), where xy ∈ Ec iff xy /∈ E.

• If G1 = (V1, E1) and G2 = (V2, E2) are graphs, their graph union is the
graph (V1 ∪ V2, E1 ∪ E2), assuming (in general) V1 ∩ V2 = ∅.
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(a) Two components: red and
blue.

(b) Induced graphs.

Figure 2.2: Basic graph notions

• If G = (V,E) is a graph and x, y ∈ V , then

G[x = y] = ((V ∪ {[x, y]}) \ {x, y}, E ′)

denotes the vertex merge between x and y, where

E ′ = {{u, v} | u, v ∈ V \{x, y}}∪{{u, [x, y]} | {{u, x}, {u, y}}∩E 6= ∅}.

(If e = {x, y} ∈ E, this operation is also known as the contraction of
e.)

For example, a graph is a forest iff it can be expressed as the union of
trees (hence its name).

We have already encountered some important graph classes like paths,
cycles and trees. Of particular importance are also graphs that can be nicely
drawn; planar graphs (as defined below) furthermore enjoy the fact that they
are often encountered in practical circumstances, when graphs are to model
phenomena “down on earth.”

A graph G = (V,E) is called a planar graph if it can be drawn in the plane
without crossings between edges. To be more specific, this means that there
exists an embedding of G into the Euclidean plane R2, which is a mapping
that associates to every vertex v a unique point φ(v) ∈ R2 and to every edge
{u, v} it associates a simple path (Jordan curve) φ((u, v)) that connects φ(u)
and φ(v), such that two paths have more than one common points only if
their endpoints are identical. Recall that a simple path refers to a continuous
curve in the plane that has no loops, i.e., every point in the plane is visited at
most once, in accordance with the purely graph-theoretic notion of a simple
path.

If a planar graph is given together with its embedding, we also speak of
a plane graph.
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Observe that an embedded graph partitions the surface on which it is
embedded into open regions that are called faces.

2.4 Some favorite graph problems

Many problems considered in this Habilitationsschrift can be seen as covering
or domination problems in (hyper-)graphs. To give the reader an idea, we
list some of them here.

Problem name: d-hitting set (d-HS)
Given: A hypergraph G = (V,E) with hyperedge size bounded by d
Parameter: a positive integer k
Output: Is there a hitting set C ⊆ V with |C| ≤ k?

Observe that if d = 2, hitting set actually becomes a problem on
graphs, likewise known as vertex cover, already considered above. Besides
of being one of the first combinatorial problems whose NP-hardness has been
shown, vertex cover is one of the problems that show up in many different
places. For example, in [251, Chapter V] it is shown that the minimum gene
conflict resolution problem from computational biology can be solved with
the aid of vertex cover.

Hence, this type of problems is also known as a covering problem. A good
overview on algorithmic aspects of these types of problems (although a bit
outdated by now) is [320].

Closely related to vertex cover from a classical perspective are the
following two problems: independent set and clique, where the former
is defined as follows:

Problem name: independent set (IS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an independent set I ⊆ V with |I| ≥ k?

Namely, the complement of a minimal vertex cover is a maximal indepen-
dent set; a maximal independent set in a graph is a maximal clique in the
complement graph.

These problems are also known under different names. For example, an
independent set is sometimes called: stable set, vertex packing, or anticlique.

If d is not set apart, but taken as part of the input, we arrive at:
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Problem name: hitting set (HS)
Given: A hypergraph G = (V,E)
Parameter: a positive integer k
Output: Is there a hitting set C ⊆ V with |C| ≤ k?

Interestingly, hitting set can be also equivalently represented as a dom-
inating set problem on graphs:

Problem name: red-blue dominating set (RBDS)
Given: A graph G = (V,E) with V partitioned as Vred ∪ Vblue

Parameter: a positive integer k
Output: Is there a red-blue dominating set D ⊆ Vred with |D| ≤ k,
i.e., Vblue ⊆ N(D)?

An instance G = (V,E) of hitting set would be translated into an
instance G′ = (V ′, E ′) of red-blue dominating set as follows.

• The vertices of G would be interpreted as the red vertices of G′.

• The edges of G would be interpreted as the blue vertices of G′.

• An edge in G′ between x ∈ V and e ∈ E means that x ∈ e (in G).

More specifically, the bound d on the size of the hyperedges would have been
reflected by a bound d on the degree of vertices in Vblue; let us call this
restricted version of red-blue dominating set d-RBDS.

The translation also works backwards, if we note that edges in a graph
being an instance of red-blue dominating set that connect vertices of the
same color are superfluous and can be deleted. Namely, an edge connecting
two red vertices is useless, since red vertices only dominate blue vertices and
not red vertices; likewise, an edge between two blue vertices is useless, since
blue vertices can be only dominated by red vertices. This observation also
gives an example of reduction rules for this problem:

Reduction rule 3 If e is an edge in a RBDS instance that connects vertices
of the same color, then delete e.

The exhaustive application of this reduction rule transfers each instance of
red-blue dominating set into a bipartite graph, where the bipartization
of the vertex set is just given by the red and blue vertices.

Let us explicitly state this connection in the following lemma:

Lemma 2.14 red-blue dominating set and red-blue dominating
set, restricted to bipartite graphs are parameterized interreducible.
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Then, it is easy to read the translation we gave above (working from HS
into RBDS) in a backward manner.

Observe that this also gives an example of two (easy) parameterized re-
ductions between these two problems. More specifically, we can state:

Lemma 2.15 hitting set and red-blue dominating set are parame-
terized interreducible. Moreover, assuming a bound d on the degree of the
blue vertices and likewise a bound d on the size of the hyperedges, d-HS and
d-RBDS are again parameterized interreducible.

Essentially, the transformation between RBDS and HS can be also ex-
pressed as follows: ifG is a hypergraph (as an instance for HS), then B(A(G))
is the corresponding RBDS instance, and if G is a bipartite graph (as a re-
duced instance for RBDS with respect to the rule 3), then G(I(G)) is the
corresponding HS instance.

In fact, there is a third formulation of hitting set that can be found in
the literature:

Problem name: set cover (SC)
Given: A groundset X, a collection T of subsets of X
Parameter: a positive integer k
Output: Is there a set cover C ⊆ T with |C| ≤ k, i.e., every element
in X belongs to at least one member of C?

The translation works here as follows:

• The groundset X of the SC instance corresponds to the set of hyper-
edges in a HS instance.

• The collection of subsets T corresponds to the set of vertices in a HS
instance, where for a subset t ∈ T , x ∈ t means that the vertex t
belongs to the hyperedge x.

From a practical point of view, HS and SC only formalize two kind of dual
representations of hypergraphs:

• HS corresponds to represent hypergraphs by hyperedge sets, each of
them being a list of incident vertices;

• SC means to represent hypergraphs by vertex sets, each of them being
a list of incident hyperedges.
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For the (in the sense explained above) equivalent problems hitting set
and set cover, there exists a vast amount of literature. We only men-
tion the (already a bit out-dated) annotated bibliography [73] for further
reference.

The basic domination problem is not RBDS but the following one:

Problem name: dominating set (DS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a dominating set D ⊆ V with |D| ≤ k?

Important variants are independent dominating set and connected
dominating set:

Problem name: independent dominating set (IDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an independent dominating set D ⊆ V with |D| ≤
k?

This problem can be equivalently expressed as a bicriteria problem—and
the reader may wish to check this equivalence— (a proof can be found in
[314, Sec. 13]), without explicit reference to the domination property:

Problem name: minimum maximal independent set (MMIS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a maximal independent set of cardinality
≤ k ?

Also the other mentioned problem can be equivalently expressed without
explicit reference to the domination property:

Problem name: connected dominating set (CDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a connected dominating set D ⊆ V with |D| ≤ k,
i.e., D is both a connected set and a dominating set?

Problem name: minimum inner node spanning tree
(MinINST)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer k
Output: Is there a spanning tree of G with at most k inner nodes?
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The importance of domination problems is underlined by the fact that
already around 1988 there have been about 300 papers dedicated towards
this topic, see [230].7

Let us explain our favorite graph problems by continuing our example
from Ex. 2.13.

(a) A minimum vertex cover. (b) A minimum dominating
set.

Figure 2.3: Basic graph problems

Example 2.16 What is a minimum vertex cover or a minimum dominating
set of the graph depicted in Fig. 2.1?

Possible solutions are listed in Fig. 2.3. Why are these solutions minimum
solutions?

Firstly, observe that we can deal with the two graph components inde-
pendently. Then, it is not hard to see that the solutions proposed for the
“lower” tree component are optimal. In fact, in the case of vertex cover,
the reduction rules as given in the next section allow to optimally solve that
component, as the reader may verify.

Let us turn towards the “upper” component. It is now important to
focus on the cycles in that component, since (as can be easily verified) n/2
vertices must go into any vertex cover of a cycle of length n if n is even, and
(n+1)/2 vertices are contained in any vertex cover of a cycle of length n if n
is odd. This implies that any cover for the graph induced by the blue edges
in Fig. 2.2(b) has at least two vertices besides possibly the leftmost of those
vertices. Hence, the chosen cover is optimum.

A similar reasoning is also possible in the case of dominating set. More
specifically, for cycles basically every third vertex is needed to dominate it.
Details are left to the reader.

7or, as one referee once commented to one of our papers: “Garey and Johnson [199] is
not a democracy:” not all problems listed there are of equal importance
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Moreover, observe that the dominating set in Fig. 2.3(b) is neither con-
nected nor independent. The reader may wish to prove that there is indeed
an independent dominating set of cardinality four of that graph, but no con-
nected dominating set of that cardinality.

Let us mention here that covering and domination problems often appear
in disguise, for example, in various puzzle questions.

Example 2.17 One instance is the so-called Five Queens Problem on the
chessboard:8 it is required to place five queens on the board in such positions
that they dominate each square. This task corresponds to dominating set
as follows: the squares are the vertices of a graph; there is an edge between
two such vertices x, y iff a queen placed on one square that corresponds to x
can directly move to y (assuming the board were empty otherwise). In other
words, the edge relation models the way a queen may move on a chess board.

According to [97], the general version played on a (general) n× n board
is also known as the Queen Domination Problem. The task is to find the
minimum number of queens that can be placed on a general chessboard so
that each square contains a queen or is attacked by one. Recent bounds on
the corresponding domination number can be found in [62, 63, 100, 315]. It
appears to be that the queen domination number is “approximately” n/2,
but only few exact values have been found up to today. By way of contrast,
observe that on the n× n square beehive, the queen domination number has
been established to be b(2n+ 1)/3c, see [366].

As special classes of graphs (like planar graphs) will become important
in later chapters of this Habilitationsschrift, let us mention that, although
the structure we started with, namely the chessboard, is of course a planar
structure, the corresponding graph model we used is not a planar graph: in
particular, all vertices that correspond to one line on the chessboard form a
clique, i.e., the family of chessboard queen graphs contains arbitrary cliques,
quite impossible for planar graphs by Kuratowski’s theorem.

Following Ore [314, Sec. 13], one solution to the Five Queens Problem is
as follows:

8The terminology in this area is a bit awkward: as can be seen, the Five Queens
Problem is not a special case of the n-Queens problem introduced below. We will rather
distinguish these problems by referring to them as the Queen domination problem and the
Queen independence problem later on.
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◦
◦

◦
◦

◦

It is clear that similar domination-type problems may be created from other
chess pieces as rooks, bishops, or knights (or even artificial chess pieces),
see [202] as an example.

Also the variant that only certain (predetermined) squares need to be
dominated has been considered. For example, the n × n Rook Domination
Problem is trivially solvable by choosing one main diagonal and putting n
rooks on this diagonal. By pidgeon-hole, any trial to dominate all squares by
fewer than n rooks must fail. However, if only a certain number of predeter-
mined squares need to be dominated by placing a minimum number of rooks
on one of those predetermined squares, we arrive at a problem also known
as matrix domination set; this is treated in more detail in Sec. 8.2.

Further variants of the Queen domination problem are discussed in [100].

Example 2.18 A related problem on the chessboard is the following one,
originally introduced in 1850 by Carl Friedrich Gauß:9

The n-Queens Problem may be stated as follows: find a placement of n
queens on an n × n chessboard, such that no queen can be taken by any
other, see [333]. Again, this problem can be also considered for other chess
pieces and modified boards, see (e.g.) [52] as a recent reference.

We can use the same translation as sketched in Ex. 2.17 to translate the
chessboard into a (non-planar) graph that reflects reachability by movements
of a queen.

If (for the moment) we “forget” about the well-known property that in
fact a solution exists to the n-Queens Problem for each n, then the n-Queens
Problem corresponds to the task of solving maximum independent set on
the chess-board graph (with n2 vertices).

In fact, this approach was taken in [270], where an integer linear pro-
gramming formulation was presented. The example for n = 10 of Fig. 2.4
was taken from that paper.

9This solution is contained in a letter to H. C. Schuhmacher dating from Sept. 12th,
reprinted on pp. 19–21 in [204]; this was a sort of reply to a problem that was posed two
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Figure 2.4: A sample solution of the n-Queens Problem for n = 10.

More information on Mathematical Games and their solutions can be
found in [Chapter 11, Site 9]. Regarding mathematical chess, we recommend
[Chapter 11, Site 4].

2.5 The power of data reduction

As we will see in the following chapters, data reduction is (in practice) the
basic trick to efficiently solve computationally hard problems. In the fol-
lowing, we show this potential of data reduction rules with the example of
hitting set.

Data reduction rules for hitting set

Reduction rule 4 (hyper)edge domination: A hyperedge e is dominated by
another hyperedge f if f ⊂ e. In such a situation, delete e.

Reduction rule 5 tiny edges: Delete all hyperedges of degree one, place the
corresponding vertices into the hitting set.

Reduction rule 6 vertex domination: A vertex x is dominated by a vertex
y if, whenever x belongs to some hyperedge e, then y belongs to e, as well.
In such a situation, delete x.

Lemma 2.19 The three reduction rules are sound.

years earlier in the magazine of the “Berliner Schachgesellschaft.”
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Although the reduction rules were elsewhere mentioned, we are not aware
of any formal correctness proof. Since the soundness of the reductions is
essential to the correctness of the overall algorithm, we provide the corre-
sponding soundness proofs right here. This also gives examples of how to
actually prove the correctness (usually called soundness) of reduction rules.

Proof. We have to show that, whenever S is a solution to an instance
(G, k), then there is a solution S ′ to the instance (G′, k′), where (G′, k′) is
obtained from (G, k) by applying any of the reduction rules. We must also
show the converse direction.

1. (hyper)edge domination: Let e and f be hyperedges in G such that f ⊂
e. If S is a solution to (G, k), then trivially S is also a solution to the
instance (G′, k) obtained from (G, k) by applying the edge domination
rule to the situation f ⊂ e. Conversely, if S ′ is a solution to (G′, k),
then in particular S ′ ∩ f 6= ∅, which means that S ′ ∩ e 6= ∅, so that S ′

is a solution to (G, k), as well.

2. tiny edges: Hyperedges of degree one can only be covered by the ver-
tices they contain.

3. vertex domination: Let x and y be vertices in G such that x is dom-
inated by y. If S is a solution to (G, k) which does not contain x,
then S is also a solution to the instance (G′, k) obtained from (G, k)
by applying the vertex domination rule triggered by the domination of
x by y. If S is a solution to (G, k) which contains x, then because x is
dominated by y, (S \ {x})∪{y} is also a solution to (G, k) and, by the
preceding sentence, this is a solution to the reduced instance (G′, k), as
well. Conversely, if S ′ is a solution to (G′, k), S ′ is a solution to (G, k),
since no edges are deleted when forming G′.

The rules themselves are not new: the last two are also used by Nie-
dermeier and Rossmanith in [308] and all of them are used by Wahlstöm
in [373]. Actually, the rules seem to be “around” since many years. The
oldest reference (which was found by Regina Barretta, Newcastle) is to our
knowledge [201, Chapter 8]. They are also known for related problems as,
e.g., the Path Cover Problem, see [375].

Reduction rules are often valuable to produce problem instances that have
specific properties. More precisely, if R is a set of reduction rules and I is a
problem instance to which none of the rule in R applies, then I is also called
an R-reduced instance or an R-irreducible instance. If R is clear from the
context, then R will be also suppressed. Hence, we can formulate:
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Lemma 2.20 In a reduced hitting set instance with at least two vertices,
no vertex has degree less than two.

Proof. In the reduced instance, there are no vertices of degree zero, since
this would trigger the vertex domination rule, because there are at least two
vertices. The vertex domination rule would also get rid of vertices of degree
one that are connected to other vertices. Vertices of degree one that are not
connected to other vertices are coped with by the tiny edge rule.

Figure 2.5: A sample hitting set instance

Example 2.21 To see how these reduction rules work, consider the example
depicted in Fig. 2.5. The different black circles indicate different vertices, and
the regions that include certain vertices denote the corresponding hyperedges.
Observe that the size of the hyperedges is bounded by three in this example,
but this does not matter regarding the applicability of the reduction rules.

In Fig. 2.6(a), two locations are indicated (by coloring them) to which the
vertex domination rule is applicable in the given HS instance. More precisely,
in each of the two hyperedges whose boundaries are colored blue, the vertex
colored red is dominated by the vertex colored green. The rule tells us to
remove those dominated vertices, which leads to Fig. 2.6(b). What happens
next is indicated by coloring one vertex and one hyperedge (boundary) red
and one hyperedge blue; actually, there are two ways of explaining the same
outcome:

1. The red-colored hyperedge dominates the “surrounding hyperedge” col-
ored blue. Hence, the edge domination rule is triggered. Then, the tiny
edge rule puts the red vertex into the hitting set, and the red hyperedge
is covered and hence removed.

2. The tiny edge rule puts the red vertex into the hitting set, and both the
red hyperedge and the blue hyperedge are covered and hence removed.
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Anyways, the picture from Fig. 2.6(c) is produced. Again, the vertices colored
red in that picture are dominated by green vertices.

The next Figure 2.6(d) is obtained by applying the vertex domination
rule twice (as described) to Fig. 2.6(c). In Fig. 2.6(d), the tiny edge rules
(and edge domination rules) are applicable to the two hyperedges colored
red, incidentally also destroying the blue hyperedges (similar to the situation
in Fig. 2.6(b)).

Applications of the mentioned rules lead to the situation depicted in
Fig. 2.6(e). Finally, the vertex domination rule applies twice in that sit-
uation (as indicated by the by now familiar color coding).

Hence, we can conclude that the reduction rules 4, 5 and 6 allow to com-
pletely resolve the original HS instance. A solution is indicated by coloring
the hitting set vertices blue in Fig. 2.6(f).

Let us add some more remarks in this place:

Remark 2.22 The three rules we listed for hitting set have the specific
property that they are formulated without explicit reference to the (change of
the) parameter by applying the reduction rules. This indicates that the rules
are also true for the minimization variant minimum hitting set, as well
as for different parameterizations.

However, the proof of the soundness of the rules given in Lemma 2.19 is
based on the standard parameter.10 Hence, the soundness proof is also valid
for minimum hitting set, but not necessarily for other parameterizations.
Nonetheless, we leave it as an—easy—exercise to the reader to prove the
soundness of the rules with respect to the following (natural) parameters,
that will be also considered in this Habilitationsschrift:

• parameterization by the number of vertices, and

• parameterization by the number of hyperedges.

Remark 2.23 Reduction rules have always been used by practitioners to
solve hard problems. Parameterized algorithmics makes use of this idea in at
least three different places:

• for devising kernelization algorithms,

• for developing search tree algorithms, and

• for the final tuning of search tree algorithms, trading off space for time.

10These notions are formally explained in the next chapter.
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The reduction rules we discussed for hitting set has not (yet) turned out
to be fruitful to develop kernelization algorithms for hitting set. However,
as we will explain in Chapter 5, they are the key for the development of the
fastest known parameterized algorithms for 3-HS (and variants thereof).

As to the third point, note that Lemma 2.20 is the key observation to a
final tuning of parameterized algorithms for vertex cover that use both
exponential time and exponential space, see [77].11

Finally, a reader might ask for an example on which the given reduction
rules don’t work so smoothly, i.e., an example of an irreducible instance. In
fact, this can be obtained by a slight modification of Fig. 2.5, as depicted in
Fig. 2.7; the only edge that is added is colored blue. By observing that the
vertex domination rule is the only rule applicable to Fig. 2.5, and the only
places to which it could be applied are the ones indicated in Fig. 2.6(a), it
can be seen that Fig. 2.7 is indeed a reduced instance of hitting set.

11This trick is not new and is also exhibited in [77, 306, 342, 373] to mention only a few
references. However, we think that still exponential time is “more affordable” than expo-
nential space, not only from the presumed difference between time and space classes with
the same resource bounds, but also from purely practical considerations, since abundant
use of storage will first lead to paging and finally kill any application. Therefore, we did
not expand on this “trick” in this Habilitationsschrift.
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(a) First applying the vertex domi-
nation rule to Fig. 2.5, . . .

(b) . . . then applying the tiny
edges & edge domination rules,
. . .

(c) . . . then again applying the
vertex domination rule, . . .

(d) . . . and the tiny edges & edge
domination rules.

(e) The vertex domination
rule resolves the problem.

(f) A mimimum hitting set produced
by reduction rules.

Figure 2.6: How the reduction rules completely resolve the hitting set
instance given in Fig. 2.5
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Figure 2.7: A sample hitting set instance that is reduced
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Chapter 3

Parameterizations

In this chapter, we are going to develop ideas what can serve as a param-
eter for the parameterized approach. This question looks funny, at first
glance, but is an issue, indeed. Problems may be hard from a parameter-
ized viewpoint with a certain parameterization, but tractable with another
parameterization. In fact, this statement is true in a very general sense:
since in principal anything could be the parameter, especially the overall size
of the problem instance could be taken as the parameter of that instance.
Under such a parameterization, any computable problem becomes parame-
terized tractable. Of course, this is rather a gambler’s trick, but it shows the
dramatic effect that a change of the parameterization can have. However,
the basic techniques presented in this Habilitationsschrift also apply to this
rather non-parameterized setting; more about this in Chapter 10.

This chapter is structured as follows: In Sec. 3.1, we are introducing
and discussing a simple conceptual scheme to classify different choices of pa-
rameters. This should also make clear that a problem might have different
reasonable parameterizations, as exemplified by exploring the well-known
game Rush Hour. However, it has become common in the parameterized
complexity community to view the entity to be optimized as a standard pa-
rameter for problems that are usually formulated as optimization problems.
This issue is critically discussed in the following section. Moreover, linear
arrangement and facility location problems are introduced and investigated
to illustrate the ideas. In Sec. 3.3, alternative parameterization strategies are
discussed and illustrated with various examples. Up to this point, a problem
used to have only one distinguished parameter. This need not be the case, in
particular in several application areas, where several entities might be identi-
fied that turn out to be small and hence useful as a parameter. This issue is
detailed in Sec. 3.4. Finally, Sec. 3.5 discusses the issue of parameter duality,
which can be also viewed as discussing two possible parameterizations of a

51
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classical optimization problem from two seemingly equivalent angles: maxi-
mizing the profit is kind of equivalent to minimizing the costs, but from the
point of view of parameterized algorithmics, it might make a huge difference
if we choose a bound either on the profit or on the cost as parameter. In
this context, it turns out to be important to formalize the size of an instance
formally, an issue that will be also important in other chapters.

3.1 Internal and external parameters

Let us begin our considerations on parameterizations with a simple classifi-
cation of parameters.

3.1.1 A classification scheme

Parameters classify as explicit internal parameters if they explicitly show up
in the specification list of an instance of the problem under consideration.
For example, in vertex cover, entities that qualify as explicit internal
parameters are:

• The bound k on the cover size. This is also the standard parameter,
see Sec. 3.2.

• The number n of vertices of the graph.

• The number m of edges of the graph.

Since n and m are naturally polynomially related to the overall size of the
input, they are usually not regarded as proper parameterizations, but rather
considered to be the corresponding non-parameterized problem, see Chap-
ter 10. By way of contrast, observe that a valid vertex cover might be arbi-
trarily small in comparison to the overall number of vertices: consider a star
graph as an example.

Another form of internal parameters are implicit internal parameters.
Here, we only require that the parameter is bounded by a polynomial in
the overall size of the instance (counted without the parameter). A typical
example of an internal parameter that is implicit is the treewidth of a graph,
see Chapter 7 for the definitions; of course, every graph G = (V,E) can be
represented by a tree decomposition with |V | vertices in just one bag.

Finally, there are parameters that are not bounded by a polynomial in the
overall size of the instance (counted without the parameter). For that case,
we are only aware of natural examples that qualify themselves as counting
or enumeration problems, if we take the number of items to be counted or
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enumerated as a parameter, as a sort of parameterization that measures
the output-sensitivity. This specific type of problems are usually differently
parameterized. Therefore, we omit a further classification here and refer to
Chapter 8.

Finally, there are external parameters that are not bounded at all by the
input specification, measured without taking the parameter into account.
Typically, external parameters are stemming from dynamical aspects of a
problem. For example, when considering Turing machines, the number of
possible moves till the machine halts or the number of visited squares are
typical external parameters.

Unfortunately, usually external parameterizations lead to problems that
are not parameterized tractable. This is particularly the case of (most) Tur-
ing machine computation variants (along the lines previously sketched; more
can be found in Chapter 9). However, already in the next subsection, we will
encounter an FPT result with an external parameterization.

3.1.2 Different classifications in games

Let us elucidate the choice of different parameters with the discussion of an
(abstract) game, namely rush hour, see [178] for more details.

We consider the parameterized complexity of a generalized version of the
game Rush Hour 1, which is a puzzle requiring the player to find a sequence
of moves by vehicles to enable a special target vehicle to escape from a grid-
shaped game board that may contain obstacles. Although the problem is
PSPACE -complete [184], we demonstrate algorithms that work in polyno-
mial time when either the total number of vehicles or the total number of
moves is bounded by a constant.

The goal of the Rush Hour puzzle is to remove a target vehicle (that is
colored red in the original version of Rush Hour) from a grid by moving it and
other vehicles until eventually it reaches an exit on the perimeter of the grid.
So, in Fig. 3.1, the task is to move out the red car to leave the parking at the
exit that is located at the right side of the parking site. Each vehicle can move
either horizontally or vertically, but cannot change its initial orientation (not
even in successive moves; hence, it cannot make turns), and a vehicle can be
moved from one position to another only when all intervening grid positions
are empty. The grid may also contain obstacles that do not move; we use
the generic term “car” to denote a vehicle or an obstacle. Fig. 3.1 contains
no obstacles. The original puzzle consists of a 6 × 6 grid with a single fixed

1The name “Rush Hour” is a trademark of Binary Arts, Inc.; more info on the current
status of Rush Hour can be found on the Web, see [Chapter 11, Site 19].



54 CHAPTER 3. PARAMETERIZATIONS

Figure 3.1: A sample instance of the classical rush hour puzzle.

exit and vehicles of width one and length two or three; a sample instance is
depicted in Fig. 3.1.

The Rush Hour puzzle is one of many games and puzzles determined to
be computationally difficult to solve [111]; such problems include the (n2−1)-
puzzle [327] and Atomix [235, 244], related to a variant of Rush Hour in which
all cars are squares of shape 1 × 1. The original Rush Hour problem was
generalized by Flake and Baum to allow arbitrary grid sizes and placements
of the exit and shown to be PSPACE -complete [184].

We extend the generalization formulated by Flake and Baum [184]. In
our generalization, the game board is an infinite plane, cars are arbitrary
axes-parallel rectangles, and each vehicle must reach one of a set of goal
positions in the plane.

The PSPACE -completeness result of Flake and Baum indicates that
there is not much hope of finding a solution to a given Rush Hour instance
in polynomial time. However, we show that when the number of cars or the
number of moves allowed is small, the problem can be solved in polynomial
time. Observe that the number of cars is an (explicit) internal parameter,
while the number of moves is an external parameter.

In still greater generality, an instance of rush hour can be formalized
as a tuple (C, S, p0, d, Z), where C is a finite set (of cars) and the remaining
components are functions mapping C to 2R2

, R2, R2 and 2R, respectively.
For each c ∈ C, S(c) is the car shape of c, p0(c) is its initial position, d(c)
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is its directional vector, and Z(c) is the set of its RH goals.2 A car c is an
obstacle iff d(c) = (0, 0). A car c initially covers the points p0(c) + S(c) in
the plane, and it can be moved to positions of the form p0(c) + ud(c), for
u ∈ R, where it will cover the points (p0(c)+ud(c))+S(c). Correspondingly,
the RH position of car c (at a certain moment in time) can be described by
a number u(c) ∈ R, and the set of goals available to a car can be described
by a set of goal intervals.

The object of the game is to move each car to one of its goal positions. By
defining trivially achievable goal intervals, the original version of the game
can be seen to be a special case of our definition.

A RH configuration is a function u : C → R, and it is a legal configuration
if

(p0(c) + u(c)d(c) + S(c)) ∩ (p0(c′) + u(c′)d(c′) + S(c′)) = ∅
for all c, c′ ∈ C with c 6= c′. A RH move is an operation that adds to (or
subtracts from) the position of a car a multiple of its directional vector; it is
a legal move if the initial and final configurations as well as all intermediate
configurations are legal, that is, no other car blocks the passage. A RH
solution to an instance is a sequence of legal configurations such that the
first consists of the cars in their initial positions, the last consists of the cars
in goal positions, and each pair of successive configurations is connected via
a legal move.

Most of our work focuses on a special case of the general problem in
which all cars are axes-parallel rectangles and the only directional vectors
allowed are (1, 0), (0, 1) and (0, 0). An APR instance satisfies the additional
constraints that for all c ∈ C, d(c) ∈ {(1, 0), (0, 1), (0, 0)} and S(c) is an open
rectangle contained in the first quadrant of the plane and with the origin as a
corner. In this case, a car c is called a horizontal car if d(c) ∈ {(1, 0), (0, 0)}
and a vertical car if d(c) ∈ {(0, 1), (0, 0)}. Flake and Baum’s version is a
special case of APR rush hour.

Problem name: rush hour, parameterized by cars (RH
(cars))
Given: A RH tuple (C, S, p0, d, Z) of an APR instance
Parameter: a positive integer k, upperbounding |C|
Output: Is there a sequence of legal moves that solves the given RH
instance?

By observing that, for each car, there is only a certain number of so-
called discretized positions in which it may be, i.e., other positions are in

2Here and in the following, we add “RH” to some notions that have a special meaning
for rush hour.
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a way equivalent to one of the discretized positions, and by upperbounding
the number of discretized positions by a function in k, in [178] it is shown
that rush hour, parameterized by cars is parameterized tractable,
since then there are at most (2k3)k discretized configurations. To limit the
construction of the space of discretized configurations, we assume that all
cars are initially in an n× n square. Thus, we can state:

Theorem 3.1 rush hour, parameterized by cars can be solved in time
O((2k3)2kp(n)), where p is a polynomial.

We omit to list the corresponding algorithm here, but only emphasize
once more its two basic steps:

• Generate (at least implicitly) the search space of discretized configura-
tions.

• Exhaustively search through that space by first testing if there is a
one-step transition between each pair of states and then looking for a
path from the initial configuration to some goal configuration.

Observe that the parameterization of rush hour in terms of the num-
ber of cars is an obvious explicit internal parameterization. However, the
following alternative parameterization is obviously external, and due to the
classical complexity of the problem [235], it was even a bit surprising to see
here a parameterized tractability result according to our comments in the
previous subsection.

Problem name: rush hour, parameterized by moves (RH
(moves))
Given: A RH tuple (C, S, p0, d, Z) of an APR instance
Parameter: a positive integer m
Output: Is there a sequence of at most m legal moves that solves
the given RH instance?

To handle the case where the number of moves m is bounded, we compute
a set of cars with the property that if all other cars are removed, we are
certain that for every t ≤ m this will not change an instance without a t-step
solution into one that has a t-step solution. In other words, the computed
set should contain all cars that might be relevant. It may contain additional
spurious cars that, in actual fact, do not make any difference, but we bound
the number of relevant cars by 3m. Then we apply an algorithm similar
to the one previoustly sketched which leads to a running time of the form
2O(m2·3m)p(n).
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The main point that might be applicable to other situations, as well,
is that we can make use of an FPT algorithm for one parameterization to
devise an FPT for a different, seemingly more complicated parameterization.

3.2 Standard parameters

3.2.1 Minimization problems

For minimization problems, it is kind of standard approach to consider the
entity to be minimized as the parameter. This is in accordance with the
observation that, as long as minimization problems aim at minimizing some
sort of cost function, it is desirable to have these costs as small as possi-
ble. Even “worse:” if a minimal solution incurs tremendous costs, then it
would not be worthwhile considering them at all in practical terms. Let us
point the reader here especially to the examples drawn from VLSI fabrication
(discussed in the next section) and from graph drawing, see Sec. 6.4.

Let us be more specific with a certain number of examples:

• A good selection of problems where parameterized algorihms have been
developed for are cover problems. The most notable examples are ver-
tex cover and, more generally, hitting set.

• A whole lot of minimization problems stem from (technical) failure
models. Since typically failures can be repaired in multiple ways, the
corresponding minimization task is to determine a minimum set of
repair operations that can cope with all failures.

Conversely, by assuming the principle of Occam’s razor, a theory of
diagnosis has been developed [331]. Here, the task is to analyze a
given set of failure symptoms to explore the reasons of failure. This
has been set up rather in the context of diagnosis in medicine than
in the context of analysis of technical failures, but the ideas are of
course transferrable. Occam’s razor implies that the best diagnosis is
showing the least complicated explanation for all observed symptoms.
More mathematically speaking, but adhering to the medical context,
this is about finding the smallest set of deseases that can explain all
symptoms. Having found this set, the “repair” (e.g., the choice of
adequate medication) is relatively easy.

Both related setting often quite easily translate into cover problems.
In fact, Reiter [331] based his theory of diagnosis on a clever search
along so-called hitting set trees, using standard methods from Artificial
Intelligence.
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In fact, this motivates why cover problems play a central role in this
Habilitationsschrift. More explanations on Reiter’s approach can be
found in Chapter 8.2.

• Many examples of optimization problems have a cost function that
determines the value of a valid solution. Naturally, a solution incur-
ring minimum cost is used. In the graph-theoretic terminology, such
problems often correspond to weighted versions of graph minimization
problems. Then, weights (costs) are associated to vertices, edges, etc.

As a more “natural” problem (providing an example for the last men-
tioned category of minimization problems based on cost functions), let us
consider facility location.

Problem name: facility location (FL)
Given: A bipartite graph B = (F ] C,E), consisting of a set F of
potential facility locations, a set C of customers, and an edge relation
E, where {f, c} ∈ E indicates that c can be served from the facility
(at) f ; and a weight functions wF : F → N and wE : E → N (both
called w if no confusion may arise)
Parameter: k ∈ N
Output: Is there a set F ′ ⊆ F of facility locations and a set E ′ ⊆ E
of ways to serve customers such that (1) E ′∩F = F ′, (2) E ′∩C = C,
and (3)

∑
f∈F ′ wF (f) +

∑
e∈E′ wE(e) ≤ k?

Alternatively, and sometimes more convenient, this problem can be for-
mulated in terms of a “matrix problem:”

Problem name: Facility Location (matrix formulation)
Given: A matrix M ∈ N(n+1)×m, indexed as M [0 . . . n][1 . . .m].
Parameter: k ∈ N
Output: Is there a set C ⊆ {1, . . . , m} of columns and a function
s : {1, . . . , n} → C such that

∑
f∈C(M [0, f ] +

∑
c:s(c)=f M [c, f ]) ≤ k?

In the matrix formulation, the columns play the role of the potential
facility locations and the rows represent the customers to be served. Since
“missing edges” in the bipartite graph formulation can be expressed as edges
which have “infinite weight” (corresponding in turn to a weight larger than k
in the decision problem formulation), we can assume that the graph is indeed
a complete graph. Then, the matrix M [1 . . . n][1 . . .m] contains the weights
of the edges, while M [0][1 . . . m] stores the weights associated to potential
facility locations.
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Whenever we return to this example in the following, we will use termi-
nology from both formulations interchangeably, whatever seems to be more
convenient. Notice that the matrix representation is related to the adjacency
matrix of a bipartite graph.

Summararizing what we said above, when facing a minimization problem,
the standard parameterization (for minimization problems) is that the entity
to be minimized is the parameter.

3.2.2 Maximization problems

Also with maximization problems, it has turned out to be fruitful to consider
the entity to be maximized as the parameter. We will also refer to this setting
as the standard parameterization (for maximization problems).

Both forms of standard parameterizations are called parameterized ver-
sions of an optimization problem in [84]. However, in the case of maxi-
mization problems, there are some philosophical arguments against using
the standard parameterization as a “standard.”

• A natural counterpart to covering problems are packing problems; here
the aim is to fit in as many items as possible into a given boundary
or framework. The probably best-known of such “packing problems”
is maximum knapsack, although this particular problem can be also
viewed as a profit problem as discussed below. In graph-theoretical
terms, maximum independent set can be viewed as a packing prob-
lem, as well: the task is to place as many pebbles as possible onto
vertices of a graph that serves as the specified framework. The restric-
tion is that no two pebbles may be placed on neighboring vertices.

As will be explicitly discussed below in the next section, the “dual-
ity” of covering and packing problems can be formally expressed in
the framework of parameterized algorithms. Let us only state here
that if we assume, as argued above, that the entity to be minimized
(in the standard parameterization of a covering problem) is “small”
(when compared to the overall size of the instance, measured without
the parameter), then its dual packing problem cannot enjoy the same
property (namely, that the standard parameter is small), unless the
overall instance is small, anyhow.

So, expecting a small standard parameter for packing problems seem
to be hard to justify on these philosophical grounds.

However, there might be situations where certain graph parameters
that are to be maximized (to keep within this rather general model)
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are known to be small compared to the overall instance size. Then, it
would make perfect sense to consider the entity to be maximized as a
parameter.

• The natural maximization correspondence to minimize the cost is to
maximize the profit of an enterprise. This leads to profit problems. As
well as the expectation can be justified that costs should be small, one
wants profits to be large. Again, this counteracts the basic underlying
assumption of parameterized algorithms that the parameter (values)
are small. maximum knapsack is probably the best known among
such profit problems:

Problem name: maximum knapsack (KS)
Given: n items {x1, . . . , xn} with sizes si and profits pi, the knapsack
capacity b, and the profit threshold k. All numbers are natural numbers

encoded in binary.

Parameter: k
Output: Is there a subset of items which yield a profit larger than
k and has an overall size of less than b?

Profit variants of graph problems have been also discussed, see [354]
for a variant of vertex cover that is defined as follows:

Problem name: profit vertex cover (PrVC)
Given: A graph G = (V,E)
Parameter: a positive integer p
Output: Is there a profit vertex cover C ⊆ V with |E| − |E(G[V \
C])| − |C| ≥ p?

Intuitively speaking, the profit of a cover is the gain of the cover, i.e.,
the size of the edge set the is covered that can be expressed as |E| −
|E(G[V \ C])|, minus the cost of the cover, i.e., its size |C|. In [354], a
O(p|V (G)| + 1.151p)-algorithm is reported.

As ways out of the dilemma with maximization problems (especially if
it is expected that the values of the standard parameterization of the maxi-
mization problem are known to be large), we might think of the following:

• Consider the parameterized dual of the problem, which will always be a
minimization problem in case we started with a maximization problem,
and when we expect that the values of the standard parameterization



3.2. STANDARD PARAMETERS 61

of the maximization problem are “big,” then the values of the standard
parameterization of the dual minimization problem are “small.” This
technique is discussed in detail in Sec. 3.5.

• If the optimization problem can be expressed as an integer linear pro-
gram (ILP), then we can translate its so-called relaxation into an
“equivalent” dual problem (where dual is meant in terms of linear pro-
gramming; we won’t give details here). Since the dual program of a
maximization problem is a minimization problem, we might use this
as an idea for the definition of parameters for the problem in question
that are meant to be small.

For example, an instance maximum knapsack can be expressed as
follows as ILP:

max

n∑

i=1

pixi

subject to
n∑

i=1

sixi ≤ b,

where xi ∈ {0, 1} is the integrality condition. When we ignore the
integrality condition, we arrive at a linear program.

The corresponding dual minimization problem could give us the idea
of the following reparameterization of KS:

Problem name: maximum knapsack, minimum weight
(KSMW)
Given: n items {x1, . . . , xn} with sizes si and profits pi, the knap-
sack capacity b, and the profit threshold k. All numbers are natural

numbers encoded in binary.

Parameter: b
Output: Is there a subset of items which yield a profit larger than
k and has an overall size of less than b?

• Finally, if it is known that the value of any solution to a maximization
problem must be above a certain threshold, then it is useful to consider
re-parameterization according to the strategy of parameterizing above
guaranteed values, as detailed in the next section.
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Except from Sec. 4.3, we will not further the study of problems related
to maximum knapsack in the following. However, let us notify that all
these problems are typically in FPT . More precisely, Chen et al. [84, Theo-
rem 1] have shown that so-called scalable optimization problems have a fully
polynomial-time approximation scheme (FPTAS) iff they are in a certain
subclass of FPT they called efficient-FPT . Since maximum knapsack
and many similar problems are scalable and known to possess an FPTAS
(see [30]), it is clear that all these optimization problems (with the standard
parameterization) are in FPT . In fact, this already follows from [68, The-
orem 3.2]. More precisely, if the FPTAS allows to solve the optimization
problem in time p(|x|, 1/ε) (where x is the input and ε is the approxima-
tion factor to be attained), then the standard parameter k yields a problem
instance (x, k) that can be solved in time O(p(|x|, 2k)).

3.2.3 Philosophical remarks, inspired by linear ar-

rangement

It is finally worth mentioning that the standard parameterization is not al-
ways very meaningful even for minimization problems. For example, consider
the following problem that is number GT 42 in [199]; also refer to [200]:

Problem name: linear arrangement (LA)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ∑

{u,v}∈E
|σ(u) − σ(v)| ≤ k ?

In actual fact, this problem is given in the reference as defined above,
i.e., including the bound k, and not as a minimization problem (to which it
is naturally related). linear arrangement is only one amongst a huge
number of so-called arrangement or (more generally) layout problems. Some
of them will be discussed in this Habilitationsschrift. A recent survey by J.
Dı́az, J. Petit and M. Serna has been published in [126]. Let us briefly review
the literature on this problem first. The most comprehensive study on this
problem appears to be the PhD thesis of S. B. Horton [239]. Surprisingly few
graph classes are known on which linear arrangement can be efficiently
solved:

• trees [5, 99, 352],
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• a subclass of Halin graphs [150, 239],

• outerplanar graphs [194], . . .

Of interest are of course also variations of this scheme; for example, the
fitting of a graph into a two-dimenional grid was discussed in [239]. Also, the
rather geometric problem of fitting a k-point polyline seems to be related,
see [28], although in general these more geometric problems tend to be easier,
see [268]. Some literature is also reviewed at [Chapter 11, Site 10].

To see the flavor of this problem, look at a simple example:

Figure 3.2: Two ways of mapping C4

Example 3.2 As can be easily seen, the circle C4 cannot be mapped onto a
line in a way that preserves edge lengths, i.e., not every edge corresponds to
an interval of length one. In Fig. 3.2, we used color coding to visualize two
mappings. The one to the left is optimal: all but one edge correspond to an
interval of unit length; this arrangement then “costs” 6 length units. The
one to the right shows a different mapping that costs 8 length units (and is
therefore worse than the other one).

Since the distance even between the σ-images of two vertices that are
mapped on neighboring points is at least one, for connected graphs one can
immediately derive for the linear arrangement number

λ(G) =
∑

{u,v}∈E
|σ∗(u) − σ∗(v)|

for a minimum arrangement σ∗:3

Proposition 3.3 If G = (V,E) is a connected graph, then λ(G) ≥ |V | − 1.

Hence, for connected graphs, the following rule is sound:

3The result of Prop. 3.3 is also mentioned in [239, page 34]. Further bounds based
on cuts and on eigenvalues of the Laplacian of a given graph do not seem to help for the
kernelization we have in mind; they can be found in [239], as well; also compare [249, 241].
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Reduction rule 7 If (G, k) is an instance of linear arrangementand if
G = (V,E) is a connected graph, then return NO if k < |V | − 1.

However, the following assertion is pretty clear:

Lemma 3.4 Let G = (V,E) be a graph. If C1 and C2 is a partition of V
into two vertex sets such that, for all e ∈ E, either e ⊆ C1 or e ⊆ C2, then
λ(G) = λ(G[C1]) + λ(G[C2]).

Proof. Given linear arrangements σ1 of G[C1] and σ2 of G[C2], we can
produce a linear arrangement σ = σ[σ1, σ2] for G by defining:

σ[σ1, σ2](v) =

{
σ1(v) if v ∈ C1

σ2(v) + |C1| if v ∈ C2

Hence,

∑

{u,v}∈E
|σ(u) − σ(v)| =

∑

{u,v}∈E∩C1

|σ(u) − σ(v)| +
∑

{u,v}∈E∩C2

|σ(u) − σ(v)|

=
∑

{u,v}∈E(G[C1])

|σ1(u) − σ1(v)| +
∑

{u,v}∈E(G[C2])

|σ2(u) − σ2(v)|

This shows that λ(G) ≤ λ(G[C1]) + λ(G[C2]).
Let σ be an arrangement of G. For v ∈ Ci, let c(v) denote the number of

vertices u from C3−i such that σ(u) < σ(v). Then, set σi(v) = σ(v)− c(v) to
define σi as an arrangement of the vertices from Ci. Consider the arrangement
σ′ = σ[σ1, σ2]: it is not hard to see that

∑

{u,v}∈E
|σ(u) − σ(v)| ≥

∑

{u,v}∈E
|σ′(u) − σ′(v)|

which proves λ(G) ≥ λ(G[C1]) + λ(G[C2]).

This shows that:

Lemma 3.5 linear arrangement remains NP-hard when restricted to
connected graphs.

Proof. (Sketch) Due to (repeated applications of) Lemma 3.4, any (effi-
cient) algorithm for determining λ(G) for connected graphs G can be used
to efficiently solve the general problem, which was shown to be NP-hard
in [200].

Our preceding reasoning allows us to state:
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Theorem 3.6 linear arrangement, restricted to connected graphs, is
NP-complete but belongs to FPT .

Proof. We already argued for the NP-hardness. Membership in NP
is of course trivially inherited from LA. Membership in FPT can be seen
as follows: after applying rule 7, we will have an instance ((V,E), k) with
|V | ≤ k + 1 (unless already solved). Hence, that rule is a kernelization rule,
so that Theorem 2.4 applies.

We mention this restricted problem here, since it is a problem where one
can actually argue that the standard parameterization is not very natural:
the reduction rule we employed is simply answering that there cannot be any
solution if the parameter size is small (related to the number of vertices in the
graph). So, small parameter values do not exist. This is a bit different in the
general setting of linear arrangement which is treated in more details in
Chap. 4. However, the basic criticism regarding the standard parameteriza-
tion is valid there, as well, since it is based on the following proposition and
an according reduction rule that generalize Prop. 3.3. Put in another way:
due to the lower bounds expressed in the propositions, it might make more
sense to consider a parameterization via the number of vertices or by the
number of edges instead of taking the entity to be minimized as the parame-
ter. However, this kind of parameterization would generally be not regarded
as belonging to the realm of parameterized algorithmics, but rather to exact
algorithmics (for hard problems) in a broader sense, see Chap. 10.

Proposition 3.7 If G = (V,E) is a graph, then λ(G) ≥ |E|.

Proof. According to the formula how to compute the linear arrangement
cost, each edge contributes at least a cost of one, since the mapping σ that
associates vertices and natural numbers is one-to-one and the graphs we
consider have no loops.

Reduction rule 8 If (G, k) is an instance of linear arrangement, then
return NO if k < |E|.

Other lower bounds on the size of the linear arrangement number of a
graph are discussed in [321] from a very practical perspective. Other (theo-
retical) bounds are obtained in [5, 277]. In [321], it is also mentioned that
linear arrangement is only known to be approximable within a logarith-
mic factor (and even that algorithm is pretty impractical for sufficiently large
graph instances, since it involves solving a linear program with an exponential
number of variables), although the related problem of crossing minimization
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in layered graphs (as treated in Chap. 6) can be approximated within a small
constant factor; take [301] as a recent reference.

In fact, many other similar problems are listed in the given references
[199, 200, 277]; mostly, they can be shown to be parameterized tractable
by using similar techniques; we mention in particular GT 43 and GT 45
from [199]. However, there is one notably exception, namely GT 40:

Problem name: bandwidth (BW)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ∀{u, v} ∈ E : |σ(u) − σ(v)| ≤ k?

Recall that a bandwidth-minimal ordering (say upperbounded by k) of
the vertices is an ordering where the corresponding adjacency matrix of the
graph has bandwidth upperbounded by k; hence the name.

Let us have a look at our example first:

Figure 3.3: One more way of mapping C4

Example 3.8 In Fig. 3.2, we used color coding to visualize two possible
mappings of C4. As can be seen, the maximum length of the color interval is
the “bandwidth of the drawing.” But what is the bandwidth of the graph?
Both drawings have one worst color of length three. Fig. 3.3 shows that there
are better drawings. The one to the right in that figure is in fact optimal,
since not all edges can be mapped on intervals of length one for a C4.

Notice that our argument from Lemma 3.4 is still true in this case. Hence,
BW, restricted to connected graphs, is also NP-complete. However, we can-
not rule out any small value of the parameter k that easily. Even worse: this
problem is known to be W[t]-hard for all natural numbers t, see Chap. 9
for the hardness notions in parameterized complexity. This is quite unfortu-
nate in the sense that there exist nice polynomial-time algorithms for solving
(in general) NP-hard graph problems on graphs of bounded bandwidth,
see [297].
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The similarity between linear arrangement and bandwidth can
be best seen if one considers the following generalization, based on a given
vector norm ‖ · ‖ on vectors of numbers; to this end, we extend a mapping
σ : V → {1, . . . , |V |} to a mapping σE : E → {0, . . . , |V | − 1} by setting
σE({u, v}) = |σ(u)−σ(v)|. If we now assume an arbitrary but fixed ordering
of the edges, i.e., E = {e1, . . . , em}, then we can associate to σ a vector, also
written σE for brevity, defined as:

σE = (σE(e1), . . . , σE(em)).

Problem name: linear arrangement (generalized to a
vector norm ‖ · ‖)
Given: A graph G = (V,E), E = {e1, . . . , em}
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ‖ σE ‖≤ k?

Observe that both linear arrangement and bandwidth are special
cases by choosing ‖ · ‖ to be the sum norm ‖ · ‖1 and the maximum norm
‖ · ‖∞, respectively. What about the usual “intermediate norms” ‖ · ‖p for
natural numbers 1 < p <∞? Recall that

‖ (x1, . . . , xn) ‖p= p

√√√√
p∑

i=1

|xi|p.

These problems are also known as minimum p-sum problems.
To continue with our example, let us focus on p = 2:

Example 3.9 The arrangement on the left-hand side of Fig. 3.2 yields a
2-sum of √

12 + 12 + 12 + 32 =
√

12.

On the right-hand side of that figure, the arrangement has a 2-sum of

√
22 + 12 + 22 + 32 =

√
18.

The arrangement on the right-hand side of Fig. 3.3 however has a 2-sum of

√
22 + 12 + 22 + 12 =

√
10.

The reader might wish to see if there are arrangements with smaller 2-sum
numbers.
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For the corresponding linear arrangement numbers λp, the following gen-
eralizations of earlier results are easy to obtain:

Proposition 3.10 If G = (V,E) is a graph, then λp(G) ≥ p
√

|E|.

Reduction rule 9 If (G, k) is an instance of linear arrangement (gen-
eralized to a vector norm ‖ · ‖p), then return NO if k < p

√
|E|.

Hence, we can state the following result:

Theorem 3.11 For each fixed natural number p, the generalized linear
arrangement problem (based on norm ‖ · ‖p), lies in FPT .

Proof. Reduction rule 9 provides a kernel of size |k|p for the generalized
problem, which is showing FPT -membership when p is assumed to be a
fixed constant; here, the problem size is measured in terms of the number of
edges of the input graph.

Remark 3.12 According to [239], the (classical) complexity status of the
generalized linear arrangement problem (in actual fact, this is a family
of problems indexed by p) is open if p /∈ {1,∞}.

However, for a different set of problems (namely scheduling problems), the
question of finding approximation algorithms that are good with respect to
different norms has been recently addressed in [31], so that a closer scrutiny
to this type of problem is not too artificial, keeping in mind that for practical
purposes different metrics might indeed exhibit different behaviors.

Some of the problems (for p /∈ {1,∞}) were addressed in [51, 249, 277].
From a parameterized perspective, it would make also sense to consider the
natural number p as part of the input; the proof of Theorem 3.11 only works
when p is not part of the input. Hence, the parameterized status of this
problem is open. Of course, if p = ∞ is also allowed as input, then it is
clear that such a problem would be at least as hard as bandwidth, so that
membership in FPT would be very unlikely.

Two further generalizations (motivated from practical applications) are
mentioned in [5, 277]:

• Edges could be given integer weights ≥ 1 to model the possibility of
multiple connections between points or of different flow capacities.

• Instead of edges, hyperedges could be considered. Given an arrange-
ment σ, the cost of drawing a hyperedge h would then be measured
as

σE(h) = max
x∈h

σ(x) − min
y∈h

σ(y).
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The cost of a drawing (generalizing the LA problem) would then be

∑

h∈E
σE(h)

for a given hypergraph G = (V,E) where, for all h ∈ E, |h| ≥ 2,
since smaller hyperedges can be removed from a given instance with-
out changing the parameter (in other words, we have found a reduction
rule). As can be easily seen, all kernelization results stated above trans-
fer to this case, as well.

We can therefore conclude:

Corollary 3.13 linear arrangement, generalized to the (integer-)weighted
case or to the case allowing hyperedges (also in combination), lends to prob-
lems in FPT , even if we generalize the allowed vector norms as in Thm. 3.11.

Let us describe one of the practical motivations to consider generalizations
of linear arrangement a bit more in detail, since this also gives a good
example how to derive graph-theoretical formalizations from problems that
were originally not stemming from graph theory itself.

Example 3.14 Consider the following placement problem occurring in VLSI,
inspired from [277]: we are given a set of modules and a wiring prescription
telling us which modules are to be connected; this information can even come
as a kind of wiring proposal, see Fig. 3.4. In that picture, the modules are
drawn as boxes labeled A through E. The wires are drawn as straight-line
segments. For better readability of the further solutions, they have different
colors. The connection points are drawn as filled circles. The question is if
the proposed arrangement of modules is best. In other words, is it possible
to reorder the modules to improve the arrangent given in the proposal?

What is our criterion of optimality? It could be at least three things:

1. The total wire length should be minimal.

Such an optimality might help save fabrication costs. Moreover, keep
in mind that long wires mean long run times of signals on these wires.

2. The wire length between any two points connected by a wire should be
minimal.

The overall run-time behavior of a manufactured chip is determined by
its weakest spot, i.e., the length of the longest point-to-point intercon-
nection.
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1 2 3 4 5 6 7

B

C

D

E

A

Figure 3.4: A wiring proposal for some modules

3. Observe that we used one column for each wire in Fig. 3.4. From the
viewpoint of fabrication, it would be however desirable to use as few of
these columns (usually called tracks in these context) as possible.

How do these VLSI problems relate to the graph problems we considered
so far? Let us see this with the first of the mentioned problems, that can be
formalized as follows:

Problem name: module placement problem (MPP)
Given: a set of modules M , a set of wires W connecting modules,
i.e., each wire w ∈ W is a subset of M
Parameter: a positive integer k
Output: Is it possible to find a mapping σ : M → {1, . . . , |M |} such
that the overall wire length is less than or equal to k?

If we measure the overall length of the wires by
∑

w∈W
(max
x∈w

σ(x) − min
y∈w

σ(y)),
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then the corresponding to the linear arrangement problem on hyper-
graphs introduced above should be clear: modules correspond to vertices,
and wires are the hyperedges. Observe that wires may connect several mod-
ules, so that we actually do have hyperedges.

1 2 3 4 5 6 7

E

B

A

D

C

Figure 3.5: An optimal wiring. . .

Is the arrangement in Fig. 3.4 optimal, when seen as the input of MPP? A
better arrangement is proposed in Fig. 3.5; optimality of this arrangement can
be easily seen by observing that the distance between two points that are to
be connected by a wire is always one, except for “real hyperedges.” Therefore,
this arrangement is also incidentally optimal for the second criterion, which
is (as the reader might have observed) corresponding to determining the
bandwidth of hypergraphs; we omit details here. Of course, since already
bandwidth is parameterized intractable, we cannot hope for an FPT result
in this more general case.

We finally observe that the wiring from Fig. 3.5 also minimizes the third
entity we mentioned, namely the number of tracks; some of the wires can be
now put on the same track, as indicated in Fig. 3.6.
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E

B

A

D

C

Figure 3.6: . . . using less tracks

Let us finally mention that cutwidth is also a related parameter:

Problem name: cutwidth (CW)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ∀1 ≤ i < |V | : |{{u, v} ∈ E | σ(u) ≤ i < σ(v)}| ≤ k?

In actual fact, cutwidth is also known as the “cut linear arrangement
problem,” see [169, 367]. Notice that also cutwidth tries to measure the
“path-similarity” of a graph; in fact, it is known that the pathwidth of a
graph is upperbounded by its cutwidth (see Chap. 7 and [129, 258, 367]).

More precisely, Kinnersley [258] considers the problem of determining the
vertex separation number of a graph. Given a graph G = (V,E) and a linear
layout σ of G, i.e., a bijective mapping σ : V → {1, . . . , |V |}, let

Vσ(i) = |{u ∈ V | ∃{u, v} ∈ E : σ(u) ≤ i < σ(v)}|.
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The vertex separation number of the linear layout σ of G is then

vsσ(G) = max
1≤i<|V |

Vσ(i),

and the vertex separation number of G is

vs(G) = min{vsσ(G) | σ is a linear layout of G}.

Kinnersley has shown that the vertex separation number of a graph equals
its pathwidth (as defined in Chap. 7). Conversely, the cutwidth of a graph
G = (V,E) could be described as follows: Let

Eσ(i) = |{{u, v} ∈ E | σ(u) ≤ i < σ(v)}|.

Then define
cwσ(G) = max

1≤i<|V |
Eσ(i),

and the cutwidth of G is

cw(G) = min{cwσ(G) | σ is a linear layout of G}.

Since for all layouts and all positions

Vσ(i) ≤ Eσ(i),

vs(G) ≤ cw(G)

follows.
With the standard parameterization, the cutwidth problem is known

to be in FPT , see [134, 169].
Let us have a look at some examples to better understand these concepts:

Example 3.15 In Fig. 3.3, we used color coding to visualize two possible
mappings of C4. For better readability, the intervals that correspond to edges
are drawn in different “bands.” As can be seen, the number of necessary
bands for such drawings is just the cutwidth of the layout, which happens
to be the same in both cases. Both are in fact optimal arrangements with
respect to cutwidth.

Incidentally, also the vertex separation number of both layouts is two.

Example 3.16 Consider the family of star graphs Sn with vertices {1, . . . , n}
and edges {1, i} for i = 2, . . . , n. Imagine 1 to be drawn in the center and i
for i 6= 1 being the rays of the star.
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The identity then provides a layout with vertex separation number one.
However, the cutwidth of that layout is n−1. A better layout (with respect to
cutwidth) can be produced by mapping 1 in the center of the image, placing
half of the ray vertices to the left and the other one (arbitrarily) to the right
of the center vertex; the cutwidth of this layout (which is now equal to the
vertex separation number of the layout) is then bn/2c. This also gives the
optimal arrangement for star graphs when considering them as inputs for
linear arrangement, see [277, Cor. 2.4].

Let us briefly re-examine Ex. 3.14 from the point of view of cutwidth;
at first glance, it might appear that the third mentioned goal in the module
placement scenario would correspond to something like cutwidth in hy-
pergraphs. However, if this were the case, then the second and third tracks
(where the wires actually only have two connection points each, so that they
actually correspond to edges) in Fig. 3.6 could be merged; this is not the case
(for easily seen physical reasons). Hence, we would have as optimization goal
to minimize (in the formulation of module placement problem):

max
1≤i≤|M |

|{w ∈ W | min
m∈w

σ(m) ≤ i ≤ max
m∈w

σ(m)}|.

3.3 Alternative parameterizations

As we have seen above, the standard parameterization is not the only way
to parameterize problem, even though they might be given as optimization
problems; it is clear that decicision problems that don’t correspond to or stem
from optimization problems have no standard parameterization, so that the
ideas we present here will apply in that scenario, as well.

Let us first discuss one of our favourite problems, again: vertex cover.
Mohar [294] had shown that k-vertex cover restricted to (planar)
graphs of maximum degree three is NP-hard. This result is as close
as NP-hardness could go with respect to the degree bound: for graphs of
maximum degree two, the problem becomes easily solvable.4

In [220], another idea of parameterization is advocated which they called
distance from triviality. In this context, the number ` of vertices of degree
three or more could be such a distance measure. If this parameter is small,
testing all 2` possible assignments of 0 and 1 to the vertices of degree three
or more (interpreted as “not going into the cover” or “going into the cover”)
would allow solving the minimum vertex cover problem in time O(2`|G|)
for each graph G with at most ` vertices of degree three or more. More
specifically, this shows FPT -membership of the following problem:

4Even the more general problem edge cover is solvable in polynomial time, see [311].
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Problem name: vertex cover, parameterized by number
of vertices of degree three or larger (VCdeg)
Given: A graph G = (V,E)
Parameter: a positive integer ` that equals the number of vertices
in G of degree three or larger
Output: What is the size of a minimum vertex cover C ⊆ V ?

As another example from the literature (that can be seen as a reparam-
eterization of set cover and hence of hitting set) we quote [344], where
triviality is measured in terms of the so-called (almost) consecutive ones
property. Observe that the referenced paper does not explicitly mention pa-
rameterized complexity in any way, yet the results can be interpreted this
way.

As seen in the previous section (and also in Chap. 4), linear arrange-
ment and dominating set of queens can be viewed as problems that have
trivial kernels if viewed from the perspective of the standard parameteriza-
tion. This motivates the idea of parameterizing above guaranteed values: for
the mentioned two problems, this might mean the following:

Problem name: linear arrangement (LA), parameterized
above guaranteed value
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ∑

{u,v}∈E
|σ(u) − σ(v)| ≤ k + |E|?

Problem name: dominating set of queens (QDS), parame-
terized above guaranteed value
Given: An n× n chessboard C
Parameter: a positive integer k
Output: Is it possible to place n/2 + k queens on C such that all
squares are dominated ?

To our knowledge, the status of the two mentioned re-parameterizations
is currently unknown.

The idea of parameterizing above guaranteed values was actually “born”
in the context of maximization problems. More specifically, Mahajan and
Raman [285] showed that the following two problems are parameterized
tractable by (again) a kind of mathematical “cheating” argument:
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Problem name: maximum satisfiability (MAXSAT)
Given: A Boolean formula F in conjunctive normal form (CNF),
with variables X
Parameter: a positive integer k
Output: Is there an assignment α : X → {0, 1} such that at least k
clauses in F evaluate to 1 (true) under α?

and

Problem name: maximum cut (MAXCUT)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a cut set C ⊆ E with |C| ≥ k, i.e., (V, V \ C) is a
bipartite graph?

Namely, the following reduction rule is easily seen to be sound for MAXSAT:

Reduction rule 10 Let F be a CNF formula containing m = |F | clauses,
over the set of variables X. If k < m/2, then YES.

Why? Simply pick an arbitrary assignment α. If α evaluates more than
half of the formulae to be true, then the YES of the reduction rule is justified
by α. Otherwise, consider the assignment ᾱ that assigns ᾱ(x) = 1 − α(x),
i.e., always the opposite of what α assigns. Then, exactly those clauses that
used to be unsatisfied via α are now satisfied with respect to ᾱ. Hence, the
rule is justified in this case, as well.

So, we can trivially conclude:

Corollary 3.17 maximum satisfiability has a problem kernel of size 2k
(where the problem size is measured in the number of clauses).

Due to the trivial nature of this “reduction,” Mahajan and Raman sug-
gested parameterizing above guaranteed values, that is, in this case, they
studied the following problem variant:

Problem name: maximum satisfiability (MAXSAT), param-
eterized above guaranteed value
Given: A Boolean formula F in conjunctive normal form (CNF),
with variables X
Parameter: a positive integer k
Output: Is there an assignment α : X → {0, 1} such that at least
m/2 + k clauses in F evaluate to 1 (true) under α?
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Mahajan and Raman showed that also this modified problem is fixed-
parameter tractable; in fact, their algorithms (in final form based on search-
trees and not merely on kernelization) were later improved in [212]. It is
worthwhile mentioning that J. Gramm et al. also considered different pa-
rameterizations (for restricted problems like maximum satisfiability on
formulae whose clauses all contain at most two literals), namely a param-
eterization by the number of clauses (or also the number of clauses that
contain exactly two literals); however, this could be also considered as being
a treatment within the nonparameterized setting, see Chap. 10.

For maximum cut, Mahajan and Raman gave a similar argument for
proving the soundness of the following reduction rule:

Reduction rule 11 Let G be a graph containing m = |E| edges. If k <
m/2, then YES.

Corollary 3.18 maximum cut has a problem kernel of size 2k (measured
in terms of number of edges).

Again, the question of parameterizing above guaranteed values was dis-
cussed, and the following problem was placed into FPT :

Problem name: maximum cut (MAXCUT), parameterized
above guaranteed value
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a cut set C ⊆ E with |C| ≥ |E|/2+k, i.e., (V, V \C)
is a bipartite graph?

These questions are more recently discussed in [323, 322].
A further example of parameterizing above guaranteed values (nonblocker

set) will be discussed in Chap. 4.
We already discussed different parameterizations of optimization prob-

lems in the preceding section and will return to the topic in the context of
dual parameterizations below.

One might finally ask how one can actually obtain a “good” parameteri-
zation for a given problem? From a practical perspective, when facing a con-
crete problem, it is surely worthwhile analysing which part of the input can
be usually considered as small. Observe that this can be very application-
dependent, even for the seemingly identical problem. From a theoretical
standpoint, bear in mind that anything may serve as a parameter. Of par-
ticular interest might be parameters that are hidden in the structure of the
problem instance. What this could mean, we will discuss for graph problems
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in Chap. 7. However, all good intentions for choosing a parameter might
also fail if the problem (under the chosen parameterizations) turns out to be
parameterized intractable. This possibility is not stressed in this Habilita-
tionsschrift, but it should be kept in mind if trials to find fixed-parameter
algorithms fail.

From a philosophical point of view, we might quote Gomes [208], who
wrote:

The ability to capture and exploit problem structure is of central
importance, a way of taming computational complexity.

Our tool of taming, i.e., our whip, is the choice of a good parameter. The
quality of this choice is highly dependent on our understanding of the prob-
lem. Conversely, if a particular choice of a parameter turned out to work very
well or very bad, this could also add to our understanding of the structure
of the problem at hand. As a guideline for choosing a good parameter, let
us once more stress the idea of distance from triviality; in fact, this has been
used in various areas without explicit notice of the connection with param-
eterized algorithmics, partly because the methodologies we mention now do
much predate the advent of parameterized algorithmics.

In her recommendable survey, Gomes [208] compares the methodologies
employed by the Operations Research (OR) and Artificial Intelligence (AI)
communities for solving computationally hard problems. She mentions three
main veins to find tractable (sub-)instance of a problem, where tractability
refers to polynomial-time computability:

• Linear Programming,

• Network Flow, and

• Horn clause formulations.

What happens, for example, if an OR problem cannot be “completely
solved” with linear programming techniques due to additional integrality
constraints? Usually, one first ignores these integrality constraints. If the
so-called relaxation gives an optimal solution that already complies with the
integrality constraints, the problem is solved. If not, then if the number of
variables that do not comply with the integrality constraints is small, usually
a search tree is started, where in each node of the search tree new Linear
Programs are solved by fixing one of the variables with non-integer solutions
by rounding the non-integer solutions either up or down (two cases, i.e., two
children per internal node of the search tree). If the integrality constraints
are not just leaving the choices 0 and 1 (as it is often the case), this idea
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more generally leads to the cutting planes approach, where, e.g., a solution
with xi = 3.5 is excluded by introducing the constraints xi ≤ 3 and xi ≥ 4 in
the two branches. From the point of view of parameterized complexity, this
approach can be seen as a practical implementation of the idea of parame-
terizing by the distance from triviality, especially, if the choices of a variable
are just 0 and 1, since then the described branching actually decrements the
parameter value in each branch. We are not aware of similar approaches in
the other two cases, although it seems to be that here is a largely unexplored
but promising area of research for people working in parameterized algorith-
mics. An illuminating worked-out example comparing different approaches
to solve a particular problem both by OR and by AI methods can be found
in [236].

3.4 Multiple parameters

Sometimes, not only one parameter appears to be natural, but it seems to be
reasonable to consider multiple parameters, i.e., several parameters that are
thought of being “the” parameter at the same time. Abstractly, this poses
no problems at all, since a parameter list 〈k1, . . . , k`〉 can be also read as
encoding a single (number) parameter.

We shall see, in what follows, a couple of examples showing that multiple
parameters do show up in many applications and are hence nothing one
should consider to be artificial.

Let us start with examples stemming from VLSI manufacturing. Kuo
and Fuchs [267] provide a fundamental study of the spare allocation problem.
Put concisely, this “most widely used approach to reconfigurable VLSI” uses
spare rows and columns to tolerate failures in rectangular arrays of identical
computational elements, which may be as simple as memory cells or as com-
plex as processor units (see [267] for details). If a faulty cell is detected, the
entire row or column is replaced by a spare one.

This problem can be formally formulated as follows:

Problem name: spare allocation (SAP)
Given: A n × m binary matrix A representing an erroneous chip
with A[r, c] = 1 iff the chip is faulty at position [r, c]
Parameter: positive integers k1, k2

Output: Is there a reconfiguration strategy that repairs all faults and
uses at most k1 spare rows and at most k2 spare columns?

With reconfiguration strategy, we mean a prescription which rows and
columns from A have to be replaced by spares.
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1 2 3 4 5 6 7 8 9
1 ? ? ?
2
3 ?
4 ? ? ?
5
6
7 ? ?

4

7

3 3

4

7

9

1 1

Figure 3.7: A 7 × 9 array with faults “?” and the bipartite graph model

By considering A as the bipartite adjacency matrix of a graph, spare
allocation can be easily seen to be parameterized interreducible with the
following problem:

Problem name: constraint bipartite vertex cover
(CBVC)
Given: A bipartite graph G = (V1, V2, E)
Parameter: positive integers k1, k2

Output: Is there a vertex cover C ⊆ V1 ∪ V2 with |C ∩ Vi| ≤ ki for
i = 1, 2?

Consider the following example of a reconfigurable array of size 7×9 with
2 spare rows and 3 spare columns in Fig. 3.7, where faulty cells are marked
with a “?”, together with its corresponding bipartite graph, where, e.g., an
edge between 3 and 1 indicates the faulty cell in row 3 and column 1. Herein,
we omit isolated vertices.5 Obviously, the array is repairable using one spare
row (replacing row 4) and 3 spare columns (replacing columns 1, 4, 9). This
corresponds to a solution of the CBVC problem with k1 = 1 and k2 = 3, as
one can easily see. This also reflects the reduction mentioned above.

Typical examples in [267] are arrays with up to 1024 rows and 1024
columns (nowadays possibly even more) and with up to 20 additional spare
rows and columns each time (cf. their Table 1), making this problem a nat-
ural candidate for a fixed parameter approach, Kuo and Fuchs obtained the
following results. First, they showed NP-completeness for constraint bi-
partite vertex cover by reducing clique to it. Then they present two

5Alternatively, this can be seen as a reduction rule.
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heuristic algorithms, first a branch-and-bound approach which always deliv-
ers optimal results, but is only “efficient for arrays with a moderate number
of faulty cells” [267, page 29]. The second one is a polynomial time approx-
imation algorithm. By way of contrast, our FPT -approach always delivers
optimal results. Furthermore, its complexity basically depends on the num-
ber of available spare rows and columns. More details will be given in later
chapters.

It should be noted here that people developing algorithms for VLSI design
actually discovered the FPT concept in the analysis of their algorithms,
coming up with O(2k1+k2k1k2 + (k1 + k2)|G|) algorithms in [222, 278]. They
observed that “if k1 and k2 are small, for instance O(log(|G|)), then this
may be adequate.” [222, p. 157]. It was in the context of this problem that
Evans [158] basically discovered Buss’ rule to prove a problem kernel for
constraint bipartite vertex cover. Kuo and Fuchs called this step
quite illustratively the “must-repair-analysis.” The reader is encouraged to
formulate the necessary reduction rules to prove the following assertion:

Lemma 3.19 constraint bipartite vertex cover has a problem ker-
nel of size 2k1k2.

constraint bipartite vertex cover (in the disguise of spare allo-
cation) has important applications especially in the fabrication of high-end
VLSI chips: With increasing integration in chip technology, a fault-free chip
fabrication can no longer be assumed. So, fault-tolerance has to be taken into
consideration within the very fabrication process to obtain reasonable pro-
duction yields [1, 78]. These ideas are already quite old, see [348] for an early
treatment of the topic, but have continued to persist into the most recent
developments in VLSI technology. Interestingly, the most challenging (parts
of) high-end processors are the seemingly simplest of all possible VLSI chips,
namely memories due to their rapidly expanding needs; moreover, e.g., they
account for approximately 44% of transistors of the UltraSparc processor, so
that they are used as technology and yield drivers [271, 384]. One common
solution to increase yield in memory fabrication is to supply a few spare
rows and columns to each memory array. These can be used in an internal
(on-chip) or external reconfiguration phase (using lasers to “program” fuses)
where faulty array rows or columns are replaced by spare ones, cf. some re-
ports on DEC Alpha and UltraSparc processor manufacturing [46, 271, 384].

As pointed out in, e.g., [222], there are several points due to which the
problem formulated above is not a completely adequate model:

1. In the manufacturing process, the cost of repairing a chip by using
vertical movements of the repair laser may be different from that of
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Figure 3.8: Sharing repair resources

horizontal movements. This leads to a sort of weighted variant of con-
straint bipartite vertex cover. The according (pair of standard)
parameters would then be budgets for the costs of vertical and hori-
zontal laser movements, again denoted k1 and k2.

2. As indicated in Fig. 3.8, a huge memory chip may be split into smaller
blocks, each of them possibly having its own spare rows and columns.
For reasons of economy, other designs are preferred in this case, e.g.,
each spare row depicted inbetween two memory blocks can be individ-
ually used to reconfigure either the block above or the block below it.
In other words, in such complex designs, spares may be shared spares.
These can be seen in Fig. 3.8 schematically drawn inbetween different
blocks. Moreover, there may be spare rows or columns which are linked
spares, which means that such a spare can only be used to reconfigure
one certain row or column in several blocks. (Linked spares are not
shown in the Figure.) Usually, linked spares are not shared, although
this could be the case, as well. Obviously, the idea is here to reduce
the costs of chip repair.

This more general scenario introduces a further natural third parame-
ter: the number k3 of blocks of the array. The parameters k1 and k2

should then be understood as the available resources per block. This
allows us to formulate constraint bipartite vertex cover with
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shared spares.

Finally, we could create the problem constraint bipartite vertex
cover with shared spares and links with five natural parame-
ters, incorporating furthermore the numbers k4 and k5 that upperbound
the linked spare rows and the linked spare columns, resp., on the whole
board.

This example should have made clear that it is quite imaginable that a
whole lot of parameters show up in a “real problem” in a fairly natural way.
Observe that the basic assumptions concerning parameter values being small
in practice is pretty clear in this example, as well, for all five parameters.

Further examples for multi-parameter problems can be found in many
application areas. Let us now turn to a more abstract view on this topic.

Typical examples are also delivered by bicriteria problems.6 For example,
the following problem that generalizes the usual vertex cover problem is
tackled in [234] from the viewpoint of approximation:

Problem name: t-vertex cover (tVC)
Given: A graph G = (V,E)
Parameter: positive integers k and t
Output: Is there a t-vertex cover C ⊆ V with |C| ≤ k, i.e., |{e ∈
E | C ∩ e 6= ∅}| = |E| − |E(G[V \ C])| ≥ t?

Of course, choosing t = |E| yields the usual VC problem, where t is the
not considered as a parameter. However, although the approximability of
tVC is as good as the one of VC, its parameterized complexity status is
open (to our knowledge). Observe that this problem is related to profit
vertex cover discussed above, since the profit is the difference of the gain
(lowerbounded by t) and the cost (upperbounded by k) of the cover. Fur-
thermore, notice that t-vertex cover is also naturally related to vertex
cover from the point of view of the integer linear program (ILP) related to
vertex coverwhich is

min
n∑

i=1

xi

subject to

xi + xj ≤ 1, for all vivj ∈ E

6Such problems are also sometimes called MAX-MIN problems, see [42].
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where xi ∈ {0, 1} is the integrality condition. When we ignore the inte-
grality condition, we arrive at a linear program. The corresponding dual
maximization problem would be

max
m∑

j=1

yj

subject to ∑

e incident with v

y(e) ≥ 1 for all v ∈ V,

where y(e) is the variable y that corresponds to edge e. So, k and t bound
the primal and the dual entity to be optimized in a rather natural fashion.
This also shows a general technique how to obtain two-parameter versions
out of problems that can be formulated as ILP. A similar technique (how to
obtain alternative parameterizations by ILP dualization) has been discussed
above.

Further rather natural examples from graph theory also concern hitting
set: namely, as we will see, for each d, d-hitting set is fixed-parameter
tractable (parameterized by the standard parameter). But, if we consider d to
be a parameter, as well, this statement can be extended to this two-parameter
version of hitting set, giving a more uniform view on this problem. This
is discussed more deeply with a related problem motivated from networks in
Sec. 6.2.2.

3.5 Dual parameters

To formally specify what we mean by the dual of a parameterized problem,
we explicitly need a proper notion of a size function.

Definition 3.20 (Size function) A mapping size : Σ∗ ×N → N is called a
size function

• if 0 ≤ k ≤ size(I, k),7

• if size(I, k) ≤ |I| (where |I| denotes the length of the string I) and

• if size(I, k) = size(I, k′) for all appropriate k, k′ (independence).

7We deliberately ignore instances with k > size(I, k) in this way, assuming that their
solution is trivial. Moreover, it is hard to come up with a reasonable notion of “duality”
if larger parameters are to be considered.
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“Natural size functions” (in graphs, for example, these are entities as the
“number of vertices” or the “number of edges”) are independent. We can
then also write size(I).8

For clarity, we denote a problem P together with its size function size
as (P, size). To the dual problem Pd then corresponds the language of YES-
instances L(Pd) = {(I, size(I) − k) | (I, k) ∈ L(P)}. The dual of the dual of
a problem with size function is again the original problem. Sometimes, we
will call P the primal problem (distinguishing it from Pd). Then, k is the
primal parameter and kd is the dual parameter.

Let us discuss a couple of examples to explain these notions.

Example 3.21 We first return to d-hitting set. The special case d = 2 is
known as VC in undirected graphs. Let L(d − HS) denote the language of
YES-instances of d-hitting set. Taking as size function size(G) = |V (G)|,
it is clear that the dual problem obeys (G, kd) ∈ L(d − HSd) iff G has an
independent set of cardinality kd.

More precisely, if C is a hitting set of size at most |V |−kd in G = (V,E),
then V \C has at least kd many vertices and is independent, i.e., for all edges
e ∈ E, |(V \ C) ∩ e| < |e|.

Example 3.22 In Sec. 2.2, we discussed clique together with some vari-
ants.

• When taking the size function size(G) = |V (G)|, clique and ver-
tex clique complement cover become parameterized duals of
each other.

• When taking the size function size(G) = |E(G)|, clique (edge-
induced) and clique complement cover become parameterized
duals of each other.

Example 3.23 Let us turn to dominating set. Taking as size function
size(G) = |V |, it is clear that the dual problem obeys (G, kd) ∈ L(DSd) iff G
has a nonblocker set N of cardinality kd, where a set N is a nonblocker set
if, for each v ∈ N , we can find a u /∈ N such that {u, v} ∈ E(G).

So, more precisely, we deal with the following problem:

Problem name: nonblocker set (NB)
Given: A graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a nonblocker set N ⊆ V with |N | ≥ kd?

8Observe that Chen and Flum [91] are using a less restrictive notion of size function
when discussing the parameterized complexity of so-called miniaturized problems.
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Example 3.24 A cover problem related to vertex cover is the following
one:

Problem name: feedback vertex set (FVS)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer k
Output: Is there a feedback vertex set of size at most k, i.e.,

∃F ⊆ V, |F | ≤ k, ∀c ∈ C(G)(F ∩ c 6= ∅)?

Here, C(G) denotes the set of cycles of G, where a cycle is a sequence
of vertices (also interpreted as a set of vertices) v0, v1, . . . , v` such that
{vi, v(i+1) mod `} ∈ E for i = 0, . . . , `− 1.

This problem is (again) a vertex selection problem. Hence, we naturally
take size(G) = |V | as the size function. Then, the dual problem can be
described as follows.

Problem name: vertex induced forest (ViF)
Given: a (simple) graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a vertex-induced forest of size at least kd, i.e.,

∃F ⊆ V, |F | ≥ kd, C(G[F ]) = ∅?

In a similar fashion, one can define the problem feedback edge set,
where we ask if it is possible to turn a graph into a forest by deleting at
most k edges. Being an edge selection problem, the natural size function is
now size(G) = |E|. The dual problem can be hence called edge induced
forest.

Moreover, notice that both FVS and FES can be seen as graph mod-
ification problems: namely, the task is to find a set of vertices (or edges)
whose removal makes the graph cycle-free. The complexity status of these
problems different, however: FVS is known to be in FPT ; only recently,
independently two groups of researchers have found O∗(ck) algorithms for
FVS for some constant c.9

9J. Gramm and F. Rosamond, independent personal communications; the work about
which we were informed by F. Rosamond will appear in the Proceedings of COCOON
2005.
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feedback edge set can be solved in polynomial time: finding an edge-
induced forest will be done by any spanning forest algorithm. Hence, edge
induced forest is a trivial problem, as well.

By way of contrast, vertex induced forest is parameterized intractable
see [257], also cf. Chap. 9.

A somewhat related problem is the following one:

Example 3.25 Above, we already discussed the problem maximum cut.
There, the task (seen as a maximization problem that is parameterized in
the standard way) is to partition the vertices of a graph G = (V,E) into two
sets V1 and V2 so that the number of edges in

{{v1, v2} ∈ E | vi ∈ Vi for i = 1, 2}

is maximized. The natural dual problem (as also discussed in [347]) would
therefore be:

Problem name: bipartization, edge variant (BPedge)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a bipartization set C ⊆ E with |C| ≤ k whose
removal produces a bipartite graph?

Example 3.26 It is known that the following problem is in FPT , see [57] for
the currently best algorithm; the “history” of this problem is best described
in [164].

Problem name: maximum leaf spanning tree (MaxLST)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a spanning tree of G with at least kd leaves?

Being a vertex selection problem, the natural size function is the number
of vertices of G, i.e., size(G) = |V |. Hence, the dual problem can be described
as follows.

Problem name: minimum inner node spanning tree
(MinINST)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer k
Output: Is there a spanning tree of G with at most k inner nodes?
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In terms of decision problems, the latter problem can be equivalently
reformulated as follows, when observing that any set of inner nodes of a
spanning tree in a graph G forms a connected dominating set of G, and—
conversely—any spanning tree of the graph induced by a connected domi-
nating set D of G can be transformed into a spanning tree T of G with D as
the set of inner nodes of T :

Problem name: connected dominating set (CDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a connected dominating set D ⊆ V with |D| ≤ k,
i.e., D is both a connected set and a dominating set?

Without the observations of the preceding paragraph, it is not imme-
diately apparent that maximum leaf spanning tree and connected
dominating set are parameterized duals. M. Fellows mentions in [164] that
it is unlikely that connected dominating set is parameterized tractable;
more specifically, he mentions a W[2]-hardness result, see Chap. 9.

Generally speaking, it is easy to “correctly” define the dual of a problem
for selection problems as formalized in [14].

Particularly easy cases (with respect to “correctly” defining the duals)
are also bicriteria problems; the following example is of course also a vertex
selection problem:

Example 3.27 As seen in Chapter 2, independent dominating set can
be equivalently expressed as the problem minimum maximal independent
set. Hence, the dual problem can be described as follows:

Problem name: maximum minimal vertex cover (MMVC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a minimal vertex cover set of cardinality
≥ k ?

As detailed in Chap. 9, primal and dual problems often show differ-
ent behavior when examined from a parameterized perspective, also see
[163, 257, 324], although this is not alway the case, as we will see in this Ha-
bilitationsschrift. The first observation in this direction was probable made
in [285]: they observed that the parameterized dual of maximum satisfia-
bility is W[2]-hard (as problem size measure of a given CNF input formula,
the number of clauses is taken). This paper also contains an example where
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(at that time) the parameterized status of the primal problem was settled
(containment within FPT ), while the dual seemed to be open, namely max-
imum cut; here the problem size is measured in terms of the number of
edges of the graph. Observe that the dual can be seen as an “edge-version”
of bipartization discussed in Chap. 8. There, we also explain how recent
algorithmic developments actually also place the dual of maximum cut into
FPT , see Cor. 8.5.

In fact, it might be that it is possible to find parameterizations so that
both primal and dual problems show the same quality from a parameterized
perspective, namely FPT -membership: the typical phase transition scenario
(as described in [295], also see [208]) might be paraphrased as follows: if
there are very few (even relatively few) clauses in a 3-SAT instance, then
the corresponding instance is almost certainly satisfiable, and a satisfying
assignment can be rapidly found; conversely, if there are very many clauses
in a 3-SAT instance, then such an instance tends to be unsatisfiable, and
this can be quickly shown, too. This observation may be a fruitful future
research branch.

As an aside, we mention that in [295] it is also discussed for 3-SAT
(clause) how the fraction of clauses that have three literals influences the
hardness of typical instances. This might motivate the following problem:

Problem name: satisfiability problem with clauses of size
three (clause parameterization) (3-SAT)
Given: A Boolean formula F in conjunctive normal form (CNF),
with variables X, each clause having at most three literals
Parameter: a positive integer k, upperbounding the number of
clauses of size three
Output: Is there a satisfying assignment α : X → {0, 1} for F ?

In fact, this problem can be also seen as a further example of the distance
from triviality approach to parameterizing problems. If one could find a
theoretical justification of the observation that, if the fraction of clauses with
three variables is less than .4 when compared with the number of all clauses in
a given satisfiability problem with clauses of size three (clause
parameterization) instance, then the instance can be quickly solved, then
one might even think about re-parameterizing the problem satisfiability
problem with clauses of size three (clause parameterization),
by taking as parameter only the number of clauses that excess the mentioned
fraction of “large clauses” that can be still tolerated; this would surely make
sense from a practical point of view.
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Remark 3.28 We also like to mention that basically the notion of duality
has been also developed in the area of approximation algorithms under the
name of differential approximation.

Recall that, in the case of minimization problems like minimum vertex
cover, the quality of a solution mA found by algorithm A is usually mea-
sured against the value m∗ of an optimal solution by the performance ratio
mA(I)/m∗(I) for an instance I. So, in the case of minimum vertex cover,
(rather trivial) algorithms A provide a performance ratio that is upperbounded
by two, i.e., mA(I)/m∗(I) ≤ 2 for all graph instances I. Differential approx-
imation offers an alternative way to measure the quality of a solution. Let
ω(I) denote the value of the worst feasible solution of instance I. In the case
of minimum vertex cover, for a graph instance G = (V,E), the value of
a worst feasible solution is |V |. Then, the differential approximation ratio
δA is measured as follows:

δA(I) =
|ω(I) −mA(I)|
|ω(I) −m∗(I)|

In the case of minimum vertex cover, observe that A could be easily
turned into an algorithm A′ for maximum independent set, if instead of
solution C, the complement V \ C is returned. Clearly, the size of V \ C is
exactly |V \ C| = |V | − |C|. In other words, the differential approximation
ratio of A is nothing else than the (inverse of the) performance ratio of A′

(the inversion is due to the “inversed definition” of performance ratio for
maximization problems). Results on (the more general) minimum hitting
set can be found in [39], where also pointers to the relevant literature can be
seen.

From a parameterized perspective, this means that measuring the differen-
tial approximation ratio instead of the performance ratio means to consider
the dual of the standard parameterization.

This also gives an idea how to properly define the dual of a weighted
problem, as weighted vertex cover: the dual parameter would be kd =∑

v∈V ω(v)− k, where ω is now the vertex weight function. In fact, the value
of a maximum independent set of instance (G = (V,E), ω) is then again the
weight of the complement of a minimum vertex cover of that instance.

We would finally like to point once more to [208], as well as to [236], where
the concept of duality is discussed in a very broad sense; this might indeed
give additional insights how to find suitable parameterizations for concrete
problems.



Chapter 4

Kernels

In [134], the idea to get small problem kernels is somehow depreciated by
calling it an ad hoc method. Although in some respects this idea still deserves
this title (there is still no standard way of arriving at small kernels, but rather
a collection of ways to get there), it could be also called the core methodology
for arriving at parameterized algorithms.1

Mathematically, this is justified by Theorem 2.4: a problem is parame-
terized tractable if and only if it can be kernelized. So, while other methods,
especially the search tree method as detailed in Chapter 5, might fail to pro-
duce parameterized algorithms for problems in FPT , we can be sure that
the kernelization technique will always work, at least in principle. Unfor-
tunately, the proof of Theorem 2.4 does not provide efficient kernelizations,
i.e., the resulting kernels could be rather huge.

From a practical point of view, kernelization could be also called the core
methodology, although in a different sense: most (efficient) kernelizations are
based on simple data reduction rules, i.e., local heuristics meant to simplify
the problem. This can also open up a potentially fruitful dialog between prac-
titioners and mathematicians, since kernelization may be a way to explain
why certain heuristics do work so well in practice. This actually justifies the
assertion “Eureka, you shrink” by Woeginger [378].

How do we measure the quality of a kernelization algorithm? Formally,
this depends on the choice of the function “size” with which we measure the
size of an instance. In this chapter, we mostly prefer to give this function in
an implicit form. However, if we think ambiguities might arise, we will be
more precise.

How can we turn a kernelization algorithm into an FPT algorithm? Usu-

1Notice, however, that in particular for maximization problems that are parameter-
ized in the standard way, ideas from extremal combinatorics do now provide a certain
methodological approach for getting small kernels, as exhibited in [323].

91
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ally, after the kernelization phase, there will be an exhaustive search phase.
This exhaustive phase can be either based on (often quite elaborated) search
tree techniques (as detailed in the following Chapter 5) or on brute force.
Brute force means in our case (i.e., mostly dealing with graph problems that
are either vertex or edge selection problems) to try all possible subsets of size
k of vertices or of edges. Here, the following combinatorial lemma comes in
quite handy. More precisely, for algorithms derived from linear kernels, the
following lemma (based on Stirling’s formula) is quite handy and often gives
a considerably smaller bound than the “naive” 2ak:

Lemma 4.1 For any a > 1,
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for large enough k. (If a is not an integer, we can use general binomial
coefficients based on the Gamma function.)

A nice exposition of the current state of the art with many examples can
be found in the recent PhD thesis of E. Prieto [323].

In the rest of this Habilitationsschrift, we are mostly sloppy when it comes
to the issue of defining kernelizations. The issue of reduction rules and how
they lead to kernelizations is discussed in Sec. 4.1. How to actually obtain
reduction rules is shown in various examples in the following sections. One of
the simplest heuristic strategies is based on greedy approaches. Sometimes,
this strategy also works to devise reduction rules, as explained in Sec. 4.2.
Another idea to obtain reductions is to look if certain entities are particularly
big or small. This is discussed in Sec. 4.3, in particular referring to facil-
ity location and to maximum knapsack, minimum weight. Sec. 4.4
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describes how to use (rather) deep mathematical results to obtain small ker-
nels, mainly based on variants of coloring theorems. We will also discuss two
problems related to dominating set: nonblocker set and dominat-
ing set of queens. Sec. 4.5 revisits again kernelization rules for vertex
cover. In Sec. 4.6, we discuss a kernelization example that is far from triv-
ial: planar dominating set. Sec. 4.7 discusses a novel, still tentative
idea in kernelization algorithmics that might be fruitful for future research:
kernelization schemes. We conclude this chapter with Sec. 4.8, where we dis-
cuss the differences of the approach to preprocessing taken by parameterized
algorithmics to the one favored by the theory of compilability.

4.1 Reduction rules

In fact, it will be quite an exception if the kernelization function is explic-
itly given. This is due to the fact that kernelizations are usually given by a
collection R of so-called reduction rules. Reduction rules are usually simple
processing rules that somehow simplify the given instance by local modifica-
tions; usually, they can be computed even in linear time. A reduction rule R
takes the following form, when applied to the instance (I, k): if I satisfies
some conditions cR(I, k), then modify (I, k), yielding (I ′, k′) = R(I, k). We
also say that R is an applicable rule if cR(I, k) is true.

An instance to which none of the reduction rules from R is applicable is
also called a reduced instance (with respect to R).

Given such a collection R, these rules implicitly define a kernelization by
a procedure similar to the one listed in Alg. 5.

Algorithm 5 A generic kernelization algorithm from reduction rules

Input(s): a collection R of reduction rules
Output(s): kernelization function K[R]

Let (I ′, k′) = (I, k).
while ∃R ∈ R : cR(I ′, k′) is true do

Choose some R ∈ R such that cR(I ′, k′) is true
Update (I ′, k′) := R(I, k)

end while
return (I ′, k′)

Let us call a reduction R a proper reduction if, for all instances (I, k) on
which R is applicable, the resulting instance (I ′, k′) = R(I, k) satisfies

• size(I ′) < size(I) and k′ = k, or
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• size(I ′) = size(I) and k′ < k.

For collections R of proper reductions, it is clear that the kernelization K[R]
can be computed in polynomial time. It can be also seen that in that case,
only proper kernelizations will be produced.

Actually, we can relax the condition on R a bit, still getting polynomial
time computable kernelizations K[R]: we only have to ensure that reduction
rules that are not proper will be only applied at most some predefined fixed
number of times.

Let us make the point that it is crucial that, given a set R of reduction
rules, a successful application of one reduction rule may enable the applica-
tion of another reduction rule. A good example for this mutual triggering
of reduction rules is given in Ex. 2.21 for hitting set. This possibility is
the reason why special care has to be taken when proving the correctness
of reduction rules. Related to hitting set, we mention from the litera-
ture that the original algorithm for simplifying so-called Hitting Set trees as
introduced by Reiter [331] turned out to be flawed [214], since the possible
interaction between the proposed reduction rules was not properly taken into
consideration.

4.2 Greedy approaches

In the case of a standard parameterization (for maximization problems),
greedy algorithms have turned out to be quite useful.

As a very simple example, let us consider the following problem. Recall
that an independent set I ⊆ V of a graph G = (V,E) satisfies:

∀u, v ∈ I : {u, v} /∈ E.

Problem name: planar independent set (PIS)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there an independent set I ⊆ V with |I| ≥ k?

Furthermore, recall that each planar graph has at least one vertex of
degree at most five (this is a consequence of Euler’s formula, see [Chapter 11,
Site 6]).

Therefore, the following algorithm either finds a sufficiently large inde-
pendent set or the scanned graph has no more than 6k − 6 vertices.

The loop invariant [+] can be easily proved by induction, so that the
correctness of the algorithm is clear.
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Algorithm 6 Greedy kernelization for planar independent set

Input(s): planar graph G = (V,E), positive integer k
Output(s): either independent set I with |I| = k or |V | ≤ 6(k − 1)

G′ := G
i := 0
I := ∅
while V (G′) 6= ∅ and i < k do

5: pick vertex v ∈ V (G′) of smallest degree
G′ := (G′ −N [v]) {|N [v]| ≤ 6 (∗)}
i := i+ 1
I := I ∪ {v}
{I is an independent set of size i in G. [+]}

10: end while
if i = k then
I is an independent set of size k in G.

else {V (G′) = ∅ and i < k}
{Due to (∗), no more than 6(k − 1) have been taken out before “ex-
hausting” V .}

15: end if

Without giving explicit formulations of the algorithms, we mention that
a couple of maximization problems, when restricted on planar graphs and
parameterized in the standard way, can be solved by greedy kernelization,
amongst them maximum minimal vertex cover and maximum minimal
dominating set, a problem defined as follows:

Problem name: maximum minimal dominating set (MMDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a minimal dominating set of cardinality
≥ k ?

Observe that, in the case of MMDS, we do not need a “small degree guar-
antee” on so-called black-white graphs that are treated in detail in Sec. 5.3.2.
Rather, Alg. 6 could be literally seen as a kernelization algorithm for max-
imum minimal vertex cover and for MMDS, as well. Namely, if that
algorithm (run on graph G) comes up with an independent set I after k steps,
then this set can be greedily augmented to give a minimal vertex cover or
a minimal dominating set. The only crucial observation is that I does not
contain a proper subset already dominating G[I], since E(G[I]) = ∅. Hence,
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the answer YES can be justified in that case. In the other case, we have seen
that there are less than 6k vertices in G.

More uses of the greedy idea can be found in the literature; more specifi-
cally, it has been successfully applied, e.g., in [110], to show certain properties
of a problem kernel by means of arguments based on so-called greedy local-
ization.

4.3 Large is no good (or too good)?!

In fact, the previous section could also take this headline, because there, for
maximization problems, a problem that is too large meant it was a trivial
YES-instance. (We will more examples along these lines below.) In the case
of minimization problems, we rather have a local kernelization rule; then,
something must happen in order to prevent the instance becoming a NO-
instance.

In this spirit, we can also reconsider vertex cover: Buss’ rule can be
seen as implementing a local version of the idea of tackling “large instances.”
Namely, here a local version of the idea of looking at large instances applies;
a vertex is “large” if its degree is larger than k; such vertices must belong to
any k-vertex cover (if such a small cover exists at all). Due to the simplicity
of this idea, the same rule basically also applies to enumeration and counting
versions of vertex cover, as discussed in Chap. 8. Interestingly, this rule is
also valid for different problems, as for the (parametric) dual of the maximum
irredundant set problem, see [135] for details. It is also instructive to
observe how Buss’ rule is changed for the maximization version maximum
minimal vertex cover: whenever we encounter a vertex v of degree at
least k, we now know we have a YES-instance of MMVC, since putting N(v)
(but not v) into the cover C (and then greedily supplementing C to actually
become a valid vertex cover) will justify this answer. However, the small-
degree rule would stay the same, since putting an isolated vertex into a cover
would render it non-minimal. We summarize our observations below:

Reduction rule 12 Delete isolated vertices (and leave the parameter un-
changed).

Reduction rule 13 If v is a vertex of degree greater than k in the given
graph instance (G, k), then answer YES.

Theorem 4.2 maximum minimal vertex cover admits a kernel of size
k2 (measured in terms of number of vertices).
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As an aside, let us mention that this puts maximum minimal vertex
cover into FPT , while it is known [134, page 464] that its parameterized
dual independent dominating set is W[2]-complete, i.e., most likely not
in FPT .

The possibly simplest example for this principle for obtaining kernels is
given by:

Problem name: minimum partition (PART)
Given: A finite set X = {x1, . . . , xn}, a weight function w : X →
R≥1

Parameter: k ∈ N
Output: Is there a set Y ⊂ X such that

max{
∑

y∈Y
w(y),

∑

z /∈Y
w(y)} ≤ k ?

The problem is therefore to partition the set X into two bins Y , X \ Y
such that the accumulated weights in both bins is as close to one half of the
overall weight

w(X) =
∑

x∈X
w(x)

as possible. Note that we are using the standard parameterization of the
minimization problem minimum partition.

Now, consider the following rule designed after the principle of looking at
large instances:

Reduction rule 14 If k < w(X)/2, then NO.

The correctness of this rule is easily seen: if it would be possible to put
fractions of items into the bins, then it would be possible to put equal weights
in both bins, i.e., w(X)/2 weight in each bin. If fractions are disallowed (as
according to the problem definition), then the obtained values

max{
∑

y∈Y
w(y),

∑

z /∈Y
w(y)} ≤ k

could not decrease.

Lemma 4.3 If (X,w, k) is an instance of minimum partition that is re-
duced according to Rule 14, then |X| ≤ 2k and w(X) ≤ 2k. Hence, there is
a small problem kernel for PART.
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Let us now reconsider now facility location, using the matrix notation
introduced in Sec. 3.2.2 The following observation is easy but crucial:

Reduction rule 15 (FL-R0) If a given instance (M, k) with M ∈ N(n+1)×m

obeys n > k, then NO.

Lemma 4.4 Rule 15 is sound.

Proof. Each customer must be served. Since edges have positive integer
weights, each customer thus incurs “serving costs” of at least one unit. Hence,
no more than k customers can be served.

Lemma 4.5 After having exhaustively applied Rule 15, the reduced instance
(M, k) will have no more than k rows.

Proof. By the definition of the problem, each customer has to be served,
and serving some customer will cost at least one “unit.” Hence, a budget of
k units helps serve at most k customers.

A facility location f is described by the vector vf = M [0 . . . n][f ]. These
vectors can be componentwisely compared.

Reduction rule 16 (FL-R1) If for two facility locations f and g, vf ≤ vg,
then delete g; the parameter stays the same.

Lemma 4.6 Rule 16 is sound.

Proof. Obviously, a solution to the FL-R1-reduced instance is also a
solution to the original instance. If we had a solution S to the originally
given instance which contains a facility g and there is another facility f such
that vf ≤ vg, then a solution S ′ obtained from S by choosing facility f instead
of g (and choosing to serve any customer served by f in S to be served by g
in S ′) will also be a valid solution which comes at no greater cost. This way,
we can gradually transform S into a solution which is also a valid solution
to the FL-R1-reduced instance and has no larger costs than S.

Central to the complexity class FPT is the concept of kernelization, since
it characterizes FPT . We first provide a “quick classification” of facility
location in FPT based on well-quasi-orderings.

Theorem 4.7 facility location is fixed-parameter tractable.

2What follows is part of unpublished work with M. Fellows.
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Proof. We show that, after having exhaustively applied FL-R0 and FL-R1,
we are left with a problem of size f(k). Let (M, k) be a (FL-R0,FL-R1)-
reduced instance. By Lemma 4.5, we know that M contains no more than k
rows, since (M, k) is FL-R0-reduced. Each facility is therefore characterized
by a (k + 1)-dimensional vector. Since (M, k) is FL-R1-reduced, all these
vectors are pairwise uncomparable. According to Dickson’s Lemma [127]
these could be only finitely many, upperbounded by some function g(k).
Hence, M is a matrix with no more than (k + 1)g(k) entries.

The function f(k) derived for the kernel size in the previous theorem is
huge, yet it provides the required classification. So, we would not claim that
we actually arrived at an efficient algorithm for FL.

To obtain a better algorithm, observe that a solution can be viewed as a
partition of the set of all customers into groups such that customers within
the same group get served by the same facility. In actual fact, a solution
specified by the selected facilities and selected serving connections can be
readily transformed into this sort of partition. Also the converse is true:
given a partition of the set of customers, we can compute in polynomial time
which the cheapest way to serve this group by a certain facility is, so that an
optimal solution (given the mentioned partition) in the sense of specifying
the selected facilities and the chosen serving connections can be obtained.

This model immediately allows to derive the following result:

Lemma 4.8 facility location can be solved in time O(kkp(g(k)) + |M |)
(where p is some polynomial and g(k) bounds the number of facilities) given
some instance (M, k).

Proof. The kernelization rules FL-R0 and FL-R1 can be applied in time
O(|M |). Then, we have to check all partitions (there are actually o(kk) many
of them; more precisely, this is described by Bell’s number whose asymptotics
is due to de Brujn (1958), see [Chapter 11, Site 2]) and for each partition, we
have to compute its cost incurred by the assumption that each group in the
partition is served by one facility. Hence, per partition p(g(k)) computations
have to be performed.

Still, this algorithm is practically useless due to the huge constants. Let
us now develop a better algorithm.

Let us first focus on kernelization.

Reduction rule 17 (FL-R2) If in an instance (M, k) there is a customer
such that the total cost for serving this customer c (given by the sum of
installation cost of a particular facility f and the serving cost of c via f) is
larger than k, no matter which facility is picked, then NO.
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The following is obvious.

Lemma 4.9 FL-R2 is sound.

Lemma 4.10 An instance (M, k) of facility location that is reduced
according to FL-R0, FL-R1, and RL-R2 obeys |M | ≤ k3k+1.

Proof. Let (M, k) be an instance reduced according to FL-R0, FL-R1
and FL-R2. Each customer can assign, from its personal perspective, a two-
dimensional vector to each facility, consisting of the costs of the facility and
the costs of the corresponding service connection. The sum of both costs
is bounded by k due to FL-R2. In the view of a particular customer, two
facilities are indistinguishable if they incur the same vector. There are no
more than k3 many of these vectors. Therefore, k3k many groups of facilities
may occur, such that two facilities in each group are indistinguishable by any
of the customers. Since (M, k) is FL-R1-reduced, each such group contains
at most one facility. Hence, M has no more than k3k+1 many entries.

Let us now turn our attention to one of the two variants of maximum
knapsack discussed in Chap. 3:

Problem name: maximum knapsack, minimum weight
(KSMW)
Given: n items {x1, . . . , xn} with sizes si and profits pi, the knap-
sack capacity b, and the profit threshold k. All numbers are natural

numbers encoded in binary.

Parameter: b
Output: Is there a subset of items which yield a profit larger than
k and has an overall size of less than b?

We show by elaborating on maximum knapsack, minimum weight
how some relatively simple combinatorial observations can be used to obtain
a kernel. Notice that, along with the combinatorics, we will develop some
reduction rules of the form:

if a certain entity is too big then
NO

end if

We will not specify these rules in explicit form.
First of all, one can get rid of all items whose size is larger than b, because

they will never belong to any feasible solution.
Then, there can be at most one item of size b, one item of size b− 1, . . . ,

and at most one item of size d(b+1)/2e. Moreover, there can be at most two
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items of size bb/2c, . . . , up to size d(b + 2)/3e, etc. Hence, if there are say
more than two items of size bb/2c, then we only have to keep the two most
profitable of those. This rule leaves us with a collection of f(b) items in the
reduced instance.

However, this does not directly give us a problem kernel, since there are
two more things to be specified: the sizes of the items and their profits. Since
we already removed all items of size larger than b, the sizes of the items can
be specified with log(b) bits each.

As to the profits, the following two observations are helpful:

• An instance I ′ of maximum knapsack, minimum weight that is
obtained from another instance I of maximum knapsack, minimum
weight by simple scaling of all profits by a constant scaling factor c
has an optimal solution of value p′ iff I has an optimal solution of value
p with p′ = cp. The number of bits needed to specify I ′ is only linearly
dependent on the number of bits needed to specify I and of c. We
can therefore assume that all profits are integer values greater than or
equal to one.

• If the largest profit pi among all items is bigger than the sum of the
profits of all other items, then the item xi must be put into any solution
of maximum profit. We can hence continue with the task of solving the
“remaining” instance, where the parameter b would be reduced by the
size si of xi.

So, if p1, p2, . . . , p` with ` ≤ f(b) are sorted increasingly according to
size, then p1 = 1, and pj ≤

∑j−1
i=1 pi for j = 2, . . . , ` ≤ f(b). Hence, also

the largest profit is upperbounded by some function g(b).

This allows us to conclude:

Theorem 4.11 maximum knapsack, minimum weight admits a problem
kernel; hence, it is solvable in FPT -time.

The opposite strategy is often also helpful: look into local situations that
are small and therefore easy to solve. For example, returning again to the case
of vertex cover, we developed reduction rules for vertices of degree zero.
Further rules for vertices of degree one or two are useful for the development
of search tree algorithms, see Chap. 5; a good overview on VC reduction
rules is contained in [3].
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4.4 The mathematical way

4.4.1 Colorful kernelizations

Mathematical knowledge sometimes provide kernelization results that are in
a certain sense cheating, since they are not requiring any reduction rules but
rather tell you that “large instances are trivially solvable” (in case of param-
eterizations deduced from maximization problems) or that “large instances
are impossible.” Hence, this section also provides more examples along the
lines of the previous one: large is good (or bad).

Let us first turn toward planar independent set, again. One of the
best-known non-trivial results on planar graphs is the following one:

Theorem 4.12 (Four Color Theorem) Every planar graph is 4-colorable.

The best WWW resource on this famous theorem is surely [Chapter 11,
Site 7]. There, the new proof of that theorem published in [338] is outlined,
which is considerably simpler than the original one that was derived by Appel,
Haken and Koch in [25, 26]. Besides being a simplification, [338] also contains
a rather explicit formulation of a quadratic-time algorithm to construct a 4-
coloring, given a planar graph as input.

By definition of a coloring, every vertex set that has the same color is an
independent set. This is the basic idea for Algorithm 7:

Algorithm 7 Color-based kernelization for planar independent set

Input(s): planar graph G = (V,E), positive integer k
Output(s): either independent set I with |I| = k or |V | ≤ 4(k − 1)

Find a 4-coloring of G, formalized as a mapping c : V → {1, 2, 3, 4}.
Let Vi = {v ∈ V | c(v) = i}.
Let V ′ be the largest among the Vi.
{Each coloring is an independent set.}

5: if |V ′| ≥ k then
return I ⊆ V ′ with |I| = k

else
{∀ colors i: |Vi| ≤ k; hence, |V | ≤ 4(k − 1)}

end if

Hence, we can conclude (using as a size function for the (kernel) instance
the number of vertices):

Corollary 4.13 There is a quadratic-time algorithm for deriving a kernel
for planar independent set of size at most 4k − 4.
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Proof. Algorithm 7 satisfies the claim. In particular, since we would choose
the biggest amongst the colorings, |V | ≤ 4(k − 1) whenever the algorithm
does not already produce a sufficiently large independent set.

Observe the either-or structure of the kernelization algorithm 7:

• either: there is a large enough coloring which we can return as a solution
to our problem,

• or: all colorings are small, which means that there are only a few
vertices in the graph.

Notice one special feature of this kernelization: if we only aim at a the
decision version of planar independent set (as according to the definition
of the problem), we can substitute Alg. 7 by the following rule:

Reduction rule 18 If (G, k) is an instance of planar independent set
and if |V (G)| > 4k, then YES.

This shows that the fact that there is an efficient algorithm for getting a
four-coloring is not important to this problem, so that the kernel (as such)
can be even derived in linear time.

Observe that Alg. 7 (or the reduction rule just discussed) can again be
also read as a 4k-kernelization algorithm both for maximum minimal ver-
tex cover and for maximum minimal dominating set, following the
reasoning given above. More precisely, the idea would be (say for MMVC)
to greedily extend the largest color class C to a minimal vertex cover (if
|C| ≥ k, where k is the parameter of the MMVC instance).

Corollary 4.14 There is a quadratic-time algorithm for deriving a kernel
for maximum minimal vertex cover, restricted to planar instances, of
size at most 4k − 4.

Observe that Theorem 4.2 only delivered a quadratic kernel for general
graph instances.

Corollary 4.15 There is a quadratic-time algorithm for deriving a kernel
for maximum minimal dominating set, restricted to planar instances, of
size at most 4k − 4.

Other coloring theorems can be used to derive similar results. For exam-
ple, 3 Ringel [335] considered graphs that corresponds to maps embedded on

3This notion is different from so-called map graphs that have been made popular by
the papers [92, 93].
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a sphere that are defined as follows: the vertices of these graphs correspond
to either regions or points that do not belong to the open edges separating
to regions. Two regions or points are neighbored if they share an edge; and
this gives the edge relation of the corresponding graph.

Theorem 4.16 Graphs that are derived from maps in the way described
above can be colored with at most seven colors.

In fact, Ringel showed a stronger result by allowing certain crossings
in the drawing of the map. We omit details here. Anyhow, Alg. 7 can be
easily modified to get a 7k kernel for independent set, restricted to graphs
derived from maps as described by Ringel.

Ringel (and later Kronk and Mitchem [265]) also considered a different
kind of graph derivable from maps on the sphere, where also edge (bound-
aries) are considered as vertices of the derived graph; again, a coloring theo-
rem is derived.

This schematics is typical for kernelization algorithms based on theorems
known from combinatorics. We will encounter more examples along these
lines in what follows.

A similar, color-based linear kernel can be shown for vertex induced
forest, which is:

Problem name: vertex induced forest in planar graphs
(PViF)
Given: a (simple) planar graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a vertex-induced forest of size at least kd, i.e.,

∃F ⊆ V, |F | ≥ kd, C(G[F ]) = ∅?

Namely, Borodin [59] managed to prove the following (former) conjecture
of Grünbaum:

Theorem 4.17 [Borodin] Every planar graph is acyclically 5-colorable.

To properly understand this theorem, let us introduce the following notion
according to Borodin:

Definition 4.18 A coloring of a graph is called an acyclic coloring, if every
bichromatic subgraph that is induced by this coloring is a forest (i.e., an
acyclic graph).
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The proof of Theorem 4.17 is constructive and gives a polynomial-time
algorithm, but this is not essential, since we could also cast Theorem 4.17
into a reduction rule:

Reduction rule 19 If an instance (G, kd) of vertex induced forest has
more than 2.5kd − 2.5 vertices, then YES.

Algorithm 8 Color-based kernelization for vertex induced forest

Input(s): planar graph G = (V,E), positive integer kd
Output(s): either induced forest F with |F | = kd or |V | ≤ 2.5(kd − 1)

Find an acyclic 5-coloring of G, formalized as a mapping c : V →
{1, 2, 3, 4, 5}.
Let V{i,j} = {v ∈ V | c(v) = i ∨ c(v) = j}.
Let V ′ be the largest among the V{i,j}.
{Each bichromatic subgraph induces a forest.}

5: if |V ′| ≥ kd then
return F ⊆ V ′ with |F | = kd

else
{∀ colors i, j: |V{i,j}| ≤ kd; hence, |V | ≤ 5/2 · (kd − 1)}

end if

Algorithm 8 (or likewise the mentioned reduction rule) provides a proof
for the following assertion:

Corollary 4.19 There is a polynomial-time algorithm for deriving a kernel
for vertex induced forest, given instance (G, kd), of size (measured in
terms of number of vertices of the reduced graph) at most 2.5kd − 2.5.

Remark 4.20 There exist different bounds on the size of vertex-induced
forests for other classes of graphs, as well. Alon [19] mentions the following
bounds and classes:

• If G is an n-vertex graph with average degree of at most d ≥ 2, then it
contains a vertex-induced forest with at least 2n/(d+ 1) vertices.

• There is a positive constant b such that, if G is a bipartite n-vertex
graph with average degree of at most d ≥ 1, then it contains a vertex-
induced forest with at least (.5d+ e−bd

2
)n vertices.

• Furthermore, he reproduces a conjecture of Albertson and Haas who
supposed that every planar, bipartite n-vertex graph contains a vertex-
induced forest with at least 5n/8 vertices, a result that would improve
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on Cor. 4.19 in the case of bipartite planar graph considerably, yielding
a kernel of 1.6kd for PViF restricted to bipartite graphs.

4.4.2 nonblocker set

The results of this section are based on unpublished work with F. Dehne, M.
Fellows, E. Prieto and F. Rosamond.

We now consider the problem nonblocker set:

Problem name: nonblocker set (NB)
Given: A graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a nonblocker set N ⊆ V with |N | ≥ kd?

Ore [314] has shown (using different terminology) that NB admits a kernel
of size 2kd on graphs of degree at least one. This was improved by McCuaig
and Shepherd [291] for graphs with minimum degree two; in fact, their re-
sult was a sort of corollary to the classification of graphs that satisfy Ore’s
inequality with equality. Independently, this result was already discovered
by the Russian mathematician Blank [50] more than fifteen years ago, as
noticed by Reed in [329].

More precisely, their results reads as follows:

Theorem 4.21 If a connected graph G = (V,E) has miniminum degree two
and it not one of seven exceptional graphs (each of them having at most seven
vertices), then the size of its minimum dominating set is at most 2/5 · |V |.

How can we use the mentioned results to get a small kernel? Obviously,
we have to design reduction rules to cope with vertices of small degree. Un-
fortunately, this is not quite sufficient in our case; more precisely, we don’t
know how to cope with vertices of degree one. Intuitively, it looks as if one
should take (if possible) vertices of degree one into the nonblocker set. In
other words, its neighbor should go into the dominating set. But how can
we make this sure by means of a reduction? Here, the idea of introducing a
so-called catalytic vertex comes into play. In our example, a catalytic vertex
is a vertex that we assume to go into the dominating set (not to go into the
nonblocker set). So, we are rather dealing with the following problem:
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Problem name: nonblocker set with catalytic vertex
(NBcat)
Given: A graph G = (V,E), a catalytic vertex c
Parameter: a positive integer kd
Output: Is there a nonblocker set N ⊆ V with |N | ≥ kd such that
c /∈ N?

We now propose the following reduction rules:

Reduction rule 20 Let (G, c, kd) be an instance of nonblocker set with
catalytic vertex. If C is a complete graph component of G that does not
contain c, then reduce to (G− C, c, kd − (|C| − 1)).

Observe that the previous rule is in particular applicable to isolated ver-
tices. It also applies to instances that don’t contain a catalytic vertex. The
soundness of the rule is easy to see; a formal proof is contained in [323].
Notice that this rule alone gives a 2kd kernel for general graphs with the
mentioned result of Ore (details are shown below).

Reduction rule 21 Let (G, c, kd) be an instance of nonblocker set with
catalytic vertex. Whenever you have a vertex x ∈ V (G) whose neigh-
borhood contains a non-empty subset U ⊆ N(x) such that N(U) ⊆ U ∪ {x}
and c /∈ U , then you can merge x with the catalytic vertex c and delete U
(and reduce the parameter by |U |).

This rule is a bit more tricky, but the basic idea that c is used to annotate
a vertex of the dominating set should be clear: it simply makes no sense to
put any of the vertices from U into the (minimum) dominating set (that we
implicitly construct when building up a (maximum) nonblocker set), since
x will dominate at least those vertices as any of the vertices from U would
do. In fact, we shouldn’t apply that rule for very large neighborhoods, since
it might be quite time-consuming to test all subsets as required (in order
to make sure that the rule is no longer applicable). However, only small
neighborhoods will suffice for our analytic purposes, as we will see.

We have actually found a reduction rule that can also cope with two
consecutive vertices of degree two and hence eliminate all exceptional graphs
of Theorem 4.21 (since all of them have this property).

However, from the point of view of systematics, it is more interesting
how to first of all introduce a catalytic vertex (to produce a genuine NBcat
instance from the original nonblocker set instance) and then to get rid
of the catalysts again (to be able to apply Theorem 4.21:
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catalyzation rule If (G, kd) is an instance of nonblocker set with G =
(V,E), then (G′, c, kd) is an equivalent instance of nonblocker set
with catalytic vertex, where c /∈ V is a new vertex, and G′ =
(V ∪ {c}, E).

decatalyzation rule Let (G, c, kd) be an instance of nonblocker set
with catalytic vertex. Then, perform the following surgery to
get a new instance (G′, k′d) of nonblocker set:

Connect the catalytic vertex c to three new vertices u, v, and w by
edges; moreover, introduce new edges uv and vw. All other vertices
and edge relations in G stay the same. This describes the new graph
G′. Set k′d = kd + 3. You may then forget about the special role of the
catalyst. The surgery is described in Fig. 4.1.

k

u wv

catalytic vertex

c

k’=k+3

Figure 4.1:

The overall kernelization algorithm for a given nonblocker set instance
(G, kd) is then the procedure listed in Alg. 9.

Without further discussion, we only mention those reduction rules that
can be used to get rid of all consecutive degree-2-vertices in a graph:

Reduction rule 22 Let (G, c, kd) be an instance of NBcat. Let u, v be two
vertices of degree two in G such that u ∈ N(v) and |N(u) ∪ N(v)| = 4, i.e.,
N(u) = {u′, v} and N(v) = {v′, u} for some u′ 6= v′. If c /∈ {u, v}, then
merge u′ and v′ and delete u and v to get a new instance (G′, c′, kd − 2). If
u′ or v′ happens to be c, then c′ is the merger of u′ and v′; otherwise, c′ = c.

Reduction rule 23 Let (G, c, kd) be an instance of NBcat, where G =
(V,E). Assume that c has degree two and a neighboring vertex v of degree
two, i.e., N(v) = {v′, c}. Then, delete the edge vv′. Hence, we get the new
instance ((V,E \ {vv′}), c, kd).
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Algorithm 9 A kernelization algorithm for nonblocker set

Input(s): an instance (G, kd) of nonblocker set
Output(s): an equivalent instance (G′, k′d) of nonblocker set with
V (G′) ⊆ V (G), |V (G′)| ≤ 5/3 · k′d and k′d ≤ kd OR YES

if G has more than seven vertices then
Apply the catalyzation rule.
Exhaustively apply Rules 20 and 21 for neighborhoods U up to size two.
Apply the decatalyzation rule.
{This leaves us with a reduced instance (G′, k′d).}
if |V (G′)| > 5/3 · k′d then

return YES

else
return (G′, k′d)

end if
else

Solve by table look-up and answer accordingly.
end if

Notice that really all cases of two subsequent vertices u, v of degree two
are covered in this way:

• If u or v is the catalytic vertex, then Rule 23 applies.

• Otherwise, if u and v have a common neighbor x, then Rule 21 is
applicable; x will be merged with the catalytic vertex.

• Otherwise, Rule 22 will apply.

Let us finally mention that the kernelization rules we developed for non-
blocker set are rather independent of the parameter, so that they can be
also applied when solving maximum nonblocker set or even minimum
dominating set. Hence, they can be read as important practical heuristics
for minimum dominating set algorithms, although we cannot expect FPT
results for dominating set in the general case, see Chap. 9.

Corollary 4.22 Alg. 9 provides a kernel of size at most 5/3 · kd for a given
instance (G, kd) of nonblocker set, where the problem size is measured in
terms of the number of vertices.

Let us do our computations a bit more generally, as a plug-in. Assume
we have a theorem telling us that all graphs in a graph class G obey that
the domination number γ(G) satisfies γ(G) ≤ c|V (G)| for all G ∈ G. Then,
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given a graph G from our class and a parameter k, we can answer YES to the
question if G has a dominating set of size at most k whenever k > c|V (G)|.
Hence, given G from our class and a parameter kd, we can answer YES to the
question if G has a nonblocker set of size at least kd whenever (|V (G)|−kd) >
c|V (G)|, or if kd < (1− c)|V (G)|. Otherwise, we don’t know the answer, but
we know that kd/(1 − c) ≥ |V (G)|. So, we have a kernel size of kd/(1 − c),
measured in terms of the number of vertices ofG. With the result of McCuaig
and Shepherd, we have c = 2/5, so that the corollary follows.

Together with Lemma 4.1, we can conclude:

Corollary 4.23 By testing all subsets of size kd of a reduced instance (G, kd)
of nonblocker set, this problem can be solved in time O∗(3.0701kd).

A slightly improved running time analysis will be presented in Chap. 10.

From an algorithmic perspective, the fact that the domination number
of a graph without isolated vertices is bounded by its edge independence
number [372, Theorem 1] could be also useful to get a smaller kernel for
nonblocker set; observe that the edge independence number is just the
size of a maximum matching which can be computed in polynomial time.

Observe that Rule 21 may destroy planarity, since merging vertices from
different parts of a graph may create a K5 or a K3,3 as a substructure that
has not been there before. Therefore, we cannot rely anymore on Cor. 4.22
if we insist on having a planar reduced graph. However, as the reader may
verify, all other rules for nonblocker set do preserve planarity. As already
mentioned above, Ore proved in [314, Theorem 13.1.3] c=.5 for graphs of
minimum degree one. Of course, we can deal with vertices of degree zero by
a reduction rule that does not affect planarity, namely Rule 20. Hence, we
can conclude:

Corollary 4.24 nonblocker set, restricted to the planar case, admits a
planar kernel graph with at most 2kd vertices.

Ore’s construction is quite instructive and can be found in Alg. 10. We
believe that spanning tree techniques can be used in other kernelization prob-
lems, as well. We mention one more application in the following: maximum
minimal vertex cover. Observe that we have already treated this prob-
lem for the special case of planar graph inputs. Hence, the kernelization based
on spanning trees is yielding not only smaller kernels (as we will see) but also
more general results regarding the FPT membership of these problems.

We basically have to see how to treat isolated vertices.
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Algorithm 10 A kernelization algorithm for nonblocker set, also appli-
cable to the planar case

Input(s): an instance (G, kd) of nonblocker set
Output(s): an equivalent instance (G′, k′d) of nonblocker set with
V (G′) ⊆ V (G), |V (G′)| ≤ 2k′d and k′d ≤ kd OR YES; in the latter case,
also a solution A is constructed.

Exhaustively apply reduction rule 20. Call the resulting instance G again.
Compute a minimum spanning tree for each component of G.
for all component C do

Pick an arbitrary root rC of the spanning tree TC belonging to C.
Collect in LiC all vertices of TC having distance i from rC , where the
distance is measured in TC .
Define, for j = 0, 1: Aj =

⋃
i≥0 L

2i+j
C .

Choose the larger of the two and call it ANB(C), where ties are broken
arbitrarily.

end for
Form A =

⋃{ANB(C) | C is component of G}.
if |A| > kd then

return YES

else
{G is the returned instance.}

end if

Reduction rule 24 Let (G, k) be an instance of maximum minimal ver-
tex cover. If C is a complete graph component of G, then reduce to
(G− C, k − (|C| − 1)).

The soundness of the rulecan be easily seen: A vertex cover of a complete
graph C needs |C| − 1 vertices, and putting all vertices in the cover would
render it non-minimal.

If Alg. 10 returns YES, it implicitly selects either of two disjoint vertex
sets A0 and A1 (basically, every second level of the spanning tree). However,
A0 or A1 need not be vertex cover sets. Notice that both A0 and A1 are
minimal in the sense that none of them contains a closed neighborhood of
any vertex. Then, we would have to supplement say the larger of the two
to get a valid minimal vertex cover. Hence, answering YES in the indicated
case is o.k., so that we conclude:

Corollary 4.25 maximum minimal vertex cover admits a kernel graph
with at most 2k vertices.
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Let us once more return to nonblocker set: Unfortunately, we were
not able to use the stronger result provided by B. Reed [329] for the kernel-
ization algorithm, upperbounding the domination number of a graph that
has minimum degree of three. More precisely, he showed c = 3/8, which
gives a kernel of size 1.6kd for graphs of minimum degree two. This graph
class appears to be a bit strange, admittedly, but we simply don’t know how
to get rid of all vertices of degree up to two by reduction rules.4 There is
another result due to Matheson and Tarjan [288]. We can conclude from
their reasoning that graphs G = (V,E) that possess a triangulated planar

subgraph G′ = (V,E ′) have a dominating set with at most |V |
3

vertices. This
gives a kernel of 1.5kd for this graph class for nonblocker set.

Coming back to the “cheating argument” of the introductory paragraph
of this section, let us reconsider nonblocker set: In a certain sense, the
theorems we used to provide small kernels are in fact telling us that, whenever
we assume the existence of a small nonblocker set, then the graph cannot be
big. This may mean that in actual fact the parameterization we chose is
not appropriate. Similar to the suggestion in [307], this might imply we
should reparameterize. One such reparameterization was already discussed
in [284] for a logical problem. Transferred to nonblocker set, we might
ask questions like:

Problem name: δ-nonblocker set (δ-NB)
Given: A graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a nonblocker set N ⊆ V with |N | ≥ δ|V | + kd?

Here, δ ∈ (0, 1) is a constant that steers the reparameterization. It is
not part of the input, but rather essential for creating a whole family of
parameterized problems.

Theorem 4.26 If δ < 3/5, then δ-nonblocker set is in FPT .

Proof. We are going to show that δ-NB has a problem kernel, see Theo-
rem 2.4.

Let G be a graph instance and kd the parameter. We exhaustively apply
the same reduction rules as developed before for nonblocker set to get a
reduced graph G′ with parameter k′d. G′ = (V,E) has minimum degree of

4It might be worthwhile noting that there is a kind of complementary result for graphs
with maximum degree three by Fisher, Fraughnaugh and Seager [182]; however, the cor-
responding bound also includes the number of vertices in the graph, so that the kernel
size bound looks a bit strange; for cubic graphs, however, the result of Reed is exactly
matched.
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two, and therefore it has a minimum dominating set of size at most 2/5 · |V |.
Hence, |V | − |N | ≤ 2/5 · |V | for a maximum nonblocker set N , i.e., |N | ≥
3/5 · |V |. If we ask for an N that is smaller than this, we can safely answer
YES, see Alg. 9. Hence, given the question if |N | ≥ δ|V |+ kd, we can answer
YES if δ|V | + kd ≤ 3/5 · |V |, i.e., if kd ≤ (3/5 − δ)|V |. Otherwise, we have
arrived at a kernel of size |V | ≤ (3/5 − δ)−1kd.

Observe that similar reparameterizations can be performed (while keeping
FPT -membership) for problems like vertex induced forest, planar
independent set, etc.

4.4.3 Dominating Queens

Finally, let us reconsider the following variant of a domination problem al-
ready introduced in the introduction:

Problem name: dominating set of queens (QDS)
Given: An n× n chessboard C
Parameter: a positive integer k
Output: Is it possible to place k queens on C such that all squares
are dominated ?

Theorem 4.27 QDS has a problem kernel of size (2k + 1)2.

Proof. Indeed, we are going to verify the following “cheating” reduction
rule:

Reduction rule 25 If C is an n × n board and k a parameter with n >
2k + 1, then NO.

A proof of this result is shown in [100, Theorem 3]; however, that proof con-
tains a non-trivial “hole,” and therefore we produce a proof in what follows.5

Given an n×n board C, fix a dominating set of k queens, where k is min-
imal. The rule is surely o.k. for n = 1, 2, since there is no fitting parameter
value. If n > 2, we can show k ≤ n−2, since placing n−2 queens on the main
diagonal of the chessboard, leaving free the first and last square in that diag-
onal, will dominate the whole chessboard. Therefore, the following rows and
columns exist: Let column a (b, resp.) be the leftmost (rightmost, respec-
tively) column that is not occupied by any queen in our minimum dominating

5Thanks to my class in approximation algorithms (Tübingen in 2004/2005), in partic-
ular to Bernd Lutz, who pointed this hole to me.
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set. Correspondingly, let row c (d, resp.) be the topmost (bottom-most, re-
spectively) unoccupied row. Let δ1 = b− a and δ2 = d− c. By symmetry of
the argument, we can assume that δ1 ≥ δ2.

Let Sa (Sb, resp.) be the set of squares in column a (b, resp.) that lie
between rows c and d′ := min{n, c+ δ1} inclusive. Set S := Sa ∪ Sb.
Claim 0: Any queen can diagonally dominate at most two squares of S.
Proof of Claim. Since δ1 ≥ δ2, no diagonal intersects both Sa and Sb. Hence,
every queen can dominate at most one square of S on a southwest-northeast
diagonal and one square of S on a northwest-southeast diagonal. ♦

Claim 1: Any queen placed in the first c− 1 rows or in the last n − d′ rows
can only dominate at most two squares of S.
Proof of Claim. By definition, no queen that is placed on the mentioned
squares can dominate any squares from S by row or column. The preceding
claim hence proves Claim 1. ♦

Claim 2: Any queen can only dominate at most four squares of S.
Proof of Claim. Due to the preceding claim, we consider a queen that is
placed on the rows c through d′ (inclusive). By definition of S, such a queen
cannot dominate any squares of S by column. It can obviously dominate at
most two squares of S by row. Hence, Claim 0 finishes this proof. ♦

Let o be the number of “occupied” rows to which Claim 1 applies, i.e.,
o = c− 1 + n− d′. Summarizing our claims, we can state:

• At least o queens dominate at most two squares of S.

• At most k − o queens dominate at most four squares of S.

Hence, the k queens together dominate at most 2o + 4(k − o) = 4k − 2o
squares of S.

We now distinguish two subcases:

• If o ≥ c (or, equivalently, if c+ δ1 ≤ n, i.e., d′ = c+ δ1), then |S| = 2δ1,
since δ1 is the number of rows that is pertaining to S. Moreover,
Claim 1 applies to the remaining o = n − (δ1 + 1) many rows. This
gives the following inequality, since we are discussing how to dominate
all squares in S:

4k − 2n+ 2δ1 + 2 ≥ 2δ1  2k + 1 ≥ n.

• If o = c − 1 (or, equivalently, if c + δ1 > n, i.e., d′ = n), then |S| =
2(n− (c− 1)) = 2n− 2o. Hence,

4k − 2o ≥ 2n− 2o  2k ≥ n.



4.5. VERTEX COVER: OUR OLD FRIEND AGAIN 115

Since we don’t know which of the two cases applies, we have to take the less
stricter bound in our theorem.

So, on the one hand, this shows membership of dominating set of
queens in FPT , but on the other hand, it is also sort of questionable if the
parameterization is appropriate.

4.5 vertex cover: our old friend again

The reason for having an own section on vertex cover in the context of
kernelization are manifold:

• In the introduction, we already saw how to design data reduction rules
that provide a quadratic kernel for vertex cover.

• There exist by now two (at first glance) completely different ways of
obtaining a small linear kernel for vertex cover, one being based on
nice structural properties of vertex covers, as discovered by Nemhauser
and Trotter [304]; the other one being based on generalizing Rule 1 for
isolated vertices to a so-called crown rule [110, 164]. Having two ways
to obtain the same result is in fact an interesting situation on its own.
Computer experiments indicate, however, that the kernelization based
on crown reduction rules is better, not only in terms of running time
(see [3]).

• Finally, we will discuss a generalization of vertex cover and see how
we can build up a set of data reduction rules that can be read either
as a reduction to the formerly treated case of vertex cover or as
enabling to read reduction rules for vertex cover as being valid for
the more general case, as well, and hence enabling us to state a small
kernel result for this case, too.

As indicated above, the first part of this section will be devoted to dis-
cussing the following result:

Theorem 4.28 vertex cover has a kernel of size upperbounded by 2k.

Remark 4.29 Can we possibly hope for a smaller kernel? The difficulty of
getting a smaller kernel for vertex cover seems to be related with the (old)
problem of getting approximation algorithms that provide a quality ratio es-
sentially better than two. More precisely, the best known approximation [255]
gives a ratio of

2 − Θ(
1√

logn
).



116 CHAPTER 4. KERNELS

More precisely, although not formally required by the definition of kerneliza-
tion, it seems likely that the development of a kernelization algorithm that
gives a kernel of say 1.7k would also mean that we get a 1.7 approximation
for vertex cover, by simply taking all kernel vertices (plus possibly some
that are provided by the reduction itself) into the (approximate) cover.

Similar comments also apply to the vertex cover problem on hyper-
graphs, likewise known as d-hitting set, where the trivial d-approximation
algorithm is hard to beat. Regarding positive approximability results in some
particular cases, we refer to the recent papers of Halperin and Okun [226,
313]. However, in that case no linear kernel is known, see [310], which in
itself can be regarded as an interesting research topic.

4.5.1 The result of Nemhauser and Trotter

Let us first state the theorem of Nemhauser and Trotter according to the
formulation given in [35] and in [320]; the original formulation of Nemhauser
and Trotter [304] uses connections with Integer Linear Programming that
are not central to this Habilitationsschrift. A concise proof of the result is
contained in [35].

If G = (V,E) is a graph, let GBP = (V × {1, 2}, EBP ) be its bipartite
graph variant, where

EBP = {{(u, 1), (v, 2)} | {u, v} ∈ E} .

Given a vertex set CBP of GBP , let

CAND
BP (G) = {v ∈ V | (v, 1) ∈ C ∧ (v, 2) ∈ C} ,

CXOR
BP (G) =

{
v ∈ V \ CAND

BP (G) | (v, 1) ∈ C ∨ (v, 2) ∈ C
}
.

One point of Alg. 11 needs further clarification: how can we efficiently
compute a vertex cover in bipartite graphs? The key to this lies in the
following theorem, due to König and Egerváry (see [264]):

Theorem 4.30 If G is a bipartite graph, then the size of a minimum vertex
cover of G equals the size of a maximum matching of G.

It is worth noting that one direction of that theorem is close to trivial;
let us state it in a weakened form:

Lemma 4.31 If M is a matching in a graph G, then G has no vertex cover
of size less than |M |.
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Algorithm 11 A kernelization algorithm for vertex cover, called VCNT

Input(s): an instance (G, k) of vertex cover
Output(s): an equivalent instance (G′, k′) of vertex cover with V (G′) ⊆

V (G), |V (G′)| ≤ 2k′ and k′ ≤ k, as well as a set C ⊆ V (G) that must
appear in any vertex cover for G (and that is not accounted into the
budget k′).

Create GBP from G.
Compute a minimum vertex cover CBP of GBP .
Compute C := CAND

BP (G) and CXOR
BP (G).

Let k′ := k − |C|.
5: if k′ < 0 then

Pick an edge e = {u, v} from G.
Define G′ = ({u, v}, {e}) and k′ = 0.
Let C := ∅.

else
10: Let G′ = G[CXOR

BP (G)].
end if
return (G′, k′) as well as C.

Proof. All edges of M need to be covered. Each edge can be covered by
either of its endpoints. Covering e ∈ M this way will not cover any other
edge from M , since M is a matching. Hence, we need |M | vertices to cover
M , so that we need (at least) |M | vertices to cover G.

From an algorithmic point of view, two things are worth mentioning:

• A maximum matching M ⊆ E of a graph G = (V,E) can be computed
in time O(|E|

√
|V |; such an algorithm is usually based on the notion of

alternating paths and can be found in any introductory standard text
on algorithms.

• From M , one can efficiently construct a vertex cover C ⊆ V if G is
bipartite. Such a construction can be based on an alternating paths
construction, as they are already used in the standard construction
showing that maximum matchings can be found in polynomial time,
see [Chapter 11, Site 13]. An alternative way using Dinic’s algorithm
is explained in [3].

Nemhauser and Trotter then showed the following properties:

Theorem 4.32 Let G = (V,E) be a graph.
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1. Let C ′ be a cover of G[CXOR
BP (G)]. Then C := C ′ ∪CAND

BP (G) is a cover
of G.

2. There is a minimum cover C∗(G) of G that contains CAND
BP (G).

3. |CXOR
BP (G)| ≤ 2|C∗(G)|, where C∗(G) is a minimum cover of G.

From the mentioned results, the following was observed in [86, 251]:

Corollary 4.33 To each vertex cover instance (G, k), Alg. 11 computes

a kernel (G′, k′) with |V (G′)| ≤ 2k′ and k′ ≤ k in time O
(
|E(G)|

√
|V (G)|

)
.

Remark 4.34 Hochbaum [233] used the result of Nemhauser and Trotter to
give a factor-2 approximation algorithm for minimum vertex cover: this
algorithm would output

COR
BP (G) = CAND

BP (G) ∪ CXOR
BP (G)

for an input graph G (using the abbreviation introduced above).

Remark 4.35 By first kernelizing according to Buss’ rule (see Chap. 2) and
then according to Alg. 11 (in fact, all these rules could and should be applied
to exhaustion before starting the search-tree part as explained in the next
chapter), the overall complexity for the kernelization phase could be reduced
to O(nk + k3).

Remark 4.36 A similar algorithm works for the kernelization of the weighted
version of vertex cover, i.e., of weighted vertex cover. Then, how-
ever, the computation of the kernel would be based on maximum flow compu-
tations, which are slower than the maximum matching computations in the
unweighted case.

When the input graph is planar, the kernelization computations could be
considerably sped up. All these complexities are detailed in [35].

We also mention the following properties of a decomposition of the vertex
set V of a graph G = (V,E) according to Theorem 4.32 that are lists in [320,
Sec. 5.1]:

1. CNOR
BP (G) = V \ (CXOR

BP (G)∪CAND
BP (G)) forms an independent set in G.

2. All neighbors of CNOR
BP (G) are in CAND

BP (G).

Remark 4.37 In [96, 95], the theorem of Nemhauser & Trotter got sharp-
ened so that, for all minimum vertex covers of G, they are contained in
CAND
BP (G).
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It is finally worthwhile noticing that the kernelization due to the Nemhauser-
Trotter theorem can be called global in contrast to all other kernelization pro-
cedures we have seen up to now; this is also the reason for its comparatively
huge complexity.

4.5.2 Crown reductions: another way to a small kernel

We follow the definition of a crown as given in [95] for the more general
weighted case. Otherwise, this section is mostly based on [3, 110, 247].

Definition 4.38 Let G = (V,E) be a graph. An independent set I in G is
called a crown if, for all nonempty sets U ⊆ N(I), |U | ≤ |N(U) ∩ I|.
That definition is equivalent to the one given in [3, 110, 164] due to Hall’s
marriage theorem (apart from the requirement that I 6= ∅ according to those
definitions) that can be found in any textbook on graph theory. Hence, a
crown I has the following property:

• H := N(I) is matched into I. (H is usually referred to as the head of
the crown.)

In other words, the bipartite graph with vertex set H ∪ I and edge set {uv |
u ∈ Hv ∈ I} has a upper perfect matching.

Observe that a decomposition á la Nemhauser and Trotter is “nearly” a
crown (more precisely, the set CNOR

BP (G)).
M. Chleb́ık and J. Chleb́ıková [95] have shown that there is always a

specific Nemhauser-Trotter decomposition that is actually a crown.
Fellows has introduced the following reduction rule:

Reduction rule 26 If (G = (V,E), k) a vertex cover instance and I ⊆
V a crown with head H = N(I), then reduce to (G− (I ∪H), k − |H|).

The question is then how to find crowns. Juedes6 devised Alg. 12 to
this purpose. How can we use this algorithm to get a small kernel for ver-
tex cover? In fact, the kernelization algorithm has several ways to use
the information collected in Alg. 12; therefore, we state the corresponding
kernelization algorithm in an explicit form in Alg. 13.

Lemma 4.39 Alg. 13 combined with Rule 26, when run on input (G, k),
either correctly answers NO or yields a reduced instance (G′, k′) of vertex
cover such that |V (G′)| ≤ 3k.

6personal communication in Oct. 2002; this idea can be found in [3, 247]
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Algorithm 12 An efficient algorithm to find a crown in a graph, called
GETCROWN
Input(s): an graph G
Output(s): a crown I ⊆ V (G)

Greedily find a maximal matching M1 of G.
Let O (outsiders) be the set of vertices fromG that are not in the matching.
if O 6= ∅ then

Let I ′ := ∅.
Find a maximum matching M2 in the bipartite graph B with vertex set
O ∪N(O) and edge set {uv | u ∈ O ∧ v ∈ N(O)}.
Let I collect all vertices in O that are not matched by M2.
while I ′ 6= I do

Let I ′ := I.
Let H := N(I).
Let I := I ∪ {u ∈ O | ∃v ∈ H(uv ∈ M2)}.

end while
else
I := ∅.

end if

The proof of this lemma is based on the following observations:

• If we find a matching M (i.e., M1 or M2) in G such that |M | > k, then
(G, k) is a NO-instance due to Lemma 4.31.

• If M1 and M2 contain no more than k edges, the graph induced by
M1∪M2 has at most 3k vertices. Has, after applying Rule 26 following
the execution of Alg. 13, the remaining graph has at most 3k vertices.

Abu-Khzwam et al. have demonstrated [3] that a kernelization based on
Alg. 13 runs much faster than directly using Alg. 11. This is probably due to
the fact that the Nemhauser-Trotter reduction has to compute a maximum
matching in a relatively large graph, while the crown-based reduction only
computes a maximal matching in a large graph and then maximum match-
ings in much smaller graphs. More precisely, it is shown in [247] that this
algorithm runs in time O(|V |+ |E|) on an input graph G = (V,E) by looking
again into how maximum matching algorithms work in our case.

However, it is clear that one could certainly afford running Alg. 11 after
having obtained a 3k kernel with Alg. 13. The experiments reported in [3]
also indicate that this might not actually lead to a smaller kernel (as could
be expected due to theory).



4.5. VERTEX COVER: OUR OLD FRIEND AGAIN 121

Algorithm 13 Using crowns for kernels in the case of vertex cover; the
algorithm is called kernelfromcrown

Input(s): an instance (G, k) of vertex cover
Output(s): NO if the vertex cover instance has no solution OR a crown
I ⊆ V (G) such that |V (G−N [I])| ≤ 3k

Greedily find a maximal matching M1 of G.
if |M1| > k then

return NO

else
Let O (outsiders) be the set of vertices from G that are not in M1.
if O 6= ∅ then

Find a maximum matching M2 in the bipartite graph B with vertex
set O ∪N(O) and edge set {uv | u ∈ O ∧ v ∈ N(O)}.
if |M2| > k then

return NO

else
Let I ′ := ∅.
Let I collect all vertices in O that are not matched by M2.
while I ′ 6= I do

Let I ′ := I.
Let H := N(I).
Let I := I ∪ {u ∈ O | ∃v ∈ H(uv ∈M2)}.

end while
end if

else
I := ∅.

end if
return I

end if

There is alternative way of obtaining a kernel of size 2k, known as iterative
compression, see [110]. However, getting the kernel that small comes at a
price: one has to optimally solve k (smaller) instances of vertex cover,
so that the overall kernelization does not need polynomial time anymore
(as required by the kernelization definition) but rather in FPT -time. We
therefore omit details here.

The idea of crown reductions have been successfully applied to other
circumstances, as well. We only mention the following papers: [110, 166,
247, 289, 324, 325].
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4.5.3 A generalization of vertex cover

Let us now consider the following generalization of VC:

Problem name: generalized vertex cover (VCgen)
Given: A graph G = (V,E), a subset V ′ of vertices
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V ′ with |C| ≤ k?

It is clear that this is actually a generalization of VC, since it is possible
to have V ′ = V . Therefore, NP-hardness of VCgen is trivially concluded.

We propose the following reduction rules for this problem. In these rules,
let (G = (V,E), V ′, k) be an instance of VCgen.

Reduction rule 27 If there is an edge in G[V \ V ′], then NO.

Reduction rule 28 If there is an edge {u, v} with u ∈ V ′ and v ∈ V \ V ′,
then put u into the cover, i.e., reduce to (G− u, V ′, k − 1).

The soundness of both rules is clear, since we are still aiming at a cover.
Hence, edges between vertices from V \ V ′ cannot be covered at all (leading
to a NO-instance), and edges that contain exactly one vertex u from V ′ can
only be covered by taking that vertex u into the cover.

After having exhaustively applied these two reduction rules, in the case
that we did not already discover that the given instance was not solvable at
all, we are left with an instance that contains only vertices from V \ V ′ that
are isolates. Since such isolates would not be put into a cover even if they
were belonging to V ′, we can conclude:

Lemma 4.40 If (G = (V,E), V ′, k) is an instance of generalized vertex
cover that is reduced with respect to Rules 27 and 28. Then, (G, V ′, k) is a
YES-instance of VCgen iff (G, V, k) is a YES-instance of VCgen iff (G, k)
is a YES-instance of VC.

This means that we have reduced VCgen to VC. In view of the trivial
reduction for the converse direction, we may conclude:

Corollary 4.41 generalized vertex cover and vertex cover are pa-
rameterized interreducible.

However, we can also interpret this reducibility as providing a complete
set of data reduction rules for generalized vertex cover that have to
be applied in a certain order to get an overall kernelization algorithm that
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Algorithm 14 A kernelization algorithm for generalized vertex cover,
called VCgen-kern

Input(s): an instance (G, V ′, k) of generalized vertex cover
Output(s): YES iff the given instance has a solution

if Reduction rule R out of rules 27 and 28 is applicable then
return VCgen-kern(R(G, V ′, k))

else if V (G) 6= V ′ then
{This can only happen if G[V (G) \ V ′] contains no edges.}
return VCgen-kern(G, V (G), k)

else
{Apply your favorite vertex cover-reduction rules to get a 2k-kernel,
interpreted as rules for generalized vertex cover.}

end if

deviates a bit from the usual scheme (see Alg. 5) for kernelization algorithms,
so that we explicitly state it in Alg. 4.5.3. The indicated interpretation of
VC-rules as VCgen-rules is very straightforward: a VC instance (G, k) is
simply understood as VCgen instance (G, V (G), k). Since (according to
the case distinction in Alg. 4.5.3), we are only left with VCgen instances
(G, V ′, k) such that V ′ = V (G), this translation gives a sound reduction rule
for generalized vertex cover. Hence, we can conclude:

Theorem 4.42 generalized vertex cover has a 2k problem kernel.

4.6 planar dominating set: a tricky example

In the following, we present results on planar dominating set; this is an
example of quite complex kernelization rules derived in [12, 82].

Let us first state the problem.

Problem name: planar dominating set (PDS)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there a dominating set D ⊆ V with |D| ≤ k?

For a graph G, we denote by γ(G) the size of a minimum dominating set
in G. We will color the vertices of the graph G with two colors: black and
white. Initially, all vertices are colored black. Informally speaking, white
vertices will be those vertices that we know for sure when we color them that
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there exists a minimum dominating set for the graph excluding all of them.
The black vertices are all other vertices.7

For a vertex v in G, we partition its set of neighbors N(v) into three sets:

1. N1(v) = {u ∈ N(v) | N(u) \N [v] 6= ∅};

2. N2(v) = {u ∈ N(v) \N1(v) | N(u) ∩N1(v) 6= ∅}; and

3. N3(v) = N(v) \ (N1(v) ∪N2(v)).

To understand these notions, have a look at the following example:

Figure 4.2: Explaining the division of the neighborhood of v.

Example 4.43 Have a look at the red vertex v in Fig. 4.2. Its neighbor-
hood is colored in three different colors. For the convenience of the reader,
we repeat the definitions of the various divisions of the neighborhood in
the following, using matching colorings with respect to the example graph.
N1(v) = {u ∈ N(v) | N(u) \N [v] 6= ∅}
N2(v) = {u ∈ N(v) \N1(v) | N(u) ∩N1(v) 6= ∅}
N3(v) = N(v) \ (N1(v) ∪N2(v))

For two vertices v and w we define N(v, w) = N(v)∪N(w) and N [v, w] =
N [v] ∪N [w]. Similarly, we partition N(v, w) into three sets:

7In Chap. 5, we will present a search tree algorithm for planar dominating set that
is also using a black and white graph: note that the colors there have different semantics
from the usage here.
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1. N1(v, w) = {u ∈ N(v, w) | N(u) \N [v, w] 6= ∅};

2. N2(v, w) = {u ∈ N(v, w) \N1(v, w) | N(u) ∩N1(v, w) 6= ∅}; and

3. N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)).

Definition 4.44 Let G = (V,E) be a plane graph. A region R(v, w) be-
tween two vertices v and w is a closed subset of the plane with the following
properties:

1. The boundary of R(v, w) is formed by two simple paths P1 and P2 in
V which connect v and w, and the length of each path is at most three.

2. All vertices that are strictly inside (i.e., not on the boundary) the region
R(v, w) are from N(v, w).

For a region R = R(v, w), let V [R] denote the vertices in R, i.e.,

V [R] := {u ∈ V | u sits inside or on the boundary of R}.

Let V (R) = V [R] − {v, w}.

Definition 4.45 A region R = R(v, w) between two vertices v and w is
called a simple region if all vertices in V (R) are common neighbors of both
v and w, that is, V (R) ⊆ N(v) ∩N(w).

We introduce the following definitions.

Definition 4.46 A region R = R(v, w) between two vertices v and w is
called a quasi-simple region if V [R] = V [R′] ∪ R+, where R′ = R′(v, w) is a
simple region between v and w, and R+ is a set of white vertices satisfying
the following conditions:

1. Every vertex of R+ sits strictly inside R′.

2. Every vertex of R+ is connected to v and not connected to w, and
is also connected to at least one vertex on the boundary of R′ other
than v.

A vertex in V (R) is called a simple vertex, if it is connected to both v
and w, otherwise it is called a non-simple vertex. The set of vertices R+,
which consists of the non-simple vertices in V (R), will be referred to as
R+(v, w).
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For a vertex u ∈ V , denote by B(u) the set of black vertices in N(u), and
byW (u) the set of white vertices inN(u). We describe next the reduction and
coloring rules to be applied to the graph G. The reduction and coloring rules
are applied to the graph in the order listed below until the application of any
of them does not change the structure of the graph nor the color of any vertex
in the graph. Observe that—in contrast with many kernelization scenarios we
find in this chapter—none of the eight reduction rules will change the value
of the parameter. Consequently, we omit the parameter when describing the
reduction rules.

Reduction rule 29 If N3(v) 6= ∅ for some black vertex v, then remove the
vertices in N2(v)∪N3(v) from G, and add a new white vertex v ′ and an edge
(v, v′) to G.

Let us visualize at least this simple first rule by our example.

Figure 4.3: Where Rule 29 can be applied.

Example 4.47 Let us consider again the graph from Ex. 4.43, assuming
that all vertices are (initially) black. Then, Fig. 4.3 shows where Rule 29
can be applied. This means, all the vertices colored blue belong to N3(v) for
some v. Hence, some black vertices will be replaced by white vertices (and
some of the vertices will even disappear) according to Rule 29. The result of
applying that rule is shown in Fig. 4.4.



4.6. PLANAR DOMINATING SET: A TRICKY EXAMPLE 127

Figure 4.4: Some vertices are white now.

Reduction rule 30 If N3(v, w) 6= ∅ for two black vertices v, w, and if
N3(v, w) cannot be dominated by a single vertex in N2(v, w)∪N3(v, w), then
we distinguish the following two cases.

Case 1. If N3(v, w) can be dominated by a single vertex in {v, w} then:

(1.1) if N3(v, w) ⊆ N(v) and N3(v, w) ⊆ N(w), remove N3(v, w) and
N2(v, w) ∩ N(v) ∩ N(w) from G and add two new white vertices z,
z′ and the edges (v, z), (w, z), (v, z′), (w, z′) to G;

(1.2) if N3(v, w) ⊆ N(v) and N3(v, w) 6⊆ N(w), remove N3(v, w) and
N2(v, w) ∩ N(v) from G and add a new white vertex v ′ and the edge
(v, v′) to G; and

(1.3) if N3(v, w) ⊆ N(w) and N3(v, w) 6⊆ N(v), remove N3(v, w) and
N2(v, w) ∩ N(w) from G and add a new white vertex w′ and the edge
(w,w′) to G.

Case 2. If N3(v, w) cannot be dominated by a single vertex in {v, w}, then
remove N2(v, w) ∪ N3(v, w) from G and add two new white vertices v ′, w′

and the edges (v, v′), (w,w′) to G.

Reduction rule 31 For each black vertex v in G, if there exists a black
vertex x ∈ N2(v)∪N3(v), color x white, and remove the edges between x and
all other white vertices in G.
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Reduction rule 32 For every two black vertices v and w, if N3(v, w) 6= ∅,
then for every black vertex x ∈ N2(v, w) ∪ N3(v, w) that does not dominate
all vertices in N3(v, w), color x white and remove all the edges between x and
the other white vertices in G.

Reduction rule 33 For every quasi-simple region R = R(v, w) between two
vertices v and w, if v is black, then for every black vertex x ∈ N2(v, w) ∪
N3(v, w) strictly inside R that does not dominate all vertices in N2(v, w) ∪
N3(v, w) strictly inside R, color x white and remove all the edges between x
and the other white vertices in G.

Reduction rule 34 For every two white vertices u and v, if N(u) ⊆ N(v),
and u ∈ N2(w) ∪N3(w) for some black vertex w, then remove v.

Reduction rule 35 For every black vertex v, if every vertex u ∈ W (v) is
connected to all the vertices in B(v), then remove all the vertices in W (v)
from G.

Reduction rule 36 For every two black vertices v and w, let W (v, w) =
W (v) ∩W (w). If |W (v, w)| ≥ 2 and there is a degree-2 vertex u ∈ W (v, w),
then remove all vertices in W (v, w) except u, add a new degree-2 white vertex
u′, and connect u′ to both v and w.

Theorem 4.48 Let G be a graph with n vertices. Then in time O(n3) we
can construct a graph G′ from G such that:

1. G′ is reduced,

2. γ(G′) = γ(G),

3. there exists a minimum dominating set for G′ that excludes all white
vertices of G′, and

4. from a minimum dominating set for G′, a minimum dominating set for
G can be constructed in linear time.

Given any dominating set D in a graph G, a D-region decomposition of G is
a set < of regions between pairs of vertices in D such that:

1. For any region R = R(v, w) in <, no vertex in D is in V (R). That is,
a vertex in D can only be an endpoint of a region in <.

2. No two distinct regions R1, R2 ∈ < intersect. However, they may touch
each other by having common boundaries.
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Note that all the endpoints of the regions in a D-region decomposition are
vertices in D. For a D-region decomposition <, define V [<] =

⋃
R∈< V [R].

A D-region decomposition is maximal, if there is no region R such that
<′

= < ∪R is a D-region decomposition with V [<] ( V [<′
].

For a D-region decomposition <, associate a planar graph G<(V<, E<)
with possible multiple edges, where V< = D, and such that there is an edge
between two vertices v and w in G< if and only if R(v, w) is a region in <.
A planar graph (possibly with multiple edges) is called a thin planar graph
if there is a planar embedding of the graph such that for any two edges e1

and e2 between two distinct vertices v and w in the graph, there must exist
two more vertices which sit inside the disjoint areas of the plane enclosed by
e1 and e2.

Alber, Fellows and Niedermeier [12] showed that the number of edges in a
thin planar graph of n vertices is bounded by 3n− 6. They also showed that
for any reduced plane graph G and a dominating set D of G, there exists
a maximal D-region decomposition for G such that G< is thin. Since the
maximal D-region decomposition in [12] starts with any dominating set D
and is not affected by the color a vertex can have, the same results hold true
for our reduced graph G whose vertices are colored black/white, and with a
minimum dominating set D consisting only of black vertices. Our discussion
is summarized in the following proposition.

Proposition 4.49 Let G be a reduced graph and D a dominating set of G
consisting of black vertices. Then there exists a maximal D-region decompo-
sition < of G such that G< is thin.

Corollary 4.50 Let G be a reduced graph with a minimum dominating set D
consisting of k black vertices, and let < be a maximal D-region decomposition
of G such that G< is thin. Then the number of regions in < is bounded by
3k − 6.

In the remainder of this discussion, < will denote a maximal D-region
decomposition of G such that G< is thin. Let u and v be two vertices in G.
We say that u and v are boundary-adjacent vertices if (u, v) is an edge on
the boundary of some region R ∈ <. For a vertex v ∈ G, denote by N ∗(v)
the set of vertices that are boundary-adjacent to v. Note that for a vertex
v ∈ D, since v is black, by Rule 31, all vertices in N2(v) ∪ N3(v) must be
white.

Proposition 4.51 Let v ∈ D. The following are true.

(a) Every vertex u ∈ N1(v) is in V [<].
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(b) The vertex v is an endpoint of a region R ∈ <. That is, there exists a
region R = R(x, y) ∈ < such that v = x or v = y.

(c) Every vertex u ∈ N2(v) which is not in V [<] is connected only to v and
to vertices in N ∗(v).

Let x be a vertex in G such that x /∈ V [<]. Then by part (b) in Propo-
sition 4.51, x /∈ D. Thus, x ∈ N(v) for some black vertex v ∈ D ⊆ V [<].
By part (a) in Proposition 4.51, x /∈ N1(v), and hence, x ∈ N2(v) ∪ N3(v).
By Rule 31, the color of x must be white. Let R = R(v, w) be a region
in V [<] of which v is an endpoint (such a region must exist by part (b) of
Proposition 4.51). We distinguish two cases.

Case A. x ∈ N3(v). Since v is black, by Rule 29, this is only possible if
deg(x) = 1 and N2(v) = ∅ (in this case x will be the white vertex added by
the rule). In such case it can be easily seen that we can flip x and place it
inside R without affecting the planarity of the graph.

Case B. x ∈ N2(v). Note that in this case N3(v) = ∅, and x is only con-
nected to v and N ∗(v) by part (c) in Proposition 4.51. If deg(x) = 2, by a
similar argument to Case A above, x can be flipped and placed inside R.

According to the above discussion, it follows that the vertices in G can
be classified into two categories: (1) those vertices that are in V [<]; and (2)
those that are not in V [<], which are those vertices of degree larger than
two that belong to N2(v) for some vertex v ∈ D, and in this case must be
connected only to vertices in N ∗(v). To bound the number of vertices in G
we need to bound the number of vertices in the two categories. We start
with the vertices in category (2).

Let O denote the set of vertices in category (2). Note that all vertices in
O are white, and no two vertices u and v in O are such that N(u) ⊆ N(v).
To see why the latter statement is true, note that every vertex in O must
be in N2(w) for some black vertex w ∈ D. So if N(u) ⊆ N(v), then by
Rule 34, v would have been removed from the graph. To bound the number
of vertices in O, we will bound the number of vertices in O that are in N2(v)
where v ∈ D. Let us denote this set by N †(v). Let N∗

† (v) be the set of

vertices in N ∗(v) that are neighbors of vertices in N †(v). Note that every
vertex in N †(v) has degree ≥ 3, is connected only to v and to N ∗

† (v), and no

two vertices x and y in N †(v) are such that N(x) ⊆ N(y).

Proposition 4.52 |N †(v)| ≤ 3/2|N ∗
† (v)|.
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Lemma 4.53 The number of vertices in category (2) (i.e., the number of
vertices not in V [<]) is bounded by 18k.

To bound the number of vertices in category (1), fix a region R(v, w)
between v, w ∈ D. We have the following lemma.

Lemma 4.54 Let R = R(v, w) be a region in V [<]. The number of vertices
in V (R) is bounded by 16.

Theorem 4.55 The number of vertices in the reduced graph G is bounded
by 67k.

Proof. By Lemma 4.53, the number of category-(2) vertices inG is bounded
by 18k. According to the discussion before, if we use the 18k upper bound
on the number of category-(2) vertices, then we can assume that each region
in < is nice (if this is not the case we obtain a better upper bound on the
total number of vertices in G). By Corollary 4.50, the number of regions in
< is bounded by 3k − 6. According to Lemma 4.54, the number of vertices
in V (R), where R ∈ < is a nice region, is bounded by 16. It follows that
the number of vertices in V (<) is bounded by 48k − 96. Thus, the number
of vertices in V [<], and hence, in category (1), is bounded by 48k − 96 plus
the number of vertices in D which are the endpoints of the regions in <.
Therefore the number of vertices in V [<] is bounded by 49k − 96, and the
total number of vertices in G is bounded by 67k − 96 < 67k.

Corollary 4.56 Let G be a planar graph with n vertices. Then in time
O(n3), computing a dominating set for G of size bounded by k can be reduced
to computing a dominating set of size bounded by k, for a planar graph G′ of
n′ < n vertices, where n′ ≤ 67k.

Observe that, although the reasoning that shows the upperbound on the
kernel size in the case of planar dominating set is quite complex, the
resulting algorithm is again quite simple: it is an instantiation of the general
blueprint outlined in Alg. 5.

4.7 Kernelization schemes

In the design of approximation algorithms, it has been quite popular to
design algorithm schemes, i.e., families of algorithms that, in the case of
approximation, provide better and better approximation guarantees, at the
expense of higher and higher running times. In the case of approximation
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algorithms, such schemes were called approximation schemes. Is it possible
to translate this idea into the realm of parameterized algorithmics?

To this end, let us return to a problem that we already discussed in
Chap. 3: linear arrangement. We have already seen through Theo-
rem 3.11 that linear arrangement is fixed parameter tractable. How-
ever, observe that we also considered the problem linear arrangement
restricted to connected graphs and showed FPT -membership by providing
a kernel with at most k + 1 vertices (the more general kernel was measured
in terms of edges).

We have also observed that components can be treated separately. Ob-
viously, a component of size one or two (measured in terms of number of
vertices) can be trivially solved at the end of the algorithm:

Reduction rule 37 If G has two or less vertices, then construct an arbi-
trary arrangement onto neighbored numbers.

In combination with Lemma 3.4, this shows the following:

Proposition 4.57 A reduced instance of LA has at most 1.5k vertices.

Proof. Since the instance is reduced and since each component can be
treated separately, the number of vertices n in a reduced instance is the sum
of the vertices nc in the components c. Each nc can be upperbounded by
kc+1, where kc is the proportion of the parameter that is spent on component
c. Hence:

n =
∑

c

nc ≤
∑

c

(kc + 1) =
∑

c

kc + #c = k + #c

where #c denotes the number of components of the instance. However, since
we are dealing with a reduced instance, there are at most n/3 components in
the instance: namely, each component has at least three vertices. Therefore:

k ≥ n− n

3
=

2

3
n.

This shows the claim.

In fact, our reduction rule can be generalized: optimal arrangements for
all graphs up to q − 1 vertices may be precomputed (taking exponential
time, measured against q); this shows that each component then has at least
q vertices. After formulating an appropriate reduction rule, we may deduce:

Proposition 4.58 For each fixed q, a reduced instance of LA has at most
q
q−1

k vertices.
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This certainly has the flavor of an algorithmic scheme: at the expense of
larger and larger running times, we may get smaller and smaller kernels (let
q grow).

In fact, we have already seen a similar example before: Rule 21 is a kernel-
ization scheme, since we would have to test larger and larger neighborhoods,
although for our analysis of the kernel size for nonblocker set, we can
only exploit the rule for neighborhoods up to size two. Similarly, a naive
search for crowns can be viewed as a kernelization scheme, since again larger
and larger (potential) crowns should be examined.

In Chap. 6, we will encounter further such examples.

4.8 Compilability and kernels

The idea of using preprocessing rules is not new but has been around in the
heuristics community for years: it is in fact a very natural approach to solve
hard problems by making them as small as possible to be able to attack them.
The main interesting thing of parameterized algorithmics is that it allows a
mathematical analysis of this heuristic approach and hence somehow explains
the success of preprocessing in practice.

In fact, there exists an alternative way of mathematically analyzing pre-
processing rules, mainly developed by P. Liberatore and his colleagues: they
term the preprocessing compilation and analyze the compilability of intract-
able problems. This approach is based on the following observation: fast
algorithms can be realized when part of the input data (called fixed input
part) is known long before the rest of the input (called varying input part).
Then, it makes sense to spend some (more) computation time to analyze
the fixed part to speed up the solution when the varying part arrives. More
technically speaking, a problem is compilable if the fixed input part x can
be transformed (by arbitrarily complex preprocessing computations) into a
part x′ such that the size |x′| is upperbounded by a polynomial in |x| and
there is a polynomial-time algorithm that solves the overall problem in time
measured in |x′| and the varying input part size |y|. To a certain extent,
this approach also allows to separate an on-line behavior from an off-line
behavior.

However, this idea is a bit contradicting the basic idea of parameterized
algorithmics in the sense that in many concrete applications, the fixed input
part is in fact large while the varying input part is rather small. This might
be the main intuitive reason why results on compilability do significantly
differ from results in computational complexity.

As an example, consider the following problem taken from [272]:
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Problem name: minimal diagnosis (MD)
Given: A finite set of faults F , a set of effects M , a function e : F →
2M relating faults and effects, a set of observed effects M ′ ⊆ M , an
integer k
Parameter: the (size of the) relating function e
Output: Is there a set F ′ ⊂ F with |F ′| ≤ k such that M ′ ⊆⋃
f∈F ′ e(f)?

The intuition is to model a diagnosis system:8 each fault may cause
several effects (as modelled by the function e), and e is known before (as
fixed part). At a certain time, several (unwanted) effects M ′ are observed.
Then, it would be nice to quickly give a minimal-size diagnosis; the quest
for a diagnosis of minimal size is basically motivated by Occam’s razor as
philosophical background; from a practical viewpoint, it would be of course
also desirable to repair as few faults as necessary to save costs.

By viewing the faults as vertices of a hypergraph and the elements of
M ′ as hyperedges, it is obvious that minimal diagnosis naturally relates
to hitting set: the main difference is the different paramaterization (an
issue also discussed in Chapter 3), since within minimal diagnosis, the
parameter is basically the size of the super-hypergraph from which M ′ se-
lects a hyperedge-induced sub-hypergraph. Therefore (as already observed
in [272]), MD is fixed-parameter tractable by building a two-column table in
which each row contains, in the first column, the set of effects corresponding
to a particular set of failures (e.g., as a bit-vector) and in the second column,
the size of the minimal diagnosis. After this preprocessing (which yields a
table that is exponentially large, measured in terms of the parameter), the
solution to a concrete instance (as specified by the observation M ′) is a simple
table look-up.

Observe that although the sketched kernelization-like algorithm shows
that the problem is parameterized tractable, it does not show compilability,
since the table is not of polynomial size. In fact, most papers on compil-
ability focus on negative results. For example, the compilability of minimal
diagnosis would entail unexpected collapses in classical complexity theory.

Another “natural” parameterization of minimal diagnosis would be
the size of the observed effects (in the hope there are not too many of these
unwanted observations). Again, membership in FPT is close to trivial.

More details on compilation, including discussions on the relations be-
tween compilability and parameterized tractability can be found in [66, 272]
and in related papers quoted therein.

8Observe that this is very much related to the theory of diagnosis treated elsewhere in
this Habilitationsschrift. However, the parameterization is different.
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Unfortunately, there are only few natural examples of compilable prob-
lems around (as far as we observed). In the context of paramaterized al-
gorithmics, the revised knowledge base problems from [65] seem to be quite
interesting, since M. Cadoli et al. showed that, under many forms of “be-
lief revisions,” given a set of beliefs T and some additional (possibly con-
tradictory) information P , a “revised belief” T ′ can be computed in time
polynomial in |T | but exponential in |P |. This gives an FPT algorithm if
the problem is parameterized by the size of the additional information |P |.
Note that this parameterization is different from the viewpoint of compilabil-
ity, which would allow large computations in terms of |T |. Therefore, these
results are listed under the headline of bounded revision. However, these ex-
amples do perfectly fit into the landscape of parameterized algorithmics, since
in practice the size of the background knowledge database, i.e., |T |, would
be rather large, while the additional information P would be comparatively
small.

It would not be surprising if the future shows more fruitful dialog between
compilability and parameterized tractability.
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Chapter 5

Search trees

Again, R. Downey and M. R. Fellows [134] classify the search tree method we
are going to exhibit in this section as an ad hoc method. And again, they are
right. However, besides kernelization this is the other standard methodology
to get efficient parameterized algorithms. The downside is here that we know
of no guarantee that actually all problems in FPT admit some sort of search
tree algorithm —if we rule out the fact that the kernel that can be always
obtained according to Theorem 2.4 may be “searched” by brute force; this
does not yield the kind of search trees we are after.

From a practical point of view, this approach has lots of similarities to
branch-and-cut algorithms and similar paradigms, so that again parameter-
ized algorithmics might turn out as a way of mathematically analyzing and
justifying (pruning) heuristics applied by practitioners anyhow to solve com-
binatorially hard problems.

As such, search tree algorithms are nothing new. They have been along
since a long time. Robson’s work [342] on maximum independent set and
Fomin, Kratsch and Woeginger’s recent work [187] on minimum dominating
set are examples showing that the techniques we present here likewise apply
to the non-parameterized setting. More can be found in Chap. 10.

For logical (satisfiability) type problems, many variants of search tree al-
gorithms have been also proposed. A very elaborate example of this approach
can be found in [266], albeit the earlier mentioned (more “parameterized”)
papers [212, 285] also follow the same basic methodology, which is a search
tree that is build along ideas stemming from Davis-Putnam algorithms for
dealing with satisfiability problems.

As a warm-up to this chapter, let us therefore reconsider the problem
satisfiability problem with clauses of size three (clause pa-
rameterization) as introduced in the end of Chap. 3.

Observe that the number of clauses of size three decreases in both re-
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Algorithm 15 A simple search tree algorithm, called 3SAT

Input(s): a set F of clauses, at most k of them having three literals
Output(s): YES if there is a satisfying assignment for F NO if no such

satisfying assignment exists.

if k ≤ 0 then
{there are no more clauses of size three in the formula F}
return 2-SAT(F )
{2-SAT can be solved in polynomial time}

5: else
Choose variable x that occurs in some clause c with three literals.
Let ` be the number of clauses of F in which x occurs either as positive
or as negative literal.
Let F ′ be the formula obtained from F by setting x true.
Let F ′′ be the formula obtained from F by setting x false.

10: if 3SAT(F ′, k − `) then
return YES

else
return 3SAT(F ′′, k − `)

end if
15: end if

cursive calls in Alg. 15, irrespectively of whether x is assumed to be true or
false; in the first case, the clause c under consideration will be satisfied; in
the latter case, the clause c will become a clause with at most two literals,
and therefore k will be also decremented in that case. In fact, our algorithm
can be further improved, as it is sketched for other problems in what follows.
There, we will also learn how to actually analyze the running time of such
search trees.

This chapter is structured as follows: we first turn our attention to cover
problems. Embedded in that section, the reader can find some more detailed
description how to prove upperbounds on the running times of search tree
algorithms. As already mentioned in the foreword, we consider as one of
the issues of this Habilitationsschrift to show how to develop improvements
for parameterized algorithms, not being content with mere classifications.
In Sec. 5.2, we show a somewhat traditional way of doing this, namely by
intricate case analysis of local situations; we also call this the bottom-up
approach to algorithm improvements. We rather advocate a top-down ap-
proach to this improvement problem, which should lead to simpler algorithms
(in terms of implementation work) than the previous approach; however, the
mathematics that need to be analyzed might be more tricky. More on this
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latter approach can be found in Sec. 5.3.
The reader who wishes to first see a concrete example of a search tree

algorithm together with a worked-out search tree might skip to Sec. 6.4.2,
where a particular graph drawing problem is studied.

5.1 Cover problems

The classical and surely most simple cover problem is vertex cover.

5.1.1 vertex cover

Problem name: vertex cover (VC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with |C| ≤ k?

To our knowledge, the very first parameterized algorithm for this problem,
together with its analysis, was published by K. Mehlhorn in his book on
graph algorithms [292], much predating the formal advent of parameterized
algorithmics.

Algorithm 16 A simple search tree algorithm, called VCMH

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES if there is a vertex cover C ⊆ V , |C| ≤ k, (and it will

implicitly produce such a small cover then) or
NO if no vertex cover of size at most k exists.

if k ≤ 0 and E 6= ∅ then
return NO

else if k ≥ 0 and E = ∅ then
return YES

else
Choose edge e = {x, y} ∈ E
if VCMH(G − x, k − 1) then

return YES

else
return VCMH(G− y, k − 1)

end if
end if

In fact, this is a very simple search tree algorithm. This simplicity has
two immediate mathematical consequences:
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• The correctness of the algorithm can be verified in a nearly trivial yet
formal manner.

• The running time can also be easily estimated.

Due to the simplicity of this algorithm, we will perform both analyses in
the following.

Let us remark that the way this search tree algorithm was obtained can be
seen as a specific technique for designing search tree algorithms: the choice of
an appropriate, provably small candidate set ; in each branching step, simply
all possible candidates are considered one after the other. The correctness
of a search tree algorithm based on candidate set branching can be basically
seen by showing that, in every solution (or at least in every solution that is
obeying the constraint imposed by the given parameter value), at least one
of the elements in the candidate set has to show up.

The correctness of Mehlhorn’s algorithm:
Let us consider the following variant VCMH-C of Mehlhorn’s algorithm (the
pseudocode is listed in Alg. 17) that actually produces a cover if possible. In
a certain sense, this algorithm can be seen as an extension of the previous
algorithm, making the produced cover explicit.

This is indeed a fairly generally applicable technique to transform search
tree algorithms for pure decision problems into search tree algorithms that
actually produce the desired solution. In order to keep our algorithm presen-
tation as simple as possible, we will refrain from actually constructing the
solutions if ever possible, but the reader should be able to do this simple
transformation on her/his own.

The proof of the correctness of this algorithm can be formally seen by
induction on the number of edges in G.

First observe that, if k ≤ 0 but E(G) 6= ∅, there cannot be any valid
cover for G.

If E(G) = ∅, then the algorithm correctly returns ∅ as minimum cover
set.

Otherwise, the algorithm chooses an arbitrary candidate edge e = {x, y}
and then branches according to which of the two incident vertices goes into
the cover. This is valid, since any edge must be covered by a feasible solution.
In other words, an edge is a valid candidate set. In the recursion call, the
graph is modified by deleting, e.g., x and its incident edges from G (which
are the edges that are covered by taking x into the cover), i.e., the procedure
is called with arguments G − x and k − 1, since obviously the “budget” of
vertices that can still go into a cover is decremented by putting x into the
cover.
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Algorithm 17 A simple search tree algorithm, called VCMH-C

Input(s): a graph G = (V,E), a positive integer k
Output(s): a vertex cover C ⊆ V , |C| ≤ k, (if possible) or

NO if no vertex cover of size at most k exists.

if k ≤ 0 and E 6= ∅ then
return NO

else if k ≥ 0 and E = ∅ then
return ∅

5: else
Choose edge e = {x, y} ∈ E
if C := VCMH-C(G− x, k − 1) 6= NO then

return C ∪ {x}
else if C := VCMH-C(G− y, k − 1) 6= NO then

10: return C ∪ {y}
else

return NO

end if{branching}
end if

So, if we assume by induction hypothesis that the procedure works correct
for all input graphs of up to m edges, and we consider an input graph with
m + 1 edges, then either (according to our first observation) the routine
returns NO due to an insufficient budget, or it will branch as described above.
In each branch, the number of edges is decreased at least by one, so that
the induction hypothesis applies, so that either NO is forwarded along the
recursion or to the cover set produced by the recursive call x (or y) is correctly
added and handed back to the calling procedure. Therefore, the procedure
works correctly for all input graphs.

Time complexity:
Let us work out the time spent when processing a graph with n vertices and
m edges, given a parameter k.

The tests to see if k has a specific value or if E(G) is empty can be done
in O(1) time. By appropriate data structures, choosing an arbitrary edge
is also doable in time O(1). However, producing G − x in takes O(n) time.
By induction on the depth k of the search tree, a running time of O(2kn)
follows.

After having developed a simple and correct search tree algorithm, it is
of course desirable to improve on the estimates of its running time. To this
end, it turns out to consider another variant of Mehlhorn’s simple algorithm:
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Algorithm 18 A simple search tree algorithm, called VCMH′

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES if there is a vertex cover C ⊆ V , |C| ≤ k, (and it will

implicitly produce such a small cover then) or
NO if no vertex cover of size at most k exists.

if k ≤ 0 and E 6= ∅ then
return NO

else if k ≥ 0 and E = ∅ then
return YES

else
Choose edge e = {x, y} ∈ E
if VCMH′(G− x, k − 1) then

return YES

else
return VCMH′(G−N(x), k − deg(x))

end if
end if

The correctness of this variant is based on the observation that if x is not
taken into the cover, then all neighbors of x (not only y) must be put into
the cover. So, in a sense, this means that we rather branch on vertices here
than on edges: either x goes into the cover or not. In a certain sense, this
binary branching is not based on the selection of the edge e at all. We only
need e to guarantee that the chosen vertex x has any neighbors.

If deg(x) = 1, then actually nothing changes with respect to the previous
analysis: in both branches, the parameter decreases by one. But this is
obviously a very special case. More specifically, if we knew that all vertices
of the graph instance had degree at most one, then the whole graph would
be a collection of isolated vertices and isolated edges. It is clear that such
an instance can be deterministically solved by a simple greedy algorithm;
actually, we can use algorithm VCMH without any further branching.

This gives the variant VCMH-TL.
The strategy to improve on the running time (analysis) could be hence

paraphrased as “Leave the simple cases till the end.” We will therefore call
this design technique triviality last.

We can actually deal with vertices up to degree two this way: namely,
observe that a graph with maximum degree of two is a forest of cycles and
paths, and these structures can be resolved by trivial dynamic programming,
where in a first step to resolve cycles, an arbitrary vertex is put into the
cover. In VCMH-TL, only two lines need to be updated to this situation:
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Algorithm 19 A still simple search tree algorithm, called VCMH-TL

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES if there is a vertex cover C ⊆ V , |C| ≤ k, (and it will

implicitly produce such a small cover then) or
NO if no vertex cover of size at most k exists.

if k ≤ 0 and E 6= ∅ then
return NO

else if k ≥ 0 and E = ∅ then
return YES

5: else if possible then
Choose vertex x ∈ V such that deg(x) ≥ 2.
if VCMH-TL(G− x, k − 1) then

return YES

else
10: return VCMH-TL(G−N(x), k − deg(x))

end if
else
{vertex selection not possible  maximum degree is 1}
resolve deterministically

15: end if

• line 6 becomes “Choose vertex x ∈ V such that deg(x) ≥ 3” and

• line 13 becomes “{ . . .maximum degree is 2 }.”

Hence, we observe the following branching behavior:

1. If x is put into the cover, the parameter is reduced by one.

2. If x is not put into the cover, the parameter is reduced by at least three.

Therefore, the recurrence for the number of leaves in the search tree of
the worst case (when deg(x) = 3) can be expressed as follows:

T (k) = O(1) for k < 3

T (k) = T (k − 1) + T (k − 3) for k ≥ 3

Solving this recurrence with the ansatz T (k) = ck gives: T (k) ≤ 1.4656k.
In terms of parameterized algorithm analysis, this is indeed a huge progress
when compared to the earlier analysis leading to the estimate 2k.
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Lemma 5.1 The modified Algorithm 19 solves k-vertex cover in time
O(1.4656kn) on an instance with n vertices.

Further improvements on vertex cover will be reported in the following
sections.

Let us remark that also the simple improvement we observed (in com-
parison with Mehlhorn’s original algorithm) is only possible if we assume (as
it is the usual case with graph algorithms) that the whole graph instance
is input to the algorithm at the very beginning. In other words, we nearly
exclusively tackle the problem of developing off-line algorithms in the param-
eterized framework. If, in this example, the graph would be given edge after
edge and decisions on how the specific edge is going to be covered are to be
immediately made, then we would face the task of developing a parameter-
ized off-line algorithm. This area has only be superficially scratched in [23],
as it will be explained in Sec. 6.2.2. In the specific case of vertex cover,
where edges are given one after the other, the algorithm of Mehlhorn can be
used to obtain a 2k branching behavior, and the example of k disjoint copies
of K1,1 shows that there is no way to avoid this 2k branching, since at no
stage it is known that all vertices have indeed a degree of only one.

We have just described how to improve on search tree algorithms with
the triviality last principle. This name alone indicates that we can also think
about the opposite strategy, namely triviality first. In this approach, we
basically make use of reduction rules, again. More specifically, consider the
following two rules for vertex cover:

Reduction rule 38 (Rule 1) If deg(x) = 0, then remove x.

Reduction rule 39 If deg(x) = 1, then place N(x) into the vertex cover
set and remove N [x].

It is clear that both rules are sound:

• An isolated vertex cannot cover any edge by definition, and therefore
it is not useful to put it into any small vertex cover set.

• A vertex of degree one only covers one edge by definition, so that taking
the other endpoint of that edge would never be worse. However, by
doing so we could possibly cover other edges, as well.

Observe that both rules can be seen as special cases of Rule 26.
This leads us to the following algorithm VCMH-TF, which is rather

generic, since there is no specific implementation of what is meant by “re-
duction rules.” Of course, to be able to conclude with a reasonable time
analysis, at least the mentioned two reduction rules are addressed.
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Algorithm 20 Yet another simple search tree algorithm, called VCMH-TF

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES if there is a vertex cover C ⊆ V , |C| ≤ k, (and it will

implicitly produce such a small cover then) or
NO if no vertex cover of size at most k exists.

Exhaustively apply the reduction rules.
{The reduced instance is also called G = (V,E).}
if k ≤ 0 and E 6= ∅ then

return NO

5: else if k ≥ 0 and E = ∅ then
return YES

else
Choose some vertex x ∈ V
if VCMH-TF(G− x, k − 1) then

10: return YES

else
return VCMH-TF(G−N(x), k − deg(x))

end if
end if

Since we only “destroy” vertices of degree zero and one by our reduc-
tion rules 1 and 39, in the worst case we branch at vertices of degree two.
Therefore, the estimate of the running time becomes worse:

T (k) = O(1) for k < 2

T (k) = T (k − 1) + T (k − 2) for k ≥ 2

Solving this recurrence with the ansatz T (k) = ck gives: T (k) ≤ 1.6181k.

Lemma 5.2 Algorithm 20 solves k-vertex cover in time O(1.6181kn) on
an instance with n vertices.

The two mentioned ways to deal with triviality are not that far off from
each other as it might appear at first glance; the algorithm based on triviality
first can be even transformed into an algorithm based on triviality last (at
least in this specific case). More precisely: whenever one succeeds in devel-
oping reduction rules for an otherwise trivial search tree algorithm purely
based on the triviality first principle, then one can also define the class of
instances I that can be completely resolved by these reduction rules and
then possibly take a subclass of instances I ′ ⊆ I (for which membership can
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be easily detected for a given instance), so that the trivial branching is only
done as long as the instance under consideration is not in I ′. This way, one
obtains an algorithm based on the triviality last principle.

In our concrete example of the reduction rules 1 and 39, the class of graphs
immediately recognizable as being completely resolvable by these rule is the
class of graphs with maximum degree one. Let us remark here that the two
reduction rules—together with a trivial commitment (i.e., one branching) of
one vertex per cycle component—can be actually used to completely resolve
all graphs of maximum degree two.

However, it is in general not possible to describe a sufficiently large class of
instances of the class of instances that can be efficiently resolved (and hence
taken as a base for a simple search tree algorithm based on the triviality last
principle) merely by reduction rules, so that a conversion into a simple search
tree algorithm suitable for a triviality first approach is not always possible.
In our example of vertex cover, it is not clear how to always deal with
vertices of degree two, at least not at first glance. However, in this example,
Chen, Kanj and Jia [86] (also see [251]) found a reduction rule that deals
with vertices of degree two:

Reduction rule 40 Let (G, k) be an instance of vertex cover. Let v ∈
V (G) such that N(v) = {u, w}, i.e., deg(v) = 2.

• Assume that u /∈ N(w). Construct the graph G′ = G[u = w]−v. Then,
the reduced instance is (G′, k − 1).

• If u ∈ N(w), then put u, w into the vertex cover and reduce to (G −
({u, v, w}), k− 2).

In fact, only the first part of Rule 40 is known as folding rule. The second
part can be actually generalized as follows:

Reduction rule 41 If C ⊆ V (G) is a clique in a graph instance (G, k) of
VC such that C contains a vertex v with N [v] ⊆ C, then reduce to (G −
C, k − (|C| − 1)).

Observe that Rule 41 can be again seen as a kind of kernelization scheme
rule, since the running time for detecting large cliques scales up exponentially
with the size of the clique, although we do not know of an exploit for this
rule (in terms of analysis) if |C| > 3.

In other words, also Alg. 20 can be improved to run in time O(1.4656kn).
The difference between the two approaches will become more transparent

when we do more involved subcase analysis in the following section. There, it
makes a difference whether certain vertices have been actually removed from
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the graph instance with the help of reduction rules, i.e., with the trivial-first
approach, or whether these vertices are still around and may interact with
other vertices in the graph.

Put in another way: while the triviality last approach is suitable for
quickly developing search tree algorithms with reasonable running times, it
is not easy (and actually, we don’t know of any such example) to further
improve on such search tree algorithms by any form of “clever branching.”
By way of contrast, the triviality first approach (where the trivial cases are
usually resolved by reduction rules) tends to lead to running times that are
worse than the ones from the triviality last approach. However, they might
be improvable by clever branching, as seen below in many instances.

At this stage, let us mention that it is also possible to combine both ap-
proaches, leading to the following, typical general scheme detailed in Alg. 21
that first applies reduction rules and then only branches at non-trivial cases:

Algorithm 21 A simple search tree algorithm, called VCMH-TD

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES if there is a vertex cover C ⊆ V , |C| ≤ k, (and it will

implicitly produce such a small cover then) or
NO if no vertex cover of size at most k exists.

Exhaustively apply the reduction rules.
{The reduced instance is also called G = (V,E).}
if Gis trivial then

resolve G deterministically in polynomial time
5: else

Choose some vertex x ∈ V
if VCMH-TD(G− x, k − 1) then

return YES

else
10: return VCMH-TD(G−N(x), k − deg(x))

end if
end if

As within algorithm VCMH-TL (see Alg. 20), triviality basically means
to have maximum degree two. Observe that we now could subsume the other
trivial cases (basically, when there are no edges left over) under this headline.
The analysis of VCMH-TL basically transfers, so that the exponential part
of the running time can be estimated as T (k) ≤ 1.4656k.

Lemma 5.3 Algorithm 21 solves k-vertex cover in time O(1.4656kn) on
an instance with n vertices.



148 CHAPTER 5. SEARCH TREES

This scheme is typical for the top-down approaches discussed in Sec. 5.3.
The point is that the branching part itself is still rather trivial, where this
part becomes really tricky with algorithms developed by a rather bottom-
up approach. We will see a couple of examples for this from the following
subsection on.

One peculiar important property shared by all three algorithms VCMH-
TL, VCMH-TF and VCMH-TD is that their correctness immediately trans-
fers from the correctness of the basic algorithm VCMH as long as

• the reduction rules are sound and

• the algorithms for solving the trivial cases are correct and properly
called from the main algorithm.

This is different from the bottom-up approach we present in the next sub-
section(s), where the correctness of the over-all algorithm must be proven, in
addition.

Let us finally mention that it is actually hard to pin down the sources
of this subsection: vertex cover is simply the standard example for pa-
rameterized algorithmics. What might be new, however, is the stress of the
strategies (triviality first versus triviality last) how to improve on parame-
terized search tree algorithms.

5.1.2 The time analysis of search tree algorithms

In this section, we will first try to generalize our observations on how to
analyze the running time of search tree algorithms and then apply our results
to the analysis of satisfiability problem with clauses of size three
(clause parameterization) algorithms.

In the cases we have seen so far, it was not hard to obtain recurrences of
the form:

T (k) ≤ α1T (k − 1) + α2T (k − 2) + · · ·+ α`T (k − `) (5.1)

for the size T (k) of the search tree (which can be measured in terms of the
number of leaves of the search tree, since that number basically determines
the running time of a search tree based algorithm).

More specifically, αi is a natural number that indicates that in αi of the∑
j αj overall branches of the algorithm, the parameter value k got decreased

by i. Notice that, whenever ` = 1, it is quite easy to find an estimate for
T (k), namely αk1. But how can we deal with the more general case? A recipe
is contained in Alg. 22.
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Algorithm 22 Simple time analysis for search tree algorithms, called ST-
simple

Input(s): a list α1,. . . , α` of nonnegative integers, viewed as coefficients of
the inequality (5.1)

Output(s): a tight estimate ck upperbounding T (k)

Consider inequality (5.1) as equation:

T (k) = α1T (k − 1) + α2T (k − 2) + · · · + α`T (k − `)

Replace T (k − j) by xk−j, where x is still an unknown to be determined.
Divide the equation by xk−`.
{This leaves a polynomial p(x) of degree `.}
Determine the largest positive real zero (i.e., root) c of p(x).
return ck.

Why does that algorithm work correctly? Please observe that in the
simplest case (when ` = 1), the algorithm does what could be expected. We
only mention here that

p(x) = x` − α1x
`−1 − · · · − α`x

0

is also sometimes called the characteristic polynomial of the recurrence given
by Eq. 5.1, and the base c of the exponential function that Alg. 22 returns is
called the branching number of this recurrence. Due to the structure of the
characteristic polynomial, c is the only positive root.

Alternatively, such a recursion can be also written in the form

T (k) ≤ T (k − a1) + T (k − a2) + · · · + T (k − ar).

Then, (a1, . . . , ar) is also called the branching vector of the recurrence.
As detailed in [209, pp. 326ff.], a general solution of an equation

T (k) = α1T (k − 1) + α2T (k − 2) + · · · + α`T (k − `)

(with suitable initial conditions) takes the form

T (k) = f1(k)ρ
k
1 + · · · + f`(k)ρ

k
` ,

where the ρi are the distinct roots of the characteristic polynomial of that
recurrence, and the fi are polynomials (whose degree corresponds to the
degree of the roots (minus one)). As regards asymptotics, we can conclude
T (k) ∈ O∗(ρk1), where ρ1 is the dominant root.
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The exact mathematical reasons can be found in the theory of polynomial
roots, as detailed in [209, 183, 210, 266]. It is of course also possible to check
the validity of the approach by showing that T (k) ≤ ρk for the obtained
solution ρ by a simple mathematical induction argument.

There are two more general settings which we will encounter in this Ha-
bilitationsschrift:

• Due to case distinctions that will play a key role for designing refined
search tree algorithms, the recurrences will then take the form

T (k) ≤ max{f1(k), . . . , fr(k)},
where each of the fi(k) is of the form

fi(k) = αi,1T (k − 1) + αi,2T (k − 2) + · · ·+ αi,`T (k − `).

Such a recurrence can be solved by r invocations of Alg. 22, each time
solving T (k) ≤ fi(k). This way, we get r upperbounds T (k) ≤ cki .
Choosing c = max{c1, . . . , cr} is then a suitable upperbound.

• We might have systems of equations. In its most general form, these
will again include maximum operators that can be treated as explained
in the previous point. Then, we are left with solving systems like

T `(k) ≤
r∑

i=1

f `i (k),

where each of the f `i (k) is of the form

f `i (k) = αi,`,1T
i(k − 1) + αi,`,2T

i(k − 2) + · · ·+ αi,`,q`T
i(k − q`),

where 1 ≤ i, ` ≤ r. We shall follow the approach of first transforming
this set of mutual recurrences into a single recurrence for the main
component (usually T 1) only, by treating all involved inequalities as
equalities. Then, we again apply Alg. 22.

We should like to remark that this is not the only way of dealing with
sets of linear recurrence equations that involve an auxiliary parame-
ter `. For instance, Kullmann and Wahlström included this auxiliary
parameter by deriving a single recurrence equation from a set of re-
currence equations in their algorithm analysis [266, 373], trading off `
against k, so to speak. Sometimes, even more involved methods tai-
lored to the specific analysis of a certain algorithm may be worthwhile
pursuing, as can be seen with the algorithm analysis of Monien and
Speckenmeyer, see [296]. A more general and abstract approach called
quasiconvex method was recently exhibited by Eppstein [155].
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Let us finally return to satisfiability problem with clauses of
size three (clause parameterization), the warm-up problem of this
chapter. By the techniques developed so far for VC, the following result can
be easily seen:

Theorem 5.4 Alg. 15 solves a satisfiability problem with clauses
of size three (clause parameterization) instance (F,X, k) in time
O∗(2k).

We already mentioned that there are simple strategies to improve on
this running time. One simple observation relies on the fact that, whenever
a particular variable x always only occurs as say a positive literal in the
formula F , then we can set x to true (without any further need to branch),
this way simplifying the formula (possibly decreasing the number of clauses
with three variables). This motivates the following reduction rule:

Reduction rule 42 Let (F,X, k) be an instance of satisfiability prob-
lem with clauses of size three (clause parameterization) and
x ∈ X.

• If x only appears as a positive literal in the formula F , then set x to
true, remove all clauses in which x appears from F , remove x from X
and reduce the parameter by the number of clauses of size three in F
in which x appeared.

• If x only appears as a negative literal in the formula F , then set x to
false, remove all clauses in which x̄ appears from F , remove x from X
and reduce the parameter by the number of clauses of size three in F
in which x̄ appeared.

Similarly, the following observation is helpful (although it will not di-
rectly affect the analysis of the modified search tree algorithm for 3-SAT
(clause)):

Reduction rule 43 Let (F,X, k) be an instance of satisfiability prob-
lem with clauses of size three (clause parameterization) and
x ∈ X. If C is a clause that contains only the variable x, then do one of the
following things:

• If x and x̄ are contained in C, then remove C from F (only affecting
the parameter if C contained three literals).

• If only x is contained in C, then set x to true, remove C from F and
x from X (only affecting the parameter if C contained three literals).
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• If only x̄ is contained in C, then set x to false, remove C from F and
x from X (only affecting the parameter if C contained three literals).

In fact, the first case of the previous rule can be formulated more generally
as follows:

Reduction rule 44 Let (F,X, k) be an instance of satisfiability prob-
lem with clauses of size three (clause parameterization) and
x ∈ X. Assume that Rule 43 does not apply. If x and x̄ are contained
in C, then remove x and x̄ from C, this way modifying F . Decrement the
parameter (by one).

The rules themselves are not new but can be found in basically any al-
gorithm dealing with satisfiability problems. The correctness of the pro-
posed modified search tree procedure for satisfiability problem with
clauses of size three (clause parameterization) relies on the sound-
ness of the reduction rules. The proof of the following lemma is left to the
reader.

Lemma 5.5 Let (F,X, k) be an instance of satisfiability problem with
clauses of size three (clause parameterization). Let (F ′, X ′, k′)
be obtained from (F,X, k) by applying either of the rules 42 or 43 or 44 to
(F,X, k). Then, (F,X, k) is satisfiable if and only if (F ′, X ′, k′) is satisfiable.

If we now modify Alg. 15 by adding inbetween lines 5 and 6 of that
procedure the following line of code:

Exhaustively apply rules 42, 43 and 44;
the resulting instance is also named (F, k).1

then we arrive at an algorithm for which we can prove:

Theorem 5.6 The modified version of Alg. 15 solves a satisfiability prob-
lem with clauses of size three (clause parameterization) instance
(F,X, k) in time O∗(1.6182k).

Proof. (Sketch) The correctness of the procedure directly follows from the
correctness of Alg. 15 and the soundness of the reduction rules.

Before branching, the instance (F, k) is reduced. In particular, this means
that the variable x we choose is contained both as a positive and a negative
literal; more precisely, there is one clause C in which x occurs as a positive
literal and one clause C ′ in which x occurs as a negative literal x̄ (otherwise,
one of the reduction rules would trigger).

1Observe that in the search tree algorithm, we do not explicitly specify the set of
variables X as an argument, since this can be implicitly deduced from the set of clauses.
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Now, we consider two cases:

• The two clauses C and C ′ mentioned above both contain three vari-
ables. Then, we will arrive at the following recursion for limiting the
size of the search tree:

T (k) ≤ 2T (k − 2).

Namely, irrespectively of whether we set x to true or false, at least two
clauses of size three will vanish.

• W.l.o.g., consider the case that C contains three variables but C ′ con-
tains two variables. Now, in the branch that x is set to true, C ′ = x̄∨ `
can only be satisfied by setting the variable y of ` accordingly. Accord-
ing to the reduction rules, y will appear in another clause Cy; more
precisely, if ` = y, ȳ will show up in Cy, and if ` = ȳ, y will show
up in Cy. If Cy contains only one other literal z, the argument will
repeat, since the fixing of y will also fix z: possibly, the whole instance
will be resolved this way. If not, finally a clause C ′′ will be reached in
this sequence (in the simplest case, this is already Cy) that contains
three literals. This clause C ′′ will be turned into a clause with only two
literals.

In the branch that x is set to false, nothing is gained. Altogether, this
branch leads to the following recursion for limiting the size of the search
tree:

T (k) ≤ T (k − 1) + T (k − 2).

Due to T (k− 1) ≥ T (k− 2), the worst case is obviously given by the second
recursion, which gives the claimed result.

5.1.3 weighted vertex cover

Problem name: weighted vertex cover (WVC)
Given: A graph G = (V,E) with vertex weights ω : V → R≥1

Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with ω(C) ≤ k?

In the following, the weight function ω will also be used for sets of vertices
as argument.

The interesting thing of this weighted version of vertex cover—and
in contrast with the unweighted case—is that of the two simple reduction
rules for VC we listed above, only the rule 1 for isolates is still valid. The
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problem with the degree-1 rule 39 is that there may be degree-1 vertices of
relatively small weight whose inclusion in the vertex cover is actually better
than taking its heavy-weight neighbor.

Yet, the simple VCMH algorithm is also valid in this case, since still
each edge needs to be covered. Moreover, even the more sophisticated Algo-
rithm 19, called VCMH-TL, based on the triviality last principle, together
with the analysis is still valid, although a little care has to be applied to the
trivial cases, i.e., the graph with maximum degree of two. Now, for paths
actually some little dynamic programming must be performed (due to the
inavailability of the second reduction rule for the weighted case as explained
above), starting from one end of the path, working through towards the
other. The according easily derived algorithm is left as an exercise, see [309].
Similarly, we can also develop an analogue to Alg. 21: again, the proof of
the correctness of the algorithm itself and its running time upperbounds are
easy to obtain.

Lemma 5.7 Variants of Algorithm 19 and Algorithm 21 solve k-weighted
vertex cover in time O(1.4656kn) on an instance with n vertices.

However, the triviality first principle is harder to apply, since only Rule 1
is valid in the weighted case. Nonetheless, by using a bottom-up approach,
the currently best exact algorithm for weighted vertex cover was de-
veloped in [309], the variant of which that uses polynomial space is explicitly
shown in Alg. 26 and the subsequently listed subroutines.

5.1.4 constraint bipartite vertex cover

Let us reconsider the problem constraint bipartite vertex cover in-
troduced in Chap. 3. We already mentioned that an O(2k1+k2k1k2 + (k1 +
k2)|G|) has been developed by people working in that area, much predat-
ing the systematic development of FPT algorithms. This algorithm—as the
stated running time indicates, was a combination of a kernelization and a
search tree algorithm. Let us focus here on the search tree part.

In fact, it is not hard to see how to obtain a O∗(2k1+k2) algorithm: the
basic observation for the development of Alg. 16 was that every edge {u, v}
needed to be covered, so branching into the to cases “u comes into the cover”
or “v comes into the cover” is a complete case distinction. The same obser-
vation is also true for constraint bipartite vertex cover. Since in
either branch, k1 or k2 is decreased, the claimed running time follows.

How can this simple algorithm be improved? Let us (again) try the
triviality last approach. To this end, we need to be able to deal with simple
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cases, where “simple” means graphs with a low maximum degree. If these
simple cases can be dealt with in polynomial time, then it is clear that the
simple branching strategy exhibited in Alg. 20 transfers to this case, as well.

Lemma 5.8 constraint bipartite vertex cover can be solved in poly-
nomial time on forests of cycle and path components.

Proof. (Sketch) First observe that this assertion is not completely trivial
in this two-parameter vertex cover variant. For example, a cycle C8 of
length eight would need every second vertex to be put into the cover, seen as
an instance of vertex cover. Hence, 4 vertices would need to be put into
a cover. But this would not be possible if say k1 = k2 = 2. Hence, if k1 < 4
and k2 < 4, three vertices of one kind and two of the other would need to be
put into a cover for C8.

This is more generally true: if the parameter values k1 and k2 should
suffice to cover a cycle component Cm, then if m ≤ 2k1 or m ≤ 2k2, the cycle
can be optimally covered (as if it were a vertex cover instance); otherwise,
if m−2 ≤ 2(k1+k2), then such a cover can be constructed for Cm (as CBVC
instance), and how this “change” between taking one sort of vertices or the
other one is performed is arbitrary (where only “using” at least two vertices
from each sort makes sense). Finally, if m−2 > 2(k1+k2), then no solution is
possible. This gives the following strategy for solving forests of cycles (with
current parameter (k1, k2):

Select a cycle C of smallest length m.
Let k` be the smaller among k1 and k2.
if m ≤ 2k` then

Cover C by taking m/2 vertices from C from vertex set V`.
else if m− 2 ≤ 2(k1 + k2) then

Use k` vertices from V` and (m+ 1)/2− k` from the other sort to cover
C.

else
The instance has NO solution.

end if

Why did we choose to first treat small cycles? As we argued above, when
it is not possible to cover a cycle by vertices from one type, we would need
(overall) one more vertex to cover that cycle. This observation is independent
of the size of the cycles. Hence, leaving the large cycles for the end is better
than the converse strategy. Moreover, it shows that at most one cycle will
be covered non-optimally.

Similar considerations can be made for paths, although here the situation
is slightly more intricate: there are basically three types of paths that need
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different considerations: (1) paths of odd length, (2) paths of even length
that begin and end with vertices from V1, and (3) paths of even length that
begin and end with vertices from V2. The additional problem is that paths
of even length can be covered optimally (as a VC instance) by taking every
second vertex into the cover, starting with the second vertex on a path; for
a path of length m, m/2 vertices are needed this way. If there are, however,
not “sufficiently” many vertices of a particular kind available (in the bipartite
case), one more vertex will be needed in the cover. The situation is different
with paths of odd length: there, the additional constraints put within the
CBVC problem (in contrast with VC) do not incur additional costs; more
precisely, a path of odd length as a vertex cover of size k if and only if it is
solvable as part of a constraint bipartite vertex cover instance, with
any parameter values k1 and k2 that satisfy k1 + k2 = k.

To get a really efficient algorithm, we would therefore stick to the follow-
ing strategy:

1. Solve all paths of even length, first solving short path components.

2. Solve cycles, first solving short cycles (see details above).

3. Solve paths of odd length.

Details are left to the reader. The claimed polynomial running time is then
obvious. In fact, the polynomial is pretty small; assuming that the compo-
nents are already sorted by size, it is even linear.

This gives us the Algorithm listed in Alg. 23. We can conclude:

Theorem 5.9 constraint bipartite vertex cover can be solved in
time O∗(1.4656k1+k2).

By a much more involved case analysis, a search tree algorithm was
developed for constraint bipartite vertex cover that runs in time
O∗(1.3999k), see [180]. We omit stating the rather complicated algorithm
here. However, let us mention that it would be another perfect example of
the bottom-up approach illustrated in the next section.

When it comes to the analysis of search tree algorithms, there is one ingre-
dient of [180] that is worth mentioning, since it might be applicable to other
search tree algorithms, as well, the so-called bonus point trick. Namely, the
search tree algorithm is basically an intricate implementation of the triviality-
last principle, combined with a sophisticated analysis of many different local
situations. In this sophisticated analysis, from time to time it happens that
components consisting of at least two vertices, each of degree at most two,



5.1. COVER PROBLEMS 157

Algorithm 23 A still simple search tree algorithm for CBVC, called CBVC-
TL
Input(s): a bipartite graph G = (V1, V2;E), positive integers k1 and k2

Output(s): YES iff there is a vertex cover (C1, C2) ⊆ V1×V2, |C1| ≤ k1 and
|C2| ≤ k2

if k1 + k2 ≤ 0 and E 6= ∅ then
return NO

else if k1 + k2 ≥ 0 and E = ∅ then
return YES

5: else if possible then
Choose vertex x ∈ V1 ∪ V2 such that deg(x) ≥ 3.
if x ∈ V1 then
d = (1, 0)

else
10: d = (0, 1)

end if
if CBVC-TL(G− x, (k1, k2) − d) then

return YES

else
15: return CBVC-TL(G−N(x), (k1, k2) − deg(x)((1, 1) − d))

end if
else
{vertex selection not possible  maximum degree is 2}
resolve deterministically according to Lemma 5.8

20: end if

are split off. When this happens, we can (already) reduce the parameter by
one, since we might (as well) already at that point completely resolve that
component, and we would need at least one vertex to come into the cover for
such a solution. Hence, we can count this as a “bonus point,” although we
will only later actually “use up” this bonus point for covering that compo-
nent. Hence, formally the concrete parameter value no longer corresponds to
the number of vertices put into the (partial) cover (implicitly) constructed
so far on some branching path.

If one further requires that a solution to constraint bipartite ver-
tex cover is only accepted if it is also a minimum vertex cover (an assump-
tion accepted in [279] to get a better solving strategy (heuristic) based on
the Dulmage-Mendelsohn decomposition for bipartite graphs), then even an
O∗(1.26k) algorithm was derived [85] (their algorithm also makes use of the
Dulmage-Mendelsohn decomposition); however, it appears to be question-
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able if this is the correct modelization of the original chip repair problem:
why should a repair be rejected on the ground that it is not minimum (when
seen as a VC instance)? A more authorative critique of this assumption from
people that actually write programs that are used in reconfiguration lasers
can be found in [227].

More interesting variants appear to be, from the practical point of view:

• weighted variants: in particular, it can be assumed that there is a
different cost incurred for repairing rows or columns, and a solution
that only uses say row repairs is preferrable to a solution that uses
both row and column repairs, since changing between different repair
modes takes additional time.

• variants that use more parameters (see Chap. 3)

Both main variants will be shortly discussed in the context of parameter-
ized enumeration, see Chap. 8.

Let us only remark in this place that the variant which prefers to repair
with only one sort of spare lines can be solved with what we already saw as
follows. Let (G = (V1, V2;E), k1, k2) be an instance of constraint bipar-
tite vertex cover. Recall the probem generalized vertex cover
that generalizes vertex cover in the way that a specific set of vertices was
prescribed out of which the cover vertices must be chosen.

• Try to solve VCgen on the instance ((V1 ∪ V2, E), V1, k1); if this is
possible, this would be our repair proposal.

• Otherwise: Try to solve VCgen on the instance ((V1 ∪ V2, E), V2, k2);
if this is possible, this would be our repair proposal.

• If the first two cases fail, we would have to solve the given CBVC
instance in the “traditional way” (as indicated above).

Observe that vertex cover and generalized vertex cover are pa-
rameterized interreducible, see Cor. 4.41, so that the first two steps do not
introduce additional running time cost in terms of O-notation, since vertex
cover can be (currently) faster solved than constraint bipartite ver-
tex cover; moreover, assuming k1 ≈ k2, the parameter values with which
we call any VC algorithm are smaller than for CBVC.

5.2 Improved branching: a bottom-up approach

Although we already reported on a couple of algorithms for solving vertex
cover, the algorithms we listed are not among the best in terms of worst-case
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running times. Still, VCMH-TL and VCMH-TD are significantly better than
the first improved branching algorithms, as reported, e.g., in [33, Theorem 1].
Note that it was the mentioned algorithm of Balasubramanian, Fellows and
Raman that was chosen in the parallel implementation of vertex cover
algorithms as described in [80] in the dispatching phase, also see Sec. 8.5.2.

Let us now first present the second algorithm introduced in [33] as a kind
of random example of the bottom-up approach, see Alg. 24.

The correctness of this algorithm must be argued on a case-by-case basis.
For example, in lines 5 through 21, the case that x has degree two is discussed.
In the corresponding subcases that lead to different branching scenarios, the
subcase that y and z are both having no neighbor besides x is not mentioned.
Nonetheless, the case distinction is complete, since this evidently means that
bot y and z have degree one, and this case got treated in the very first case
distinction. Observe that we could replace basically the first 21 lines of code
by referring to the reduction rules we presented for getting rid of vertices of
degree of at most two in the case of vertex cover.

However, it is clear that in contrast to the simple algorithms we considered
up to now, a formal correctness proof is pretty tedious. Moreover, observe
that not all details of the algorithm have been given; rather, the lines of
pseudo-code should give an impression of how complicated algorithms tend
to be that are optimized according to the bottom-up approach.

The algorithm we presented here is not the one for which the smallest
upper bound has been shown. When restricting oneself on algorithms that
only use polynomial space, the currently best algorithm (that needs only
polynomial space) is published in [86] (also see Kanj’s PhD Thesis [251])
and runs in time O∗(1.2852k). However, if exponential space is allowed,
running times down to O∗(1.2745k) are possible [77]. Those algorithms are
not conceptually (and not from the point of view of implementing them)
simpler than the one we listed to some detail. Moreover, it can be doubted
if the exponential space requirement (of course, in the area of parameterized
algorithmics, exponential space rather means “parameterized space”) of the
theoretically best algorithm pays off in practice, since time may be eaten up
by page swapping.

As a second example of this approach (that is still prominent in the
literature) we reconsider weighted vertex cover. By using a complicated
algorithm, Niedermeier and Rossmanith were able to prove the following
theorem:

Theorem 5.10 weighted vertex cover can be solved in time O(1.3954k+
kn).
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Algorithm 24 An involved search tree algorithm, called VCBFR

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES if there is a vertex cover C ⊆ V , |C| ≤ k, (and it will

implicitly produce such a small cover then) or
NO if no vertex cover of size at most k exists.

if there is a vertex x of degree zero then
return VCBFR(G− x, k)

else if there is a vertex x of degree one then
return VCBFR(G−N [x], k − 1)

5: else if there is a vertex x of degree two then
{Let y and z be the two neighbors.}
if y and z are neighbors then
{y and z can go into vertex cover.}
return VCBFR(G− {x, y, z}, k − 2)

10: else if |(N(y) ∪N(z)) \ {x}| ≥ 2 then
{Either {y, z} are part of the cover or N({y, z}).}
if VCBFR(G− {x, y, z}, k − 2) then

return YES

else
15: return VCBFR(G−N [{x, y}], k − 3)

end if
else
{y and z have one other neighbor a besides x.}
{x and a can go into vertex cover.}

20: return VCBFR(G−N [{x, y}], k − 2)
end if

else if there is a vertex x ∈ V with deg(x) ≥ 5 then
if VCBFR(G− x, k − 1) then

return YES

25: else
return VCBFR(G−N [x], k − deg(x))

end if
else if there is a vertex x ∈ V with deg(x) = 3 then
{Let x1, x2, x3 be the neighbors of x.}

30: {See next algorithm.}
else
{There is a vertex x ∈ V with deg(x) = 4.}
{This case is similar and hence omitted.}

end if
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Algorithm 25 What to do with a vertex x of degree three in VCBFR

{Let x1, x2, x3 be the neighbors of x.}
if there are 1 ≤ i < j ≤ 3 with {xi, xj} ∈ E then
{Branch at x` such that {xi, xj, x`} = N(x).}
if VCBFR(G−N(x), k − 3) then

5: return YES

else
return VCBFR(G−N(x`), k − 3)

end if
else if there are 1 ≤ i < j ≤ 3 with N(xi) ∩N(xj) = {x, y, . . . } then

10: if VCBFR(G−N [x], k − 3) then
return YES

else
return VCBFR(G− {x, y}, k − 2)

end if
15: else if there is a 1 ≤ i ≤ 3 with |N(xi)| ≥ 4 then

if VCBFR(G−N [x], k − 3) then
return YES

else if VCBFR(G−N(xi), k − 4) then
return YES

20: else
return VCBFR(G− ({xi} ∪N(N(x) \ {xi})), k − 6)

end if
else
{There are no edges between x1, x2, x3 and each xi has, apart from x,
exactly two private neighbors: N(xi) = {x, yi,1, yi,2}.}

25: if There are no edges between N [N(x)] and V \N [N(x)] then
solve “tiny component” G[N [N(x)]] by brute force and return ac-
cording solution

else
further case distinctions omitted . . .

end if
30: end if

Actually, the additive FPT algorithm was obtained by combining the
search tree algorithm described in the following with a kernelization algo-
rithm based on a combination of Buss’ reduction and Nemhauser-Trotter
reduction, as described in Chapter 4 for the unweighted case.

The reader is encouraged to compare this running time with the one
claimed in Lemma 5.7. Obviously, the complexity of Algorithm 26 in terms
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of

• proving the correctness of the algorithm,

• proving the running time of the algorithm and

• implementing the algorithm (without introducing any errors)

is much higher. It could be even questioned if the running time would be
much better (compared to Algorithms 19 and 21) in practice, since much
more work has to be done in each node of the search tree.

To simplify the notations when stating the algorithm of Niedermeier and
Rossmanith, we write

WVC-NR-branch at x

to abbreviate:

if WVC-NR(G− x, k − ω(x)) then
return YES

else
return WVC-NR(G−N(x), k − ω(N(x)))

end if

The reader is encouraged to actually prove the correctness of the listed
algorithm. Especially, this means that one has to argue why the many case
distinctions are actually capturing all cases. Also, the quality of the branch-
ings would have to be considered. The worst case branching can be described
by the recurrence

T (k) ≤ 2T (k − 3) + T (k − 4),

which gives the claimed upper bound on the running time.
Let us finally report on interesting automatic approaches that were re-

cently developed to analyze local branching scenarios, see [211].
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Algorithm 26 An elaborated search tree algorithm, called WVC-NR

Input(s): a graph G = (V,E) with real vertex weights ω : V → R with
minω(V ) ≥ 1, a positive real k

Output(s): YES if there is a vertex cover C ⊆ V , ω(C) ≤ k, (and it will
implicitly produce such a small cover then) or
NO if no vertex cover of weight at most k exists.

Resolve all graph components of maximum degree two in polynomial
time. (∗)
Resolve all graph components with no more than six vertices in constant
time.
{The new (reduced) instance is also called G = (V,E).}
if k ≤ 0 and E 6= ∅ then

5: return NO

else if k ≥ 0 and E = ∅ then
return YES

else if possible then
Choose some vertex x ∈ V with deg(x) ≥ 4

10: WVC-NR-branch at x
else if possible then

Choose some vertex x ∈ V with deg(x) = 1.
Let a denote the unique neighbor of x.
return WVC-NR-deg1(G, x, a, k)

15: else if possible then
Choose some triangle a, b, c ∈ V
return WVC-NR-triangle(G, a, b, c, k)

else
return WVC-NR-notriangles(G, k)

20: end if
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Algorithm 27 A subroutine for WVC-NR, called WVC-NR-deg1

Input(s): a graph G = (V,E) with real vertex weights ω : V → R with
minω(V ) ≥ 1 of maximum degree three without “easy components”, a
degree one vertex x with neighbor a, a positive real k

Output(s): YES if there is a vertex cover C ⊆ V , ω(C) ≤ k, (and it will
implicitly produce such a small cover then) or
NO if no vertex cover of weight at most k exists.

if ω(x) ≥ ω(a) then
return WVC-NR(G− a, k − ω(a))

else if deg(a) = 2 then
{Let y denote the first vertex on the path starting with x, a, . . . with
deg(y) 6= 2; due to step (∗), deg(y) > 2.}

5: WVC-NR-branch at y
else
{deg(a) = 3}
if at least one of a’s neighbors (say y) has degree three then

WVC-NR-branch at y
10: else if a’s other neighbors y and y′ have degree two then

{Let N(y) = {a, z} and N(y′) = {a, z′}.}
if ω(a) ≥ 2 OR ω(y) ≥ ω(z) OR ω(y′) ≥ ω(z′) then

WVC-NR-branch at a
else

15: {ω(y) < ω(z) AND ω(y′) < ω(z′)}
WVC-NR-branch at x

end if
else
{One of a’s other neighbors, say y, has degree two and one, say y ′,
has degree one. This case is similar to deg(a) = 2 and is hence
omitted.}

20: end if
end if



5.2. IMPROVED BRANCHING: A BOTTOM-UP APPROACH 165

Algorithm 28 A subroutine for WVC-NR, called WVC-NR-triangle

Input(s): a graph G = (V,E) with real vertex weights ω : V → R with
minω(V ) ≥ 1 of maximum degree three without “easy components”,
with a triangle a, b, c, a positive real k

Output(s): YES if there is a vertex cover C ⊆ V , ω(C) ≤ k, (and it will
implicitly produce such a small cover then) or
NO if no vertex cover of weight at most k exists.

{Let (w.l.o.g.) deg(a) ≤ deg(b) ≤ deg(c) = 3.}
if deg(b) = 2 then
{one vertex in the triangle has degree three}
if ω(a) ≤ ω(b) then

5: return WVC-NR(G−N(a), k − ω(N(a)))
else

return WVC-NR(G−N(b), k − ω(N(b)))
end if

else if deg(a) = 2 then
10: {two vertices in the triangle have degree two}

WVC-NR-branch at b
else
{all vertices in the triangle have degree two}
{assume, w.l.o.g., ω(a) ≤ ω(b) ≤ ω(c)}

15: WVC-NR-branch at a
end if
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Algorithm 29 A subroutine for WVC-NR, called WVC-NR-notriangles

Input(s): a graph G = (V,E) with real vertex weights ω : V → R with
minω(V ) ≥ 1 of maximum degree three without “easy components”,
without triangles, a positive real k

Output(s): YES if there is a vertex cover C ⊆ V , ω(C) ≤ k, (and it will
implicitly produce such a small cover then) or
NO if no vertex cover of weight at most k exists.

if possible then
Choose some vertex x with ω(x) ≥ 2.
if deg(x) = 3 then

WVC-NR-branch at x
5: else

{deg(x) = 2; let N(x) = {y, y′} with deg(y) ≤ deg(y′)}
WVC-NR-branch at y′

end if
else

10: {All vertices have weight less than two.}
if possible then

Choose two neighbors a and b with deg(a) = deg(b) = 2.
{Let x and y be the two endpoints of a path a and b are part of such
that deg(x), deg(y) ≥ 3}
if x ∈ N [y] then

15: WVC-NR-branch at x
else

if WVC-NR(G− {x, y}, k − ω({x, y})) then
return YES

else if WVC-NR(G− ({x} ∪N(y)), k − ω({x} ∪N(y))) then
20: return YES

else
return WVC-NR(G−N(x), k − ω(N(x)))

end if
end if

25: end if
return WVC-NR-notriangles-ctd(G, k)

end if
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Algorithm 30 A subroutine for WVC-NR-notriangles, called WVC-NR-
notriangles-ctd

if possible then

Choose three vertices x, y, z with deg(x) = deg(y) = deg(z) = 3 and two vertices
a, b with N(a) = {x, z} and N(b) = {y, z}.
if WVC-NR(G − {x, y, z}, k− ω({x, y, z})) then

return YES

5: else if WVC-NR(G− ({x} ∪N(y)), k − ω({x} ∪N(y))) then

return YES

else

return WVC-NR(G−N(x), k − ω(N(x)))
end if

10: else if possible then

Choose a vertex x with deg(x) = 3 and a vertex a ∈ N(x) with deg(a) = 2 and
ω(a) ≥ ω(x).
WVC-NR-branch at x

else

{We can find the following situation in G: vertices x, y, z with deg(x) = deg(y) =
deg(z) = 3 and y ∈ N(z), a vertex a with N(a) = {x, z} and N(z) = {a, b, y}.}

15: if deg(b) = 2 then

{Let N(b) = {c, z}.}
if c = x then

if y ∈ N(x) then

WVC-NR-branch at y
20: else

if WVC-NR(G − {x, y}, k − ω({x, y})) then

return YES

else if WVC-NR(G− ({y} ∪N(x)), k − ω({y} ∪N(x))) then

return YES

25: else

return WVC-NR(G−N(y), k − ω(N(y)))
end if

end if

else

30: if WVC-NR(G − {x, y, z, c}, k− ω({x, y, z, c})) then

return YES

else if WVC-NR(G− (N(y)), k − ω(N(y))) then

return YES

else

35: return WVC-NR(G−N(z), k − ω(N(z)))
end if

end if

else

if WVC-NR(G − {a, b, y}, k− ω({a, b, y})) then

40: return YES

else if WVC-NR(G− ({b} ∪N(y)), k − ω({b} ∪N(y))) then

return YES

else

return WVC-NR(G−N(b), k − ω(N(b)))
45: end if

end if

end if
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5.3 Improved branching: simple algorithms

The aim of this section is to develop very simple search tree algorithms. Due
to their simplicity, these algorithms are easily seen to be working correctly.
Their time analysis, however, often involves either some thorough mathemat-
ical background knowledge or a possible tough mathematical analysis.

If an involved time analysis is necessary, the algorithm development often
proceeds in a top-down rather than bottom-up manner. This means that the
case analysis is guided by the need of the time analysis rather than by a
collection of observations concerning local situations.

However, sometimes improved time analysis and actually slightly chang-
ing (tuning) algorithms goes hand in hand. This is the actual topic of our
first example.

5.3.1 planar independent set

Recall that the greedy kernelization algorithm 6 was based on the well-known
fact that each planar graph has at least one vertex of degree at most five.
This result can be also used to create a very simple search tree algorithm for
planar independent set, see Alg. 31.

The mentioned result on planar graphs shows that for any v that is picked
by the algorithm, |N [v]| ≤ 6, so that we can state:

Proposition 5.11 Alg. 31 solves planar independent set in time O(6k|G|).

Fortunately, some mathematicians gave a deeper analysis of the structure
of planar graphs regarding vertices of small degree. In [6, Theorem 2], the
authors have shown the following result:

Theorem 5.12 Every connected plane graph with at least two vertices has

1. two vertices with degree sum at most 5, or

2. two vertices of distance at most two and with degree sum at most 7, or

3. a triangular face with two incident vertices with degree sum at most 9,
or

4. two triangular faces neighbored via an edge {u, v} where the sum of the
degrees of u and v is at most 11.

Based on that theorem, we propose Algorithm 32:
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Algorithm 31 A simple search tree algorithm for planar independent
set, called PIS-ST-simple

Input(s): planar graph G = (V,E), positive integer k
Output(s): YES if G has an independent set I with |I| = k; NO otherwise

if k ≤ 0 then
return YES

else if V = ∅ then
return NO

5: else
Let v be a vertex of lowest degree in G.
{One vertex from N [v] will be in any maximal independent set.}
for all x ∈ N [v] do
V ′ := N [x]

10: if PIS-ST-simple(G[V \ V ′], k − 1) then
return YES

end if
end for
{All trials have failed.}

15: return NO

end if

The correctness of the algorithm immediately follows from the quoted
theorem. The running time T of the new algorithm, measured in terms of
the number of leaves of the search tree, satisfies

T (k) ≤ 4T (k − 1) + 6T (k − 2).

This recurrence can be solved, showing T (k) ≤ 5.1623k as claimed.
This shows Proposition 5.13.

Proposition 5.13 Alg. 32 solves planar independent set within time
O(5.1623k|G|).

Unfortunately, we have to remark in this place that this is not the best al-
gorithm for planar independent set that we are aware of. As mentioned
below in Chap. 10, there are very cute algorithms for solving (general) max-
imum independent set that run in time approximately O(1.2n). Since n
can be limited to 4k (see Alg. 7), a combination of these algorithms would
outperform the (admittedly still simple) algorithm that we presented here.
However, note that even the full-fledged Alg. 32 is still close to trivial in com-
parison with the quite sophisticated algorithms that should be implemented
to enjoy the better running times.
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Algorithm 32 A more advanced search tree algorithm for planar inde-
pendent set, called PIS-ST

Input(s): planar graph G = (V,E), positive integer k
Output(s): YES if G has an independent set I with |I| = k; NO otherwise

if k ≤ 0 then
return YES

else if V = ∅ then
return NO

5: else
Let v be a vertex of lowest degree in G.
{One vertex from N [v] will be in any maximal independent set.}
if deg(v) ≤ 4 then

for all x ∈ N [v] do
10: V ′ := N [x]

if PIS-ST(G[V \ V ′], k − 1) then
return YES

end if
end for

15: else
{The fourth case of Theorem 5.12 applies.}
{Hence: N(v) = {x, y, u, v1, v2}
such that N(u) = {x, y, v, u1, u2, u3}}
if PIS-ST(G[V \N [v]], k − 1) then
{Branch 1: v in IS ?}

20: return YES;
else if PIS-ST(G[V \N [u]], k − 1) then
{Branch 2: v is not in IS, but u ?}
return YES;

else if PIS-ST(G[V \N [x]], k − 1) then
25: {Branch 3: v, u is not in IS, but x ?}

return YES;
else if PIS-ST(G[V \N [y]], k − 1) then
{Branch 4: v, u, x is not in IS, but y ?}
return YES;

30: else
{Now v, u, x, y is not in IS, so one of the vi and one of the uj must
be in a maximal independent set.}
for all i = 1, 2; j = 1, 2, 3 do

if PIS-ST(G[V \ (N [vi] ∪N [uj])], k − 2) then
return YES

35: end if
end for
return NO

end if
end if

40: end if
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The next subsection is devoted to planar dominating set. However,
there is one kind of intermediate problem, namely planar independent
dominating set:

Problem name: planar independent dominating set (PIDS)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there a independent dominating set D ⊆ V with |D| ≤ k?

Clearly, this problem can be likewise called minimum maximal inde-
pendent set, restricted to planar graphs. Now, observe that the search
tree algorithms we presented for planar independent set never actually
rely on the fact that we actually look for a maximum independent set, since
all branchings are based on the idea of finding a maximal independent set.
We can therefore conclude:

Proposition 5.14 planar independent dominating set can be solved
in time O(5.1623k|G|).

Proof. Alg. 32 would have to be modified: the first four lines of the code
should be replaced by the following four lines:

if k < 0 then
return NO

else if V = ∅ then
return YES

else
. . .

end if

where the . . . contains the actual branching program. k < 0 means that
there is no small independent dominating set. If k ≥ 0 and V = ∅, we have
found an independent dominating set. Otherwise, there exists a vertex on
which we can branch.

This bound on the running time is actually better than the one of the
alternative algorithm that looks amongst the dominating sets produced with
the algorithm presented in the next subsection for a dominating set that
happens to be independent. Moreover, the previous comments on producing
better algorithms by relying on exact algorithms for maximum indepen-
dent set do not apply here.

Special graph classes that allow polynomial-time algorithms for indepen-
dent dominating set are considered in [55].
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5.3.2 planar dominating set

The following exposition follows [11].
In the case of dominating set, the situation seems more intricate than

with independent set or independent dominating set, where we could
simply branch at a low-degree vertex u (as existing in planar graphs). Clearly,
again, either u or one of its neighbors can be chosen to be in an optimal
dominating set. However, removing u from the graph leaves all its neighbors
being already dominated, but still also being suitable candidates for an opti-
mal dominating set. This consideration leads us to formulate our search tree
procedure in a more general setting, where there are two kinds of vertices in
our graph.

We stress this fact by partitioning the vertex set V of G into two disjoint
sets B and W of black and white vertices, respectively, i.e., V = B ] W ,
where ] denotes disjoint set union. We will also call this kind of graph a
black and white graph.

Problem name: annotated dominating set (ADS)
Given: A black and white graph G = (B ]W,E)
Parameter: a positive integer k
Output: Is there a choice of at most k vertices V ′ ⊆ V = B ]W
such that, for every vertex u ∈ B, there is a vertex u′ ∈ N [u] ∩ V ′?
In other words, is there a set of at most k vertices (which may be
either black or white) that dominates the set of black vertices?

In each step of the search tree, we would like to branch according to a low
degree black vertex. This would work fine if we deal with a graph class, so
that we can guarantee the existence of a vertex u ∈ B ]W with deg(u) ≤ d.
However, as long as not all vertices have degree bounded by d (as, e.g., the
case for graphs of bounded genus g, where only the existence of a vertex of
degree at most dg is known), this vertex need not necessarily be black.

We consider the following reduction rules for simplifying annotated
dominating set the on planar graphs. In developing the search tree, we
will always assume that we are branching from a “reduced instance;” thus,
we are constantly simplifying the instance according to the reduction rules
given below (the details will be explained later). When a vertex u is placed
in the dominating set D by a reduction rule, then the target size k for D is
reduced to k − 1 and the neighbors of u are whitened.

(R1) Delete an edge between white vertices.

(R2) Delete a pendant white vertex, i.e., a vertex of degree one.
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(R3) If there is a pendant black vertex w with neighbor u (either black or
white), then delete w, place u in the dominating set, and lower k to
k − 1.

(R4) If there is a white vertex u of degree 2, with two black neighbors u1

and u2 connected by an edge {u1, u2}, then delete u.

(R5) If there is a white vertex u of degree 2, with black neighbors u1, u3,
and there is a black vertex u2 and edges {u1, u2} and {u2, u3} in G,
then delete u.

(R6) If there is a white vertex u of degree 2, with black neighbors u1, u3,
and there is a white vertex u2 and edges {u1, u2} and {u2, u3} in G,
then delete u.

(R7) If there is a white vertex u of degree 3, with black neighbors u1, u2, u3

for which the edges {u1, u2} and {u2, u3} are present in G (and possibly
also {u1, u3}), then delete u.

Lemma 5.15 The reduction rules are sound.

The proof is contained in the journal version of the quoted paper.
We say that that G is a reduced graph if none of the above reduction

rules can be applied to G. If none of the rules (R1), (R2), (R4)–(R7) are
applicable to G, we term G nearly reduced.

Let H := G[B] denote the (plane embedded) subgraph of G induced by
the black vertices. Let F denote the set of faces of H. Say that a face
f ∈ F is empty if, in the plane embedding of G, it does not contain any
white vertices.

Lemma 5.16 Let G = (B ]W,E) be a plane black and white graph. If G is
(nearly) reduced, then the white vertices form an independent set and every
triangular face of G[B] is empty.

Proof. The result easily follows from the reduction rules (R1), (R2), (R4),
and (R7).

Let us introduce a further notion which is important in order to bound
the running time of our reduction algorithm.2 To this end, we introduce the
following variants of reduction rules (R5) and (R6):

2In the conference version of this paper, it was stated that a graph can be reduced with
respect to all rules in linear time. Thanks to Torben Hagerup (Augsburg) who pointed
out a gap in our earlier argument and suggested the fix we here employ.
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(R5′) If there is a white vertex u of degree 2, with black neighbors u1, u3

such that u1 has at most seven neighbors that have degree at least 4,
and there exists a black vertex u2 and edges {u1, u2} and {u2, u3} in
G, then delete u.

(R6′) If there is a white vertex u of degree 2, with black neighbors u1, u3

such that u1 has at most seven neighbors that have degree at least 4,
and there exists a white vertex u2 and edges {u1, u2} and {u2, u3} in
G, then delete u.

We say that thatG is a cautiously reduced graph if (R1), (R2), (R4), (R5′),
(R6′), and (R7) cannot be applied anymore to G. Observe that Lemma 5.16
is also valid for cautiously reduced graphs.

Lemma 5.17 Applying reduction rules (R1), (R2), (R4), (R5′), (R6′), and
(R7), a given planar black and white graph G = (B]W,E) can be transformed
into a cautiously reduced graph G′ = (B′ ]W ′, E ′) in time O(n), where n is
the number of vertices in G.

Again, we skip details of the proof and refer to the journal version.
The main theorem for proving the correctness and running time of the

simple branching algorithm 33 is the following one.

Theorem 5.18 If G = (B ]W,E) is a planar black and white graph that is
nearly reduced, then there exists a black vertex u ∈ B with degG(u) ≤ 7.

Since the proof of Theorem 5.18 is very technical, we will omit most
parts of it and basically only give an overview of it. In Lemma 5.19, we
specialize Euler’s well-known formula for planar graphs to planar black and
white graphs. This is a core tool within the proof of Theorem 5.18, which
is done by contradiction. Lemma 5.20 sets up some additional information
used in the proof of Theorem 5.18. For the involved technical details, we
refer to our (journal) paper on the material.

The following technical lemma, based on an “Euler argument,” will be
needed.

Lemma 5.19 Suppose G = (B]W,E) is a connected plane black and white
graph with b black vertices, w white vertices, and e edges. Let the subgraph
induced by the black vertices be denoted H = G[B]. Let cH denote the number
of connected components of H and let fH denote the number of faces of H.
Let

z =
(
3(b+ w) − 6

)
− e (5.2)
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measure the extent to which G fails to be a triangulation of the plane. If the
criterion

3w − 4b− z + fH − cH < 7 (5.3)

is satisfied, then there exists a black vertex u ∈ B with degG(u) ≤ 7.

Proof. Let the (total) numbers of vertices, edges, and faces of G be denoted
v, e, f , respectively. Let ebw be the number of edges in G between black and
white, and let ebb denote the number of edges between black and black. With
this notation, we have the following relationships.

v − e + f = 2 (Euler formula for G) (5.4)

v = b+ w (5.5)

e = ebb + ebw (5.6)

b− ebb + fH = 1 + cH ((extended) Euler formula for H) (5.7)

2v − 4 − z = f (by Eq. (5.2), (5.4), and (5.5)) (5.8)

If the lemma were false, then the minimum degree would be at least eight.
Hence, we would have, using (5.6),

8b ≤ 2ebb + ebw = ebb + e. (5.9)

We will assume this and derive a contradiction. The following inequality
holds:

3 + cH = v + b− (ebb + e) + f + fH (by (5.4) and (5.7))
≤ v + b− 8b+ f + fH (by (5.9))
= 3v − 7b+ fH − 4 − z (by (5.8))
= 3w − 4b+ fH − 4 − z. (by (5.5))

This yields a contradiction to (5.3).

We will prove Theorem 5.18 by contradiction. The reduction rules give us
additional helpful properties of an assumed counterexample. This is stated
in the following lemma.

Lemma 5.20 If there is any counterexample to Theorem 5.18, then there is
a connected counterexample where degG(u) ≥ 3 for all u ∈ W .

In order to be able to conclude our stated running times, we in fact need
a corollary of Theorem 5.18 first:

Corollary 5.21 Let G be a cautiously reduced planar black and white graph.
Then, G contains a black vertex of degree at most 7.
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Proof. Let G′ be the graph obtained when reducing G further with respect
to all reduction rules (R1)–(R7). In particular, each connected component
ofG′ is nearly reduced. Hence, there exists a black vertex v with degG′(v) ≤ 7
(in one such component). The only difference between G′ and G is that G
may contain white vertices of degree two where both neighbors have more
than seven neighbors that are of degree at least 4. We argue that degG(v) ≤ 7.
If this were not the case, then v must have additional neighbors which are
not present in G′. By the above observation an additional neighbor must
be a white vertex u of degree two where both neighbors (in particular, the
neighbor v) have more than seven neighbors that are of degree at least 4.
Hence, there exist vertices v1, . . . , v` ∈ NG(v) (` ≥ 8) which are of degree at
least 4. Since these vertices are not removed by any of the reduction rules, it
follows that v1, . . . , v` ∈ NG′(v) which implies degG′(v) > 7, a contradiction.

Theorem 5.22 annotated dominating set on planar graphs can be solved
in O(8kn) time.

Proof. Use Corollary 5.21 for the construction of a search tree as sketched
in the beginning of the subsection. Algorithm 33 is initiated with the call
PDS-ST(V, ∅, E, k), where ((V,E), k) is the given planar graph instance.

Note that performing the reduction in each node of the search tree, by
Lemma 5.17, can be done in time O(n). Moreover, it would be also possible
to incorporate reduction rule (R3) to avoid further recursive calls; the time
analysis is valid in this case, as well.

Alternatively, using a reduction to a linear size problem kernel for planar
dominating set shown in [12, 82] (also see Chap. 4, we obtain the following
result.

Theorem 5.23 planar dominating set can be solved in O(8kk + n3)
time.

Let us also remark that, albeit this result generalizes to graphs of bounded
genus [154], further generalizations are unlikely, as examined in [87].

Let us now briefly discuss the following variant of dominating set,
namely Roman domination, restricted to planar graphs:

Problem name: planar Roman domination (pROMAN)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there a Roman domination function R such that∑

x∈V R(x) ≤ k?
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Algorithm 33 A simple search tree algorithm for planar dominating
set, called PDS-ST

Input(s): planar black and white graph G = (B,W,E), positive integer k
Output(s): YES if G has a dominating set D with |D| ≤ k; NO otherwise

Exhaustively apply “cautious reduction rules” to (B,W, k);
if k < 0 then

return NO

else if k = 0 then
5: return B = ∅

else
{k > 0}
pick some black vertex v of minimum degree;
B′ := B ∩N [v];

10: W ′ := W ∩N [v];
for all v′ ∈ B′ do
E ′ := {{u, v′} | u ∈ B ∪W};
if PDS-ST(B \N [v′],W ∪N(v′), E \E ′, k − 1) then

return YES

15: end if
end for
for all v′ ∈ W ′ do
E ′ := {{u, v′} | u ∈ B ∪W};
if PDS-ST(B \N(v′), (W \ {v′}) ∪N(v′), E \ E ′, k − 1) then

20: return YES

end if
end for
return NO

end if

Here, a Roman domination of a graph G = (V,E) is a function R : V →
{0, 1, 2} such that

∀v ∈ V : R(v) = 0 ⇒ ∃x ∈ N(v) : R(x) = 2.

DR = R−1({1, 2}) is then the Roman domination set. The minimum
∑

x∈V R(x) =∑
x∈DR

R(x) =: R(V ) over all valid Roman domination functions is also
called the Roman domination number of a given graph.

This problem comes with an interesting history dating back to the loca-
tion of armies in the times of Emperor Constantine. This is nicely explained
in [Chapter 11, Site 17]; the journal version being [334]. This problem became
popular by a note published in the Scientific American [356].
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A nice overview on problems related to Roman domination can be found
in [41, 141]. We assume that solving algorithms similar to the ones presented
in this Habilitationsschrift can be also found for most of these variants, in
particular regarding multi-attack variants [231].

We show how to solve planar Roman domination with our reasoning
about dominating set. Namely, a specific vertex x of low degree (as would
be picked by Alg. 33) could be dominated in the following ways:

• The Roman domination function assigns 2 to y ∈ N [x]. This case is
treated completely analogous to the case that puts y into the dominat-
ing set in the problem planar dominating set described above.

• The Roman domination function (that is constructed along the search
tree) assigns 1 to x. Then, x (together with its incident vertices) is
deleted in the next recursive call.

This is a complete case distinction that leads to Alg. 34.
There is one point that still needs justification: are the reduction rules

still sound for this modified problem? As the reader can observe, this is in
fact the case for all rules but (R3), since the basic argument for showing
correctness of deleting that particular white vertex always is that it is never
worse to put another black (in one case also white) vertex into the dominating
set (i.e., in this case, assign 2 to that vertex via the Roman domination
function). In fact, deleting black vertices is not that easy, since it might
be cheaper to put one army onto that vertex instead of putting two armies
onto the neighboring vertex. Fortunately, observe that we actually don’t use
rule (R3) in the analysis for planar dominating set. Consequently, the
“Roman domination rules” exclude (R3). This justifies the (nice) branching
that can be found in Alg. 34.

Let us analyze the running time of Alg. 34. Domination of a particular
chosen vertex v can be accomplished in two ways:

• either the implicitly constructed Roman domination function R shows
R(v) = 1; then the parameter is reduced by one,

• or R shows R(u) = 2 for some u ∈ N [v]; this branching reduces the
parameter by two for each u; according to Thm. 5.18, N [v] contains at
most eight vertices.

Solving the corresponding recurrence T (k) ≤ T (k−1)+8T (k−2) for the
size of the search tree shows the following assertion:

Theorem 5.24 Alg. 34 solves planar Roman domination in O(3.3723kk+
n3) time.
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Algorithm 34 A simple search tree algorithm for planar Roman domi-
nation, called pROMAN-ST

Input(s): planar black and white graph G = (B,W,E), positive integer k
Output(s): YES if G has a Roman domination function R with |R(B ∪

W )| ≤ k; NO otherwise

Exhaustively apply “Roman domination reduction rules” to (B,W, k);
the resulting instance is also called (B,W, k).
if k < 0 then

return NO

else if k = 0 then
5: return B = ∅

else
{k > 0}
if there is a pendant black vertex v with neighbor u (either black or
white) then

if pROMAN-ST(B \ {v},W,E \ {e ∈ E | v ∈ e}, k − 1) then
10: return YES

else
return pROMAN-ST(B \{v, u}, (W \{u})∪ (N(u)\{v}), E \{e ∈
E | v ∈ e}, k − 2)

end if
end if

15: {Now, the instance is reduced w.r.t. all cautious reduction rules known
for PDS.}
pick some black vertex v of minimum degree;
if pROMAN-ST(B \ {v},W,E \ {e ∈ E | v ∈ e}, k − 1) then

return YES

end if
20: B′ := B ∩N [v];

W ′ := W ∩N [v];
for all v′ ∈ B′ do
E ′ := {{u, v′} | u ∈ B ∪W};
if pROMAN-ST(B \N [v′],W ∪N(v′), E \ E ′, k − 2) then

25: return YES

end if
end for
for all v′ ∈ W ′ do
E ′ := {{u, v′} | u ∈ B ∪W};

30: if pROMAN-ST(B \N(v′), (W \ {v′}) ∪N(v′), E \E ′, k− 2) then
return YES

end if
end for
return NO

35: end if
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Regarding running time, in the same spirit as discussed above with pla-
nar dominating set, one should again replace (R5) and (R6) by their
“cautious counterparts.” We leave the obvious modifications to the reader.

5.3.3 hitting set

As observed in various places throughout this Habilitationsschrift, hitting
set is a very important example, showing both the possibilities and limita-
tions of the parameterized approach. Here, we focus on a top-down approach
to develop search tree algorithms for d-hitting set, where d is fixed. The
results presented in this section are based on mostly unpublished works, also
see [175].

We are improving on Niedermeier and Rossmanith’s results for d-hitting
set, in particular for small d. Basically, we are doing a better analysis of a
simple search tree algorithm with the guide of improved heuristic priorities
and the use of data reduction rules within the search tree algorithm (analy-
sis). In actual fact, the reduction rules we use have been already introduced
in Chap. 2. The better analysis is based on the introduction of a second
auxiliary parameter, a technique which can be useful in other analyses of
parameterized algorithms, as we believe.

More precisely, we get the following table:

d 3 4 5 6 10 100
T (k) 2.18k 3.12k 4.08k 5.05k 9.02k 99.0002k

which favorably compares to the one obtained in [308], who obtained the
following values:

d 3 4 5 6 10 100
T (k) 2.42k 3.31k 4.24k 5.20k 9.11k 99.0101k

The general formula is

O



(
d− 1

2

(
1 +

√
1 +

4

(d− 1)2

))k

+ n


 ,

since Niedermeier and Rossmanith also presented a simple linear-time kernel-
ization, i.e., a preprocessing step typical for parameterized algorithms which
leaves us with an instance of size f(k) (instead of n). A smaller kernel was
recently described in [310]. As can be seen, the exponential base tends to
d− 1 with growing d.



5.3. IMPROVED BRANCHING: SIMPLE ALGORITHMS 181

By an intricate case analysis of a comparatively complicated algorithm,
they were able to arrive at an O(2.270k + n) algorithm for 3-hitting set.
This was improved in [175] to about O(2.179k + n). We will also sketch this
result below.

For the special case of 2-hitting set, likewise known as vertex cover,
in a kind of race (using more and more intricate case analysis) an O(1.285k+
n)-algorithm [86] has been obtained. Our approach is not suitable to tackle
that case.

Interestingly, a similar sort of analysis has been performed independently
of the present work by Wahlström for the non-parameterized minimum 3-
hitting set problem [373]. Or if we like to put it into the parameterized
framework, we can say that he used a different parameterization, namely by
the number of vertices of the given minimum 3-hitting set instance. More
precisely, he basically used

• the same set of reduction rules and

• the same auxiliary parameter, but

• the mathematical way how to analyze the algorithms is different: while
Wahlström is combining the auxiliary parameter with the ordinary pa-
rameter to get specific numbers as labels of the search tree (and hence
the branching numbers), we will here derive explicit sets of recurrence
equations.

We present a simplified version of his work in Chap. 10.

Simple algorithmics

Since each hyperedge must be covered, there exists a trivial O∗(dk) algorithm
for d-hitting set. The procedure HS-simple listed in Alg. 35 is initially
called with arguments (G, k, ∅), where (G, k) is the d-hitting set instance
to be solved. The procedure returns a valid hitting set S of size at most k iff
(G, k) is a YES-instance; otherwise, the procedure returns NO.

Obviously, the base of the exponential running time of this algorithm
heavily depends on the necessary amount of branching. Observe that accord-
ing to the problem specification, in a d-hitting set instance, there might
be edges of degree up to d; in particular, there might be edges of smaller
degree in the very beginning. “Small degree edges” may also be introduced
later during the run of the algorithm, since the removal of a certain vertex x
will reduce the edge degree of all edges incident with x. A natural heuristic
would therefore first branch according to edges of small degree. We would
therefore refine:
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Algorithm 35 A simple search tree algorithm for d-HS, called HS-simple

Input(s): G, k: input instance,
S: partial solution constructed so far along the branch

Output(s): a valid hitting set S of size at most k iff (G, k) is a YES-instance;
otherwise, the procedure returns NO.

if k > 0 AND G has some edges then
choose some edge e; {to be refined}
S ′ := ∅; {solution to be constructed}
for all x ∈ e do
G′ := (V \ {x}, {e ∈ E | x /∈ e});
S ′ := HS-simple(G′, k − 1, S ∪ {x})
if S ′ 6= NO then

return S ′

end if
end for
return NO

else if G has no edges and k ≥ 0 then
return S

else
return NO

end if

HS-simple-heuristic(G, k, S):
if k > 0 AND G has some edges then

choose some edge e of smallest degree;
. . . {as before}

end if

In fact, as a further technical detail, we shall use the following binary
version of the latter algorithm; details of what is meant by reduction rules
are explained in Chap. 2; all heuristic priorities are later exhibited, one of
them—preferring small edges—has been already shown.

Lemma 5.25 If the reduction rules and the procedure solving simple in-
stances are correct, then HS-binary(G, k, ∅) either returns a correct solution
to the instance (G, k) or it returns NO, i.e., (G, k) has no solution.

Proof. Formally, the proof is done by induction on the number of vertices
of the graph. The base is solved by rules for simple instances. Assume
that the correctness of the algorithm has been shown for all graphs up to n
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Algorithm 36 A refined binary search tree algorithm for d-HS, called HS-
binary

Input(s): G, k: input instance,
S: partial solution constructed so far along the branch

Output(s): a valid hitting set S of size at most k iff (G, k) is a YES-instance;
otherwise, the procedure returns NO.

Exhaustively apply the reduction rules.
{call the resulting instance (G, k) and the intermediate solution S}
if (G, k) is a simple instance then

solve in polynomial time and return solution accordingly
else

choose some edge e and some x ∈ e according to heuristic priorities
S ′ := ∅; {solution to be constructed}
G′ := (V \ {x}, {e ∈ E | x /∈ e});
S ′ := HS-binary(G′, k − 1, S ∪ {x});
if S ′ = NO then
{try x not in solution}
G′ = (V \ {x}, {e \ x | e ∈ E});
S ′ := HS-binary(G′, k, S)

end if
return S ′

end if

vertices. Consider now an instance (G, k) where G has n+1 vertices. If after
applying the reduction rules, G has n vertices, the correctness follows by the
induction hypothesis. Otherwise, let us call the resulting instance (G, k), as
well. Possibly, (G, k) can be correctly solved by rules for simple instances. If
not, we encounter a binary branching, covering two mutually exclusive cases
for some chosen vertex x:

1. If x is taken into the hitting set, then in the recursive call the following
instance is created:

• x is removed from the vertex set; hence, the induction hypothesis
is applicable to the created instance.

• The parameter k is accordingly decremented.

• x is put into the hitting set S which is going to be recursively
constructed.

• All hyperedges to which x belongs are covered and hence deleted.
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2. If x is not put into the hitting set, then in the recursive call the following
instance is created:

• x is removed from the vertex set; hence, the induction hypothesis
is applicable to the created instance.

• The hitting set S which is going to be recursively constructed is
not changed.

• The parameter k is not changed.

• From all hyperedges to which x belongs, x is removed.

The second branch is only executed when the first branch returns the empty
set. This is correct, since x will be in each correct cover that is returned in
the first case, and hence if the empty set is returned, this clearly signals that
the corresponding branch shows no solution.

Since the described actions are obviously correct, the correctness of the
algorithm follows by induction.

Remark 5.26 We haven’t been specific about what we mean by “simple in-
stances” in our search tree algorithm. Notice that although our reduction
rules (as listed in Chap. 2) already guarantee that all vertices in a reduced
instance have minimum degree of two (see Lemma 2.20), we could even sup-
pose more: hitting set in hypergraphs of degree upperbounded by two is
obviously equivalent to edge cover (which is the natural edge-analog to
vertex cover in graphs). edge cover was probably first observed to be
computable in polynomial time by Norman and Rabin [311]. Already there,
the connection to matching techniques was drawn. Hence, hitting set,
restricted to hypergraphs of vertex degree of at most two, can be efficiently
solved. Therefore, we can even assume that all instance that we ever branch
on will have minimum degree of three. We will only exploit this when actually
analyzing 3-hitting set in more details below.

Heuristic priorities

We will base the analysis on several heuristic priorities. Let G = (V,E) be
a reduced instance of d-hitting set.

P1 Prefer small edges. More formally, let δ0 = min{|e| | e ∈ E} and

V0 = {v ∈ V | ∃e ∈ E : (v ∈ e) ∧ (|e| = δ0)}.

P2 Choose some x ∈ V0 of maximum degree in G[V0].
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P3 Resolve possible nondeterminism in P2 by choosing among the vertices
of maximum degree in G[V0] a vertex x that has minimum degree in
G[V1], where

V1 = {v ∈ V | ∃e ∈ E : (v ∈ e) ∧ (|e| < d)}.

How to analyze the our d-hitting set algorithm

The idea of making favorable branches first has also another bearing, this
time on the way we are going to analyze our algorithm.

Let T `d(k), ` ≥ 0 denote the size (more precisely, the number of leaves)
of the search tree when assuming that exactly ` edges in the given instance
(with parameter k) have a degree of (at most) d − 1. So, ` is the auxiliary
parameter in our analysis. Sometimes, we will shortcut our discussions by
using T≥`

d (k), denoting the situation of a search tree assuming that at least
` edges in the given instance (with parameter k) have a degree of (at most)
(d − 1). The intuition is that, e.g., in the case of 3-Hitting Set, T 4

3 (k)
would describe a situation which is “more like” 2-Hitting Set than T 3

3 (k).
Therefore, we can conclude: T≥`

d (k) ≤ T `d(k). Regarding an upperbound
on the size Td(k) of the search tree of the whole problem, we can estimate
Td(k) ≤ T 0

d (k), since the worst case is that we have no edges of low degree.
In the following, we are exhibiting mutually recursive relationships between
different T `d(k); solving these recursions will yield the bounds on the size of
the search tree and hence on the running time.

Lemma 5.27 T 0
d (k) ≤ T 0

d (k − 1) + T 2
d (k).

Proof. Due to Lemma 2.20, the instance G contains (immediately before
the branching) a vertex x of degree 2 (or larger). One branch is that x is put
into the cover. Otherwise, two or more edges of degree (d− 1) are created.

Lemma 5.28 T 1
d (k) ≤ T 0

d (k−1)+T 1
d (k−1)+T 2

d (k−1)+ · · ·+T d−2
d (k−1).

Proof. Due to Lemma 2.20, all vertices have degree at least two. If the
chosen x ∈ e is not put into the cover, then at least one new edge of degree
(d− 1) is created besides the edge e′ = e \ {x} of degree (d− 2). According
to the heuristic priorities, we would continue branching at some vertex from
e′. The argument then repeats, yielding the formula as claimed, since every
time a new edge of degree (d− 1) is created: otherwise, the reduction rules
would trigger and reduce the number of branches, enabling an even better
analysis in that case.
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When plugging in T `d ≤ T 1
d for ` ≥ 1, we obtain the following recurrences:

T 0
d (k) ≤ T 0

d (k − 1) + (d− 1)T 1
d (k − 1)

T 1
d (k) ≤ T 0

d (k − 1) + (d− 2)T 1
d (k − 1)

These are exactly the recurrences derived in [308], which immediately entails
that we can only beat their results with our analysis. Observe that up to
this point the degree heuristics P2 and P3 did not come into play.

An analysis of T 2
d

In the following discussion, let e1 and e2 be two edges of degree d− 1. More-
over, since we are only analyzing situations up to T 2

d , Lemma 5.28 implies
the following relation:

T 1
d (k) ≤ T 0

d (k − 1) + T 1
d (k − 1) + (d− 3)T 2

d (k − 1) (5.10)

Case e1 ∩ e2 = ∅:

Lemma 5.29 If e1 ∩ e2 = ∅, then we can estimate

T 2
d (k) ≤ T 1

d (k − 1) + (d− 2)T 2
d (k − 1).

Proof. By edge domination, each small edge that is created along the way
when branching on say e1 is in fact new.

In the following analysis, as justified in [175], we will treat all derived in-
equalities as if they were equations. Lemma 5.29 then provides an expression
for T 1

d in terms of T 0
d and T 2

d , and Lemma 5.27 allows to express T 2
d in terms

of T 0
d , so that Eq. (5.10) gives, after some algebra, the following equation

that T 0
d should satisfy:

0 = T 0
d (k + 1) − dT 0

d (k) + (d− 1)T 0
d (k − 1) − T 0

d (k − 2).

Exact solutions to such recurrence relations would entail sums of exponential
functions. Since we are only interested in the growth rate, we can solve such
equations by the ansatz T 0

d (k) ≈ ckd. Some computations give the following
table:

d 3 4 5 6 10 100

T 0
d (k) ≈ 2.3248k 3.1479k 4.0780k 5.0490k 9.0139k 99.0002k

(5.11)
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Comparing with the figures listed above, we already see some considerable
improvements for this case, so that a further analysis seems worthwhile doing.
However, in the case d = 3, this approach is not matching the values obtained
by Niedermeier and Rossmanith with their (intricate) algorithm; how to
obtain a significantly better algorithm is detailed in [175] and some ideas
will be given below.

Case e1 ∩ e2 = {x}:

Hence, ei = {x, x1
i , . . . , x

d−2
i }.

Lemma 5.30 If e1 ∩ e2 = {x} and if d ≥ 4, then we can estimate

T 2
d (k) ≤ T 0

d (k − 1) + T 0
d (k − 2) + (d− 1)T 1

d (k − 2) + (d2 − 5d+ 4)T 2
d (k − 2).

Proof. Due to P2, we will branch at x. Taking x into the cover is a
T 0
d (k − 1)-branch. Now, notice that at the start of every branch, we are

dealing with a reduced instance. Hence, the following properties are always
satisfied for all xji ∈ ei. There is a further edge e(xji ) incident to xji that
verifies:3

• e(xji ) is different from ei (vertex domination);

• e(xji ) is different from (e3−i \ {x}) ∪ xji (edge domination);

• e(xji ) is different from all other e(xj
′

i ) we chose (vertex domination).

Otherwise, some reduction rules will trigger and simplify the instance, so that
the corresponding branching would become only better and hence negligible
in the following analysis.

Let us assume that in the case that x is not taken into the cover, the
heuristic priorities yield a branch at x1

1. If x1
1 is going into the cover, another

smallish edge, e2 \{x} remains. A rather trivial branch (due to edge domina-
tion) on that edge overall gives one T 0

d (k − 2)-branch, one T 1
d (k − 2) branch

and (for simplicity) (d− 4) T 2
d (k − 2)-branches.

If x1
1 is not taken into the cover, P1 would force us to continue branching

on e1 \ {x, x1
1}, choosing say x2

1. Moreover, we have “gained” a new small
edge e(x1

1). According to the second observations listed above, there is a
vertex y ∈ e2 \ {x} that is not contained in e(x1

1). We continue branching
at such a y according to P3. However, in the case that we don’t take y into
the cover, we might fail to find a y′ ∈ e2 \ {x, y} that is not contained in

3or, there are several edges each of which caters for one of the listed conditions; this
more general case offers a better branching, since vertices of higher degree are involved
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e(x1
1). Therefore, we get two T 1

d (k− 2) branches and (for simplicity) (d− 4)
T 2
d (k − 2)-branches.

If neither x1
1 nor x2

1 go into the cover, we have gained (at least) two small
edges e(x1

1) and e(x2
1). According to the second observations listed above,

there is a vertex y ∈ e2 \ {x} that is not contained in e(x1
1) (but possibly

in e(x2
1)). Altogether, we get one T 1

d (k − 2) branch and (d − 3) T 2
d (k − 2)-

branches, since when y is not put into the cover, we will find a y ′ in e2\{x, y}
that is neither contained in e(x2

1) nor in e(y).
This argument continues, yielding the formula as listed.

Some algebraic and numerical computations then allows us to infer the
following table:

d 4 5 6 10 100

T 0
d (k) ≈ 3.0974k 3.8993k 4.7899k 8.6304k 98.5091k

(5.12)

Case e1 ∩ e2 = {x, y}:

Hence, ei = {x, y, x1
i , . . . , x

d−3
i }. A reasoning along the lines of Lemma 5.30

shows:

Lemma 5.31 If e1 ∩ e2 = {x, y} and if d ≥ 4, then we can estimate

T 2
d (k) ≤ T 0

d (k− 1) + T 1
d (k− 1) + (d− 3)T 1

d (k− 2) + (d2 − 7d+ 12)T 2
d (k− 2).

To simplify the algebra, we used a slightly worse bound, namely

T 2
d (k) ≤ T 0

d (k− 1) + T 1
d (k− 1) + (d− 3)T 0

d (k− 2) + (d2 − 7d+ 12)T 2
d (k− 2),

to derive the following table:

d 4 5 6 10 100

T 0
d (k) ≈ 3.1150k 3.7984k 4.6020k 8.2848k 98.0207k

(5.13)

Now, we covered all cases for d = 4, deriving an O∗(3.1479k) bound.

Case |e1 ∩ e2| = j ≥ 3:

Now, observe that vertex domination entails that each vertex in e1 ∩ e2
has degree at least three. Therefore, without any further scrutiny, the edge
domination rule (again only applied to the vertices from e1 ∩ e2) yields:
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Lemma 5.32 If |e1 ∩ e2| = j, j ≥ 3 and if d ≥ j + 2, then we can estimate

T 2
d (k) ≤ T 0

d (k − 1) + T 1
d (k − 1) + (j − 2)T 2

d (k − 1) + (d− 1 − j)T 0
d (k − 2).

After some algebra, we get: 0 = T 0
d (k + 1) − (j + 1)T 0

d (k) − (d2 − (2j +
1)d+ j2 + 1)T 0

d (k − 1) + (d2 − (2j + 1)d+ j2 + j)T 0
d (k − 2).

Some numerical computations entail:

d 5 6 7 10 100

j = 3, T 0
d (k) ≈ 3.8662k 4.5869k 5.4339k 8.2371k 98.0156k

j = 4, T 0
d (k) ≈ −−− 4.6964k 5.3511k 7.9283k 97.5250k

j = 5, T 0
d (k) ≈ −−− −−− 5.5771k 7.7344k 97.0371k

j = 8, T 0
d (k) ≈ −−−− −−−− −−− 8.3745k 95.5916k

j = 98, T 0
d (k) ≈ −−−− −−−− −−− −−− 98.0308k

(5.14)

We finally observe that the actual worst case situations are always found
within the seemingly simplest situation, when e1 ∩ e2 = ∅.

More tweaking for 4-hitting set

In order to improve on the constants of 4-hitting set, we are going to derive
a special analysis for the T 1

4 -estimate, since this immediately comes into play
together with the T 2

4 -estimate in the worst case situation e1 ∩ e2 = ∅.

Lemma 5.33

T 1
4 (k) ≤ max{T 0

4 (k−1)+2T 2
4 (k−1), T 0

4 (k−1)+2T 0
4 (k−2)+T 1

4 (k−1)}. (5.15)

Proof. Let e = {x, y, z} be an edge of degree three we chose to branch on
according to priority P1. According to Lemma 2.20, in particular all vertices
in e have degree two or larger.

Let x be the vertex of maximum degree in e to start branching at accord-
ing to P2. Taking x into the cover means a T 0

4 (k − 1)-branch. If we don’t
take x into the cover, an edge ex of degree three is created.

We now consider two main cases.

• deg(x) = 2. Hence, deg(y) = deg(z) = 2. y ∈ ex or z ∈ ex are excluded
due to vertex domination.

Let ey and ez be other edges (besides e) such that y is contained in
ey and z is contained in ez. Due to vertex domination, ey 6= ez. If
we take y into the cover, ex would remain a small edge, and z would
become dominated by any other vertex in ez, so that e′z = ez \ {z} is
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produced as another small edge. Hence, this is a T 2
4 (k − 1)-branch. If

y does not go into the cover, then ey \ {y} would become another small
edge. Moreover, z must go into the cover to hit e. Therefore, we have
another T 2

4 (k − 1)-branch.

Summarizing, we arrived at the following inequality:

T 1
4 (k) ≤ T 0

4 (k − 1) + 2T 2
4 (k − 1). (5.16)

• deg(x) ≥ 3. Hence, in the case that x does not go into the cover, we
gain (at least) two new small edges e1

x and e2x.

If |{y, z} ∩ (e1
x ∪ e2x)| ≤ 1, we arrive at Eq. (5.16): first, P1 would let

us branch at x, and then (if x does not go into the cover), P3 would
cause a branch at say y with y /∈ (e1

x ∪ e2x). If y is not put into the
cover, then z goes; possibly, e1

x or e2x gets destroyed, but there must be
a new small edge ey that is created in this case, so that this is also a
T 2

4 (k − 1)-branch.

Now, assume that z ∈ e1
x. Then, we can assume that z /∈ e2

x due to
vertex domination. By edge domination with respect to e and to e1

x,
y /∈ e1

x. Due to the case analysis of the previous paragraph, we could
however assume that y ∈ e2

x. W.l.o.g., let us assume that we branch at
y according to P3. Since y ∈ e2

x, taking y into the cover will destroy
e2x. Hence, this is a T 1

4 (k − 1)-branch. Not putting y into the cover
would cause the edge e2

x shrinking to size two. Hence, in the case that
z goes into the cover, we know by P1 that we can continue branching
on e2x \ {y}. Therefore, we get two T 0

4 (k − 2)-branches.

Altogether, we derived for this case:

T 1
4 (k) ≤ T 0

4 (k − 1) + 2T 0
4 (k − 2) + T 1

4 (k − 1).

For the case e1 ∩ e2 = ∅, we therefore get the following estimate:

T 2
4 (k) ≤ max{T 1

4 (k − 1) + 2T 2
4 (k − 1), T 1

4 (k − 1) + 2T 1
4 (k − 2) + T 2

4 (k − 1)}.

Some algebra then shows that our algorithm solves 4-hitting set in
time O∗(3.1150k), one of the worst cases being met via Lemma 5.33.
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More tweaking for 3-hitting set

We will now explain some more details about how to further improve on the
running time analysis in the case of 3-HS. The first lemma in fact is more
generally applicable.

In what follows, we use #dE to count the number of edges (or vertices)
of the edge set E which have size d. Moreover, for a vertex x, degd(x) is the
number of hyperedges of degree d that contain x.

Lemma 5.34 If e is an edge in a hypergraph G = (V,E) (as an instance of
d-hitting set) to which the edge domination rule is not applicable, then in
the branch where x ∈ e is not taken into the cover, the instance G′ = (V ′, E ′)
with V ′ = V \ {x} and E ′ = {e \ {x} | e ∈ E} will have

#d−1E + degd(x) − degd−1(x) (5.17)

many edges of degree (d− 1).

Proof. Not taking x into the cover means that, in order to cover edges
e ∈ E with x ∈ e, some z ∈ e \ {x} must go into the cover. Therefore, the
“next instance” is G′. The question is if e \ {x} ∈ E for any e with x ∈ e,
because then less than degd(x) edges of degree (d−1) would be created. But
this is ruled out by the edge domination rule. Since degd−1(x) edges of degree
(d− 1) are “destroyed” in G′, the formula is valid.

The point is that we will have to extent our analysis to search trees of
type T 3

d , i.e, situation where we have at least three small edges. Rem. 5.26
shows:

Lemma 5.35 T 0
d (k) ≤ T 0

d (k − 1) + T 3
d (k).

Heuristics for 3-Hitting Set

We us the following heuristic priorities. P2′ is motivated by Lemma 5.34.

P1 Prefer small edges. More formally, let E0 = {e ∈ E | |e| = 2}. If E0 = ∅,
set E0 = E.

P2′ Maximize Eq. (5.17), i.e., let V1 = {x ∈ ⋃e∈E0
| deg3(x) − deg2(x) is

maximum}.

P3 Choose some x ∈ V1 of maximum degree.

In the next lemma, we show a first step into a strategy which will finally
give us better branching behaviors. Namely, we try to exploit the effect of
reduction rules triggered in different sub-cases.
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Lemma 5.36 T 1
3 (k) ≤ max{2k, T 0

3 (k − 1) + T 2
3 (k − 1)}.

Proof. The instance G has an edge e = {x, y} of degree two. Assume
that deg(x) ≥ deg(y), so that we branch at x. By Lemma 2.20, deg(x) ≥
deg(y) ≥ 2. We distinguish now two cases:

1. deg(y) = 2. If we take x into the cover, then y will become of degree
one and hence will get deleted by the reduction rules (see Lemma 2.20),
producing one new edge e′ of degree at most two with e′ 6= e due to
edge domination. So this gives a T 1

3 (k − 1)-branch. Not taking x into
the cover means to take y into the cover by the tiny edge rule, and
at least one other edge of degree two (from the ones which have been
incident to x) is created. This gives another T 1

3 (k − 1)-branch. The
corresponding recurrence can be solved by 2k as claimed.

2. deg(y) > 2. The worst case is that deg(y) = deg(x) = 3. If x goes into
the cover, we only get a T 0

3 (k−1)-branch. If x is not put into the cover,
y will be in the cover. Moreover, at least two new edges of degree two
are created, yielding a T 2

3 (k − 1)-branch in this subcase.

Lemma 5.37 Assuming two edges of degree two, we get the following bound:

T 2
3 (k) ≤ max{T 1

3 (k−1)+T 2
3 (k−1), T 0

3 (k−2)+T 1
3 (k−1), T 0

3 (k−1)+T 2
3 (k−2)}.

Proof. We consider first the situation that the two edges e1 and e2 of
degree two are disjoint. Then, basically the analysis of the previous lemma
applies, showing that

T 2
3 (k) ≤ max{2k, T 1

3 (k − 1) + T 3
3 (k − 1)} ≤ T 1

3 (k − 1) + T 2
3 (k − 1). (5.18)

Otherwise, let e1 = {x, y} and e2 = {x, z}. Then, deg(y) ≥ 2 and deg(z) ≥ 2
according to Lemma 2.20, because when branching, we always have reduced
instances. We again make some case distinctions:

1. If deg(x) = 2, then (since deg3(x) = 0 and deg3(y) > 0, deg3(z) > 0)
we can assume we branch (w.l.o.g.) at y. If y is put into the cover, then
x will be removed from the vertex set by the reduction rules (since it
then has degree one) and z will be put into the cover, as well, giving a
T 0

3 (k − 2)-branch. If y is not put into the cover, x will be by the tiny
edge rule, covering both e1 and e2. Moreover, since deg3(y) > 0, at least
one new edge ey of degree two is created. Since the edge domination
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rule was not applicable to the instance under consideration, x /∈ ey,
because otherwise e1 ⊂ ey∪{y}. This branch is of type T 1

3 (k−1). This
yields:

T 2
3 (k) ≤ T 0

3 (k − 2) + T 1
3 (k − 1). (5.19)

2. If deg(x) = 3 and say deg(y) = 2, assume we branch at x (due to
heuristic priority P3). If x goes into the cover, then the vertex dom-
ination rule eliminates y, producing a new edge of degree two. This
gives a T 1

3 (k − 1)-branch. Otherwise, both y and z must go into the
cover, and deg3(x) = 1 gives us a new edge of degree two (due to edge
domination). This yields a T 1

3 (k − 2)-branch. In conclusion, we have:

T 2
3 (k) ≤ T 1

3 (k − 1) + T 1
3 (k − 2).

This is always better than Eq. (5.19) and won’t be considered any
further.

3. If deg(x) ≥ 3 and deg(y) ≥ 3, assume we branch at y (due to heuristic
priority P2′). A simple analysis yields (cf. Eq. (5.18))

T 2
3 (k) ≤ T 1

3 (k − 1) + T 2
3 (k − 1).

4. If deg(x) ≥ 4, then assume that we branch at x. When x is not put
into the cover, then we gain two new small edges. Therefore,

T 2
3 (k) ≤ T 0

3 (k − 1) + T 2
3 (k − 2).

Estimating running times: As has been successfully done in other search-
tree analyses, we will focus in the the following on analyzing “pure” cases,
where we assume that we fix the possible branching scenarios for T 1

3 and
for T 2

3 , assuming that the worst case will show up in these pure cases. Of
course, in practice, “mixed cases” will happen, where in the same search-tree
different branching cases occur. This restriction to the worst-case analysis of
pure branching scenarios brings along another benefit: looking closely at the
analysis given in Lemma 5.37, one can notice that the worst case is always
happening if the inequalities are satisfied with equality. Hence, we have to
deal with the following set of recursions.

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 1
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 1)

(1) T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1)

(2) T 2
3 (k) = T 0

3 (k − 2) + T 1
3 (k − 1)

(3) T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2)
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We are looking for a solution ci such that T 0
3 (k) = cki for i = 1, 2, 3,

corresponding to case (i) in the list of equations above. Note that we left out
the cases where obviously T j3 (k) ≤ 2k can be shown; this is justified by the
following analysis which always gives worse branchings.

1. In this case, we have to tackle the following equations:

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 1
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 1)

T 2
3 (k) = T 1

3 (k − 1) + T 2
3 (k − 1) = T 0

3 (k − 2) + T 2
3 (k − 1) + T 2

3 (k − 2)

The first equation gives T 2
3 (k) = T 0

3 (k)−T 0
3 (k− 1); plugged in the last

relation, we get:

(T 0
3 (k)−T 0

3 (k−1)) = (T 0
3 (k−1)−T 0

3 (k−2))+T 0
3 (k−2)+(T 0

3 (k−2)−T 0
3 (k−3))

This simplifies as follows:

T 0
3 (k) = 2T 0

3 (k − 1) + T 0
3 (k − 2) − T 0

3 (k − 3)

which implies that T 0
3 (k) = ck1 with c1 ≤ 2.2470 .

2.

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 1
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 1)

T 2
3 (k) = T 0

3 (k − 2) + T 1
3 (k − 1)

Hence, T 2
3 (k) = 2T 0

3 (k − 2) + T 2
3 (k − 2) which implies

T 0
3 (k) − T 0

3 (k − 1) = 3T 0
3 (k − 2) − T 0

3 (k − 3),

meaning that T 0
3 (k) ≤ 2.1701k.

3.

T 0
3 (k) = T 0

3 (k − 1) + T 2
3 (k)

T 2
3 (k) = T 0

3 (k − 1) + T 2
3 (k − 2)

By using the first equation, we get:

(T 0
3 (k) − T 0

3 (k − 1)) = T 0
3 (k − 1) + (T 0

3 (k − 2) − T 0
3 (k − 3))

which yields

T 0
3 (k) = 2T 0

3 (k − 1) + T 0
3 (k − 2) − T 0

3 (k − 3)

Therefore T 0
3 (k) = ck3 ≤ 2.2470 k.
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In other words, even with the two worst-case cases (highlighted by putting
frames around them) we arrive at a better branching behavior than Nieder-
meier and Rossmanith did with their more intricate “bottom-up” approach.

By a more involved but similar analysis (based on slightly different heuris-
tic priorities and two more reduction rules), together with the kernelization
as explained by Niedermeier and Rossmanith, we can show:

Theorem 5.38 3-Hitting Set can be solved in O(2.1788k + n) time.

Instead of giving the complete analysis, we will only mention the algo-
rithmically relevant details in what follows.

In order to be able to better handle the situation that some of the small
edges don’t intersect, we refine our heuristic priorities as follows. Note that
the additional heuristic rule we introduce does not affect the analysis of T `

3

for ` < 3.

P1 Prefer small edges. More formally, let degEmin = min{|e| | e ∈ E} and let
E0 = {e ∈ E | |e| = degEmin}.

P1′ Prefer small lonely edges If degEmin = 2, then if there is an edge e′ ∈ E0

such that ∀e ∈ E0 \ {e′}(e ∩ e′ = ∅) then set E0 = {e′}.

P2′ Maximize Eq. (5.17), i.e., let V1 = {x ∈ ⋃e∈E0
| deg3(x) − deg2(x) is

maximum}.

P3 Choose some x ∈ V1 of maximum degree.

Moreover, we employ the following two special case reduction rules, spe-
cific to the case of 3-hitting set:

Reduction rule 45 path reduction Let G = (V,E) contain the small edges
e1 = {x, y}, e2 = {y, z} and e2 = {u, x}, u 6= z. Assume that deg(x) =
deg(y) = 2. If z is dominated by u in G− e2 = (V,E \ {e2}), then delete z,
i.e., reduce G to G′ = (V \ {z}, {e \ {z} | e ∈ E}) without changing the value
of the parameter.

Reduction rule 46 triangle reduction Consider the instance (G, k), where
G = (V,E) contains the small edges e1 = {x, y}, e2 = {y, z} and e3 = {x, z}
with deg(x) = 2. Then, put y into the cover, i.e., reduce to (G′, k − 1) with
G′ = (V ′, E ′), E ′ = {e ∈ E | y /∈ e} and V ′ = {v ∈ V | ∃e ∈ E ′(v ∈ e)}.

These rules can be seen as a variant of the vertex domination rule; small
pictures can be found in Fig. 5.1(a) and Fig. 5.1(c), respectively.
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x y z

u

(a) path

x y z

u

(b) star

x y z

(c) triangle

Figure 5.1: Three situations for arranging three edges.

5.3.4 face cover

In this section, we consider the following problem on plane graphs:

Problem name: face cover (FC)
Given: A plane graph G = (V,E) with face set F
Parameter: a positive integer k
Output: Is there a face cover set C ⊆ F with |C| ≤ k?

Here, a face cover set is a set of faces whose boundaries contain all vertices
of the given plane graph.

The material of this section is based on [2] and yet unpublished common
work with F. Abu-Khzam and M. Langston.

Consider a plane graph G = (V,E) with face set F . If we consider a
vertex v to be given as a set F (v) of those faces on whose boundary v lies,
then a face cover set C ⊆ F corresponds to a hitting set of a hypergraph
H = (F,EH), where the vertex set of F is the face set of G, and

EH = {F (v) | v ∈ V }.

Basically, Abu-Khzam and Langston have shown that a traditional hit-
ting set algorithm can then be translated into a face cover algorithm,
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where rather than deleting vertices or faces, they are marked. Vertices that
are not yet marked are called active. Initially, all vertices and all faces are
active. So, more formally, we are dealing with an annotated version of face
cover in the course of the algorithm, i.e.:

Problem name: annotated face cover (FCann)
Given: A plane graph G = (V,E) with face set F , a function µV :
V → {active,marked} and a function µF : F → {active,marked}
Parameter: a positive integer k
Output: Is there a set C ⊆ {f ∈ F | µF (f) = active} with |C| ≤ k
and ∀v : µV (v) = active ⇒ Fa(v) ∩ C 6= ∅?

In addition, marked vertices are shortcut by a sort of triangulation op-
eration. This geometrical surgery allows to finally use the fact that each
planar graph possesses a vertex of degree at most five to branch at (also cf.
Site [Chapter 11, Site 6]). Let us explain this idea in more details. In order
to do this, let us first translate the reduction rules we derived for hitting
set in Chap. 2. In extension of the notation introduced above, let

• Fa(v) collect all active faces incident to vertex v; dega(v) = |Fa(v)| be
the face degree of v;

• Va(f) collect all active vertices on the boundary of face f ; dega(f) =
|Va(f)| be the face size of f .

Rule 4 translates to:

Reduction rule 47 Let Fa(u) ⊆ Fa(v) for some active vertices u, v. Then,
mark v.

Rule 5 becomes:

Reduction rule 48 If dega(v) = 1 and v is active, then put the unique
active incident face f (i.e., Fa(v) = {f}) into the face cover and mark both
v and f .

Rule 6 now reads as follows:

Reduction rule 49 If Va(f) ⊆ Va(f
′) for some active faces f, f ′, then

mark f .

As shown in [2], we have to be cautious with simply deleting vertices and
faces, so that we only mark them with the above rules. However, it is indeed
possible to simplify the obtained graph with a couple of surgery rules.
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Reduction rule 50 If u and v are two marked vertices with u ∈ N(v), then
merge u and v. (This way, our graph may get multiple edges or loops.)

Reduction rule 51 If u is a marked vertex with two active neighbors v, w
such that u, v, w are all incident to an active face f , then partition f into
two faces by introducing a new edge between v and w, and that edge has to be
drawn inside of f . (This way, our graph may get multiple edges.) The new
triangular face bordered by u, v, w is marked, while the other part of what was
formerly the face f will be active.

Reduction rule 52 If deg(v) = 1 and if v is marked, then delete v.

Reduction rule 53 If dega(v) = 0 and if v is marked, then delete v. The
new face that will replace all the marked faces that formerly surrounded v
will be marked, as well.

Reduction rule 54 If f is a marked face with only one vertex or with two
vertices on its boundary, then choose one edge e on the boundary of f and
delete e. This will destroy f .

Reduction rule 55 If e is an edge with two incident marked faces f, f ′, then
delete e, i.e., merge f and f ′; the resulting new face will be also marked.

Without proof, we state:

Lemma 5.39 The reduction rules for face cover are sound.

We can now prove the following fact:

Lemma 5.40 If G = (V,E) is an annotated plane graph with face set F
(seen as an instance of annotated face cover with parameter k) that is
reduced according to the face cover reduction rules listed above, then no
marked vertex will exist in G.

Proof. Assume there is a marked vertex v in G. deg(v) > 1, since otherwise
Rules 53 or 52 would have been applicable. Hence, v has two neighbors u and
w. If one of them would be marked, Rule 50 would have applied. Therefore,
all neighbors of v must be active. To avoid application of Rule 53, we can
assume that dega(v) > 0. Then, Rule 51 applies dega(v) many times. The
new triangular-shaped faces that would be introduced by that rule plus the
already previously marked faces incident to v would be in fact all faces that
are incident to v, and all of them are marked. Hence, Rule 53 (in possible
cooperation with Rule 55) applies and deletes v.
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As mentioned within the reduction rules, it might occur that we create
degenerated faces (i.e., faces with only one or two incident vertices) in the
course of the application of the reduction rules.

Lemma 5.41 If G = (V,E) is an annotated plane graph with face set F
(seen as instance of annotated face cover with parameter k) that is
reduced according to the face cover reduction rules listed above, then the
only degenerated faces that might exist are active faces f with two incident
vertices. Moreover, the two faces that are neighbored with such a degenerated
face f via common edges are both marked.

Proof. Let f be a degenerated face. If f has only one vertex v on its
boundary, the following will happen:

• If f and v are active and dega(v) = 1, then Rule 48 applies and puts
f into the face cover. Moreover, f and v will become marked. Hence,
Rule 52 applies and deletes v, so that also f will be replaced by a
probably larger face.

• If f and v are active and dega(v) > 1, then Rule 49 applies and renders
f marked.

• If f is active but v is marked, then Va(f) = ∅, so that Rule 49 vacuously
applies and renders f marked.

• If f is marked, then Rule 54 applies and removes f .

Hence, in the end a degenerated face with only one vertex on its boundary
cannot exist in a reduced instance.

Consider now a degenerated face f with two vertices u and v on its
boundary. If f is marked, then Rule 54 applies and removes f . Otherwise, f
is active. Let f ′ be one of the faces with which f shares one edge. If f ′ were
active, then Rule 49 would render f marked (see previous case). Hence, all
faces that share edges with f are marked in a reduced instance.

We are now going to analyze Alg. 37.

Theorem 5.42 (Abu-Khzam, Langston) Alg. 37 solves annotated face
cover in time O∗(5k).

Proof. We have to show that, in an annotated (multi-)graph G, there is
always a vertex with face degree at most five. Having found such a vertex v,
the heuristic priority of choosing a face incident to the vertex of lowest face
degree (as formulated in Alg. 37, line 8) would let the subsequent branches
be made at faces also neighboring v, so that the claim then follows.
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Algorithm 37 A simple search tree algorithm for annotated face cover,
called FC-ST
Input(s): an annotated plane graphG = (V,E) with face set F and marking

functions µV and µF , a positive integer k
Output(s): YES if G has an annotated face cover set C ⊆ F with |C| ≤ k;

NO otherwise

Exhaustively apply the reduction rules.
{The resulting instance will be also called G (etc.) as before.}
if k < 0 then

return NO

5: else if Va = ∅ then
return YES

else
Let v be a vertex of lowest face degree in G.
{One incident face of v must be used to cover v.}

10: Choose f ∈ Fa such that f is incident to v.
Mark f and all vertices that are on the boundary of f .
Call the resulting marking functions µ′

V and µ′
F .

if FC-ST(G,F, µ′
V , µ

′
F , k − 1) then

return YES

15: else
Mark f , i.e., return FC-ST(G,F, µV , µ

′
F , k)

end if
end if

The (non-annotated) simple graph G′ = (V,E ′) obtained from the an-
notated (multi-)graph G = (V,E) by putting one edge between u and v
whenever there is some edge between u and v in G is planar; therefore, we
can find a vertex v of degree at most five in G′.

However, back in G, an edge uv in G′ might correspond to two edges
connecting u and v, i.e., there might be up to ten faces neighboring v in G.4

Lemma 5.41 shows that at most five of these faces can be active.

Can we improve on the running time of the algorithm? Yes, we can again
use Theorem 5.12. Of course, as long as in the auxiliary graph G′ constructed
according to the previous proof we find a vertex of degree four, we find a 4k

branching behavior and are happy with it. So, the only situation that needs
to be analyzed is the following one (in G′): there are two triangular faces

4This was the basic concern when stating the O∗(10k) (actually, even worse) algorithm
for face cover in [134].
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neighbored via an edge {u, v} where the sum of the degrees of u and v is
at most 11. Since we want to analyze the worst case in the sequel, we can
assume that deg(u) = 5 and deg(v) = 6.

We now discuss some possibilities for vertex u (which we would choose to
branch at according to our heuristic priority, see line 8):

1. If some of the edges incident to u in G′ represent degenerated faces in G
and some correspond to (simple) edges in G, then Lemma 5.41 implies
that the face degree of u in G is less than five, so that we automatically
get a favorable branching.

2. If all edges incident to u in G′ represent degenerated faces in G, then
this is true in particular for the edge uv in G′. In order to achieve
dega(v) = deg(v)(= 6), all edges incident to v must also represent
degenerated faces in G (otherwise, the branching would be only better,
see Lemma 5.41).5

We are dealing with the case that the edge {u, v} is neighboring the
marked triangular faces uwv and uzv (in G′). So, we have the following
alternatives for covering u and v; as usual, we consider first all cases of
covering the small-degree vertex u.

• Take the degenerated face {u, w} into the cover. Then, both faces
{v, w} and {u, v} will get marked by the dominated face rule,
so that for branching at v, only four further cases need to be
considered. This is hence yielding four T (k − 2)-branches.

• Quite analogously, the case when we take {u, z} into the cover can
be treated, leading to another four T (k − 2)-branches.

• Otherwise, three possibilities remain to cover u, leading us to three
T (k − 1)-branches.

Analyzing this branching scenario gives us: T k ≤ 4.7016k.

3. If all edges incident to u (in G′) correspond to simple edges in G, then
we can assume (according to our previous reasonings) that also all edges
incident to v (in G′) correspond to simple edges in G.

5More precisely, if dega(v) = 5 and deg(v) = 6, this can only be if only four out of
the six faces incident to v are non-degenerated. Branching first on the degenerated face
uv and then (in the case that uv is not taken into the face cover) on all remaining four
possibilities to cover u times four possibilities to cover v gives the recursion

T (k) ≤ T (k − 1) + 16T (k − 2) ≤ 4.5312k.
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Then, we would propose the following branching:

• Start branching at the active triangular faces uwv and uzv (in
G′). This gives two T (k − 1)-branches.

• Then, branch at the remaining three active faces surrounding u,
followed (each time) by branches according to the remaining four
active faces surrounding v; overall, this gives 12 T (k−2)-branches.

Analyzing this branching scenario gives us: T k ≤ 4.6056k.

To further improve on our analysis, let us look a bit closer at the case
that all edges incident with u and v represent degenerated faces. Let N(u) =
{u1, u2, v, w, z} be the neighbors of u and similarlyN(v) = {v1, v2, v3, u, w, z}.

• If the the degenerated face {u, w} is put into the cover, then both
faces {v, w} and {u, v} will get marked by the dominated face rule,
so that for branching at v, four further cases need to be considered.
Moreover, notice that our reduction rules will produce the following
situation thereafter:6

– u and v will be deleted.

– All faces formerly neighboring u or v will be merged into one large
marked face f .

– On the boundary of f , w will be marked together with one vertex
out of {v1, v2, v3, z}.

• If the the degenerated face {u, z} is put into the cover, then a similar
analysis applies. This means that (according to the previous reasoning)
we are left with the following situations:

– u and v will be deleted.

– All faces formerly neighboring u or v will be merged into one large
marked face f .

– On the boundary of f , z will be marked together with one vertex
out of {v1, v2, v3, w}.

Now, observe that the situation that marks z together with w (on the
boundary of f) has already been found before. Hence, we only need to
consider three T (k − 2)-branches here.

6In fact, the marked vertices will again disappear by further application of reduction
rules, but this will be neglected in the following argument.
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• The other cases are treated as before, giving three more T (k − 1)-
branches.

Altogether, we get as a recurrence for the search tree size:

T (k) ≤ 3T (k − 1) + 7T (k − 2)

which gives the estimate T (k) ≤ 4.5414k.
This lets us conclude:

Algorithm 38 The code of FC-ST-case-1

Let G′ = G \ {u, v} and mark the face to which (formally) u, v belonged;
modify F, µV , µF accordingly, yielding F ′, µ′

V and µ′
F .

if FC-ST-advanced(G′, F ′, µ′
V , µ

′
F , k − 1) then

return YES

else
5: for all unordered vertex pairs {x, y} such that x ∈ N(u) \ {v} and

y ∈ N(v) \ {x, u} do
Modify µ′

V so that x and y are the only vertices of (N(u) ∪N(v)) \
{u, v} that are marked.
if FC-ST-advanced(G′, F ′, µ′

V , µ
′
F , k − 2) then

return YES

end if
10: end for

return NO

end if

Theorem 5.43 face cover can be solved in time O∗(4.6056k).

The pseudo-code of such an efficient algorithm for face cover is shown
in Alg. 41. For better readability, we grouped out three code fragments as
macros that deal with the three special cases we had analyzed.

Using more sophisticated algorithms (based on structural corollaries of
Theorem 5.12), Abu-Khzam, Fernau and Langston were able to further lower
the base of the exponential algorithm to about 4.5.7

We conclude with two final remarks:

1. Bienstock and Monma [47] considered a variant of face cover where
some preselected vertices need not be covered. This variant can be
solved by our algorithm, as well, since it evidently gives a restriction
of annotated face cover.

7unpublished note
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Algorithm 39 The code of FC-ST-case-2

Let G′ = G \ {u, v} and mark the face to which (formally) u, v belonged;
modify F, µV , µF accordingly, yielding F ′, µ′

V and µ′
F .

for all vertices x ∈ {w, z} do
Modify µ′

V so that x is the only vertex of (N(u) ∪N(v)) \ {u, v} that
is marked.
if FC-ST-advanced(G′, F ′, µ′

V , µ
′
F , k − 1) then

5: return YES

end if
end for
for all vertices x ∈ {u1, u2} and y ∈ {v1, v2, v3} do

Modify µ′
V so that x and y are the only vertices of (N(u)∪N(v))\{u, v}

that are marked.
10: if FC-ST-advanced(G′, F ′, µ′

V , µ
′
F , k − 2) then

return YES

end if
end for
return NO

Algorithm 40 The code of FC-ST-case-3

for all faces f ∈ Fa(u), g ∈ Fa(v) do
Mark f and g and all vertices in Va(f)∪Va(g); call the modified marking
functions µ′

V and µ′
F .

if FC-ST-advanced(G′, F, µ′
V , µ

′
F , k − |{f, g}|) then

return YES

5: end if
end for
return NO

2. red-blue dominating set (restricted to planar instances) can be
also solved with our algorithm. Formally, we only must (after arbitrar-
ily embedding the given red-blue graph into the plane)

• mark all faces of the graph

• attach to each red vertex an active loop

• inflate a loop attached to the red vertex v along the edges that
connect v with its blue neighbors until the loop (seen as a region
in the plane) touches all these neighbors; then, we can finally
remove v.
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Algorithm 41 An advanced search tree algorithm for annotated face
cover, called FC-ST-advanced

Input(s): an annotated plane graphG = (V,E) with face set F and marking
functions µV and µF , a positive integer k

Output(s): YES if G has an annotated face cover set C ⊆ F with |C| ≤ k;
NO otherwise

Exhaustively apply the reduction rules.
{The resulting instance will be also called G (etc.) as before.}
if k < 0 then

return NO

5: else if Va = ∅ then
return YES

else
Let u be a vertex of lowest face degree in G.
{One incident face of u must be used to cover u.}

10: if dega(u) ≤ 4 then
Choose f ∈ Fa such that f is incident to u.
Mark f and all vertices that are on the boundary of f .
Call the resulting marking functions µ′

V and µ′
F .

if FC-ST-advanced(G,F, µ′
V , µ

′
F , k − 1) then

15: return YES

else
Mark f , i.e., return FC-ST-advanced(G,F, µV , µ

′
F , k)

end if
else

20: {Let N(u) = {u1, u2, v, w, z} be the neighbors of u and similarly
N(v) = {v1, v2, v3, u, w, z}.}
if all active faces incident with v are degenerated then

execute FC-ST-case-1
else if no active faces incident with v are degenerated then

execute FC-ST-case-2
25: else

{all active faces incident with u are degenerated; only one active
face incident with v is degenerated}
execute FC-ST-case-3

end if
end if

30: end if
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Chapter 6

Case studies

We are going to explore the applicability of the parameterized approach
to algorithmics by working out examples from different areas. This shows
the applicability of the various techniques we have seen so far to obtain
parameterized algorithms.

In Sec. 6.1, we develop an efficient search tree algorithm for a problem that
arises in the area of statistical databases (we will describe the background of
the problem, too). Sec. 6.2 is devoted to the study of various problems that
are intimately related to hitting set; in fact, many other problems that we
meet in this chapter can be also viewed from this perspective. The application
areas we draw our examples from are quite diverse: computational biology
and communication networks; in further sections, we will also learn examples
from graph drawing and Artificial Intelligence. Section 6.3 is devoted to the
study of various graph modification problems, which again are often related
to (or can be formulated as) hitting set problems. In Sec. 6.4, we will
encounter different graph drawing problems, studied from a parameterized
point of view. In particular, we will work again on linear arrangement
and its variants. Finally, Section 6.5 reviews again the techniques we have
seen so far for developing efficient parameterized algorithms.

6.1 matrix row column merging

The material of this section is taken from [60, 172].

6.1.1 Problem definition

L. Branković communicated to us the following abstract problem arising in
the theory of statistical databases, stated below in an abstract and simplified
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version:

Problem name: matrix row column merging (MRCM)
Given: a n×m {0, 1}-matrix M
Parameter: a positive integer k
Output: Is it possible to get the all-zeros-matrix by merging at most
k neighboring rows or columns?

Here, merging means to perform a component-wise logical AND. For
short, we will also call this a k-mergible matrix. In order to simplify our
formulations, a line of a matrix is either a row or a column of that matrix.
Hence, a matrix is k-mergible iff the all-zeros-matrix can be obtained by
merging at most k neighboring lines. A line can be of type row or column.
We also say that rows and columns are opposite types.

6.1.2 The database background

Let us explain a bit more the background from statistical databases.
Statistical security is an area of data security that focuses on the protec-

tion of individual values used for statistical purposes. This problem became
apparent in the seventies [125] and was revived in recent years due to the
massive data collection and growing social awareness of individual privacy.
This problem is different from most other security problems which typically
occur when an unauthorized user obtains an access to data, or when an au-
thorized user obtains an access to data for which he/she is not authorized.
The latter is referred to as unauthorized access by an authorized user. Note
that both these problems can be solved by cryptographic and access control
techniques. However, these techniques cannot solve statistical security prob-
lem, as the access to confidential individual values is not obtained directly
but rather indirectly through a combination of legitimate statistical queries.
Thus we have a case of a security breach by an authorized user obtaining
authorized access to data.

The techniques used for preventing statistical disclosure fall into two cat-
egories: noise addition, where all users’ queries are answered but the answers
are only approximate rather than exact, and query restriction, where the
system only accepts those queries that are considered safe. In either case,
a technique is evaluated by measuring both the information loss and the
achieved level of privacy. In the case of a noise addition technique, the in-
formation loss is measured by deterioration in data quality, in terms of bias
(the difference between unperturbed statistics and the expected value of its
perturbed estimate), precision (variance of an estimator) and consistency
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(absence of contradictions and paradoxes) [4]. For query restriction tech-
niques, information loss is measured by the decrease in the usability, that
is, the percentage of queries that can be answered without database com-
promise. Obviously, the goal of statistical data protection is to maximize
the security while minimizing the information loss. In order to evaluate a
particular technique it is important to find the theoretical lower bound on
the information loss necessary to achieve a given level of privacy.

Here, we focus on query restriction in a database that contains a single
confidential attribute and only allows so-called range sum queries on that
attribute, such that it is impossible for an intruder to disclose any confidential
individual value. Range queries are those that are based on records that
have all attribute values within the prescribed ranges. For example, in a
database with attributes “age”, “education” and “years of experience” with
the domains [18, 70], [HighSchool, TradeCertificate, Bachelor, Master, PhD]
and [0,55], respectively, and a confidential attribute “salary”, the following
are range sum queries:

SUM(age > 50, education > bachelor; salary)

SUM(age < 35, experience < 10; salary)

Note that all the attributes are numerical or enumeration types, that is,
all of them have a natural ordering of their values.

Databases that only allow range queries can be represented as multidi-
mensional matrices where range queries are contiguous sub-matrices [237].
Each entry in the matrix denotes how many records with that particular
combination of attribute values exist in the database. This representation
is essentially the same as the data cube in OLAP (On-line Analytical Pro-
cessing) [157], where the range queries are typically referred to as multi-
dimensional range (MDR) queries and are widely used for exploring patterns
in data warehouses. As an illustration, consider a database given in Table 6.1
and its data cube representation in Table 6.2.

Another representation often used for release of statistical data is the so-
called tabular model, in which the entries represent the number of records
with attribute values falling within specified ranges. Note that the tabular
model contains less information than the data cube and thus these two models
are not equivalent. Table 6.3 shows a possible tabular representation of our
Sample Database from Table 6.1.

We now consider m-dimensional matrices in which all entries are greater
than 0, that is, in which there exists at least one record for each combina-
tion of attribute values. It was shown in [237] that for such m-dimensional
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Age Salary
21 25000
21 27000
21 28000
22 26000
22 27000
22 28000
24 26000
24 27000
24 28000
25 26000

Table 6.1: Sample Database

25000 26000 27000 28000
21 1 0 1 1
22 0 1 1 1
23 0 0 0 0
24 0 1 1 1
25 0 1 0 0

Table 6.2: Sample Database—data cube representation

25000–26000 27000–28000
21–22 2 4
23–24 1 2

25 1 0

Table 6.3: Sample Database—tabular representation

matrices the fraction of queries that can be answered without exact disclo-
sure of any individual value is bounded from below by (2m − 1)/2m. The
minimum is achieved in the case where there is precisely one record for each
combination of attribute values, that is, when a database matrix contains
only ones. A precise formula for the usability of one-dimensional databases
with arbitrary elements in the database matrix is given in [61], and databases
with 0 entries (holes) were considered in [374].

Here, we restrict the problem to two dimensions and tackle it from a
different angle. The main idea is simple: if the database is dense, that
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is, if the database matrix does not contain too many zeros, and if zeros
are spread across the matrix, then it is worth partitioning the domains of
the attributes into intervals, and disallowing all the queries whose attribute
ranges cannot be expressed as unions of these intervals. This effectively
corresponds to a transition from a data cube to a tabular model where the
ranges are not necessarily equal but all the entries are greater than 0. In
other words, this corresponds to merging neighboring rows and columns in
a database matrix in order to eliminate all 0’s in the matrix. Once this
is achieved, we know from [237] that we can keep the data secure while
achieving very high usability by allowing only “even” range queries, that
is, those queries that are represented by contiguous sub-matrices with even
number of elements. Clearly, our goal is to minimize the number of row
or column mergings necessary for eliminating all 0’s in the matrix. If we
apply this to our Sample Database in Table 6.2, we arrive at the tabular
model presented in Table 6.4. The advantages of this representation over
the representation in Table 6.3 are obvious: there are more entries than in
Table 6.3 and the set of all contiguous sub-matrices containing even number
of cells is compromise free.

25000-26000 27000 28000
21 1 1 1

22-23 1 1 1
24-25 2 1 1

Table 6.4: Sample Database—tabular representation that minimizes the
number of mergings, while ensuring that all entries are greater than 0

Note that in the mathematical formulation of the preceding subsection,
zeros in the database matrix are represented by 1 while positive integers are
represented by 0.

6.1.3 Some examples

Let us first discuss a simple example. In this way, we will introduce a bit
more notation.

Example 6.1 Let us consider the following matrix instance M (where only
the 1-entries are shown, all other entries are implicitly 0-entries):
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1 2 3 4 5 6 7 8 9
1 1 1 1
2
3 1
4 1 1 1
5
6
7 1 1

Can we eliminate the ones by merging at most k ≤ 3 neighboring rows
or columns? For example, merging rows 1 and 2, 4 and 3, as well as 6 and 7
leaves us with:

1 2 3 4 5 6 7 8 9
1/2
3/4
5

6/7

Observe that the merged rows are written as a list of row numbers. This
notation is convenient, since it allows us to talk about, e.g., merging rows 4
and 5 later on (of course, this is not necessary in our example), referring to the
original row numbers. Alternatively, we would have to re-number the lines
after each merge operation, but this appears to be too awkward to explain
examples, although it is quite natural when thinking about implementing
solving algorithms. That is why we will later deviate from this convention.
A second point we gain by our convention is that the order in which we apply
merge operations does not matter at all. In our example, we could describe
our solution as {RM(1, 2),RM(3, 4),RM(6, 7)}. Similarly, we can indicate
column mergers by writing CM(i, j). To simplify our notation, we will also
say that the operation RM(·, ·) is of the type row, and the operation CM(·, ·)
is of the type column.

In other words, the given instance is 3-mergible. Is it possible to fix the
instance by using only two merging operations? Let us look at the first row.
It contains three ones. If all the ones were “fixed” by column mergers, this
would need at least three merging operations. Hence, we must fix these ones
by merging row 1 with row 2. A similar argument applies to row 4. But now
we have used two (enforced) mergers but did not fix the matrix successfully.
Hence, the instance is not 2-mergible.
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6.1.4 Complexity results

In [172], we have shown the following result that actually makes the problem
interesting to be tackled by a parameterized approach:

Theorem 6.2 matrix row column merging is NP-complete.

In fact, all results we list in the following can be found in [172] if not
noted otherwise.

Let us first try to find a simple way of proving membership of MRCM in
FPT : observe that a one at location (i, j) in the instance matrix M can only
be fixed by merging it row-wise or column-wise with a neighboring line. In
total, this gives a four-element candidate set for fixing M(i, j), see Alg. 42.

It is clear that the running time of Alg. 42 is O∗(4k), since each of the
four branches reduces the parameter by one, i.e., the (exponential part of
the) running time is bounded by the recursion T (k) ≤ 4T (k − 1).

Can we improve on this running time? Firstly, observe that the worst
case can only happen if we are not able to find a one in some row or column
in M that is a borderline of M . Otherwise, one of the branches cannot hap-
pen, so that we immediately get a O∗(3k) behavior. What does it mean if
say the first row contains only zeros? Obviously, we don’t need any column
mergers to repair that row. Consider the row merging RM(1, 2). The result-
ing matrix M ′ coincides with the given one M , assuming that the second
row got deleted. However, if we did, instead of RM(1, 2), merge rows 2 and
3, then the resulting matrix M ′′ would contain, as would M ′, a first row
containing only zeros and a second row that has, compared to the second
row of M ′, at most ones in places in which M ′ has ones, as well. In all other
rows, M ′ and M ′′ coincide. Hence, if we compare the matrices M ′ and M ′′

componentwisely, M ′′ ≤M ′.

Proposition 6.3 If (M1, k) is a YES-instance of matrix row column
merging and if M2 is a {0, 1}-matrix with the same dimensions as M1, such
that M2 ≤ M1 by componentwise comparison, then (M2, k) is a YES-instance
of MRCM, as well.

Due to Prop. 6.3, the preceding argument shows that we do not have to
consider the operation RM(1, 2) at all in our branchings, since RM(2, 3)
would do no worse, and RM(2, 3) will be considered in one of the later
branches anyhow. The only exception to this observation is when there is no
third row at all, so that RM(1, 2) is the only possible row merging operation.

This is the basic idea to show the soundness of the following reduction
rule.
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Algorithm 42 A simple search tree algorithm for matrix row column
merging, called MRCM-simple

Input(s): a binary n×m matrix M , a positive integer k
Output(s): YES if there is sequence of line merges of length at most k that

turns M into a matrix that only contains zeros or
NO, otherwise.

if M contains no ones then
return YES

else if k > 0 then
pick some index (i, j) such that M [i, j] = 1;

5: {branch according to the four fixing possibilities}
if i > 1 then

if MRCM-simple(RM(i− 1, i)(M), k − 1)=YES then
return YES

end if
10: end if

if i < n then
if MRCM-simple(RM(i, i + 1)(M), k − 1)=YES then

return YES

end if
15: end if

if j > 1 then
if MRCM-simple(CM(j − 1, j)(M), k − 1)=YES then

return YES

end if
20: end if

if j < m then
return MRCM-simple(CM(j, j + 1)(M), k − 1)

else
return NO

25: end if
else

return NO

end if

Reduction rule 56 0-borderline-rule: If (M, k) is an instance of matrix
row column merging whose first and last row are completely consisting
of zeros, then (M, k) can be reduced to (M ′, k), where M is obtained from M
by deleting the first row.

A similar rule can be stated for columns.
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In actual fact, this rule is true in a slightly more general fashion; this also
explains some modifications that have to be done in [172] to cope with the
(additional) if-condition.

Reduction rule 57 0-borderline-rule (general): If (M, k) is an instance of
matrix row column merging whose first row is completely consisting of
zeros, then (M, k) can be reduced to (M ′, k), where M is obtained from M
by deleting the first row, if M ′ does not contain a column that is completely
filled with ones.

A similar rule can be stated for columns.

Due to the 0-borderline-rule, we can be sure to always find a one in the
first or in the last column of a reduced matrix (if that matrix contains at least
one element). This shows the correctness of Alg. 43, and also the running
time of O∗(3k) should be clear.

Can we further improve on this running time? In fact, in [172] we de-
scribed a method of how to do this, basically by a triviality last methodology.
To be able to do so, we must first find trivial instances, i.e., instances that
can be solved in polynomial time.

To this end, we considered the following problem variant:

Problem name: matrix row merging (MRM)
Given: a n×m {0, 1}-matrix M
Parameter: a positive integer k
Output: Is it possible to get the all-zeros-matrix by merging at most
k neighboring rows?

How can we solve this problem in polynomial time? Quite easily, with
the help of reduction rules. Namely, first of all, observe that, since MRM
is a restriction of MRCM, the reduction rule 56 is also valid in this case.
But, if (M, k) is an instance that is reduced with respect to that rule, in
particular the first row contains a one. Such a one can only be fixed by using
the operation RM(1,2), since there are no column mergers at our disposal.
This justifies the following specific reduction rule:

Reduction rule 58 Let (M, k) be an instance of matrix row merging.
If the first row of M contains a one, merge that row with the second row to
obtain an instance (M ′, k − 1). If the last row of M contains a one, merge
that row with the penultimate row to get an instance (M ′, k − 1).

Observe that always either Rule 56 or Rule 58 is applicable to an instance
M of matrix row merging, since alway either the first row or the last row
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Algorithm 43 A revised search tree algorithm for matrix row column
merging, called MRCM-revised

Input(s): a binary n×m matrix M , a positive integer k
Output(s): YES if there is sequence of line merges of length at most k that

turns M into a matrix that only contains zeros or
NO, otherwise.

Exhaustively apply the 0-borderline-rule.
{The resulting matrix is also called M .}
if M contains only zeros then

return YES

5: else if k > 0 then
if the first column contains only zeros then

if M contains only two columns then
return YES

{Here, CM(1,2) will do.}
10: else

Replace M by a matrix that is obtained from M by swapping the
first and the last column, the second and the third column etc.
{This covers the case that the last column, not the first column,
of M contains a one.}

end if
end if

15: pick some index (i, 1) such that M [i, 1] = 1;
{branch according to the at most three fixing possibilities}
if i > 1 then

if MRCM-simple(RM(i− 1, i)(M), k − 1)=YES then
return YES

20: end if
end if
if i < n then

if MRCM-simple(RM(i, i + 1)(M), k − 1)=YES then
return YES

25: end if
end if
if 1 < m then

return MRCM-simple(CM(1, 2)(M), k − 1)
else

30: return NO

end if
else

return NO

end if
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of M contains a one or both the first and the last row of M contain only
zeros.

It is obvious that an instance (M, k) that is reduced both according to
both Rules 56 and 58 is either a matrix with zero or with one row; in the
first case, the instance is solvable, while in the second case, it is not. Observe
that, according to the last remarks in Sec. 2.1.1, it is well possible that an
instance is detected as non-solvable when trying to apply the reduction rules,
namely if the budget k that was originally provided was too small.

As detailed in [172], the sketched polynomial time solving algorithm for
matrix row merging is interesting on its own right since it also yields a
simple solving algorithm for vertex cover on so-called interval graphs.

Having found this simple solution for row (or column) mergers only, we
can now formulate an algorithm for which we can show a further improved
running time, called MRCM-final, see Alg. 44. This procedure is used as
described in the following:

Let (M, k) be the given MRCM instance.
A is an initially all-zero auxiliary matrix with the same dimensions as M .
Call S :=MRCM-final(M, k, ∅, 0, k, A, 1, 0).
if M contains a one and S = ∅ then

(M, k) is a NO-instance.
else

(M, k) is a YES-instance, solved by S.
end if

The idea of this algorithm is pretty simple and similar to the previous
case: a one in the first column can be either solved by a column merger or by
some row mergers. The trick is that we defer solving by row mergers till the
very end, which is possible since the merging operations are commutative
(in a certain sense: namely, when considered on the original matrix line
indexing). Observe that λ ≥ 1 due to the fact that M contains at least one
one in the first column.

Observe that the line marked with (*) in Alg. 44 is needs some modifica-
tions along the lines of Alg. 43 to cover the cases in which the 0-borderline-
rule is not applicable; since the corresponding swapping of indices introduces
some technicalities that are tedious but don’t add to the understanding of
the overall procedure. The necessary modifications should be doable by the
reader.

We allow ourselves to override some ones in M by twos, namely, if we
decide that the corresponding row containing that one should be resolved by
a row merger. Then, we should not consider the possibility of repairing a
column containing only zeros and twos by column mergings (at all). Rather,
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Algorithm 44 Our final search tree algorithm for matrix row column
merging, called MRCM-final

Input(s): a binary n×m matrix M , a positive integer k, a solution set S, an
auxiliary parameter `, an auxiliary matrix A, a pointer a pointing to the
next free row in A, a pointer ’offset’ that keeps track of the “original”
index minus one of what is now the first column of M (M gets modified
throughout recursion)

Output(s): YES if there is sequence of line merges of length at most k that
turns M into a matrix that only contains zeros or
NO, otherwise.

Let c be the number of columns of M .
if the first column of M contains no ones AND c > 2 then

copy the first column of M into the as column of A, thereby turning
2s into 1s;
op:=delete first column; {(*); see text body}

5: return MRCM-final(op(M),k,S,`,A,a + 1,offset+1).
end if
{Now, the first column of M contains a 1 or c ≤ 2. The remaining simple
cases are solved with the MRM-solver, as described in the text.}
if (c ≤ 1) ∨ (` < 1) then

copy all columns fromM into A, starting at position a, thereby turning
2s into 1s;

10: return solve-MRM(A, k, S, 0).
else
{Branch according to two subcases}
op:=CM(1,2);
Supdate := S ∪ {CM(1 + offset, 2 + offset)};

15: S ′ :=MRCM-final(op(M),k − 1,Supdate,`− 1,A,a,offset+1).
if S ′ 6= ∅ then

return S ′

else
{Try the row mergers}

20: if c = 2 then
{the only remaining simple case}
copy all columns from M into A, starting at position a, thereby
turning 2s into 1s;
return solve-MRM(A, k, S, 0).

else
25: {c > 2. Hence, the first column of M contains a one.}

MODIFY M and A (see Alg. 45)
end if

end if
end if
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Algorithm 45 The macro MODIFY as used in Alg. 44.

λ := 0;
set the ath column of A to be the all-zero-vector;
for all rows i in the first column of M with M [i, 1] = 1 do
λ := λ+ 1;
for all columns j > 1 of M with M [i, j] = 1 do
M [i, j] := 2;

end for
end for
for all rows i in the first column of M with M [i, 1] 6= 0 do
A[i, a] := 1;

end for
op:=delete first column;
return MRCM-final(op(M),k,S,` − λ/2,A,a+ 1,offset+1).

in this sense a two would be treated as a zero by the 0-borderline-rule within
M , deferring the solution to the polynomial-time phase with solve-MRM.
This justifies the initial part of the algorithm. Still, if we decide to merge
the first column with the second which may contain a two, then this two is
treated as if it were a one. More precisely, merging within M is then done
according to the following algebraic laws:

• 0 AND X = 0 for X = 0, 1, 2;

• X AND X = X for X = 0, 1, 2.

Note that we will never merge a one with a two, since all ones in a row will
be turned into twos (when we assume that that row is fixed by row merging)
or not, see the macro described in Alg. 45 for details. Hence, the given rules
cover all cases that may occur.

The idea behind the new variable ` is that for each row which we decide
to be resolved by row mergers only, we can be sure to put aside at least one
half of a parameter value, since one row merger can completely resolve at
most two rows to be fixed by row mergers only. This “book-keeping trick”
(which might be in fact wider applicable: use simple approximation bounds
to account for cases to be resolved later in a deterministic, polynomial-time
fashion) gives us the following recursion:

T (`) ≤ T (`− 1) + T (`− 1/2) +O(1)

Assuming T (`) = c` yields c = (3 +
√

5)/2 ≈ 2.6181. Alternatively, c = φ2 =
φ+ 1, where φ ≈ 1.6181 is the number of the golden ratio.

Hence, we may state as our final version:
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Theorem 6.4 matrix row column merging can be solved in time O(2.6181kmn),
given an n×m matrix M and a parameter k.

6.1.5 Revisiting our example

Let us follow the work of this algorithm by having another look at the first
example, solving it as instance (M, 3). For clarity, we put the value of the
offset variable into each table.

offset = 0 1 2 3 4 5 6 7 8 9
1 1 1 1
2
3 1
4 1 1 1
5
6
7 1 1

The first branch would take CM(1,2), and one application of the 0-
borderline-rule (in its general form) leaves us with a new instance (M{1}, 2),
using curly brackets to denote the different subcases:

offset = 2 1 2 3 4 5 6 7
1 1 1
2
3
4 1 1 1
5
6
7 1 1

Alternatively, the second branch would copy the first column of M into A
and color some 1s into 2s, arriving at the following matrix instance (M{2}, 2),
after one application of the 0-borderline-rule (in its general form):

offset = 2 1 2 3 4 5 6 7
1 2 2
2
3
4 1 1 1
5
6
7 1 1
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To shortcut the exposition, let us now focus on what further happens
with this second branch, i.e., with (M{2}, 2): Again, we have CM(1,2) as
first alternative, yielding as next instance (M{2.1}, 1). Notice that since
the current offset is two, the operation CM(3,4) will be put into the partial
solution in this branch. So, we arrive at:

offset = 3 1 2 3 4 5 6
1 2
2
3
4 1 1
5
6
7 1

Obviously, this is a dead end (it cannot be repaired by only one merging
operation). Alternatively, deferring the row merging yields (M{2.2}, 1.5):

offset = 3 1 2 3 4 5 6
1 2 2
2
3
4 2 2
5
6
7 1 1

The matrix A looks up to now as follows:

1 2
1 1
2
3 1
4 1
5
6
7

Since column mergers alone surely would not resolve (M{2.2}, 1.5), let us
follow up the situation assuming row mergers. At an intermediate state, in
M{2.2} all ones would be turned into twos. The copy operations would then
finally turn A besides one missing 0-column) into the original matrix M .
Applying solve-MRM(A, 3, ∅, 0) will then return as solution

S = {RM(1, 2),RM(3, 4),RM(6, 7)}.
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6.2 Problems related to hitting set

In this section, we will show how a whole variety of problems can be solved
with the help (or at least taking ideas from) hitting set algorithms as
developed in Chap. 5. In fact, we already started with such type of problems
in the preceding section, since we sketched the connections between 4-HS
and matrix row column merging. However, in that example, we used
further techniques that are specific to MRCM to get better running times.
Presumably, it would be also possible to improve on the running times of
some of the algorithms described below by exploiting more problem-specific
properties (if it is not clear that the problems are not exactly described by
HS).

More specifically, we will encounter in this sections hitting set-like
problems from the areas of computational biology and of network algorithms.
Later in this chapter, further related problems will be discussed.

6.2.1 Problems from computational biology

Let us first mention here the following two problems arising in computa-
tional biology that can be effectively solved with the help of 3-hitting set,
see [17, 45, 137]: maximum agreement subtree and maximum compat-
ible tree.

To formulate these problems, we need some more terminology: a phy-
logeny is a rooted tree T whose leaf set L(T ) is in bijection with a label
set (with which it can be hence identified). Within maximum agreement
subtree, the rooted tree is always binary, i.e., all inner nodes but the root
have degree three; the root has degree two.1 To maintain this property, we
assume that label deletion may propagate in the following sense:

• Assume that x is an inner node with children y and z, where z is a leaf
that is going to be deleted.

• Upon deleting z, x would have a degree that is too small. Therefore, x
is deleted as well. Two subcases arise:

– x is the root of the tree. Then, y will be the root of the tree that
is produced.

– x is not the root of the tree. Then, x is the child of another node
x′, and an edge between x′ and y is added in the tree that is
produced to maintain it connected.

1We disregard trees with two or fewer nodes in this discussion to avoid messy formula-
tions.
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Let T \{λ} the tree obtained after deleting label λ from L(T ). We can extend
this operation to sets of labels, arriving at the notation T \ Λ for a set of
labels Λ.

Problem name: maximum agreement subtree (MAST)
Given: A set {T1, . . . , Tn} of binary rooted trees with equal label set
L = L(T1) = · · · = L(Tn)
Parameter: a positive integer k
Output: Is there a set of labels L′ ⊆ L, |Λ| ≤ k, such that all trees
Ti \ Λ are isomorphic?

maximum agreement subtree can be basically solved with the help
of 3-hitting set by creating a hyperedge between three labels `1, `2, `3 if
in one tree Ti the least common ancestor of `1 and `2 is closer to the root
than the least common ancestor of `1 and `3, while in another tree Tj, the
opposite is true: the least common ancestor of `1 and `3 is closer to the root
than the least common ancestor of `1 and `2. The operation of deleting a
label corresponds to putting the corresponding label into the hitting set.

The problem maximum compatible tree is more general, since it al-
lows inner nodes of degree larger than three for a phylogeny. However, it is
shown in [45] that this problem is still solvable with the help of 3-hitting
set.

From the point of view of applications, also other, related problems seem
to be of interest. For example, Berman, DasGupta and Sontag [43] considered
the following problem (which we already rephrased in terms of hitting set)
that was motivated by applications to reverse engineering of protein and gene
networks:

Problem name: multi-hitting set (HSmulti)
Given: A hypergraph G = (V,E)
Parameter: positive integers k, `
Output: Is there a multi-hitting set C ⊆ V with |C| ≤ k, i.e., C
satisfies ∀e ∈ E∃c ⊆ e(|c| ≥ ` ∧ c ⊆ C)?

Again, if we restrict the size of the hyperedges to d, we can expect FPT
results. More specifically, it is then sufficient to branch on all

(
d
`

)
possibil-

ities to cover a chosen hyperedge e (candidate set method). This immediately

gives an O∗

((
d
`

)k/`)
= O∗(dk) algorithm for d-HSmulti.

Better results can be expected in certain circumstances. For example, if
` = d − 1, then we can simulate the fact that d − 1 out of the d elements
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of a hyperedge must be covered by the multi-hitting set by replacing that
hyperedge by a clique (in the classical graph theoretic sense) on these d
vertices and considering the translated graph as a vertex cover instance.
More specifically, we would use the program fragment listed as Alg. 46.

Algorithm 46 How to turn a special multi-hitting set instance into an
equivalent vertex cover instance

Input(s): G = (V,E): the input hypergraph with parameter k
Output(s): G′ = (V ′, E ′): the output graph with parameter k′ (the equiv-

alent VC instance).

Let V ′ := E ′ := ∅
for all e ∈ E according to increasing size do

if |e| < d− 1 or k < d− 1 then
Let E ′ = {vv′} for arbitrary v, v′ ∈ V .
Let k′ = 0.
return (G′, k′).

else if |e| = d− 1 then
Remove all vertices from e from V and from E.
Remove empty hyperedges from E.
Decrease k by d− 1.

else
Add the vertices in e to V ′.
Make these vertices a clique in V ′ by accordingly updating E ′.
Remove e from E.

end if
end for
return (G′, k).

This shows that also reductions can be sometimes used to solve a specific
problem in particular with the help of hitting set programs.

6.2.2 Call control problems

Th. Erlebach and his co-authors investigated variants of call admission con-
trol problems. In such a setting, we are given a set of connection requests
in a communication network and have to determe which of the requests can
be accepted without exceeding the capacity of the network. The goal is to
maximize the number of accepted requests or, equivalently, to minimize the
number of rejected requests. We follow the terminology as introduced in [23]
in this section. In fact, most results are obtained in the quoted paper; how-
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ever, we think this setting allows for even a certain number of nice examples
where hitting set techniques can be fruitfully applied.

We restrict our discussion here to communication networks that can be
described by undirected graphs. In [23], also networks that can be modeled
by directed or (as a special case) bidirected graphs are treated. So, here a
communication network is represented by an undirected graph G = (V,E)
with edge capacities c : E → N. A communication request is a pair of
vertices. If a request (u, v) is an accepted request, then a unit of bandwidth is
reserved on all edges along a path p((u, v)) from u to v. Naturally, this means
the remaining capacity decreases by one for each edge involved in p((u, v)),
once this path has been chosen to satisfy request (u, v). Accordingly, a set
of paths is a feasible path set if no edge e ∈ E is contained in more than c(e)
paths. For a given set P of paths in a graph with edge capacities, an edge e
is called a violated edge if the number of paths in P that contain e is greater
than c(e). In this setting, we can now formulate the basic call admission
problem.

Problem name: CallControl
Given: A communication network represented by an undirected
graph G = (V,E) with edge capacities c : E → N, a set R ⊆ V × V
of communication requests
Parameter: a positive integer k
Output: Is there a subset A ⊂ R and a corresponding feasible path
set p(A) resulting from assigning to each request r ∈ A some path
p(r) such that p(A) is feasible and the set of rejected requests R \ A
contains no more than k elements?

(Recall that P (G) collects all paths of G.) Unfortunately, there is no real
hope to find efficient parameterized algorithms, since CallControl is NP-
hard, even for k = 0 and when we only consider unit capacities and when the
input graphs are restricted to series-parallel graphs (a usually very “easy”
class of graphs, where many graph problems that are NP-hard in general
can be efficiently solved). The basic reason is that, in the formulation of the
preceding problem, we have an additional degree of freedom (in comparison
to other similar parameterized problems), namely the choice of the path
p((u, v)) to satisfy the request (u, v). This path assignment problem itself is
closely related to the problem of finding disjoint paths and can therefore not
efficiently solved.

Moreover, in some applications, this path is actually predetermined by a
path assigning function. We can therefore formulate the following variant:
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Problem name: CallControl-Pre
Given: A communication network represented by an undirected
graph G = (V,E) with edge capacities c : E → N, a set R ⊆ V × V
of communication requests, a path assigning function p : R → P (G)
Parameter: a positive integer k
Output: Is there a subset A ⊂ R such that p(A) is feasible and the
set of rejected requests R \ A contains no more than k elements?

Now, the (in principle) unbounded edge capacities actually make the
problem hard in the parameterized sense. More technically speaking, in [23],
showed that that problem is W[2]-hard, even when restricted to series-parallel
graphs.

The picture changes if we further restrict the problem to instances with
bounded edge capacities, i.e., assume there is a constant d such that, for all e,
c(e) ≤ d. We denote the problem as d-CallControl-Pre (to be specified
formally below).

Now, there is a simple candidate set in each step of a simple search tree:
namely, if there happen to be more request then capacity for a certain edge
e, then take an arbitrary selection of c(e)+1 ≤ d+1 paths through e. One of
these paths (or better said one of the corresponding calls) must be rejected.
This motivates Alg. 47 for solving d-CallControl-Pre.

Interestingly enough, the Alg. 47 (that is implicitly presented in [23])
assumes a sort of online generation of the candidate sets. Alternatively,
one could think of trying to generate all possible candidate sets in the very
beginning. Then, we would have all violating candidate sets at hand in the
very beginning of the branching process. In fact, we would have produced a
special instance of (d+1)-hitting set in this way. Then, we could take the
best known parameterized off-line algorithm for hitting set, see Sec. 5.3.3.
This would of course improve on the presented on-line algorithm which has a
worst-case running time of O((d+1)kn). Note that although the overall size of
the produced d-hitting set instance is (alternatively) bounded by O(nd)
and is hence polynomial for any predetermined fixed d, this many (trial)
conflict edges may be generated if we consider d really as fixed. However, as
we already remarked in Sec. 3.4, it is usually the case in d-HS algorithms
that they might work uniformly in the sense that both d and k can be viewed
as parameters of the problem. If we like to get a similar behavior for this call
control problem, we cannot afford spending so much time on the generation
of the instance. So, formally we attack the following problem:
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Algorithm 47 A simple search tree algorithm for d-CallControl-Pre,
called online-CCP
Input(s): a graph G = (V,E) with edge capacities c : E → N bounded by
d, a set R ⊆ V × V of communication requests, a path assigning function
p : R → P (G), a positive integer k

Output(s): YES if there is a subset A ⊂ R such that p(A) is feasible and
the set of rejected requests R \ A contains no more than k elements or
NO if no set of rejected requests of size at most k (making all the other
requests feasible) exists.

violated:=NO

for all edges e do
if # paths through e is greater than c(e) then

violated:=YES

end if
end for
if violated then

if k > 0 then
pick violating edge e
create candidate set C consisting of c(e) + 1 paths
found:=NO

for all candidate paths p ∈ C AND not yet found do
create new instance I ′, taking out p and reducing k by one
found:=online-CCP(I ′)

end for
return found

else
return NO

end if
else

return YES

end if

Problem name: d-CallControl-Pre
Given: A communication network represented by an undirected
graph G = (V,E) with edge capacities c : E → N, a set R ⊆ V × V
of communication requests, a path assigning function p : R → P (G)
Parameter: a positive integer k, an edge capacity bound d
Output: Is there a subset A ⊂ R such that p(A) is feasible and the
set of rejected requests R \ A contains no more than k elements?
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Let us therefore analyze our situation more carefully.
For example, it could well be that an edge has a demand p(e) (measured

in terms of the number of paths that want to use e) that is “much” larger
than the capacity c(e). This automatically means (by pigeon hole principle)
that at least p(e) − c(e) paths have to be removed. Therefore, the following
reduction rule is safe:

Reduction rule 59 If p(e) − c(e) > k, we can immediately reply NO.

In terms of HS, such a situation corresponds to a sort of hyperclique.
Observe that otherwise, each of the paths (that correspond to the vertices in
the instance of hitting set) has “degree” p(e).

To see if the solutions that can be found when solving CallControl-
Pre or HS, let us be a bit more formal. We study how the information that
certain paths are removed (i.e., vertices are put into the hitting set) is prop-
agated in the branching process. Consider a CallControl-Pre instance
I and the “corresponding” HS instance HS(I), where the translation from
I to HS(I) can be described as follows:

• IF G = (V,E) is the underlying network graph of I, then P (G) is the
vertex set of HS(I).

• If e ∈ E with p(e) − c(e) > 0, then let P (e) ⊆ P (G) be the paths that
contain e and put all (c(e) + 1)-element subsets of P (e) as hyperedges
into HS(I). All hyperedges in HS(I) are described this way.

• If k is the parameter of I, then k is also the parameter of HS(I).

We have to show that if C is a path set whose removal resolves all conflicts
in I, then C is a hitting set in HS(I) and vice versa.

On the other hand, the instance that would have to be generated could
be rather big, so that in the end the on-line variant could have an edge over
the off-line variant. Namely, consider an edge e with p(e) − c(e) = k many
paths to be removed. This means that in HS(I), e would “generate”

(
p(e)

c(e) + 1

)
=

(
c(e) + k
c(e) + 1

)
∈ O((c(e) + 1)k)

many hyperedges, which are “too many” from a parameterized perspective.
More precisely, since we consider c(e) ≤ d for all edges, and since we

translate a d-CallControl-Pre instance I into a (d + 1)-HS instance
HS(I), this generated instance could be as large as O((d + 1)k) (even if we
assume that we don’t translate instances I that contain edges with p(e) −
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c(e) > k, i.e., assume that the instance is reduced with respect to rule 59).
Since any hitting set algorithm (even with kernelization preprocessing
after arriving at the HS instance) needs time at least linear in the number of
hyperedges, the possible use of sophisticated HS algorithms is not helpful in
terms of lowering the running times, compared with algorithm online-CCP.

The idea to overcome this difficulty is based on the following observation:

Observation 6.5 To resolve a conflict on edge e, at least p(e) − c(e) paths
have to be cancelled.

The simple idea is to test all possibilities as indicated by the observation,
i.e., all (p(e) − c(e))-element subsets of the set of all paths containing e,
which is by definition of cardinality p(e). How dear is this solution in terms
of recursion? Since the parameter will be reduced by p(e) − c(e), we arrive
at

T (k) ≤
(

p(e)
p(e) − c(e)

)
T (k − (p(e) − c(e))).

If we simplify by considering the corresponding equation, omitting the argu-
ment e and setting ∆ = p− c, we arrive at

T (k) =

(
p
∆

)
T (k − ∆).

With the ansatz T (k) = α(c,∆)k we get

T (k) =

(
c+ ∆

∆

)k/∆
.

Table 6.5: A table for branching on hypercliques

c = ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
1 2 1.7321 1.5875 1.4954 1.4310
2 3 2.4495 2.1545 1.9680 . . .
3 4 3.1623 2.7145 . . .
4 5 3.8730 . . .
5 6 4.5926 . . .

Rounded up to 4 decimal places after the decimal point, this yields the
Table 6.5 for α(c,∆). This table indicates that already for relatively small
values of ∆, the branching we obtain in this way is far better than any



230 CHAPTER 6. CASE STUDIES

branching numbers we earlier obtained for hitting set. We replaced several
numbers by dots because of the following monotonicity property, which also
explains that “sooner or later” also in the case c = 1 (which corresponds
to vertex cover), this approach will beat any sophicated algorithm for
VC. More precisely, for c = 1 and ∆ = 9, we have a branching number
α(1, 9) ≤ 1.2916, for ∆ = 10, we get α(1, 10) ≤ 1.2710, and for ∆ = 20,
α(1, 20) ≤ 1.1645.

Proposition 6.6 For every fixed c, the sequence

((
c+ ∆

∆

)1/∆
)

∆=1,2,3,...

is strictly decreasing and converges to one.

Proof. Combine

(
c+ ∆

∆

)
∈ O(∆c) with lim∆→∞

∆
√

∆ = 1.

Therefore, we can propose the off-line counterpart outlined in Alg. 48,
whose running time (in terms of O∗) coincides with that of the best cor-
responding algorithm for hitting set, since the size of the generated HS
instance is only dependent on the capacity bound d (times k). In Alg. 48,
the constant εd has to be chosen large enough to ensure that the first branch-
ings are not worse than the ones incurred by the chosen (d + 1)-hitting
set algorithms. We have therefore demonstrated the following result that
strengthens the observations from [23].

Theorem 6.7 d-CallControl-Pre can be solved in the same time bounds
as the best corresponding algorithm for d-hitting set. In particular, this
problem is in FPT .

Anand et al. describe some more FPT algorithms for call control prob-
lems. Let us mention two particular cases:

Problem name: CallControl in trees of rings
Given: A communication network represented by an undirected
graph G = (V,E) that is a tree of rings with unit edge capacities, a
set R ⊆ V × V of communication requests
Parameter: a positive integer k
Output: Is there a subset A ⊂ R and a path assigning function
p : R → P (G) such that p(A) is feasible and the set of rejected
requests R \ A contains no more than k elements?
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Algorithm 48 A still simple search tree algorithm for CallControl-Pre,
called offline-CCP
Input(s): a graph G = (V,E) with edge capacities c : E → N bounded by
d, a set R ⊆ V × V of communication requests, a path assigning function
p : R → P (G), a positive integer k

Output(s): YES if there is a subset A ⊂ R such that p(A) is feasible and
the set of rejected requests R \ A contains no more than k elements or
NO if no set of rejected requests of size at most k (making all the other
requests feasible) exists.

found:=NO

for all edges e and not yet found do
if # paths p(e) through e is greater than c(e) + εd then

if p(e) − c(e) > k then
return NO

else
∆ = p(e) − c(e)
for all path sets P of size ∆ that contain e AND not yet found do

create new instance I ′, taking out P and reducing k by ∆
found:=offline-CCP(I ′)

end for
end if

end if
end for
Transform the given instance I into HS(I).
{Let (d+ 1)-HS be the hitting set algorithm of your choice.}
return (d+ 1)-HS(HS(I))

The problem on bidirected trees of rings can be similarly treated, see [23].
We omit those details here.

It is shown in [23] that at most three rejection candidates can be found at
each level of the recursion. This again “smells” like 3-hitting set. Let us see
if we can again reduce this problem completely to 3-HS. To this end, we need
to introduce some more notation (similar to [23]) to study CallControl
in trees of rings in more depth.

• For any request (u, v) in a tree of rings, all undirected paths from u
to v contain edges of the same rings.

• Hence, in any ring a path from u to v passes through, the vertex at
which the path enters the ring (or begins) and the vertex at which the
path leaves the ring (or terminates) is uniquely determined by u and v.
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Hence, a path request in a tree of rings can be equivalently represented
by a set of subrequests in all rings that the path passes through. Let us
therefore study the problem in rings first.

Let R be a ring, drawn as a circle in the plane. Represent a subrequest
(u, v) between two vertices on R as a straight line segment (called chord)
joining u and v. Two chords are parallel chords if they intersect at most in
points on R or if they are identical. A cut is a pair of edges of the graph on
the ring. A request crosses a cut if each of the two possible paths connecting
the endpoints of the request contains exactly one of the edges in the cut.
In [23], the following characterization of routeability in rings is shown:

Lemma 6.8 Given a ring R and a set of requests S in R, the requests in S
can be routed along edge-disjoint paths iff

• all chords of the requests in S are pairwisely parallel and

• no cut is crossed by three (or more) requests.

More precisely, Algorithm 49 can be used to find all routes if the condi-
tions of the lemma apply. This algorithm can be read off the proof of the
preceding lemma.

Algorithm 49 can be adapted to get an overall algorithm for the problem
even in the presence of conflicts. More precisely, the first lines of Alg. 49
reflects the preprocessing that allows us to restrict our attention to subrequest
on each ring.

According to Lemma 6.8, there are two reasons why a set of requests is
not routeable in a ring:

1. There are two chords that are not parallel.

In that case, one of the two corresponding requests must be deleted.
Checking all possibilities gives hence a trivial O∗(2k) running time for
this part of the algorithm.

2. All chords in all rings are parallel, but there are rings that contain cuts
which are crossed by three requests.

As proposed by Anand et al., there is a trivial O∗(3k) algorithm for
testing all possible request deletion for each violating cut. Since there
cannot be more than O(n3) many conflict sets in a ring that bears n
subrequests, this part of the overall algorithm can be sped up by using
the best available 3-hitting set algorithm.
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Algorithm 49 A greedy algorithm for CallControl in trees of rings
(assuming no conflicts), called greedy-CCTR

Input(s): a tree of rings G = (V,E), a set R ⊆ V × V of communication
requests

Output(s): a feasible routing of all requests

{The overall routing can be reconstructed from the routings of the sub-
requests.}
for all rings R do

create list L or parallel chords (corresponding to subrequests)
{L could contain multiple occurrences of the same subrequest, origi-
nating from different requests.}

5: while |L| > 1 do
choose two parallel chords c and c′ from L corresponding to subre-
quests u and v, as well as u′ and v′

if c = c′ then
route the corresponding subrequests arbitrarily

else
10: route c and c′ in a unique fashion

end if
remove c and c′ from L

end while
if L is not empty then

15: route r ∈ L arbitrarily
end if

end for

In the leaves of the search tree, a postprocessing that actually finds routes
in the now conflict-free case can be made (according to Alg. 49, lines 3–16).
It is important to note that this postprocessing won’t make any changes to
the parameter value.

We can therefore state:

Theorem 6.9 CallControl in trees of rings can be solved in time
O(2.1788kp(n)), where p is some polynomial.

Observe that it is important that in the first phase of the search tree, the
seeming 2-hitting set instance is not solved by the best available algorithm
for vertex cover, since the complexity of the subsequent 3-HS instance
(to be solved in the second phase of the search tree processing) depends on
the changes incidentally obtained by choosing one solution or other to the
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2-hitting set instance in the first phase. In fact, we could see the first
phase as (parameterized) enumeration of all (minimal) vertex covers of size
up to k; this issue is discussed in greater detail in Chap. 8.

Is it always possible, say, to improve on algorithms that originate from
candidate sets of size three (that are therefore akin to 3-hitting set) by
actually translating such an instance into a 3-hitting set instance and then
use one of the sophisticated algorithms for that problem? At least this is far
from obvious.

Let us consider the following problem (which is in fact a reparameteriza-
tion of the call control problems we treated up to now):

Problem name: CallControl in trees with capacities one
or two (CallControl in trees 1-2)
Given: A communication network represented by an undirected
graph G = (V,E) that is a tree with Ei ⊆ E being the edges of
capacity i ∈ {1, 2}, a set R ⊆ V × V of communication requests, a
positive integer k
Parameter: ` = |E2|
Output: Is there a subset A ⊂ R and a path assigning function
p : R → P (G) such that p(A) is feasible and the set of rejected
requests R \ A contains no more than k elements?

As mentioned in [23], the problem with ` = 0 is solvable in polynomial
time. Hence, ` can be seen as a measure of the distance from triviality (here:
polynomiality), as proposed in [220] as a possible way of parameterizing
problems, since the problem is NP-hard if ` can arbitrarily vary.

Since in a tree, a route between two points is uniquely determined, a call
control problem in trees with bounded edge capacities is a sort of special
case of CallControl-Pre; hence, if parameterized with k, this problem
has already been treated above. However, a reasoning along the lines leading
to Alg. 47 shows the following:

Theorem 6.10 CallControl in trees of rings can be solved in time
O(3`p(n)), where p is some polynomial.

Of course, one could again try to translate this problem into 3-hitting
set. However, we have to be careful with the postprocessing that needs to
be done in the leaves: there, we still have to find an optimal solution with the
mentioned “tree algorithm.” It might be that (by optimizing the 3-hitting
set algorithm) we have destroyed a possibility that needs to be regarded
when looking at E1. Therefore, we cannot avoid enumerating all possibilites
in the search tree, see Chap. 8 for a thorough discussion.
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6.3 Graph modification problems

Graph modification problems are abundant and turn up in many disguises.
The main idea is if it is possible to change a given graph by a number k of
certain allowed graph edit operations like vertex deletion, edge deletion, or
edge adding into a graph of a prescribed type.

For example, vertex cover can be viewed as a graph modification
problem, the task being to find a set of at most k vertices whose removal
turns the given graph G into a graph without any edges.

With adding certain constraints, also maximization problems can be cre-
ated that may be viewed as graph modification problems. Typically, the
question is then if at least k edit operations suffice to get a graph of a
prescribed type, where the constraints restrict the way in which the edit
operations may be performed.

6.3.1 A maximization graph modification problem

Consider for example the following problem:2

Problem name: maximum minimal vertex cover (MMVC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a minimal vertex cover set of cardinality
≥ k ?

The additional constraint is here the minimality of the considered vertex
covers. This problem can therefore be equivalently formulated as follows:
Given a graph G = (V,E) and an integer k, is it possible to find a vertex set
M , |M | ≥ k, whose removal produces a graph G[V \M ] with empty edge
set, such that for all x ∈ M there is a y ∈ V \M with {x, y} ∈ E?

In fact, it is pretty easy to design an FPT algorithm for maximum
minimal vertex cover, based on the simple first search tree algorithm we
presented for vertex cover, since still we are looking for a vertex cover, i.e.,
every edge must be covered. The only difference is how we treat the leaves
of the search tree. After having put k vertices in the cover along a recursion
path, we have to check if possibly some vertices could be added to produce
a minimal vertex cover; so the point is to check the minimality assumption
rather than the cover property at this point. The corresponding algorithm
is listed in Alg. 50. Initially, the algorithm is called with the parameters
(G, k, ∅), where (G, k) is the instance of MMVC under scrutiny.

2We are not aware of any publication of the results of this subsection elsewhere.
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Algorithm 50 A simple search tree algorithm, called MMVC-simple

Input(s): a graphG = (V,E), a positive integer k, a partial solutionM ⊆ V
Output(s): YES if there is a minimal vertex cover C ⊆ V , |C| ≥ k, M ⊆ C

or
NO if no vertex cover of size at least k exists.

if k ≤ 0 then
if M can be enlarged to get a minimal vertex cover then

return YES

else
return NO

end if
else if E = ∅ then

return NO

else
Choose edge e = {x, y} ∈ E
if MMVC-simple(G − x, k − 1,M ∪ {x}) then

return YES

else
return MMVC-simple(G −N [x], k − deg(x),M ∪N(x))

end if
end if

Can we further improve on that algorithm? This might be done, indeed,
by providing proper data structures to simply detect non-minimality “on the
way” of the branching process itself. To this end, we may start with a set
collection C = {N [v] | v ∈ V }. This collection should always maintain the
property that, whenever ∅ ∈ C shows up in one branch, we can stop the
branching process, since we can no longer obtain a minimal cover on this
branch. Hence, if we take a vertex v into the vertex cover, we would delete
v from every set S ∈ C, and in the branch that don’t takes v into the cover
but its neighbors, we would first delete all sets S ∈ C that contain v (because
all these sets have now a member that is not in the cover, hence ensuring
minimality), and then we would delete every x ∈ N(v) from every set S ∈ C.
The leaves of the corresponding search tree would never correspond to partial
covers that cannot be extended to minimal vertex covers of the whole graph.
However, we were not able to prove better running times for a search tree
algorithm using such additional information, even at some stage the graph
contains only vertices of degree one. The problem is that still vertices might
depend on one another due to the collection C.
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Recall that we have derived a small kernel for maximum minimal ver-
tex cover in Chap. 4, so that we can state:

Theorem 6.11 maximum minimal vertex cover can be solved in time
O(2k + p(n)), where p is some polynomial.

6.3.2 Graph modification problems related to HS

In this section, we discuss several graph modification problems mentioned
in [211]. In [211, Sec. 4.1.3], the following problem is mentioned:

Problem name: triangle edge deletion (TED)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an edge set C ⊆ E with |C| ≤ k whose removal
produces a graph without triangles as vertex-induced subgraphs?

Observe that three vertices {x, y, z} are a triangle subgraph iff the graph
induced by these three vertices is a triangle, while in general terms there is
a difference between subgraphs and vertex-induced subgraphs.

A triangle edge deletion instance G = (V,E) can be transformed
into an 3-hitting set instance G′ as follows:

• Interpret the edges E as vertices of G′.

• A hyperedge h = {e1, e2, e3} is contained in G′ iff, for some x, y, z ∈ V ,
e1 = {x, y}, e2 = {y, z} and e3 = {x, z}, and h ⊆ E.

It is straightforward to see that the removal of C ⊆ E produces a graph
G−C that does not contain any vertex-induced triangle iff C is a hitting set
of G′.

Moreover, the currently best algorithms are based on 3-hitting set,
so that the algorithm presented in Section 5.3.3 automatically improves the
constants as presented in [211].

Corollary 6.12 triangle edge deletion can be solved in time O(|E(G)|3+
2.1788k), given an instance G.

Proof. According to what we earlier observed, we only have to transform G
into a 3-hitting set instance. This transformation takes time O(|V (G)|),
since we have to cycle through all triples of vertices that might form a triangle.
Then we can run a 3-hitting set algorithm to get the claimed running time.
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There are three more vertex deletion problems mentioned in [211] that
we incidentally improve on:

Problem name: triangle vertex deletion (TVD)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an vertex set C ⊆ V with |C| ≤ k whose removal
produces a graph without triangles as vertex-induced subgraphs?

Corollary 6.13 triangle vertex deletion can be solved in time O(|V (G)|3+
2.1788k), given an instance G.

Problem name: cluster vertex deletion (CVD)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an vertex set C ⊆ V with |C| ≤ k whose removal
produces a graph being a union of vertex-induced cliques?

Here, it might not be immediately clear how to apply the proposed
methodology. However, we have the following forbidden subgraph charac-
terization also mentioned in [351]:

Theorem 6.14 A graph G is a cluster graph, i.e., a forest of cliques, iff no
selection of three vertices from G induces a path of length two in G.

We can hence conclude:

Corollary 6.15 cluster vertex deletion can be solved in time O(|V (G)|3+
2.1788k), given an instance G.

Observe, however, that we cannot (completely) use the methodoloy of
reducing to hitting set problems for the edge deletion analogue of cluster
vertex deletion, since the deletion of edges might also create induced
paths of length two. Hence, we would need a problem-specific analysis to
improve over the trivial O∗(2k) search tree for that problem (where, for each
induced path of length two, one of the two involved edges is deleted in each
branch); this has been done in [211] to obtain a rather complicated O∗(1.53k)
search tree algorithm. A similar effect is encountered in the edge deletion
problem clique complement cover discussed below.

To understand the following problem from [211], we need some more
terminology.

A cograph (or complement-reducible graph) is a graph defined by the three
criteria:
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1. K1 (i.e., a graph having only one vertex) is a cograph,

2. If G is a cograph, then so is its graph complement Gc, and

3. If G and G′ are cographs, then so is their graph union.

According to the entry http://mathworld.wolfram.com/Cograph.html

in Mathworld (see [Chapter 11, Site 14]), there is one criterion characterizing
cographs that is especially interesting to us:

Theorem 6.16 G is a cograph iff G does not contain any set of four vertices
that induce a path.

Another interesting property of these types of graphs is that some hard
problems can be efficiently solved when restricted to cographs. But let us
now formulate the graph modification problem:

Problem name: cograph vertex deletion (CoVD)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an vertex set C ⊆ V with |C| ≤ k whose removal
produces a cograph ?

We can hence conclude:

Corollary 6.17 cograph vertex deletion can be solved in time O(|V (G)|3+
3.1150k), given an instance G.

6.3.3 clique complement cover: an easy problem?

The idea of relating graph modification problems with hitting set is often
helpful, but not always leading to the applicability of the best known hitting
set algorithms. This will be exemplified by the next two problemwe consider:
clique complement cover. Let us first recall CCC from Chap. 2:3

Problem name: clique complement cover (CCC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a clique complement cover C ⊆ E with |C| ≤ k?

3The results of this subsections were not published elsewhere.
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Bar-Yehuda [34] found that this problem is closely linked to VC: namely,
he exhibited a simple factor-2-approximation algorithm which is based on
the following observations:
Observation 1: If e1 and e2 are two edges with endpoints x ∈ e1 and y ∈
e2 that are not neighbors, then e1 and e2 cannot participate in the same
complete subgraph.

We call two edges which have at least two non-neighbor endpoints x, y
(as described) conflicting edges.
Observation 2: A graph containing no conflicting edges is a clique.

This immediately yields the search-tree algorithm outlined in Alg. 51.

Algorithm 51 A search tree algorithm, called CCC-st

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES iif there is a clique complement cover C ⊆ V , |C| ≤ k

if k < 0 then
return NO

else if G is a complete graph then
return YES

else
pick two conflicting edges e1 and e2
{these edges must exist due to Observation 2}
if CCC-st(G− e1, k − 1) then

return YES

else
return CCC-st(G − e2, k − 1)

end if
end if

This algorithm is very similar to the straightforward search-tree algorithm
for vertex cover as first observed by Mehlhorn in 1984, see Alg. 16. We
can therefore infer:

Lemma 6.18 CCC can be solved in time O(2k|E|2).
Why can’t we simply translate a given clique complement cover

instance into an “equivalent” vertex cover instance and use the very
clever branching algorithms developed for VC by using the auxiliary graph
whose vertices are the edges of the original graph instance and whose edges
reflect the “conflicting edges” relation as defined above? The problem is that
the very branching might create new conflicting edges that did not appear
before; have a look at the following example:
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Figure 6.1: The left-hand side shows a small clique complement cover
instance, with the corresponding conflict graph depicted on the right-hand
side.

Example 6.19 In Fig. 6.1, an instance of clique complement cover is
shown with four vertices and four edges. Obviously, an optimal solution is
to take away the red edge. However, our search tree algorithm would al-
ternatively test the possibility to take out the blue edge; this is also to be
seen on the right-hand side of the figure where the conflict graph is drawn.
However, if the blue edge is taken out, this would of course also solve the
conflict graph, but this would be no valid solution of the original clique
complement cover instance. In fact, the branching algorithm would pos-
sibly continue on that branch if the branching actually started with the blue
edge and the parameter budget would be high enough.

We have not bothered to further lower the constants in the search tree
algorithm nor with providing a kernelization. However, observe that Buss’
rule can be applied to the conflict graphs that can be constructed in each
step of the branching process. We can also transfer the rules that get rid
of vertices of degree zero and one to CCC. The main observation here to
show the validity of such reduction rules is the following: destroying a not
necessarily induced K1 or K2 in the conflict graph corresponds to possibly
destroying a particularK1 orK2 as “target clique” in the original graph; these
can be easily replaced by other tiny cliques if necessary. Observe that we
cannot claim to actually have found a small kernel for the original problem.
However, this can be shown with some additional effort. Actually finding a
small kernel is left to the reader in this case.

As a specific rule for clique complement cover, we may use the fact
that vertices of degree larger than k must all belong to the clique that should
remain, since it is too dear to separate them from the rest. Hence, whenever
the set

{v ∈ V | deg(v) > k}
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does not induce a clique in the given instance G, then we can answer NO.
Hence, an O(1.6182k+ p(n)) algorithm is attainable by the triviality first

principle.
Let us finally remark that Bar-Yehuda (as well as Hochbaum) consider [34,

36, 232] also weighted versions of clique complement cover (and of other
similar problems that can actually be treated by similar techniques); weighted
versions formed in analogy to weighted vertex cover can be also solved
in time O∗(2k). Note that the quoted reference mostly deal with finding
approximation algorithms. In the case of clique complement cover,
the approximation algorithm also bears some similarity with the well-known
approximation algorithms for vertex cover. However, it is noteworthy
that the simplest 2-approximation algorithm for vertex cover (that does
not transfer to the weighted case) that simply takes both vertices incident
to a “current” edge into the cover (while the search tree algorithm 16 we
considered would branch on the two possibilities) does not transfer to clique
complement cover due to the effect described in our example: deleting
both the red and blue edge would be no valid solution to the problem instance.

Let us mention finally that there are also other graph operations that
qualify as graph modifications. For example, consider the following problem
that is mentioned in [347]:

Problem name: bipartization, replacing edges by 2-paths
variant (BPedgevar)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a bipartization set C ⊆ E with |C| ≤ k such that
replacing each edge in C by a path of length two produces a bipartite
graph?

In fact, it is not hard to see that BPedgevar is equivalent to biparti-
zation, edge variant in the following strong sense:

Lemma 6.20 (G, k) is a YES instance of BPedgevar iff (G, k) is a YES

instance of bipartization, edge variant.

How to actually solve bipartization, edge variant in FPT time will be
explained in Chap. 8.

It should have been made clear by now that many graph modification
problems are indeed in FPT . This is true in quite general terms as long as a
finite forbidden subgraph characterization is available. In general terms, this
has been addressed by Cai [67], also see [134, Sec. 3.2.2]. More candidate
problems can be found in [302], where the question of FPT -membership of
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these problems is explicitly raised. The list of references given there also
provides a good starting point for further studies.

6.4 Graph drawing problems

The problems that we shall study in this section can be paraphrased as
follows:

Given a graph G, try to draw G in the plane in a specific way
such the drawing looks as good as possible.

The quality of a drawing is usually measured by estimating the distance
between a specific drawing and the case of a “perfect drawing” (amongst all
graphs, disregarding the specific input graph); at least, it is expected that
a perfect drawing of some graph has a minimal measure amongst all graphs
that have the same number of edges or vertices (depending on the concrete
problem).

For more background to the problems under study, we can generally refer
to [283, Chapter 5], a chapter written by O. Bastert and C. Matuszewski
with the title “Layered Drawings of Digraphs.”

6.4.1 linear arrangement again. . .

In this context, let us revisit two problems we already came across in earlier
chapters:4

Problem name: linear arrangement (LA)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ∑

{u,v}∈E
|σ(u) − σ(v)| ≤ k ?

4The contents of this subsection did not yet appear elsewhere but has been accepted
for presentation at CTW 2005.
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Problem name: linear arrangement (LA), parameterized
above guaranteed value
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such
that ∑

{u,v}∈E
|σ(u) − σ(v)| ≤ k + |E|?

Observe that the expression

∑

{u,v}∈E
|σ(u) − σ(v)|

can be seen as measuring the distance between the linear drawability of
G = (V,E) and that of the graph G = (V, ∅) (where the measure would
become 0); again, the modified problem (parameterizing about guaranteed
values) is a bit more meaningful, since

∑

{u,v}∈E
(|σ(u) − σ(v)| − 1)

becomes zero for all graphs that are collection of paths (and only for those),
so that that expression can be viewed as measuring the distance of an input
graph G from a forest of paths. As we have already seen, the path-similarity
can be alternatively measured in terms of pathwidth and bandwidth. An-
other related problem is the following graph modification problem:

Problem name: linear arrangement by deleting edges
(LADE)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an edge set E ′ with |E ′| ≤ k and a one-to-one
mapping σ : V → {1, . . . , |V |} such that

∑

{u,v}∈E\E′

|σ(u) − σ(v)| = |E \ E ′| ?

So, the task is to find a minimum number of edges whose removal turns
the given graph into a forest of paths.
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Let us start our considerations in this section with the last problem, since
it is intimately related to the graph modification problems that we considered
earlier.

In order to develop a search tree algorithm for this problem, we should
ask ourselves: what are possible candidate sets to branch on? In other words,
what makes a graph a forest of paths?

A helpful observation is the following one:

Lemma 6.21 A graph of maximum degree two is a collection of path and of
cycle components.

This lemma already provides us with a simple branching idea: whenever
we find a vertex of degree three (or larger) in a graph, take three of the
incident edges to form a candidate set: one of these edges must be removed
so that the (modified) graph can satisfy the condition of the lemma.

After having done this sort of branching, we are left with path and cycle
components. Obviously, it does not matter which of the edges in a cycle
component we take out to turn the cycle into a path, so that the left-over
graph can be dealt with in polynomial time. This justifies Alg. 52. Note
that this algorithm is very similar to the one suggested by Dujmovič et al.
in [143] for the related problem one-layer planarization.

Algorithm 52 A search tree algorithm solving LADE, called LADE-ST

Input(s): a graph G = (V,E), an integer k
Output(s): YES iff the given LADE instance has a solution

if k < 0 then
return NO.

end if
Let v be a vertex of G of maximal degree.
if deg(v) ≤ 2 then

return k ≥ #cycle components of G
else

Take three edges e1, e2, e3 with {v} = e1 ∩ e2 ∩ e3.
for all i = 1, 2, 3 do

if LADE-ST((V,E \ {ei}), k − 1) then
return YES

end if
end for
return NO

end if
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Theorem 6.22 linear arrangement by deleting edges is NP-complete
but in FPT . More specifically, it can be solved in time O(3k|G|).

Proof. Membership in FPT can be seen (including the claimed running
time) by Alg. 52. Since the search can be viewed as a nondeterministic
guessing process, membership in NP is also clear.

NP-hardness can be seen via a rather standard reduction from 3-SAT [199]:
Let F be a collection of clauses, each of size three, containing literals

formed from the n variables of the given 3-SAT instance.
The corresponding instance (G, k) of linear arrangement by delet-

ing edges is formed as follows: for each variable x, we introduce four vertices
x0, x1, x2, and x3, so that G has 4n vertices. Furthermore, G contains the
following edges (and only those):

• For each variable x, introduce the edges x1x2, x2x3, x0x2. Hence,
G[{x0, x1, x2, x3}] is a star with center x2.

• For each clause c = `1 ∨ `2 ∨ `3 with `i ∈ {xi, x̄i}, introduce four edges
according to the following prescription.

If `i = xi, let c1i := x1
i and c2i := x2

i be the connection points of xi,
and if `i = x̄i, let c1i := x2

i and c2i := x3
i be the connection points of

xi. Then, introduce the following edges, so that the connection points
form a cycle: c21c

1
2, c

2
2c

1
3, c

2
3c

1
1.

Finally, let k := n.
The claim is that (G, n) has a solution iff the original 3-SAT instance is

solvable. Namely, if α : X → {0, 1} is an assignment that satisfies F , then it
is readily seen that taking out the following n edges will turn G into a forest
of paths: take out x1x2 if α(x) = 1 and take out x2x3 if α(x) = 0.

Conversely, the three edges that are introduced into G for each variable x
guarantee that in any solution, one of these three edges has to be removed
(since x2 has degree three). Hence, there cannot be any feasible solution to G
that takes out less than n edges, and any solution that takes out n edges will
take out one edge from the edges x1x2, x2x3, x0x2 for each variable x. It
is clearly true that a feasible solution to G that takes out n edges can be
turned into a satisfying assignment of F as follows: if x1x2 is taken out, set
α(x) = 1; otherwise, set α(x) = 0.

Can we further improve on the running time of Alg. 52? It is of course
tempting to transform a linear arrangement by deleting edges in-
stance into an instance of 3-hitting set, by considering candidate sets as
hyperedges. The problem with this approach lies in the fact that it might
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be the case that a seemingly worse solution to 3-hitting set actually is
the one to take into consideration for the original linear arrangement
by deleting edges instance, since that solution might incidentally destroy
more (or create less) cycle components than an optimum solution to the “cor-
responding” 3-hitting set. However, there is good hope that the ideas that
led to the improvements for the search tree analysis of 3-hitting set can
be partially transferred to this case, as well. In fact, we will discuss a similar
situation with one-layer planarization below.

Let us now turn our attention towards linear arrangement. We
already know of kernelization algorithms that basically tell us that there are
no more than 2k vertices in a reduced graph (we formulated this as having
at most k edges, but then the claim readily follows). We even obtained a
kernelization scheme that allows us to get a (1 + ε)k kernel (measured in
terms of the number of vertices), see Chap. 3. This allows us to conclude:

Corollary 6.23 linear arrangement can be solved in time O(((1+ε)k)!+
pε(|G|), where pε is a polynomial whose degree depends on the choice of ε ≤ 1.

Proof. After the kernelization phase, we simply test all possible combina-
tions of the remaining vertices.

So, if we are going to design a search tree algorithm for linear ar-
rangement, we should try to arrive at a O∗(ck) algorithm to beat the
naive “test-all-combinations” algorithm sketched above.

What is a good starting point for a search tree algorithm development for
LA ? Obviously, each edge has to “pay” at least one unit for being drawn
in whatever direction. At the leaves of such a search tree, every edge would
have got an orientation, i.e., our input graph would have become a directed
graph. Unfortunately, there might be various topological orderings of this
directed graph, and it is not clear which of them minimizes our LA criterion.

In fact, the following problems are known to be NP-hard [199, GT 43]:

Problem name: directed linear arrangement (DLA)
Given: A directed graph G = (V,A)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} that
respects the orientation of G, i.e., σ(u) < σ(v) whenever (u, v) ∈ A,
such that ∑

(u,v)∈A
|σ(u) − σ(v)| ≤ k ?
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Problem name: directed linear arrangement (DLA), pa-
rameterized above guaranteed value
Given: A directed graph G = (V,A)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} that
respects the orientation of G such that

∑

(u,v)∈A
|σ(u) − σ(v)| ≤ k + |A| ?

More specifically, the sketched search tree algorithm for linear ar-
rangement has (as of yet) reduced the original instance to an instance
(G, k,≺) that can be viewed as an instance of directed linear arrange-
ment, parameterized above guaranteed value, see Alg. 53. The procedure
LA-ST is called with (G, k, ∅) at the beginning, where (G, k) is the instance
of linear arrangement we like to investigate.

Algorithm 53 A search tree algorithm solving LA, called LA-ST

Input(s): a graph G = (V,E), an integer k, a partial ordering ≺ on V
Output(s): YES iff the given LA instance has a solution

Determine the edges that are settled by transitivity and adjust ≺ and k
accordingly.
if k < 0 or ≺ contains both (x, y) and (y, x) then

return NO.
else if ∃{x, y} ∈ E : neither x ≺ y nor y ≺ x is settled then

if LA-ST(G, k − 1,≺ ∪ {(x, y)}) then
return YES

else
return LA-ST(G, k − 1,≺ ∪ {(y, x)})

end if
else

return DLAgv-ST((V,≺), k, ∅)
end if

In Alg. 53, (G,≺) should denote the directed acyclic graph that corre-
sponds to G, when the arcs of (G,≺) are oriented so that they respect the
ordering ≺.

Lemma 6.24 Alg. 54 correctly solves directed linear arrangement,
parameterized above guaranteed value.
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Algorithm 54 A search tree algorithm solving DLA, parameterized above
guaranteed value, called DLAgv-ST

Input(s): a directed acyclic graph G = (V,A), an integer k, a partial order-
ing ≺ on V that respects the arc order, i.e., u ≺ v =⇒ (v, u) /∈ A.

Output(s): YES iff the given DLA instance has a solution

Determine the edges that are settled by transitivity and adjust ≺ and k
accordingly.
if k < 0 or A ∪ ≺ contains both (x, y) and (y, x) then

return NO.
else if ∃x, y ∈ V, x 6= y: neither (x, y) ∈ A ∪ ≺ nor (y, x) ∈ A ∪ ≺, and
∃u, v ∈ V \ {x, y} (possibly with u = v): either (u, x) ∈ A ∧ (v, y) ∈ A
or (x, u) ∈ A ∧ (y, v) ∈ A then

5: if DLAgv-ST(G, k − 1,≺ ∪ {(x, y)}) then
return YES

else
return DLAgv-ST(G, k − 1,≺ ∪ {(y, x)})

end if
10: else if ∃x, y ∈ V, x 6= y : neither (x, y) ∈ A ∪ ≺ nor (y, x) ∈ A ∪ ≺, but

x, y belong to the same (weak) component in G then
if A ∪ ≺ ∪ {(x, y)} is a partial ordering on V then

return DLAgv-ST(G, k,≺ ∪ {(x, y)})
else

return DLAgv-ST(G, k,≺ ∪ {(y, x)})
15: end if

else if ∃x, y ∈ V, x 6= y : neither (x, y) ∈ A∪≺ nor (y, x) ∈ A∪≺ then
return DLAgv-ST(G, k,≺ ∪ {(x, y)})

end if

Proof. The interesting part is here to see that unresolved orderings between
vertices can be deterministically resolved “in the end” (i.e., in lines 10–17 of
Alg. 54) for x, y ∈ V, x 6= y if neither (u, x) ∈ A ∧ (v, y) ∈ A nor (x, u) ∈
A ∧ (y, v) ∈ A without loosing optimality. There are two principal cases:

1. x, y pertain to the same (weak) component of G.

2. x, y belong to different components of G.

The second case can be arbitrarily resolved due to Lemma 3.4; observe that
this case will only show up if the first case does not apply anywhere, which
means that all components have been already linearly ordered.

To prove the correctness of the first case, we settle a couple of claims.
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Claim 0: There exists u, v ∈ V \ {x, y} (possibly u = v) such that u is
connected by an arc to x and v is connected by an arc to y.
Proof of Claim. Since there is no arc connecting x and y but both belong
in the same weak component, the claim is true. ♦

In the following, let us fix such u, v ∈ V according to Claim 0. Since the
previous If-branch is not applicable, we have either (x, u) ∈ A and (v, y) ∈ A,
or (u, x) ∈ A and (y, v) ∈ A. For reasons of symmetry, we only discuss the
first of these possibilities in what follows.

Claim 1: Either (x, v) ∈ A or (v, x) ∈ A.
Proof of Claim. Otherwise, the previous If-branch would have been appli-
cable, since we have neither (x, v) ∈ A nor (v, x) ∈ A but (x, u) ∈ A and
(v, y) ∈ A. ♦

Symmetrically, one can show:
Claim 1’: Either (y, u) ∈ A or (u, y) ∈ A.

This leaves us with the following possibilities:

1. (x, u) ∈ A, (v, y) ∈ A, (x, v) ∈ A, (the relation between y and u is
arbitrary): the underlined relations imply (y, x) ∈ ≺, and this has been
found by the transitivity check at the very beginning of the routine, so
that this case cannot occur at this stage.

2. (x, u) ∈ A, (v, y) ∈ A, (v, x) ∈ A, (y, u) ∈ A:

There are no arcs leading into x and no arcs emanating from y, since
otherwise the previous If-branch would have been applicable. Hence,
there is only one way of ordering x and y without (locally) incurring
additional costs, and this ordering y ≺ x does not interfere with other
connections due to the previous sentence.

3. (x, u) ∈ A, (v, y) ∈ A, (v, x) ∈ A, (u, y) ∈ A: the underlined relations
imply (x, y) ∈ ≺, so that this case cannot occur at this stage.

Observe that Alg. 54 can be also used to solve the problem when parame-
terized in the standard way. Namely, one could call DLAgv-ST(G, k−|A|, ∅),
when (G = (V,A), k) is the given DLA instance.

Theorem 6.25 The problems linear arrangement, directed linear
arrangement (the latter parameterized either in the standard way or above
guaranteed value) are solvable in time O(2k|G|).
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Proof. The fact that each of the two branches listed in Alg. 53 reduces the
parameter by one is clear, since each edge has to be settled and produces a
cost of at least one.

The case where we actually branch in Alg. 54 is a bit more involved.
Consider the case that the relation between x and y is still unsettled and

that (u, x) ∈ A and (v, y) ∈ A (the other case is completely symmetric).
Then, the length of the path that corresponds to (u, x) in the linear embed-
ding was taken into account as of yet only excluding the possible position of
y, and the same holds true for the path that corresponds to the arc (v, y)
with respect to the position of x. If we now settle x ≺ y, then the path
corresponding to (v, y) will necessarily be one unit greater than our previous
estimate. Accordingly, settling y ≺ x will enlarge our estimate of the path
corresponding to (u, x) by one unit. So, in both cases we can safely reduce
the parameter by one.

6.4.2 one-sided crossing minimization

Let us now turn to another problem that can be viewed, to a certain extent,
as a linear arrangement problem, as well, see [350] for a formal treatment of
these relations.

Problem name: one-sided crossing minimization (OSCM)
Given: A bipartite graph G = (V1, V2, E) and a linear order ≺1 on
V1.
Parameter: a positive integer k
Output: Is there a linear order ≺ on V2 such that, when the ver-
tices from V1 are placed on a line (also called layer) L1 in the order
induced by ≺1 and the vertices from V2 are placed on a second layer
L2 (parallel to L1) in the order induced by ≺, then drawing straight
lines for each edge in E will introduce no more than k edge crossings?

The material of this section is joint work with V. Dujmović and M. Kauf-
mann, see [144]. From an algorithmic perspective, it is worthwhile remark-
ing that OSCM can be solved in polynomial time if the input graph is a
tree [350], and the quoted (non-trivial) algorithm relies on the polynomial
solvability of linear arrangement on trees [352].

one-sided crossing minimization is the key procedure in the well-
known layout framework for layered drawings commonly known as the Su-
giyama algorithm. After the first phase (the assignment of the vertices to
layers), the order of the vertices within the layers has to be fixed such that
the number of the corresponding crossings of the edges between two adjacent
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layers is minimized. Finally, the concrete position of the vertices within the
layers is determined according the previously computed order. The crossing
minimization step, although most essential in the Sugiyama approach to lay-
ered graph drawing, is an NP-complete problem. The most commonly used
method is the layer-by-layer sweep heuristics where, starting from i = 1, the
order for Li is fixed and the order for Li+1 that minimizes the number of
crossings amongst the edges between layers Li and Li+1 is determined. After
increasing index i to the maximum layer index, we turn around and repeat
this process from the back with decreasing indices. In each step, an one-
sided crossing minimization problem has to be solved. Unfortunately,
this seemingly elementary problem is NP-complete [149], even for sparse
graphs [298].

This elementary graph drawing problem attracted several researchers
from the area of fixed-parameter tractable (FPT ) algorithms. The first ap-
proaches to the more general variant of this problem have been published by
Dujmović et al. in [142] and [143]. The last one has been greatly improved by
Dujmović and Whitesides [145, 146] who achieved an O(1.6182kn2) algorithm
for this problem. There has been a similar race to get better approximation
algorithms. The to our knowledge best one has been reported at Graph
Drawing 2003, see [144, 301].

A bipartite graph G = (V1, V2, E) together with linear orderings on V1

and on V2 is also called a drawing of G. This formulation implicitly assumes
a drawing of G where the vertices of V1 and V2 are drawn (w.l.o.g., with
unit-distance) on two (virtual) horizontal lines, the line L1 corresponding to
V1 being above the line L2 corresponding to V2. If u ≺ v for two vertices on
L1 or on L2, we will also say that u is to the left of v. A linear order on V2

that minimizes the number of crossings subject to the fixed linear order of
V1 is called an optimal ordering and the corresponding drawing of G is called
an optimal drawing. Since the positions of isolated vertices in any drawing
are irrelevant, we disregard isolated vertices of the input graph G in what
follows.

If |V2| = 2, then there are only two different drawings. This gives us the
useful notion of a crossing number. Given a bipartite graph G = (V1, V2, E)
with |V2| > 1, for any two distinct vertices a, b ∈ V2, define cab to be the
number of crossings in the drawing of G[{a, b} ∪ (N(a) ∪N(b))] when a ≺ b
is assumed.

Consider the following as a running example:

Example 6.26 In Fig. 6.2, a concrete drawing of a bipartite graph is shown.
Is this drawing optimal with respect to the number of crossings, assuming
the ordering of the upper layer being fixed? Notice that at some points,
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Figure 6.2: Our running example for one-sided crossing minimization

more than two edges cross. How often such a crossing actually counts when
computing the overall crossing number is shown at the side of a corresponding
box that emphasizes the crossing point.

Let us now compute the crossing numbers cuv for this graph.

cuv a b c d e
a − 4 5 0 1
b 1 − 1 0 0
c 3 3 − 0 1
d 3 2 3 − 1
e 2 3 2 0 −

The number of crossings in the given drawing can be hence computed as

cab + cac + cad + cae + cbc + cbd + cbe + ccd + cce + cde

= 4 + 5 + 0 + 1 + 1 + 0 + 0 + 0 + 1 + 1

= 13.

Furthermore, for any u ∈ V2 with deg(u) > 0, let lu be the leftmost
neighbor of u on L1, and ru be the rightmost neighbor of u. We call two
vertices u, v ∈ V2 interfering or unsuited if there exists some x ∈ N(u) with
lv ≺ x ≺ rv, or there exists some x ∈ N(v) with lu ≺ x ≺ ru. Otherwise,
they are called suited. Observe that, for {u, v} suited, cuv ·cvu = 0. Dujmović
and Whitesides have shown:



254 CHAPTER 6. CASE STUDIES

Lemma 6.27 Let G = (V1, V2, E) be an instance of one-sided crossing
minimization, where the ordering of V1 is fixed. In any optimal ordering ≺
of the vertices of V2, we find u ≺ v if ru ≤ lv.

This means that all suited pairs appear in their natural ordering.

This already allows us to formulate a first parameterized algorithm for
one-sided crossing minimization, which is a simple search tree algo-
rithm. In the course of this algorithm, we will gradually construct a suit-
able ordering ≺ on V2; when settling the ordering between u and v on V2,
we also say that we commit u ≺ v or v ≺ u. A generalized instance of
one-sided crossing minimization therefore contains, besides the bipar-
tite graph G = (V1, V2, E), a partial ordering on V2. A vertex v ∈ V2 is fully
committed if, for all u ∈ V2 \ {u, v}, {u, v} is committed.

Lemma 6.27 allows us to state the following rule:

Reduction rule 60 For every pair of vertices {u, v} from V2 with cuv = 0,
commit u ≺ v.

Algorithm 55 A search tree algorithm solving OSCM, called OSCM-ST-
simple

Input(s): a bipartite graph G = (V1, V2, E), an integer k, a linear ordering
≺1 on V1, a partial ordering ≺2 on V2

Output(s): YES iff the given OSCM instance has a solution

repeat
Exhaustively apply the reduction rules, adjusting ≺2 and k accordingly.
Determine the vertices whose order is settled by transitivity and adjust
≺2 and k accordingly.

until there are no more changes to ≺2 and to k
5: if k < 0 or ≺2 contains both (x, y) and (y, x) then

return NO.
else if ∃{x, y} ⊆ V2 : neither x ≺2 y nor y ≺2 x is settled then

if OSCM-ST-simple(G, k − 1,≺1,≺2 ∪ {(x, y)}) then
return YES

10: else
return OSCM-ST-simple(G, k − 1,≺1,≺2 ∪ {(y, x)})

end if
else

return YES

15: end if
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Algorithm 55 is a simple search tree algorithm for one-sided crossing
minimization that repeatedly uses Rule 60.

Lemma 6.28 one-sided crossing minimization can be solved in time
O∗(2k).

Proof. Before any branching can take place, the graph instance is reduced,
so that every pair of vertices {u, v} from V2 which is not committed satisfies
min{cuv, cvu} ≥ 1. Therefore, each recursive branch reduces the parameter
by at least one.

The soundness of the following rule is also obvious; the rule helps clean
up a graph:

Reduction rule 61 If (G, k,O) is a generalized instance of one-sided cross-
ing minimization where v ∈ V2 is fully committed, reduce to (G−v, k, O−v).

Let us visualize the work of the reductions with our example:

c

3 4 5 6

e

1 2

a b

3

3

Figure 6.3: Our running example for one-sided crossing minimization:
how to reduce it

Example 6.29 We continue Ex. 6.26.
Rule 60 settles all relations to d, so that Rule 61 erases d; for clarity,

the corresponding crossing numbers were colored blue in the table of cross-
ing numbers given in Ex. 6.26. Moreover, b ≺ e will be committed. The
corresponding reduced graph is shown in Fig. 6.3.
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Our usual question is if and how to improve on the very simple search
tree algorithm. Our first observation is that it is not necessary to branch
at {x, y} ⊂ V2 with cxy = cyx. This means to modifications to our Alg. 55,
following the triviality last principle:

• Line 5 should exclude cxy = cyx.

• Line 12 should arbitrary commit some {x, y} ⊂ V2 that are not yet
committed and recurse; only if all {x, y} ⊂ V2 are committed, YES is
to be returned.

These modifications immediately yield an O∗(1.6182k) algorithm for one-
sided crossing minimization. This is also the core of the algorithm pro-
posed by Dujmović and Whitesides [146]. There, more details are discussed,
as, for example:

• How to efficiently calculate all the crossing numbers cxy in a prepro-
cessing phase.

• How to integrate branch and cut elements in the algorithm that are
surely helpful from a practical perspective.

• How to generalize the algorithm for instances that allow integer weights
on the edges (multiple edges).

Further improvements are possible if one gives a deeper analysis of lo-
cal patterns {x, y} ∈ V2 such that cxycyx ≤ 2. This way, we were able to
prove [144] that one-sided crossing minimization can be solved in time
O∗(1.4656k).

Instead of actually presenting that algorithm, let us point to another re-
markable fact that is already present in Alg. 55 (and that alone indicates that
that algorithm is far from optimal): we never actually used the properties
of OSCM as a graph drawing problem; we only relied on dealing with the
crossing numbers. So, we basically presented an algorithm that solves the
following problem (in the spirit inspired by Jünger and Mutzel [248]).
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Problem name: positive weighted completion of an or-
dering (PCO)
Given: An ordered digraph P = (V,A) and a cost function c map-
ping A(D([U(P )]c)) into the positive integers; by setting c to zero for
arcs in A(D(U(P ))), we can interpret the domain of c as V (P )×V (P ).
Parameter: a positive integer k.
Output: Is there a selection A′ of arcs from A(D([U(P )]c)) such that
the transitive closure (A′ ∪ A(P ))+ is a linear order and

∑
{c(a) | a ∈ (A′ ∪ A(P ))+} ≤ k ?

To understand this problem, we need to explain some more notions. We
call a digraph an ordered digraph if its arc relation complies with the axioms
of a partial order. A directed graph obtained from an undirected graph G
by replacing every edge {u, v} by the two arcs (u, v) and (v, u) is denoted by
D(G). The undirected graph obtained from a digraph G by putting an edge
{u, v} whenever there is an arc (u, v) in G is denoted by U(G). The set of
arcs of a digraph G is denoted by A(G).

It is quite obvious that one-sided crossing minimization can be
solved with the help of positive weighted completion of an order-
ing; the linear order which is aimed at is the permutation of the vertices on
the second layer which minimizes the number of crossings involved, so that
the crossing number cab is the cost of the arc (a, b) in the digraph model. Due
to the validity of reduction rule 60, all crossing numbers can be assumed to be
greater than or equal to one. Since it is easy to see that positive weighted
completion of an ordering is nondeterministically solvable in polyno-
mial time, and since Eades and Wormald [149] have shown that one-sided
crossing minimization is NP-hard, we can immediately deduce:

Lemma 6.30 positive weighted completion of an ordering is NP-
complete.

This makes positive weighted completion of an ordering an in-
teresting problem to study. In addition to being used as a tool in solving
k-one-sided crossing minimization, this problem, as a variant of the
linear ordering problem, is of independent interest. The linear or-
dering problem, defined as positive weighted completion of an
ordering where A = {∅} (but without the constraint that all arc costs
are necessarily positive), is a well-known NP-hard combinatorial optimiza-
tion problem. This problem has large number of applications in such diverse
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fields as economy, sociology, graph theory, archaeology, and task scheduling.
Applications of the linear ordering problem include the triangulation
of input-output matrices in economy, minimizing total weighted completion
time in one-machine scheduling and the aggregation of individual preferences
in the social sciences. For a good overview on this problem, the reader is re-
ferred to the corresponding book of Reinelt [332]. In fact, the famous branch
and cut methods was first formulated for and successfully applied to the lin-
ear ordering problem by Grötschel et al. [218], and these resemble in
spirit and methodology the search tree methods we will present below.

Keeping in mind what we said above, Alg. 55 can be read as an algorithm
solving positive weighted completion of an ordering. Hence, we
immediately get:

Lemma 6.31 positive weighted completion of an ordering is in
FPT .

However, we like to improve on the running time of our algorithm in what
follows in two ways:

1. We provide a small kernel for PCO.

2. We give a better search tree algorithm for PCO.

Note that this (on the fly) also solves the corresponding problems for OSCM,
albeit the search tree algorithm we shall present has worse running time that
what was claimed above for OSCM.

In fact, we can even observe a kernelization scheme for positive weighted
completion of an ordering:

Reduction rule 62 [RRLOq] For any fixed q > 1 do:
For each connected component C ⊆ V of [U(P )]c with |C| ≤ q, solve PCO
optimally on P [C].

The reduced instance will see the orderings between all pairs of vertices
from C settled, and the parameter will be reduced accordingly. Note that
this implies that all the vertices of C are isolated in the reduced [U(P )]c and
can thus be deleted by Rule 61 that is also valid for positive weighted
completion of an ordering.

This new set of rules yields a kernel of size k q+1
q

, since after exhaustive

application of this rule and Rule 61, each connected component of [U(P )]c

has at least (q+1) vertices and thus at least q edges. Correspondingly, at least
q arcs with a weight of at least one per arc have to be added per component,
therefore there are at most k/q components. In other words, a kernel size of
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k (where the kernel size is measured in terms of the number of vertices of the
corresponding order graph) can be “approximated” with arbitrary precision,
at the expense of higher running times (the connected components of size up
to q have to be solved), the typical behavior of a kernelization scheme. Still,
arbitrary constants q or q = log k are possible choices for polynomial-time
kernelization algorithms.

Lemma 6.32 The kernelization scheme is sound.

Proof. Assume that C is a connected component of [U(P )]c. Consider a
vertex x 6∈ C. Since C is a connected component in [U(P )]c, x is comparable
with each y ∈ C (otherwise, y and x would be connected in the complement
graph). Hence, C can be portioned into C` = {y ∈ C | y ≺ x} and Cr =
{y ∈ C | x ≺ y}. Since C` ≺ x ≺ Cr, either C` = ∅ or Cr = ∅; otherwise,
there would be no connection between vertices of C` and vertices of Cr in the
complement graph. Hence, x will never be ordered “in-between” two vertices
from C.

Therefore, the reduction rule RRLOq is sound and we can conclude:

Theorem 6.33 Fix some 1 < α ≤ 1.5. Then, each instance of positive
weighted completion of an ordering admits a problem kernel of size
αk.

Corollary 6.34 Fix some 1 < α ≤ 1.5. Then, each instance of one-sided
crossing minimization can be reduced to an instance (P = (V2, A), k) of
positive weighted completion of an ordering, with |V2| ≤ αk.

This has not yet given us a problem kernel for the original problem, since
|V1| (and hence |E|) has not yet been bounded by a function of k. With
that aim, consider the following simple reduction rule, akin to Buss’s rule for
vertex cover:

Reduction rule 63 If cab > k then do: if cba ≤ k then commit b ≺ a else
return NO.

This is clearly a sound rule. Moreover notice, that if a vertex a ∈ V2

has deg(a) ≥ 2k + 1, then for every vertex b ∈ V2, cab > k or cba > k are
true. Therefore, after exhaustively performing Rule 63 in combination with
Rule 61, all the vertices of V2 of degree larger than 2k will have been removed
from the one-sided crossing minimization instance. This yields:

Theorem 6.35 For some 1 < α ≤ 1.5, OSCM admits a problem kernel
G = (V1, V2, E) with |V1| ≤ 2k|V2|(≤ 3k2), |V2| ≤ αk, and |E| ≤ 2k|V2|.
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Now, we come to improving the search tree algorithm.

Theorem 6.36 positive weighted completion of an ordering can
be solved in time O(1.5175k + kn2), where n is the number of vertices in the
accompanying ordered digraph.

To describe the algorithm for positive weighted completion of an
ordering we will need the following definitions.

A pair of vertices a, b ∈ V is transitive in an ordered digraph P = (V,A)
if there exists a vertex c ∈ V such that {a, b} is transitive with respect to c.
We say that a pair of vertices {a, b} is strongly dependent with respect to a
vertex c if {a, b} is dependent but not transitive with respect to c.

a, b ∈ V form a i/j pattern in a given PCO instance if c((a, b)) = i and
c((b, a)) = j. Furthermore, if {a, c} or {b, c} form 2/1 pattern, we say that
{a, b} is strongly 2/1 dependent with respect to vertex c. We are now ready
to give the algorithm for PCO.

Let us mention once more that it is possible to interleave other (more com-
plicated) instances of the family of reduction rules RRLOq with the search
tree algorithm to further compress the instances as far as affordable. This
presents a general way of how to actually implement kernelization schemes
(the overall algorithm is exponential anyway).
Proof. It is clear that the algorithm is correct if the step (*) is valid. Before
showing that the step is indeed valid, we prove the claimed running time by
analyzing its exponential part, that is we analyze the size of the search tree.

A node of the search tree branches with three conditions:

1. There is a dependent i/j pattern {a, b} such that i+ j ≥ 4.

2. There is a 2/1 pattern {a, b} that is transitive.

3. There is 2/1 pattern {a, b} strongly 2/1 dependent w.r.t. c.

The smallest branching vectors that may arise in the first case are (3, 1) and
(2, 2). These are also the smallest branching vectors arising in the second
case, since {a, b} is a transitive 2/1 pattern; thus, committing a ≺ b or b ≺ a
commits by transitivity at least one other pair.

Consider now the branching vectors arising in the last case. Since the
pair {a, b} is strongly 2/1 dependent with respect to vertex c, we know that
at least one of the four costs c(a, c), c(c, a), c(b, c), and c(c, b) is equal to
2 units, the worst case being then that all the other costs are one. This
situation is then best analyzed by considering all possible arc directions when
c((a, b)) = α ∈ {1, 2}, c((b, a)) = 3−α, c((b, c)) = β ∈ {1, 2}, c((c, b)) = 3−β,
c((a, c)) = c((c, a)) = 1. The different arc directions according to which we
branch are then:
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Algorithm 56 A parameterized algorithm solving positive weighted
completion of an ordering, called PCO

Input(s): an ordered digraph graph G = (V,A), an integer k, a cost func-
tion c

Output(s): YES iff the given PCO instance has a solution

repeat
Exhaustively apply the reduction rules, adjusting G, c, and k accord-
ingly.
Determine the vertices whose order is settled by transitivity and adjust
accordingly.

until there are no more changes
5: if k < 0 then

return NO.
else if (there is a dependent i/j pattern {a, b} such that i + j ≥ 4) or
(there is a 2/1 pattern {a, b} that is transitive) then

Set c((a, b)) = c((b, a)) = 0.
if PCO(G ∪ {(a, b)}, k − 1, c) then

10: return YES

else
return PCO(G ∪ {(b, a)}, k − 1, c)

end if
else if there is 2/1 pattern {a, b} strongly 2/1 dependent w.r.t. c then

15: Set c((a, b)) = c((a, b)) = c((b, c)) = c((c, b)) = 0.
for all orderings O between a, b and b, c do

set k′ as updated k
if PCO(G ∪O, k′, c) then

return YES

20: end if
end for

else
resolve each remaining 2/1 pattern in favor of the cheaper ordering
and update G and k accordingly; (*)
resolve all remaining 1/1 patterns arbitrarily and update G and k
accordingly;

25: return k ≥ 0.
end if

1. (a, b) and (b, c): by transitivity, this commits (a, c), so that this selec-
tion costs α + β + 1;
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2. (a, b) and (c, b), costing α + (3 − β),

3. (b, a) and (b, c), costing (3 − α) + β; and

4. (b, a) and (c, b), where transitivity establishes a cost of (3 − α) + (3 −
β) + 1.

Going through all choices of α and β leaves us with the branching vectors
(2, 4, 4, 4) (for α 6= β) and (3, 3, 3, 5) (for α = β). Thus overall in the above
algorithm the worst case branching is (2, 4, 4, 4) and (3, 3, 3, 5) resulting in
the search tree having the size 1.5175k in the worst case.

We now prove that step (*) of the algorithm is valid. Let a time counter be
equal to zero right before step (*) starts. First observe that, at that time there
are no two incomparable pairs {a, b} and {a, c} both forming a 2/1 pattern,
as otherwise {a, b} would have been committed in the preceding cases. Now
consider committing, one by one, each of the remaining 2/1 patterns by their
cheaper ordering. In that process, whenever a pair of vertices is committed
(either directly or by transitivity) we increase the time by one and assign
the current time to the pair being committed. We will now prove that no
pair is committed by transitivity. We first show that no 1/1 pattern gets
committed (by transitivity) at any time step. Assume the contrary and let i
denote the time step when the first 1/1 pattern {c, d} gets committed. Since
we only commit directly 2/1 patterns, the pair {a, b} committed at time i−1
forms a 2/1 pattern. Therefore, without loss of generality, committing a ≺ b
at time i − 1 commits by transitivity c ≺ d at time i. That further implies
that at time i − 1, we have c ≺ a and b ≺ d (note that we may also have
c = a and b ≺ d or c ≺ a and b = d). In either case, at least one of these two
pairs, {c, a} or {b, d}, say {a, c}, is incomparable at step 0 as otherwise {a, b}
would have been committed at a previous step of the algorithm. Thus, {a, c}
forms either a 2/1 or a 1/1 pattern. Since {a, b} forms a 2/1 pattern then by
the above observation {a, c} cannot form a 2/1 pattern. Furthermore, {a, c}
cannot stem from a 1/1 pattern since the pair is incomparable at time 0 and
is comparable at time i− 1 > 0 thus contradicting the fact that {c, d} is the
1/1 pattern that is assigned the smallest time stamp. Hence, no 1/1 pattern
gets committed (by transitivity) at any time step.

Assume now that some 2/1 pattern {g, h} gets committed by transitivity
at some time j. Since no 1/1 pattern gets committed at any time step, the
pair {e, f} committed at time j − 1 forms a 2/1 pattern. Therefore, without
loss of generality, committing e ≺ f at time j − 1 commits by transitivity
g ≺ h at time j. Since {e, f} and {g, h} form 2/1 patterns, e 6= g 6= h and
f 6= g 6= h. Furthermore, at time j − 1 we know that g ≺ e and f ≺ h
and at least one of these two pairs, say {e, g}, is incomparable at time 0, as
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otherwise {g, h} would have been already committed earlier in the course of
the algorithm. Since the pair {e, g} is incomparable at time 0 and the pair
{g, h} forms a 2/1 pattern, by the above observation the pair {e, g} must
form 1/1 pattern. However, by the above demonstration, it is not possible
that a 1/1 pattern incomparable at time 0 gets committed at any later time.
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Figure 6.4: A search tree example for one-sided crossing minimization.

We can actually apply this algorithm to our Example (in fact, the more
complicated cases would not trigger); this gives the search tree of Fig. 6.4.
This graphic is to be read as follows:

• Nodes contain the parameter value.

• Edges are labeled with the committed orders; blue labels indicate the
orders committed by transitivity.

We start with displaying the reduced generalized graph instance (and the
corresponding table), assuming we started with the instance (G, 7). The
(minimum) solution found this way is shown in Fig. 6.5.
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3 4 5 61 2

e dc ab

Figure 6.5: An optimal solution to our instance.

As a possible line of future research, we mention a variant of one-sided
crossing minimization (crossing minimization of two-layered graphs with
vertex pairs) that was discussed in [381, 382] with a bio-informatics motiva-
tion (visualizing genetic networks to improve the understanding of interac-
tions between genes). It might be that some of our methods apply to that
problem, as well, which is interesting since good approximation algorithms
are known for one-sided crossing minimization (see [380]) but not for
the two-layered crossing minimization problem with vertex pairs.

6.4.3 Biplanarization problems

A graph modification variant of one-sided crossing minimization was
also considered, one-layer planarization, see [300]. To define this prob-
lem properly, we need another notion: A bipartite graph G = (V1, V2;E)
is biplanar if the vertices can be placed on two parallel lines L1 and L2 in
the plane (where the vertices from Vi are placed on Li) such that there are
no edge crossings when edges are drawn as straight-line segments. A graph
G = (V,E) is biplanar if there is a bipartition V = V1 ∪ V2 of its edge set
(i.e., G[V1] = G[V2] = ∅) such that (V1, V2;E) is biplanar.

The biplanarization problem was discussed in two variants in [142, 148,
176, 177]:
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Problem name: two-layer planarization (TLP)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a set C ⊆ E, |C| ≤ k, whose removal makes the
graph biplanar?

Problem name: one-layer planarization (OLP)
Given: A bipartite graph G = (V1, V2, E), a linear ordering < on V1

Parameter: a positive integer k
Output: Is there a set C ⊆ E, |C| ≤ k, whose removal allows a
biplanar drawing of the graph that respects < on V1?

In fact, the latter problem is intimately related to one-sided crossing
minimization: the only difference is the way in which a non-biplanar draw-
ing is penalized; while within OSCM, the number of crossings is counted,
within OLP, the number of edges that has to be removed to make the graph
drawable without crossings is measured. Hence, a procedure for solving OLP
can be also seen as a sub-routine within the Sugiyama approach to layered
drawings. Again, the tree case is solvable in polynomial time, see [350].

Let us first study TLP. Dujmović et al. mentioned a nice characterization
of biplanar graphs in terms of forbidden subgraphs:

Theorem 6.37 A graph G is biplanar iff it is acyclic and does not contain
a 2-claw.

(a) The smallest four forbidden cycles. (b) The 2-claw.

Figure 6.6: Two classes of forbidden substructures for biplanar graphs.

Fig. 6.6 contain (some of) these forbidden structures and explains the
notion of a 2-claw. More precisely, there are two slightly different reasons
why cycles are forbidden substructures: cycles of odd length (colored red)
are forbidden, since biplanarity obviously implies bipartiteness by definition.
Cycles of even length cannot be drawn without crossings, in whatever way we
might arrange the vertices on the two layers. This is indicated in Fig. 6.6(a):
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a drawing is shown with (implicit) layers for C4 and C6, indicating that eras-
ing one edge is sufficient to make this structure drawable; observe that due
to symmetry, it does not matter which edge we take out. Finally, Fig. 6.6(b)
explains the notion of a 2-claw. More formally, a 2-claw is a graph consist-
ing of one degree-3 vertex, the center, which is adjacent to three degree-2
vertices, each of which is adjacent to the center and one leaf. The 2-claw is
composed of three fingers, one of them colored red in Fig. 6.6(b) to show the
impossibility to biplanarily draw this graphs: when the finger-tip edge of the
red finger is removed, however, this graph becomes biplanar.

The basic algorithmic idea would be to regard the edge sets of forbid-
den substructures as candidate sets and branch on the different possibilities
to destroy these structures. The problem is that there are infinitely many
forbidden structures, and hence there is no bound on the size of the hyper-
edges in any hitting set instance one tends to form (where the forbidden
substructures correspond, as usual, to the candidate sets).

To get a search tree algorithm that runs in FPT time, the following two
(rather easy to check) results from [143] are crucial; to understand them, we
need some more notions first.

The non-leaf degree of a vertex v in graph G is the number of non-leaf
edges at v in G, and is denoted by deg′

G(v).
A graph is a caterpillar (wreath, respectively) if deleting all the leaves

produces a (possibly empty) path (cycle, respectively). These graphs are vi-
sualized in Fig. 6.7. Graphs composed of caterpillar and wreath components
are exactly the graphs whose non-leaf degree is bounded by two.

Figure 6.7: Graphs without a vertex of non-leaf degree three or larger.

Lemma 6.38 If there exists a vertex v in a graph G such that deg′G(v) ≥ 3,
then G has a 2-claw or a 3- or 4-cycle containing v as a subgraph.
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Lemma 6.39 For graphs G with deg′G(v) ≤ 2 for all vertices v, G consists
of a forest of wreaths and caterpillars. Hence, a minimum biplanarizing set
of G consists of one cycle edge from each component wreath.

These two lemmas lead themselves to Alg. 57. There, we use the notation
fC to refer to the edge set of the forbidden structure C, since we are dealing
with an edge-deleting problem.

Algorithm 57 A search tree algorithm solving two-layer planariza-
tion, called TLP-st-simple

Input(s): a graph G = (V,E), a positive integer k
Output(s): YES iff there is a biplanarization set B ⊆ E, |B| ≤ k

if ∃v ∈ V : deg′G(v) ≥ 3 and k ≥ 0 then
Determine 2-claw, 3-cycle or 4-cycle C containing v.
for all edges e ∈ fC do

if TLP-st-simple(G − e, k − 1) then
return YES

end if
end for
return NO

else
return (k ≥ # wreath components)

end if

Example 6.40 Let us return to the example graph from Fig. 6.2, this time
seen as an TLP instance. There are two forbidden structures to be found in
this graph. In Fig. 6.8, we used color coding to emphasize them: three out of
the four edges of a C4 we colored red and the fourth edge green. There is also
a 2-claw with center at vertex labeled 1, the edges of which that don’t (also)
participate in the 4-cycle we colored blue. The green edge is one of the edges
that participate in both forbidden structures. Hence, if we remove that edge,
we turn the graph into a biplanar graph. Fig. 6.9 shows how the vertices
could be reordered so that we obtain a biplanar drawing of the modified
graph. In that drawing, we kept the color-coding of the edges, as well as the
green edge (that is of course destroying biplanarity of the drawing) to clarify
the reordering.

How can we improve on this obvious O∗(6k) algorithm? A direct trans-
lation into 6-hitting set is not possible due to the “postprocessing” of the
search tree in the line colored red. However, how would such a translation
look like?
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Figure 6.8: Forbidden subgraphs of our sample graph.
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Figure 6.9: Reordering: if the green edge is deleted, the graph drawing
becomes biplanar.

• Edges in the original instance correspond to the vertices of the related
hypergraph.
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• Hyperedges in the hypergraph correspond to the edge sets of the for-
bidden structures as derived according to Lemma 6.38.

This allows to translate back the reduction rules we used for obtaining
better algorithms for hitting set. Due to the mentioned postprocessing,
we cannot actually delete edges along the search tree. Instead, we will mark
them virtual ;5 the non-virtual edges of a forbidden structure f are denoted
c(f), and the size of a forbidden structure is measured by s(f) = |c(f)|.
Even more, also the edge domination rule that allows to delete hyperedges
has to be considered with care.

When reconsidering the correctness proofs of the rules, one observes that
the only rule that causes trouble is the vertex domination rule. However,
without this rule, we cannot actually gain anything against the simple O∗(6k)
algorithm.

Nonetheless, we obtain the following reduction rules:

1. structure domination: A forbidden structure f is dominated by another
structure f ′ if c(f ′) ⊂ c(f). Then, mark f as dominated.

2. small structures: If s(f) = 1, put the only non-virtual edge into the
solution that is constructed.

3a isolates: If e is an edge of degree zero, then mark e virtual.

Due to the relation with hitting set, let us call the number of non-
dominated forbidden structures to which a specific edge e belongs is the
degree of e.

Can we also handle non-virtual edges of degree one (to a certain extent)
by reduction rules? We will discuss this point later on.

Let C = {c, w1, w2, w3, x1, x2, x3} be a 2-claw centered at c, such that
wi is neighbored (at least) to c and xi for i = 1, 2, 3. We will call Fi =
{cwi, wixi} also a finger of C, so that the forbidden structure fC = F1∪F2∪F3

corresponding to C is partitioned into three disjoint fingers. A 2-claw where
one or more edges are virtual is called injured. Clearly, in an injured 2-claw
with five edges, only one of the fingers actually got injured and two fingers
are still pretty fingers. In an injured 2-claw with four edges, we still have at
least one pretty finger left over.

The second ingredient in the approach to hitting set problems described
in Chap. 5 are so-called heuristic priorities. More specifically, we use the

5This idea is similar to the marking procedure we used for our face cover search tree
algorithm; note that that problem also relates to hitting set, as it is basically red-blue
dominating set on planar graphs.
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following rules to select forbidden structures and edges to branch at in case
of multiple possibilities:

1. Select a forbidden structure f of smallest size that if possible corre-
sponds to a short cycle.

2. If s(f) ≤ 5 and if there is another forbidden structure f ′ with c(f) ∩
c(f ′) 6= ∅ and s(f ′) ≤ 5, modify f := c(f) ∩ c(f ′).

3. Select an edge e of maximal degree within f , if possible incident to the
center of the 2-claw f , such that e belongs to a pretty finger.

In the following analysis, assume that we have already branched on all
cycles up to length five (see the first heuristic priority). Then, we can apply
the following reduction rule for (injured) 2-claws:

3b (injured) 2-claws: If e is an edge of degree one in a non-dominated
forbidden structure of size four, five or six corresponding to an (injured)
2-claw, and if e is incident to the center of the corresponding 2-claw,
then mark e virtual.

This allows us to state the whole procedure in Alg. 58, where branch at e
means the following:

if TLP-st(G− e, k − 1,M,DF ) then
return YES

else if G[M ∪ {e}] is acyclic then
{Avoid deleting the last edge in a cycle}
return TLP-st(G, k,M ∪ {e}, DF )

else
return NO.

end if

In [176], we have shown the following result:

Theorem 6.41 Given a graph G and an integer parameter k, Alg. 58 when
called with TLP-st(G, k, ∅, ∅), returns YES iff there is a biplanarization set
B ⊆ E, |B| ≤ k.

The running time can be estimated as shown in Chap. 5 for the case of
HS; we only sketch the basic steps in what follows. Details can be found
in [176] (also cf. [177]).

Let (again) T `(k) denote the size of a search tree assuming that at least
` forbidden structures in the given instance (with parameter k) have size
five. Then, we can prove the recurrences listed in Fig. 6.10. Let us briefly
comment on these recurrences:
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Algorithm 58 A search tree algorithm for TLP, called TLP-st

Input(s): a graph G = (V,E), a positive integer k, a set of virtual edges
M , a list of dominated forbidden structures DF

Output(s): YES if there is a biplanarization set B ⊆ E, |B| ≤ k (and it
will implicitly produce such a small biplanarization set then) or
NO if no such set exists.

Exhaustively apply the reduction rules 1., 2., and 3a.; the resulting instance
is also called (G, k,M,DF ).
if ∃ v ∈ V such that deg′G[E\M ](v) ≥ 3 then

if possible then
Find a non-dominated cycle C of length at most 5
Select an edge e from C and branch at e

else
Exhaustively apply all reduction rules
Select 2-claw C and edge e from C according to heuristic priorities
Branch at e

end if
else

return (k ≥ # component wreaths of G[E \M ])
end if

• The recurrence for T 0(k) is due to simple binary branching. In the
case that an edge e is not taken into the biplanarization set, one has to
observe that two small forbidden structures are created, i.e., structures
of size at most five: due to reduction rule 3b., we will branch at some
e whose degree is at least two.

• The recurrence for T 1(k) is the most difficult to prove; its correctness
again relies on reduction rule 3b.

• The seemingly complicated recurrences for T 2(k) are in fact trivial;
they correspond to all possibilities for i such that two small forbidden
structures f1 and f2 satisfy i = |c(f1) ∩ c(f2)|.

With the methods that were earlier explained, we can show:

Theorem 6.42 Given a graph G and an integer k, Alg. 58 determines if G
can be made biplanar by deleting ≤ k edges in O(k2 · 5.1926k + |G|) time,
when applied to the problem kernel derived in [143].

Let us now turn towards the case where the order of the vertices on one
layer is fixed, i.e., towards one-layer planarization. In contrast to what
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T 0(k) ≤ T 0(k − 1) + T 2(k)

T 1(k) ≤ 2T 0(k − 1) + 2T 1(k − 1) + T 2(k − 1)

T 2(k) ≤ max





2T 1(k − 1) + 3T 2(k − 1),
T 0(k − 1) + 16T 0(k − 2),
2T 0(k − 1) + 9T 0(k − 2),
3T 0(k − 1) + 4T 0(k − 2),
4T 0(k − 1) + T 0(k − 2)





Figure 6.10: Upperbounding the size of the search tree of Alg. 58.

we presented for TLP, we will focus here mainly on the development of a
kernelization algorithm. Again, the similarities to hitting set problems is
helpful but distinctive features have to be observed.

The next two results from [143] give important properties for π-biplanar
graphs.

Lemma 6.43 A bipartite graph G = (A,B;E) with a fixed permutation π
of A is π-biplanar if and only if G is acyclic and the following condition holds.

For every path (x, v, y) of G with x, y ∈ A, and for every vertex
u ∈ A between x and y in π, the only edge incident to u (if any) is
uv.

(?)

Figure 6.11: A new forbidden substructure for OLP

This means that the 5-vertex graph depicted in Fig. 6.11 (where the upper
layer, i.e., the layer that contains three vertices, is fixed with respect of the
ordering of the vertices) is a forbidden structure. It is not hard to verify that
all cycles but cycles of length four and also 2-claws contain this forbidden
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substructure, in whatever way we assign the vertices to the layer. This im-
mediately shows that one-layer planarization is indeed “simpler” than
two-layer planarization from a parameterized algorithmics standpoint.

Let G = (A,B;E) be a bipartite graph with a fixed permutation of A
that satisfies condition (?). Let H = K2,p be a complete bipartite subgraph
of G with V (H) ∩ A = {x, y}, and V (H) ∩ B = {v ∈ B : vx ∈ E, vy ∈
E, degG(v) = 2}, and |V (H)∩B| = p. Then H is called a p-diamond. Every
cycle of G is in some p-diamond with p ≥ 2.

Lemma 6.44 If G = (A,B;E) is a bipartite graph and π is a permutation of
A satisfying condition (?) then the biplanarization number, given π, satisfies:

bpr(G, π) =
∑

maximal p-diamonds of G

(p− 1) .

We are now going to derive a kernelization algorithm for OLP. Let us
say that an edge e of a bipartite graph G potentially violates condition (?)
if, using the notation of condition (?), e = ei for i = 1, 2, 3, where e1 = xv or
e2 = vy or e3 = uz for some u strictly between x and y in π such that z 6= v.
We will also say that e1, e2, e3 (together) violate condition (?).

According to Lemma 6.43 (as well as the proof of Lemma 6.44 for the
last two rules), the following reduction rules are sound, given an instance
(G = (A,B;E), π, k) of OLP. Analogues to the first three rules are well-
known from Hitting Set problems, see Chap. 5.

Reduction rule 64 If e ∈ E does not participate in any cycle and does not
potentially violate condition (?), then remove e from the instance (keeping
the same parameter k).

Reduction rule 65 If v ∈ A ∪ B has degree zero, then remove v from the
instance and modify π appropriately (keeping the same parameter k).

Reduction rule 66 If e ∈ E participates in more than k2 situations that
potentially violate condition (?), then put e into the biplanarization set and
modify the instance appropriately (also decreasing the parameter).

Let E? ⊆ E be all edges that potentially violate condition (?). Let E◦ ⊆ E
be all edges that participate in cycles. Let G4c be generated from those edges
from E? \ E? that participate in 4-cycles. By construction, G4c satisfies (?).
Lemma 6.44 shows that the next reduction rule can be applied in polynomial
time:

Reduction rule 67 If bpr(G4c, π) > k, then NO.
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Lemma 6.45 Let G = (A,B;E) be a bipartite graph and let π be a permu-
tation of A. Let v ∈ B. Then, there is at most one edge e incident to v that
does not potentially violate condition (?) and participates in cycles of length
> 4.

Theorem 6.46 Let G = (A,B;E) be a bipartite graph, π be a permutation
of A and k ≥ 0. Assume that none of the reduction rules applies to the OLP
instance (G, π, k). Then, |E| ≤ k3. Hence, |V | < k3. The kernel can be
found in time O(|G|2).6

Proof. Now consider E? as vertex set V ′ of a hypergraph G′ = (V ′, E ′) and
put {e1, e2, e3} into E ′ iff e1, e2, e3 together violate condition (?). A subset of
edges from E whose removal converts (A,B;E) into a bipartite graph which
satisfies condition (?) is in obvious one-to-one correspondence with a hitting
set of the hypergraph G′. Niedermeier and Rossmanith have shown [308,
Proposition 1] a cubic kernel for 3-hitting set, so that at most k3 edges
are in E? (else NO). Their reduction rules correspond to our rules 64 and 66.

If e = xy ∈ E◦ \ E? with y ∈ B does not belong to a 4-cycle, then
Lemma 6.45 shows that there is no other edge zy ∈ E◦ \ E?. But since
xy ∈ E◦, there must be some “continuing edge” zy on the long circle xy
belongs to, so that zy ∈ E? follows. We can take zy as a witness for xy. By
Lemma 6.45, zy can witness for at most one edge from E◦ \E? incident to y
and not participating in a 4-cycle.

This allows us to partition E◦ into three disjoint subsets: (a) E◦∩E?, (b)
E4c = {e ∈ E◦ \ E? | e participates in a 4-cycle }: there can be at most 4k
such edges according to rule 67 and Lemma 6.44, and (c) E◦ \E4c: according
to our preceding reasoning, there are at most |E?| many of these edges.

Rule 65 allows to conclude the bound on the number of vertices.

Theorem 6.47 (Dujmović et al. [143]) Given a bipartite graph G = (A,B;E),
a fixed permutation π of A, and integer k, there is an algorithm that deter-
mines if bpr(G, π) ≤ k in O(3k · |G|) time.

Can we further improve on this algorithm? Firstly, it is clear that we can
combine the search tree algorithm with the kernelization algorithm described
above. But furthermore, observe that the search tree algorithm basically
branches on all members of E?, trying to destroy the corresponding triples of
edges violating condition (?). This means that we again take ideas stemming
from solutions of the naturally corresponding instance of 3-hitting set.

6More recently, a quadratic kernel for 3-hitting set was derived [310] based on the
2k-kernel for vertex cover, see Chap. 4. Translating the corresponding reduction rules
shows that |E?| and hence |E| is in fact upperbounded by O(k2).
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Unfortunately again, we cannot simply “copy” the currently best search tree
algorithm for 3-hitting set, see Chap. 5, since destroying triples of edges
violating condition (?) might incidentally also destroy more or less of the
4-cycles. As explained in the TLP case, the problem is again the vertex
domination rule. In order to gain anything against the previously sketched
algorithm, we must somehow at least avoid branching on vertices of degree
one contained in hyperedges of size three.

Firstly, we can prove a lemma that shows that, whenever we have branched
on all hyperedges of size three in the 3-hitting set instance (that corre-
spond to situations violating condition (?) in the original OLP instance)
that contain vertices of degree at least two, then we have already destroyed
all “large” cycles. Then, we investigate the possible interaction between a
cycle of length four and a structure violating (?), after having “destroyed”
all “mutually interacting” structures violating (?).

Lemma 6.48 Let G = (A,B;E) be a bipartite graph and π be a fixed per-
mutation of A. Assume that if h = {e1, e2, e3} and h′ = {e′1, e′2, e′3} are two
situations violating (?), then h∩h′ = ∅. Let C = {ab, bc, cd, da} be a sequence
of edges forming a 4-cycle. Then, there is at most one hyperedge h—among
the hyperedges modeling situations violating (?)—such that C ∩ h 6= ∅.

Hence, after the indicated branching, for each 4-cycle, at most one hyper-
edge of size three remains such that the corresponding edge sets have non-
empty intersection. Since we have to destroy every 4-cycle, the best we then
can obviously do is to take out an edge that takes part in the “accompanying”
situation violating (?). This can be done completely deterministically due to
the preceding lemma. Finally, the only remaining situations correspond to
possibly interacting 4-cycles. These can be solved with Lemma 6.44.

In the algorithm depicted in Alg. 59, we again use a set of virtual edges
M to mark edges which (according to our previous branching) we shall not
put into the biplanarization set. This part of the input is therefore initial-
ized with ∅ at the very beginning. The notation bpr(G, π,M) is accordingly
understood.

As a subroutine, we have singled out the situation exclusively dealing
with the T 0-branching. Note that the branching in the T 2-case can be also
viewed as “branching at e” followed by the application of the small structure
rule (which is also valid in this case, since it is derived from the 3-hitting
set reduction rules).

Theorem 6.49 OLP can be solved in O(k3 · 2.5616k + |G|2) time.

Proof. We only have to analyze the running time in the following. As said
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Algorithm 59 A search tree algorithm for one-layer planarization,
called OLP
Input(s): a bipartite graph G = (A,B;E), a permutation π of A, a positive

integer k, a set of virtual edges M
Output(s): NO if bpr(G, π,M) > k; otherwise, YES (and it will implicitly

produce such a small biplanarization set then)

Exhaustively apply the reduction rules; the resulting instance is also called
(G, π, k,M).
if (?) fails for some path (x, v, y) and edge ab with x ≺ a ≺ y then

if k = 0 then
return NO

else if possible then
choose (x, v, y) and ab such that {xv, vy, ab} ∩M 6= ∅
if possible then

choose (x′, v′, y′) and a′b′ such that {x′v′, v′y′, a′b′} ∩M 6= ∅ and
{e} = {xv, vy, ab} ∩ {x′v′, v′y′, a′b′} ∩ (E \M)
{This is a T 2-branch}
if OLP(G− {e},π, k − 1, M)=’YES’ then

return YES

else
Let {e, f} = {xv, vy, ab} ∩ (E \M).
Let {e, f ′} = {x′v′, v′y′, a′b′} ∩ (E \M).
return OLP(G− {f, f ′},π, k − 2, M ∪ {e})

end if
else
{only “isolated” forbidden structures of size two (also T 1)}
Let {e, f} = {xv, vy, ab} ∩ (E \M).
if OLP(G− {e},π, k − 1, M)=’YES’ then

return YES

else
return OLP(G− {f},π, k − 1, M)

end if
end if

else
{T 0-branch}
return OLP-T0(G, π, k,M)

end if
else

return k ≥
∑

maximal p-diamonds of G

(p− 1)

end if
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Algorithm 60 A subroutine for OLP, called OLP-T0

Input(s): a bipartite graph G = (A,B;E), a permutation π of A, a positive
integer k, a set of virtual edges M ; it has been tested that no reduction
rules apply and that no T `-branching with ` > 0 is possible

Output(s): NO if bpr(G, π,M) > k; otherwise, YES (and it will implicitly
produce such a small biplanarization set then)

if possible then
choose (x, v, y) and ab such that there are (x′, v′, y′) and a′b′ such that
e ∈ {xv, vy, ab} ∩ {x′v′, v′y′, a′b′}
if OLP(G− {e},π, k − 1, M) = ’YES’ then

return YES

else
return OLP(G,π, k, M ∪ {e})

end if
else
{only “isolated conflicts”}
if h = {xv, vy, ab} intersects with some 4-cycle C then

Let e be a common edge of h and C.
else

Choose some e ∈ h.
end if
return OLP(G− {e},π, k − 1, M)

end if

before, branching only actually takes place when we “solve” the correspond-
ing 3-hitting set instance. During these recursions, we always assume
that, whenever we branch at forbidden structures of size three, there is some
element contained in that forbidden structure which actually participates in
at least two forbidden structures.

More distinctly, let T `(k) denote the situation of a search tree assuming
that at least ` forbidden structures in the given instance (with parameter k)
have a size of (at most) 2. Of course, T (k) ≤ T 0(k). We again analyze the
recurrences for T 0, T 1 and T 2, and we use the notions of core and size of a
forbidden structure similar to the TLP case.

For T 0, we obtain as in the case of 3-hitting set:

T 0(k) ≤ T 0(k − 1) + T 2(k).

For T 1, we cannot claim to “gain” any new forbidden structures of size two.
Therefore, a trivial branching gives:

T 1(k) ≤ 2T 0(k − 1).
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For T 2, we distinguish two sub-cases, considering two forbidden structures
f1, f2 of size two:

1. c(f1) ∩ c(f2) = ∅. Then, trivial branching gives:

T 2(k) ≤ 2T 1(k − 1) ≤ 4T 0(k − 2).

2. ∃e ∈ c(f1) ∩ c(f2). Branching at e (which our algorithm will do) then
yields:

T 2(k) ≤ T 0(k − 1) + T 0(k − 2).

The first sub-case leads to:

T 0(k) ≤ T 0(k − 1) + 4T 0(k − 2) ≤ 2.5616k.

The second sub-case gives:

T 0(k) ≤ T 0(k − 1) + (T 0(k − 1) + T 0(k − 2)) ≤ 2.4143k.

So, the first sub-case yields the worst case.
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Figure 6.12: Our running example, this time for one-layer planarization

Example 6.50 Let us have another look at Fig. 6.2 and study the behavior
of our search tree algorithm.
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(a) The branch that takes out an
edge.
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(b) The branch that makes an
edge virtual.

Figure 6.13: Two possible first branches at edges of “high degree”.
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(a) A second-level branch.
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(b) A third-level branch.

Figure 6.14: Two further branching levels, only listing the case when a spe-
cific edge is deleted.

We can find two classes of forbidden structures, marked with colors in
Fig. 6.12: one of them having two edges (colored in light and dark blue)
incident with vertex a and one of them having two edges (colored in red
for the two possible left branches and colored in magenta for the right arm)
incident with c. The remaining colored edges create forbidden structures
together with the mentioned edges.

Let us pick one edge that participates in many forbidden structures, as
depicted in Fig. 6.13: the edge {1, c}. Let us further follow what happens in
the first branch. We might then select {4, e} for branching; in the case we
take out this edge, we arrive at Fig. 6.14(a). We follow this branch further,
next considering edge {2, b}. After having deleted that (third) edge, we can
color the edge {1, a} black again, since all forbidden structures this edge did



280 CHAPTER 6. CASE STUDIES

c

3 4 5 6

d e

1 2

a b

Figure 6.15: One solution to our problem.
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Figure 6.16: One solution to our problem, when rearranged.

participate in have been already hit; formally, this means that the edge {1, a}
is removed (by rule 64). This is all shown in Fig. 6.14.

Finally, taking out edge {5, c} resolves our problem completely, as can
be seen in Fig. 6.15: it is obviously possible to reorder the second layer (by
swapping b and c to the left) so that the graph be be drawn without crossings.
This can be best seen in Fig. 6.16; the edges that were taken out are drawn
as dashed lines, keeping their original colors.

We should mention in this place that there is a natural generalization of
TLP (and also of crossing minimization problems): namely, one could allow
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a “fixed” number t of layers (we treated the case t = 2), and ask how to
optimally draw a graph in a t-planar way by omitting at most k edges (or
allowing at most r crossings). This is another example of a natural problem
where two parameters show up, see Sec. 3.4. This problem has been put
into FPT by a set of twelve authors [142]. This result relies on the fact
that graphs that can be drawn on t layers after omitting k edges and when
allowing r crossings have only pathwidth bounded by t+ 2k + 2r. 7

To conclude our account on crossing minimization, let us mention that
a nice collection of papers and problems related to crossing minimization
problems of various kinds can be found in [Chapter 11, Site 16]. Overview
papers are, amongst others: [349, 106, 360, 361]. Regarding specific planar
drawings, not only drawings on two or more layers are of interest, but also,
for example, drawings where the vertices are put on the circle; this is related
to the problem of turning a graph into a one-outerplanar graph as discussed
in Chap. 7; recent papers on this topic (that is up to now untouched from
the viewpoint of parameterized complexity) are [38, 107].

6.4.4 More related problems

To conclude this section, let us first return to our starting problem, namely
linear arrangement. The following example should show further connec-
tions and prove that there are really a heap of nice combinatorial problems in
this area that have only barely touched by people working in parameterized
algorithmics.

Figure 6.17: Two ways of mapping C4: a circle interpretation

7Pathwidth and related notions are discussed in Chap. 7.
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Example 6.51 We studied mappings of C4 in Ex. 3.2. Here, we give a con-
crete “drawing interpretation” of such a mapping (different from the “band
interpretation” given in Ex. 3.15): namely, if we draw each interval on which
an edge is mapped as a half-circle (where all half-circles are drawn to one
side of the basic “interval line”), then the mapping shown on the left-hand
side incurs no crossing, while the mapping on the right-hand side produces
one crossing. This is shown in Fig. 6.17.

Now, as discussed with the bilayer drawings, different criteria for opti-
mality could be investigated: minimize the number of crossings, the number
of half-circles that should be removed to ensure drawability.

Observe that the task to remove the fewest number of edges to ensure
half-circle drawability is different from the problem linear arrangement
by deleting edges discussed above. For example, a star graph Sn with
vertices {1, . . . , n} and edges {1, i} for i = 2, . . . , n can be drawn with half-
circles without crossings, while n − 3 edges (out of the n − 1 edges of Sn)
have to be removed to produce a forest of paths.

These problems are also related to the notion of book embedding, also see
[44, 287, 305].

Note that the considerations on linear arrangements might also influence
ideas to introduce parameters that could be meaningfully optimized in 2-
layer-drawings. For example, one might wish to minimize the “overall length”
of all straight lines involved in such a drawing (assuming that the points are
drawn equidistantly on the two lines and that the two lines of the layers have
a certain fixed distance; the ratio between the distance between neighbors on
a layer and the distance between the two layer lines influences which drawing
is preferable); again, different norms could be considered. It is possible to
argue that drawings enjoying short overall length of all straight lines are
better readable.

Quite recently,8 we considered the following problem that is motivated by
applications that compare two trees with each other,9 formalizing a method
that is particularly popular in bio-informatics:

Problem name: two-tree crossing minimization (TTCM)
Given: A two-tree (T1, T2) with leaf labels Λ
Parameter: a positive integer k
Output: Can (T1, T2) be drawn with at most k crossings ?

Here, a two-tree simply denotes a pair of rooted binary trees with perfect
matching between corresponding leaves of the two trees, where the corre-

8in yet unpublished joint work with M. Kaufmann and M. Poths
9A nice overview on tree comparison methods can be found in [49].
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(a) Two balanced trees
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(b) Two unbalanced trees

Figure 6.18: The two types of contradicting quadruple two-trees.

spondence is given by an appropriate labeling such that only leaves with the
same label are matched. Alternatively, we can visualize the matching by as-
signing labels (colors) to the leaves such that leaves that are matched get the
same labels. We discuss only drawings of the following form: The given two
unordered binary trees with the same number of leaves have to be embedded
layerwise in the plane such that the leaves are aligned in two adjacent layers.
Our goal is hence to find two planar embeddings of the two trees such that
the crossings of the matching edges are minimized. Two particularly simple
examples of two-trees that cannot be drawn without crossings are shown in
Fig. 6.18. They are referred to as quadruple trees since each of the trees has
four leaves.
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It is hopefully clear that also two-tree crossing minimization is
basically a restricted reordering problem: namely, the task is to order the
leaves in a way that the drawing of the matching edges between corresponding
vertices incurs the least number of crossings. The restriction is given by
the two trees. Namely, observe that in the case of a binary tree with n
leaves, there are exactly 2n−1 different permutations of the leaves which are
implied the different ordering of the subtrees. This is in contrast to the n!
permutations which are possible in general.

We have achieved the following results:

Theorem 6.52 two-tree crossing minimization is NP-complete.

Theorem 6.53 two-tree crossing minimization is in FPT . More
precisely, the problem can be solved in time O∗(ck) for some constant c.

The algorithm that shows FPT -membership is interesting insofar that
the proof of its correctness basically also solves the following related problem
(that can be seen as the natural graph modification variant of TTCM):

Problem name: two-tree drawing by deleting edges
(TTDE)
Given: A two-tree (T1, T2) with leaf labels Λ
Parameter: a positive integer k
Output: Is there a label set L ⊆ Λ with |L| ≤ k such that the
two-tree (T1 〈Λ \ L〉 , T2 〈Λ \ L〉) can be drawn without crossings ?

More specifically, we need the following structural result:

Theorem 6.54 In each two-tree crossing minimization instance (T1, T2)
that is not embeddable without crossings, there exists a quadruple {a, b, c, d}
of leaf labels such that (T1 〈{a, b, c, d}〉 , T2 〈{a, b, c, d}〉) is also not embeddable
without crossings.

Here, we use the notation T 〈L〉 to denote the “binary subtree” of T that
contains only the leaves from L and as inner nodes those nodes which are
least common ancestors of the L-leaves in T .

We will present a recursive algorithm which either finds such an quadru-
ple, or it provides a crossing-free embedding (drawing) of the two-trees. This
algorithm will not only prove this structural result that gives a character-
ization of drawable two-trees in terms of forbidden substructures, but also
provides the backbone of two FPT algorithms that are presented in the
following.
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Proof. Let (T1, T2) be the two-trees. Let T1 be the top one and T2 be the
one on the bottom. Without loss of generality, we assume that the set Λ of
labels associated to the leaves of T1 and T2 has more than one element.

We assume that each inner node provides links to its two children and in
addition permanent and temporary information attached to each such link.
The permanent information p(`) attached to link ` is either L,R or ∗. The
semantics is as follows:

L This link leads to the left child.

R This link leads to the right child.

∗ It is not yet determined if this link leads to the left or to the right child.

In the initialization phase of our algorithm, we (arbitrarily) set p(`1) = L
and p(`2) = R for the two links emanating from the root of T2. All other
permanent information is set to ∗. This defines the function p (that we use
both for T1 and for T2). Thus initiated, we call embed(T1, T2, p).

As can be seen from how the permanent information is initiated and
updated, the following is always true:
Claim 1: Let n be an inner node with emanating links `1 and `2. Then, one
of the following cases is true:

• p(`1) = L and p(`2) = R;

• p(`1) = R and p(`2) = L; or

• p(`1) = ∗ and p(`2) = ∗.

The temporary information t(`) attached to link ` is either L,R or M .
The semantics is as follows:

L All links below (i.e., in direction to the leaves) are marked L.

R All links below are marked R.

M Mixed case: some links below are marked L and some are marked R.

The temporary information is processed in a bottom-up fashion from the
leaves to the root as follows:

1. As described in the main algorithm, the links leading to the leaves of
the tree to be processed are assigned either L or R.
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2. Let n be an inner node where to both links `1 and `2 emanating to its
two children, the temporary information has been assigned. If t(`1) =
t(`2) = M , then we have found a quadruple situation corresponding to
the balanced tree case in Fig. 6.18. Hence, there is no way of finding a
crossing-free embedding of the two-trees, and we can abort here.

3. Let n be an inner node (besides the root) where to both links `1 and
`2 emanating to its two children, the temporary information has been
assigned, such that the previous situation does not apply. Then, to the
link ` that leads to n we assign t(`) according to the following table:

t(`1) L L L R R R M M M
t(`2) L R M L R M L R M
t(`) L M M M R M M M E

Here, E signals the error case we discussed in the previous point.

Interestingly, we can also update the permanent information of two siblings.
Let n be an inner node where to both links `1 and `2 emanating to its two
children, the temporary information has been assigned. We update p(`1) and
p(`2) according to the following table:

t(`1) L L L L L L L L L
t(`2) L L L R R R M M M
p(`1) L R ∗ L R ∗ L R ∗
p(`2) R L ∗ R L ∗ R L ∗
p(`1) L R ∗ L E L L E L
p(`2) R L ∗ R E R R E R

Observe that there are more cases with the roles of `1 and `2 being inter-
changed. Furthermore, notice that the list of cases of assignments to `1 and
`2 is complete because of Claim 1. The table should be read as follows: the
first four lines give the current values of t and p on the two links. The last
two lines give the updated values of p. Here, an E signals that we found
a contradictory situation; more specifically (as we will see below), we have
found a quadruple situation corresponding to the unbalanced tree case in
Fig. 6.18 (as will be explained below). Hence, there is no way of finding a
crossing-free embedding of the two-trees, and we can abort here.
Claim 2: Observe that the graph that is induced by the edges (links) to which
non-∗ permanent information has been attached to is a tree before and after
each complete bottom-up tree processing (as described above). Moreover, if
this induced tree is non-empty, then it also contains the root.
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How to actually use these bottom-up processing of the temporary and
permanent information is explained in Alg. 61. We will make use of the
following property of our algorithm:
Claim 3: Each time that it is again say the upper tree’s turn to get new
temporary labels, the former root of that tree (and possibly more nodes) will
no longer be taken into consideration.

We still have to show that the two aborts (error cases) described above
are indeed based on finding a contradictory quadruple two-tree as explained
in Fig. 6.18. The proofs below of the following claims show the details of this
construction.
Claim 4: Whenever an error occurs within the temporary label information
update, we can exhibit a balanced quadruple two-tree.
Claim 5: Whenever a contradiction is found between the temporary label
information and the already existent permanent label information, we can
exhibit an unbalanced quadruple two-tree.

We still have to show that the two aborts (error cases) described above
are indeed based on finding a contradictory quadruple two-tree.

Finding a pair of balanced trees. According to Alg. 61, we have speci-
fied a left and right sub-tree say in the lower tree of the two-tree. The
corresponding L and R information is propagated as temporary infor-
mation in the upper tree of the two-tree as described above, up to the
point that we encountered two sibling links `1 and `2 to which we have
attached M as temporary information. Hence, in the upper tree we
find four leaf links (that we might identify with the leaf labels) a, b, c, d
such that a, b (c, d, resp.) are in the sub-tree emanating from `1 (`2,
resp.) with t(a) = t(c) = L and t(b) = t(d) = R. However, in the lower
tree, the leaves with labels a and b are both in the left subtree, and the
leaves with labels c, d both in the right subtree. So, both in the lower
and in the upper tree, the subtree that is induced by the labels a, b, c, d
is a balanced quadruple tree, and the shape of both quadruple trees is
contradictory as explained in Fig. 6.18.

Finding a pair of unbalanced trees. A conflict occurs here if there are
two sibling links `1 and `2 emanating from an inner node such that
the bottom-up algorithm infers from the temporary information an
order of the links that is different from what was already stored in the
permanent information.

Without loss of generality, let us assume that `1 and `2 belong to the
upper tree and that p(`1) = L and p(`2) = R and that t(`1) = R and
t(`2) = L. Let x be the node where both `1 and `2 emanate. Assume
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we observed a conflict say at the t1th level of the recursion. There
must have been a point of time (i.e., level) in the recursion that for
the first time fixed p(`1) = L and p(`2) = R. This point could not be
the initialization due to Claim 3. Since we did not observe a conflict
at level t0 = t1 − 2 of the recursion, we either fixed at time t0 for the
first time the permanent information that is at t1 leading to a conflict
or it got at least confirmed when processing level t0. This fixing (or
confirming) was obtained by using the temporary link information (at
time t0). So, at time t0, there was a leaf labeled a reachable from `1
that then was also a label of a leaf in the left subtree of the lower tree.
Let us now furthermore assume (again without loss of generality by
completely symmetric arguments in the other case) that the recursion
branch where our observed conflict occurs is along recursing on the right
subtree T `R of the lower tree and on the left subtree T uL of the upper
tree (where these subtrees were considered at level t = t0 + 1 = t1 − 1
of the recursion).

Consider some leaf labeled d in the right subtree T uR of the upper tree
at level t. Naturally, d is found as a leaf label in the right subtree T `R
of the lower tree (referring to level t0), since otherwise we would have
observed non-drawability at an earlier stage. Let y be the root of T `

R.
The position of d also permanently fixes the order of children links of
y. Now, if the labels of the leaf descendants of the right child of y are
only belonging to the label set of the leaves in T uR, then we won’t get
a contradiction at level t1 as presumed. Hence, upon further recursing
on T uL in step t1, we will find both left and right descendants of y that
carry labels that can be also found in T uL .

Let us further discuss the node x in the upper tree in what follows.
There must be a descendant z of x (along `1) where one of the branches
starting at z leads to a (and in fact we may assume all other leaves that
can be reached from that branch carry labels that are in T `L) and the
other branch leads to some leaf with label c that can be also found as
leaf label in the right tree at level t1 of the recursion (since t(`1) = R
at level t1). Moreover, that descendant z is no longer “visible” at level
t1, since the “left descendants” of z do not find their counterparts in
T `R. Hence, x 6= z.

Moreover, by assumption on the temporary information of `2, there
must be a leaf node labeled b that is reachable from `2; a leaf labeled
b can be also reached in the lower tree from the left child of y.

This proves that the labels a, b, c, d as constructed above present a
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contradictory quadruple two-tree.

This theorem motivates the study of quadruple trees.

Lemma 6.55 There are only two types of contradicting quadruple trees, the
ones depicted in Fig. 6.18.

Since we have now identified small forbidden structures, we can translate
any two-tree drawing by deleting edges instance into 4-hitting
set as follows: simply cycle through all O(n4) possible quadruple two-trees
(given a concrete two-tree (T1, T2) with n leaves): If a quadruple two-tree is
contradictory, then it corresponds to a hyperedge with four vertices, the leaf
labels forming that quadruple. All n leaf labels together are the vertices of
the hypergraph.

With the help of known parameterized algorithms for 4-hitting set as
derived in Chap. 5, we can thus show:

Corollary 6.56 two-tree drawing by deleting edges is in FPT .
More precisely, it can be solved in O∗(3.115k) time.

Upon solving two-tree crossing minimization, the additional com-
plication arises to guarantee that each branch in the search tree (that is per-
formed again with the small contradicting substructures), we actually “gain”
one crossing. However, these difficulties can be overcome, as we sketch in the
following, this way proving Theorem 6.53.

More precisely, we will sketch a parameterized algorithm that branches
on small contradicting structures (primarily, at contradicting quadruples) as
long as these incur new crossings. In a second phase, we attempt at drawing
the remaining two-tree with using a variant of the algorithm embed, possibly
finding new small contradicting structures. The validity of this approach
relies on the fact that we are able to separate contradicting structures from
the rest of the two-trees by attachment links that are described as follows.

Let u be a node in a tree T . The parent link p(u) is the unique edge
leading to u in T ; if u is the root, then there is no parent link to u. Let G
be a subgraph of T . The set of parent links of G, written P(G), is the set of
all attachment links of pairs of vertices u ∈ V (G), i.e., P(G) = {p(u) | u ∈
V (G)}.

Let u, v be nodes in a tree T . The attachment link of u and v, written
a(u, v), is the unique edge leading to the least common ancestor (lca) of u
and v, i.e., a(u, v) = p(lca(u, v)); if the least common ancestor of u, v is the
root, then there is no attachment link to u and v.
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Algorithm 61 Procedure “embed-TT”.

Input(s): A two-tree (T1, T2) and a permanent link information function p.
Output(s): YES iff a crossing-free drawing of (T1, T2) respecting p can be

obtained. Moreover, either (implicitly) a crossing-free drawing of (T1, T2)
respecting p is found or a contradictory quadruple two-tree is produced.

Let r be the root of T2.
if (T1, T2) has at most four leaves then

return answer by table look-up
else if r has only one child then

5: Delete r to produce T ′
2.

Modify p accordingly, yielding p′.
embed-TT(T1, T

′
2, p

′);
else
{Let `1 and `2 be the two links emanating from the root x of T2.}

10: if p(`1) = ∗ then
p(`1) := L and p(`2) := R.

end if
{Let TL2 be the subtree of T2 that is emanating from `L with t(`L) = L;
similarly, TR2 is defined.}
Let ΛL := Λ(TL) and ΛR := Λ(TR).

15: Initialize the bottom-up computation of new temporary information
and (eventually) also permanent information t and p within T1:

• by setting t(`) = L for each link leading to a leaf in T1 with a
label in ΛL;

• by setting t(`) = R for each link leading to a leaf in T1 with a
label in ΛR.

• by setting t(`) = ∗ for each link leading not to a leaf in T1.

Update the temporary and permanent information within T1 as de-
scribed in the proof.
if contradiction is reached then

Report contradictory quadruple two-tree (obtainable as described in
the proof).
return NO

20: else
Let TL1 = T1 〈ΛL〉; TR1 = T1 〈ΛR〉;
Let pL be the permanent information p updated to cover the two-tree
(TL1 , T

L
2 ); pR is accordingly understood.

return embed-TT(T L2 , T
L
1 , pL) AND embed-TT(TR2 , T

R
1 , pR)

end if
25: end if
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Let G be a subgraph of T . The set of attachment links of G, written
A(G), is the set of all attachment links of pairs of vertices u, v ∈ V (G), i.e.,
A(G) = {a(u, v) | u, v ∈ V (G)}.

As above, we work with the permanent information p(`) attached to an
edge `, initialized with p = ∗ and later gradually updated to either L or R.
Sometimes, it is more convenient to think of this labeling information being
attached to the inner nodes in the sense that a bit (called flip) is associated
with each inner node that tells, when defined, which child is to the left and
which is to the right.

A connection link is either a parent link or an attachment link; the corre-
sponding set is denoted by C(G) = P(G) ∪ A(G). Given a two-tree (T1, T2),
our algorithm will basically branch on all possible settings of p to either L or
R on the connection links C(Gi) (that do not contradict earlier settings 6= ∗)
for the subgraphs Gi = Ti〈Q〉 of Ti for all possible contradicting quadruples
Q. Observe that whenever a parent link of some node is assigned L, then the
parent link of its sibling will be assigned R for reasons of consistency (and
vice versa).

The problem we are facing is that we have to ensure that the natural
parameter of this problem, i.e., the given budget k of tolerable crossings,
is decremented in each branching step. So, our strategy will be to only
branch at contradicting structures if this gives us a gain in each branch. To
simplify matters, we assume that only those leaves that participated in those
contradicting structures we earlier branched on have been accounted for in
the branching process.

To fully understand Alg. 62, we still have to explain what to do when
there are no longer contradicting quadruples or pairs to be found (line 10):
we will then start a procedure very similar to embed-TT. The only difference
is that it will not find any of the contradictions described in the proof of
Theorem 6.54 (since there are no contradicting quadruples). The only con-
tradiction that could arise is that a temporary labeling would contradict the
already established permanent labeling. In that case, the permanent labeling
would already exist upon first calling embed-TT′, so that we face the situ-
ation depicted in Fig. 6.19. This figure is understood as follows: the green
inner node indicates a flip that has been previously determined. As the labels
L and R indicate, this flip would go the other way round according to the
temporary link information propagation. The L,R-labeling must have a rea-
son (otherwise, we could just interchange the meaning of L and R): namely,
there must be a third leaf (the golden label) that is residing somewhere in
the “right branch” of the upper tree but in the “left branch” in the lower tree
(on a previous level of recursion). Hence, we also get a crossing if we draw
the left part of lower tree coherently with the “green flip.” Upon finding such
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Algorithm 62 Procedure “TTCM”: embed a two-tree with minimum num-
ber of crossings.

Input(s): A two-tree (T1, T2) and a permanent link information function p.
A parameter k. Let L be the set of labels that have been already treated
and k′ be the original parameter.

Output(s): YES iff a drawing of (T1, T2) with at most k crossings respecting
p can be obtained.

if k < 0 then
return NO

else if k = 0 then
return embed-TT(T1, T2, p)

5: else
if there is a small contradicting structure S then

branch on all possible flips for C(Ti〈S〉) with recursive calls on
TTCM, where S is deleted from the new created instances and p
and L are accordingly modified.
{To actually compute the new parameter value, k′ and the crossings
in the two-tree (T1〈L〉, T1〈L〉) may be used.}

else
10: return embed-TT′(T1, T2, p, L, k, k

′)
{L, k, k′ are only needed if embed-TT′ recursively calls TTCM.}

end if
end if

an erroneous situation, we would consider the leaves labeled red, blue and
golden as a contradicting structure and branch on all connection points as
before, recursively calling TTCM again.

Unfortunately, the constant c in Theorem 6.53 is still quite astronomic
due to the many flips that have to be tested according to our approach. We
can see our result therefore as a preliminary one, producing a classification
of the problem but not a really good algorithm.

As in the case of two-sided crossing minimization or two-layer
planarization, it also makes sense to consider the case when the ordering
on one layer is fixed:

Problem name: one-tree crossing minimization (OTCM)
Given: A two-tree (T1, T2) with leaf labels Λ, where the ordering of
the vertices of T1 is fixed
Parameter: a positive integer k
Output: Can (T1, T2) be drawn with at most k crossings ?
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Figure 6.19: A further contradiction for embed-TT′.

We can show the following result:

Theorem 6.57 In time O(n log2 n), we can solve the one-tree crossing
minimization problem with n-leaf-trees.

This improves on an earlier result of Dwyer and Schreiber [147].

Problem name: one-tree drawing by deleting edges
(OTDE)
Given: A binary tree T1 with leaf labels Λ, a linear ordering ≺ on Λ
Parameter: a positive integer k
Output: Is there a label set L ⊆ Λ with |L| ≤ k such that the tree
T1 〈Λ \ L〉 can be drawn without crossings in the plane, so that the
leaves in Λ \ L are arranged according to the ordering ≺ on some
line ?

Let us now turn to the corresponding graph-modification variant:
Some straightforward case analysis shows:

Lemma 6.58 When the order of the leaf labels is fixed, then there is only one
possible contradictory situation in a tree with three leaves, and this situation
is shown in Fig. 6.20.
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Figure 6.20: The contradicting triple tree.

In the following theorem formulation, we simply assume that only the
ordering ≺ induced by the fixed tree on one side is given.

Theorem 6.59 In each one-tree drawing by deleting edges instance
(T,≺) that is not embeddable without crossings, there exists a triple {a, b, c}
of leaf labels which is, with its induced tree structure T 〈{a, b, c}〉 also not
embeddable without crossings (when respecting ≺).

Again, we find small forbidden substructures (here: triple trees) that
allows to transfer the problem to hitting set:

Corollary 6.60 one-tree drawing by deleting edges is in FPT .
More precisely, it can be solved in O∗(2.179k) time.

Interestingly, we do not know if two-tree drawing by deleting
edges or one-tree drawing by deleting edges are NP-hard. In view
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of our FPT -results and due to the interest in these problems from bioinfor-
maticians, this is a nice open problem in classical complexity theory.
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6.5 Summary

We conclude this chapter by summarizing the methodology we explored up
to now to obtain parameterized algorithms.

As a first step, to get acquainted with the problem, it is always useful to
collect a couple of reduction rules and prove their correctness (soundness).
The search for these rules can be guided by a couple of meta-heuristics. Let
k be (as usual) the parameter.

• Think big : What happens if an instance if very big?

If dealing with a graph problem, this could mean:

– The instance is globally big. For example, this means that the
instance has many vertices (compared to k).

– The instance is locally big. For example, this means that the
instance has vertices of high degree (compared to k).

Then, one can often conclude that some properties must be true, say,
certain vertices must go into a cover set we are going to construct.
Conversely, if an instance is not big (in whatever sense), this often
gives at least a hint how to proceed to actually find a set of rules that
provides a kernelization. For example, in the case of vertex cover,
Buss’ rule is a simple result of the idea of thinking (locally) big. Observe
that Buss’ rule on its own does not provide a complete kernelization,
as there could be lots of isolate vertices left over. Here, the next idea
comes into play (and is kind of complimenting):

• Think small : What happens if an instance is very small?

– If the instance is globally small? Well, this is a rephrasement of
the idea of kernelization itself, so usually then an instance can be
solved by brute force.

– The instance is locally small. For example, this means that the
instance has vertices of low degree (compared to k).

The consideration of locally small instances often gives particularly
easy if not trivial reduction rules. For example, in the case of vertex
cover, we can state a rule that simply deletes isolates.

Having thought both big and small, it is often possible to obtain a
kernelization lemma of the following form:
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Lemma 6.61 (schematic kernelization lemma) If a problem instance
is neither (locally) small nor locally big, it is globally small, i.e., of size
limited by f(k).

For instance, Buss’ rule and the isolates rule provide a quadratic kernel
for vertex cover.

In general especially the idea of thinking locally small or big turns
out to be possibly surprisingly fruitful, so let us classify this idea a
bit further. The general idea can be phrased as finding a small set of
elements C such that one of the following possibilities is true:

1. All (optimal) solutions are containing C.

Such rules can be useful for purposes of enumeration or counting
(see Section 8.2).

A typical example here is again Buss’ reduction rule: if v is a
vertex of degree deg(v) > k, then v must go into any vertex cover
of size at most k.

2. Some (optimal) solutions are containing C.

An example of this type can be also found with vertex cover,
namely the crown rule: it might well be that there are minimal
vertex covers that contain vertices from the crown, but at least
one minimum vertex cover does not contain any crown vertices at
all.

From the point of view of the classification we are discussing here, the
VC reduction rule formed according the often quoted Theorem of Nemhauser
and Trotter has undergone a kind of metamorphosis: in its original form
(see Thm. 4.32), it was only clear that some minimum cover contains C =
CAND
BP (G) (in the notation of that theorem), while only recently that theorem

got sharpened: all minimum covers contain C, see Remark 4.37.
Usually, C actually forms a problem kernel, but this need not be the case;

for what we said above, it would be sufficient to have the set C singled out;
it might still be useful to keep some other parts of the instance for checking
purposes.

In this more general form, the search tree development technique known
as forming candidate sets C is quite similar. What is the decisive property of
a candidate set (for a decision problem)? It should be the case that there is
some (optimal) solution that contains at least one of the candidates. For the
purposes of enumeration or counting (discussed in Chap. 8), we would need a
stronger form of candidate set: all (optimal) solutions should contain at least
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one of the candidates. Whenever we found such a candidate set and when
this set is small (in the sense that its size only depends on the parameter or,
even better, is only bounded by a constant), then we can “afford” branching
according to all possibilites. Notice that some of our most demanding results
are in fact theorems that bound the size of a (natural) candidate set.

In the next phase of algorithm design, one should look for improvements
of the current algorithm. This could

• either be done by a computer-aided approach to look for further im-
provements on the search tree part, as developed in [211, 161],

• or it is “manually” done. We have seen several examples of the latter
methodology in this Habilitationsschrift.

We have in passing discussed another classification of search tree devel-
opment in the preceding two chapters:

• In what we called the bottom-up approach to search trees, the branch-
ing on candidate sets is refined by looking more deeply into local situ-
ations. The complicated thing is then to prove the correctness of the
resulting algorithm, i.e.: are still all cases covered by the suggested
branching? The computer-aided approach mentioned above tries to
mechanize the search for better branchings according to this method-
ology.

• In a suitably tweaked top-down analysis, we try to keep the algorithm
structure simple, but we add further reduction rules and branch ac-
cording to heuristic priorities (notice that the sequence of branchings
on candidate sets bears a potential source of nondeterminism). The
tricky part is then to prove the claimed bounds on the search tree size.



Chapter 7

Graph parameters

In this chapter, we discuss parameterizations that qualify, as discussed in
Chap. 3, as implicit internal namely, parameters like treewidth, branchwidth,
etc. as defined for graphs. However, they are of utmost interest for the
development of efficient parameterized algorithms:

1. When parameterized with say the treewidth of a graph, problems on
graphs tend to be (to say the least) parameterized tractable by means
of dynamic programming techniques. We will refer to such algorithms
(e.g.) as treewidth-based algorithms.

2. Often, relations between the actual entity of a graph we are interested
in and the (tree)width of a graph can be shown, and this relation can
be turned into an algorithm that uses the treewidth-based algorithm
mentioned in 1.

3. Sometimes, practice shows that certain graphs simply are of bounded
treewidth, which might even lead to problems that are efficiently solv-
able in the classical, non-parameterized sense. A nice example can be
found in [369], where the treewidth of graphs induced by structured
programs is investigated.

4. Another “non-standard application” is exhibited in [195, 215, 217],
where M. Grohe and his coauthors showed (amongst others) that cer-
tain model-checking and database problems become tractable when
viewed from the angle of treewidth. Connection to logical problems
are also discussed in [179, 286].

It is also worthwhile mentioning that recently structural connections be-
tween the treewidth of a graph and certain properties of the so-called Sherali-
Adams reformulation procedure for 0/1 integer programs was obtained [48];

299
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such insights might help link treewidth-based algorithms with another, prac-
tically very successful technique for solving hard problems, namely (integer)
linear programming (ILP).

In order to keep this exposition short, we will mainly focus on one of
the mentioned graph parameters, namely treewidth. Similar techniques and
comments apply to other parameters, as well. More details on further pa-
rameters can be found in the following papers:

branchwidth The use of branchwidth (as opposed to treewidth) for ob-
taining parameterized algorithms was initiated by Fomin and Thilikos
[192, 189]. Admittedly, the most efficient parameterized algorithms for
vertex cover and for dominating set on planar graphs are actu-
ally based on branchwidth. However, we still assume that treewidth is
a better known and (arguably) easier understandable notion, so that
we focus on that parameter here.

local treewidth The notion of treewidth has be generalized towards a local
variant (which basically means that bounded treewidth should hold
in any neighborhood). This notion has been under extensive study
from the parameterized algorithmics community in recent years, see
[121, 122, 112, 191, 216].

cliquewidth The notion of cliquewidth also allows for efficient algorithms;
however, besides being a natural implicit internal parameter, we don’t
know of any applications that use cliquewidth (replacing treewidth or
branchwidth) to obtain parameterized algorithms for problems that are
parameterized in the “usual way.” The corresponding body of literature
is also quite impressive; the foundations were laid by Courcelle with
his series of (now 16) papers starting with “The monadic second-order
logic of graphs” see [102, 103] for the latest published entries. Further
rather recent works that may serve for a start are: [55, 104, 105]. One of
the drawbacks is probably that there is no known efficient recognition
algorithm for graphs of bounded cliquewidth. 1

For a nice source on graphs of bounded cliquewidth, see [Chapter 11,
Site 5]. The notions of treewidth, of bandwidth, and of cliquewidth
have been recently linked for some special graph classes in [280].

1There seems to be a recent break-through in [316] where an algorithm is presented that
either shows that the given graph does not have cliquewidth k or it gives a decomposition
that shows that the graph has at most cliquewidth 2O(k). This might make cliquewidth
amenable to the parameterized approach.
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outerplanarity Due to the deep connections between outerplanarity and
treewidth (as explained below), we won’t elaborate on specific dynamic
programming algorithms; details on such dynamic programming for
vertex cover can be found in the seminal work of Baker [32]. For
dominating set, a specific algorithm (supplementing the paper of
Baker) has been designed [253] that is useful for better parameterized
algorithms for planar dominating set.

Let us furthermore two concepts that are very much related to what we
are presenting in this chapter.

bidimensionality The recent sequence of papers of Demaine, Fomin and
their coauthors have provided solid grounds to see bidimensionality as
a further basic technique in this area. We can only refer the interested
reader to these papers here [112, 117, 120, 118, 191].

non-planar graphs We will mostly consider planar graphs in what follows.
However, there are many related graph classes that can be treated
alike, as has been exposed in many recent papers. The following list is
probably far from exhaustive: [121, 117, 113, 115, 120, 119].

This chapter is organized as follows: In Section 7.1, we explain the notion
of treewidth. How this can be used to obtain fixed-parameter results is
exhibited in Sec. 7.2. We then show in Sec. 7.3 how treewidth relates to the
structural properties of planar graphs. Section 7.4 contains a more concrete
example, a(nother) parameterized algorithm for planar dominating set.
The next two sections, Sec. 7.5 and 7.6, show more general techniques how
the ideas presented so far can be used to obtain parameterized algorithms
of the form O∗(c

√
k). In Sec. 7.7, we once more return to PDS, exhibiting

how the involved (huge) constants can be significantly lowered. Section 7.8
explains how these techniques can be used for related problems like red-blue
dominating set and face cover. We conclude with a section shortly
discussing FPT results for graph classes different from planar graphs.

A nice presentation of most results that are exhibited in this chapter is
also contained in J. Albers PhD dissertation [7].

7.1 Treewidth

We are now going to study the basic notions of a tree decomposition, and
based thereupon, of the treewidth of a graph. These notions were originally
introduced by Robertson and Seymour along their way of developing graph
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minor theory, see [340, 341], although basically the same notions have been
independently developed by others under the name of partial k-trees [27, 363,
364, 365] and algorithms for recursive graph classes [58]. More recent surveys
include [54, 53, 261].

Most of the results of this section (and the subsequent ones) are, more
concretely, from [8, 14, 15, 179].

Definition 7.1 Let G = (V,E) be a graph. A tree decomposition of G is a
pair 〈{Xi | i ∈ I}, T 〉, where each Xi is a subset of V , called a bag, and T is
a tree with the elements of I as nodes. The following three properties must
hold:

1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;

3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then
Xi ∩Xk ⊆ Xj.

The width of the tree decomposition 〈{Xi | i ∈ I}, T 〉 equals

max{|Xi| | i ∈ I} − 1.

The treewidth of G is the minimum k such that G has a tree decomposition
of width k, also written tw(G) for short.

A tree decomposition with a particularly simple structure is given by the
following definition.

Definition 7.2 A tree decomposition 〈{Xi | i ∈ I}, T 〉 with a distinguished
root node r is called a nice tree decomposition if the following conditions are
satisfied:

1. Every node of the tree T has at most 2 children.

2. If a node n has two children n′ and n′′, then Xn = Xn′ = Xn′′ (in this
case n is called a join node).

3. If a node n has one child n′, then either

(a) |Xn| = |Xn′| + 1 and Xn′ ⊂ Xn (in this case n is called an insert
node or an introduce node), or

(b) |Xn| = |Xn′| − 1 and Xn ⊂ Xn′ (in this case n is called a forget
node).
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Observe that each node in a nice tree decomposition is either a join node,
an insert node, a forget node, or a leaf node. In [54], it is—in addition—
required for a nice tree decomposition that each leaf node has a bag of size
one associated to it; from the point of view of presentation of algorithms, this
might further simplify the exposition, since the initialization action in leaf
nodes would become completely trivial. More precisely, the leaf node action
required by our somewhat broader definition in a leaf node with bag X can
be replaced by a sequence of at most |X| nodes, one of them (the new leaf)
having a bag containing only one element and the other nodes being insert
nodes. Conversely, one could also require that the bag that is associated to
the root is empty. Then, the final value of the computation can be trivially
looked up from the table of the root.

It is not hard to transform a given tree decomposition into a nice tree
decomposition. More precisely, the following result holds (see [261, Lemma
13.1.3])

Lemma 7.3 Given a tree decomposition of a graph G that has width k and
O(n) nodes, where n is the number of vertices of G. Then, we can find a
nice tree decomposition of G that has also width k and O(kn) nodes in time
O(kn).

Related to the notion of a tree decomposition is the following one:

Definition 7.4 Let G = (V,E) be a graph. A path decomposition of G is
a pair 〈{Xi | i ∈ I}, T 〉 such that 〈{Xi | i ∈ I}, T 〉 is a tree decomposition
of G where T is a path.

Accordingly, the pathwidth of G is the minimum k such that G has a path
decomposition of width k.

Quite recently, an alternative notion—persistence— was coined [139]; how-
ever, recognition of graphs of persistence pathwidth bounded by k is param-
eterized intractable (in contrast to what we know about the corresponding
notions based on treewidth), so that we do not elaborate on this notion here,
although it might actually better capture the intuition of path-similarity that
is behind the notion of pathwidth (as also discussed in other places in this
book).

Let us exemplify these notions with some examples:

Example 7.5 Let us consider the n × n grid graph. Formally, this graph
Gn = (Vn, En) can be defined as follows:

• Vn = {(i, j) | 1 ≤ i, j ≤ n}. Vn can be viewed as indices of a square-like
grid.
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(a) The grid graph G4. (b) Indicating a path decom-
position of G4.

Figure 7.1: Grids: graphs with pathwidth O(
√

|V |).

• En 3 {(i, j), (i′, j ′)} if one of the following condition is true:

– i′ = i+ 1 and i < n and j ′ = j, OR

– j ′ = j + 1 and j < n and i′ = i.

There are no other edges in En than the ones described.

The graph G4 is shown in Fig. 7.1(a).
How does a tree decomposition of G4 look like? In actual fact, we are

going to describe a path decomposition of that graph in what follows. We will
use O(|Vn|) = O(n2) many bags. We “walk” along our graph in a column-
wise fashion, starting with the first column, and within each column, in a
row-wise manner, starting with the first row. This way, we visit the vertices
of the graph in the following way:

(1, 1), (2, 1), . . . , (n, 1), (1, 2), (2, 2), . . . , (n, 1), (n, 2), . . . , (n, n).

Hence, we can speak about the ith vertex xi that we visit; for instance, (2, 2)
is the (n + 2)nd visited vertex. Let now Xi, 1 ≤ i ≤ n2 − n collect all
vertices that are visited in steps i, . . . , i + n. Considering the path P given
by X1, X2, . . . , Xn2−n in that order, the reader may verify that

〈
{Xi | 1 ≤ i ≤ n2 − n}, P

〉
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is a path decomposition of Gn. Hence, both the pathwidth and the treewidth
of Gn are upperbounded by n. Let us assume in the following that X1 is the
root of this special tree.

In the concrete example of G4, we outlined the first four bags by color-
coding in Fig. 7.1(b), coloring them, in sequence, blue, red, and green.

Observe that this tree decomposition is not a nice tree decomposition.
But it is an easy task to transform the given one into a nice one: just intro-
duce the bags X ′

i = Xi \ {xi} inbetween Xi and Xi+1.
This makes the node corresponding to Xi an insert node (since X ′

i ⊆ Xi

and X ′
i is the child of Xi), except the very last Xi, and X ′

i is a forget node
(since X ′

i ⊆ Xi+1 and Xi+1 is a child of X ′
i).

(a) The grid graph G′

4 with
diagonals.

(b) Indicating a path decom-
position of G′

4.

Figure 7.2: Grids with diagonals: graphs with pathwidth O(
√
|V |).

Example 7.6 Let us consider the n×n grid graph with diagonals. Formally,
this graph G′

n = (Vn, E
′
n) can be defined as follows:

• Vn = {(i, j) | 1 ≤ i, j ≤ n}. Vn can be viewed as indices of a square-like
grid.

• E ′
n 3 {(i, j), (i′, j ′)} if one of the following condition is true:

– i′ = i + 1 and i < n and j ′ = j, OR

– j ′ = j + 1 and j < n and i′ = i, OR

– i′ = i + 1 and i < n and j ′ = j + 1 and j < n, OR
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– i′ = i+ 1 and i < n and j ′ = j − 1 and j > 1.

There are no other edges in E ′
n than the ones described.

The graph G′
4 is shown in Fig. 7.2(a).

How does a tree decomposition of G′
4 look like? Two bags of a possible

path decomposition are shown in Fig. 7.2(b). As can be seen, the bags are
one element larger than in the previous, similar example. The reason is
that otherwise the diagonal connections {(i, j), (i + 1, j + 1)} would not be
contained in any bag. The formal details of the indicated path decomposition
are left to the reader. Anyways, the upperbound of the treewidth is again
linearly growing with n, i.e., with the square root of the number of vertices
of G′

n.

Grid graphs and their “relatives” are not arbitrarily chosen as examples
for tree decompositions; the papers on bidimensionality mentioned above,
along with [339] can be also read as showing that grid graphs are—in a
sense—the essential examples of planar graphs. As we will see in Sec. 7.3,
in fact all planar graphs enjoy the property of having a treewidth limited
essentially by the square root of the number of its vertices.

Let us remark (once more) the relation between pathwidth and other
graph parameters like cutwidth (see Chap. 3). From an algorithmic per-
spective, the efficient computability of cutwidth in bounded degree graphs of
small treewidth established in [367] is remarkable in this respect.

Let us close our list of examples with two examples that appear to be less
symmetric than the previous ones:

Figure 7.3: An grid with some additions in blue.

Example 7.7 Fig. 7.3 basically shows again the grid graph G4 (drawn in
black) together with some “additions”, drawn in blue. These additions are
attached to the G4 by either a vertex or an edge. This means that, whatever
tree decomposition we have found for G4, we can modify it to get a valid tree
decomposition of the whole graph as follows:
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• Find a bag that contains the attachment vertex or the attachment edge.

• Connect this bag to a bag that only contains the attachment vertex or
edge.

• From this starting point, attach a tree decomposition of the two parts
of the blue addition.

It is an easy exercise to see that the overall width of the tree decomposition
is not increased by the chosen attachments. Observe that we actually get a
tree decomposition this way, not (again) a path decomposition.

Finally, let us turn to the concrete problem to find a nice tree decompo-
sition.

Figure 7.4: A modified grid.

Example 7.8 Let us have a look at Fig. 7.4. It shows a graph G whose
vertices can be addressed, similar to the grid G4, by pairs of numbers (i, j),
with 1 ≤ i, j ≤ 4. It is actually a simplification of the graph considered in
the previous example.

How would a nice tree decomposition of width two look like? The two
leaf nodes would correspond to bags drawn in blue and in yellow in Fig. 7.4.
For example, the “blue leaf” would contain the bag with the vertices (1, 1),
(1, 2), and (2, 1) of G. The sequence of ancestor nodes could contain the
following vertices in their corresponding bags:

• (1, 1), (1, 2);

• (1, 1), (1, 2), (1, 3);

• (1, 2), (1, 3);
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• (1, 2), (1, 3), (1, 4);

• (1, 3), (1, 4);

• (1, 3), (1, 4), (2, 3);

• (1, 4), (2, 3);

• (1, 4), (2, 3), (2, 4);

• (2, 3), (2, 4);

• (2, 3), (2, 4), (3, 4).

The last mentioned bag is colored green in the figure. The “yellow leaf” would
contain the bag with the vertices (3, 1), (3, 2), and (4, 2) of G. The sequence
of ancestor nodes could contain the following vertices in their corresponding
bags:

• (3, 2), (4, 2);

• (3, 2), (4, 2), (3, 3);

• (4, 2), (3, 3);

• (4, 2), (3, 3), (4, 3);

• (3, 3), (4, 3);

• (3, 3), (4, 3), (4, 4);

• (3, 3), (4, 4);

• (3, 3), (4, 4), (3, 4);

• (3, 3), (3, 4);

• (3, 3), (3, 4), (2, 3);

• (3, 4), (2, 3);

• (2, 3), (2, 4), (3, 4).

In our case, the tree decomposition can be either interpreted as a path decom-
position or as a “true” tree decomposition, where a possible root is colored
green.
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7.2 Dynamic programming

Let us show how to devise dynamic programming algorithms for graphs that
are given together with a suitable tree decomposition. More general scenarios
for developing treewidth-based algorithms are exposed in [27, 134, 225, 364,
363, 365].

We shall focus on the following four problems:

1. vertex cover: In fact, since we are not putting emphasis on the stan-
dard parameter, basically the same dynamic programming approach
solves independent set and clique, as well.

2. dominating set: While the dynamic programming solution of ver-
tex cover is close to trivial, this is no longer the case with domi-
nating set; in fact, the constants claimed in [9] were flawed due to
a misreading of earlier published results, and the corrections (as ex-
plained below) published in the journal version [8] of that extended
abstract contain ideas that were used in other dynamic programming
scenarios, as well [193].

3. Roman domination: We consider this problem, since it is—first of
all—one of the seemingly uncountable number of variations of domi-
nation problems. Secondly, it has a nice story coming with it; namely,
it should reflect the idea of how to secure the Roman Empire by po-
sitioning the armies (legions) on the various parts of the Empire in a
way that either a specific region r is also the location of at least one
army or one neighboring region r′ has two armies, so that it can afford
sending one army to the region r without an army (in case of an at-
tack) without loosing the capability to defend itself (since the second
army located in r′ will stay there). Thirdly, the dynamic programming
algorithm previously published in [318] appears to be incorrect.

4. dominating set of queens: Here, we will see how we can also
establish an efficient solution to the original problem (i.e., not a problem
that is “re-parameterized” by treewidth) through a treewidth-based
algorithm.

We have seen all the problems in further sections; let us briefly remind
the possibly least known of these problems, Roman domination:
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Problem name: Roman domination (ROMAN)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a Roman domination function R such that∑

x∈V R(x) ≤ k?

Let us first link Roman domination with dominating set:

Lemma 7.9 If D ⊆ V is a Roman domination set for G = (V,E) (with
respect to a Roman domination function R, i.e., D = DR), then D is also a
dominating set. Moreover, if

∑
x∈DR

R(x) ≤ k, then |D| ≤ k.

Of course, in the context of this chapter, we will be also interested in an
alternative parameterization, namely a parameterization by the treewidth of
the underlying graph.

More specifically, a typical problem of interest would be the following one:

Problem name: vertex cover, parameterized by
treewidth (VCTW)
Given: A graph G = (V,E) together with some tree decomposition
Parameter: a positive integer k that equals the width of the tree
decomposition
Output: What is the size of a minimum vertex cover C ⊆ V ?

Theorem 7.10 An instance G = (V,E) of vertex cover, parameter-
ized by treewidth can be solved in time O(2tw(G)|V |).

Proof. Recall that we can assume that the graph G is given by a nice tree
decomposition with underlying tree T . Arbitrarily, we select a root r in T .

We will maintain a table for each node n in this decomposition. The rows
of this table can be viewed as corresponding to mappings α : X → {0, 1},
where X is the bag that is associated to the node n. The value

∑
x∈X α(x)

can interpreted as being the number of vertices that go into the vertex cover
from bag X, assuming the particular assignment α. In other words, each
vertex x can carry two values, 1 and 0, reflecting that x is going into the
vertex cover (if α(x) = 1) or not (if α(x) = 0).

Let T [n] be the subtree of T that contains n and all nodes in T that
belong to the component of T − n to which r does not belong. Moreover,
G 〈n〉 is the subgraph of G that is induced by the union of all bags that
correspond to nodes of T [n].

In the table for n, we store
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Algorithm 63 A schematics for algorithms based on a given tree decompo-
sition.
Input(s): a graph G, together with a tree decomposition
Output(s): Whatever to be solved. . .

Find a nice tree decomposition TD = 〈{Xi | i ∈ I}, T 〉 of G.
Perform a depth-first search along T , choosing an arbitrary root r for T
as starting point; i.e., call: dfs(G, TD, r).
Read off a solution from the table that belongs to r.

subroutine dfs(G, TD, n)
if current node n is a leaf then

perform leaf node actions and return corresponding table
else if current node n has one child n′ then

tablen′ :=dfs(G, TD, n′)
if n is forget node then

perform forget node actions and return corresponding table, based on
tablen′

else
perform insert node actions and return corresponding table, based on
tablen′

end if
else
{Current node n has two children n′ and n′′}
tablen′ :=dfs(G, TD, n′)
tablen′′ :=dfs(G, TD, n′′)
perform join node actions and return corresponding table, based on
tablen′ and on tablen′′

end if

• either the number that corresponds to the size of a minimum vertex
cover of G 〈n〉 that is consistent with a particular assignment α on the
bag X associated to n,

• or we store ∞ in the case that there is no way to construct a valid
vertex cover assuming the assignment α.

Formally, the fact that the tables constructed as described below verify these
properties can be easily shown by tree induction following the algorithm
details that follow; the leaf node description would correspond to the induc-
tion basis, and the other three cases cover the induction step. Finally, this
then implies that we can determine the size of a minimum vertex cover of
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G = G 〈r〉 by one final sweep through the table that has been computed for
the root node r.

In a nice tree decomposition, we have to specify how to deal with the
following four situations:

leaf nodes At a leaf node with bag X, we build up a table that stores,
for all mappings α : X → {0, 1}, the value

∑
x∈X α(x), interpreted as

being the number of vertices that go into the vertex cover, assuming
the particular assignment α. In the case that a particular α assigns 0 to
to neighboring vertices x, y ∈ X, ∞ will be stored in the corresponding
table entry.

forget nodes We have two bags: the parent bag X we currently work on,
and an already processed child node with associated bag Y with a
corresponding table tableY . By definition, Y ∪ {x} = X. Consider a
specific mapping α : X → {0, 1}. The value αY of the restriction of α
to Y can be looked up in tableY . If α(x) = 0, the value of α in tableX
is αY iff, for all vertices z ∈ N [x] ∩X, α(z) = 1; otherwise, the value
of α would be ∞. If α(x) = 1, the value of α in tableX is αY plus
one. Observe that a table entry ∞ in tableX is possible for a specific
mapping α if either tableY (αY ) = ∞ or α assigns zero to all vertices
from N [x] ∩X.

insert nodes We have again two bags: the parent bag X we currently work
on, and an already processed child node with associated bag Y with a
corresponding table tableY . By definition, X ∪ {x} = Y . Consider a
specific mapping α : X → {0, 1}. α can be extended in two ways to a
mapping on Y : αx=i is identical to α on X and defines αx=i(x) = i for
i = 0, 1. The value of α that should be put into tableX is then

min{tableY (αx=0), tableY (αx=1)}

join nodes We have now three nodes: the parent node n and the two chil-
dren nodes n′ and n′′. To all these nodes, the same bag X is associated.

Since the validity of the assignments was already tested in the children
nodes, we can compute the table entry tablen for assignment α : X →
{0, 1} from the corresponding tables tablen′ and tablen′′ for the same
assignment as follows:

tablen(α) = tablen′(α) + tablen′′(α) −
∑

x∈X
α(x).
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Observe that if α is invalid for one of the children n or n′, then at least
one of the table entries tablen′(α) or tablen′′(α) is ∞, and this will be
inherited to tablen(α) by the usual computation rules.

How to combine these ingredients within a general schematics for solving tree
decomposition based algorithms is shown in Alg. 63. The claimed running
time for vertex cover, parameterized by treewidth follows from the
fact that there are only O(|V |) many tree nodes to be processed according
to Lemma 7.3 and that for each node, each of the at most 2tw(G) many table
entries incurs only a constant processing time (assuming sufficiently quick
access to the table entries in the children nodes’ tables).

Let us illustrate this algorithm for computing a minimum vertex cover by
continuing with Example 7.8.

Example 7.11 Let us start with listing a small table that contains all pos-
sible choices for the leaf node whose bag is colored blue in Fig. 7.4:

(1, 1) (1, 2) (2, 1) table
0 0 0 ∞
0 0 1 ∞
0 1 0 ∞
0 1 1 2
1 0 0 ∞
1 0 1 2
1 1 0 2
1 1 1 3

Its parent node is a forget node and contains the bag with the vertices (1, 1)
and (1, 2). The accordingly smaller table looks as follows:

(1, 1) (1, 2) table
0 0 ∞
0 1 2
1 0 2
1 1 2

This table was obtained from the previous one basically by minimizing over
two neighboring rows. The next parent node to be processed has the bag
with the vertices (1, 1), (1, 2), and (1, 3) and is hence an insert node, followed
by another forget node.
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(1, 1) (1, 2) (1, 3) table
0 0 0 ∞
0 0 1 ∞
0 1 0 2
0 1 1 3
1 0 0 ∞
1 0 1 3
1 1 0 2
1 1 1 3

(1, 2) (1, 3) table
0 0 ∞
0 1 3
1 0 2
1 1 3

Adding (1, 4) gives us again first an insert and then a forget node:

(1, 2) (1, 3) (1, 4) table
0 0 0 ∞
0 0 1 ∞
0 1 0 3
0 1 1 4
1 0 0 ∞
1 0 1 3
1 1 0 3
1 1 1 4

(1, 3) (1, 4) table
0 0 ∞
0 1 3
1 0 3
1 1 4

Adding (2, 3) gives us again first an insert and then a forget node; not to loose
sight of the optimal solutions, we start adding them in one extra column:

(1, 3) (1, 4) (2, 3) table
0 0 0 ∞
0 0 1 ∞
0 1 0 ∞
0 1 1 4
1 0 0 3
1 0 1 4
1 1 0 4
1 1 1 5

(1, 4) (2, 3) table a corresponding solution
0 0 3 {(1, 1), (1, 2), (1, 3)}
0 1 4 {(1, 1), (1, 2), (1, 3), (2, 3)}
1 0 4 {(1, 1), (1, 2), (1, 3), (1, 4)}
1 1 4 {(1, 1), (1, 2), (2, 3), (1, 4)}

The final change in this branch is dealing with adding (2, 4) and then (3, 4)
to our considerations:

(1, 4) (2, 3) (2, 4) table
0 0 0 ∞
0 0 1 4
0 1 0 ∞
0 1 1 5
1 0 0 ∞
1 0 1 5
1 1 0 4
1 1 1 5

(2, 3) (2, 4) table
0 0 ∞
0 1 4
1 0 4
1 1 5

(2, 3) (2, 4) (3, 4) table
0 0 0 ∞
0 0 1 ∞
0 1 0 4
0 1 1 5
1 0 0 ∞
1 0 1 5
1 1 0 5
1 1 1 6
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The minimal solutions we might store in addition are, in the sequence of
non-∞ table entries:

• {(1, 1), (1, 2), (1, 3), (2, 4)},

• {(1, 1), (1, 2), (1, 3), (2, 4), (3, 4)},

• {(1, 1), (1, 2), (1, 3), (2, 3), (3, 4)},

• {(1, 1), (1, 2), (1, 3), (2, 3), (2, 4)},

• {(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}.

We can make similar considerations starting with the yellow-colored bag
as pertaining to the other leaf node. This would first affect the vertices (3, 1),
(3, 2), (4, 2), and then (3, 3):

(3, 1) (3, 2) (4, 2) table
0 0 0 ∞
0 0 1 ∞
0 1 0 ∞
0 1 1 2
1 0 0 1
1 0 1 2
1 1 0 2
1 1 1 3

(3, 2) (4, 2) table
0 0 1
0 1 2
1 0 2
1 1 2

(3, 2) (4, 2) (3, 3) table
0 0 0 ∞
0 0 1 2
0 1 0 ∞
0 1 1 3
1 0 0 2
1 0 1 3
1 1 0 2
1 1 1 3

Now, the vertex (4, 3) comes into play:

(4, 2) (3, 3) table
0 0 2
0 1 2
1 0 2
1 1 3

(4, 2) (3, 3) (4, 3) table
0 0 0 ∞
0 0 1 3
0 1 0 ∞
0 1 1 3
1 0 0 ∞
1 0 1 3
1 1 0 3
1 1 1 4

(3, 3) (4, 3) table
0 0 ∞
0 1 3
1 0 3
1 1 3

Possible solutions to the three non-∞ table entries are, in this sequence:

• {(3, 1), (3, 2), (4, 3)},

• {(3, 2), (4, 2), (3, 3)},

• {(3, 1), (3, 3), (4, 3)}.
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Then, vertices (4, 4) and (3, 4) are treated:

(3, 3) (4, 3) (4, 4) table
0 0 0 ∞
0 0 1 ∞
0 1 0 3
0 1 1 4
1 0 0 ∞
1 0 1 4
1 1 0 3
1 1 1 4

(3, 3) (4, 4) table
0 0 3
0 1 4
1 0 3
1 1 4

(3, 3) (4, 4) (3, 4) table
0 0 0 ∞
0 0 1 4
0 1 0 ∞
0 1 1 5
1 0 0 ∞
1 0 1 4
1 1 0 4
1 1 1 5

The non-∞ entries of the following table correspond to minimal solutions as
listed below:

• {(3, 1), (3, 2), (4, 3), (3, 4)},

• {(3, 1), (3, 2), (4, 3), (4, 4)},

• {(3, 1), (3, 2), (4, 3), (3, 4), (4, 4)}.

Then, we have to integrate (2, 3):

(3, 3) (3, 4) table
0 0 ∞
0 1 4
1 0 4
1 1 5

(3, 3) (3, 4) (2, 3) table
0 0 0 ∞
0 0 1 ∞
0 1 0 ∞
0 1 1 5
1 0 0 4
1 0 1 5
1 1 0 5
1 1 1 6

(3, 4) (2, 3) table
0 0 4
0 1 5
1 0 5
1 1 5

Possible solutions to the table entries are, in this sequence:

• {(3, 1), (3, 3), (4, 3), (4, 4)},

• {(3, 1), (3, 3), (4, 3), (4, 4), (2, 3)},

• {(3, 1), (3, 3), (4, 3), (4, 4), (3, 4)},

• {(3, 1), (3, 2), (4, 3), (3, 4), (2, 3)}.

Adding (2, 4) gives the following table, to which side we put the table
values that we obtained in the other branch, as well as the final values of
the root of this tree decomposition; we use color-coding to denote these
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Figure 7.5: An optimal vertex cover of the modified grid.

branches. Therefore, we get as optimal size for a vertex cover: eight, and
there are obvious various different solutions attaining this value.

(2, 3) (2, 4) (3, 4) table table table a possible minimal solution

0 0 0 ∞ ∞ ∞ —
0 0 1 ∞ ∞ ∞ —
0 1 0 5 4 8 L1

0 1 1 6 5 9 —
1 0 0 ∞ ∞ ∞ —
1 0 1 5 5 8 L2

1 1 0 6 5 9 —
1 1 1 6 6 9 —

A possible optimal solution can be seen in Fig. 7.5; the red vertices form a
vertex cover. From the table, we can in fact read off two alternative minimum
solutions:

L1 = {(1, 1), (1, 2), (1, 3), (3, 1), (3, 3), (4, 3), (4, 4), (2, 4)}
L2 = {(1, 1), (1, 2), (1, 4), (2, 3), (3, 4), (3, 1), (3, 2), (4, 3)}

Observe that the solution given in Fig. 7.5 is different from the ones
whose computation is sketched in the tables. The reason is that in the
table computations, sometimes minimal solutions are “forgotten” if there
are other minimal solutions that are no worse when looked at them from the
perspective of the corresponding “interface bag.”

Let us now turn to dominating set: is it (again) sufficient to only
store two possible “states” per graph vertex, i.e., being in the dominating
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set or not? Unfortunately, this is not the case, since along the course of a
treewidth-based algorithm, we may encounter vertices in a bag that are not in
the dominating set according to the specific assignment under consideration
in the present bag, nor they are dominated; however, they might be already
“happy” since they have already been dominated according to a previous
assignment (that has been already “forgotten” within the present bag) or
they are still “unhappy”, i.e., they still have to be dominated by vertices
that are not yet visible in the current bag. This basically means that there
are now three states, say {1, 0, 0̂}, where the assignment of 0 means that
the vertex is already dominated at the current stage of the algorithm, and 0̂
means that, at the current stage of the algorithm, we still ask for a domination
of this vertex.2 We ask the reader to fill in the details for the four different
situations of a treewidth-based algorithm.

Let us only point to the following additional complication when dealing
with join nodes: if we update an assignment that maps vertex x onto 0, it
is not necessary that both children assign 0 to x; it is sufficient that one of
the two branches does, while the other assigns 0̂. So, while it is clear that in
the initialization phase and when processing insert or forget nodes, O(3tw(G))
time is needed to perform the other node actions, a direct implementation of
what we said in the previous sentence would amount in spending O(9tw(G))
time for the join node processing. How this could be sped up to O(4tw(G))
is explained in [8]. However, observe that in any case here a small path
decomposition offers an edge over a tree decomposition of the same size,
since then no join nodes would have to be processed.

Let us explain the mentioned O(4tw(G)) complexity for the join nodes a
bit more in detail, deviating in our explanation from [8] in some details. The
basic trick can be boiled down to the reinterpretation of the assignment of 0̂
to vertex x: we assume that we don’t know if x has already been dominated
at the current stage of the algorithm. This means that, whenever we have to
assignments α and α′ such that we can obtain α from α′ by replacing some
0 by 0̂, then the table value (this time denoting the number of vertices that
have been put into the dominating set at this stage of the algorithm) of α
is greater than or equal to the table value of α′. Therefore, we only need
to distinguish two cases whenever we have a 0̂ assignment for some vertex
x in the parent node: either the left child assigns 0̂ to x and the right child
assigns 0 to x, or left child assigns 0 to x and the right child assigns 0̂ to x.
Hence, we can compute the number of all necessary checks for assignments to

2This necessity of two states for a vertex not being in the dominating set has been
overlooked in [318], so that the running times that are claimed in that paper for Roman
domination are better than ours as explained below.
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k vertices (in the parent node) by the following recursion, where we assume
to have chosen a specific vertex x:

• either 1 or 0 is assigned to x; then, the same assignment must have
been made in the two children;

• or 0̂ is assigned to x; then, we have two possible assignments in the
child nodes: 0 to x in the left child and 0̂ to x in the right child or vice
versa.

In each case, we can now assume we have k−1 vertices to which values must
be assigned. All in all, for the number T (k) of situations we have to check to
compute the values in a parent node with k vertices, we have obtained the
recursion T (k) = 4T (k − 1), where naturally T (0) = 1 ends the recursion.
Hence, T (k) = 4k as claimed.

Theorem 7.12 minimum dominating set, parameterized by the treewidth
tw(G) of the input graph G, can be solved in time O(4tw(G)|V (G)|).

A graph-structural reason for dominating set being more difficult than
vertex cover3 can be found in the fact that, whenever a graph G can
be covered by k vertices, then any subgraph can be covered by at most k
vertices; yet, there may be subgraphs of a graph G that can be dominated
by k vertices that need more vertices for domination; such phenomena were
recently studied in detail in [229].

In the case of Roman domination, a similar problem occurs within
the join nodes. Moreover, notice that we now have two different states for
a vertex that is in the dominating set, depending on whether it hosts one
or two armies. Again, we leave details to the reader; however, the naive
O(16tw(G)) algorithm should be in principle clear from what we said. Notice
again that this algorithm can be substantially improved by the techniques
we just mentioned. Namely, assume that we assign one out of {0, 0̂, 1, 2}
to each vertex in a bag. The semantics of 0 an 0̂ is not changed. The
assignments 1 and 2 count the number of armies put on the corresponding
vertex. Observe that a vertex can be only dominated by a neighbor vertex
to which we assigned a 2. Using the same tricks as explained in the previous
case, we get the following recursion for the number T (k) of situations we
have to check to compute the values in a parent node with k vertices:

3an observation that cannot be only seen in the more complex dynamic programming
for the treewidth-bounded case, but also in the fact that on general graphs dominating
set is parameterized intractable, yet vertex cover is in FPT , vertex cover enjoys
a smaller kernel than planar dominating set etc.
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• We get three T (k− 1)-branches for assigning 0, 1, 2 to the parent node,
since the child nodes must assign the same values to the chosen vertex.

• We get two more T (k− 1)-branches for assigning 0̂ to the parent node.

All in all, we have T (k) = 5k. Since the other node updates can be even done
in time O(4k), we can conclude:

Theorem 7.13 minimum Roman domination, parameterized by the treewidth
tw(G) of the input graph G, can be solved in time O(5tw(G)|V (G)|).

Finally, we turn towards the Queen Domination Problem that is defined
as follows:

Problem name: dominating set of queens (QDS)
Given: An n× n chessboard C
Parameter: a positive integer k
Output: Is it possible to place k queens on C such that all squares
are dominated ?

However, we do not start, at this point, from the Queen chessboard graph,
but rather with the n × n planar grid with diagonals that corresponds to a
chessboard in a straightforward interpretation. As mentioned, this graph
has pathwidth n+ 1 (see Ex. 7.6). For our dynamic programming algorithm
(solving the problem in time O(cn) for a c to be determined), we endow each
vertex of this graph (i.e., each square on the chessboard) with the following
information: for each of the at most four directions (neighbors) of that a
specific square might still “influence” in the future of the algorithm (namely,
if we take the way of passing through a grid that was indicated in Ex. 7.6,
then these possible influence directions are: the upper right, right, lower right
and lower directions), we keep track if the present square is dominated (and
will hence enable domination of squares in the indicated direction, including
the possibility that the square is hosting a queen) or if it still has to be
dominated (and if so, from which direction). Excluding the possibility that
a vertex (square) is not dominated at all, this leads to 24 − 1 = 15 different
“states” of a square. Notice again that we are now talking about a path
decomposition based algorithm, i.e., there are no join nodes that need to be
processed. Hence, we can conclude:

Theorem 7.14 minimum dominating set of queens, parameterized by
the treewidth tw(G) of the input graph G, can be solved in time O(15tw(G)|V (G)|) =
O(15nn2), given an n× n chessboard.
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Note that this also directly leads to a solution to the original parame-
terized problem. We have already seen in Theorem 4.27 that QDS has a
small kernel. Of course, this shows that dominating set of queens is
in FPT . More precisely, we would have a direct O(2(2k+1)2 + n) algorithm
for dominating set of queens by testing all placements of queens on the
(2k + 1) × (2k + 1) chessboard. We could do better along the lines of our
previous reasoning, however:

Theorem 7.15 dominating set of queens can be solved in time O(152k+
n).

Proof. First, apply the reduction rule 25, see Theorem 4.27. Then, n ≤
2k + 1. Hence, the dynamic programming algorithm we sketched above can
be assessed to run in the claimed time.

Having seen the previous examples, it might appear that all graph prob-
lems, at least those graph problems that are easy to solve on trees, should be
easily solvable on graphs with a bounded treewidth. In fact, finding efficient
tree algorithms say for dominating set often predates their solution on
graphs of bounded treewidth, see [101, 303] for algorithms solving minimum
dominating set on trees in linear time. Let us remind, however, that there
are some problems that, albeit efficiently solvable on trees, it is unknown if
there are efficient treewidth-based algorithms. One particular example is the
linear arrangement problem, see [5, 99, 352] for efficient algorithms on
trees, and the discussion in [239, 240] for the obvious problems of finding
efficient treewidth-based algorithms for this problem.

7.3 Planar graphs and their structure

Let us first improve our understanding of planar graphs. First, observe that
there can be many ways in which a graph can be embedded into the plane.

Example 7.16 Let us continue with Example 7.5. More precisely, let us
have another look at the grid graph G4 that has been drawn as a planar
graph already in Fig. 7.1(a). Namely, Fig. 7.6(a) shows another way of
embedding G4: it is basically turned inside-out.

Interestingly, different embeddings, i.e., finally different drawings, do have
their bearing at the way we see graphs. For example, recall the strategy
with which we constructed a tree decomposition of G4: we took the leftmost
“column” plus the “next” vertex to the upmost right into the first bag, so
that we could forget about the leftmost top vertex in the next bag, and so
forth. If we apply the same strategy to this alternative embedding, we might
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(a) Another embedding of
the grid graph G4.

(b) Indicating another path decompo-
sition of G4.

Figure 7.6: Grids: graphs with pathwidth O(
√

|V |).

get another tree decomposition of G4, as indicated in Fig. 7.6(b). In that
picture, the first bag is colored blue, then comes the red one; this is gradually
changed into the green bag, as indicated by the red arrows. Further changes
let us finally arrive at the pink bag. Observe that the biggest bag is the
green one, and this determines the width of the tree decomposition, which
is four (as above). In contrast to the previously described decomposition,
this decomposition appears to be fairly asymmetric, in fact, along the lines
of the sketch, a decomposition is obtainable such that only one of the bags
(namely, the green one) contains five vertices.

Planar graphs are interesting in our context, since most NP-hard graph
problems remain NP-hard when restricted to planar graphs (a notable ex-
ception being maximum cut, see [223]). However, from a parameterized
perspective, one can sometimes observe that problems that are W[1]-hard
for general graphs fall into FPT when restricted to planar graphs; examples
being independent set and dominating set, as well as their variants.
In fact, the derivation of the according FPT algorithms is somewhat the
core of this chapter. In a certain sense, these problems are even easier than
say vertex cover on general graphs, since they allow for algorithms with a
running time of O∗(c

√
k), which is improbable for problems on general graphs,

see [69].
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7.3.1 Outerplanarity: the definition

Definition 7.17 A crossing-free embedding of a graph G in the plane is
called outerplanar embedding if each vertex lies on the boundary of the outer
face. A graph G is called an outerplanar graph if it admits an outerplanar
embedding in the plane.

The following generalization of the notion of outerplanarity was intro-
duced by Baker [32].

Definition 7.18 A crossing-free embedding of a graph G in the plane is
called r-outerplanar if:

• for r = 1, the embedding is outerplanar, and,

• for r > 1—inductively—when removing all vertices on the boundary of
the outer face and their incident edges, the embedding of the remaining
subgraph is (r − 1)-outerplanar.

A graph G is called r-outerplanar if it admits an r-outerplanar embedding.
The smallest number r, such that G is r-outerplanar is called the outerpla-
narity (number).

In this way, we may speak of the layers L1, . . . , Lr of an embedding of an
r-outerplanar graph:

Definition 7.19 For a given r-outerplanar embedding of a graphG = (V,E),
we define the ith layer Li inductively as follows. Layer L1 consists of the
vertices on the boundary of the outer face, and, for i > 1, the layer Li is the
set of vertices that lie on the boundary of the outer face in the embedding of
the subgraph G− (L1 ∪ . . . ∪ Li−1).

Let us look at grid graphs again to see the general flavor of these notions.

Example 7.20 What about our favorite graph, the grid graph G4, in terms
of outerplanarity? Starting with the embedding from Fig. 7.1, Fig. 7.7 shows
the two layers of G4 by coloring them red and blue. It is not too hard
to see in this case that there is no embedding that might display smaller
outerplanarity.

In general terms, the grid graph Gn has outerplanarity dn/2e. Hence, the
outerplanarity grows linearly with the square root of the number of vertices
of Gn.
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Figure 7.7: An example graph of outerplanarity two.

To understand the techniques used in the following sections, it is helpful to
consider the concept of a layer decomposition of an r-outerplanar embedding
of graph G. A layer decomposition of an r-outerplanar embedding of graph
G is a forest of height r − 1. The nodes of the forest correspond to different
connected components of the subgraphs of G induced by a layer. For each
layer with vertex set Li, suppose the connected components of the subgraph
of G induced by Li have vertex sets Ci,1, . . . , Ci,`i, i.e., Li =

⋃`i
j=1Ci,j. Then,

we have `i nodes that represent the nodes of layer Li, one for each such
connected component. Such a set Ci,j will be called a layer component. Each
layer component node C1,j will be the root of a tree in the forest, so we
will have one tree per connected component of G, representing the exterior
vertices of the component. Two layer component nodes will be adjacent if
they contain vertices that share a common face. This means that a layer
component node Ci,j can only be adjacent to layer component nodes of the
form Ci−1,j′ or Ci+1,j′′; if Ci,j is adjacent to Ci−1,j′, then the vertices of Ci,j
lie within the area formed by the subgraph induced by Ci−1,j′. Note that
the layer component nodes on the i’th level of the forest correspond to the
layer components of the form Ci,j. One easily observes that the planarity of
G implies that the layer decomposition must indeed be a forest.

We need some further notation for the construction in the next sections.

A layer component Ci,j of layer Li is called a non-vacuous layer if there
are vertices from layer Li+1 in the interior of Ci,j (i.e., in the region enclosed
by the subgraph induced by Ci,j). In other words, Li is non-vacuous iff the
corresponding component node in the layer decomposition has a child.

Lemma 7.21 Let ∅ 6= C ⊆ Ci,j be a subset of a non-vacuous layer compo-
nent Ci,j of layer i, where i ≥ 2. Then, there exists a unique smallest (in
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number of vertices) cycle B(C) in layer Li−1, such that C is contained in the
region enclosed by B(C). No other vertex of layer Li−1 is contained in this
region.

Definition 7.22 For each non-empty subset C of a non-vacuous layer com-
ponent of layer i (i ≥ 2), the set B(C) as given in Lemma 7.21 is called the
boundary cycle of C (which we will also call ring of C.

A ring decomposition of an r-outerplanar graph G is a directed forest
FG of height r − 1 which is described as follows: the nodes of the trees are
rings of vertices of G and the different trees (may) correspond to different
components of G. If B′ and B′′ are boundary cycles, then B ′′ is a child
of B′ iff B(x) = B′ for any x ∈ B′′. The ith layer of FG consists of ci
boundary cycles B(i, 1), . . . , B(i, ci) from the ith layer Li of G, and some
interconnection pattern Ji = Li \Bi with Bi =

⋃ci
j=1B(i, j).

Since different components of a graph can be processed separately in the
algorithms presented below, we can assume that FG is in fact a (directed)
tree. Notationally, we stress this by writing TG instead of FG. If TG happens
to be a path, we will call G simple r-outerplanar. The tree F ′

G is obtained
from FG by attaching a child to any leaf B(i, j) of FG.

With respect to the “history” of the papers that deal with hard problems
on planar graphs, first the notion of layer decomposition was used, but that
was later (more precisely, in [179]) replaced by the obviously related notion of
a ring decomposition, since that one allowed arguments of a more geometric
flavor.

Let us finally stress the fact that a ring decomposition may be different
from the so-called layer decomposition introduced in [8]; e.g., two rings may
share an edge, see Fig. 7.8.

The reader who wishes a concrete visualization of ring structures might
wish to have a look at Fig. 7.9. The idea given by onion rings is very well
reflecting the ring structure of a planar graph. We will return to this issue
later on.

7.3.2 Outerplanarity versus treewidth

We provide now a constructive proof of how to upperbound the treewidth of
a planar graph by its outerplanarity. The proof is based upon the proof in
[54, Theorem 83]. To be more precise, we show:

Theorem 7.23 Let an r-outerplanar graph G = (V,E) be given together
with an r-outerplanar embedding. A tree decomposition 〈{Xi | i ∈ I}, T 〉, of
width at most 3r− 1 and with |I| = O(n) of G, can be found in O(rn) time.
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v1

v2

v3

v4

v5

v6

v7

v9

v10

v12

v8 v11

v13

Figure 7.8: FG has only two non-connected nodes, corresponding to B(v3) =
(v1, v2, v4) and B(v10) = (v8, v9, v12, v11). Note that J1 = {v5, v6, v7, v13} and
J2 = L2 \ B2 = {v3, v10}. If there was another edge between v2 and v9, then
B(v3) = B(v4) = B(v6) = (v1, v2, v9, v8, v5, v1), and hence B(v3) and B(v10)
would share the edge {v8, v9}.

Figure 7.9: Visualizing the ring structure of a planar graph

We make the assumption that with the embedding, for each vertex v, the
incident edges of v are given in clockwise order as they appear in the embed-
ding. Most (linear time) graph planarity testing and embedding algorithms
automatically yield such orderings of the edge lists (see [37]).
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Now, we discuss the proof of Theorem 7.23. For the construction of the
desired tree decomposition we proceed in several steps, see Alg. 64.

Algorithm 64 Construct a tree decomposition for an r-outerplanar graph

Input(s): an r-outerplanar graph G
Output(s): a tree decomposition of G of width at most 3k − 1

1: Determine the layers of the given graph G.
2: Embed G into a graph H, whose degree is bounded by 3 and whose

outerplanarity number doesn’t exceed the one of G.
3: Construct a suitable maximal spanning forest for H.

This step is done inductively proceeding along the different layers of H in a

way that the so-called “edge and vertex remember numbers” are kept small.

4: Using this spanning tree, determine a tree decomposition of H.
5: Turn this tree decomposition into a tree decomposition of G.

The details of the steps in Alg. 64 are discussed in the following.

Determining the layers of the embedded graph. Without loss of gen-
erality, we assume G is connected. Suppose G is given with an r-outerplanar
embedding with, for every vertex, a clockwise ordering of its adjacent edges.
With the help of these orderings, one can build, in O(|V |) time, the dual
graph G∗,4 with pointers from edges of G to the two adjacent faces in the
dual. We can first partition the set of faces into ‘layers’: put a face f in layer
L∗
i+1 if the distance of this face in the dual graph to the exterior face is i.

This distance can be determined in linear time using breadth-first search on
the dual graph.

Now, a vertex v of G belongs to layer Li for the smallest i such that v
is adjacent to a face fv in L∗

i . Note that faces can belong to layer L∗
r+1, but

not to layers L∗
s with s > r + 1.

Embedding G in a graph H of degree three. The next step is to
construct an r′-outerplanar (where r′ ≤ r) graph H = (VH , EH) of degree at
most three that contains G as a minor, i.e., G can be obtained from H by a
series of vertex deletions, edge deletions, and edge contractions.

4Given a plane graph G, its dual G∗ is formed by considering the faces of G as the
vertices of G∗ and by putting an edge between two “face-vertices” iff there is a common
boundary edge of the two faces in G. Please note that G∗ depends on the given embedding
of G; moreover, G∗ is often seen as a multigraph (e.g., loops may occur if there are edges
in G that lead to leaf vertices within a face; double edges may be due to faces that are
neighbored via two different edges). For our purpose, the simple graph that corresponds
to such a multigraph is sufficient.
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v

w1 w2 w3 wd−1 wd w1 w2 w3 wd−1 wd

v1 v2 vd−2

Figure 7.10: Replacing a vertex by a path with vertices of degree 3.

In order to do this, every vertex with degree d ≥ 4 is replaced by a path
of d − 2 vertices of degree 3, as shown in Fig. 7.10. This is done in such a
way that the graph stays r′-outerplanar. More precisely, for each vertex v of
layer Li we determine the face fv in L∗

i as described above. We then find two
successive edges {x, v}, {v, y} that are border to fv. Now, let x take the role
of w1 and y take the role of wd in Fig. 7.10. Observe that, in this manner,
all vertices vi on the newly formed path are adjacent to face fv ∈ L∗

i . Let H
be the graph obtained after replacing all vertices of degree at least four in
this manner.

Note that H has the same set of faces as G (i.e., H∗ and G∗ share the
same set of vertices) and that faces adjacent in G are still adjacent in H (i.e.,
G∗ is a subgraph of H∗). Hence, H∗ can be obtained from G∗ by possibly
adding some further edges. Clearly, the minimum distance of a vertex in H∗

to the exterior face vertex may only decrease (not increase) compared to the
corresponding distance in G∗. Since the layer to which a vertex belongs is
exactly one more than the minimum distance of the adjacent faces to the
exterior face, the outerplanarity number r′ of H is bounded by r.

Constructing a suitable maximal spanning forest for H. At this point,
we have an r′-outerplanar graph H = (VH , EH) of maximum degree 3. We
now construct a maximal spanning forest T for H that yields small so-called
“edge and vertex remember numbers.” This step is done inductively along
the different layers proceeding from inside towards the exterior.

Observe that, when removing all edges on the exterior face of an s-outer-
planar graph of maximum degree three, we obtain an (s − 1)-outerplanar
graph when s > 1; we obtain a forest when s = 1.

Thus, we can partition the edges into r′ + 1 sets E1, . . . , Er′+1, with E1

the edges on the exterior face, and Ei the edges on the exterior face when all
edges in E1 ∪ . . . ∪ Ei−1 are removed. Again, using the dual, this partition
can be computed in O(n) time.

Now, we form a sequence of forests. We start with forest Tr′+1, which
consists of all edges in Er′+1. (Note that these are the interior edges of an
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outerplanar graph of maximum degree 3, so Tr′+1 is acyclic.)
When we have Ti, 1 < i ≤ r′ + 1, we form Ti−1 in the following way:

add a maximal set of edges from Ei−1 to Ti such that no cycles are formed.
Note that in this way, each Ti is a maximal spanning forest of the subgraph
formed by the edges in Ei ∪ . . . ∪ Er′+1; we call this subgraph Hi. As usual,
maximality is meant with respect to set inclusion; a maximal spanning forest
of an arbitrary graph hence can be found in O(n) time using a standard
depth first search approach, but here we need such a forest constructed in a
specific way.

It is not hard to see that one such step can be done in O(n) time; as we
do at most r such steps, the time to build T1 becomes O(rn).

Definition 7.24 For a graph G = (V,E), and a forest T = (V, F ) that is
a subgraph of G, define the edge remember number er(G, T, e) of an edge
e ∈ F (with respect to G and T ) as the number of edges {v, w} ∈ E \F such
that there is a simple path in T from v to w that uses e. The edge remember
number of T (with respect to G) is er(G, T ) = maxe∈F er(G, T, e).

The vertex remember number vr(G, T, v) of a vertex v ∈ V (with respect
to G and T ) is the number of edges {v, w} ∈ E \F such that there is a simple
path in T from v to w that uses v. The vertex remember number of T (with
respect to G) is vr(G, T ) = maxv∈V vr(G, T, v).

One may observe that the construction of the trees Ti is the one used in
the proofs given in [54, Section 13]. The following result is proved in [54,
Lemma 80]. Note that in order to obtain this result it is essential that the
degree of H is bounded by 3:

Lemma 7.25 (i) For every i, 1 ≤ i ≤ r′ + 1, er(Hi, Ti) ≤ 2(r′ + 1 − i).
(ii) For every i, 1 ≤ i ≤ r′, vr(Hi, Ti) ≤ 3(r′ + 1 − i) − 1.

Without loss of generality, we can suppose that G and, therefore, H is
connected and, hence, we have a spanning tree T1 of H with er(H, T1) ≤ 2r′

and vr(H, T1) ≤ 3r′ − 1.

Deriving a tree decomposition from the spanning forest. We now
apply the following result of [54, Theorem 71] to the graph H and the span-
ning forest T1 in order to obtain a tree decomposition in time O(rn) of width
bounded by

max(vr(H, T1), er(H, T1) + 1) ≤ 3r′ − 1 ≤ 3r − 1.

For the sake of completeness of the whole construction, we outline the easy
proof.
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Theorem 7.26 Let T = (V, F ) be a maximal spanning forest for the graph
G = (V,E). Then, a tree decomposition with width smaller than or equal
to max{vr(G, T ), er(G, T ) + 1} and with O(n) nodes can be determined in
O(vr(G, T ) · n) time.

Proof. Our aim is to construct a tree decomposition 〈{Xi | i ∈ I}, T ′〉
of G. Let T ′ = (V ∪ F, F ′) with

F ′ = {{v, e} | v ∈ V, e ∈ F, ∃w ∈ V : e = {v, w}}
be the tree obtained by subdividing every edge of T . The bags Xi for i ∈
I := V ∪F are obtained as follows. For every v ∈ V , add v to Xv. For every
e = {v, w} ∈ F , add v and w to Xe. Now, for every edge e = {v, w} in E
but not in F , add v to all sets Xu and Xe, with u ∈ V or e ∈ F on the path
from v to w in T .

Using standard graph algorithmic techniques, the path between two ver-
tices in a tree can be found in time proportional to the length of that path;
since each vertex in T can contribute to at most vr(G, T ) such paths, the
running time is bounded by O(vr(G, T ) · n).

It is easy to check that this yields a tree decomposition. Its bags have size
|Xv| ≤ 1 + vr(G, T ) (for all v ∈ V ) and |Xe| ≤ 2 + er(G, T ) (for all e ∈ E).
Hence, the resulting treewidth is at most max(vr(G, T ), er(G, T ) + 1).

Undoing the minor operations. Finally, the tree decomposition of H
can be turned into a tree decomposition of G of equal or smaller width by
replacing every occurrence of a vertex vi in a bag Xi by an occurrence of
the corresponding vertex v (see e.g., [54, Lemma 16].) This again costs time
linear in the size of all bags Xi in the tree decomposition, i.e., O(rn) time.

Altogether this establishes the correctness of Theorem 7.23.

7.3.3 Outerplanarity and other graph parameters

The concept of outerplanarity is quite useful for showing that particular
problems are in FPT . Let us clarify this with a number of examples. They
comprise rather folklore results.

Proposition 7.27 A plane graph with a dominating set of size of at most k
is r-outerplanar with r ≤ 3k.

Proof. By definition of outerplanarity, each vertex in a dominating set can
only dominate vertices from at most three layers, so that there cannot be
more than 3k layers in any YES-instance of planar dominating set.

From what we have seen in the preceding subsection, we may deduce:
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Corollary 7.28 If a planar graph G = (V,E) has a k-dominating set, then
its treewidth is bounded by 9k − 1.

We will give a considerably stronger bound later.

Corollary 7.29 planar dominating set is in FPT .

Let us remark that, from an algorithmic point of view, the following
observation might be even more useful, although it delivers the same worst-
case bound in the case of simple r-outerplanar graphs.

Lemma 7.30 A plane graph G with a dominating set of size of at most k
has a ring decomposition FG with a dominating set of size of at most k.

The proof for this result can be taken as a blueprint for similar statements
below. It is explicitly contained in Alg. 65.

Algorithm 65 An FPT algorithm for planar dominating set

Input(s): a planar graph G, a positive integer k
Output(s): YES if G has a dominating set of size at most k and NO, oth-

erwise

Find an arbitrary planar embedding of G.
Determine the outerplanarity out of that embedding.
if out > 3k then

return NO

else
Determine minimum dominating set D of G with the help of an
outerplanarity-based algorithm.
return |D| ≤ k

end if

For specific types of domination problems, the bounds can be better:

Proposition 7.31 A plane graph with a connected dominating set of size of
at most k is r-outerplanar with r ≤ k + 2.

Corollary 7.32 planar connected dominating set is in FPT .

Similarly, one can show:

Proposition 7.33 A plane graph with a maximal matching of size of at most
k is r-outerplanar with r ≤ 2k.
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Proof. Consider two subsequent layers L1, L2 in one connected component
of a plane graph. If none of the edges within the layer (i.e., both endpoints
are within either L1 or L2) are in the matching, then at least one of the edges
interconnecting the layers (i.e., one endpoint is in L1 and the other one is in
L2) is in the matching by maximality.

Therefore, we get an FPT -classification of the determination of a mini-
mum maximal matching (standard parameterization) in a plane graph.

In the following, we are aiming at improved relations between graph
parameters (like domination number) and treewidth in the case of planar
graphs.

7.4 Domination number versus treewidth

In this section, we explain in details the strategy used in [8] to obtain an

O∗(c
√
k) algorithm for planar dominating set. In particular, we show

that a planar graph with domination number k has treewidth of at most
O(

√
k). This improves Corollary 7.28 considerably. In the next section, we

will show how this new result can be turned into a constructive algorithm.
Combining the results of this section with the treewidth-based algorithms
we saw above, we can present an algorithm having time complexity 4O(

√
k)n.

This obviously gives an asymptotic improvement of the O(8kn) search tree
algorithm, see Chap. 5.

This section is organized as follows. In a first subsection, we make some
general observations on how to construct tree decompositions using sepa-
rators. The following two subsections show that, in a planar graph which
admits a k-dominating set, we can find small separators layerwisely. Finally,
the results are pieced together to prove our main result in this section.

7.4.1 Separators and treewidth

Here, the main idea is to find small separators of the graph and to merge the
tree decompositions of the resulting subgraphs.

To simplify notation, we write A]B for the disjoint union of two sets A
and B. Graph separators are defined as follows.

Definition 7.34 Let G = (V,E) be an undirected graph. A separator
S ⊆ V of G divides V into two parts (or chunks) A1 ⊆ V and A2 ⊆ V such
that5

5In general, of course, A1, A2 and S will be non-empty. In order to cover boundary
cases in some considerations below, we did not put this into the separator definition.
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• A1 ] S ] A2 = V , and

• no edge joins vertices in A1 and A2.

Later, we will write δA1 (or δA2) as shorthand for A1 ]S (or A2 ]S, respec-
tively). The triple (A1, S, A2) is also called a separation of G.

Clearly, this definition can be generalized to the case where a separator par-
titions the vertex set into ` subsets instead of only two. We refer to such
separators simply by `-separator ; ` = 2 then is the separator in Defini-
tion 7.34.

For any given separator splitting a graph into different components, we
obtain a simple upper bound for the treewidth of this graph which depends
on the size of the separator and the treewidth of the resulting components.

Proposition 7.35 If a connected graph can be decomposed into components
of treewidth of at most t by means of a separator of size s, then the whole
graph has treewidth of at most t+ s.

Proof. The separator splits the graph into different components. Suppose
we are given the tree decompositions of these components of width at most
t. The goal is to construct a tree decomposition for the original graph. This
can be achieved by firstly merging the separator to every bag in each of these
given tree decompositions. In a second step, add some arbitrary connections
preserving acyclicity between the trees corresponding to the components. It
is straightforward to check that this forms a tree decomposition of the whole
graph of width at most t+ s.

For plane graphs, there is an iterated version of this observation can be
similarly shown.

Proposition 7.36 Let G be a plane graph with layers Li, (i = 1, . . . , r). For
i = 1, . . . , `, let Li be a set of consecutive layers, i.e.,

Li = {Lji , Lji+1, . . . , Lji+ni
},

such that Li ∩ Li′ = ∅ for all i 6= i′. Moreover, suppose G can be decom-
posed into components, each of treewidth of at most t, by means of sepa-
rators S1, . . . , S`, where Si ⊆ ⋃

L∈Li
L for all i = 1, . . . , `. Then, G has

treewidth of at most t+ 2s, where s = maxi=1,...,` |Si|.
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7.4.2 Finding separators layerwisely

In the following, we assume that our graph G has a fixed plane embed-
ding with r layers. We show that the treewidth cannot exceed O(

√
k) if

a dominating set of size k exists. This implies that if we have an optimal
tree-decomposition we can find the domination number fast using standard
dynamic programming techniques (as explained above).

Let the layers be L1, L2, . . . , LT , with L1 being the outer layer.
We assume that we have a dominating set D of size at most k. Let ki

be the number of vertices of Di = D ∩ Li. Hence,
∑r

i=1 ki = k. In order to
avoid case analysis, we set k0 = kr+1 = kr+2 = 0. Moreover, let ci denote the
number of non-vacuous layer components of layer Li.

Our approach is based on finding small separators in G layerwisely. More
precisely, for each i = 1, . . . , r−2, we want to construct a set Si ⊆ Li−1∪Li∪
Li+1 separating layer Li−1 from layer Li+2 in such a way that the total size of
these sets can be bounded by some linear term in k. The key idea for proving
that Si separates layers Li−1 from Li+2 relies on a close investigation of the
paths leaving layer Li−1 to the interior of the graph. Each such path passes a
“first” vertex in layer Li. This particular vertex can be dominated by vertices
from Di−1, Di, or Di+1. It turns out that, in order to cut this particular path,
the set Si has to contain the vertices of the sets Di−1, Di, and Di+1 plus some
suitably chosen pairs of neighbors of any of these vertices. This results in
letting Si be the union of so-called “upper,” “lower,” and “middle” triples.
We will carry out the to some extent technically complicated step in what
follows.

Upper triples. An upper triple for layer Li is associated to a non-vacuous6

layer component Ci+1,j of layer Li+1 and a vertex x ∈ Di−1 that has a
neighbor on the boundary cycle B(Ci+1,j) (see Fig. 7.11). Then, clearly,
x ∈ B(B(Ci+1,j)), by definition of a boundary cycle. Let x1 and x2 be the
neighbors of x on the boundary cycle B(B(Ci+1,j)). Starting from x1, we
go around x up to x2 so that we visit all neighbors of x in layer Li. We
note the neighbors of x on the boundary cycle B(Ci+1,j). Going around gives
two outermost neighbors y and z on this boundary cycle. The triple, then,
is the three-element set {x, y, z}. In case x has only a single neighbor y in
B(Ci+1,j), the “triple” consists of only {x, y} (let, by default, z = y).

Definition 7.37 For each non-vacuous layer component Ci+1,j of Li+1 and

6Note that here, as well as in the definitions of middle and upper triples, all vacuous
components of layer Li+1 are of no interest to us, since we want to find a set of vertices
separating levels Li−1 from Li+2.
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Figure 7.11: Upper triples.

each vertex x ∈ Di−1 with neighbors in B(Ci+1,j), the set {x, y, z} as de-
scribed above is called an upper triple of layer Li.
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Figure 7.12: Lower triples.

Lower triples. A lower triple for layer Li is associated to a vertex x ∈ Di+1

and a non-vacuous layer component Ci+1,j of layer Li+1 (see Fig. 7.12). We
only consider layer components Ci+1,j of layer Li+1 that are enclosed by the
boundary cycle B({x}). For each pair ỹ, z̃ ∈ B({x}) ∩ N(x) (where ỹ 6= z̃),
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we consider the path Pỹ,z̃ from ỹ to z̃ along the cycle B({x}), taking the
direction such that the region enclosed by {z̃, x}, {x, ỹ}, and Pỹ,z̃ contains
the layer component Ci+1,j. Let {y, z} ⊆ B({x}) ∩ N(x) be the pair such
that the corresponding path Py,z is shortest. The triple, then, is the three-
element set {x, y, z}. If x has no or only a single neighbor y in B({x}), then
the “triple” consists only of {x}, or {x, y} (by default, in these cases, we let
x = y = z, or y = z, respectively).

Definition 7.38 For each vertex x ∈ Ci+1,j of Di+1 and each non-vacuous
layer component Ci+1,j that is enclosed by B({x}), the set {x, y, z} as de-
scribed above is called a lower triple of layer Li.
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Figure 7.13: Middle triples.

Middle triples. A middle triple for layer Li is associated to a non-vacuous
layer component Ci+1,j and a vertex x ∈ Di that has a neighbor in B(Ci+1,j)
(see Fig. 7.13). Note that, due to the layer model, it is easy to see that a
vertex x ∈ Di can have at most two neighbors y, z in B(Ci+1,j). Depending
on whether x itself lies on the cycle B(Ci+1,j) or not, we obtain two different
cases which are both illustrated in Fig. 7.13. In either of these cases, the
middle triple is defined as the set {x, y, z}. Again, if x has none or only
a single neighbor y in B(Ci+1,j), then the “triple” consists only of {x}, or
{x, y}, respectively (by default, in these cases, we let x = y = z, or y = z,
respectively).

Definition 7.39 For each non-vacuous layer component Ci+1,j and each ver-
tex x ∈ Di, the set {x, y, z} as described above is called a middle triple for
layer Li.



7.4. DOMINATION NUMBER VERSUS TREEWIDTH 337

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

x

Ci+1,j B(Ci+1,j)

B(B(Ci+1,j ))

d1

d1
3

y2

z

d2
3

d2

y1

d3

Figure 7.14: Si separates Li−1 and Li+2.

Definition 7.40 We define the set Si as the union of all upper triples, lower
triples and middle triples of layer Li.

In the following, we will show that Si is a separator of the graph. Note
that the upper bounds on the size of Si, which are derived afterwards, are
crucial for the upper bound on the treewidth derived later on.

Proposition 7.41 The set Si separates vertices of layers Li−1 and Li+2.

Proof. Suppose there is a path P (with no repeated vertices) from layer
Li+2 to layer Li−1 that avoids Si. This clearly implies that there exists a
path P ′ from a vertex x in a non-vacuous layer component Ci+1,j of layer
Li+1 to a vertex z ∈ B(B(Ci+1,j)) in layer Li−1 which has the following two
properties:

• P ′ ∩ Si = ∅.

• All vertices inbetween x and z belong to layer Li or to vacuous layer
components of layer Li+1.

This can be achieved by simply taking a suitable sub-path P ′ of P . Let y1

(and y2, respectively) be the first (last) vertex along the path P ′ from x to z
that lies on the boundary cycle B(Ci+1,j) ⊆ Li (see Fig. 7.14).



338 CHAPTER 7. GRAPH PARAMETERS

Obviously, y2 cannot be an element of D since, then, it would appear in a
middle triple of layer Li and, hence, in Si. We now consider the vertex that
dominates y2. This vertex can lie in layer Li−1, Li, or Li+1.

Suppose first that y2 is dominated by a vertex d1 ∈ Li−1. Then, d1 is
in B(B(Ci+1,j)), simply by definition of the boundary cycle (see Fig. 7.14).
Since G is planar, this implies that y2 must be an “outermost” neighbor of d1

among all elements in N(d1)∩B(Ci+1,j). If this were not the case, then there
would be an edge from d1 to a vertex on B(Ci+1,j) that leaves the closed
region bounded by {d1, y2}, the path from y2 to z, and the corresponding
path from z to d1 along B(B(Ci+1,j)). Hence, y2 would be in the upper triple
of layer Li which is associated to the layer component Ci+1,j and d1. This
contradicts the assumption that P ′ avoids Si.

Now, suppose that y2 is dominated by a vertex d2 ∈ Di (see Fig. 7.14).
By definition of the middle triples, this clearly implies that y2 is in the
middle triple associated to Ci+1,j and d2. Again, this contradicts the fact
that P ′ ∩ Si = ∅.

Consequently, the dominating vertex d3 of y2 has to lie in layer Li+1. Let
{d3, d

1
3, d

2
3}, where d1

3, d
2
3 ∈ N(d3) ∩ B(Ci+1,j), be the lower triple associated

to layer component Ci+1,j and d3 (see Fig. 7.14). By definition, Ci+1,j is
contained in the region enclosed by {d1

3, d3}, {d3, d
2
3}, and the path from d2

3

to d1
3 along B(Ci+1,j), which—assuming that y2 /∈ {d3, d

1
3, d

2
3}—does not hit

y2 (see Fig. 7.14). We now observe that, whenever the path from y1 to y2

leaves the cycle B(Ci+1,j) to its exterior, say at a vertex q, then it has to
return to B(Ci+1,j) at a vertex q′ ∈ N(q) ∩ B(Ci+1,j). Otherwise, we would
violate the fact that, by definition, B(Ci+1,j) ⊆ Li. This, however, shows
that the path P ′ has to hit either d1

3 or d2
3 on its way from y1 to y2. Since

d1
3, d

2
3 ∈ Si, this case also contradicts the fact that P ′ ∩ Si = ∅.

7.4.3 An upper bound for the size of the separators

In this subsection, we want to show that the sum of the cardinalities of all
separators can be bounded by some linear term in k.

Lemma 7.42 |Si| ≤ 5(ki−1 + ki + ki+1) + 12ci+1.

A proof of this assertion can be found in [8].

For the number ci of non-vacuous components in layer i, we have the
following estimate.

Lemma 7.43 ci ≤ ki + ki+1 + ki+2.
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Proof. By definition, ci refers to only non-vacuous layer components in
layer Li, i.e., there is at least one vertex of layer Li+1 contained within each
such layer component. Such a vertex can only be dominated by a vertex from
layer Li, Li+1, or Li+2. In this way, we get the claimed upper bound.

Combining the two previous results yields the bound claimed at the be-
ginning of this subsection.

Proposition 7.44
∑r

i=1 |Si| ≤ 51k, where r is the number of layers of the
graph.

Proof. This follows directly when we combine the previous two lemmas,
noting that

∑r
i=1 ki = k.

We are now ready to state the main result from [8] relating the domination
number and the treewidth of a planar graph. Note that the following theorem
gives a decisive asymptotic improvement of Corollary 7.28.

Theorem 7.45 A planar graph with domination number k has treewidth of
at most 6

√
34
√
k + 8.

Proof. Using the separators Si as found in the previous subsections, we
consider the following three sets of vertices: S1 = S1 ∪ S4 ∪ S7 ∪ . . ., S2 =
S2 ∪ S5 ∪ S8 ∪ . . ., and S3 = S3 ∪ S6 ∪ S9 ∪ . . .. Since, by Proposition 7.44,
|S1| + |S2| + |S3| ≤ 51k, one of these sets has size at most 51

3
k, say Sδ (with

δ ∈ {1, 2, 3}).
Let δ and Sδ be obtained as above. Let d := 3

2

√
34. We now go through

the sequence S1+δ, S4+δ, S7+δ, . . . and look for separators of size at most
s(k) := d

√
k. Due to the estimate on the size of Sδ, such separators of

size at most s(k) must appear within each n(k) := 51
3
· 1
d
√
k
· k = 1

3

√
34
√
k

sets in the sequence. In this manner, we obtain a set of disjoint separators
of size at most s(k) each, such that any two consecutive separators from this
set are at most 3n(k) layers apart. Clearly, the separators chosen in this way
fulfill the requirements in Proposition 7.36.

Observe that the components cut out in this way each have at most
3(n(k) + 1) layers and, hence, their treewidth is bounded by 9(n(k) + 1)− 1
due to Prop. 7.27.

Using Proposition 7.36, we can compute an upper bound on the treewidth
tw(k) of the originally given graph with domination number k:

tw(k) ≤ 2s(k) + 9(n(k) + 1) − 1

= 2(
3

2

√
34
√
k) + 9(

1

3

√
34
√
k) + 8

= 6
√

34
√
k + 8.
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This proves our claim.

How did we come to the constants? We simply computed the minimum
of 2s(k) + 9(n(k) + 1) − 1 (the upper bound on the treewidth) given the
bound s(k)n(k) ≤ 51

3
k. This suggests s(k) = d

√
k, and d is optimal when

2s(k) = 9n(k) = 9 · 51
3
· k · s(k)−1, so, 2d = 153

d
, i.e., d = 3

2

√
34.

Observe that the tree structure of the tree decomposition obtained in
the preceding proof corresponds to the structure of the layer decomposition
forest.

Remark 7.46 Up to constant factors, the relation exhibited in Theorem 7.45
is optimal. This can be seen, for example, by considering a complete grid
graph G` of size `× `, i.e., with `2 vertices. It is known that tw(G`) ≥ ` (see
[54, Corollary 89]) and the domination number γ(·) obeys γ(G`) ∈ Θ(`2), see
[228, Theorem 2.39]. Therefore, there is an infinite family of planar graphs
Ĝki

with domination number ki such that Ĝki
has treewidth of Ω(

√
ki).

7.4.4 A treewidth-based algorithm for planar domi-

nating set

In this section, we outline our fixed parameter algorithm for solving planar
dominating set constructively. The input instance to the algorithm con-
sists of a planar graph G = (V,E) and a positive integer k. The algorithm
determines whether G admits a dominating set of size at most k, and, if so,
constructs such a set. The running time for the algorithm will be 4O(

√
k)n,

where n = |V |.

The key idea for our algorithm is to construct a tree decomposition of
the stated width. However, Theorem 7.45 is a pure existence theorem which
cannot be made constructive directly. There is one point that needs specific
attention. As we do not start with the dominating set given, we cannot con-
struct the upper, middle, and lower triples. Instead, we have to compute the
minimum size separator Ŝi between Li−1 and Li+2 directly, and use that set
instead of Si as defined in the proof of Subsection 7.4.2. Such a minimum size
separator can be computed with well known techniques based on maximum
flow (see, e.g., [250]).

Our algorithm proceeds in the following steps:

1. Embed the planar graph G = (V,E) crossing-free into the plane. De-
termine the outerplanarity number r of this embedding and all layers
L1, . . . , Lr. By default, we set Li = ∅ for all i < 0 and i > r.
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2. If r > 3k then exit (there exists no k-dominating set). This step of
the algorithm is justified by Proposition 7.27.

3. For δ = 1, 2, 3 and i = 0, . . . , b r
3
c−1, find the minimum separator Ŝ3i+δ,

separating layers L(3i+δ)−1 and L(3i+δ)+2. Let s3i+δ = |Ŝ3i+δ|.

4. Check whether there exists a δ ∈ {1, 2, 3} and an increasing sequence
(ij)j=1,...,t of indices in {0, . . . , b r

3
c − 1}, such that

s3ij+δ ≤ s(k) :=
3

2

√
34
√
k for all j = 1, . . . , t and

|ij+1 − ij| ≤ n(k) :=
1

3

√
34
√
k for all j = 1, . . . , t− 1.

If the answer is “no,” then exit (there exists no k-dominating set).
This step of the algorithm is justified by the considerations in the proof
of Theorem 7.45.

5. Consider the separators Sj := Ŝ3ij+δ for j = 1, . . . , t (by default, Sj = ∅
for all other j) and, for each j = 0, . . . , t, let Gj be the subgraph cut
out by the separators Sj and Sj+1 or, more precisely, let

Gj := G−
( (3i(j+1)+δ)+1⋃

`=(3ij+δ)−1

L` \ (Sj ∪ Sj+1)
)
.

Note that Gj is at most 3(n(k) + 1)-outerplanar.

6. Construct tree decompositions Xj for Gj (j = 0, . . . , t) with O(n) nodes
each. For this step, we refer to Theorem 7.23.

7. Construct a tree decomposition X of G with O(n) nodes using the
separators S1, . . . ,St and the tree decompositions Xj by the separator
merging technique described in the proof of Proposition 7.36.

8. Solve the minimum dominating set problem for G with tree decom-
position X as described in Sec. 7.2.

Details on implementing Step 1 can be found in [8].
As to Step 3 of the algorithm, we want to remark that such a minimum

size separator can be computed with well known techniques based on max-
imum flow (see, e.g., [250]) as follows: For given values of i and δ, we first,
build the graph G′, induced by the vertices in L3i+δ−1 ∪ L3i+δ ∪ L3i+δ+1 ∪
L3i+δ+2. Then, we contract all vertices in L3i+δ−1 to one vertex s, and all
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vertices in L3i+δ+2 to one vertex t. We look for a minimum s-t-separator in
the resulting graph but, if this separator has size more than s(k), then we
just note that no separator of size at most s(k) exists (compare with Step 4).
Finding the separator or determining that no small enough separator exists
can be done with the following standard method. Build a directed graph G′′

in the following way. Every vertex v in the graph is replaced by two vertices
v− and v+, with an edge from v− to v+, and an edge {v, w} is replaced by
two edges (v+, w−), (w+, v−). As explained in [292, Lemma 11, page 83],
the minimum s-t separator in G′ can be found by applying a maximum flow
algorithm in G′′. To keep the running time in the stated bounds, we use the
Ford-Fulkerson maximum flow algorithm, but stop as soon as a flow value
of more than s(k) is used since, in such a case, we can conclude that no
s-t-separator of size at most s(k) exists. As each flow augmentation step
costs time linear in the number of vertices and edges of G′′ and increases
the flow value by one, the time used by this procedure is O(n′ · s(k)), with
n′ = |L3i+δ−1 ∪ L3i+δ ∪ L3i+δ+1 ∪ L3i+δ+2|.

As for every vertex in G, there are at most four combinations of δ and i
in Step 3 such that it belongs to L3i+δ−1 ∪ L3i+δ ∪ L3i+δ+1 ∪ L3i+δ+2 and the
total time of step 3 is bounded by O(n · s(k)) = O(n

√
k).

The correctness of the algorithm above follows from our considerations in
the previous sections.

Steps 1-7 allow us to construct a tree decomposition of width 6
√

34
√
k+8

of G in O(
√
kn) time. The running time for the last step in the algorithm is

O(46
√

34
√
kn).

Summarizing these observations, we obtain the following theorem.

Theorem 7.47 planar dominating set can be solved in time O(c
√
kn),

where c = 46
√

34. Moreover, if the domination number obeys γ(G) ≤ k, a
minimum size dominating set can be constructed within the same time.

The constant c above is 46
√

34, which is rather large. However, a more
refined analysis can help reduce this constant, as we will see below.

7.5 The beauty of small kernels: separator

theorems

The strategy explained in the previous section appears to be pretty special
to planar dominating set. Can we obtain similar results say for vertex
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cover on planar graphs? In this and the following section, we are going to
explain the more general ideas how to exploit small kernels from [14, 15, 190].
More specifically, in this section we exhibit how to use classical separator
theorems plus nice kernelization results to get parameterized algorithms with
running times of the form O∗(c

√
k). The next section will use strategies

inspired from the notion of outerplanarity that we showed above. This way,
better running times are achievable.

7.5.1 Classical separator theorems

One of the most useful algorithmic techniques for solving computational prob-
lems is divide and conquer. In the case of planar graph problems, the famous
planar separator theorem of Lipton and Tarjan [275, 276] laid the basis for
the divide and conquer approach. The techniques we develop here all are
based on the existence of “small” graph separators, which means that the
separator size |S| is bounded by o(|V |). It is well-known that, for general
graphs, small separators need not exist; consider, for example, the complete
graph Kn, which does not possess small separators. It is of key importance
for our purpose that, in particular, planar graphs do have small separators.
Therefore, it is not only of pure mathematical importance to study graph
classes which are guaranteed to have small generators.

Definition 7.48 According to Lipton and Tarjan [275], an f(·)-separator
theorem (with constants α < 1, β > 0) for a class G of graphs which is closed
under taking vertex-induced subgraphs is a theorem of the following form:
If G is any n-vertex graph in G, then there is a separation (A1, S, A2) of G
such that

• neither A1 nor A2 contains more than αn vertices, and

• S contains no more than βf(n) vertices.

Again, this definition easily generalizes to `-separators with ` > 2.
Stated in this framework, the planar separator theorem due to Lipton

and Tarjan [275] is a
√·-separator theorem with constants α = 2/3 and

β = 2
√

2 ≈ 2.83. The current record for α = 2/3 is β =
√

2/3+
√

4/3 ≈ 1.97
[128]. Djidjev has also shown a lower bound of β ≈ 1.55 for α = 2/3 [130].
For α = 1/2, the “record” is β = 2

√
6 ≈ 4.90 [18, 54]. A lower bound of

β ≈ 1.65 is known in this case [353]. For α = 3/4, the best known value for

β is
√

2π/
√

3 · (1 +
√

3)/
√

8 ≈ 1.84 with a known lower bound of β ≈ 1.42,

see [353]. The results are summarized in Table 7.1.
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β α = 2
3

r(2
3
, β)

upper bounds
√

2
3

+
√

4
3

[128] 10.74

lower bounds 1.55 [130] 8.45

α = 1
2

r(1
2
, β)

upper bounds
√

24 [18, 54] 16.73
lower bounds 1.65 [353] 5.63

α = 3
4

r(3
4
, β)

upper bounds
√

2π√
3
· 1+

√
3√

8
[353] 13.73

lower bounds 1.42 [353] 10.60

Table 7.1: Summary of various
√·-separator theorems with their constants

α and β. Here, r(α, β) denotes the ratio r(α, β) = β/(1 − √
α), which is

of central importance to the running time analysis of our algorithms, cf.
Proposition 7.63.

In order to develop a flexible framework, we will do our calculations below
always with the parameters α and β left unspecified up to the point where we
try to give concrete numbers in the case of vertex cover on planar graphs,
which will serve as a running example. Also, we point out how the existence
of `-separators for ` > 2 might improve the running time. In principle, our
results also apply to graph problems for graphs from other graph classes with√·-separator theorems as listed above. As indicated in [328], separator based
techniques can be also used to solve counting problems instead of decision
problems. This idea might be also interesting (but is yet unexplored) in the
context of parameterized counting, see Chap. 8.

A separator theorem derived in the treewidth schema

In order to give the reader a better taste what separator theorems look like,
let us review one that was given by Bodlaender in his introduction into
treewidth [54], since this uses notions we have exhibited up to now and can
be seen as showing techniques that will be useful later on in this chapter.

To this end, notice that there exist a slightly different notion of separator
(also called separator of type 2 ): S is a separator of type 2 in a graph
G = (V,E) yielding chunks of size at most χ|V | if no connected component
of G− S has more than χ|V | vertices.

The following lemma can be relatively easily shown by using greedy tech-
niques:
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Lemma 7.49 If G = (V,E) has a separator S of type 2, yielding chunks of
size at most 1/2 · |V |, then G has a separation (A1, S

′, A2) such that neither
A1 nor A2 have more than 2/3 · |V | elements.

The first theorem we need is the following one that relates treewidth and
separators of type 2 (see [54, Theorem 19]):

Theorem 7.50 If tw(G) ≤ k, then there is a type-2 separator S, |S| ≤ k+1,
in G that yields chunks of size at most 1/2 · (|V | − k).

Namely, observe that in a graph of treewidth at most k, a suitably chosen
bag may serve as a separator of type 2.

Algorithm 66 An algorithm for determining a small separator in a plane
graph

Input(s): a plane n-vertex graph G
Output(s): a type-2 separator S, |S| ≤ 2

√
6n of type 2, yielding chunks of

size at most 1/2 · |V |.
Let c = 1/2 · √n.
Let L1, . . . , Lr be the layer decomposition of the plane graph G.
Determine s be such that |⋃i<s Li| ≤ 1/2·|V | and that |⋃i>s Li| ≤ 1/2·|V |.
if |Ls| ≤ c

√
n then

output Ls
else if |Li| > c

√
n for all 1 ≤ i ≤ r then

{r ≤ 1/c · √n (since there are only n vertices in the graph)}
{tw(G) ≤ 3r − 1 ≤ 3/c

√
n− 1}

Thm. 7.50 guarantees the existence of a sufficiently small separator S of
type 2 which the algorithm returns.

else
Let s1 < s be maximal with the property that |Ls1| ≤ c

√
n.

Let s2 > s be minimal with the property that |Ls2| ≤ c
√
n.

Let L =
⋃
s1<i<s2

Li.
Find small separator S of type 2 in G[L] according to Thm. 7.50.
{Notice that out(G[L]) ≤ s2 − s1 − 1 ≤ 1/c · √n, hence tw(G[L]) ≤
3/c

√
n− 1.}

return Ls1 ∪ Ls2 ∪ S
end if

Theorem 7.51 Alg. 66 produces to every plane n-vertex graph G a type-2
separator of size 2

√
6n, yielding chunks of size at most 1/2 · n.
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With Lemma 7.49, we may conclude:

Corollary 7.52 Planar graphs admit an
√
n-separator theorem with con-

stants α = 2/3 and β ≈ 4.90.

Variants of separator theorems

Cycle separators. In the literature, there are many separator theorems
for planar graphs which guarantee that all the vertices of the separator lie
on a simple cycle, provided that the given graph is biconnected or even tri-
angulated. In fact, the current “record holder” in the case of α = 2/3 yields
a cycle separator, see [128]. From an algorithmic perspective, as explained
below, the requirements of having biconnected or triangulated graphs are
rarely met: even if the original graph was biconnected or triangulated, sub-
graphs which are obtained by recursive applications of separator theorems to
a larger graph are not biconnected or triangulated in general. Therefore, we
consider the following definition appropriate for our purposes:

Definition 7.53 We will call a separator S of a planar graph G cycle sepa-
rator if there exists a triangulation Ĝ of G such that S forms a simple cycle
in Ĝ.

Note: some triangulation of a given planar graph can be computed in linear
time.

Remark 7.54 It will turn out that it is of special value (concerning the
design of divide and conquer algorithms) to have separators that form simple
cycles (within some triangulation of the given graph G), since then the Jordan
curve theorem applies (for planar graphs), which basically means that the
separator S splits G into an “inside”-part A1 and an “outside”-part A2. If G
is a subgraph of a larger planar graph G̃, then this implies that each vertex v
of G̃ that has neighbors in A1 has no neighbors in A2 and vice versa. This
observation is important, since it means that a local property pertaining to
vertex v of G̃ (like: v belongs to a dominating set or not) can only influence
vertices in δA1 or vertices in δA2.

Weighted separation. It is also possible to incorporate weights in most
separator theorems. For our purposes, weights are nonnegative reals as-
signed to the vertices in a graph such that the sum of all weights in a graph
is bounded by one. For weighted graphs, an f(·)-separator theorem with con-
stants α and β for graph class G guarantees, for any n-vertex graph G ∈ G,
the existence of a separation (A1, S, A2) of G such that
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• neither A1 nor A2 has weight more than α, and

• S contains no more than βf(n) vertices.

Other graph classes with separator theorems. Similar to the case of
planar graphs,

√·-separator theorems are also known for other graph classes,
e.g., for the class of graphs of bounded genus, see [131]. More generally,
Alon, Seymour and Thomas proved a

√·-separator theorem for graph classes
with an excluded complete graph minor [20, 21]. There are also interesting
graph classes which are not minor closed for which

√·-separator theorems are
known, as, e.g., the classes of `-map graphs, see [92, 93].7 Many comments
of this paper apply to these more general situations, too.

7.5.2 Select&verify problems and glueability

For the approach outlined in this section, we want to describe necessary
properties for graph problems that allow for separator based algorithms.

Select&verify graph problems

Definition 7.55 A set G of tuples (G, k), G an undirected graph with vertex
set V = {v1, . . . , vn} and k a positive real number, is called a select&verify
(graph) problem if there exists a pair (P·, opt) with opt ∈ {min,max}, such
that P· is a function that assigns to G a polynomial time computable function
of the form PG = P sel

G + P ver
G , where P sel

G : {0, 1}n → R≥0, P
ver
G : {0, 1}n →

{0,±∞}, and

(G, k) ∈ G ⇔
{

opt~x∈{0,1}n PG(~x) ≤ k if opt = min
opt~x∈{0,1}n PG(~x) ≥ k if opt = max .

For ~x = (x1, . . . , xn) ∈ {0, 1}n with PG(~x) ≤ k if opt = min and with
PG(~x) ≥ k if opt = max, the vertex set selected by ~x and verified by PG is
{vi ∈ V | xi = 1, 1 ≤ i ≤ n}. A vector ~x is called admissible if P ver

G (~x) = 0.

The intuition behind the term P· = P sel
· + P ver

· is that the “selecting
function” P sel

· counts the size of the selected set of vertices and the “verifying
function” P ver

· verifies whether this choice of vertices is an admissible solution.

Observe that every select&verify graph problem that additionally admits
a problem kernel of size p(k) is solvable in time O(2p(k)p(k) + TK(n, k)).

7The ` basically refers to the maximal size of a complete subgraph of a map graph.
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Example 7.56 We now give some examples for select&verify problems by
specifying the function PG = P sel

G + P ver
G . In all cases below, the “selecting

function” PG for a graph G = (V,E) will be

P sel
G =

∑

vi∈V
xi.

Also, we use the convention that 0 · (±∞) = 0.

1. In the case of vertex cover, we have opt = min and choose

P ver
G (~x) =

∑

{vi,vj}∈E
∞ · (1 − xi)(1 − xj),

where this sum brings PG(~x) to infinity whenever there is an uncovered
edge. In addition, PG(~x) ≤ k then guarantees a vertex cover set of size
at most k. Clearly, PG is polynomial time computable.

2. Similarly, in the case of independent set, let opt = max and choose

P ver
G (~x) =

∑

{vi,vj}∈E
(−∞) · xi · xj.

3. dominating set is another example for a select&verify graph problem.
Here, for G = (V,E), we have

P ver
G (~x) =

∑

vi∈V
(∞ · (1 − xi) ·

∏

{vi,vj}∈E
(1 − xj)),

where this sum brings PG(~x) to infinity whenever there is a non-dominated
vertex which is not in the selected dominating set. In addition, PG(~x) ≤
k then guarantees a dominating set of size at most k.

4. Similar observations do hold for many other graph problems and, in
particular, weighted variants of these.8 As a source of problems, con-
sider the variants of dominating set listed in [140, 228, 364].

Moreover, graph problems where a small (or large) edge set is sought for can
often be reformulated into vertex set optimization problems by introducing
an additional artificial vertex on each edge of the original graph. In this way,
edge dominating set can be handled. Similarly, planar graph problems

8In the weighted case, one typically chooses a “selecting function” of the form P sel
G =∑

vi∈V αixi, where αi is the weight of the vertex vi.
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where a small (or large) face set is looked for are expressible as select&verify
problems of the dual graphs.

We will also need a notion of select&verify problems where the “selecting
function” and the “verifying function” operate on a subgraph of the given
graph.

Definition 7.57 Let P· = P sel
· + P ver

· be the function of a select&verify
problem. For an n-vertex graph G and subgraphs Gver = (V ver, Ever), Gsel =
(V sel, Esel) ⊆ G, we let

PGver(~x | Gsel) := P ver
Gver(πV ver(~x)) + P sel

Gsel(πV sel(~x)),

where πV ′ is the projection of the vector ~x ∈ {0, 1}n to the variables corre-
sponding to the vertices in V ′.

Glueability. We are going to solve graph problems, slicing the given graph
into small pieces with the help of small separators. The separators will serve
as boundaries between the different graph parts into which the graph is split.
For each possible assignment of the vertices in the separators, we want to—
independently—solve the corresponding problems on the graph parts and
then reconstruct a solution for the whole graph by “gluing” together the
solutions for the graph parts. We need to assign colors to the separator
vertices in the course of the algorithm. Hence, our algorithm has to be
designed in such a manner that it can also cope with colored graphs. In
general (e.g., in the case of dominating set), it is not sufficient to simply
use the two colors 1 (for encoding “in the selected set”) and 0 (for “not in
the selected set”).

Let us introduce some auxiliary notions. Let G = (V,E) be an undirected
graph and let C0, C1 be finite, disjoint sets. A C0-C1-coloring of G is a
function χ : V → C0 +C1 + {#}.9 For V ′ ⊆ V , a function χ : V ′ → C0 ] C1

can naturally be extended to a C0-C1-coloring of G by setting χ(v) = # for
all v ∈ V \ V ′.

Consider a vector ~x ∈ {0, 1}|V |. Let χ be a C0-C1-coloring of G. Then,
~x is consistent with χ, written ~x ∼ χ, if, for i = 0, 1 and j = 1, . . . , |V |,
χ(vj) ∈ Ci ⇒ xj = i, .

If χ is a C0-C1-coloring of G and if χ′ is a C ′
0-C

′
1-coloring of G, then χ is

preserved by χ′, written χ  χ′, if ∀v ∈ V ∀i ∈ {0, 1} (χ(v) ∈ Ci ⇒ χ′(v) ∈
C ′
i).

In the next section, when doing the divide and conquer approach with a
given separator, we will deal with colorings on two different color sets: one

9The symbol # will be used for the undefined (i.e., not yet defined) color.
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color set C int := C int
0 + C int

1 + {#} of internal colors that will be used for
the assignments of colors to the separator vertices and a color set C ext :=
Cext

0 + Cext
1 + {#} of external colors that will be used for handing down

the information in the divide-step of the algorithm. The idea is that, in
each recursive step, we will be confronted with a graph “pre-colored” with
external colors. Every function ⊕ that assigns to a pair (χext, χint) with
χext : V → Cext, χint : V → C int, χext  χint, a (Cext

0 -Cext
1 )-coloring χext⊕χint

is called a recoloring if χint  χext ⊕ χint.
From the point of view of recursion, χext is the pre-coloring which a certain

recursion instance “receives” from the calling instance and χint represents a
coloring which this instance assigns to a certain part of the graph. The
coloring χext ⊕ χint is handed down in the recursion.

We now introduce the central notion of “glueable” select&verify problems.
This formalizes those problems that can be solved with separator based divide
and conquer techniques as described above.

Definition 7.58 A select&verify problem G given by (P·, opt) is glueable
with σ colors if there exist

• a color set C int := C int
0 +C int

1 +{#} of internal colors with |C int
0 +C int

1 | =
σ;

• a color set Cext := Cext
0 + Cext

1 + {#} of external colors;

• a polynomial time computable function h : (R≥0 ∪ {±∞})3 → R≥0 ∪
{±∞};

and if, for every n-vertex graph G = (V,E) and subgraphs Gver, Gsel ⊆ G
with a separation (A1, S, A2) of Gver, we find

• recolorings ⊕X for each X ∈ {A1, S, A2}, and

• for each internal coloring χint : S → C int
0 ] C int

1 ,

• subgraphs Gver
Ai

(χint) of Gver with Gver[Ai] ⊆ Gver
Ai

(χint) ⊆ Gver[δAi]
for i = 1, 2, and

• subgraphs Gver
S (χint) of Gver with Gver

S (χint) ⊆ Gver[S]

such that, for each external coloring χext : V → Cext,

opt~x∈{0,1}n

~x∼χext
PGver(~x | Gsel) (7.1)

= optχint:S→Cint
0

]Cint
1

χext
 χint

h
(
EvalA1(χ

int),EvalS(χ
int),EvalA2(χ

int)
)
.
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Here, EvalX(·) for X ∈ {A1, S, A2} is of the form

EvalX(χint) = opt ~x∈{0,1}n

~x∼(χext⊕Xχint)

PGver
X (χint)(~x | Gver[X] ∩Gsel). (7.2)

Lemma 7.59 vertex cover and independent set are glueable with
2 colors and dominating set is glueable with 4 colors.

Proof. For vertex cover(see Example 7.56.1), we use the color sets C `
i :=

{i`} for ` ∈ {int, ext} and i = 0, 1. The function h is h(x, y, z) = x + y + z.
The subgraphs Gver

X (χint) for X ∈ {A1, S, A2} and χint : S → C int
0 ] C int

1

are Gver
X (χint) := Gver[X]. In this way, the subroutine EvalS(χ

int) checks
whether the coloring χint yields a vertex cover on Gver[S] and the subroutines
EvalAi

(χint) compute the minimum size vertex cover on Gver[Ai]. However,
we still need to make sure that all edges going from Ai to S are covered. If a
vertex in S is assigned a 1int by χint, the incident edges are already covered.
In the case of a 0int-assignment for a vertex v ∈ S, we can color all neighbors
in N(v) ∩ Ai to belong to the vertex cover. This is done by the following
recolorings ⊕Ai

. Define

(χext ⊕Ai
χint)(v) =





0ext if χint(v) = 0int,
1ext if χint(v) = 1int or

if ∃w ∈ N(v) with χint(w) = 0int,
#, otherwise.

By this recoloring definition, an edge between a separator vertex and a
vertex in Ai which is not covered by the separator vertex (due to the currently
considered internal covering) will be covered by the vertex in Ai. Our above
reasoning shows that—with these settings—Equation (7.1) in Definition 7.58
is satisfied.

independent set (see Example 7.56.2)) is shown to be glueable with
2 colors by a similar idea.

To show that dominating set (see Example 7.56.3)) is glueable with
4 colors, we use the following color sets

C int
0 := {0int

A1
, 0int

A2
, 0int

S }, C int
1 := {1int},

Cext
0 := {0ext}, Cext

1 := {1ext}.

The semantics of these colors is as follows. Assigning the color 0int
X , for

X ∈ {A1, A2, S}, to vertices in a current separation V = A1 ] S ]A2 means
that the vertex is not in the dominating set and will be dominated by a vertex
in X. Clearly, 1int will mean that the vertex belongs to the dominating set.
The external colors simply hand down the information whether a vertex
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belongs to the dominating set, represented by 1ext, or whether it is not in
the dominating set and still needs to be dominated, represented by 0ext.10

The function h simply is addition, i.e., h(x, y, z) = x+ y+ z. When handing
down the information to the subproblems, for a given internal coloring χint :
S → C int

0 ] C int
1 , we define

Gver
Ai

(χint) := Gver[Ai ∪ (χint)−1({1int, 0int
Ai
})] and

Gver
S (χint) := Gver[(χint)−1({1int, 0int

S })].

The recolorings ⊕X for X ∈ {A1, S, A2} are chosen to be

(χext ⊕X χ
int)(v) =





0ext if χint(v) ∈ C int
0 ,

1ext if χint(v) = 1int,
#, otherwise.

Let us explain in a few lines why—with these settings—Equation (7.1) in
Definition 7.58 is satisfied. If an internal coloring χint assigns color 0int

X

(X ∈ {A1, S, A2}) to a vertex in S, then this vertex needs to be domi-
nated by a neighbor in X. This will be checked in EvalX(χint) using the
graph Gver

X (χint). To this end, vertices assigned the color 0int
X (i.e., the set

(χint)−1({0int
X })) are included in Gver

X (χint). The vertices assigned color 1int

(i.e., (χint)−1({1int})) also need to be handed down to the subroutines, since
such a vertex may already dominate vertices in X. The recolorings merge
the given external coloring χext with the current internal coloring χint in a
way that already assigned colors from C int

i or Cext
i (i = 0, 1) become iext. The

terms EvalAi
(χint) then compute (for each internal coloring χint) the size of a

minimum dominating set in Ai under the constraint that some vertices in δAi

still need to be dominated (namely, the vertices in δAi∩(χext⊕Ai
χint)−1(0ext))

and some vertices in δAi can already be assumed to be in the dominating set
(namely, the vertices in δAi ∩ (χext ⊕Ai

χint)−1(1ext)). The term EvalS(χ
int)

checks the correctness of the internal coloring χint of S.

Note that, from the point of view of divide-and-conquer algorithms, three
colors are enough for dominating set, since the color 1int already deter-
mines the color 0int

S .
We illustrate the ideas of the dominating set algorithm by using an example.

Example 7.60 Consider dominating set for the separated graph in Fig. 7.15.
Beginning with the external coloring χext ≡ # and Gver = Gsel = G, we need

10A vertex that is not in the dominating set but is already guaranteed to be dominated,
e.g., by a vertex in the current separator, will never be handed down, since these vertices
are of no use in the sequel of the recursion.
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Figure 7.15: A partitioned graph.

to go over all 42 = 16 internal colorings χint : S → {0int
A1
, 0int

S , 0
int
A2
, 1int} (which

trivially satisfy χext  χint). As an example, we choose χint with v5 7→ 0int
A1

,
v6 7→ 0int

A2
. In this case, we get Gver

A1
[χint] = Gver[{v1, . . . , v5}], Gver

S [χint] = ∅,
and Gver

A2
[χint] = Gver[{v6, . . . , v11}]. Recursively, we will use these graphs for

the verifying function and the graphs Gver[A1], G
ver[S], and Gver[A2] for the

selecting function. The external colorings that will be handed down to the
subproblems after the recoloring look as follows: On the graph Gver

A1
[χint], we

have χ1(vi) := (χext ⊕A1 χ
int)(vi) = # for i = 1, . . . , 4, and χ1(v5) = 0ext.

On the graph Gver
A2

[χint], we have χ2(vi) := (χext ⊕A2 χ
int)(vi) = # for

i = 7, . . . , 11, and χ2(v6) = 0ext. Clearly,

EvalA1(χ
int) = 2, EvalS(χ

int) = 0, and EvalA2(χ
int) = 2.

The minimum in Equation (7.2) of Definition 7.58 for X = A1 is obtained,
e.g., by choosing the vertices v1 and v2 (note that the latter needs to be
chosen, since χ1(v5) = 0ext, meaning that v5 is forced to be dominated in this
term). The minimum for A2 is obtained, e.g., by choosing the vertices v8 and
v10 (again, χ2(v6) = 0ext forces either v8 or v9 to be in the dominating set).
Hence,

h(EvalA1(χ
int),EvalS(χ

int),EvalA2(χ
int)) = 2 + 0 + 2 = 4.

We obtain an optimal result, e.g., for the choice of the internal color-
ing χint with χint(v5) = χint(v6) = 0int

A2
. Here, we get EvalA1(χ

int) = 1,
EvalS(χ

int) = 0, and EvalA2(χ
int) = 2, for the possible choices of v3, v8, v10 as

dominating set vertices.

Remark 7.61 In the case that recurrences are based on separator theorems
yielding `-separators, let us call a problem `-glueable with σ` colors if σ`
colors are to be distinguished in the recursion. For example, an extension
of our previous lemma shows that dominating set is `-glueable with ` + 2
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colors, where |C int
0 | = ` + 1. There need not be, however, a dependence of

the number of colors on the number of graph parts: both vertex cover and
independent set are `-glueable with two colors.

Besides the problems stated in the preceding Lemma 7.59, many more
select&verify problems are glueable, for example, those which are listed in
[363, 364, 365]. In particular, weighted versions and variations of the prob-
lems discussed in Lemma 7.59 are glueable.

7.5.3 Fixed-parameter divide-and-conquer algorithms

In this section, we provide the basic framework for deriving fixed-parameter
algorithms based on the concepts we introduced so far.

Using glueability for divide-and-conquer

Fix a graph class G for which a
√·-separator theorem with constants α and

β (cf. Definition 7.48) is known. We consider a glueable select&verify graph
problem G defined by (P·, opt). The evaluation of the term opt~x∈{0,1}n PG(~x)
(cf. Definition 7.55) can be done recursively according to the following strat-
egy.

The sizes of the subproblems, i.e., the sizes of the graphs Gver
Ai

(χint) which
are used in the recursion, play a crucial role in the analysis of the running
time of this algorithm. A particularly nice situation is given by the following
problems.

Definition 7.62 A glueable select&verify problem is called a slim problem
if the subgraphs Gver

Ai
(χint) are only by a constant number of vertices larger

than Gver[Ai], i.e., if there exists an η ≥ 0 such that |V (Gver
Ai

(χint))| ≤ |Ai|+η
for all internal colorings χint : S → C int.

Note that the proof of Lemma 7.59 shows that both vertex cover and
independent set are slim with η = 0, whereas dominating set is not.

The following proposition gives the running time of the above algorithm in
terms of the parameters of the separator theorem used and the select&verify
problem considered. In order to assess the time required for the above given
divide-and-conquer algorithm, we use the following abbreviations for the run-
ning times of certain subroutines:

• TS(n) denotes the time to find a “sufficiently small” separator in an
n-vertex graph from class G.
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1. Start the computation by evaluating

opt~x∈{0,1}n PG(~x) = opt~x∈{0,1}n, ~x∼χext
0
PGver(~x | Gsel),

where “χext
0 ≡ #” is the everywhere undefined external coloring and

Gver = Gsel = G (also cf. Definition 7.57).

2. When opt~x∈{0,1}n, ~x∼χext PGver(~x | Gsel) needs to be calculated for some

subgraphs Gsel, Gver ⊆ G, and an external coloring χext : V (G) →
Cext

0 ] Cext
1 ] {#}, we do the following:

(a) If Gver has size greater than some constant c, then find a
√·-

separator S for Gver with V (Gver) = A1 ] S ] A2.

(b) Define Φ := {χint : S → C int
0 ] C int

1 | χext  χint}.
For all internal colorings χint ∈ Φ do:

i. Determine EvalAi
(χint) recursively for i = 1, 2.

ii. Determine EvalS(χ
int).

(c) Return optχint∈Φ h(EvalA1(χ
int),EvalS(χ

int),EvalA2(χ
int)).

• TM(n) denotes the time to construct the modified graphs Gver
X (χint) ∈ G

and the modified colorings (χext⊕X χ
int) (for X ∈ {A1, S, A2} and each

internal coloring χint ∈ Φ from an n-vertex graph from class G.

• TE(m) is the time to evaluate EvalS(χ
int) for any χint ∈ Φ in a separa-

tor S of size m.

• TG(n) is the time for gluing the results obtained by two sub-problems
each of size O(n).

In the following, we assume that all these functions are polynomials.

Proposition 7.63 Let G be a graph class for which a
√·-separator theo-

rem with constants α and β is known and let G be a select&verify problem
defined by (P·, opt) that is glueable with σ colors. Then, for every G ∈ G,
opt~x∈{0,1}n PG(~x) can be computed in time

c(α′, β, σ)
√
nq(n), where c(α′, β, σ) = σβ/(1−

√
α′).

Here, α′ = α + ε for any ε ∈ (0, 1 − α) and q(·) is some polynomial; the
running time analysis only holds for n ≥ n0(ε).
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If, however, G is slim or the
√·-separator theorem yields cycle separa-

tors (and G is the class of planar graphs), then the running time for the
computation is c(α, β, σ)

√
nq(n), which then holds for all n.

The (rather lengthy) proof is contained in [14].

Remark 7.64 A similar proposition holds for graph classes on which an `-
separator theorem is known with constants α and β. It might turn out that
such separator theorems have better ratio β/(1−√

α), which, in turn, would
directly improve the running time in Proposition 7.63.

How (linear) problem kernels help

If the considered parameterized problem has a problem kernel of size dk,
we can use the considerations we have made up to this point in order to
obtain fixed-parameter algorithms whose exponential term is of the form c

√
k

for some constant c. More generally, a problem kernel of size p(k) yields

exponential terms of the form c
√
p(k).

Theorem 7.65 Assume the following:

• Let G be a graph class for which a
√·-separator theorem with con-

stants α and β is known,

• let G be a select&verify problem defined by (P·, opt) glueable with σ
colors, and

• suppose that G admits a problem kernel of polynomial size p(k) on G
computable in time TK(n, k).

Then, there is an algorithm to decide (G, k) ∈ G, for a graph G ∈ G, in time

c(α′, β, σ)
√
p(k)q(k) + TK(n, k), where c(α′, β, σ) = σβ/(1−

√
α′), (7.3)

and α′ = α+ ε for any ε ∈ (0, 1 − α), holding only for k ≥ k0(ε), where q(·)
is some polynomial.

If, however, G is slim or the
√·-separator theorem yields cycle separators

(on the class G of planar graphs), then the running time for the computation
is

c(α, β, σ)
√
p(k)q(k) + TK(n, k),

which then holds for all k.
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In particular, Theorem 7.65 means that, for glueable select&verify prob-
lems for planar graphs that admit a linear problem kernel of size dk, we can
get an algorithm of running time

O
(
c(α, β, σ, d)

√
kq(k) + TK(n, k)

)
, where c(α, β, σ, d) = σ

√
dβ/(1−√

α).

Obviously, the choice of the separator theorem has a decisive impact on
the constants of the corresponding algorithms. In particular, our running
time analysis shows that the ratio r(α, β) := β/(1 − √

α) has a direct and
significant influence on the running time. In Table 7.1, this ratio is computed
for the various

√·-separator theorems. In the following example we use these
ratios explicitly.

Example 7.66 In the case of Vertex Cover on planar graphs, we can take
d = 2, α = 2/3, and β =

√
2/3 =

√
4/3 (see [128]) with the ratio r(α, β) ≈

10.74. In this way, we obtain an algorithm with running time O(2
√

2·10.74·
√
k+

nk). Neglecting polynomial terms, we have such obtained a c
√
k-algorithm

with c ≈ 215.19 ≈ 37381. By way of contrast, taking d = 2, α = 3/4, and

β =
√

2π/
√

3 · (1 +
√

3)/
√

8 ≈ 1.84 (see [353]) with r(α, β) ≈ 13.73, we get

an algorithm with running time O(2
√

2·13.73·
√
k + nk). This means, we have a

c
√
k-algorithm with c ≈ 219.42 ≈ 701459.

The constants obtained by this first approach are admittedly bad. How-
ever, by a careful analysis of how separator theorems are obtained in the
literature, we can show in [14]:

Theorem 7.67 Let G be a select&verify problem on planar graphs defined by
(P·, opt) which is glueable with σ colors, and suppose that G admits a problem
kernel of polynomial size p(k) computable in time TK(n, k).

Then, there is an algorithm to decide (G, k) ∈ G, for an n-vertex planar
graph G, in time

c(α′, σ)
√
p(k)q(k) + TK(n, k), where c(α′, σ) ≈ σ1.80665/(1−

√
α′),

and α′ = 2/3 + ε for any ε ∈ (0, 1/3), holding only for k ≥ k0(ε), where q(·)
is some polynomial.

If G is slim, then the running time for the computation is

c(2/3, σ)
√
p(k)q(k) + TK(n, k),

which then holds for all k.
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Example 7.68 For planar vertex cover, we obtain by the previous
theorem an O∗(f(k))-algorithm with f(k) ≤ 213.9234

√
k ≈ 15537

√
k, which

obviously beats the figures in Example 7.66.

To further improve on our constants, it is possible to analyze a planar
√·-

separator theorem yielding 3-separators (due to Djidjev [130]) in essentially
the same way as sketched above, leading to the following theorem:

Theorem 7.69 Let G be a select&verify problem on planar graphs defined
by (P·, opt) which is 3-glueable with σ colors, and suppose that G admits a
problem kernel of polynomial size p(k) computable in time TK(n, k).

Then, there is an algorithm to decide (G, k) ∈ G, for an n-vertex planar
graph G, in time

c(α′, σ)
√
p(k)q(k) + TK(n, k), where c(α′, σ) ≈ σ2.7056/(1−

√
α′),

and α′ = 1/2 + ε for any ε ∈ (0, 1/2), holding only for k ≥ k0(ε), where q(·)
is some polynomial.

If G is slim, then the running time for the computation is

c(1/2, σ)
√
p(k)q(k) + TK(n, k),

which then holds for all k.

Example 7.70 For Vertex Cover on planar graphs, we obtain in this
way an O∗(f(k))-algorithm with f(k) ≤ 213.0639

√
k ≈ 8564

√
k, which again

beats the figure derived in Example 7.68.

Observe that Theorem 7.69 is not always yielding a better algorithm than
Theorem 7.67, since possibly more colors are needed in the recursion for 3-
glueability than for (2-)glueability, see Remark 7.61.

Remark 7.71 We discuss the importance of cycle separator theorems or
slim graph problems. Assume that none of these two conditions is met in
a given situation. Then, the claimed bound from Equation (7.3) of Theo-
rem 7.65 is only true for some α′ = α + ε with ε ∈ (0, 1 − α). Now, there is
a certain trade-off in the choice of ε:

1. The factor β/(1 −
√
α′) in the exponent of c(α′, β, σ) tends to infinity

if α′ tends to one, i.e., if ε is as large as possible.

2. The analysis of Theorem 7.65 is only valid if p(k) ≥ (β/ε)2.
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Keeping in mind that typical values of p(k) are not very large in practical
cases, the second point means that, since β is fixed, ε should be comparatively
large, otherwise, β/ε would be greater than

√
p(k). This gives us very bad

constants in the analysis due to the first point.

As explained in the following example, Theorem 7.65 is not only interest-
ing in the case of planar graph problems.

Example 7.72 Since Vertex Cover is a slim problem which has a linear
size kernel, Theorem 7.65 yields a c

√
gk-algorithm for Gg, where Gg denotes

the class of graphs of genus bounded by g; see [131], where the existence of
a separator of size O(

√
gn) for n-vertex graphs from Gg was proven. For the

same reason, we get a c
√
gk-algorithm for Independent Set on Gg. Simi-

larly, for the class of `-map graphs, we obtain c
√
`k-algorithms for Vertex

Cover and for Independent Set based on [92].

Note that these are the first examples of fixed-parameter algorithms with
sublinear exponents for bounded genus graphs and for `-map graphs. In this
sense, the techniques discussed in this paper apply to a wider range of graphs
compared to the approach discussed in the next section. The “Layerwise
Separation Property” we provide there makes sense for planar graphs only,
although it might be extensible to map graphs.

7.6 The beauty of small kernels: layerwise

separation

This approach differs strongly from research directions, where running times
of algorithms are improved in a very problem-specific manner (e.g., by ex-
tremely sophisticated case-distinctions). For example, once one can show
that a problem has the so-called “Layerwise Separation Property,” one can
run a general algorithm which quickly computes a tree decomposition of
guaranteed small width (independent of the concrete problem). In summary,
the heart of our approach can roughly be sketched as follows: If...

1. ...one can show that a graph problem carries some nice properties (e.g.,
the Layerwise Separation Property) and

2. ...one can determine some corresponding “problem-parameters” for these
properties (e.g., the width and the size-factor of the Layerwise Separa-
tion Property);
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kernel

size: dk

linear problem

problem-specific

max(out(Gi)) ≤
√
dk/ψ + w # of colors: λ

bounded outerplanarity

algorithm for

CONSTRAINT G
tree-decomposition

Layerwise Separation Property

bounded outerplanarity

approach

(dynamic programming)

tree decomposition

algorithm for G
σtw(G) · n

size-factor: d

(LSP)

max |S| ≤ ψ
√
dk

Partial Separation S(ψ)

τout(G) · n

tw(G) ≤ 2
√

3d
√
k + (3w − 1)

O( 2θ1(σ,d)
√
k · n )

θ2(λ, τ, d) = 2
√

d log(λ) log(τ)
O( 2θ2(λ,τ,d)

√
k · n )

weakly glueable

θ1(σ, d) = 2 log(σ)
√

3d

width: w

Figure 7.16: Road map of our methodology for planar graph problems.

then one gets an algorithm of running time O(c
√
knO(1)), where we give con-

crete formulas on how to evaluate the constant c as a function of these
problem-parameters.

In a first phase, one separates the graph in a particular way (“layerwise”).
The key property of a graph problem to allow such an approach will be the so-
called “Layerwise Separation Property.” The details herefore are presented
in Section 7.6.1. It will be shown that such a property holds for quite a large
class of graph problems including those which admit a linear problem kernel.
This property assures that the planar graph can be separated nicely.

In a second phase, the problem is solved on the layerwisely separated
graph. We present two independent ways to achieve this in Section 7.6.2.
Either, using the separators to set up a tree decomposition of width O(

√
k)

and solving the problem using this tree decomposition; or using a combina-
tion of a trivial approach on the separators and some algorithms working on
graphs of bounded outerplanarity (see [32]) for the partitioned rest graphs.
Figure 7.16 gives a general overview of our methodology presented in the
following two sections. As noted before, in the second phase (Section 7.6.2)
we will describe two independent ways to solve the underlying graph problem
on the layerwisely separated graph. Both the tree decomposition as well as
the bounded outerplanarity approach do have their pros and cons, which is
why we present both of them. As to the tree decomposition approach, its ad-
vantage is its greater generality (up to the tree decomposition it is the same
for all graph problems). In particular, it is definitely easier to implement in
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practice, also due to its universality and mathematical elegance.
By way of contrast, as to the bounded outerplanarity approach, in some

cases we obtain better (theoretical worst-case) time complexity bounds for
our algorithms in comparison with the tree decomposition approach. More-
over, the space consumption is significantly smaller, because the tree de-
composition approach works in its dynamic programming part with possibly
large tables. To achieve this, however, we need more complicated formalism
and more constraints concerning the underlying graph problems.

Recall the notion of a separation (A1, S, A2) of G; the graphs G[Ai] are
called the graph chunks of the separation. Given a separation (A1, S, A2),
we use the shorthands δAi := Ai ] S for i = 1, 2. We will also consider
X-Y -separators with X, Y ⊆ V : such a separator cuts every path from X
to Y in G.

7.6.1 Phase 1: Layerwise separation

In this section, we exploit the layer-structure of a plane graph in order to
gain a “nice” separation of the graph. It is important that a YES-instance
(G, k) (where G is a plane graph) of the graph problem G admits a so-called
“layerwise separation” of small size. By this, we mean, roughly speaking,
a separation of the plane graph G (i.e., a collection of separators for G),
such that each separator is contained in the union of constantly many subse-
quent layers (see conditions 1 and 2 of the following definition). For (fixed-
parameter) algorithmic purposes, it will be important that the corresponding
separators are “small” (see condition 3 of the definition).

Definition 7.73 Let (G = (V,E), φ) be a plane graph (where φ is the em-
bedding) of outerplanarity r := out(G, φ), and let L(G, φ) = (L1, . . . , Lr)
be its layer decomposition. A layerwise separation of width w and size s of
(G, φ) is a sequence (S1, . . . , Sr) of subsets of V , with the properties that, for
i = 1, . . . , r:11

1. Si ⊆
⋃i+(w−1)
j=i Lj,

2. Si is an Li−1-Li+w separator, and

3.
∑r

j=1 |Sj| ≤ s.

The crucial property that makes the algorithms developed in this paper work
is what we call the “Layerwise Separation Property.”

11By default, we let Si := ∅ for all i < 1 and i > r.
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Definition 7.74 A parameterized problem G for planar graphs is said to
have the Layerwise Separation Property (abbreviated by: LSP) of separation
width w and size-factor d if for each (G, k) ∈ G and every planar embedding φ
of G, the plane graph (G, φ) admits a layerwise separation of width w and
size dk.

How can layerwise separations be obtained?

The LSP can be shown directly for many parameterized graph problems.

Example 7.75 1. Consider planar vertex cover. Here, we get con-
stants w = 2 and d = 2. In fact, for (G, k) ∈ vertex cover (and
any planar embedding φ of G) with a “witnessing” vertex cover V ′ of
size k, the sets Si := (Li∪Li+1)∩V ′ form a layerwise separation, given
the layer decomposition L(G, φ) = (L1, . . . , Lr).

2. We have already seen how the non-trivial fact is proven that for planar
dominating set this property holds, yielding constants w = 3 and
d = 51.

Fenau and Juedes ([179], also described below) have shown that all prob-
lems describable by formulas from Planar T MIN 1 (as defined in [256]) sat-
isfy LSP. This class includes planar red-blue dominating set, face
cover, and planar edge dominating set.

A large class of parameterized graph problems for which the LSP holds
is given whenever there exists a reduction to a linear problem kernel.

Lemma 7.76 Let G be a parameterized problem for planar graphs that ad-
mits a problem kernel of size dk. Then, the parameterized problem G ′ where
each instance is replaced by its problem kernel has the LSP of width 1 and
size-factor d.

Proof. Let (G′, k′) ∈ G ′ with k′ ≤ dk be the problem kernel of (G, k) ∈ G,
and let L(G′, φ′) = (L′

1, . . . , L
′
r′) be the layer decomposition of (G′, φ′) (where

φ′ is any embedding). Let r′ = out(G′, φ′). Observe that r′ ≤ dk
3

since each
layer has to consist of at least 3 vertices. Then, the sequence Si := L′

i for
i = 1, . . . , r′ is a layerwise separation of width 1 and size dk of (G′, φ′).

Chap. 4 gives us therefore already a collection of problems that satisfy
LSP. In particular, we have:

Example 7.77 1. planar vertex cover has the LSP of width 1 and
size-factor 2 (which is even better than what was shown in Exam-
ple 7.75).
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2. planar independent set has the LSP of width 1 and size-factor 4
on the set of reduced instances.

3. planar dominating sethas the LSP of width 1 and size-factor 67.
Observe that these bounds are worse than the one mentioned in Exam-
ple 7.75, since it is the size-factor that mainly influences the running
time of our algorithms.

What are layerwise separations good for?

From a layerwise separation of small size (say bounded by O(k)), we are
able to choose a set of separators such that their size is bounded by O(

√
k)

and—at the same time—the subgraphs into which these separators cut the
original graph have outerplanarity bounded by O(

√
k). In order to formalize

such a choice of separators from a layerwise separation, we give the following
definition.

Definition 7.78 Let (G = (V,E), φ) be a plane graph with layer decompo-
sition L(G, φ) = (L1, . . . , Lr). A partial layerwise separation of width w is a
sequence S = (S1, . . . , Sq) such that there exist i0 = 1 < i1 < . . . < iq < r =
iq+1 such that for i = 1, . . . , q:12

1. Sj ⊆
⋃ij+(w−1)
`=ij

L`,

2. ij + w ≤ ij+1 (so, the sets in S are pairwise disjoint) and

3. Sj is a Lij−1-Lij+w separator.

The sequence CS = (G0, . . . , Gq) with

Gj := G[(

ij+1+(w−1)⋃

`=ij

L`) − (Sj ∪ Sj+1)], j = 0, . . . , q,

is called the sequence of graph chunks obtained by S.

With this definition at hand, we can state the key result needed to establish
the algorithms that will be presented in Section 7.6.2. The proof techniques
applied show some similarity to Baker [32].

Proposition 7.79 Let (G = (V,E), φ) be a plane graph that admits a lay-
erwise separation of width w and size dk. Then, for every ψ ∈ R≥0, there
exists a partial layerwise separation S(ψ) of width w such that

1.
∑

S∈S(ψ) |S| ≤ ψ
√
dk and13

12Again, by default, we set Si := ∅ for i < 1 and i > q.
13Taking

∑
instead of max here is a proposal of Kanj and Perkovič, compare [15, 252].
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2. out(H) ≤
√
dk
ψ

+ w for each graph chunk H in CS(ψ).

Moreover, there is an algorithm with running time O(
√
kn) which, for a

given ψ,

• recognizes whether (G, φ) admits a layerwise separation of width w and
size dk and, if so, computes S(ψ);

• computes a partial layerwise separation of width w that fulfills the con-
ditions above.

Proof. For m = 1, . . . , w, consider the integer sequences Im = (m +

jw)
br/wc−1
j=0 and the corresponding sequences of separators Sm = (Si)i∈Im.

Note that each Sm is a sequence of pairwise disjoint separators. Since
(S1, . . . , Sr) is a layerwise separation of size dk, this implies that there exists
a 1 ≤ m′ ≤ w with ∑

i∈Im′

|Si| ≤
dk

w
. (7.4)

For a given ψ, let s := ψ
√
dk. Define S(ψ) to be the subsequence of Sm′ such

that |S| ≤ s for all S ∈ S(ψ), and |S| > s for all S ∈ Sm′ −S(ψ). This yields
condition 1. As to condition 2, suppose that S(ψ) = (Si1 , . . . , Siq). How
many layers are two separators Sij and Sij+1

apart? Herefore, note that the
number of separators in Sm′ that appear between Sij and Sij+1

is (ij+1−ij)/w.
Since all of these separators have size greater than s, their number has to be
bounded by dk/ws, see Equation (7.4). Therefore, we get ij+1 − ij ≤

√
dk/ψ

for all j = 1, . . . , q − 1. Hence, the chunks G[(
⋃ij+1+w−1
`=ij

L`) − (Sij ∪ Sij+1
)]

have outerplanarity at most
√
dk/ψ + w.

The algorithm that computes a partial layerwise separation S̃ proceeds
as follows: For given ψ, compute s := ψ

√
dk. Then, for j = 1, . . . , r − w,

one checks whether the graph G̃j(vs, vt) admits a vs-vt–separator S̃j of size at

most s. Here, G̃j(vs, vt) is the graph G[
⋃j+(w−1)
`=j L`] with two further vertices

vs and vt and edges from vs to all vertices in Lj and from vt to all vertices in
Lj+w−1. The separator S̃j can be computed in time O(s ·n) using techniques
based on maximum flow (see [250] for details).

Let S̃ = (S̃1, . . . , S̃q) be the sequence of all separators of size at most s

found in this manner.14 Suppose that S̃j ⊆ ⋃ij+(w−1)
`=ij

L` for some indices
1 ≤ i1 < . . . < iq ≤ r. Note that, by the arguments given above, no two

14Possibly, the separators S̃j in S̃ found by the algorithm may differ from the separators
in S(ψ).
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such separators can be more than
√
dk/ψ layers apart. Hence, if there was

a j0 such that ij0+1 − ij0 >
√
dk/ψ, the algorithms exits and returns “no.”

Otherwise, S̃ is a partial layerwise separation of width w.

In what follows, the positive real number ψ of Proposition 7.79 is also
called trade-off parameter. This is because it allows us to optimize the trade-
off between outerplanarity and separator size.

Proposition 7.79 will help construct a tree decomposition of treewidth
tw(G) = O(

√
k), assuming that a layerwise separation of some constant

width and size dk exists. Hence, for graph problems fulfilling this assump-
tion and, moreover, allowing a σtw(G)n time algorithm for constant σ when
the graph is given together with a tree decomposition, we obtain a solving
algorithm with running time c

√
kn. This aspect will be outlined in Subsec-

tion 7.6.2.

7.6.2 Phase 2:

Algorithms on layerwisely separated graphs

After Phase 1, we are left with a set of disjoint (layerwise) separators of size
O(

√
k) separating the graph in components, each of which having outerpla-

narity bounded by O(
√
k). We now present two different ways how to obtain,

in a second phase, a c
√
k-algorithm that makes use of this separation. In both

cases, there is the trade-off parameter ψ from Proposition 7.79 that can be
used to optimize the running time of the resulting algorithms.

Using tree decompositions

We use the concept of tree decompositions as described above. We show how
the existence of a layerwise separation of small size helps to constructively
obtain a tree decomposition of small width.

Theorem 7.80 Let (G, φ) be a plane graph that admits a layerwise separa-
tion of width w and size dk. Then, we have tw(G) ≤ 2

√
3dk + (3w − 1).

Such a tree decomposition can be computed in time O(k3/2n).

Proof. By Proposition 7.79, for each ψ ∈ R≥0, there exists a partial
layerwise separation S(ψ) = (S1, . . . , Sq) of width w with corresponding

graph chunks CS(ψ) = (G0, . . . , Gq), such that
∑

S∈S(ψ) |S| ≤ ψ
√
dk and

out(Gi) ≤
√
dk
ψ

+ w for all i = 0, . . . , q. The algorithm that constructs a
tree decomposition Xψ is given as follows:

• Construct a tree decomposition Xi of width at most 3 out(Gi) − 1 for
each of the graphs Gi (using the algorithm from Theorem 7.23).
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• Add Si and Si+1 to every bag in Xi (i = 0, . . . , q).

• Let Ti be the tree of Xi. Then, successively add an arbitrary connection
between the trees Ti and Ti+1 in order to obtain a tree T .

Using Proposition 7.35, we see that the tree T , together with the constructed
bags, gives a tree decomposition of G. Clearly, its width tw(Xψ) is upper-
bounded by

tw(Xψ) ≤
∑

S∈S(ψ)

|S| + max
i=0,...,q

tw(Gi)

≤
∑

S∈S(ψ)

|S| + 3( max
i=0,...,q

out(Gi)) − 1

≤ (ψ + 3/ψ)
√
dk + (3w − 1).

This upper bound is minimized for ψ =
√

3.

By [20, Proposition 4.5], a graph G that has no Kh-minor has treewidth
bounded by h3/2

√
n. In particular, this implies that a planar graph has

treewidth bounded by 11.2
√
n. In the case of the existence of linear problem

kernels for a given graph problem G, this method might be used in order
to obtain c

√
k-algorithms. From our results, we can derive upper bounds of

the treewidth of a planar graph in terms of several graph specific numbers.
As the reader may verify, these problem-specific treewidth bounds tend to
outperform the numbers obtainable via [20, Proposition 4.5]. For example,
Theorem 7.80 and Example 7.75 imply the following inequalities for a planar
graph G, relating the treewidth with the vertex cover and dominating set
number:

tw(G) ≤ 2
√

6 vc(G) + 5, and

tw(G) ≤ 6
√

17 ds(G) + 8.

Note that for general graphs, no relation of the form

tw(G) ≤ f(ds(G)) (7.5)

(for any function f) holds; consider, e.g., the clique Kn with n vertices, where
tw(Kn) = n − 1, but ds(Kn) = 1. Fomin and Thilikos have recently shown
[191] that Eq. (7.5) holds for a graph G iff G has bounded local treewidth.
For VC, only the linear relation

tw(G) ≤ vc(G)
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can be easily shown: Note that the complement of a vertex cover set C
forms an independent set I in G. Hence, we can easily construct even a
path decomposition by choosing |I| bags and making each bag consist of
all vertices of C and exactly one element from I each time. This estimate
is sharp (which becomes clear by, again, considering the graph Kn, where
vc(Kn) = n− 1).

Theorem 7.80 yields a c
√
k-algorithm for certain graph problems:

Theorem 7.81 Let G be a parameterized problem for planar graphs. Suppose
that

1. G has the LSP of width w and size-factor d, and

2. there exists a time σ`n algorithm that decides (G, k) ∈ G, if G is given
together with a tree decomposition of width `.

Then, there is an algorithm to decide (G, k) ∈ G in time O(σ3w−1·2θ1(σ,d)
√
kn),

where θ1(σ, d) = 2(log σ)
√

3d.

Proof. Given an instance (G, k), in linear time we can compute some
planar embedding φ of G (for details see [94]). In time O(

√
kn) (see Propo-

sition 7.79), we can check whether the plane graph (G, φ) admits a layerwise
separation of width w and size dk.

If so, the algorithm of Theorem 7.80 computes a tree decomposition of
width at most 2

√
3dk+ (3w− 1), and we can decide (G, k) ∈ G by using the

given tree decomposition algorithm in time O(σ2
√

3dk+(3w−1)n).
If (G, φ) does not admit such a layerwise separation, we know that (G, k) /∈

G, by definition of the LSP.

Example 7.82 Going back to our running examples, it is well-known that
vertex cover and independent setadmit such a tree decomposition
based algorithm with σ = 2 and, in the case of dominating set, with
σ = 4, as detailed above.

1. For planar vertex cover, by Example 7.77.1 Theorem 7.81 guar-
antees an O(22

√
6kn) algorithm for this problem.

2. For planar independent set, Example 7.77.2 and Theorem 7.81
yield an O(24

√
3kn) algorithm.

3. By Example 7.75.2, Theorem 7.81 improves on the result from [8] (that

are reproduced above; there, we got an O(46
√

34kn) ≈ O(269.98
√
kn)

algorithm), namely, getting an O(46
√

17kn) ≈ O(249.48
√
kn) algorithm

for planar dominating set.
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In this subsection, we have seen that, for plane graphs, the notion of
the LSP gives us a sufficient condition to upperbound the treewidth of the
YES-instance graphs of a problem. Moreover, this property led to fast com-
putations of the corresponding tree decompositions. All in all, we came up
with algorithms of running time O(c

√
kn) for a wide class of problems.

The next subsection aims to show similar results in a different context.

Using bounded outerplanarity

We now turn our attention to certain parameterized graph problems for which
we know that a solving algorithm of linear running time on the class of
graphs of bounded outerplanarity exists. This issue was addressed in [32];
several examples can be found therein. In this subsection, examine how, in
this context, the notion of select&verify problems and the LSP will lead to
c
√
k-algorithms. Since this will be a purely separator-based approach, we

will restrict ourselves to parameterized graph problems that can be solved
easily on separated graphs. We will introduce the notion of weakly glueable
select&verify problems in a first paragraph and present the design of c

√
k-

algorithms for these problems afterwards (see Paragraph 7.6.2).

Weakly glueable graph problems
The notion of weak glueability that is introduced here is much related to
the notion of glueability we introduced in the previous section. We need one
more auxiliary notion for colorings.

Definition 7.83 For two 0-1-colorings χ1, χ2 : V → {0, 1,#}with χ−1
1 ({0, 1})∩

χ−1
2 ({0, 1}) = ∅, the sum χ1 + χ2 is defined by

(χ1 + χ2)(v) =





χ1(v) if χ1(v) 6= #,
χ2(v) if χ2(v) 6= #,
# otherwise.

Definition 7.84 A select&verify problem G given by (P·, opt) is weakly glue-
able with λ colors if there exist

• a color set C := C0 + C1 + {#} with |C0 + C1| = λ, and

• a polynomial time computable function h : (R≥0 ∪ {±∞})3 → R≥0 ∪
{±∞};

and, for every n-vertex graph G = (V,E) and subgraphs G sel, Gver ⊆ G with
a separation (A1, S, A2) of Gver, we find, for each coloring χint : S → C0]C1,
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• subgraphs G(Ai, χ
int) of Gver with Gver[Ai] ⊆ G(Ai, χ

int) ⊆ Gver[δAi]
for i = 1, 2,

• subgraphs G(S, χint) of Gver with G(S, χint) ⊆ Gver[S]

such that, for each 0-1-coloring χext : V → {0, 1,#} with χext |S≡ #, we
have

opt~x∈{0,1}n

~x∼χext
PGver(~x | G sel) (7.6)

= optχint:S→C0]C1
h
(
EvalA1(χ

int),EvalS(χ
int),EvalA2(χ

int)
)
.

Here, EvalX(·) for X ∈ {A1, S, A2} is of the form

EvalX(χint) = opt ~x∈{0,1}n

~x∼(χext+
ˆ

χint)

PG(X,χint)(~x | G[X] ∩G sel).

Example 7.85 We give some examples of weakly glueable problems, where
—for the time being—we restrict ourselves to the case where Gver = G sel =
G. The subtlety of allowing different subgraphs Gver, G sel in the definition
above is due to technical reasons that become clear later. All examples
generalize in a straight-forward way to this case.

1. vertex cover is weakly glueable with λ = 2 colors. We use the color
sets Ci := {i} for i = 0, 1. The function h is h(x, y, z) = x+ y+ z. The
subgraphs G(X,χint) for X ∈ {A1, S, A2} and χint : S → C0 ] C1 are

G(Ai, χ
int) := G[Ai ∪ χint−1

(0)] for i = 1, 2, and

G(S, χint) := G[S].

The subroutine EvalS(χ
int) checks if the coloring χint yields a vertex

cover on G[S] and the subroutines EvalAi
(χint) compute the minimum

size vertex cover on G[Ai] under the constraint that all neighbors in

Ai of a vertex in χint−1
(0) are covered. Obviously, Eq. (7.6) is thus

satisfied.

2. Similarly, independent set is weakly glueable with 2 colors.

3. dominating set is weakly glueable with λ = 4 colors, using C0 :=
{0A1, 0A2, 0S} and C1 := {1}. The semantics of these colors is as follows.
Assigning the color 0X , for X ∈ {A1, S, A2}, to vertices in a separation
(A1, S, A2) means that the vertex is not in the dominating set and will
be dominated by a vertex from X. Color 1 means that the vertex
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belongs to the dominating set. We set h(x, y, z) = x + y + z. For a
given coloring χint : S → C0 ] C1, we define

G(Ai, χ
int) := G[Ai ∪ χint−1

({1, 0Ai
})]

G(S, χint) := G[χint−1
({1, 0S})].

In this way, color information is passed to the subproblems. EvalS(χ
int)

checks whether the assignments of the color 0S are correct (i.e., whether
all vertices assigned 0S are dominated by a vertex from S). Also,
EvalAi

returns the size of a minimum dominating set in Ai under the
constraint that some vertices in δAi still need to be dominated (namely,

the vertices in χint−1
(0Ai

)) and some vertices in δAi can already be

assumed to be in the dominating set (namely, the vertices in χint−1
(1)).

With these settings, Eq. (7.6) is satisfied.

We want to mention in passing that—besides the problems given here—many
more select&verify problems are weakly glueable. In particular this is true
for the weighted versions and variations of the above mentioned problems.

The algorithm

Similar to Theorem 7.81, which is based on tree decompositions, we construct
a partial layerwise separation S(ψ) with optimally adapted trade-off param-
eter ψ to guarantee an efficient dynamic programming algorithm. However,
for our purposes here, we need to be able to deal with “precolored” graphs.

Definition 7.86 Let G be a select&verify graph problem defined by (P·, opt).
The problem constraint G then is to determine, for an n-vertex graph G =
(V,E), two subgraphs G sel, Gver ⊆ G, and a given 0-1-coloring χ : V →
{0, 1,#}, the value

opt~x∈{0,1}n

~x∼χ

PGver(~x | G sel).

Theorem 7.87 Let G be a select&verify problem for planar graphs. Suppose
that

1. G has the LSP of width w and size-factor d,

2. G is weakly glueable with λ colors, and

3. there exists an algorithm that solves the problem constraint G for a
given graph G in time τ out(G)n.

Then, there is an algorithm to decide (G, k) ∈ G in time O(τw · 2θ2(λ,τ,d)
√
kn),

where θ2(λ, τ, d) = 2
√
d log(λ) log(τ).
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Figure 7.17: Dynamic programming on layerwisely separated graph.

Proof. Let us first sketch the overall structure of the algorithm.

1. Compute some planar embedding φ of G, and find a “suitable” partial
layerwise separation (S1, . . . , Sq) for the plane graph (G, φ). A coarse
sketch of the such obtained graph structure is depicted in Figure 7.17.

2. By using dynamic programming techniques, an optimal solution is
found by sweeping over the graph from left to right, as illustrated in
Figure 7.17. More detailed, we do the following:

(a) For all possible “colorings” of S1, find an optimal solution of con-
straint G on G0 (plus suitably chosen precolored vertices from
S1); store the obtained optima in a (large) table belonging to S1.

(b) For j := 2 to q do:

• For all possible “colorings” of Sj−1 and of Sj, find an opti-
mal solution of constraint G on Gj−1 (plus suitably chosen
precolored vertices from Sj−1 as well as of Sj).

• Store the obtained optima (for the subgraph ofG with vertices
from G0 through Gj−1 and S1 through Sj) in a table belonging
to Sj.

• (For reasons of space efficiency, you might now forget about
the table belonging to Sj−1.)

(c) For all possible “colorings” of Sq, find an optimal solution of con-
straint G on Gq (plus suitably chosen precolored vertices from
Sq); store the obtained optima in a (large) table belonging to Sq.

(d) From the table pertaining to Sq, the desired optimum is found.
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We are now giving formal details of the sketched algorithms, thereby proving
its correctness. Suppose G is defined by (P·, opt).

Step 1: Given an instance (G, k), in linear time we can compute some planar
embedding φ of G (see [94]). Compute a partial layerwise separation S(ψ)
(ψ will be determined later) for (G, φ), using Proposition 7.79 and the as-
sumption 1 (LSP). Suppose S(ψ) = (S1, . . . , Sq) and let CS(ψ) = (G0, . . . , Gq)
denote the corresponding graph-chunks cut out by S(ψ).

For every separator Si, we get a separation of the form

(A
(i)
out, Si, A

(i)
in ),

where A
(i)
out, and A

(i)
in , respectively, are the vertices of the graph chunks of

lower order layers, and higher order layers, respectively. By default, we
let S0 = Sq+1 = ∅ such that the corresponding separations are (∅, S0, V )
and (V, Sq+1, ∅), respectively. The layerwise separation and the separations

(A
(i)
out, Si, A

(i)
in ) are illustrated in Figure 7.17.

Step 2: Determine the value

opt~x∈{0,1}n PG(~x).

This can be done by a dynamic programming approach that makes use of
the weak glueability of G as follows.

We successively compute, for i = 1, . . . , q + 1, the values

M (i)(µ(i)) := opt
~x∼dµ(i) PHver

i (µ(i))(~x | H sel
i ) (7.7)

for all C0-C1-colorings µ(i) : Si → C0 + C1, where

Hver
i (µ(i)) := G(A

(i)
out, µ

(i)) and H sel
i := G[A

(i)
out].

Note that we have

opt~x∈{0,1}n PG(~x) = M (q+1)(µ),

for the empty map µ : Sq+1 = ∅ → C0 + C1, because H sel
q+1 = G[A

(q+1)
out ] =

G[V ] = G and Hver
q+1(µ) = G (since H sel

q+1 ⊆ Hver
q+1(µ)).

The computation of M (i)(µ(i)) as defined in (7.7) can be done iteratively.
To do so, note that Hver

i (µ(i)) is separated by Si−1 in

(B
(i−1)
out , Si−1, B

(i−1)
in ),
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where B
(i−1)
out = A

(i−1)
out and B

(i−1)
in = A

(i−1)
in ∩ V (Hver

i (µ(i))). Hence, by defini-
tion of weak glueability we have

M (i)(µ(i)) = optµ(i−1):Si−1→C0+C1

h(Eval
B

(i−1)
out

(µ(i−1)),EvalSi−1
(µ(i−1)),Eval

B
(i−1)
in

(µ(i−1))),(7.8)

where

EvalX(µ(i−1)) = opt
~x∼(µ̂(i−1)+dµ(i))

PG(X,µ(i−1))(~x | G[X] ∩H sel
i ). (7.9)

for X ∈ {B(i−1)
out , Si−1, B

(i−1)
in }. Here, recall that µ̂(i) denotes the 0-1-coloring

corresponding to µ(i). In particular, for the different choices of X, we get the
following.

• For X = B
(i−1)
out , equation (7.9) becomes

Eval
B

(i−1)
out

(µ(i−1)) = opt
~x∼(µ̂(i−1)+dµ(i))

PHver
i−1(µ(i−1))(~x | H sel

i−1 ∩H sel
i )

= M (i−1)(µ(i−1)), (7.10)

where the last equation holds, since H sel
i−1 ⊆ H sel

i and since µ̂(i) ≡ #

restricted to G(B
(i−1)
out , µ(i−1)) = Hver

i−1(µ
(i−1)).

Hence, the value of Eval
B

(i−1)
out

(µ(i−1)) is given by the previous step of

the iteration.

• For X = Si−1, equation (7.9) becomes

EvalSi−1
(µ(i−1)) = opt

~x∼µ̂(i−1)
PG(Si−1,µ(i−1))(~x | G[Si−1])

= PG(Si−1,µ(i−1))(~xµ̂(i−1)
| G[Si−1]), , (7.11)

where ~x
µ̂(i−1)

∈ {0, 1}n is an arbitrary vector such that ~x
µ̂(i−1)

∼ µ̂(i−1).

The first equation above holds, since G(Si−1, µ
(i−1)) ⊆ G[Si−1] ⊆ H sel

i

and µ̂(i) ≡ # restricted to G(Si−1, µ
(i−1)). The second equation is true

since the 0-1-coloring µ̂(i−1) assigns color 0 or color 1 to all vertices in
Si−1, and since G(Si−1, µ

(i−1)) ⊆ G[Si−1].

Hence, the value EvalSi−1
(µ(i−1)) can be computed by a simple evalua-

tion of the function P for the given vector ~x
µ̂(i−1)

.

• For X = B
(i−1)
in , equation (7.9) becomes

Eval
B

(i−1)
in

(µ(i−1)) = opt
~x∼(µ̂(i−1)+dµ(i))

P
G(B

(i−1)
in ,µ(i−1))

(~x | G[B
(i−1)
in ] ∩H sel

i )

= opt
~x∼(µ̂(i−1)+dµ(i))

PG(µ(i),µ(i−1))(~x | Gi−1), (7.12)
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Figure 7.18: The graph G(µ(i), µ(i−1)).

where G(µ(i), µ(i−1)) := G(A
(i−1)
in , µ(i−1)) ∩ G(A

(i)
out, µ

(i)). This graph
is illustrated in Figure 7.18. In the evaluation above we used that
G[B

(i−1)
in ] ∩H sel

i = Gi−1 and that G(B
(i−1)
in , µ(i−1)) = G(µ(i), µ(i−1)).

Hence, the value Eval
B

(i−1)
in

(µ(i−1)) can be computed using the τ out(G)

time algorithm for constraint G.

Hence, plugging formulas (7.10), (7.11), and (7.12) in expression (7.8), we
obtain

M (i)(µ(i)) = optµ(i−1):Si−1→C0+C1
h




M (i−1)(µ(i−1))
PG(Si−1,µ(i−1))(~xµ̂(i−1)

| G[Si−1])

opt
~x∼ ̂

µ(i−1)+dµ(i)
PG(µ(i),µ(i−1))(~x | Gi−1)


 .

(7.13)
This evaluation is done successively for all i = 1, . . . , q+1. By induction,

one sees that
opt~x∈{0,1}n PG(~x) = M (q+1)(µ)

can be computed in this way.

Computation time: For fixed coloring µ(i), computing M (i)(µ(i)) according
to equation (7.13) costs time

λ|Si−1| · τ out(G[Si−1∪VGi−1
∪Si]).

The first factor reflects the cost of computing the opt over all µ(i−1) : Si−1 →
C0+C1. The second factor arises by the evaluations on the graphsG(Si−1, µ

(i−1)),
G(µ(i−1), µ(i)) ⊆ G[Si−1 ∪ V (Gi−1) ∪ Si], where we use assumption 3 of the
theorem. Thus, the running time for evaluating M (i)(µ(i)) for all µ(i) : Si →
C0 + C1 is bounded by

λ|Si| · λ|Si−1| · τ out(G[Si−1∪VGi−1
∪Si]).
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Hence, the total running time of the algorithm is bounded by 2θ(ψ)n, where

θ(ψ) ≤ log(λ)
∑

i=1,...,q

|Si| + log(τ) max
i=0,...,q

out(G[Si ∪ VGi
∪ Si+1])

≤ log(λ)ψ
√
dk + log(τ)(

√
dk

ψ
+ w)

= (log(λ)ψ +
log τ

ψ
)
√
dk + log(τ)w

This upper bound is minimized for ψ =
√

log(τ)/ log(λ), which gives us the

claimed value θ2(λ, τ, d) = 2
√
d log(λ) log(τ) and the constant τw.

It remains to say for which problems there exists a solving algorithm of
the problem constraint G for a given graph G in time τ out(G)n.

In the case of planar vertex cover, as well as in the case of planar
independent set, it is quite simple to handle a “precoloring” χext : V →
{0, 1,#} for a graph G = (V,E).

More formally, given an admissible15 coloring χext, one likes to transform
an instance (G, k) to an instance (G′, k′), such that (G, k) ∈ G for some
witnessing vector ~x with ~x ∼ χext iff (G′, k′) ∈ G for some witnessing vector
~x′ (without any constraint).

For planar vertex cover, this can, e.g., be achieved by the following
transformation:

G′ = G[V − (C ∪N(χext−1
(0)))] and

k′ = k − |χext−1
(1)| − |{v ∈ V − C | ∃u ∈ χext−1

(0) ∩N(v)}|,

here C := χext−1
({0, 1}) denotes the vertices that are already assigned a

color. A vertex v ∈ C, which is—by the coloring χext— assigned not to be in
the vertex cover, i.e., χext(v) = 0, forces its neighbors to be in a vertex cover.
Hence, the set N(χext−1

(0)) needs to be in any vertex cover (given by ~x)
that fulfills the constraint ~x ∼ χext. This justifies the definition of G′. The
parameter k becomes smaller by the number of vertices which are already
assigned to be in the vertex cover, i.e., χext−1

(1), and the number of vertices
that are forced to be in the vertex cover by χext, i.e., by the number of vertices
in V −C that have a neighbor in χext−1

(0). We can apply the non-constraint
algorithm to (G′, k′), with out(G′) ≤ out(G). A similar observation helps
deal with planar independent set.

15Here, admissible means that there exists a vector ~x ∈ {0, 1}n with ~x ∼ χext, such that
P ver

G (~x) = 0.
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Example 7.88 1. For planar vertex cover, we have d = 2, w = 1
(see Example 7.77.1), λ = 2 (see Example 7.85.1), and τ = 8 (see the
result of Baker [32] which can be adapted to the constraint case by the
considerations above) and, hence, the approach in Theorem 7.87 yields

an O(22
√

6kn) time algorithm.

2. Similarly, Examples 7.77.2, and 7.85.2 give d = 4, w = 1 and λ = 2 for
planar independent set. Since τ = 8 (see [32] and our considera-

tions for the constraint case), we obtain a O(24
√

3kn) time algorithm.

3. Kanj and Perkovič have recently shown [253] that constraint domi-
nating set can be solved in O(27out(G)n) time, this way improving on
Example 7.82. Together with Example 7.75.1, Theorem 7.87 gives an
O(36

√
17kn) ≈ O(239.21

√
kn) time algorithm for planar dominating

set.

Which of the two approaches (presented in Subsections 7.6.2 and 7.6.2,
respectively) for the algorithms on layerwisely separated graphs should be
preferred? This question is discussed in details in [15]. The bottom-line
is that it mainly depends whether there are particular outerplanarity-based
algorithms that are superior to the treewidth-based algorithms (when using
the r ≤ 3k bound described above that relates a graph of outerplanarity r
with its treewidth k).

7.6.3 The approach of Fomin and Thilikos

In a very deep paper, Fomin and Thilikos [190] (see [193] for the report
version) were able to prove the following result:

Theorem 7.89 Every planar n-vertex graph has treewidth at most 3.182
√
n.

The drawback of that approach is currently that the way how to actually
obtain a tree decomposition for a planar graph with n vertices is not very
clear from [190], so that it is not that easy to implement.

However, observe that also the approach we detailed above (using treewidth
instead of branchwidth), yields a result analogous to Thm. 7.89, although
with somewhat weaker constants. More precisely, Theorem 7.80 can be used,
since we can basically set k = n and d = w = 1. With this observation,
we obtain a bound of 2

√
3n ≤ 3.4642

√
n on the treewidth for any planar

n-vertex graph.
Theorem 7.89 immediately entails O∗(c

√
k)-algorithms for many planar

problems where we know of linear problem kernels. For example, we would
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get an O(22·3.182
√

67k) = O∗(252.092
√
k)-algorithm for planar dominating

set.

7.7 Further improvements for planar domi-

nating set

First of all, let us summarize the preprocessing observations that we have
made up to this point on planar dominating set in Alg. 67. This algo-
rithm prelude can be performed in linear time.

Algorithm 67 Algorithmic Prelude

Input(s): A plane graph G and parameter k ∈ N.

Compute the ring decomposition FG.
Compute a minimum dominating set D of FG (see Lemma 7.30).
if |D| > k then

return NO

else
continue

end if

As it is well-known, given some planar graph G, we could also build an
embedding of G in the plane in linear time. The planar embedding algorithm
could also be included as part of the prelude, if necessary.

After executing the prelude, algorithms for planar dominating set
proceed as follows. If G has a dominating set of size k, then Proposition 7.27
tells us that G is ≤ 3k outerplanar. So, assume that G is ≤ 3k outerplanar.

In the following, we will show how to obtain a sequence S—called a
layerwise separator—of “small” separators S3, . . . , Sr−2, where Si contains
vertices from Li−1, Li and Li+1 that separate layer Li−1 from Li+2, such that

‖ S ‖= |S3| + · · · + |Sr−2| ≤ h(k)

for some linear-bounded function h. This was also the basic trick in what
we explained when referring to [8]. Once we have such a “small” layerwise
separator we can essentially split G into disconnected components, each of
which is O(

√
k)-outerplanar.

Notice that it must be the case that one of the families

Fi =
⋃

j=i mod 3,3≤j≤r−2

Sj,
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i = 1, 2, 3 satisfies |Fi| ≤ h(k)/3. Without loss of generality, assume that
|F1| ≤ h(k)/3. Now, F1 can be partitioned into g(k) mutually disjoint sub-
families

Fm
1 =

⋃

ji=1+m+ig(k)

Sji,

m = 0, . . . , g(k) − 1, i = 0, . . . , br/g(k)c. At least one Fm
1 satisfies |Fm

1 | ≤
h(k)/(3g(k)). Notice that the separator Sm = Fm

1 splits the graph into
components that are at most 3g(k) + 3 outerplanar.

As detailed above, to find the minimum dominating set in G, it suffices to
search through all possible three possible domination choices for each vertex
v in the partial layerwise separator Sm = (Sj0 , . . . , Sjq). Schematically, we
can think of the “rest” of the vertices of G being “inbetween” some Sji and
Sji+1

. The possible domination choices are “v is in the dominating set,” “v is
dominated by component to the left,” or “v is dominated by a vertex u ∈ Sm
or a component to the right.” Since |Sm| ≤ h(k)/3g(k), there are 3h(k)/3g(k)

possible domination choices for Sm. Using a setting of domination choices for
Sm, it is possible to split the graph into ≤ 3g(k)+5-outerplanar components
that are precolored with the colors {free, already dominated, not dominated}.
(These components may contain contain vertices from Sm.) Making use of
Theorem 7.23, we can solve the “precolored” planar dominating set
problem on the remaining graph components in time O(49g(k)) time. Kanj
and Perkovič [253] described a dynamic programming algorithm for precol-
ored planar dominating set on r-outerplanar graphs running in time
O(27r). This allows us to compute the size of the minimum dominating set
in time O(39g(k)) for each precolored component. Using the notation intro-
duced so far, we arrive at the following result.

Lemma 7.90 planar dominating set can be solved in time

O(h(k)/g(k)3h(k)/(3g(k))+9g(k) + n3),

where k upperbounds the number of vertices in the dominating set.

More details are described in Algorithm 68.

Since h(k), as determined in the next section, will be bounded by dk for
some d, g(k) would then be best chosen as c

√
k such that dk/(3c

√
k) = 9c

√
k,

i.e., c =
√
d/(3

√
3), because 3dk/(3c

√
k) is the asymptotics of the time spent to

test all possible separator settings, and 33∗3c
√
k is the time to solve the prob-

lem on the remaining graph chunks. Hence, 9c
√
k = 9

√
dk/(3

√
3) =

√
3dk.

This gives us an O(
√
k32

√
3dk + n3) = O(

√
k22 log2(3)

√
3dk + n3) algorithm.
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Algorithm 68 A Generic Subexponential Algorithm for Planar DS

Input(s): A plane graph G and a parameter k ∈ N
Output(s): YES iff G has a dominating set of size ≤ k

Perform Algorithm 67 and kernelization (see Chap. 4)
Try to find a “small” partial layerwise separator Sm with |Sm| ≤
h(k)/(3g(k)).
if such a small separator cannot be found then

return NO

end if
for all 3h(k)/3g(k) settings of domination choices for the vertices in Sm do

for all precolored graph chunks of G do
Compute a minimal dominating set for the precolored graph chunk

end for
if minimum dominating set of G using this choice is ≤ k then

return YES

end if
end for
return NO

For convenience, we list a table for different values of f(d) = 2 log2(3)
√

3dk
rounded up, which we use in the following sections.

d = 9 15 16 20 39 45 51
f(d) = 16.48 21.27 21.97 24.56 34.29 36.84 39.21

These numbers correspond to the constant factor in the exponent of the
running times for different estimates of h(k). Observe that the last column
corresponds to the h(k)-bound worked out in [8], combined with the outer-
planarity algorithm from [253].

To allow for some “geometric arguments” when tweaking the analysis of
basically Alg. 68, we need to slightly adapt our earlier notions.

If C is an embedded cycle and x ∈ C some vertex, then we can speak
about the left and right neighbor of x on C, if we imagine ourselves to be
placed in the center of the cycle. Similarly, if y is some point outside of
C which is connected by edges to vertices x0, . . . , xm−1 (and no others)
on C (in that order from left to right, when “standing” in the center of C,
viewing in direction of y), then there uniquely exists some j such that the
region described by the edges {y, xj}, {y, x(j+1) mod m} and the left-to-right
path from x(j+1) mod m to xj contains all edges from y to any xi on C. We
call {y, xj, x(j+1) mod m} the upper triple associated to y and C (also in the
boundary case when m = 0 and m = 1, when the triple will be {y} and
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{y, x0}, respectively). Likewise, if y is a point in the interior of C and z is
another reference “point” within C, then there are points x, x′ on C adjacent
to y such that all other vertices x′′ on C which are adjacent to y are on only
one of the two sub-paths into which C is cut by x and x′, while z is contained
in the other “half.” We will call {y, x, x′} the lower triple associated to y
and z.

As we will understand below, it is possible to restrict oneself to the con-
sideration of simple r-outerplanar graphs.

Our aim is to obtain a set of vertices Si from layers Li−1, Li and Li+1 that
separate the vertices of Li−1 from the vertices of Li+2. In a fashion similar to
[8], we achieve this by deleting “upper”, “lower”, and also kind of “middle”
triples of vertices in D ∩Bi and D ∩ Ji. Let bi = |D ∩Bi| and ji = |D ∩ Ji|.

Lemma 7.91 There exists a set Si that separates Li−1 from Li+2 of size
|Si| ≤ 3bi−1 + 3ji + 3bi + 3ji+1 + 3bi+1.

This lemma is proven quite analogous to the reasoning we detailed above.
Since

∑r−2
i=3 |Si| ≤ 9k = h(k), for simple r-outerplanar graphs, we get an

216.4715
√
k-algorithm (which is of course much better than what we obtained

above). This is appears to be a lower bound on the running-time that we
can obtain by the current approach.

Let us try to transfer our reasoning to the general case. Recall the notions
B(i, j) introduced along the definition of a ring decomposition.

As a first preparatory step for layer Li, let us think about how much
it would “cost” to actually separate each B(i, j) from the other B(i, j ′) such
that we can be sure that any (remaining) dominating set vertex on B(i, j) or
in the interior of B(i, j) only dominates vertices on B(i, j) or in the interior
of B(i, j) or from Ji. Furthermore, “indirect” influences of different rings
by interconnection patterns will be ruled out. Moreover, this reasoning will
imply that later on we can safely speak about dominating vertices “private”
to B(i, j). The vertices “taken out” in this preparatory step will be put into
the separator we are going to construct.

For the general case, we will need to sufficiently separate the boundary
cycles in each layer so that we can employ the previous arguments for simple
r-outerplanar graphs. In particular, we say that a set S i properly separates
Li according to D if each x ∈ (D ∩ Li) \ Si dominates only vertices in one
B(i, j) \ Si for some 1 ≤ j ≤ ci. The following results are crucial to our
construction of Si.

Lemma 7.92 If x ∈ Li \B(i, j) and P1 and P2 are two paths leading from x
to some points z1 and z2 on B(i, j), using only vertices from Ji on the way,
then either z1 = z2 or z1 and z2 are neighbors.
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Lemma 7.93 It suffices to take out at most four vertices to separate two
linked rings of the same layer.

As we show next, we can construct such an S i by applying the previ-
ous two lemmas, using only 4ci vertices. The proof and construction are
contained in the journal version of [179].

Lemma 7.94 There exists an Si with |Si| ≤ 4ci that properly separates Li
according to any dominating D.

In the example of Fig. 7.8, we would have to take out v1, v4 and v8 to
prevent B(v3) from influencing B(v10), and if we assume that there is an edge
between v2 and v9, then these two vertices would be taken out.

We now describe a second preparatory step for layer Li, sketched
in the following lemma, which will simplify the “triple” arguments in what
follows.

Lemma 7.95 Having performed the first preparatory step for layer Li, there
are at most 2ci vertices on Bi−1 ∪Bi whose removal leaves a graph such that
any path from any x ∈ Bi−1 down-to Bi must get to some ring B(i, j) specific
to x, i.e., there is a partial mapping x 7→ j.

The proof of Lemma 7.95 is omitted here (we refer to the yet unpublished
journal version of [179]); however, we give some intuition concerning the
approach. By removing Si from G, we partition Li into regions that can
only reach a single B(i, j). The planarity of G forces an ordering of these
regions w.r.t. Bi−1. Hence, it is possible to delete at most 2 shared fringe
vertices from Bi−1 per B(i, j) to force all paths starting at x ∈ Bi−1 to go to
B(i, j).

We now assume that we have performed both preparatory steps for layers
Li and Li+1. This way, we take out at most 6ci + 6ci+1 vertices.

After these preparatory steps, the graph will look “locally” like a simple
r-outerplanar graph. Therefore, the analysis of that previously considered
case basically transfers. Altogether, |Si| ≤ 3bi−1+3ji+3bi+3di+1+6ci+6ci+1.

Theorem 7.96 If G is a plane graph with a dominating set of size at most
k, then the overall sum of the sizes of the layerwise separators can be upper-
bounded by h(k) = 9k + 12c(k), where c(k) upperbounds

∑r
i=1 ci.

We can now adapt some trade-off computations of Kanj and Perkovič [252]
that show that c(k) is negligibly small; in other words, the case of simple r-
outerplanar graphs is the “dominating case.”
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Kanj and Perkovič made the following observation: There is no need to
cut off branches in T ′

G starting in a node n whose distance δ(n) to its farest
descendant is only δ(n) ≤ D(k) = O(

√
k), since, in the worst case, only D(k)

layers would be added to each graph chunk.
Using some simplified arguments, we show that their computations carry

over to our new analysis, as well. Actually, the above analysis was “tuned”
in order to exploit their technique best possible.

For a given bounding function D, call a node n in T ′
G deep, medium,

and shallow, respectively, if δ(n) > D(k), δ(n) = D(k), or δ(n) < D(k),
respectively.

Let µ denote the number of medium nodes in T ′
G. Any medium node n

contains D(k) layers in int(n) and therefore at least D(k)/3 vertices from
the dominating set D. Given medium nodes n and n′ in TG (and hence
rings in G), then int(n) ∩ int(n′) = ∅. If µ > 3k/D(k), then the number of
dominating set vertices in

⋃{int(n) : n is medium} would exceed k. Hence,
µ ≤ 3k/D(k).

A node is called m-complex if it has at least m non-shallow children.
Considering the number of inner nodes in m-ary trees with µ leaves, it is
readily seen that there are no more than b(µ− 1)/(m− 1)c many m-complex
nodes. Denoting the number of non-shallow children of of n by c(n), it
follows that the sum of all c(n), taken over complex nodes, is no larger than
bm(µ− 1)/(m− 1)c.

In the following, let us specialize towards m = 2.16 Terming a non-2-
complex node simple generalizes the earlier introduced terminology of simple
r-outerplanar graphs. Our reasoning entails:

Lemma 7.97
∑{c(n) | n is complex} ≤ 2µ ≤ 6k/D(k).

Let us now reconsider the considerations of the previous section under
the observation that we only try to separate deep nodes (rings). This leads
immediately to our main theorem.

Theorem 7.98 The planar dominating set problem can be solved in
time

O(
√
k36

√
3k+o(

√
k) + n3) ≈ O(

√
k26 log2(3)

√
3k + n3) ≈ O(216.4715

√
k + n3).

Observe that similar improvements can be obtained for the other domination-
type problems mentioned in [8]. More specifically, for planar independent
dominating set, we get the same constants as stated in Theorem 7.98, since
the treewidth- and outerplanarity-based algorithms have the same running

16In [252], the case m = 3 was considered instead.
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times. But, if we like to treat say the problem of finding a total dominating
set, i.e., a set D, |D| ≤ k, such that each vertex x is dominated by some other
vertex y ∈ D, then the constants get worse, since the treewidth-based algo-
rithm as outlined in [8] is worse, and similar changes have to be implemented
in the outerplanarity-based algorithm of Kanj and Perkovič [253].

Moreover, our results also improve on the constants derived in [123] for
dominating set on K3,3-minor-free or K5-minor-free graphs. Here, the
following theorem is important.

Theorem 7.99 If G is a planar graph which has a dominating set of size k,
then G has treewidth of at most 6

√
3k + o(

√
k) = O(10.40

√
k).

Observe that this largely improves the upperbound 6
√

34k proved in [8]
and also nearly matches the treewidth bound 9.55 ≈ (4.5)1.5 derived in [192]
via completely different arguments.

Corollary 7.100 If the n-vertex graph G is K3,3-minor-free or K5-minor-

free, then in time O(49.55
√
kn) it can be determined if G has a dominating set

of size at most k or not.

Observe that the strategy outlined in the last two sections is not only
applicable to dominating set, but rather to any planar graph problem where
the sum of the sizes of the layerwise separators can be estimated as a linear
function in k and in the number of rings. For many problems, we can really
restrict our attention to the case of simple r-outerplanar graphs, since the
estimates involving the number of rings and the optimization computations
do not rely on the structure of the concrete problem in any way. We exemplify
this approach in the next section.

Let us briefly mention that also related problems can be solved as sketched
above. Recall Roman domination for a moment. From Lemma 7.9 and the
treewidth bound of Fomin and Thilikos [193] we can immediately conclude:

Corollary 7.101 planar Roman domination can be solved in time

O∗(59.55
√
k) = O∗(222.165

√
k).

7.8 planar red-blue dominating set and re-

lated problems

The techniques outlined in the previous sections apply to other problems on
planar graphs. For planar red-blue dominating set, it suffices to build
an appropriate separator Si to separate layers Li−1 from layer Li+3.
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Lemma 7.102 There exists a separator Si that separates layer Li−1 from
layer Li+3 in G of size

|Si| ≤ 3bi−1 + 3ji + 7bi + 4ji+1 + 5bi+1 + 5ji+2 + 5bi+2 + 6ci + 6ci+1 + 6ci+2.

Proof. (Sketch) Let us sketch how to prevent an “adversary path” from
layer Li−1 to sneak through to layer Li+3 in this case. Observe that the “ge-
ometrical arguments” used up to now basically transfer to this case, as well,
while the “domination-type” arguments needs to be adapted. The construc-
tion and more detailed proof can be found in the journal version of [179].

Our aim is again to construct a separator Si which contains the following
ingredients, basically combining two “neighbored” separators as constructed
in the usual dominating set problem:

1. Do the two “preparatory steps” for layers Li, Li+1 and Li+2. This totals
up to at most 6ci + 6ci+1 + 6ci+2 vertices going into Si.

2. Both on the rings of Li and of Li+1, remove all dominating set vertices
and their two neighbors, putting at most 3bi + 3bi+1 vertices into Si.

3. For each d ∈ D ∩ (Bi−1 ∪ Ji), take out the “upper triples.” This adds
another at most 3bi−1 + 3ji vertices into Si.

4. For each d ∈ D ∩ Ji+1, take out the (at most) four vertices which cut
off the region R(d); namely, there are (according to Lemma 7.92 at
most two “connection points” of R(d) on Bi+1 and there are at most
two “outermost” connection points of R(d) on Bi (by the definition of
R(d) and due to previous surgery). This adds 4ji+1 vertices to Si.

5. For each d ∈ D ∩ Bi+1: if d has no neighbors in Ji but neighbors
on Bi, cut out the “lower triple” associated to this situation; if d has
a neighbor x in Ji, cutting out the “quadruple” as described in the
previous step is what we do. In each case, due to step 2, only at most
two vertices have to be removed additionally, giving another (at most)
2bi+1 vertices into Si.

6. For each d ∈ D∩Bi: go “to the left” of d on Bi (and symmetrically, go
“to the right”) looking for red vertices on Bi which share a blue vertex
in Li+1 with d. Geometrically, this gives us a series of nested triangles.
We take out the endpoints of the “largest” (on both sides). Due to step
2, this adds at most 4bi vertices into Si.
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7. For each d ∈ D ∩ (Ji+2 ∪Bi+2), first remove the lower triple {d, z1, z2}
associated to d and some (other) z on Bi+2. This lower triple describes
a region enclosed by the edges {d, z1} and {d, z2} as well as a path P
on Bi+1 between z1 and z2 such that z is not enclosed in this region.
Let y1 and y2 be the two neighbors of z1 and z2, respectively, which are
not contained in the region. Let u1 and u2 denote the two “outermost”
vertices on Bi such that there is a path from P to ui using only inter-
mediate vertices from Ji (if any). Then, put {d, z1, z2, u2, u2} into Si,
given another 5ji+1 + 5bi+1 vertices.

This totals up to

|Si| ≤ (3bi−1 +3ji)+(7bi+4ji+1)+(5bi+1 +5ji+2)+5bi+2 +6ci+6ci+1 +6ci+2

Adapting the notion of “partial layerwise separator” to allow for consid-
ering only every fourth layer, there exist a partial layerwise separator S with
||S|| ≤ h(k) = 20k + 18c(k). Since the trade-off computations only involve
combinatorics on ring decomposition trees, they readily carry over to this
case, basically making the term c(k) disappear when it comes to the running
time of algorithms.

Taking either the 27ln-algorithm (l denoting the number of layers of the
graph, i.e., its outerplanarity) as given in [253] or the 3tw-algorithm (tw
denotes the treewidth of the graph; observe that tw < 3out) exhibited in [8]
and finding a c such that the overall size of the partial layerwise separators
20k/(4c

√
k) matches the treewidth of the remaining graph chunks 12c

√
k,

i.e., c =
√

5√
12

=
√

5
2
√

3
. This gives the following result.

Theorem 7.103 planar red-blue dominating set can be solved in
time

O(3
2·10·

√
3√
5
+o(

√
k)
n) = O(224.551

√
kn).

Moreover, a planar graph which has a k-red/blue dominating set has treewidth

of at most 20
√

3√
5

+ o(
√
k) ≈ 15.5

√
k.

Using the results of [123], this readily transfers to the case of K3,3-minor-
free graphs and of K5-minor-free graphs.

Theorem 7.103 has several important applications, as we show next.
Our results concerning planar red-blue dominating set can be used

to show that each problem in a subset of the class Planar T MIN has a
c
√
k parameterized algorithm. Planar T MIN is a syntactic class that was



386 CHAPTER 7. GRAPH PARAMETERS

defined by Khanna and Motwani [256], along with two other classes, to char-
acterize those problem that admit PTAS. The precise definition of Planar
T MIN and it subclasses requires a brief explanation.

Given a collection of variables X, a minterm is simply a conjunction
(AND) of literals over X. A literal l is negative if it is the negation of some
variable xi ∈ X, i.e., l = ¬xi. Otherwise, a literal is positive. A minterm m
is positive if all of the literals in m are positive. Likewise, a minterm m is
negative if all of the literals in m are negative. A first order formula (FOF)
is a disjunction (OR) of minterms. A FOF is positive if all of its minterms
are positive. Similarly, A FOF is negative if all of its minterms are negative.
The width of a FOF is the number of minterms in the formula. The size of
a minterm is the number of literals in the minterm.

The class T MIN [256] is the class of all NP-optimization problems
that can be written (rewritten) as follows. Given a collection C of positive
FOFs over n variables, find a minimum weighted truth assignment T that
satisfies all FOFs in C. Given a collection C of FOFs over n variables X, the
incidence graph of C is the bipartite graph GC with edges between FOFs in
C and the set of variables X such that there is an edge between a formula
and a variable if and only the variable appears in a minterm in the formula.
The class Planar T MIN is the class T MIN restricted to problems with
planar incidence graphs.

Cai, Fellows, Juedes and Rosamond (unpublished) have shown that there
exist problems in Planar T MIN that are W[1]-hard, and hence not all
problems in Planar T MIN have parameterized tractable algorithms unless
FPT = W [1]. In contrast, we show here that all the problems in subclass
of Planar T MIN , known as Planar T MIN 1, have fast parameterized al-
gorithms.

Planar T MIN 1 is the subclass of Planar T MIN where all minterms
are restricted to be of size 1. It is easy to see that planar vertex cover
is in Planar T MIN 1 since the minimum vertex cover in a planar graph G
can be described as the minimum weighted truth assignment satisfying

∧

(u,v)∈E
(xu ∨ xv).

Notice that each term xu ∨ xv is FOF, and the the incidence graph of this
collection of FOFs is planar.

Theorem 7.103 leads immediately to the following result.

Theorem 7.104 Each problem Π in Planar T MIN 1 can be solved in time
O(2O(

√
k)p(n)) for some polynomial p(·).
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The main application of this general result is that faster algorithms for
planar red-blue dominating set can be used to achieve faster algo-
rithms for a variety of problems in Planar T MIN 1. In particular, this leads
to the fastest-known parameterized algorithms for face cover.

Corollary 7.105 face cover can be solved in time O(224.551
√
kn).

Proof. Place variables on each face and formulae describing the face-
incidence at each vertex of the given graph.

This largely improves the best-known algorithm running in time O(336
√

34kn)
according to [8]. Moreover, Alber et al. discuss the related disk dimension
problem. The disk dimension problem treated by Bienstock and Monma
[47] generalizes face cover in two ways: firstly, they do not start with a
fixed embedding of the planar input graph and, secondly, they have an addi-
tional input of their problem, namely a set D of designated vertices, where
only these need to be covered. In [8], it is admitted that “both of these gener-
alizations seem to be hard to treat within our framework.” As regarding the
first generalization that basically involves minimizing over all planar embed-
dings, we don’t know how to tackle this with the present approach, either.
However, having a set D of designated vertices in the input is amenable to
our approach, since it would only change the set of blue (formulae) vertices in
the translation into Planar T MIN 1. Recall our discussion of face cover
and annotated face cover from Chap. 5.

Corollary 7.106 The planar edge dominating set problem can be solved
in time O(224.551

√
kn).

Proof. Place variables on each edge and formulae describing edge-adjacencies
at each vertex of the given plane graph.

7.9 Other related graph classes

Up to now, we focused on algorithms for planar graphs. There are, how-
ever, related graph classes that have been also investigated from the point of
view of parameterized algorithmics. We shortly report on these results here.
Details can be found in the mentioned papers.

Disk graphs. Disk graphs are a subclass of intersection graphs described
by disks in the plane, i.e., the vertices of the corresponding graph are the
disks, and an edge between two vertices indicates that the corresponding disks
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overlap. A collection D of disks is λ-precision if all centers are pairwisely at
least λ apart.

Alber and Fiala [16] consider the following parameterized problem, whether
for a given set D of n disks (of bounded radius ratio, i.e., the maximum radius
among all disks divided by the minimum radius among all disks is bounded
by some α) in the Euclidean plane there exists a set of k non-intersecting
disks.

For this problem, they expose an algorithm running in time nO(
√
k). For

λ-precision disk graphs of bounded radius ratio, they show that the problem
is fixed parameter tractable with a running time O(c

√
k + p(n)) for some

constant c and a polynomial p. The results are based on problem kerneliza-
tion (also see Section 9.2) and a new “geometric (-separator) theorem” which
holds for all disk graphs of bounded radius ratio.

So, more precisely, they showed membership in FPT for the following
problem, where the considered graph class is predetermined by the choice of
α and λ:

Problem name: independent set on disks graphs (DIS)
Given: A disk graph G = (V,E) whose disk model has radii between
1 and α and is λ-precision
Parameter: a positive integer k
Output: Is there an independent set I ⊆ V with |I| ≥ k?

Bounded genus graphs. The notion of bounded genus generalizes the
notion of a planar graph in a straightforward manner: no longer graphs that
are embeddable on a sphere are looked at (this corresponds to graphs of
genus zero) but graphs that are embeddable on the surface of a sphere that
is decorated with γ handles; this graph parameter γ upperbounds the genus
of the graph under consideration.

We already mentioned in Sec. 7.5 that for these graph classes, FPT -
algorithms of running time O∗(c

√
k

γ ) can be constructed. Alternatively, Ellis,
Fan and Fellows have shown in [154] that dominating set on bounded
genus graphs can be solved in time O((4γ + 40)kn2) by a search tree
algorithm.

There is also an algorithmic theory for solving basically all problems
mentioned in this chapter (amongst others) in time O∗(c

√
k) that was recently

developed by Demaine, Fomin, Hajiaghayi and Thilikos [116].

H-minor free graphs. The theory we mentioned [116] also applies to H-
minor free graphs. Related recent papers include [112, 121, 122, 216, 185].
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For the particular case of K3,3 and K5 as forbidden minors, we mentioned
special results in the previous section.
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Chapter 8

Further approaches

In this chapter, we discuss further approaches to the phenomenon of param-
eterized problems, including some non-standard applications. Moreover, this
chapter can be seen as containing some ideas how to further develop areas
in which the parameterized paradigm can be applied.

In Section 8.1, we present one approach that has been proven to be use-
ful to develop efficient parameterized algorithms: dynamic programming on
subsets. We proceed with a section (Sec. 8.2) on enumeration, a technique
that is also useful for a “rapid prototyping” approach to decision problems.
Related to enumerating all solutions is the issue of counting them, which is
dealt with in Section 8.3.

Section 8.4 briefly reviews some other techniques that are useful for prov-
ing FPT results.

Another issue is of course how to practically employ the methodologies
presented in this Habilitationsschrift. A short section is devoted to this issue,
dealing both with sequential and parallel computations.

8.1 Dynamic programming on subsets

Fomin, Kratsch and Woeginger [187] recently came up with an efficient pa-
rameterized algorithm for the following problem, which is in fact an alterna-
tive parameterization of hitting set:

Problem name: minimum hitting set, parameterized by #
edges (HSE)
Given: A hypergraph G = (V,E)
Parameter: |E|
Output: Find a minimum hitting set C ⊆ V

391
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The algorithm uses a technique known as dynamic programming on sub-
sets. To this end, given a hypergraph G = (V,E) with V = {v1, . . . , vn},
the algorithm maintains a 2-dimensional array F that contains, for E ′ ⊆ E
and for j = 1, . . . , n, in F [E ′, j] the minimum cardinality of a subset C of
Vj := {v1, . . . , vj} that covers E ′ (C is also called a hitting set for E ′ (relative
to Vj)); if no such cover exists, set F [E ′, j] = ∞. More details on how to
construct the entries for F are contained in Alg. 69. There, also the basic
reasoning for the inductive step in the correctness proof of that algorithm is
given.

Let us mention that the famous Dreyfus-Wagner algorithm for solving
the Steiner tree in graphs problem is based on a similar recursion and
exhibits basically the same running time, see [326]. This is not completely
surprising, given the relatively close connections between red-blue domi-
nating set and Steiner tree in graphs.

Algorithm 69 A dynamic programming algorithm for minimum hitting
set, parameterized by # edges, called HSE

Input(s): a hypergraph G = (V,E), V = {v1, . . . , vn}
Output(s): a hitting set C ⊂ V of minimal cardinality

for all E ′ ⊆ E do
F [E ′, 1] := 1
for all e ∈ E ′ do

if v1 /∈ e then
F [E ′, 1] := ∞

end if
end for

end for
for j = 2, . . . , n do

for all E ′ ⊆ E do
Let E ′′ := {e ∈ E ′ | vj ∈ e}.
F [E ′, j] := min{F [E ′, j − 1], F [E ′ \ E ′′, j − 1] + 1}
{Two cases arise: either vj is not belonging to a minimum hitting
set for E ′, then, F [E ′, j] = F [E ′, j − 1]; or vj belongs to a minimum
hitting set C for E ′, but then, C \ {vj} is a minimum hitting set for
E ′ \ E ′′ relative to Vj−1, so that F [E ′, j] = F [E ′ \ E ′′, j − 1] + 1.}

end for
end for

Theorem 8.1 minimum hitting set, parameterized by # edges can
be solved in time O∗(2|E|) for a hypergraph instance G = (V,E).
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When dealing with sets, it is however often sufficient to do a much simpler
thing, namely to test all possible assignments of certain numerical values to
the set under scrutiny. A nice non-trivial application of this simple idea was
recently published by B. Reed, K. Smith and A. Vetta [330]: they considered
the following problem:

Problem name: bipartization (BP)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a bipartization set C ⊆ V with |C| ≤ k whose
removal produces a bipartite graph?

It was open for more than 10 years if this problem belongs to FPT or
not. Their algorithm is based on a couple of nice ideas that might be useful
for similar situations, as well. The importance of the result for the area of
parameterized algorithmics is also described in [243]. But let us first present
the algorithm in Alg. 70.

The main point to the correctness of this greedy algorithm is of course
the subroutine BP-improve presented in Alg. 71 that contains the exponential
part of the overall algorithm. To describe this algorithm, we introduce the
following additional auxiliary notations.

Given a set X ⊂ Y , denote by X[i] the set {xi | x ∈ X}, where we assume
that X[i] ∩ Y 6= ∅.

If G = (V,E) is a graph with bipartization set C ⊆ V , then G−C has (by
definition) two independent sets S1, S2 such that S1 ∪S2 = V \C. BP (G,C)
denotes the bipartization variant of G with respect to C, where the graph
BP (G,C) = (V ′, E ′) is given as follows:

• V ′ = (V \ C) ∪ C[1] ∪ C[2].

• E ′ contains the following edges:

1. all edges from G− C;

2. if e ∈ E joins some y ∈ Si to some c ∈ C, then we put a corre-
sponding edge e′ into E ′ that joins y to c3−i;

3. if e ∈ E joins two vertices x, y ∈ C, then we put a corresponding
edge e′ into E ′ that either joins x1 to y2 or that joins x2 to y1.

Given v′ ∈ V ′, call v corresponding to v′ if either v′ ∈ V \ C and v = v′

or v ∈ C and v′ = vi ∈ C[i] for i = 1, 2.
The bipartization variant BP (G,C) in indeed bipartite, since S1 ∪ C[1]

and S2 ∪ C[2] are both independent sets.
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Algorithm 70 A greedy algorithm for bipartization, called GBP

Input(s): a graph G = (V,E), a positive integer k
Output(s): if possible: a subset C ⊂ V , |C| ≤ k whose removal produces a

bipartite graph or
NO if no such set exists.

if V = 0 AND k ≥ 0 then
return ∅

else
pick a vertex v
C := GBP(G− v, k)
if C =NO then

return NO

else if |C| < k then
return C ∪ {v}

else
C := BP-improve(G,C ∪ {v}, k)
if C =NO then

return NO

else
return C

end if
end if

end if

Given a subset Y ⊂ C, a partition of Y [1]∪Y [2] into two sets YA and YB
is a valid partition if, for all y ∈ Y , either y1 ∈ YA and y2 ∈ YB or y1 ∈ YB
and y2 ∈ YA.

The correctness of Alg. 71 relies on a characterization of minimum bipar-
tization sets in terms of valid partitions that is contained in [330]; we refer
the interested reader to that paper. Note that (as stated in Alg. 71), the
bipartization improvement subroutine can be implemented to run in time
O∗(3k), which is slightly better than claimed in the paper [330]. 1

So, we can state the following results:

Theorem 8.2 bipartization improvement can be solved in time O(3kmn),
where n and m are the number of vertices and edges, respectively, of the input
graph.

1This improvement was (to our knowledge) first announced in the invited talk R. Nie-
dermeier gave at MFCS’04.
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Algorithm 71 A search algorithm to improve solutions for bipartization,
called improve-BP

Input(s): a graph G = (V,E), a bipartization set C, a positive integer k
such that |C| = k + 1

Output(s): if possible: a subset C ⊂ V , |C| ≤ k whose removal produces a
bipartite set or
NO if no such set exists.

Let G′ = (V ′, E ′) = BP (G,C).
found:=NO

for all mappings α : C → {0, 1, 2} AND not found do
Let Y := {c ∈ C | α(c) 6= 0}.
Let YA := {ci | c ∈ C, α(c) = i}.
Let YB := {ci | c ∈ C, α(c) = 3 − i}.
Let NOT(C) := C[1] ∪ C[2] \ (YA ∪ YB).
{By construction, YA and YB form a valid partition.}
if there are less than |Y | vertex disjoint paths from YA to YB in G′′ :=
G′ − NOT(C) then

found:=YES

Let W ′ be a cutset that separates YA from YB in G′′, with |W ′| < |Y |.
Let W be the set of vertices in G that correspond to vertices in W ′.
{By definition, |W | ≤ |W ′|.}
{W ∪ (C \ Y ) is a bipartization set of G}

end if
end for
if found then

return W
else

return NO

end if

Corollary 8.3 bipartization can be solved in time O(3kmn), where n and
m are the number of vertices and edges, respectively, of the input graph.

We explain the work of this algorithm by a small example.

Example 8.4 Let G = (V,E) with V = {1, 2, 3, 4, 5}. G consists of two
triangles: (1, 2, 3, 1) and (1, 4, 5, 1). We want to know if there exists a bipar-
tization set of size 1. Assume that the ith recursion of the main algorithm,
GBP is called with the graph G[{1, . . . , i}]. For example, GBP(G[{1, 2}, 1)
returns the empty set. Therefore, GBP(G[{1, 2, 3}, 1) returns {3}. Simi-
larly, GBP(G[{1, 2, 3, 4}, 1) returns {3}. Hence, GBP(G[{1, 2, 3, 4, 5}, 1) first
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constructs {3, 5} as bipartization set. The subroutine BP-improve will how-
ever find that this is not a minimum bipartization set. For example, with
YA = {31, 52} and YB = {32, 51}, {1} appears to be a small cutset in G′′.
Hence, {1} is a smaller bipartization set in G′.

Let us summarize some of the ideas that might turn out to be fruitful in
other circumstances, as well.

• The actual recursion in the main routine is “trivial” and does not make
any branches at all.

More precisely: The recursion will produce a solution either of size k or of

size k + 1 or it returns that no solution exists. If a solution of size k is

returned, this is o.k. If the size is k+1, a subroutine is triggered that checks

if the solution is minimal. If the solution is minimal, the overall procedure

returns that no solution exists. If the solution is not minimal, a smaller

solution is generated and is used in the further recursion.

The parameterized complexity behavior is hidden in the subroutine.

• The general idea is therefore to produce a solution that might be slightly
larger than wanted but then verify minimality.

• The mentioned subroutine works by trivial assignment of three values
to the set under scrutiny and testing all possibilities. This also imme-
diately gives the claimed time bound.

• Reed et al.’s algorithm seem to be the first example of an improvement
problem to be observed in FPT . More precisely, it can be seen that
Alg. 71 puts the following problem in FPT :

Problem name: bipartization improvement
Given: A graph G = (V,E), a bipartization set C ⊆ V with |C| =
k + 1
Parameter: a positive integer k
Output: Is there a bipartization set C ′ ⊆ V with |C ′| ≤ k ?

It is clear that corresponding problems can be also studied in other
circumstances. While it is trivial that, whenever the “original version”
of a problem is in FPT , then its “improvement version” is in FPT , as
well, Reed et al.’s algorithm is—to our knowledge—the first example of
how to use a converse relation. It would be interesting to see examples
of W[1]-hard problems whose improvement version lies in FPT .
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The problems bipartization and bipartization, edge variant are
known to be interrelated. Choi, Nakajima and Rim showed [98] that the
problems are equivalent if the degree of the input graphs is limited to three.
More generally, S. Wernicke [376, Theorem 6.7] provided a parameterized
reduction that shows how to solve bipartization, edge variant with the
help of bipartization. That reduction transforms an instance (G, k) of
bipartization, edge variant into an instance (G′, k′) of bipartization
such that k′ = k, i.e., it is even parameter-preserving. We can therefore state
as a corollary:

Corollary 8.5 bipartization, edge variant is in FPT . More specifi-
cally, an instance (G, k) of bipartization, edge variant can be solved in
time O∗(3k).

Lemma 6.20 allows us then to state:

Corollary 8.6 bipartization, replacing edges by 2-paths variant
is in FPT .

Note, however, that the links between BP and BPedge are not perfect:
while BP, restricted to planar graphs, is still NP-hard, see [98], BPedge
(or equivalently maximum cut) then becomes solvable in polynomial time,
see [223].

Let us return again to facility location, which we have previously
looked into in Chap. 4.2 The idea of dynamic programming on subsets gives
us a better overall running time.

Theorem 8.7 facility location can be solved in time O(k3k+12k+ |M |).
Proof. We start by kernelization as described in Lemma 4.10. In a pre-
processing phase, we compute the cost incurred by a certain set of customers
when being served by a single facility, storing the results in a table “one-
serve” with 2k entries. Since there are at most k3k many facilities and k
customers, we get a running time of O(k3k2k). Then, we can compute the
minimal costs of serving a certain group of customers by some facilities by
dynamic programming, combining two subsets at a time. If we have stored
the results of the preprocessing in table “one-serve”, each step in the dynamic
programming will take only constant time, so that we arrive at the following
formula for dynamic programming:

c(A) = min{ min
∅6=B(A

c(B) + c(A \B), one-serve(A)}

2What follows is part of unpublished work with M. Fellows.
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Disregarding preprocessing time, this amounts in O(4k) operations; the pre-
processing actually worsens this in the way explained.

Remark 8.8 If we neglect the kernelization, we arrive at an O(4k|M |) al-
gorithm for facility location.

We like to remark that facility location shows up in really many
places. For example, in a project called XTRACT, M. Garofalakis et al. [203]
proposed to apply the Mimimum Description Length (MDL) principle to
select the most appropriate Document Type Definition (DTD) for a specific
element of an XML document with unknown or insufficiently known DTD.
Since the related combinatorial problem seems to be hard,3 they proposed
taking approximation algorithms for facility location to practically solve
the involved MDL-based optimization step. Their straightforward translation
can be also read as a parameterized reduction, so that in principle also our
exact algorithm could be incorporated in that project.

Fellows et al. also used dynamic programming on subsets to obtain bet-
ter running times for algorithms dealing with packings and matchings of
geometric objects and graphs [168].

8.2 Parameterized Enumeration

8.2.1 General notions and motivation

The problem of enumerating all minimal hitting sets is an important example
in the area of Artificial Intelligence, where this problem is known as the
transversal hypergraph problem, see [151, 152, 153, 331]. Further references
and links to problems in computational biology can be found in [108]. In
fact, we already saw a couple of applications of this technique in Chap. 6.
The following exposition, however, rather follows the ideas from [171], the
notions being slightly modified, to reconciliate them with [108].

We call an optimization problem fixed-parameter enumerable iff all opti-
mal solutions of size k can be listed in time O(f(k)p(n)).

In [171], we rather studied the following problems from a parameterized
standpoint for an optimization problem:

• generate all feasible solutions of size k,

• generate all optimum solutions of size k, and

• generate representative solutions.

3In fact, we recently showed NP-hardness of that problem [173].
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Then—in contrast what we define here—, the first of these versions was
called fixed-parameter enumerable. In [171], an example was given for ver-
tex cover that shows that even this “simple” problem is not enumerable in
this sense: the graph with n vertices and no edges has O(nk) many covers of
size k. For minimization problems, the tasks of listing all minimal solutions
of size k and of listing all minimum solutions of size k are parameterized
interreducible, as one easily sees.

We will return to what is meant be the third enumeration task (to gen-
erate representative solutions), later in this section.

8.2.2 Enumerating hitting sets

It is rather straightforward to devise a variant of Mehlhorn’s simple search
tree algorithm(s) to list all minimal vertex covers up to a size of k, see Alg. 72.

Algorithm 72 A simple enumerating search tree algorithm, called VC-enum

Input(s): a graph G = (V,E), a positive integer k, a subset C containing
the vertices already assumed to be in the cover; furthermore, global read
access to the original graph and write access to a global list L of covers
(to be constructed) is required.

Output(s): if possible, returns a minimal vertex cover C ⊆ V , |C| ≤ k (and
puts it onto a global list L), or
NO if no vertex cover of size at most k exists.

if k ≤ 0 and E 6= ∅ then
return NO

else if k ≥ 0 and E = ∅ then
for all x ∈ C do

if C \ x is a cover of the original graph then
return NO

end if
end for
{C is a minimal vertex cover with no more vertices than required by the
original bound}
put C onto the list L and return

else
Choose edge e = {x, y} ∈ E
VC-enum(G − x, k − 1, C ∪ {x})
VC-enum(G −N(x), k − deg(x), C ∪N(x))

end if

The correctness of Alg. 72 is based on the following characterization of
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minimal vertex covers:

Lemma 8.9 C is a minimal vertex cover of a graph G = (V,E) if and only
if

• C is a cover of G, and

• for each x ∈ V , N [x] is not completely contained in C.

Proof. If C is a vertex cover of G that is not minimal, then there is a
strict subset C ′ of C that is already a cover of G. Assume (w.l.o.g.) that
C = C ′ ∪ {x}. Since x can be deleted from C without destroying the cover
property, all neighbors of x must be in C. Hence, N [x] ⊆ C.

Conversely, if C is a vertex cover of G with some vertex x ∈ C such that
N [x] ⊆ C, then C \ {x} is also a cover of G, so that C is not minimal.

By providing read access to the original instance (G, k) and by initializing
a list L of covers by the empty list, Alg. 72 can be used to list all minimal
vertex covers, thanks to the following proposition.4

Proposition 8.10 Alg. 72 lists all minimal vertex covers of size up to k
within the list L.

Proof. Due to the minimality test in Alg. 72, it is clear that Alg. 72 only
lists minimal vertex covers of size up to k within the list L.

The question is if it is possible not to list some minimal vertex covers by
ignoring non-minimal covers. Let C be such a non-minimal cover. Due to
Lemma 8.9, there is a vertex x such that N [x] ⊆ C. How is is possible that
x together with all its neighbors is put into a cover along the construction
performed by the algorithm?

Assume first that during the course of the algorithm we branch at x.
In the branch that x is not put into the cover, N(x) is put into the cover.

This implicitly makes x an isolated vertex, since all edges incident with x
are covered and can be hence removed. Therefore, x will never be considered
anymore by the algorithm, since only edges are picked for branching. There-
fore, in this branch, x will never be put into the cover, so that N [x] won’t be
completely contained in any cover produced this way. So, the non-minimal
cover C can not turn up this way.

In the branch that puts x into the cover, it might happen that later on all
neighbors of x are put into the cover. Hence, with hindsight, having put x

4P. Damaschke proposes a similar algorithm for listing all minimal vertex covers in [108].
Prop. 8.10 basically justifies his statement “One easily verifies that any minimal vertex
cover appears. . . ”.
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into the cover turns out to be superfluous. But the case that all neighbors of x
are put into the cover is also treated by the algorithm, see the considerations
in the preceding paragraph. Hence, it is sound not to further consider C (as
done by the algorithm).

Finally, we have to discuss the possibility that N [x] is put into C without
ever branching on x. Since we are considering all uncovered edges within the
course of the algorithm, this means that at least for one edge {x, y} we have
branched on y.

In the branch that does not put y into the cover, we cannot have put all of
N [x] into C by a reasoning similar to the one above when we considered the
case the x is not put into the cover during branching. So, the only interesting
remaining case is that we put y into the cover. This reasoning is true for all
neighbors y′ of x, so that “at worst” finally all neighbors of x are put into
the cover. But then, all edges incident with x are covered, so that x won’t
be considered any more, and hence N [x] won’t be completely contained in
C.

From the previous proposition and due to the trivial binary branching in
the search tree, we can deduce:

Theorem 8.11 Alg. 72 lists all minimal vertex covers of size up to k in time
O∗(2k).

In fact, if we knew how to deal with small-degree vertices, then Alg. 72
could actually run faster. Unfortunately, for the mere task of listing all
minimal vertex covers, we can do no better, as seen by the following example.

Remark 8.12 Essentially, there is no better minimal vertex cover enumer-
ation algorithm than the one given in Alg. 72, since the graph

({1, . . . , k} × {1, 2}, {{(i, 1), (i, 2)} | 1 ≤ i ≤ k})

has 2k many different minimum (!) vertex covers.
This simple example is interesting, since it shows, in addition, that there

is no minimal vertex cover enumeration algorithm for planar vertex cover
having running time of the form c

√
kn, as it has been found for the decision

problem for example in [15].

Remark 8.13 We only mention that the reduction rules 1 and 2 presented
for vertex cover in Chap. 2 are also valid for the purpose of parameterized
enumeration; this idea is detailed in [108]. More precisely, if C1 is the set
of vertices put into any vertex cover (of size at most k) due to Rule 2, then
each minimal solution C2 that is found by the search-tree method explained
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above (when applied to the kernel) can be transformed into a minimal solution
C1 ∪ C2 of the original graph instance. Details are left to the reader.

Note that also (variants of) the Nemhauser-Trotter theorem can be used to
find sets of vertices C ′

1 that must be contained in any minimum vertex cover,
see Rem. 4.37. In practice, these can be used as well to further restrict the
size of the search space if looking for an enumeration of all minimum vertex
covers up to a given size, see [96, 95] for more details. Observe that this
corresponds to the kind of enumeration problem proposed in [171].

There is one more idea from [108] we like to mention here: the idea of
enumerating compact representations of vertex cover solutions. Then, the
example from Rem. 8.12 could be easily dealt with when allowing special
representations for matchings. Damaschke developed a rather intricate al-
gorithm to enumerate compact representations of all minimal vertex covers
up to size k. If we relax this task a bit and allow possible enumerations of
additional minimal vertex covers of size larger than k in some situations, we
can actually find an easier algorithm with better running time, if we under-
stand the following as a compact representation;5 observe that a compact
representation formally represents a collection of covers:

1. ∅ is an expression denoting a compact representation that denotes no
sets at all, i.e., C(∅) = {∅}.

2. If a is a vertex, then a is an (atomic) compact representation of the
cover collection C(a) only containing the cover {a}, i.e., C(a) = {{a}}.

3. If a is a vertex, then â is an (atomic) compact representation of the
cover collection C(â) only containing the covers {a} and N1(a), where
N1(a) collects all neighbors of a of degree one, i.e., C(â) = {{a}, N1(a)}.

4. If A and B are compact representations that represent cover collections
C(A) and C(B), resp., then A+B represents the cover collections

C(A+B) = {X ∪ Y | X ∈ C(A), Y ∈ C(B)}.

In the special case that A = ∅, then A+B = B.
In the special case that B = ∅, then A+B = A.

5. If A and B are compact representations that represent cover collections
C(A) and C(B), then A∪B represents the cover collection C(A∪B) =
C(A) ∪ C(B).

5The following results haven’t appeared elsewhere.
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6. Nothing else are compact representations.

Example 8.14 For example, the minimal vertex covers of the graph

({1, . . . , k} × {1, 2}, {{(i, 1), (i, 2)} | 1 ≤ i ≤ k})

can be written as
(̂1, 1) + (̂2, 1) + · · · + (̂k, 1).

For instance, if k = 3,

(̂1, 1) + (̂2, 1) + (̂3, 1)

= {{(1, 1)}, {(1, 2)}}+ {{(2, 1)}, {(2, 2)}}+ {{(3, 1)}, {(3, 2)}}
= {{(1, i), (2, j), (3, `)} | 1 ≤ i, j, ` ≤ 2}

In the course of Alg. 73, we will construct a compact representation C of
minimal vertex covers of the input graph. Accompanying a graphG = (V,E),
we have a representation function ρ that maps a vertex x either onto x or
onto x̂. Initially, ρ will map each vertex x onto x. Similarly, the initial cover
collection C will equal {∅}.

Then, we will use modified reduction rules:

Reduction rule 68 If (G, k) is the graph instance with representation func-
tion ρ and C the compact representation of the partial covers found so far
and if x is an isolated vertex, then delete x from G. If ρ(x) = x̂, then modify
C := C + ρ(x) and decrement k.

Reduction rule 69 Let x be a vertex in G of degree one. If N1(x) 6= ∅,
then delete N1(x) from G and modify ρ such that ρ(x) = x̂.

Let us illustrate the work of the reduction rules with the help of Exam-
ple 8.14:

Example 8.15 We continue considering Example 8.14 with k = 3. Initially,
ρ((i, j)) = (i, j), and C = {∅}.

Let Rule 69 apply to (1, 1), i.e., now ρ((1, 1)) = (̂1, 1), and N1((1, 1)) =
{(1, 2)} got deleted from the instance. Then, Rule 68 may trigger with re-

spect to (1, 1), which is now an isolate. Since ρ((1, 1)) = (̂1, 1), the previously

initiated C = {∅} is modified to become C + (̂1, 1) = {{(1, 1)}, {(1, 2)}}.
Then, Rule 69, followed by Rule 68, might apply to (1, 1), further modi-

fying C to become

C + (̂1, 2) = {{(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (2, 2)}}.
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Another sequence of applications of the reduction rules, this time to (3, 2)
(e.g.), leaves us with the correct 8-element minimal cover collection, as al-
ready computed in Example 8.14.

Note that (as can be seen by the example), x̂ will be interpreted with
respect to the original graph, not the one modified due to Rule 69.

Algorithm 73 A search tree algorithm for enumerating compact represen-
tations of vertex covers, called VC-enum-compact

Input(s): a graph G = (V,E), a representation function ρ, a positive integer
k, a compact representation C of the partial cover found so far.

Output(s): If possible: Collects into C compact representations of all min-
imal vertex covers of size up to k.

Apply reduction rules 68 and 69, this way possibly modifying the instance.
if k ≤ 0 and E 6= ∅ then

return NO

else if k ≥ 0 and E = ∅ then
Choose a vertex x of maximum degree in G
{deg(x) ≥ 2 due to the reduction rules}
{For simplicity, ρ also denotes the appropriate restriction of ρ to a certain
new vertex set.}
C1 :=VC-enum-compact(G − x, ρ, k − 1, C + x)
C2 :=VC-enum-compact(G−N(x), ρ, k−deg(x), C+x1+· · ·+xr), where
N(x) = {x1, . . . , xr}.
if C1 = NO then

return C2

else if C2 = NO then
return C1

else
return C1 ∪ C2

end if
end if

Theorem 8.16 Alg. 73 lists representations of all minimal vertex covers of
size up to k (and possible some more minimal cover representations) in time
O∗(1.6182k).

We will leave detailed proofs for the correctness of this algorithm to the
reader. Observe, however, that the representation function ρ only comes into
play via the reduction rules. The purpose of this function is to ensure that
actually only minimal vertex covers are created. The problem shows up if,
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one after the other, the neighbors of a certain vertex x are considered to be
put into a partial cover. This will first turn x into a vertex of degree one
and then into an isolate. In the decision version of vertex cover, we could
simply discard x in that case. However, if x happened to have a neighbor
of degree one in former stages of the algorithm, ρ(x) = x̂. Then, either x
or that neighbor should be in a minimal vertex cover set, provided all other
neighbors of x are already in the cover. To ensure that no non-minimal covers
are created, it must be prevented that x together with all of its neighbors
comes into any cover that is described.

As regards running time, it is crucial to observe that any maximum degree
vertex ever selected for branching will be at least two. Namely, assume a
graph having maximum degree of one. Then, N1(x) 6= ∅ is satisfied for any
vertex of degree one (assuming simple input graphs as we usually do). Hence,
Rule 69, followed by Rule 68, will trigger, finally eliminating all vertices from
the instance.

It is relatively straightforward to generalize the above algorithm for enu-
merating all minimal vertex covers to an algorithm that enumerates all hit-
ting sets; if the size of the hyperedges of the given hypergraph is bounded by
some constant d, such an algorithm would run in time O∗(dk), cf. [108]. A
possible application of such an algorithm in the context of plan generation
is discussed in Sec. 6.3.

In actual fact, the task of enumerating all minimal hitting sets has been
already undertaken by Reiter [331] (also refer to the corrections in [214] and
further discussions concerning the applicability of the diagnosis approach
in [259]; the work of de Kleer and Williams is also pretty much related [260]).
Since the mentioned papers sketch a nice application scenario of computing
all minimal hitting sets (and also for the variant of finding one particular
minimum hitting set), let us present this application scenario in the following.

Reiter’s general starting point is the notion of a system, that is seen as a
pair (SD,COMPONENTS), where SD is the system description and COM-
PONENTS is the finite set of system components. The system description
should use some logical language and may use the distinguished unary predi-
cate AB(·), interpreted as abnormal. It takes any component as an argument.
The system description is intended to describe the normal behavior of the
components. For example, a sentence like “Normally, an adult human’s heart
rate is between 70 and 90 beats per minute.” could be expressed as follows
in some logical language:

ADULT(x) ∧HEART-OF(x, h)∧ ¬AB(h) =⇒ rate(h) ≥ 70∧ rate(h) ≤ 90.

Then, Reiter introduces the notion of an observation, which is a finite
set OBS of first-order sentences describing the actual behavior of a concrete
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system. Then, a system (SD,{c1, . . . , cn}) is faulty if

SD ∪ {¬AB(c1), . . . ,¬AB(cn)} ∪ OBS

is inconsistent. Then, appealing to the principle of parsimony (akin to
Occam’s razor), Reiter calls a set ∆ ⊆ COMPONENTS a diagnosis for
(SD,COMPONENTS,OBS) if ∆ is a minimal set of components such that

SD ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMPONENTS \ ∆} ∪ OBS

is consistent. Conversely, a conflict set for (SD,COMPONENTS,OBS) is a
set C ⊆ COMPONENTS such that

SD ∪ {¬AB(c) | c ∈ C} ∪ OBS

is inconsistent. The connection between these notions is obtained by the
following theorem of Reiter:

Theorem 8.17 ∆ ⊆ COMPONENTS is a diagnosis for

(SD,COMPONENTS,OBS)

iff ∆ is a minimal hitting set for the collection of (minimal) conflict sets for
(SD,COMPONENTS,OBS), where conflict sets are interpreted as hyperedges
of a hypergraph with vertex set COMPONENTS.

Example 8.18 For example, consider the system depicted in Fig. 8.1. Com-
ponents of this system could be: the aerial antenna, the satellite dish, the
two surveying cameras, the switch between different scenes, the TV set, a
couple of wires and cables, etc. Now, we won’t try to specify in any formal
way a system description.

What could be the cause if we cannot observe any picture on the TV
screen? In principle, the failure of any of the mentioned components might
result in such an observation. So, in order to make a better diagnosis, we
should be more specific about this observation, or we might wish to add
more observations. For example, if we can express that we only observe no
picture if the switch tries to transmit a signal from the aerial, this pretty
much restricts the possible set of causes. More specifically, the surveying
cameras would no longer be in a minimal conflict set.

Observe that the possible restriction to minimal conflict sets in the for-
mulation of Theorem 8.17 (as also observed by Reiter) is valid through the
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Figure 8.1: A sample system.

soundness of reduction rule 4 (edge domination) also in the case of the enu-
meration version of hitting set.

In Reiter’s scenario, it makes also perfect sense to look for a minimum
hitting set (resp., to enumerate all minimum hitting sets), and since a specific
diagnosis also incurs a specific cost, the weighted hitting set problem shows
up here, as well.

We basically left open the problem how to actually obtain a hitting set
specification out of a system description (plus the observations). In practice,
theorem provers are used as an intermediate step. This problem is explicitly
addressed in [224]. In fact, explicitly Reiter does not restrict the logic to
be used in the specification of the system. For example, in [355], the use of
order-sorted logic is described; more details can be found in [196]. This can
also include probabilistic reasoning, see [109, 263].

Let us again mention that Reiter suggests further pruning rules to im-
prove on the computation of a hitting set tree (that basically represents
all minimal hitting sets); in fact, there exists a whole sequence of paper that
deals with this subject; in chronological order [333, 214, 379, 273]. It is worth
mentioning that the first papers on the computation of hitting set trees use
branching on edges, while [273] suggest the use of binary branching, as we
also advocated in Chap. 5 for the decision problem variant. Also, alternatives
to hitting set trees for computing all minimal hitting sets have been discussed
in the diagnosis literature. For example, Lin and Jiang [273] report on good
results using a translation of a hitting set instance into a propositional logic
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formula. Fijany et al. [181] propose the use of satisfiability and 0/1 integer
programming techniques for this problem. They also describe a very good
application for using a computer-assisted diagnosis approach, namely that
of spacecrafts that should be able to autonomously diagnose faults. They
also report on the alternative of using expert knowledge (for creating a good
inference base) in this setting: the development of such a self-monitoring ex-
pert system took 20 work years for the Cassini spacecraft, and this is indeed
a barely tolerable amount of time in a rapidly developing area of technology.

As a further example, observe that the theory of model-based diagnosis
has also been used to solve the diagnosis problem in configuration knowledge
bases, see [162]. The reader who likes to see a very concrete application
might wish to study the RAPPER project [197], where the use of model-
based diagnosis in photocopier service is studied.

Reiter’s theory of model-based diagnosis has not only found application
in the analysis (in the sense of diagnosis) of (faulty) technical systems. For
example, Obst reports in [312] how model-based diagnosis can be used in spa-
tial reasoning tasks as they show up in the Robocup (robot soccer) scenario,
where in fact hypotheses about the environment (instead of a diagnosis of a
faulty system) have to be generated. Further generalizations can be found
in [24], where not also the diagnosis of a system but also its reliability is
studied in a probabilistic framework. The relevance of model-based reason-
ing within the area of Artificial Intelligence can be also seen from Site [Chap-
ter 11, Site 15].

8.2.3 Multiple parameters for constraint bipartite

vertex cover

We studied constraint bipartite vertex cover in various places through-
out this Habilitationsschrift. Let us here focus on using the technique of
enumeration to place multi-parameter versions of CBVC within FPT .

We first need some more notions for the 2-parameter version of con-
straint bipartite vertex cover:

Let (S1, S2) be a pair of cover sets for our CBVC. By its signature we sim-
ply understand (|S1|, |S2|). A signature (|S1|, |S2|) (and the solution (S1, S2))
is called minimal if there is no solution (S ′

1, S
′
2) for our CBVC with |S ′

1| ≤ |S1|
and |S ′

2| < |S2| or |S ′
1| < |S1| and |S ′

2| ≤ |S2|.

Lemma 8.19 If we consider k1 and k2 as fixed, then there are at most
min{k1, k2} +1 pairwise uncomparable (minimal) signatures.

This allows to state how to deal with graphs containing only vertices of
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degree at most two in a different way:

Lemma 8.20 Let G = (V1, V2, E) be a connected undirected bipartite graph
with maximum vertex degree 2 and let ` = |E| be the number of edges in G.

1. If G is a cycle, then for `′ := `/2 we have the minimal signatures (0, `′),
(`′, 0) as well as (2, `′ − 1), (3, `′ − 2), . . . , (`′ − 1, 2) if ` > 4.

2. Let G be a path.

(a) If ` is odd, then for `′ := (`+1)/2 we have the minimal signatures
(0, `′), (1, `′ − 1), . . . , (`′ − 1, 1), (`′, 0).

(b) If ` is even, then for `′ := `/2 + 1 we have the minimal signa-
tures (0, `′ − 1), (2, `′ − 2), . . . , (`′ − 1, 1), (`′, 0) if |V1| > |V2| and
(0, `′), (1, `′ − 1), . . . , (`′ − 2, 2), (`′ − 1, 0) if |V1| < |V2|.

Upon recalling the multi-parameter versions of constraint bipartite
vertex cover, it appears to be reasonable to think about separately solv-
ing the different blocks; however, if spares are shared, then it is not clear
that a solution of the first block that has signature say (2, 2) is better than a
solution with signature (1, 6), since saving one (shared) spare row for another
block might be crucial to the solvability of the reconfiguration problem for the
whole chip. Hence, we naturally arrive at the problem of enumerating repre-
sentative solutions for constraint bipartite vertex cover: namely, for
each signature (x, y) with x + y = k, we store one minimal solution (where
minimality is now a two-dimensional notion relating to the comparability of
signature vectors) whose signature is smaller than or equal to (x, y).

In [180], a parameterized algorithm running in time less than O(1.4k1+k2n)
was developed for this decision problem. In fact, by analyzing the decision
procedure developed in that paper one easily derives:

Corollary 8.21 For the CBVC problem, generating one representative so-
lution for each minimal signature can be done in time

O(1.3999k1+k2k1k2 + (k1 + k2)n),

where n is the number of vertices of the input graph and k1 and k2 are the
two parameters.

Theorem 8.22 Given a chip board with n elementary cells which is split
into k3 blocks each of which has at most k1 neighboring spare rows and k2
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neighboring spare columns, then a reconfiguration strategy can be found in
time

O(k3(1.3999k1+k2k1k2 + (k1 + k2)n) + k3(min{k1, k2} + 1)
√
k3+1)

if it exists.

Proof. (Sketch) At first, we run the representative enumeration proce-
dure from Corollary 8.21 for each block. Then, all possible combinations of
signatures for all blocks are examined to see whether the decision problem
is solvable. This second step can be implemented more efficiently by using
dynamic programming techniques in a sweep-line fashion. From a graph-
theoretic point of view, we exploit the fact that a grid graph (representing
the local dependencies between the blocks on the chip) with k vertices has
treewidth of at most

√
k + 1, see [54] and also Chap. 7.

In other words, the parameterized enumeration of representative solutions
can be used in order to show that another (related) decision problem is fixed
parameter tractable, considering k1, k2 and k3 as parameters of the problem.

The third mentioned variation which is also incorporating linked spares
seems to be harder, since knowing only one representative solution per signa-
ture is of not much help here. Even worse, also the generation of all minimal
solutions (which can be done as in the case of vertex cover elaborated above)
would not help, since possibly non-optimal solutions (considered “locally”
for each block) would be a better choice. For example, consider the following
chip with two blocks each containing three rows:

1 2 3 4 5 6 7 8 9
1 ? ?
2
3 ?
4 ?
5 ? ? ?
6 ? ?

For each of the two blocks, we have one spare row and, furthermore, there are
two linked spare columns. If we use the linked spare columns in order to repair
columns number 1 and 4, the array can be repaired by using the remaining
two spare rows for row number 3 and row number 5. Only considering the first
block, this solution is not minimal, since its signature (1, 2) is outperformed
by taking, e.g., a spare row for row number 1 and one of the two linked spare
columns for column number 2. However, then the second block would be not
repairable with the remaining spares (one spare row and one spare column).
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Only at the expense of a considerable exponential blow-up, we can show
the following fixed parameter tractability result:

Theorem 8.23 Given a chip board with n elementary cells which is split
into k3 blocks each of which has at most k1 neighboring spare rows and k2

neighboring spare columns and assuming that there are, furthermore, at most
k4 linked spare rows and k5 linked spare columns on the whole board, then a
reconfiguration strategy can be found in time

O(k3((k1 + k2 + k4 + k5)n+(
k3(k1 + k4)

k4

)(
k3(k2 + k5)

k5

)
[1.3999k1+k2k1k2 + (min{k1, k2} + 1)

√
k3+1]))

if it exists.

Proof. Such a board can be reconfigured as follows:

1. Kernelize each block assuming that there are at most k1+k4 spare rows
and at most k2 + k5 spare columns per block. The size of the problem
kernel such obtained is k3(k1 + k4)(k2 + k5).

2. Consider all possible assignments of the k4 linked spare rows to one of
the k3(k1 + k4) possibly faulty rows and all assignments of linked spare
columns to possibly faulty columns and apply the algorithm sketched in
the proof of the preceding theorem to each of the remaining “boards”.

Of course, the algorithm obtained in the previous theorem is only man-
ageable for very small values of k3, k4 and k5. Again, one might think about
a weighted variant of the last considered problem (which is again solvable
by considering the signatures as detailed above), since a solution using one
linked spare is probably to be preferred over a solution using ≈ √

k3 many
individual spares.

Remark 8.24 The example shown in this section proves that, from the point
of view of applications, it might make perfect sense to consider problems
with a certain number of parameters. Note that the philosophy behind the
development of fixed parameter algorithms is that the involved parameters
should be small in practice, and this is exactly what we expect for all five
parameters occurring in Theorem 8.23.

To conclude our discussion on variants of constraint bipartite ver-
tex cover, let us mention another issue discussed in [227]: namely, within
our formalization of the reconfiguration problem, we assumed up to now that
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the k1 spare rows and k2 spare columns that are supplied on a chip are not
faulty. Assuming some errors in the fabrication process, this assumption is
of course not realistic.

In fact, the current state-of-the-art seem to be even more complicated (at
first glance): Namely, if a row r and a column c are replaced by spare lines ri
and cj, respectively, the question might arise what happens with the “central
element” that is seemingly both replaced by ri and cj? To avoid dependencies
on the sequence of replace operations (and also for technological reasons), it
is assumed that this central element is replaced by the so-called limbo element
that seemingly both belonged to ri and to cj (before reconfiguration). The
problem now is that (in contrast to what we have seen before) we cannot
anymore take any two of the spare rows (if two were required under the
faultless spares assumption), since some of these spare might themselves be
faulty, and even the limbo elements might be faulty, so that we have, in
addition, to specify which of the spare rows we take. For a naive algorithm,
this should mean that the trivial 2k1+k2 branching we saw before is now
replaced by some (k1 + k2)

k1+k2-branching. Luckily, the situation is not so
bad. Handa and Haruki proved the following theorem:

A chip (array) M with k1 spare rows and k2 spare columns is
reconfigurable (assuming that the spares themselves might be
faulty) if and only if there is an associated chip array M ′

with k1 spare rows and k2 spare columns that is reconfigurable
(assuming that the spares themselves are not faulty).

Hence, we can use the algorithms we developed so far in this scenario, as
well.

8.2.4 edge dominating set

In this part, we show how to use the parameterized enumeration approach
to solve some parameterized decision problems. These results haven’t been
published elsewhere.

Recall that an edge dominating set of a graph is a subset D of edges such
that each edge is either in D or incident to an edge in D.

Problem name: edge dominating set (EDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an edge dominating set D ⊆ E with |D| ≤ k?

According to [70], a graph has a minimum edge dominating set that is
also a maximal matching.
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Algorithm 74 A search tree algorithm for EDS based on enumeration,
called EDS
Input(s): a graph G = (V,E), a positive integer k
Output(s): if possible: a subset D ⊂ E, |D| ≤ k, that dominates all edges

or
NO if no such set exists.

Create a list L of minimal vertex covers C of G with |C| ≤ 2k, using
Alg. 72.
{This hides the search tree part.}
for all C ∈ L do

Create G′ = G[C].
Find a maximum matching M in G′.
Let V ′ be all vertices in G′ that are not covered by M .
Let D := M .
for all v ∈ V ′ do

Choose an edge e ∈ E such that v ∈ e.
Add e to D.

end for
if |D| ≤ k then

return D
end if

end for
return NO

Theorem 8.25 edge dominating set is in FPT .6

Proof. First, we observe that to every edge dominating set instance
G = (V,E) with a solution D ⊆ E of size at most k there corresponds a
vertex cover of size at most 2k: simply take all vertices incident to the at
most k cover edges, i.e., C =

⋃
e∈D e.

7 Moreover, we can greedily find a
minimal vertex cover C ′ ⊆ C.

Conversely, if C ⊆ V is a minimal vertex cover of size at most 2k of
G = (V,E), we can construct an edge dominating set D ⊆ E of G that
satisfies the following requirements:

• k ≤ |D| ≤ 2k,

• C ⊆ ⋃e∈D e,

6A preliminary version of this result was obtained together with R. Niedermeier and
U. Stege (unpublished).

7This observation was also the basis of a first, simple factor-4 approximation algorithm
for minimum edge dominating set presented in [70].



414 CHAPTER 8. FURTHER APPROACHES

• D is a minimum set satisfying the first two requirements.

Consider first the isolates in G[C]: by minimality of C, each isolate x is
necessary to cover (at least) one of the edges, so that x must be simulated
by one (arbitrary) edge ex with x ∈ ex, and since x is an isolate, y /∈ ex for
each y ∈ C \ {x}. Hence, all the requirements are satisfied when restricting
one’s attention to isolates in G[C].

If K is a (non-trivial) connected component of G[C], let M ⊆ E(K) be
a maximum matching of K. Put M into D and treat V (K) \

(⋃
e∈M e

)
as

isolates (see above).
Why is the set D that is finally obtained in the way described minimum

with respect to the first two requirements? A possible violation of minimality
can only be caused by the treatment of non-trivial connected components. If
D′ is a minimal set satisfying the first two requirements, consider how it looks
on a connected component K. Such a restriction D′

K collecting all edges in
D′ incident with vertices in K is again minimum. The incidence of an edge
from D′

K with a vertex from K can be caused in two different ways: either
(1) e ∈ D′

K is an edge in E(K) ⊆ E(G[C]) or (2) not. By minimality of D′
K,

the collection M of all edges in D′
K that are edges in E(K) is a maximal

matching. If M were not a maximum matching, there would be (by the well-
known algorithms for maximum matching) an augmenting alternating path
in K on which M could be increased to M ′. This means that there are two
vertices x, y in K that did not belong to any edge from M but do belong
to edges from M ′. These two vertices are covered in D′

K by edges ex and
ey. ex and ey do not contain other vertices than x and y from C. Hence, if
we make the following changes to D′

K (and hence to D′), we get an edge
dominating set D′′ satisfying the two requirements but being smaller than
D′, contradicting the third requirement:

• Remove M from D′
K and replace it by M ′. This increases the edge

dominating set by one.

• Delete ex and ey from D′
K. This decreases the edge dominating set

by two.

Therefore, we will reduce the size of D′
K by the two operations. We can do

this as long as we can find such augmenting alternating paths. Hence, a D
satisfying all three requirements must be caused by maximum matchings as
described.

This shows the correctness of the procedure described in Alg. 74.

Observe that in the proof of the preceding theorem, we basically showed
how to compute a minimum edge cover for G[C].
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Let us add some further comments on Alg. 74.

Remark 8.26 Alg. 74, as listed, needs exponential space. It is however easy
to interleave the enumeration algorithm Alg. 72 in a way that only one min-
imal vertex cover is delivered at a time. Hence, Alg. 74 can be implemented
to run in polynomial space.

In the formulation of Theorem 8.25, we were not very specific about the
running time of our algorithm. But since the running time is mainly deter-
mined by the enumeration algorithm, and since the time spent on each min-
imal vertex cover is polynomial (especially, the involved maximum matching
algorithm), we may conclude:

Remark 8.27 Alg. 74 runs in time O∗(4k).

What about the weighted variant(s) of edge dominating set? More
precisely, let us consider—motivated by the introduction in [70]:

Problem name: weighted edge dominating set (WEDS)
Given: A graph G = (V,E) with edge weights ω : E → R≥1

Parameter: a positive integer k
Output: Is there an edge dominating set D ⊆ E with ω(D) ≤ k?

Corollary 8.28 Alg. 74 can be modified to work for weighted edge dom-
inating set and then runs in time O∗(4k) (and may only use polynomial
space).

Proof. First observe that, by our constraints on the edge weight function
ω, any edge dominating set D with ω(D) ≥ k obeys |D| ≥ k. Hence, we
can use the (non-weighted) listing of all minimal vertex covers C of size up
to 2k as before. However, when constructing the corresponding weighted
edge dominating sets, we have to use a weighted variant of maximum match-
ing. Hence, we have to compute a minimum edge cover for G[C], seen as a
weighted graph. The analogous details are left to the reader.

The fact that the algorithm for weighted variant of edge dominating
set basically has the same running time as the non-weighted variant should
make us a bit suspicious, recalling experiences from vertex cover. In
fact, as regards the approximability of these problems [70], the unweighted
variant has an (easy) 2-approximation (via some maximal matching), while
the weighted variant only enjoys a 2.1-approximation due to some reasoning
about integer linear programs.

Can we design any reduction rules that deal with small vertex degrees?
If so, it might be sufficient to only list minimal vertex covers in a way that
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the branching x vs. N(x) has a branching vector of (1, 2) or better. Let us
try to follow these thoughts.

Incidentally, we have to use some coloring on vertices. More precisely, a
vertex x is colored red to denote that one of the edges incident to x must
still go into the edge dominating set. In a certain sense, we hence generalize
the original problem towards the following one:

Problem name: generalized edge dominating set (GEDS)
Given: A graph G = (V,E), a set R ⊆ V of red vertices
Parameter: a positive integer k
Output: Is there an edge dominating set D ⊆ E with |D| ≤ k such
that all vertices from R are covered by D?

Obviously, any edge dominating set instance can be also interpreted
as a generalized edge dominating set instance by considering an empty
set of red vertices.

Reduction rule 70 Delete isolated vertices that are not red. If an isolated
red vertex is found, answer NO.

Reduction rule 71 If x is a vertex of degree one, incident to e = {x, y},
then do:

1. If deg(y) = 1 or if x is red, put e into the edge dominating set we
construct.

2. Otherwise, delete x and color y red.

Observe that reduction rule 71 is not true for the weighted case, similarly
to what we found with weighted vertex cover, since it might be cheaper
to actually put edges into the dominated set that would have been erased
due to Rule 71 (or some variant of it).

Lemma 8.29 The reduction rules 70 and 71 are sound.

Proof. If we have a red isolated vertex, then there cannot be any solution to
this instance of generalized edge dominating set. By way of contrast,
an isolated vertex that is not red need not be covered, so we can simply erase
it from the instance.

A red vertex must be covered, and if it is of degree one, we have to put
its incident edge into the edge dominating set.

A vertex x of degree one that is not red need not be covered. However, if
its only adjacent vertex is denoted by y, the connecting edge e need only be



8.2. PARAMETERIZED ENUMERATION 417

put into the edge dominating set in one circumstance: deg(y) = 1. Otherwise,
it would be never worse not to put e into the edge dominating set but one of
its neighboring edges. To ensure that this eventually happens, y is colored
red.

The idea to solve generalized edge dominating set would be incor-
porating parts of Alg. 72 into Alg. 74; finally, we would have to compute a
minimum edge cover for the graph induced by the minimal cover vertices (as
before) plus the red vertices obtained by applying the reduction rules.

But wait a moment: since finally red vertices and cover vertices are
treated alike, it would be easier to unite both types of vertices in the be-
ginning.

This therefore gives the following rules (if we start with a usual edge
dominating set instance:

Reduction rule 72 Delete isolated vertices.

Reduction rule 73 If x is a vertex of degree one, then put its unique neigh-
bor into the cover set under construction.

Corollary 8.30 Alg. 75 returns a correct answer in time O∗((1.6181)2k) =
O∗((2.6181)k), given an instance of edge dominating set.

Proof. The correctness of the algorithm can be seen as before. Notice
one detail: we do not insist any longer in listing only minimal vertex covers,
since this does not affect the correctness and the running time of the overall
algorithm.

The run time bound can be seen from Lemma 5.2, since we are basically
running Alg. 20.

Observe that basically the same algorithm can be obtained by first work-
ing out how to compute edge dominating sets from minimal vertex covers in
compact representation as discussed above. Obviously, this approach would
also meet the run time bounds of Alg. 75.

Remark 8.31 We can even obtain a kernel for edge dominating set
via the connection with vertex cover: first of all, we could use Buss’
kernelization rules to get a kernel for the hidden vertex cover enumeration
instance, see above. Together with the (naturally valid) rule that gets rid of
isolated vertices in the given edge dominating set graph instance (G, k),
these rules will leave us with the following: (1) a set C1 of vertices that must
be part of any minimal vertex cover set of cardinality 2k we are after in
this first phase of the algorithm for edge dominating set; (2) a set C2 of
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Algorithm 75 A search tree algorithm for EDS, called EDS-fast

Input(s): a graph G = (V,E), a positive integer k, a set C of cover vertices
from H, global read access to the original graph H

Output(s): YES if there is a subset D ⊂ E, |D| ≤ k, that dominates all
edges of H or
NO if no such set exists.

Exhaustively, apply the reduction rules 72 and 73. The resulting instance
is called as the original one.
if k ≤ 0 AND E 6= ∅ then

return NO

else if k ≥ 0 AND E = ∅ then
Create H ′ = H[C].
Find a maximum matching M in H ′.
Let V ′ be all vertices in H ′ that are not covered by M .
Let D := M .
for all v ∈ V ′ do

Choose an edge e ∈ E(H) such that v ∈ e.
Add e to D.

end for
return |D| ≤ k.

else
Pick a vertex x.
{By the reduction rules, deg(x) ≥ 2.}
if EDS-fast(G− x, k − 1/2, C ∪ {x}) then

return YES

else
return EDS-fast(G−N(x), k − deg(x)/2, C ∪N(x))

end if
end if

vertices from which we still have to select cover vertices (in order to cover
G[C2]). Now, it is rather straightforward to observe that G′ = G[C1∪C2] has
(similar to G[C2]) O(k2) edges and vertices. It can then be shown that it is
sufficient to look for a solution to (G, k) by solving (G′, k).

Moreover, since edge dominating sets for graphs with maximum degree
two (even for trees and more general graph structures, see [238, 383]) can be
easily solved in polynomial time, we might get further improvements by ap-
plying the triviality last principle, when we restrict the branching to vertices
of degree at least three.



8.2. PARAMETERIZED ENUMERATION 419

Remark 8.32 Relation to approximation: A parameterized factor-2 approx-
imation of edge dominating set (even weighted) can be obtained with
the help of parameterized vertex cover- or weighted vertex cover-
algorithms, see [70].

Let us finally consider a related problem, also mentioned in [383]:

Problem name: matrix domination set (MDS)
Given: A n× n matrix with entries from {0, 1}, positive integer k
Parameter: k
Output: Is there a set D of one-entries in the matrix, where |D| ≤ k,
such that every other one-entry has at least one row or one column
in common with some one-entry from D?

Observe that this problem can be also seen as a chess piece domination
problem: interpret the matrix as a chessboard showing places where it is
allowed to place a rook or where not (by having a one- or a zero-entry in the
corresponding position).

Lemma 8.33 (Yannakakis/Gavril) matrix domination set can be re-
duced (via FPT reduction) to edge dominating set.

The corresponding reduction is formulated in Alg. 76.

Algorithm 76 Reducing matrix domination set to edge dominating
set.
Input(s): a matrix instance (M, k) of matrix domination set.
Output(s): a graph instance (G, k) of edge dominating set such that

(M, k) is a YES-instance iff (G, k) is a YES-instance.

Let C be the set of columns of M .
Let R be the set of rows of M .
Form the vertex set V = C ∪ R of G = (V,E).
for all i ∈ R, j ∈ C do

Put {i, j} ∈ E iff entry (i, j) of M is one.
end for

Put in different words, matrix domination set is in one-to-one cor-
respondence to EDS, restricted to bipartite graphs. Since our solution of
edge dominating set is based on vertex cover, and the latter (in its
decision version!) is known to be easier on bipartite graph, the following
corollary might see some improvements; however, we did not manage to get
improvements in a straightforward manner, since we are rather relying on
the enumeration than on the decision version of VC.
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Corollary 8.34 matrix domination set can be solved in time O∗((2.6181)k).

In [134, Exercise 3.2.9], solving matrix domination set by means of
a kernelization and search tree based algorithm is proposed as an exercise.
However, to our knowledge there is no published solution for this problem.

In the literature, several other variants of edge dominating set have
been considered that can be attacked with similar methods; one recent paper
is [281].

8.2.5 More parameterized enumeration problems

Let us finally mention that also the topic of enumeration is not new in itself:
in the literature, also many “parameterized” results can be found, although
they tend to be stated not as explicit parameterized problems.

As an example, let us rephrase the main results of a paper of A. Kanevsky [250],
who considered the following problem:

Problem name: separating vertex sets enumeration (SVS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Enumerate all minimum size separating vertex sets of size
at most k.

Theorem 8.35 (Kanevsky) SVS can be solved in time O(2k|V (G)|) for a
given graph G. Using O(4k(|V (G)|/k2)) processors (in the PRAM model),
we can get down to a running time of O(k logn).

The last statement of the quoted theorem is insofar interesting, as it may
show a way of establishing a parameterized theory of parallel computing, a
topic nearly untouched up to now.

Without giving further explicit definitions, we quote a theorem due to
Kaplan et al. [254] that is also a parameterized enumeration result:

Theorem 8.36 All minimal k-triangulations of a graph G can be found in
O(16k|E(G)|) time.8

That paper contains two more parameterized graph modification enumer-
ation problems. It would be interesting to see if the pure decision versions of
the mentioned three problem of Kaplan et al. would allow for better FPT
algorithms.

8The decision version of this problem is also known as Minimum Fill-In.
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Let us finally discuss three more example that underline why do we think
that parameterized enumeration is important.

Gramm and Niedermeier [213] developed a fixed parameter algorithm for
the so-called minimum quartet inconsistency problem (MQI) which
is important for constructing evolutionary trees in biology. An evolutionary
tree is a rooted binary tree whose leaves are bijectively labeled by taxa from a
set S. A quartet is an evolutionary tree with four leaves. A problem instance

of MQI consists of an n-element set of taxa S and

(
n
4

)
quartets such that,

to each four-element subset S ′ of S, there is exactly one quartet whose leaves
are labeled with taxa from S ′. The aim is to construct an evolutionary tree
T whose leaves are bijectively labeled by taxa from S such that the number
of sub-trees of T with four leaves which are different from the input quartet
with the same leaf labels is bounded by a given error bound, the parameter k
of the problem. In this application, it is interesting for the human expert to
see and check all reconstructed evolutionary trees (satisfying the given error
bound) in order to choose the tree variants which appear to him to be the
most reasonable choice, given his additional background knowledge on the
subject. In fact, Gramm and Niedermeier already showed how to enumerate
all such minimal solutions in time O(4kp(n)).

Of course, the enumerated solutions could also be the basis of further
computations, even as a kind of heuristic estimate. For example, some re-
searchers interested in computing a k-dominating set of a graph heuristically
assume that such a dominating set is included within a 2k-vertex cover and
use the known (comparatively fast) vertex cover algorithm (computing some
2k-cover) in a preprocessing phase.9 This heuristic could be naturally im-
proved by starting off from all (minimal) vertex covers. In fact, recall that
we used a similar strategy to solve edge dominating set.

More of theoretical gist is our last application: Marx [286, Theorem 5.3]
used parameterized enumeration in order to show FPT membership for the
k-weighted satisfiability problem for a certain class of weighted F-SAT for-
mula. This turned out to be a basic building block of a dichotomy theorem
as developed by Schaefer for classical complexity theory [345].

8.3 Parameterized Counting

Parameterized counting has been under scrutiny of different authors, see
[29, 186, 290]. Most of the space in those paper is devoted to develop a

9U. Stege, personal communication about a Swedish bioinformatics group
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hardness theory for parameterized counting. Since the present Habilitations-
schrift is rather devoted to presenting parameterized algorithmics, let us also
here only report on the positive results, as especially outlined in [186].

We first give two interpretations of what is meant by “counting” along the
lines of the preceding section, this way a bit deviating from the mentioned
papers:

For our favorite problem vertex cover, this yields the following two
alternative counting problems:

1. count all vertex covers of size (exactly) k

2. count all minimal vertex covers of size (exactly) k

Observe that one could also define variants where we replace “(exactly)”
in the sentences above by “(at most)”. However, it is not hard to see that, at
a polynomial-time expense, the corresponding problems can be solved with
the help of each other.

8.3.1 Classical graph parameters in view of counting:

VC

In [186, p.868], an algorithm was presented to solve the first of the mentioned
tasks, and this algorithm is basically (again) a variant of Mehlhorn’s search
tree algorithm 16. It relies on listing all minimal vertex covers of size at
most k (of the given graph G = (V,E)) in a cover collection C of G and
then computing the number of all vertex covers of size exactly k by applying
the inclusion-exclusion principle from combinatorics (see, e.g., [274, Chap-
ter 10]), relying on the fact that the number of all vertex covers of size exactly
k equals

|{X ⊆ V | ∃C ∈ C : C ⊆ X ∧ |X| = k}|.
Besides recurring to combinatorics, we could also directly work on Mehlhorn’s
search tree algorithm 16, or better, its binary branching variant, Alg. 18. Let
us briefly follow this idea in Alg. 77.

Why is Alg. 77 correctly working ? Obviously, we have to avoid double-
counting. So, whenever we branch into the case “take x into the cover”, we
do not exclude the possibility of taking all neighbors of x into the cover, too.
Moreover, in that branch only vertex covers that do contain x are counted.
However, in the other branch, x is added to the list of excluded vertices E, so
that we will never account for any vertex cover that contains x in this branch.
Whenever the parameter was decreased to zero, all possibilities of adding
vertices to the cover obtained to that point are taken into consideration that
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Algorithm 77 A simple search tree based counting algorithm, called VC-
count
Input(s): a graph G = (V,E), a positive integer k; the original number of

vertices n and a set E of excluded vertices.
Output(s): the number of vertex covers of G of size exactly k

if k ≤ 0 and E 6= ∅ then
return 0

else if k ≥ 0 and E = ∅ then

return

(
n− |E|
k

)

else
Choose edge e = {x, y} ∈ E
Let ` :=VC-count(G − x, k − 1, n,E ∪ {x}).
return `+VC-count(G−N [x], k − deg(x), n,E ∪N [x])

end if

respect the list of excluded vertices (that also includes all vertices that are
taken into the cover along that particular search tree branch).

Can we do better?

Notice that counting of vertex covers has also been treated from a non-
parameterized perspective. More precisely, Goldberg, Spencer and Berque
have developed [207] an intricate algorithm that counts all vertex covers
of size k in an n-vertex graph in time O∗(2.325n). For graphs of degree at
most three, they even come up with a counting algorithm running in time
O∗(2.2292n). Observe that this latter result also (incidentally) improves on
the counting algorithm we presented:

Corollary 8.37 All vertex covers of size k in an n-vertex graph G of degree
at most three can be counted in time O(1.8880kk).

Proof. Since G has maximum degree of three, k vertices can cover at most
3k edges. Hence, G has at most 4k vertices.

Alternatively, note that we may also apply the inclusion-exclusion princi-
ple to the enumeration algorithms for minimal vertex covers in some sort of
compact form. We won’t pursue this venue here. Rather, let us return once
more to Alg. 77. Do we need to branch all the way down through the graph ?
No, rather we could stop branching say at vertices of degree two (actually, by
doing some sort of dynamic programming, we could even stop with branching
at vertices of degree three). Then, we are left with a forest of matching edges.
If there are say r edges left, there are obviously 2r possibilities to cover them.
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This has to be incorporated in the base case in a straight-forward manner
(increasing especially E by r), reducing the complexity for counting vertex
covers of size k to O∗(1.6182k). 10

Let us formulate the strongest variant of the counting result as a (formally
unproved; however, the details should be clear) theorem:

Theorem 8.38 All vertex covers of size k in an n-vertex graph G can be
counted in time O(1.4656kn).

Finally, we mention that the variant of counting all minimal vertex cov-
ers can be treated quite analogously, using, e.g., according parameterized
enumeration results.

8.3.2 Back to the Queens

Let us mention that counting in itself is one of the topics that is first of
all quite interesting in many applications and secondly only superficially at-
tacked in the parameterized framework. We feel that there is lots of work to
be done in this area. In particular here, examples can be found in the litera-
ture without explicit reference to parameterized complexity As an example,
we mention the following problem, continuing this way with Example 2.18:

Problem name: counting independent set of queens
(CQIS)
Given: An n× n chessboard C
Parameter: a positive integer n
Output: In how many ways can n queens be positioned on C such
that no two of them are mutually attacking?

As a historical aside, notice that it was this counting problem that Gauß
and Schumacher were after in the sequence of letters reprinted in [204, pp.
19ff.]. The history of this problem is explained in some “remarks” on pages
28–29. It is noteworthy that neither Gauß nor Schumacher found the correct
solution for n = 8, but that particular problem was solved by an (unnamed)
person who was born blind.

Rivin and Zabih [337] showed the following:

Theorem 8.39 Given n, all solutions to counting independent set of
queens can be counted in time O∗(8n) (using also O∗(8n) space).

10P. Rossmanith is quoted in [306] to have found a counting method for vertex cov-
ers running in time O∗(1.4656k), which pretty much smells like the strategy of avoiding
branches at vertices up to degree two, as sketched above. However, we have not seen any
publication of that result.



8.3. PARAMETERIZED COUNTING 425

They actually derived basically the same result for the n-Queens problem
on a toroidal chessboard, i.e., on a chessboard with wrap-around connections,
so that every line (on a chessboard), i.e., a row, a column, or a diagonal, has
n squares.

Algorithm 78 A dynamic programming algorithm for CQIS

Input(s): a positive integer n
Output(s): the number Q(n) of ways in which n queens can be placed on

an n× n board without attacking themselves

Set Q to {(∅, 1)}.
{Q should be organized as a directed acyclic graph GQ reflecting the in-
clusion relation of the first components; the “root” of GQ is always (∅, 1).
A directed spanning tree of GQ is used to investigate GQ in the second
FOR-loop.}
for all squares s of the chessboard do

Let T be the set of (at most six) lines that contain s.
for all (S, i) ∈ Q do
{Start the search through GQ at the root}
if S ∩ T = ∅ then
{a queen can be placed on s without attacking any of the lines that
are already dominated}
Look for some (S ∪ T, j) in Q using GQ.
if found then

Replace (S ∪ T, j) by (S ∪ T, j + i)
else

Add (S ∪ T, i) to Q (maintaining GQ)
end if

else
{We can skip all successors of (S, i) in GQ.}

end if
end for

end for
Let M be the set of 2n lines that are either rows or columns.
Initiate Q(n) := 0.
for all (S, i) in Q do

if M ⊆ S then
Q(n) := Q(n) + i

end if
end for
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Algorithm 78 reproduces a preliminary version of Rivin and Zabih’s al-
gorithm running in time O∗(64n).11 It is based on dynamic programming
(although this time written up in an iterative rather than in a recursive
form) and uses as the basic data structure a queue Q containing pairs (S, i).
Here, S is a set of lines (i.e., either rows, columns, or diagonals) each of those
has been already become a closed line, i.e., a queen has been put on one of the
squares of it. The integer i tells us in how many ways it is possible to place
queens on a chessboard that do not attack themselves mutually but dominate
exactly the lines in S. So, at the start, Q contains only the pair (∅, 1), since
there is only one way to place no queens on the chessboard. The correctness
and the claimed running time is based on the following observations:

• A chessboard has 6n− 2 lines.

• For each set of lines S, there will be never two items (S, i) and (S, i′)
in the queue.

• Hence, there will never be more than 26n−2 elements in the queue.

• The second FOR-loop visits each element of the queue at most a poly-
nomial number of times (namely, notice that the set T used for updating
S ∪ T contains at most 6 elements).

• A valid solution must put one queen in each row and in each column.

In essence, this counting algorithm is based on the idea of putting possible
candidate solutions into the same equivalence class if the set of closed lines is
the same. The improvements of the algorithm are then based on putting even
more solutions into the same equivalence class. Moreover, the order in which
all squares of the chessboard are scanned is fixed, namely to row-major, so
that, whenever one row r has been completely scanned, all (S, i) with r /∈ S
are deleted from S, since a valid solution must place a queen in every row.

It has been conjectured in [336] that the number of solutions Q(n) to
the n-Queens Problem, divided by n logn, converges to some constant β.
If this conjecture were true, then Algorithm 78 would be superior to any
backtracking algorithm that actually constructs (enumerates) all solutions.
However, the values of Q(n) listed in [336] were obtained by such a backtrack-
ing algorithm due to the (at that time) seemingly unsurmountable usage of
memory of Algorithm 78 (even in its improved form). To such backtracking
algorithms, “intelligence” is usually added that exploits certain patterns for
creating solutions, see [156, 159, 331].

11In actual fact, a naive direct implementation of their algorithm Queens contained
in [337] has (contrary to what is claimed) a running time of O∗(642n).
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Can we use the ideas from Algorithm 78 to solve similar problems, as
well? Let us try to do so with dominating set of queens, i.e., a decision
problem (rather than a counting problem).

Algorithm 79 A dynamic programming algorithm for QDS

Input(s): positive integer n and k
Output(s): Is it possible to place k queens on an n× n board to dominate

all squares?

Set Q to {(∅, 0)}.
{Q should be organized as a directed acyclic graph GQ reflecting the in-
clusion relation of the first components; the “root” of GQ is always (∅, 0).
A directed spanning tree of GQ is used to investigate GQ in the second
FOR-loop.}
for all squares s of the chessboard do

Let T be the set of (at most six) lines that contain s.
for all (S, i) ∈ Q do
{Start the search through GQ at the root}
if NOT T ⊆ S then
{putting a queen on s would dominate new lines}
Look for some (S ∪ T, j) in Q using GQ.
if found then

Replace (S ∪ T, j) by (S ∪ T,min{j, i+ 1})
else

Add (S ∪ T, i + 1) to Q (maintaining GQ)
end if

end if
end for

end for
Let M be the set of all possible lines.
Find (M, j) in Q.
return k ≤ j

In Alg. 79, we again maintain a queue that contains information in the
form of pairs (S, i); however, this time partial solutions are encoded. More
specifically, S is a set of already dominated lines, and i shows how many
queens are needed to dominate S. Hence, the initialization is different: the
empty set is dominated by zero queens.

What is the running time of Alg. 79? Again, since for each S, at most one
element (S, i) will be present in the queue, there are at most 26n elements
ever showing up in the queue at the same time. Clearly, each subset of lines
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S will be modified at most O(|S|6) times (choose a subset T of at most six
lines from S that, together with S \ T , might cause an update). Keeping in
mind Theorem 4.27, we may hence conclude:

Theorem 8.40 Alg. 79, when started upon a reduced kernel according to
Theorem 4.27, solves a dominating set of queens instance in time O∗(212k).

Observe that this is worse than what we got by the treewidth-based ap-
proach in Theorem 7.15. However, there might be ways to improve the cur-
rent estimate of Alg. 79 or even combine this methodology with the treewidth-
based approach.

8.4 Other techniques for FPT algorithms

In this section, we briefly review other techniques for obtaining FPT results.
Alon, Yuster and Zwick [22] introduced the idea of using color coding into

the domain of FPT algorithm design. In recent papers, there has been a
revival of those ideas. We only mention two of them:

• Fellows et al. used this technique in [168] to get improved FPT results
(all of type O∗(ck)) for geometric packing and matching problems.

• Marx [286] used color coding to show FPT results for certain types of
constraint satisfaction problems.

As already mentioned in Chap. 2, there does also exist “machinery” from
graph minor theory, and more general, from well-quasi-orderings. With the
exceptions reported in Chap. 7, this machinery is well suited for deriving
classification results, but usually the running times of these algorithms are
worse than what can be obtained by other methods. One particular exam-
ple shown in this Habilitationsschrift is Theorem 4.7 that got substantially
improved in terms of running time in this chapter. 12

Other techniques based on logical characterizations of problems could also
be (again) mentioned here, although the concrete solving strategy does rely
on algorithmic techniques as explained throughout this Habilitationsschrift.

8.5 Implementations

Unfortunately, reports on practical experiences with parameterized algo-
rithms are relatively scarce throughout the literature. Nonetheless, we will

12Actually, we refrained from giving an exact running time bound in Theorem 4.7; the
involved constants are simply astronomically huge.
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try to underline the validity of the parameterized approach by reporting on
some of the relevant aspects. This should also inspire people working on
the more practical parts of algorithmics to constantly report their results.
In fact, the ultimate goal in this area might be to compile a repository of
programs that implement basic parameterized algorithms. Since this Habi-
litationsschrift is focusing on graph-theoretic problems, an incorporation of
such a repository in LEDA, see [293] and [Chapter 11, Site 11].

8.5.1 Implementations of sequential algorithms

According to our observation, most of the implementation work done so far
is focusing on treewidth-based algorithms, the quotations [10, 124, 132, 133]
being only a (possibly random) selection of corresponding works.

The (partly dramatic) effect of data reduction rules has been described
in [7]. Of course, also the paper of Weihe [375] deserves to be mentioned in
this place, although it is not directly referring to parameterized algorithmics.
In Sec. 4, we also mentioned the experiments of [3] when considering crown
reductions for vertex cover.

Recently, Hüffner reported [243] about an implementation of the bipar-
tization algorithm we also presented in Alg. alg-GBP. He also relates that
algorithm with the iterative compression idea briefly mentioned in Chap. 4.

As regards search tree algorithms, the reported experiments we are aware
of [210, 357] mostly show that the worst case running time estimates that were
theoretically derived for the according algorithms are rarely met in practice;
the algorithms tend to behave far better than “expected” both on artificial
and on real data. Of course, this might mean that the derived estimates are
simply not good enough. Alternatively, it could mean that the worst case
scenario that could be drawn from the theoretical analysis rarely shows up in
practice. This might also encourage research on the average case complexity
of exact, exponential-time algorithms, an area that is (to our knowledge) not
even attempted at up to now.

8.5.2 Parallel implementations

Works on the parallelization of search tree algorithms have been reported
in b[80]. More precisely, the algorithm they implemented for vertex cover
has two phases:

1. The first phase is basically executed to obtain instances that can be
easily dispatched on different processors on a predetermined level of the
overall search tree. This technique requires that the search tree is quite
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regular. Therefore, in [80] even a worse than best-known sequential
algorithm is chosen in this phase, based on [33, Theorem 1].

2. In the second phase, a rather up-to-date search tree algorithm (based
on [33, Theorem 2]) is chose to be executed on each processor to work
on the subproblems originating from the dispatcher phase one.

Such a coarse-grained parallelization of a search tree algorithm is a quite
natural idea. In our context, it is interesting that the authors of [80] chose
two different algorithms for the two processing phases, since they needed a
simple branching behavior in the first phase. This is interesting, since the
top-down approach to search tree algorithms we advocate yields particularly
simple algorithms, so that for example in the case of hitting set, it would
not be necessary to twice encode the same algorithm to be run on the different
phases. The fact that in the binary branching of our hitting set algorithms,
some branches will (nearly) keep the parameter value should not matter too
much, since the seemingly more work-intensive jobs can be dispatched first,
leaving the dispatching processor finally with the instance with the largest
parameter. This strategy should help balance the overall workload.

In the case of vertex cover, this would mean that we propose to use
algorithm VCMH-BU as described in Sec. 5.1.1.

In [79], the authors report on how to solve vertex cover instances
through the addition of parallelism, thereby allowing even larger problem in-
stances to be solved in practice. They implemented a parallel FPT method
for vertex cover using C and the MPI communication library, and tested
it on a PC cluster. This has been the first experimental examination of par-
allel FPT techniques. The authors tested this method on protein sequences
obtained from the National Center for Biotechnology Information. As part
of the experiments, they solved larger instances of VC than in any previ-
ously reported implementations. For example, it is mentioned that problem
instances with k ≥ 400 in less than 1.5 hours can be exactly solved. Since
the parallel FPT algorithm requires only very little communication between
processors, it is expected that the method to also perform well on grids.



Chapter 9

Limitations to parameterized
algorithmics

In this chapter, we rather briefly discuss limitations to parameterized algo-
rithmics.

1. We will see that parameterizing problems does not always help over-
come the P versus NP problem. More specifically, we will introduce
(some aspects of) the parameterized hardness theory developed to show
that—most likely—certain parameterized problems are not parameter-
ized tractable.

2. We will show that for dualizable parameterized problems with linear
kernels, the kernel sizes could not be “arbitrarily small.”

We will also encounter many of the problems we have seen before on this
way.

9.1 Parameterized intractability

In actual fact, there are now a certain number of ways to formalize the notion
of parameterized intractability.

Since we believe that Turing machines—albeit being amongst the first
formulations of computability—are still one of the models many computer
scientists are most familiar with, we are going to present the most important
classes of parameterized intractability “in the Turing way,” following [74].
Some results in this direction can also be found in [90]. In [74], it is also
shown that this approach is very useful and natural to prove that certain
problems are belonging to a specific complexity class.

431
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In this way, we will describe the basic levels of the W-hierarchy

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P].

The examples from this section have not yet appeared anywhere else,
although some of the results have been at least known for a long time.

9.1.1 W[1]

W[1] can be characterized by the following problem on Turing machines:

Problem name: short nondeterministic Turing machine
computation (SNTMC)
Given: A (single-tape) nondeterministic Turing machine M , an in-
put string x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that
reaches a final accepting state in at most k steps?

Formally, we can state:

Definition 9.1 A parameterized problem P with parameter k is in W[1] iff
there is a function f and, for every instance I of P , a nondeterministic Turing
machine TP,I such that TP,I halts within f(k) steps, writing a one onto its
tape, iff (I, k) is a YES-instance of P .

This means that you can prove both hardness (with respect to W[1]) and
containment within W[1] by finding according parameterized reductions.

The question whether FPT equals W[1] has therefore the same philo-
sophical backing as the question whether P equals NP: it seems to be
impossible to deterministically simulate a nondeterministic Turing machine
that uses k steps within f(k) steps on a deterministic Turing machine.

To illustrate this approach, let us show the following lemma:

Lemma 9.2 independent set is in W[1].

Proof. Let G = (V,E) be an instance of independent set. We have to
transform it into an instance (T, k′) of short nondeterministic Turing
machine computation. We also assume that k > 0 (k = 0 is a trivial
instance).

Let T have V as its set of non-blank tape symbols.
In a first phase, T guesses exactly k different symbols from V and writes

them onto its tape. This can be done as follows: In a preliminary sub-phase,
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T guesses k symbols from V and writes them onto its tape, using k steps. Let
us now assume an ordering on V being fixed. Then, T can run a bubble-sort
algorithm, needing b(k) steps, where in the end the head of T is scanning the
first blank symbol to the right of the k symbols from V . By another sweep
to the left, T can verify in k more steps that actually all guessed symbols are
different.

In a second phase, T will once more scan the guessed symbols and now
see if they are independent. More specifically, T will perform, upon scanning
a symbol v, perform the following steps:

• Memorize v in finite memory and erase v on the tape.

• Move to the right until you find the first blank symbol. On the way,
check if any u ∈ N(v) has been found. If such a u ∈ N(v) is found,
reject.

If and only if the guessed vertex set was an independent set, no rejection case
can be found. Hence, the Turing machine can then accept. Assuming that
this second phase takes c(k) time, we can estimate the overall running time
of T (assuming a correct guess) to be t(k) = 2k+ b(k) + c(k) ∈ O(k2). More
precisely, the guessed vertex set is an independent set of size k iff T halts (in
an accepting state) after having run t(k) steps.

The reader will have noticed that the Turing machine described in the
preceding proof could have been designed to be more efficient. For example,
we could get rid of all sub-phases but the guessing phase in the first phase
if we checked if u ∈ N [v] can be found during the second phase. However,
we think that the present description is more illuminating since it clearly
separates the two steps that are typical for Turing machines that should
show membership in W[1]:

• In a first phase, a possible solution is guessed.

• In a second phase, this guess is checked; here, it is crucial to know that
the instance of the original problem (as such) could be hard-wired into
the Turing machine table that is constructed.

As an aside, let us mention that the necessity of this hard-wiring is es-
sential for the questions if certain problems are in W[1] or rather (already)
in FPT .

Remark 9.3 Another problem whose membership in W[1] can be seen in a
similar fashion is vertex induced forest. We only indicate the necessary
modifications in what follows. After having guessed the k would-be forest
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vertices, only acyclicity has to be tested, i.e., for each pair of forest vertices,
it has to be examined if there is at most one path between them (in the graph
induced by the guessed vertices). This can be done in time O(k3).

Let us now consider the following variant of SNTMC:

Problem name: short nondeterministic small Turing ma-
chine computation (SNSTMC)
Given: A (single-tape) nondeterministic Turing machine M whose
size is bounded by f(k), an input string x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that
reaches a final accepting state in at most k steps?

More precisely, Thm. 2.4 can be re-interpreted in the present context in
the following way:

Corollary 9.4 A problem P is in FPT if and only if it can be solved with
the help of short nondeterministic small Turing machine compu-
tation, for some memory delimiting function f .

This is the basic content of [75, Corollary 6].

9.1.2 W[2]

W[2] can be characterized by the following problem on Turing machines:

Problem name: short multi-tape nondeterministic Turing
machine computation (SMNTMC)
Given: A multi-tape nondeterministic Turing machine M , an input
string x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that
reaches a final accepting state in at most k steps?

This means that you can prove both hardness (with respect to W[2]) and
containment within W[2] by finding according reductions.

To show these ideas, let us present one simple construction that shows
that red-blue dominating set (and hence related problems like hitting
set) belong to W[2].

Lemma 9.5 red-blue dominating set belongs to W[2].
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Proof. Let (G = (Vred∪Vblue, E), k) be an instance of red-blue dominat-
ing set. We have to transform it into an instance of short multi-tape
nondeterministic Turing machine computation.

In fact, we won’t give a completely formal description of the Turing ma-
chine but rather describe the ideas. Details of the construction can be found
in [74, p.664ff.] in a slightly different setting (namely, Steiner tree in
graphs). We also assume that k > 0 (k = 0 is a trivial instance).

The corresponding Turing machine T has |Vblue| + 1 tapes; let they be
indexed by {0}∪Vblue. As tape symbols, we will use Vred on tape 0. The edge
relation of G is “hard-wired” into the transition function of T as described
below.

T will first nondeterministically guess the red-blue dominating set and
write it on tape 0 using the letters from Vred. Since T need not worry about
guessing the same vertex more than once (this would only mean that the
corresponding red-blue dominating set has less than k elements, which
is fine), this guessing phase takes k steps.

In a second phase, T has to verify that the guess is correct. To this end,
upon reading symbol v ∈ Vred on tape 0, T

• will move the heads corresponding to tapes addressed by vertices from
N(v) one step to the right, and

• will move the head on tape 0 one step to the right.

Upon reading the blank symbol on tape 0, T will move all heads one step to
the left; only if this is possible for all of the heads, T will accept.

The second phase will take another k + 1 steps.
It is now easy to see that G has a red-blue dominating set of size at most

k iff T has an accepting computation within 2k+1 steps, so that we actually
described a parameterized reduction.

So, the basic idea to show that a certain problem is in W[2] is to find a
way in which a nondeterministic multi-tape Turing machine can solve it by
making use of its many tapes, where the actual (original) problem instance
(I, k) is usually stored within the finite memory of the Turing machine, and
then only f(k) steps may be performed by the Turing machine. The only
thing that always needs some caution is that the Turing machine table can
be written up in a succinct way, i.e., polynomial in I.

In the preceding proof, the only delicate thing to note here is that, in the
second phase, all but the tape labeled 0 will contain a blank symbol under
their heads, so that there is actually only one transition per symbol in Vred
that has to put into the Turing table (plus one transition for the final step).



436CHAPTER 9. LIMITATIONS TO PARAMETERIZED ALGORITHMICS

So, to be more specific, the Turing machine constructed in the preceding
proof will contain (k − 1)|Vred| transitions for phase one (it has to count up
to k within its finite memory), plus |Vred| + 1 transitions for phase two.

More generally speaking, the mentioned condition will be met if all but a
fixed number of tapes are only worked by using the head positions for count-
ing, or if it is at least clear what symbols to expect under the corresponding
heads. Otherwise, the corresponding Turing tables might be of size Ω(2|I|).

A similar but slightly more complicated proof for showing that dominat-
ing set is contained in W[2] is given in [75, Theorem 6], following basically
the same ideas; simplifications are contained [90, Cor. 1]. We mention in pass-
ing that also variants like independent dominating set can be treated
this way. Similarly, the problem of finding a digraph kernel as examined in
[221] can be shown to lie in W[2] by very closely following these lines. Note
that membership in W[2] of that problem was left open in [221].

Let us give one more example of this technique:

Lemma 9.6 Roman domination is in W[2].

The proof is actually pretty similar to the preceding one.

Proof. Let G = (V,E) be an instance of Roman domination. We have
to transform it into an instance of short multi-tape nondeterministic
Turing machine computation. We also assume that k > 0 (k = 0 is a
trivial instance).

The corresponding Turing machine T has |V |+1 tapes; let they be indexed
by {0} ∪ V . As tape symbols, we will use (V × {1, 2}) on tape 0. The edge
relation of G is “hard-wired” into the transition function of T as described
below.

T will first nondeterministically guess the Roman domination function R
and write it on tape 0 using the letters from V ×{1, 2} as follows: whenever
R(v) = 1, it will write (v, 1), and if R(v) = 2, then it will write (v, 2). The
values R(v) = 0 are implicitly stored (by having no (v, i) written on the tape
0).

If we look a bit more closely how the second phase works (described be-
low), we will see that if it happens that by these nondeterministic guesses
both (v, 1) and (v, 2) are written onto tape 0, we will see that such a nota-
tion is interpreted as two (v, 2) write-ups would be. Hence, T need not worry
about picking some vertex v more than once for writing either (v, 1) or (v, 2)
onto tape 0 (this would only mean that the corresponding red-blue dom-
inating set has less than k elements, which is fine). However, the Turing
machine should care about whether (or not) the second components of the
elements stored on tape 0 sum up to a number that is at most k. This check
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can be done “in parallel” with the guessing itself, storing intermediate sums
in finite memory. Therefore, this guessing phase takes k steps and uses up a
polynomial number of transitions in the Turing table.

In a second phase, T has to verify that the guess is correct. To this end,
upon reading symbol (v, 1) on tape 0, T

• will move the head on the tape addressed by v one step to the right,
and

• will move the head on tape 0 one step to the right.

Upon reading (v, 2), T

• will move the heads on to tapes addressed by vertices from N [v] one
step to the right, and

• will move the head on tape 0 one step to the right.

Upon reading the blank symbol on tape 0, T will move all heads one step to
the left; only if this is possible for all of the heads, T will accept.

The second phase will take another k + 1 steps.

It is now easy to see that (G, k) is a YES-instance to Roman domination
iff T has an accepting computation within 2k + 1 steps, so that we actually
described a parameterized reduction.

More discussion on hardness of decision problems related to Turing ma-
chines can be found in [75]. In particular, note that if we allow multiple heads
in addition or instead of multiple tapes for a Turing machine, we get a prob-
lem similar to short multi-tape nondeterministic Turing machine
computation that is also W[2]-complete.1

Let us give one example of a hardness proof within the W-hierarchy, based
on the fact (see [134]) that red-blue dominating set is W[2]-complete
(with no bound on the degrees of the blue vertices).

To prove the hardness result, we need one fact about the Roman domi-
nation of complete graphs.

Lemma 9.7 For the complete graph Kn on n vertices, the Roman domina-
tion number is two iff n ≥ 2.

1More precisely, the theorems from [75] only give hardness of these problems. In order
to prove that the corresponding problem(s) are in W[2], a technique similar to the one
applied in the proof of [74, Theorem 3] can be used.
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Proof. The mapping that assigns two to an arbitrary vertex of Kn and
zero to all other vertices is obviously a valid Roman domination function.

If one is assigned to any vertex by some Roman domination function for
Kn, this function can only meet the claimed Roman domination number of
two if n = 2, since then to the other vertex, one could be assigned, as well.
Otherwise, to one further vertex the value of two would have to be assigned,
so that this Roman domination function would be worse than the one given
in the first paragraph.

Theorem 9.8 Roman domination is W[2]-complete.

Proof. Due to Lemma 9.6, we already know that Roman domination
lies in W[2].

Assume that G = (V,E) is an instance of red-blue dominating set,
restricted to bipartite graphs (see Lemma 2.14), i.e., V = Vred]Vblue.

Without loss of generality, we can assume that |Vred| > 1, since otherwise
an optimal solution to the given RBDS instance can be found in polynomial
time and can be accordingly translated into an equivalent Roman domina-
tion instance.

In the simulating Roman domination instance, we construct a graph
G′ = (V ′, E ′), where

V ′ = (Vred ∪ {1, . . . , 2k + 1}) × {1, . . . , k} ∪ Vblue,

and E ′ contains the following edges (and no others):

1. G′[Vred × {i}] is a complete graph for each i ∈ {1, . . . , k}.

2. For all i ∈ {1, . . . , k} and x ∈ Vred, y ∈ Vblue, {x, y} ∈ E iff {[x, i], y} ∈
E ′.

3. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2k + 1} and x ∈ Vred: {[x, i], [j, i]} ∈
E ′.

We are going to show the following claim: G has a red-blue dominating set
D of size k iff G′ has a Roman domination function R with

∑
x∈DR

R(x) = 2k.
If G has a red-blue dominating set D = {d1, . . . , dk} of size k, then

consider the following function R : V ′ → {0, 1, 2}: R assigns zero to all
vertices but to d′i = [di, i], to which R assigns two. Since di is connected to
all vertices in (Vred ∪ {1, . . . , 2k + 1}) × {i}, the vertices in V ′ \ V are all
dominated by this assignment. Moreover, since D is a red-blue dominating
set of G, all vertices in Vblue are dominated in G′, as well.
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Now consider a Roman domination function R for G′ with
∑

x∈DR
R(x) =

2k. Due to Lemma 9.7 and according to the first condition on edges, the Ro-
man domination number of each induced graph G′[Vred×{i}] is two, assuming
|Vred| > 1. Since G′[Vred×{1, . . . , k}] can be decomposed into k components,
the Roman domination number of G′[Vred × {1, . . . , k}] is 2k. More specifi-
cally, to achieve that bound, the domination function would have to assign
two to one vertex from Vred × {i} for each i and zero to all other vertices.
Observe that such an assignment would be also a valid Roman domination
function R′ for G′[(Vred ∪ {1, . . . , 2k + 1}) × {1, . . . , k}] if we assign zero to
all vertices from {1, . . . , 2k + 1} × {1, . . . , k}.

Since there are “too many” vertices in {1, . . . , 2k + 1} × {1, . . . , k}, we
cannot simply replace one or more vertices to which R′ assigns two by vertices
from {1, . . . , 2k + 1} × {1, . . . , k} to which R′ (as constructed) had assigned
zero.

Observe that we have left over yet some degrees of freedom for finally
constructing a valid Roman domination function R from R′; namely, we have
not been specific about how to choose a vertex from Vred × {i} (for each i)
to which we assign two. However, if we find k assignments of two to vertices
from Vred × {1, . . . , k} such that also all vertices from Vblue are dominated,
i.e., DR = {[d1, 1], . . . , [dk, k]} = R−1({2}), then D = {d1, . . . , dk} is a valid
dominating set of G.

Since there are no connections between vertices from {1, . . . , 2k + 1} ×
{1, . . . , k} and Vblue, there is no way of replacing some of the vertices selected
from (Vred ∪ {1, . . . , 2k+ 1})×{1, . . . , k} (by assigning two to them) by ver-
tices from Vblue, so that there cannot be a Roman domination function R
that assigns one or two to any of the vertices from Vblue without violating the
condition

∑
x∈DR

R(x) = 2k. Hence, the Roman domination function (ten-
tatively) constructed above is the only possibility; that construction works if
and only if G has a dominating set of size k.

Let us finally mention one further problem, also taken from [318]; in fact,
some more (and similar) problems can be found there and treated alike.

Problem name: dominating rearrangement (DR)
Given: A graph G = (V,E), a subset S ⊆ V
Parameter: a positive integer k = |S|
Output: Is there a dominating rearrangement r : S → N [S], s 7→
r(s) ∈ N [s] such that r(S) ⊆ V is a dominating set?

Again, this problem can be viewed from a military perspective: S is the
set of locations where currently armies are placed on, and the question is
if by a one-step rearrangement of each army (if necessary) a situation can
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be created in which each region (modeled by graph vertices) is sheltered by
either a defending army in the region itself or in a neighboring region.

This problem is interesting for at least two reasons from a parameterized
perspective:

• The parameterization is not standard. Actually, there is no obvious
optimization problem hidden here, although the variant that only k
out of the vertices from S may be actually rearranged gives another
obviously W[2]-complete problem.

• It is a specific example of a problem where the problem is if a given
“solution” can be improved in order to satisfy a certain property, here:
being a dominating set. Such type of problems can show up in many
disguises in practice, we are sure.

Theorem 9.9 dominating rearrangement is W[2]-complete.

Proof. Membership in W[2] can be seen by a guess-and-verify strategy as
seen before. We don’t give details but only mention that it appears to be
best to take S × V as the alphabet on tape 0, where (s, v) is indicating that
an army on vertex s has been moved to v.

For the hardness, take again an instance (G = (V = Vred ∪ Vblue, E), k)
of red-blue dominating set. Let S = {1, . . . , k} be disjoint from V ,
and consider the graph G′ = (V ′, E ′) with V ′ = V ∪ E and E ′ = E ∪ (S ×
Vred). Hence, G′[S ∪ Vred] forms a complete bipartite graph. This gives the
instance (G′, S) of dominating rearrangement. Obviously, D ⊆ Vred is
a dominating set of size (at most) k iff (G′, S) can be solved by moving |D|
of the armies in S onto the vertices from D.

9.1.3 Beyond W[2]

In [74], also a Turing machine characterization for the natural upperbound
W[P] of the W-hierarchy was obtained. Cesati used the following problem,
which actually uses a different parameterization for nondeterministic Turing
machines:

Problem name: bounded nondeterminism Turing machine
computation (BNTMC)
Given: A (single-tape) nondeterministic Turing machine M , an in-
put string x, an integer n coded in unary
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that
reaches a final accepting state in at most n steps and uses at most k
nondeterministic steps?
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A Turing machine problem for W[SAT] was obtained in [76]. They con-
sidered the following problem:

Problem name: compact deterministic Turing machine
computation (CDTMC)
Given: A deterministic Turing machine M , an input string x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that
visits at most k squares?

They showed that compact deterministic Turing machine com-
putation is W[SAT]-hard. Whether or not it is belonging to W[SAT] seems
to be open. Nonetheless, this problem appears to be interesting, since it is
a natural parameterized analogue to the classical complexity class PSPACE
collecting all problems that can be solved on a deterministic Turing ma-
chine using only polynomial space. So, in a sense the question if compact
deterministic Turing machine computation belongs to W[1] is the
parameterized analogue to whether P coincides with PSPACE .

In fact, this intuitive relation was used to translate a PSPACE -hardness
proof of a motion planning problem into a W[SAT]-hardness result for that
problem. Details can be found in [76]. In this context, it might be interesting
to observe that for other motion planning problems, membership in FPT
had been shown [178], also confer Sec. 3.1.2.

We refrain from giving the (rather complicated circuit) definition of each
level of the W-hierarchy here but refer to the book [134]. For the pur-
pose of this Habilitationsschrift—putting specific emphasis on parameterized
algorithmics—it should be enough to know the downsides of parameterized
complexity as presented.

Let us briefly mention that there does exist a machine characterization
of each level W[t] of the W-hierarchy in terms of machines, based on so-
called W-RAMs. The interested reader is referred to [90]. There, it is shown
that each level W[t] can be characterized by t alternations in (alternating)
W-RAMs.

An alternative to the W-hierarchy was suggested by M. Grohe, the so-
called A-hierarchy based on model checking [215]. It is still an open questions
if both hierarchies coincide. Observe that a characterization of all levels of
the W-hierarchy (corresponding to the W-RAM characterization mentioned
above) by alternating Turing machines is open. More specifically, Chen and
Flum defined in [90] a complexity class L[t] basically corresponding to alter-
nating Turing machines with t alternations. It is known that W[t] ⊆ L[t] ⊆
A[t].
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9.1.4 More downsides

In fact, the whole area of intractability in the parameterized sense is still in
a developing state. Recent advances include (and this is not meant to be a
complete account):

• M. Fellows [165, 164] and his co-authors developed a hardness theory
that can be seen as an alternative to the W-hierarchy that we presented
above. The basic class, called MINI-1 or M[1], is based upon the
miniaturization version of some classical problem. The following is an
example of an M[1]-hard problem:

Problem name: miniaturized vertex cover (VCmini)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with |C| ≤ k log(|V |)?

It is known that FPT ⊆ M[1] ⊆ W[1].

Showing M[1]-hardness is often simpler than proving W[1]-hardness,
although the basic message is almost the same: it it commonly not
believed that FPT equals M[1] due to the following result.

Theorem 9.10 (Cai and Juedes [69]) FPT =M[1] iff n-variable
3-SAT instances can be solved in time 2o(n).

The theory of miniaturization was further developed by Chen and
Flum [91] who exhibited a whole hierarchy of “miniaturized complex-
ity classes” between FPT and W[1]. They also accordingly generalized
Theorem 9.10.

• Let us mention the work of J. Chen, X. Huang, I. A. Kanj, and G.
Xia [83] who developed new techniques for deriving very strong compu-
tational lower bounds for a class of well-known NP-hard problems, in-
cluding weighted satisfiability, dominating set, hitting set,
clique, and independent set. For example, although a trivial enu-
meration can easily test in time O(nk) if a given graph of n vertices has
a clique of size k, they prove that unless an unlikely collapse occurs in
parameterized complexity theory, the problem is not solvable in time
f(k)no(k) for any function f , even if we restrict the parameter value k to
be bounded by an arbitrarily small function of n. Similar results have
been reported in [81]. In particular, it is shown that any problem in the
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syntactic complexity class SNP as defined in [319] (that class includes
optimization problems like vertex cover and independent set)
can be solved in time no(k) if clique can be solved in time no(k).

• In a similar spirit, Cai and Juedes [69] excluded the possibility of

O(2o(
√
k))-algorithms for planar vertex cover, planar dominat-

ing set and many other problems on planar graphs, since this would
entails that MAXSNP-complete problems are all solvable in time
O(2o(k)p(n)).

• We already mentioned the relations of FPT and approximability as
described in [84]; of course, we can also read these connections in a
way that non-approximability results imply non-FPT -results.

9.2 How small can kernels get ?

In previous chapters, we have often seen some sort of races to get better and
better parameterized algorithms. Is there a particular “end” to this kind
of races? Unfortunately, we actually do not know any way to limit these
races in the area of search tree based algorithms. It has been even indicated
in [211] that by more and more (computer-assisted) sophisticated analysis, it
would be possible to continually improve on search tree algorithms (and on
the bases of the estimates that delimited the exponential parts of the running
times of such algorithms).

Another point here may be the approach of Weyer [377] that introduces
more fine-sliced complexity classes to look into FPT from a structural per-
spective; however, even then it is unclear how to rule out say an O(1.3kp(n))
algorithm once an O(2kp(n)) algorithm is known for a certain problem, and
it is this kind of race that is usually going on in parameterized algorithmics.
The only thing that has been successfully shown (see the previous section) is

that certain problems cannot have O∗(co(k)) or O∗(co(
√
k)) algorithms, provid-

ing reasonable complexity assumptions. This is surely a good starting point
for future research.

In the area of devising kernelization algorithms, the situation is different.
In a recent paper [174], whose content relevant to this chapter also appeared
in [82], we were able to derive lower bounds on kernel sizes. We will sketch
this approach in the following.

In a certain sense, kernels are the essential ingredient of parameterized
algorithmics, since a problem is fixed-parameter tractable iff it admits a
problem kernel, see Thm. 2.4. The smaller the problem kernel, the “more
tractable” is the corresponding problem. As we will see in this section, we
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cannot hope for arbitrarily small kernels for NP-hard problems (unless P =
NP), especially if both primal and dual problem (as discussed in Sec. 3.5, a
section the reader might to revise) are fixed-parameter tractable.

Lemma 9.11 If (P, size()) is a parameterized problem with size function and
if P admits a kernelization K such that size(K(I, k)) ≤ αk for some α < 1,
then P is in P.

Proof. By assumption, size(I ′, k′) ≥ k′ for each instance (I ′, k′) according
to our definition of a size function. This is in particular true for the parame-
ter k′ of the problem kernel instance I ′ = r(I, k). So, k′ ≤ αk for some α < 1.
Repeatedly kernelizing, we arrive at a problem with arbitrary small parame-
ter and hence of arbitrarily small size. Basically, we need O(log k) many such
kernelizations, each of them requiring polynomial time. Hence, the classical
language Lc(P) (as defined in Sec. 2.1) can be decided in polynomial time.

Remark 9.12 The assumption size(I, k) ≥ k is crucial here. As a concrete
“counterexample,” consider the decision tree problem, specified by n
objects X = {x1, . . . , xn}, t boolean tests T = {t1, . . . , Tt} and a parameter k.
In this setting, a decision tree is a binary tree B whose leaves are (uniquely)
labeled with objects and whose inner nodes are labeled with tests such that on
the path from the root to the leaf labeled xi tests are performed that uniquely
distinguish xi from all other objects. As cost function, the overall length of
all paths from the root to each leaf is usually considered. The question is if
there exists a decision tree with cost bounded by k. This problem is known to
be NP-complete, see [245].

If say n = 2`, the decision tree with optimal cost is surely the complete
binary tree (possibly not attainable with the given set of tests), since it is
optimally balanced. Hence, k > n log2 n (else, an algorithm can simply an-
swer NO); this can be seen as a trivial kernelization algorithm. Therefore,
n ∈ o(k). Conversely, this can be interpreted as giving the (to our knowledge)
first natural parameterized problem having a sub-linear kernel.2 On the other
hand, this relation also implies that size(I, k) < k is true here, so that the
previous lemma does not lead to a contradiction with the known NP-hardness
result.

More specifically, the problem here is the seemingly innocuous choice of
the size function as being n = |X|. Observe that any “reasonable” encoding
of an instance would rather use n logn bits, since each element of X would
need to get a name. This way, the seeming problem would disappear.

2Also confer our discussions of kernelization schemes.
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We now discuss the case when both the primal and the dual version of a
problem admits a linear kernel.

Theorem 9.13 Let P be an NP-hard parameterized problem with size func-
tion. If P admits an αk-size kernel and its dual Pd admits an αdkd-size kernel
(α, αd ≥ 1), then

(α− 1)(αd − 1) ≥ 1

unless P equals NP.

Proof. Let r(·) denote the assumed linear kernelization reduction for P.
Similarly, rd(·) is the linear kernelization for Pd. Consider Alg. 80 for a
reduction R, given an instance (I, k) of P:

Algorithm 80 A reduction R based on combining the kernelizations r(·)
and rd(·).

if k ≤ αd

α+αd
size(I) then

compute r(I, k)
else

compute rd(I, size(I) − k)
end if

For the size of the R-reduced instance I ′, we can compute:

• If k ≤ αd

α+αd
size(I), then size(I ′) ≤ αk ≤ ααd

α+αd
size(I).

• Otherwise,

size(I ′) ≤ αdkd

= αd(size(I) − k)

< αd

(
size(I) − αd

α + αd
size(I)

)

=
ααd
α + αd

size(I)

By repeatedly applying R, the problem P is solvable in polynomial time, if
ααd

α+αd
< 1. (Details are very similar to Lemma 9.11.)

Remark 9.14 For the following examples, it is handy to rewrite the conclu-
sion of Theorem 9.13 as

α ≥ αd
αd − 1

.
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From the previous theorem, we can immediately deduce a couple of corol-
laries, always assuming that P is not equal to NP.

Corollary 9.15 For any ε > 0, there is no (4/3 − ε)k kernel for planar
vertex cover.

Proof. Recall that planar independent set has a 4kd kernel due to the
four-color theorem, see Chap. 4.

This “negative result” immediately transfers to more general graph classes
in the following manner: If there is any way to produce a kernel smaller
than 4/3k for vertex cover on general graphs, then the corresponding
reduction rules must “somehow” possibly introduce K3,3 or K5 as subgraphs
(or as minors) into the reduced instance.

Namely, assume that there were a kernelization algorithm which does not
introduce K3,3 or K5 as subgraphs (or as minors) into the reduced instances.
Then, this would also be a kernelization algorithm for planar k-vertex
cover, since it would be planarity preserving due to Kuratowski’s theorem.
Therefore, Cor. 9.15 applies.

Unfortunately, we cannot conclude that there is no (4/3k − ε)-kernel for
the general vertex cover problem.

Corollary 9.16 For any ε > 0, there is no (2 − ε)kd kernel for planar
independent set.

Likewise, there is no (2−ε)kd kernel for kd-independent set on graphs
of maximum degree bounded by three.

This is even true for the combination problem (which is still NP-hard):
There is no (2− ε)kd kernel for kd-independent set on planar graphs
of maximum degree bounded by three.

Proof. The general k-vertex cover has a 2k kernel based on a Theorem
due to Nemhauser and Trotter [86, 304], see Chap. 5. For our purposes, it
is enough to know that that rule identifies a subset of vertices V ′, |V ′| ≤ 2k
of the given graph instance G = (V,E) and a parameter k′ ≤ k such that G
has a k-vertex cover iff the induced subgraph in G[V ′] has a k′-vertex cover.
Since the class of planar graphs, as well as the class of graphs of a specified
bounded degree, are closed under taking induced subgraphs, the claims are
true by Theorem 9.13.

Based on a theorem due to Grötzsch (which can be turned into a polynomial-
time coloring algorithm; see [72, 219]) it is known that planar triangle-free
graphs are 3-colorable. This implies:
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Lemma 9.17 kd-independent set, restricted to planar triangle-free graphs,
has a 3kd kernel.

Corollary 9.18 For any ε > 0, there is no (1.5 − ε)k kernel for k-vertex
cover restricted to triangle-free planar graphs.

Observe that the Nemhauser/Trotter kernelization preserves planarity
and triangle-freeness, so that we actually know of a 2k kernel for this partic-
ular restriction of vertex cover.

This last corollary interesting due to the following result that can be
found in even more restricted form in [371, Chapter 7].

Lemma 9.19 k-vertex cover restricted to triangle-free planar
graphs is NP-hard.

Remark 9.20 Since “Euler-type” theorems exist for graphs of arbitrary genus g,
it can be shown that there is a constant cg such that each graph of genus g
is cg-colorable. Hence, according lower bounds for kernel sizes of k-vertex
cover on graphs of genus g can be derived. For triangle-free graphs
of genus g, Thomassen has shown that the corresponding constant c′g is in

O(g1/3(log g)−2/3), see [205, 368].

Remark 9.21 Alber and Fiala have provided a linear kernel for indepen-
dent set on disks graphs, where the concrete factor determining the ker-
nel size depends on the entities α and λ that—strictly speaking—determine
the class of disk graphs under consideration. More precicely, the kernel size
(measured in terms of number of vertices of the graph) is upperbounded by

• 36(α/λ)2kd if λ ≤ 2 and by

• 9α2kd if λ > 2.

In other words, if α is close to 1 and λ = 2, their approach nearly yields a
9kd-kernel for independent set on disks graphs, which can be opposed
to the 2k-kernel for vertex cover.

Corollary 9.22 There is no (67/66−ε)kd kernel for planar kd-nonblocker
for any choice of ε > 0.

Proof. A 67k kernel for planar dominating set is sketched in Chapter 4.
Hence, the lower bound follows.

Corollary 9.23 For any ε > 0, there is no (2 − ε)k kernel for planar
dominating set.
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This is also true when further restricting the graph class to planar graphs
of maximum degree three (due to the known NP-hardness of that problem).
For a proof, we can simply refer to Cor. 4.24.

Remark 9.24 Recently, Fomin and Thilikos [189] were able to extend the
linear kernel result for dominating set to graphs on surfaces of arbitrary
genus. Therefore, our lower bound result extend to these more general graph
classes, as well.

The presented results open up a completely new line of research:

• Can we find examples of problems such that the derived kernel sizes
are optimal (unless P equals NP)?

• If not, can we close the gaps more and more? According to our previous
discussion, planar vertex cover on triangle-free graphs is
our “best match:” we know how to derive a kernel of size 2k (due to
Nemhauser & Trotter), and (assuming P 6= NP) we know that no
kernel smaller than 1.5k is possible.

• Are there other, possibly more sophisticated arguments for showing
lower bounds on kernel sizes? Especially, it would be interesting to
have arguments ruling out say the existence of a kernel of size o(k3) in
a situation when a kernel of size O(k3) has been obtained. The kind of
algebra we used in the proof of Theorem 9.13 does not extend.

• Although we are only able to derive results for problems where both the
primal and the dual parameterization allow for linear size kernels, this
might already give a good starting point, especially for graph problems.
Observe that many NP-hard graph problems are still NP-hard when
restricted to the class of planar graphs. However, in the planar case,
our general impression is that linear bounds can be obtained due to
the known linear relationships amongst the numbers of edges, faces
and vertices.



Chapter 10

The non-parameterized view

The idea to exactly solve computationally hard problems rather than to
use approximation or (meta-)heuristic algorithms is not particularly new.
However, there seems to be a revived interest in this area in recent times, as
exemplified by the survey papers of Schöning and of Woeginger [378, 346].

A classical example is the maximum independent set algorithm(s)
due to Robson [342, 343] which are the last in a series of papers dealing
with improving on the complexity of search-tree algorithms for maximum
independent set, see [246, 362] amongst others. We refrain from giving
any details here, but be assured that the corresponding algorithms are far
from trivial, also see Site [Chapter 11, Site 18].

Let us merely state the currently best result [343]; to list the correspond-
ing algorithm in reasonable space is close to impossible, since the whole
report [343] is basically a description of just this one algorithm.

Theorem 10.1 maximum independent set can be solved in time O∗(1.1893n)
for n-vertex graphs.

In this context, also the enumeration version—how to efficiently generate
all maximal independent sets—deserves to be mentioned, see [269, 370]. A
good overview on (not only exact) algorithms handling maximum clique
and hence also maximum independent set can be found in [56]. For
restricted graph classes, better algorithms are known. For instance, in the
case of graphs whose degree is bounded by three, Chen et al. obtained on
O∗(1.152n) algorithm [89].

Why are these problems interesting in the context of parameterized algo-
rithmics? There are indeed a couple of reasons for dealing with them in this
Habilitationsschrift.

• If one looks at how the results in non-parameterized exact algorithmics

449
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are stated, they can be directly interpreted as parameterized results,
as well. For example, already the title of Jian’s paper on maximum
independent set shows that the complexity is examined with respect
to the number of vertices of the graph. This is indeed a valid graph
parameter: at least for graphs with relatively many edges it makes
a thorough difference whether one aims at an O(cn1 ) algorithm or at
an O(cm2 ) = O(cn

2

2 ) algorithm. We also refer to the discussion on
parameterizations in Chapter 3.

• The techniques used to develop non-parameterized algorithms are quite
similar to the usual parameterized approach. In particular, both reduc-
tion rules and search tree techniques are employed.

• Sometimes, parameterized algorithms can be used to speed up non-
parameterized algorithms (as subroutines) or non-parameterized algo-
rithms may speed up parameterized algorithms. Examples treated in
this Habilitationsschrift are: minimum 3-hitting set (treated below)
and nonblocker set.

• The technique with which lower bounds on kernel sizes were derived in
Section 9.2 can be also interpreted as a way to develop non-parameterized
algorithms from parameterized ones. This will be explained below.

Examples for non-parameterized exact algorithms for hard problems fall
in different categories: since we mostly focus on graph-theoretic questions,
we give a (surely incomplete) list of such papers in the following:

• 3-coloring: Is a given graph colorable with three colors? [40]

• maximum independent set, as discussed above. Due to the intimate
relationship with maximum clique, also the corresponding exact al-
gorithms for that problem are worth mentioning here [71].

• minimum dominating set, see [187].

• minimum 3-hitting set, see [373].

• maximum cut, see [160].

• minimum feedback vertex set, see [188].

Lot of work on exact algorithmics is also devoted to logic (satisfiability);
we already mentioned the “parameterization” by the number of clauses for
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maximum satisfiability in the work of Gramm, Hirsch, Niedermeier and
Rossmanith [212] in Chap. 3.

Although all exact algorithms for hard problems that can be found in
the literature can be somehow interpreted as parameterized results, we will
pay special focus in this chapter on the interplay between the parameterized
and the nonparameterized view on problems. Observe that we have already
found this idea in some places throughout this Habilitationsschrift, e.g., in
Chap. 8 when discussing parameterized counting.

10.1 Dealing with dominating set

10.1.1 Looking for dominating sets in vertex cover sets

To underline the connections to parameterized algorithmics, let us mention
one of the results from [187] in more details here. They consider (amongst
others) the following problem:

Problem name: dominating set, given vertex cover num-
ber (DSvc)
Given: A graph G = (V,E)
Parameter: a positive integer k such that G has a vertex cover of
size k
Output: Is there a minimum dominating set D ⊆ V ?

Fomin, Kratsch and Woeginger were able to derive the following result:

Theorem 10.2 dominating set, given vertex cover number can be
solved in time O∗(3k), where k upperbounds the size of a vertex cover for the
given graph instance.

The corresponding algorithm is presented in Alg. 81. Regarding its run-
ning time, the computing of a minimum vertex cover set is comparatively
negligible. Observe that one call of Alg. 69 costs O∗(2k−|X|), so that the
overall running time can be estimated by

k∑

i=1

(
k
i

)
O∗(2k−|X|) = O∗(3k).

This result is particularly interesting from the viewpoint of graph param-
eters as discussed in Chapter 7, since it also links the domination number
and the vertex cover number of a graph. This appears to be a particularly
interesting form of alternative parameterization, see Chapter 3.
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Algorithm 81 How to solve dominating set, given vertex cover
number, a procedure called DSwithVC

Input(s): a graph G = (V,E), an upperbound k on the size of the minimum
vertex cover for G

Output(s): a minimum dominating set D for G

Find a minimum vertex cover C of G, by using one of the algorithms
presented in Chapter 5.
D := V
for all X ⊆ C do
Y := V \ (C ∪N(X));
Z := N [X] ∩ (V \ C);
C ′ := C \ (N [X] ∪N [Y ]);
Compute a vertex set Z ′ ⊆ Z of minimum cardinality subject to C ′ ⊆
N [Z ′] with the help of Alg. 69.
{More specifically, the hypergraph H is derived as follows: the set of
hyperedges corresponds to C ′, and there are at most |C −X| ≤ k− |X|
many of them; the vertices of the hypergraph are N [X] ∩ (V \ C); a
hyperedge h (as element of C ′) “collects” all vertices that are neighbors
to h in G.}
D′ := X ∪ Y ∪ Z ′

if |D′| < |D| then
D := D′

end if
end for

10.1.2 Some remarks on bipartite graphs

Theorem 10.2 has the following nice consequence for non-parameterized al-
gorithmics, since every bipartite n-vertex graph has a vertex cover of size at
most n/2.

Corollary 10.3 dominating set can be solved in time O∗((
√

3)k) on bi-
partite graphs.

This corollary is interesting, since it shows the difference between bipar-
tite and general graphs from a parameterized perspective. Namely, recall the
following facts:1

• vertex cover is NP-complete but in FPT on general graphs.

1For the results on VC, we also refer to Chapter 5.
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• vertex cover can be solved in polynomial time on bipartite graphs
by matching techniques.

• The two-parameter version constraint bipartite vertex cover
(on bipartite graphs) is NP-complete but in FPT .

This somehow contrasts with the corresponding results for dominating
set. To formally state this summary, let us first formally introduce the
following problem:

Problem name: constraint bipartite dominating set
(CBDS)
Given: A bipartite graph G = (V1, V2, E)
Parameter: positive integers k1, k2

Output: Is there a dominating set D ⊆ V1 ∪ V2 with |D ∩ Vi| ≤ ki
for i = 1, 2?

As an addendum to Chapter 9, let us demonstrate the following fact:

Lemma 10.4 constraint bipartite dominating set is W[2]-hard.

Proof. It is easy to solve red-blue dominating set with the help of
constraint bipartite dominating set by setting one of the parameters
to zero.

• dominating set is NP-complete and W[2]-complete on general graphs.

• dominating set on bipartite graphs is in FPT .

• The two-parameter version constraint bipartite dominating set
(on bipartite graphs) is W[2]-hard.

10.1.3 Edge domination revisited

However, it need not be always the case that bipartiteness helps alleviate the
complexity of graph problems. For example, reconsider the problem edge
dominating set. Observe that the construction of Lemma 8.33 can be kind
of reversed if the edge dominating set instance is bipartite. More pre-
cisely, the matrix of the matrix domination set instance will correspond
to the (bipartite) adjacency matrix AB(G) of the (bipartite) edge domi-
nating set instance G. As derived in Sec. 8.2.4, both EDS and MDS are
in FPT (and both problems are NP-hard). However, a solution to matrix
domination set was obtained by relating it to edge dominating set, so
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that it it quite imaginable that we could get better algorithms for matrix
domination set as a problem on its own right, i.e., it might be that finally
the parameterized algorithmics for the bipartite case is better than for the
general case. Let us finally mention that a “two-parameter version” (as de-
fined for vertex cover and for dominating set above) is not meaningful
for edge dominating set, since it is not vertices that are constrained.

Another issue, however, deserves mentioning here: recall that a line graph
is a graph L(G) whose edge relation comes from another graph G = (V,E)
by interpreting E as a vertex set and putting an edge (in L(G)) between
e1 and e2 iff e1 and e2 share a vertex in G. It has been observed in many
occasions that problems that are hard on general graphs may become easier
on line graphs. For example, vertex cover in line graphs is better known
as edge cover and hence solvable in polynomial time. This is also true
for dominating set, since DS on line graphs is nothing else than edge
dominating set in disguise.

10.1.4 Back to nonblocker set

In this section, we show how to use the exact results of Fomin, Kratsch
and Woeginger [187] to improve parameterized algorithms, in our case non-
blocker set that was tackled in Chap. 4.

More precisely, let us first recall the result of [187] on general graphs:

Theorem 10.5 minimum dominating set can be solved in time O∗(1.9379n)
on arbitrary n-vertex graphs.

Due to the 5/3 · kd-kernel for nonblocker set—see Cor. 4.22, we con-
clude:

Corollary 10.6 By applying the algorithm of Fomin, Kratsch and Woegin-
ger [187] to solve minimum dominating set to a reduced instance (G, kd)
of nonblocker set, this problem can be solved in time O∗(3.0121kd).

Can we also use Cor. 10.3 for bipartite graphs? We must be careful here,
since our reduction rules for nonblocker set do not preserve bipartiteness
as stated. The problem is that the catalytic vertex would be merged with
either type of vertices from the bipartition. Hence, the solution consists in
putting up separate catalytic vertices for each bipartition and accordingly
modified reduction rules. We leave the details to the reader. However, it is
clear that we can apply the result of Blank, McCuaig, and Shepherd [50, 291]
to conclude:



10.1. DEALING WITH DOMINATING SET 455

Corollary 10.7 By applying the algorithm of Fomin, Kratsch and Woeg-
inger [187] to solve minimum dominating set on bipartite graphs to a
reduced instance (G, kd) of nonblocker set, restricted to bipartite graphs,
this problem can be solved in time O∗(2.4932kd).

Let us finally mention that due to the fact that the kernel we got for
nonblocker set is really small, it might be actually worthwhile looking
into an algorithm that uses exponential space, as explained in details in [77,
306] in the case of vertex cover. The basic algorithm would then be
Alg. 82. It is rather straightforward to compute the cut-off value α: namely,
one has to balance the time spent to compute the entries of OPT against
the savings of the actual search-tree part. If c is the exponential base of the
algorithm of Fomin, Kratsch and Woeginger, then the initialization needs

αkd∑

j=1

cj
(

5/3 · kd
αkd

)
≈ cαkd+1

(
5/3 · kd
αkd

)

time. Letting ` = αkd, Lemma 4.1 gives

(
5/(3α) · `

`

)
≈ (5/(3α))`

(
5/(3α)

5/(3α) − 1

)(5/(3α)−1)`

.

Since we stop the branching of the “usual” search-tree algorithm when the
graph has αkd vertices or less, the corresponding time has shrunk down to
O∗(c(5/3−α)·kd). Depending on c (whether or not we solve the problem on
bipartite graphs, general graphs, . . . ) we get different cut-off values that are
computed by equating:

(5/(3α))αkd

(
5/(3α)

5/(3α) − 1

)(5/(3α)−1)αkd

= c(5/3−2α)·kd .

The important thing that must be satisfied when applying this technique
is that the search-tree algorithm that is used does only create subinstances
that are vertex-induced subgraphs. Otherwise, the preprocessing on small
instances would not work.

Let us take a first shot at this equation. Guessing α = 1/6, we compute
1.7192kd as an estimate for the left-hand side (roughly the preprocessing cost)
of the equation, while we get 2.4161kd for the right-hand side. We observe two
things: first of all, this approach may be worthwhile doing in terms of time
complexity, since even the worse of both expressions is well below the 3. . . .kd

(more precisely, we get an O∗(2.6978kd) estimate for the running time of
that algorithm) we obtained when restricting ourselves to polynomial space.
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However, both sides of the equation are still some way apart. More precisely,
we spend much more time in the main processing than in the preprocessing.
Therefore, we might afford further raising the fraction α.

With α ≈ 0.2724, we can conclude:

Corollary 10.8 By using exponential space, nonblocker set can be solved
in time (and space) O∗(2.5154kd).

Similar computations can be performed for the bipartite case.

Algorithm 82 A sketch of an exponential-space algorithm for nonblocker
set
Input(s): a graph G = (V,E), kd giving the size of the nonblocker set we

are after
Output(s): YES iff G has a nonblocker set of size kd

Kernelize according to Alg. 9.
{Let kd be also the new parameter value and G = (V,E) the graph.}
Determine cut-off value α.
for all X ⊆ V of size at most αkd do

Determine maximum nonblocker set with the algorithm of Fomin,
Kratsch, and Woeginger. Put its size in a table OPT(X).

end for
Do the branching with the algorithm of Fomin, Kratsch, and Woeginger
up to graphs with at most αkd many vertices.
For small graphs, look the solution up within OPT.

10.2 A nonparameterized view on 3-hitting

set

When ignoring the specific role of the parameter k in 3-hitting set, we
could of course use the algorithm(s) sketched in Sec. 5.3.3. Measured in
terms of the number of vertices n, this would hence yield a straightforward
estimate of roughly O∗(2.2n) in order to find a minimum 3-hitting set, since
k ≤ n.

However, it is immediately clear that we can do better by simply testing
all O∗(2n) possible hitting sets by brute force. Wahlström came up with a
nice algorithm that considerably improves on the two algorithms sketched
so far; interestingly enough, it does rely on having a fast algorithm for the
(standardly) parameterized problem.
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10.2.1 Connections to Logic

Let us (before actually reviewing Wahlström’s algorithm) point to the con-
nections to a problem from logic:

Problem name: satisfiability problem with clauses of size
three (variable parameterization) (3-SAT (variable))
Given: A Boolean formula F in conjunctive normal form (CNF),
with variables X, each clause having at most three literals
Parameter: |X|
Output: Is there a satisfying assignment α : X → {0, 1} for F ?

Monien and Speckenmeyer [296] have developed an exact algorithm for
3-SAT (variable) that runs in time O(1.619n), where n is the number
of variables of the given formula. One first step (as explained in [266, 346])
towards their algorithm that already breaks the trivial O(2n) algorithm is ex-
plained in Alg. 83. In that algorithm, F [x = 1] denotes the formula obtained
from F by setting the variable x to 1 (true) and simplifying F accordingly,
i.e., deleting clauses that are satisfied through this assignment of x and by
deleting the negation of x from all (other) clauses. Similarly, F [x = 0] is
understood.

The recurrence that describes the corresponding search tree size is:

T (n) ≤ T (n− 1) + T (n− 2) + T (n− 3) ≤ 1.8393n.

Hence, we are already improving on the naive O(2n) estimate. The reason
for this improvement is basically the “binary variable branching” that the
algorithm does. There are obviously simple reduction rules dealing with
variables that only occur once in the whole formula:

Reduction rule 74 If F is a formula in which x occurs only once, then
reduce to F [x = 1] if the literal that contains x is positive, and reduce to
F [x = 0] if the literal that contains x is negative.

This means that in a reduced formula each variable occurs at least once.
This is true in particular for the x we choose in F according to Alg. 83.
Hence, in the case F [x = 1 − `x], we have at least two clauses that only
contain two variables. A straightforward (binary) branching according to
the settings of the involved four variables yields the following search tree size
estimate:

T (n) ≤ T (n− 1) + T (n− 3) + 2T (n− 4) + T (n− 5) ≤ 1.7944n.
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Algorithm 83 A simple search tree algorithm for 3-SAT (variable), called
DSATv-simple

Input(s): a Boolean formula F in conjunctive normal form (CNF), with
variables X, each clause having at most three literals

Output(s): YES iff a satisfying assignment for F exists

if F is trivial then
return according solution

else
Choose some clause C containing the variables x, y, z.
{Possibly, C contains less variables; this only makes the branching bet-
ter.}
{Let `x = 1 if the literal that contains x (in C) is positive and `x = 0 if
the literal is negative; similarly, `y and `z are understood.}
if DSATv-simple(F [x = `x]) then

return YES

else if DSATv-simple(F [x = 1 − `x][y = `y]) then
return YES

else
return DSATv-simple(F [x = 1 − `x][y = 1 − `y][z = `z])

end if
end if

Further improvements (in particular according to the autarkness princi-
ple) are rather specific to satisfiability problem with clauses of size
three (variable parameterization) and hence omitted here. The inter-
ested reader is referred to [296, 266]. We only mention that already Monien
and Speckenmeyer’s analysis uses a sort of auxiliary “parameter” analysis
(preferring branches on small clauses) which is however quite special-purpose
and rather intricate in itself. Refinement of these techniques has led to an
O(1.5045n) algorithm for 3-SAT (variable) in [266]. Let us also mention
that there have been also truly parameterized approaches to satisfiability and
similar problems. We only mention two groups of papers here:

• Szeider [358] has parameterized satisfiability by the so-called maxi-
mum deficiency of a formula. More precisely, if the maximum deficiency
over all subsets of a formula F is at most k, then one can decide in
time O(2kn3) whether F is satisfiable or not. Here, the deficiency of
a propositional formula F in CNF with n variables and m clauses is
defined as m− n. He also compares this parameterization with graph
parameters (e.g., treewidth) that are belonging to (hyper-)graphs re-
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lated to SAT (as it is also explained in this section), also see [359]. This
treewidth approach is also investigated in [167] for a different kind of
satisfiability problem.

• Marx [286] has extended Schaefer’s dichotomy theorem from classical
to parameterized complexity; in this context, he investigated which
Boolean constraints put the weighted satisfiability problem in
FPT , where the weight of an assignment is the number of variables
that are set to true.

10.2.2 Back to 3-hitting set

But let us return to satisfiability problem with clauses of size
three (variable parameterization). What has this problem to do with
our problem 3-hitting set ? In fact, in the explanations and rules used up
to now we barely ever used the actual “logical” properties of satisfiability
problem with clauses of size three (clause parameterization);
rather, we were looking for an assignment that “hits” all clauses. Hence, it
is easy to convert (even the improved variant of) Alg. 83 into a 3-hitting
set algorithm; a pseudocode for this algorithm can be found in Alg. 84. The
reduction rule we are referring to (and that is substituting Rule 74) is:

Reduction rule 75 Let G = (V,E) be an instance of 3-HS. If x is a vertex
of degree one, then reduce to G− x = (V \ {x}, {e \ x | e ∈ E} \ {∅}).

Algorithm 84 A simple search tree algorithm for 3-hitting set, called
THS-simple

Input(s): a hypergraph G = (V,E), each edge having at most three vertices
Output(s): the size k of a minimum hitting set C ⊂ V of G.

Reduce G; the reduced instance is also called G.
if G is trivial then

return according solution
else

Choose some edge e with the least number of vertices, containing the
vertices x, y (and possibly z).
k1:=THS-simple(G − x);
k2:=THS-simple((V \ {x}, E \ {e ∈ E | x ∈ e});
return min(k1, k2 + 1)

end if
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Observe that once the binary branching was performed at an edge with
three vertices, then the two subsequent branches on each search tree path
will be at edges of size two; further vertices might be treated with Rule 75.
Hence, we may state:

Lemma 10.9 Alg. 84 solves 3-hitting set in time O(1.7944n).

Wahlström then used more reduction rules (actually basically the same
as we presented in Chap. 2 for the parameterized version of the problem) and
refined heuristic priorities to further lower the base of the run time estimate.
Moreover, he used another mathematical property that we like to present
in the following, since it shows how parameterized algorithms can be used
to improve on non-parameterized algorithms, which is indeed an interesting
application of parameterized algorithmics.

Theorem 10.10 (Wahlström) Let G = (V,E) be a hypergraph where each
edge has size (exactly) three. Assume that |E| ≤ δn, where n = |V |. Then,
the size of a minimum hitting set for G is upperbounded by

⌈
6δ + 1 −

√
12δ + 1

6δ
n

⌉
.

For example, if each vertex has degree of at most three, then there cannot
be more than n edges in a hypergraph where each edge has size (exactly)
three. Hence, the size of a minimum hitting set is upperbounded by

d7 −
√

13

6
ne ≤ 0.5658n.

We can therefore use our earlier derived parameterized algorithm for 3-
hitting set, parameterized by k = d0.5658ne, to improve on the running
time of our non-parameterized algorithm for 3-HS by introducing the follow-
ing heuristic priorities:

H0-THS Select a vertex of degree at least four for branching.

H1-THS Among the vertices of degree four, choose one that is contained in an
edge of size two (if possible).

If it is not possible to find a high-degree vertex according to H0-THS, then we
would use the parameterized 3-hitting set algorithm. What is the overall
running time of such an algorithm?

• For the cases that are solved with the parameterized algorithm, we find
a search tree size of roughly O(2.1788.5658n) = O(1.5537n).
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• Otherwise, we get the following formula for the search tree size:

T (n) ≤ T (n− 1) +
4∑

`=0

(
4
`

)
T (n− 5 − `)

Hence,

T (n) ≤ T (n− 1) + T (n− 5) + 4T (n− 6) +

6T (n− 7) + 4T (n− 8) + T (n− 9)

≤ 1.7184n.

This gives an obvious improvement over the bound we have derived be-
fore. Since the two estimates for the two cases are still some way apart,
we can make the same reasoning for hypergraphs of degree upperbounded by
four: then, δ = 4/3. Hence, the parameterized algorithm would be run for
k = .6097n, giving a time of O(1.6078n). Similarly, hypergraphs of degree
upperbounded by five yield δ = 5/3. Hence, we run the parameterized algo-
rithm for k = .6418, giving a time of O(1.6485n). Conversely, the estimate
for the running time of the non-parameterized algorithm (part) will further
drop, assuming a minimum degree of six:

T (n) ≤ T (n− 1) +
6∑

`=0

(
6
`

)
T (n− 7 − `)

Hence,

T (n) ≤ T (n− 1) + T (n− 7) + 6T (n− 8) + 15T (n− 9)

+20T (n− 10) + 15T (n− 11) + 6T (n− 12) + T (n− 13)

≤ 1.6919n.

We stop here our analysis but only quote the following theorem of Wahlström
that is based on a more sophisticated use of heuristic priorities and reduction
rules:

Theorem 10.11 (Wahlström) 3-hitting set can be solved in time O(1.6538n).

Observe that that algorithm is relying on the parameterized 3-hitting set
algorithm of Niedermeier and Rossmanith; taking ours instead (see the dis-
cussion in Chap. 5) improves the running time further down to O(1.617n).2

2personal communication of M. Wahlström
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10.3 A dual approach to eliminate a param-

eter

It is natural that algorithms developed in the parameterized framework can
also be used to solve the “non-parameterized” versions of the problem, in
many cases simply by possibly testing all parameter values. As shown in
the case of solving the independent set problem on graphs of max-
imum degree three, sometimes upper bounds on the possible parame-
ter values are known. In the mentioned example, the size of a minimum
vertex cover is upperbounded by 2/3n for connected graphs, where n here
and in the following is the number of vertices of the graph instance. Chen,
Kanj and Xia [88] used this result to turn their O(1.194k + kn) algorithm
for k-vertex cover on graphs of maximum degree three into an
O(1.1942n/3) = O(1.1254n) algorithm for independent set problem on
graphs of maximum degree three. So, knowing bounds on the possi-
ble parameter values helps considerably reduce the bounds on the comput-
ing time. In a similar spirit, the four-color theorem teaches us that each
n-vertex planar graph has a minimum vertex cover of size at most 3/4n. The
known O(1.29k + kn) algorithm for k-vertex cover this way implies an
O(1.2853n/4) = O(1.207n) algorithm for planar independent set, which
is slightly better than Robson’s published algorithm [342] (for general graphs)
needing O(1.211n) time. However, we already mentioned that Robson later
improved that algorithm considerably, and that algorithm not only applies
to graphs of maximum degree three.

With problems having both FPT algorithms for their primal and for their
dual parameterizations, we have the possibility of converting both algorithms
into one non-parameterized algorithm, kind of attacking the problem from
two sides. This means that we can use either of the two FPT algorithms.

Theorem 10.12 Let (P, s) be a parameterized problem with size function
and Pd its dual. Assume that both P and Pd are in FPT . Let f be some
monotone function. Assume that there is an algorithm A for solving P on
instance (I, k), having running time O(f(βk)p(s(I))) for some polynomial
p, and that Ad is an algorithm for solving Pd on instance (I, kd) running in
time O(f(βdkd)pd(s(I))) for a polynomial pd.

Then, there is an algorithm A′ for solving the non-parameterized problem
instance I running in time

O(f(
ββd
β + βd

s(I))p′(s(I)))

for some polynomial p′.
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Algorithm 85 Algorithm A′ based on the parameterized algorithms A and
Ad

for all parameter values k do
if k ≤ βd

β+βd
s(I) then

compute A(I, k)
else

compute Ad(I, s(I) − k)
end if

end for
output the ‘best’ of all computed solutions

Proof. Algorithm A′ will use A as long as it is better than using Ad. This
means we have to compare

f(βk) versus f(βd(s(I) − kd))

Since f is monotone, this means we simply have to compare

βk versus βd(s(I) − kd)

Some algebra shows that the algorithm A′ (see Alg. 85) is then “best” for
the de-parameterized problem P , given an instance I.

Considering the boundary case k = βd

β+βd
s(I) gives the claimed worst case

running time. Here, p′(j) = j(p(j) + pd(j)).

Let us explain this theorem by some example computations.

1. By taking the O(1.194k+n) algorithm for k-vertex cover on graphs
of maximum degree three and the (trivial) O(4kdn) for the dual
kd-independent set problem on graphs of maximum degree
three, we obtain an O(1.171n) algorithm for maximum indepen-
dent set on graphs of maximum degree three. This algo-
rithm is worse than the one obtained by Chen, Kanj and Xia (see
above). Why? The case distinction within the combined algorithm is
at k ≤ 0.8866n, while we know that always k ≤ 0.666n. Hence, the
parameterized independent set algorithm will be never employed.

2. We can play the same game for maximum independent set on
planar graphs.

Combining the O(6kd + p(n))-algorithm for kd-independent set on
planar graphs and the known O(1.285k+kn) algorithm for vertex
cover (on general graphs) [86], we get an O(1.246n) algorithm, clearly
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worse than Robson’s. This is still true if we use planar independent
set branching algorithms based on Theorem 5.12.

Alternatively, we can start with the parameterized algorithms of “type”
O(c

√
k + n) which are known for both problems. This means (in the

setting of the theorem) that we let f(x) to be 2
√
x.

Plugging in the best-known constants, i.e.,

• β = 4.52 = 20.25 in the case of k-vertex cover on planar
graphs [193] and

• βd = 48 in the case of kd-independent set on planar graphs
(long version of [13]),

we get an
O(23.773

√
n) = O(13.68

√
n)

algorithm for maximum independent set on planar graphs. Us-
ing that a minimum vertex cover in planar graphs has at most 3/4n
vertices this time gives us a worse result this time, namely an algorithm

running in time O(2
√

20.25∗3/4∗n) = O(23.898
√
n) = O(14.90

√
n).

More precisely, taking (in the spirit of klam values as described in [134])
a value of 1020 “operations” as “benchmark” for how far each type of
algorithm might take us, we see that with Robson’s algorithm graphs
with about 250 vertices are still manageable, while our new algorithm
can cope with graphs with over more than 300 vertices.

By a completely different approach, namely by bounding the tree-width
of any planar graph G = (V,E) by 3.182

√
|V |, see Sec. 7.6.3, Fomin

and Thilikos were recently able to obtain an even better algorithm,
running in time O(9.08

√
n). This means that actually planar graphs

with up to 500 vertices are manageable.

3. We now consider feedback vertex set. Since on general graphs the
parameterized dual is hard [257, Cor. 7], we again consider the problem
restricted to planar graphs.

Based on a coloring theorem of Borodin [59] and on the reasoning given
by Goemans and Williamson [206], in parts explicitly formulated in
terms of parameterized complexity in [262], the following two lemmas
can be shown (also confer Cor. 4.19):3

3For the best results on k-feedback vertex set on planar graphs, we take the
constants from the mentioned sophisticated analysis of face cover from Chap. 5 and use
geometric dualization.
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Lemma 10.13 vertex induced forest has a 2.5kd kernel and can
hence be solved in time

O



(

2.5

(
2.5

1.5

)1.5
)kd

+ p(n)


 = O(5.3792kd + p(n))

by brute force.

Lemma 10.14 k-feedback vertex set on planar graphs can
be solved in time O(4.5414k + n2).

Taken together, this gives an algorithm for maximum vertex in-
duced forest in planar graphs running in time O(2.4624n). Tak-
ing the 1020-benchmark, this means that planar graphs with more than
50 vertices can be treated this way.

Of course, there is still the rather trivial O(2n) algorithm for this prob-
lem that simply tests all vertex assignments that cannot be beaten this
way. It is interesting to see that very recent results of Fomin and Py-
atkin [188] show that minimum feedback vertex set can be solved
in time O∗(1.8621n). This not only improves on the non-parameterized
result presented above, but also on Lemma 10.13, which can be replaced
by the following one:

Lemma 10.15 vertex induced forest has a 2.5kd kernel and can
hence be solved in time O∗(1.86212.5kd) = O∗(4.7316kd) by using the
algorithm described in [188].

Similar results can be also obtained for other problems and other graph
families, as they are described in [114]. As a non-graph-theoretic example,
let us mention the tardy task problem from [170]. The parameter k is the
number of tasks t which don’t meet their deadline d(t) on a one-processor
schedule, this way describing the problem k-late tasks. The size of an
instance would be the number n of tasks to be scheduled. This defines then
the dual problem kd tasks on time. Then, as a kind of “second parameter,”
the width m of the order given by the precedence constraints of the tasks was
introduced. For k-late tasks, an O(mk+1n+n2.5)-algorithm has been given.
For kd tasks on time, an O(mmkdn + n2.5)-algorithm was developed. For
m = 2, this gives an overall algorithm running in time O(1.588n). For m = 3,
the classical running time is O(2.280n) and for m = 4, O(3.032n). Keeping
the second “parameter” m described in that paper, our method provides an
O(mmn/(m+1)) algorithm for this problem, where n is the number of tasks.
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Chapter 11

The WWW repository

In the following, we present a list of sites on the WWW where papers, talks
etc. on parameterized complexity and algorithmics can be found. Of course,
this list is neither meant to be exhaustive nor can it be guaranteed that
all items still “work” when you try to follow them up. This is one of the
unfortunate consequences of the dynamic nature of the World Wide Web.
Nonetheless, the list may give useful hints where to find more about this
area.

1. The web resources on algorithmics are very impressive nowadays. For
the contents of this books, in particular http://www.nist.gov/dads/
is of interest, a rather recently built “Dictionary of Algorithms and
Data Structures.”

2. A good account on Bell’s number can be found in http://mathworld.

wolfram.com/BellNumber.html. In fact, Wolfram’s page contains a
collection of many useful mathematical facts.

3. The Compendium of Parameterized Problems compiled and updated
by M. Cesati can be found at http://bravo.ce.uniroma2.it/home/
cesati/research/compendium.pdf.

4. A general coverage of chess puzzles, in particular of the queens prob-
lems discussed in the introductory chapter, are contained in http:

//mathworld.wolfram.com/Chess.html and in http://www.dsitri.

de/wiki.php?page=NQP. A good animation for the n×n Queens Prob-
lem can be found at http://www.math.utah.edu/~alfeld/queens/

queens.html. Further hints on chess-related puzzles can be found in
Velucchi’s page http://anduin.eldar.org/~problemi/papers.html.

467
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5. Cliquewidth of special classes of graphs are listed in http://www.

laria.u-picardie.fr/~vanherpe/cwd/cwd.html; unfortunately, the
links given in that page are usually out of date. The most autho-
rative list of publications on the topic is surely the one by Courcelle
himself: http://www.labri.fr/Perso/~courcell/ActSci.html. Re-
garding “older” publications http://www.labri.fr/Perso/~courcell/
Textes/BiblioReecritureGraphes%281995%29.pdf contains a rather
comprehensive survey with the title “Réécriture de graphes: orientation
bibliographique.”

6. http://www.ics.uci.edu/~eppstein/junkyard/euler/ contains an
interesting collection of 17 different proofs for Euler’s formula that says
that, for any connected plane graph G = (V,E),

|V | − |E| + |F | = 2,

where F is the set of faces of G. Nice 3D-visualizations for vari-
ous embeddings onto the “sphere” (this is how these drawings can
be interpreted) can be found in http://www.math.ohio-state.edu/

~fiedorow/math655/Euler.html. A simple deduction of the fact that
each planar graph has (at least one) vertex of degree at most five can be
found in http://www-math.mit.edu/18.310/planarity_coloring.

html.

The other entries in Eppstein’s “junkard” are also recommendable, so
give it a try!

7. http://www.math.gatech.edu/~thomas/FC/fourcolor.html gives a
brief summary of a new proof of the Four Color Theorem and a four-
coloring algorithm found by Neil Robertson, Daniel P. Sanders, Paul
Seymour and Robin Thomas.

8. http://wwwteo.informatik.uni-rostock.de/isgci contains a nice
collection of graph classes and their interrelations.

9. Many nice examples of Mathematical Games that can be formulated as
integer linear programs or as graph problems can be found at http://
ite.informs.org. This site (and the corresponding electronic journal)
is devoted to the presentation of Operations Research techniques in ed-
ucation. Nice and recommendable is also the site http://www.chlond.
demon.co.uk/academic/puzzles.html called “Integer Programming
in Recreational Mathematics.”
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10. http://tracer.lsi.upc.es/minla/minla_info.php seems to be a
place where up-to-date information on linear arrangement is kept.

11. http://www.algorithmic-solutions.com/enledabeschreibung.htm

contains a description of the (formerly public domain) software package
LEDA. To quote from that websited: LEDA provides algorithmic in-
depth knowledge in the field of graph- and network problems, geometric
computations, combinatorial opimization and other.

12. The slides of the talk of D. Marx at CCC / Freiburg can be found
at http://www.cs.bme.hu/~dmarx/papers/marx-freiburg-slides.
pdf. The picture of the mentioned Swiss army knife is on page 6.

13. Searching through the internet for notions like matching will give you
many hits, including good slides etc. One example is http://www.cs.
rpi.edu/~goldberg/05-AAH/matching.pdf which also shows a nice il-
lustration of a proof of Theorem 4.30. Nice applications of Hall’s The-
orem can be found in the coursenotes http://www.stat.uchicago.

edu/~lalley/Courses/388/Matching.pdf.

14. http://mathworld.wolfram.com is a very nice, easily accessible internet-
based mathematical dictionary.

15. There are research groups dedicated to model-based reasoning through-
out the world. A European example is http://www.cs.ru.nl/~peterl/
mbr.html, where further pointers can be found.

16. The site http://parc.lboro.ac.uk/research/projects/parseqgd/

not only contains a good project description of a recent project dedi-
cated to graph drawing, in particular, to crossing minimization prob-
lems, but also some nice overview papers, e.g., [106].

17. The background on Roman domination is nicely described in the
online John Hopkins Magazine, more specifically, look into http://

www.jhu.edu/~jhumag/0497web/locate3.html. Interestingly, a small
exercise in connection with that problem is posed, whose solution is
presented in http://www.jhu.edu/~jhumag/0697web/revelle.html.

18. http://dept-info.labri.u-bordeaux.fr/~robson/mis/techrep.html

contains a HTML version of the currently best algorithm for maximum
independent set, see [343]. Also, the mathematical background ex-
plaining the analysis of the memorization part of the algorithm can be
found in that directory.
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19. We simply quote from the Homepage of Thinkfun: http://www.puzzles.
com/products/rushhour.htm: “Rush Hour is a genuine puzzle phe-
nomenon with legions of fans. There are some great places on the Web
dedicated to this most successful sliding block puzzle of these years.
We’d like to introduce here some of them. Good Luck!” As can be
seen, there are numerous links on Rush Hour to be found at that site.



Chapter 12

Problems

In this chapter, we collect all definitions of problems encountered in this
book. In a certain way, this collection also complements the corresponding
appendix in [134]. However, since we are mostly dealing with graph problems
in this book, we will rather have a finer grained classification of those graph
problem lists; problems from other areas will we rather scarce.

12.1 Cover problems and their relatives

Problem name: vertex cover (VC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with |C| ≤ k?

From the viewpoint of classical complexity, the following two problems are
eqivalent to vertex cover.

Problem name: clique (CQ)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a clique C ⊆ V with |C| ≥ k?

Problem name: independent set (IS)

471
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Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an independent set I ⊆ V with |I| ≥ k?

Also variants of this problem can be considered. In this text, we looked at:

Problem name: generalized vertex cover (VCgen)
Given: A graph G = (V,E), a subset V ′ of vertices
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V ′ with |C| ≤ k?

Problem name: clique (CQE)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a edge-induced clique C ⊆ E with |C| ≥ k?

Problem name: profit vertex cover (PrVC)
Given: A graph G = (V,E)
Parameter: a positive integer p
Output: Is there a profit vertex cover C ⊆ V with |E|−|E(G[V \C])|−|C| ≥
p?

Problem name: t-vertex cover (tVC)
Given: A graph G = (V,E)
Parameter: positive integers k and t
Output: Is there a t-vertex cover C ⊆ V with |C| ≤ k, i.e., |{e ∈ E |
C ∩ e 6= ∅}| = |E| − |E(G[V \ C])| ≥ t?

Problem name: miniaturized vertex cover (VCmini)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with |C| ≤ k log(|V |)?

Problem name: clique complement cover (CCC)
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Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a clique complement cover C ⊆ E with |C| ≤ k?

Problem name: vertex clique complement cover (VCCC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a vertex clique complement cover C ⊆ V with |C| ≤ k?

Problem name: planar independent set (PIS)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there an independent set I ⊆ V with |I| ≥ k?

Problem name: independent set on disks graphs (DIS)
Given: A disk graph G = (V,E) whose disk model has radii between 1 and
α and is λ-precision
Parameter: a positive integer k
Output: Is there an independent set I ⊆ V with |I| ≥ k?

Problem name: weighted vertex cover (WVC)
Given: A graph G = (V,E) with vertex weights ω : V → R≥1

Parameter: a positive integer k
Output: Is there a vertex cover C ⊆ V with ω(C) ≤ k?

Problem name: constraint bipartite vertex cover (CBVC)
Given: A bipartite graph G = (V1, V2, E)
Parameter: positive integers k1, k2

Output: Is there a vertex cover C ⊆ V1 ∪ V2 with |C ∩ Vi| ≤ ki for i = 1, 2?

Problem name: vertex cover, parameterized by number of ver-
tices of degree three or larger (VCdeg)
Given: A graph G = (V,E)
Parameter: a positive integer ` that equals the number of vertices in G of
degree three or larger
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Output: What is the size of a minimum vertex cover C ⊆ V ?

Problem name: vertex cover, parameterized by treewidth (VCTW)
Given: A graph G = (V,E) together with some tree decomposition
Parameter: a positive integer k that equals the width of the tree decompo-
sition
Output: What is the size of a minimum vertex cover C ⊆ V ?

Problem name: counting independent set of queens (CQIS)
Given: An n× n chessboard C
Parameter: a positive integer n
Output: In how many ways can n queens be positioned on C such that no
two of them are mutually attacking?

12.2 Dominating problems and their relatives

Another important graph-theoretic problem is:

Problem name: dominating set (DS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a dominating set D ⊆ V with |D| ≤ k?

Again, variants can be considered:

Problem name: planar dominating set (PDS)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there a dominating set D ⊆ V with |D| ≤ k?

Problem name: dominating set on bounded genus graphs
Given: A graph G = (V,E) of genus bounded by γ
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Parameter: a positive integer k
Output: Is there a dominating set D ⊆ V with |D| ≤ k?

Problem name: red-blue dominating set (RBDS)
Given: A graph G = (V,E) with V partitioned as Vred ∪ Vblue

Parameter: a positive integer k
Output: Is there a red-blue dominating set D ⊆ Vred with |D| ≤ k, i.e.,
Vblue ⊆ N(D)?

Problem name: Roman domination (ROMAN)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a Roman domination function R such that

∑
x∈V R(x) ≤

k?

Problem name: planar Roman domination (pROMAN)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there a Roman domination function R such that

∑
x∈V R(x) ≤

k?

Problem name: dominating rearrangement (DR)
Given: A graph G = (V,E), a subset S ⊆ V
Parameter: a positive integer k = |S|
Output: Is there a dominating rearrangement r : S → N [S], s 7→ r(s) ∈
N [s] such that r(S) ⊆ V is a dominating set?

Problem name: dominating set, given vertex cover number (DSvc)
Given: A graph G = (V,E)
Parameter: a positive integer k such that G has a vertex cover of size k
Output: Is there a minimum dominating set D ⊆ V ?

Problem name: constraint bipartite dominating set (CBDS)
Given: A bipartite graph G = (V1, V2, E)
Parameter: positive integers k1, k2
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Output: Is there a dominating set D ⊆ V1 ∪ V2 with |D ∩ Vi| ≤ ki for
i = 1, 2?

Problem name: independent dominating set (IDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an independent dominating set D ⊆ V with |D| ≤ k?

Problem name: planar independent dominating set (PIDS)
Given: A planar graph G = (V,E)
Parameter: a positive integer k
Output: Is there a independent dominating set D ⊆ V with |D| ≤ k?

Problem name: connected dominating set (CDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a connected dominating set D ⊆ V with |D| ≤ k, i.e., D
is both a connected set and a dominating set?

Problem name: nonblocker set (NB)
Given: A graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a nonblocker set N ⊆ V with |N | ≥ kd?

Problem name: nonblocker set with catalytic vertex (NBcat)
Given: A graph G = (V,E), a catalytic vertex c
Parameter: a positive integer kd
Output: Is there a nonblocker set N ⊆ V with |N | ≥ kd such that c /∈ N?

Problem name: dominating set of queens (QDS)
Given: An n× n chessboard C
Parameter: a positive integer k
Output: Is it possible to place k queens on C such that all squares are
dominated ?
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Problem name: dominating set of queens (QDS), parameterized
above guaranteed value
Given: An n× n chessboard C
Parameter: a positive integer k
Output: Is it possible to place n/2 + k queens on C such that all squares
are dominated ?

Likewise, edges or faces may be in the focus of domination:

Problem name: edge dominating set (EDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an edge dominating set D ⊆ E with |D| ≤ k?

Problem name: generalized edge dominating set (GEDS)
Given: A graph G = (V,E), a set R ⊆ V of red vertices
Parameter: a positive integer k
Output: Is there an edge dominating set D ⊆ E with |D| ≤ k such that all
vertices from R are covered by D?

Problem name: weighted edge dominating set (WEDS)
Given: A graph G = (V,E) with edge weights ω : E → R≥1

Parameter: a positive integer k
Output: Is there an edge dominating set D ⊆ E with ω(D) ≤ k?

12.3 Graph modification problems

Graph modification problems deliver a wealth of hard problems that tend to
classify in FPT . The examples contained here are:

Problem name: triangle edge deletion (TED)
Given: A graph G = (V,E)
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Parameter: a positive integer k
Output: Is there an edge set C ⊆ E with |C| ≤ k whose removal produces
a graph without triangles as vertex-induced subgraphs?

Problem name: triangle vertex deletion (TVD)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an vertex set C ⊆ V with |C| ≤ k whose removal produces
a graph without triangles as vertex-induced subgraphs?

Problem name: cluster vertex deletion (CVD)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an vertex set C ⊆ V with |C| ≤ k whose removal produces
a graph being a union of vertex-induced cliques?

Problem name: cograph vertex deletion (CoVD)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an vertex set C ⊆ V with |C| ≤ k whose removal produces
a cograph ?

Problem name: bipartization (BP)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a bipartization set C ⊆ V with |C| ≤ k whose removal
produces a bipartite graph?

Problem name: bipartization improvement
Given: A graph G = (V,E), a bipartization set C ⊆ V with |C| = k + 1
Parameter: a positive integer k
Output: Is there a bipartization set C ′ ⊆ V with |C ′| ≤ k ?

Problem name: bipartization, edge variant (BPedge)
Given: A graph G = (V,E)
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Parameter: a positive integer k
Output: Is there a bipartization set C ⊆ E with |C| ≤ k whose removal
produces a bipartite graph?

Also, cover-like problems can be viewed as graph modification problems.
Examples discussed in the text are:

Problem name: feedback vertex set (FVS)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer k
Output: Is there a feedback vertex set of size at most k, i.e.,

∃F ⊆ V, |F | ≤ k, ∀c ∈ C(G)(F ∩ c 6= ∅)?

Here, C(G) denotes the set of cycles of G, where a cycle is a sequence of ver-
tices (also interpreted as a set of vertices) v0, v1, . . . , v` such that {vi, v(i+1) mod `} ∈
E for i = 0, . . . , `− 1.

Problem name: feedback edge set (FES)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer k
Output: Is there a feedback edge set of size at most k, i.e.,

∃F ⊆ E, |F | ≤ k, ∀c ∈ C(G)(F ∩ c 6= ∅)?

Here, C(G) denotes the set of cycles of G, where a cycle is a sequence of ver-
tices (also interpreted as a set of edges) v0, v1, . . . , v` such that {vi, v(i+1) mod `} ∈
E for i = 0, . . . , `− 1.

as well as their duals:

Problem name: vertex induced forest (ViF)
Given: a (simple) graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a vertex-induced forest of size at least kd, i.e.,

∃F ⊆ V, |F | ≥ kd, C(G[F ]) = ∅?
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Problem name: edge induced forest (EiF)
Given: a (simple) graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a edge-induced forest of size at least kd, i.e.,

∃F ⊆ E, |F | ≥ kd, C(G[E]) = ∅?

On planar graphs, corresponding problems are:

Problem name: face cover (FC)
Given: A plane graph G = (V,E) with face set F
Parameter: a positive integer k
Output: Is there a face cover set C ⊆ F with |C| ≤ k?

Problem name: vertex induced forest in planar graphs (PViF)
Given: a (simple) planar graph G = (V,E)
Parameter: a positive integer kd
Output: Is there a vertex-induced forest of size at least kd, i.e.,

∃F ⊆ V, |F | ≥ kd, C(G[F ]) = ∅?

12.4 Further graph-theoretic problems

Further graph-theoretic problems discussed in the text include:

Problem name: maximum leaf spanning tree (MaxLST)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer kd
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Output: Is there a spanning tree of G with at least kd leaves?

Problem name: minimum inner node spanning tree (MinINST)
Given: A (simple) graph G = (V,E)
Parameter: a positive integer k
Output: Is there a spanning tree of G with at most k inner nodes?

Problem name: minimum maximal independent set (MMIS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a maximal independent set of cardinality ≤ k ?

Problem name: maximum minimal vertex cover (MMVC)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a minimal vertex cover set of cardinality ≥ k ?

Problem name: maximum minimal dominating set (MMDS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Does there exist a minimal dominating set of cardinality ≥ k ?

Problem name: maximum cut (MAXCUT)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a cut set C ⊆ E with |C| ≥ k, i.e., (V, V \C) is a bipartite
graph?

Problem name: separating vertex sets enumeration (SVS)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Enumerate all minimum size separating vertex sets of size at most
k.



482 CHAPTER 12. PROBLEMS

12.5 Graph drawing problems

The following problems can be considered as graph drawing problems.

Problem name: crossing number (CRN)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is CR(G) ≤ k?

Problem name: bandwidth (BW)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that
∀{u, v} ∈ E : |σ(u) − σ(v)| ≤ k?

Problem name: cutwidth (CW)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that
∀1 ≤ i < |V | : |{{u, v} ∈ E | σ(u) ≤ i < σ(v)}| ≤ k?

Problem name: linear arrangement (LA)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that

∑

{u,v}∈E
|σ(u) − σ(v)| ≤ k ?

Problem name: linear arrangement (LA), parameterized above
guaranteed value
Given: A graph G = (V,E)
Parameter: a positive integer k



12.5. GRAPH DRAWING PROBLEMS 483

Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} such that

∑

{u,v}∈E
|σ(u) − σ(v)| ≤ k + |E|?

Problem name: directed linear arrangement (DLA)
Given: A directed graph G = (V,A)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} that respects
the orientation of G, i.e., σ(u) < σ(v) whenever (u, v) ∈ A, such that

∑

(u,v)∈A
|σ(u) − σ(v)| ≤ k ?

Problem name: directed linear arrangement (DLA), parame-
terized above guaranteed value
Given: A directed graph G = (V,A)
Parameter: a positive integer k
Output: Is there a one-to-one mapping σ : V → {1, . . . , |V |} that respects
the orientation of G such that

∑

(u,v)∈A
|σ(u) − σ(v)| ≤ k + |A| ?

Problem name: linear arrangement by deleting edges (LADE)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there an edge set E ′ with |E ′| ≤ k and a one-to-one mapping
σ : V → {1, . . . , |V |} such that

∑

{u,v}∈E\E′

|σ(u) − σ(v)| = |E \ E ′| ?
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Problem name: one-sided crossing minimization (OSCM)
Given: A bipartite graph G = (V1, V2, E) and a linear order ≺1 on V1.
Parameter: a positive integer k
Output: Is there a linear order ≺ on V2 such that, when the vertices from V1

are placed on a line (also called layer) L1 in the order induced by ≺1 and the
vertices from V2 are placed on a second layer L2 (parallel to L1) in the order
induced by ≺, then drawing straight lines for each edge in E will introduce
no more than k edge crossings?

Problem name: two-layer planarization (TLP)
Given: A graph G = (V,E)
Parameter: a positive integer k
Output: Is there a set C ⊆ E, |C| ≤ k, whose removal makes the graph
biplanar?

Problem name: one-layer planarization (OLP)
Given: A bipartite graph G = (V1, V2, E), a linear ordering < on V1

Parameter: a positive integer k
Output: Is there a set C ⊆ E, |C| ≤ k, whose removal allows a biplanar
drawing of the graph that respects < on V1?

Problem name: two-tree crossing minimization (TTCM)
Given: A two-tree (T1, T2) with leaf labels Λ
Parameter: a positive integer k
Output: Can (T1, T2) be drawn with at most k crossings ?

Problem name: one-tree crossing minimization (OTCM)
Given: A two-tree (T1, T2) with leaf labels Λ, where the ordering of the
vertices of T1 is fixed
Parameter: a positive integer k
Output: Can (T1, T2) be drawn with at most k crossings ?

Problem name: two-tree drawing by deleting edges (TTDE)
Given: A two-tree (T1, T2) with leaf labels Λ
Parameter: a positive integer k
Output: Is there a label set L ⊆ Λ with |L| ≤ k such that the two-tree
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(T1 〈Λ \ L〉 , T2 〈Λ \ L〉) can be drawn without crossings ?

Problem name: one-tree drawing by deleting edges (OTDE)
Given: A binary tree T1 with leaf labels Λ, a linear ordering ≺ on Λ
Parameter: a positive integer k
Output: Is there a label set L ⊆ Λ with |L| ≤ k such that the tree T1 〈Λ \ L〉
can be drawn without crossings in the plane, so that the leaves in Λ \ L are
arranged according to the ordering ≺ on some line ?

12.6 Hypergraph problems

Problem name: d-hitting set (d-HS)
Given: A hypergraph G = (V,E) with hyperedge size bounded by d
Parameter: a positive integer k
Output: Is there a hitting set C ⊆ V with |C| ≤ k?

Problem name: minimum hitting set, parameterized by # edges
(HSE)
Given: A hypergraph G = (V,E)
Parameter: |E|
Output: Find a minimum hitting set C ⊆ V

Problem name: set cover (SC)
Given: A groundset X, a collection T of subsets of X
Parameter: a positive integer k
Output: Is there a set cover C ⊆ T with |C| ≤ k, i.e., every element in X
belongs to at least one member of C?

Problem name: multi-hitting set (HSmulti)
Given: A hypergraph G = (V,E)
Parameter: positive integers k, `
Output: Is there a multi-hitting set C ⊆ V with |C| ≤ k, i.e., C satisfies
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∀e ∈ E∃c ⊆ e(|c| ≥ ` ∧ c ⊆ C)?

12.7 Network problems

Problem name: CallControl
Given: A communication network represented by an undirected graph G =
(V,E) with edge capacities c : E → N, a set R ⊆ V × V of communication
requests
Parameter: a positive integer k
Output: Is there a subset A ⊂ R and a corresponding feasible path set
p(A) resulting from assigning to each request r ∈ A some path p(r) such
that p(A) is feasible and the set of rejected requests R \ A contains no more
than k elements?

Problem name: CallControl-Pre
Given: A communication network represented by an undirected graph G =
(V,E) with edge capacities c : E → N, a set R ⊆ V × V of communication
requests, a path assigning function p : R → P (G)
Parameter: a positive integer k
Output: Is there a subset A ⊂ R such that p(A) is feasible and the set of
rejected requests R \ A contains no more than k elements?

Problem name: d-CallControl-Pre
Given: A communication network represented by an undirected graph G =
(V,E) with edge capacities c : E → N, a set R ⊆ V × V of communication
requests, a path assigning function p : R → P (G)
Parameter: a positive integer k, an edge capacity bound d
Output: Is there a subset A ⊂ R such that p(A) is feasible and the set of
rejected requests R \ A contains no more than k elements?

Problem name: CallControl in trees of rings
Given: A communication network represented by an undirected graph G =
(V,E) that is a tree of rings with unit edge capacities, a set R ⊆ V × V of
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communication requests
Parameter: a positive integer k
Output: Is there a subset A ⊂ R and a path assigning function p : R →
P (G) such that p(A) is feasible and the set of rejected requests R\A contains
no more than k elements?

Problem name: CallControl in trees with capacities one or
two (CallControl in trees 1-2)
Given: A communication network represented by an undirected graph G =
(V,E) that is a tree with Ei ⊆ E being the edges of capacity i ∈ {1, 2}, a
set R ⊆ V × V of communication requests, a positive integer k
Parameter: ` = |E2|
Output: Is there a subset A ⊂ R and a path assigning function p : R →
P (G) such that p(A) is feasible and the set of rejected requests R\A contains
no more than k elements?

12.8 Automata problems

Problem name: short nondeterministic small Turing machine
computation (SNSTMC)
Given: A (single-tape) nondeterministic Turing machine M whose size is
bounded by f(k), an input string x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that reaches a
final accepting state in at most k steps?

Problem name: short nondeterministic Turing machine compu-
tation (SNTMC)
Given: A (single-tape) nondeterministic Turing machine M , an input string
x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that reaches a
final accepting state in at most k steps?
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Problem name: short multi-tape nondeterministic Turing ma-
chine computation (SMNTMC)
Given: A multi-tape nondeterministic Turing machine M , an input string
x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that reaches a
final accepting state in at most k steps?

Problem name: bounded nondeterminism Turing machine compu-
tation (BNTMC)
Given: A (single-tape) nondeterministic Turing machine M , an input string
x, an integer n coded in unary
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that reaches a
final accepting state in at most n steps and uses at most k nondeterministic
steps?

Problem name: compact deterministic Turing machine computa-
tion (CDTMC)
Given: A deterministic Turing machine M , an input string x
Parameter: a positive integer k
Output: Is there an accepting computation of M on input x that visits at
most k squares?

12.9 Logical problems

Logical problems might have deserved more attention in this book. Here are
a few of them, anyways:
Problem name: maximum satisfiability (MAXSAT)
Given: A Boolean formula F in conjunctive normal form (CNF), with vari-
ables X
Parameter: a positive integer k
Output: Is there an assignment α : X → {0, 1} such that at least k clauses
in F evaluate to 1 (true) under α?
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Problem name: maximum satisfiability (MAXSAT), parameter-
ized above guaranteed value
Given: A Boolean formula F in conjunctive normal form (CNF), with vari-
ables X
Parameter: a positive integer k
Output: Is there an assignment α : X → {0, 1} such that at least m/2 + k
clauses in F evaluate to 1 (true) under α?

Problem name: satisfiability problem with clauses of size three
(clause parameterization) (3-SAT)
Given: A Boolean formula F in conjunctive normal form (CNF), with vari-
ables X, each clause having at most three literals
Parameter: a positive integer k, upperbounding the number of clauses of
size three
Output: Is there a satisfying assignment α : X → {0, 1} for F ?

Problem name: satisfiability problem with clauses of size three
(variable parameterization) (3-SAT (variable))
Given: A Boolean formula F in conjunctive normal form (CNF), with vari-
ables X, each clause having at most three literals
Parameter: |X|
Output: Is there a satisfying assignment α : X → {0, 1} for F ?

12.10 Miscellaneous and applications

Some problems don’t fit into the categories listed above. They are collected
here.

Problem name: maximum agreement subtree (MAST)
Given: A set {T1, . . . , Tn} of binary rooted trees with equal label set L =
L(T1) = · · · = L(Tn)
Parameter: a positive integer k
Output: Is there a set of labels L′ ⊆ L, |Λ| ≤ k, such that all trees Ti \ Λ
are isomorphic?
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Problem name: spare allocation (SAP)
Given: A n × m binary matrix A representing an erroneous chip with
A[r, c] = 1 iff the chip is faulty at position [r, c]
Parameter: positive integers k1, k2

Output: Is there a reconfiguration strategy that repairs all faults and uses
at most k1 spare rows and at most k2 spare columns?

Problem name: minimal diagnosis (MD)
Given: A finite set of faults F , a set of effects M , a function e : F → 2M

relating faults and effects, a set of observed effects M ′ ⊆M , an integer k
Parameter: the (size of the) relating function e
Output: Is there a set F ′ ⊂ F with |F ′| ≤ k such that M ′ ⊆ ⋃f∈F ′ e(f)?

Problem name: matrix domination set (MDS)
Given: A n× n matrix with entries from {0, 1}, positive integer k
Parameter: k
Output: Is there a set D of one-entries in the matrix, where |D| ≤ k, such
that every other one-entry has at least one row or one column in common
with some one-entry from D?

Problem name: matrix row column merging (MRCM)
Given: a n×m {0, 1}-matrix M
Parameter: a positive integer k
Output: Is it possible to get the all-zeros-matrix by merging at most k
neighboring rows or columns?

Problem name: module placement problem (MPP)
Given: a set of modules M , a set of wires W connecting modules, i.e., each
wire w ∈ W is a subset of M
Parameter: a positive integer k
Output: Is it possible to find a mapping σ : M → {1, . . . , |M |} such that
the overall wire length is less than or equal to k?

Problem name: positive weighted completion of an ordering
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(PCO)
Given: An ordered digraph P = (V,A) and a cost function c mapping
A(D([U(P )]c)) into the positive integers; by setting c to zero for arcs in
A(D(U(P ))), we can interpret the domain of c as V (P ) × V (P ).
Parameter: a positive integer k.
Output: Is there a selection A′ of arcs from A(D([U(P )]c)) such that the
transitive closure (A′ ∪ A(P ))+ is a linear order and

∑
{c(a) | a ∈ (A′ ∪ A(P ))+} ≤ k ?

Problem name: facility location (FL)
Given: A bipartite graph B = (F ] C,E), consisting of a set F of poten-
tial facility locations, a set C of customers, and an edge relation E, where
{f, c} ∈ E indicates that c can be served from the facility (at) f ; and a
weight functions wF : F → N and wE : E → N (both called w if no confusion
may arise)
Parameter: k ∈ N
Output: Is there a set F ′ ⊆ F of facility locations and a set E ′ ⊆ E of
ways to serve customers such that (1) E ′ ∩ F = F ′, (2) E ′ ∩ C = C, and (3)∑

f∈F ′ wF (f) +
∑

e∈E′ wE(e) ≤ k?

Problem name: minimum partition (PART)
Given: A finite set X = {x1, . . . , xn}, a weight function w : X → R≥1

Parameter: k ∈ N
Output: Is there a set Y ⊂ X such that

max{
∑

y∈Y
w(y),

∑

z /∈Y
w(y)} ≤ k ?

Problem name: maximum knapsack (KS)
Given: n items {x1, . . . , xn} with sizes si and profits pi, the knapsack ca-
pacity b, and the profit threshold k. All numbers are natural numbers encoded

in binary.

Parameter: k
Output: Is there a subset of items which yield a profit larger than k and
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has an overall size of less than b?

Problem name: maximum knapsack, minimum weight (KSMW)
Given: n items {x1, . . . , xn} with sizes si and profits pi, the knapsack ca-
pacity b, and the profit threshold k. All numbers are natural numbers encoded

in binary.

Parameter: b
Output: Is there a subset of items which yield a profit larger than k and
has an overall size of less than b?

In Chapter 3, we discussed several algorithmic problems related to rush
hour. For the rather specific definitions surrounding rush hour, we refer
to that section.

Problem name: rush hour, parameterized by cars (RH (cars))
Given: A RH tuple (C, S, p0, d, Z) of an APR instance
Parameter: a positive integer k, upperbounding |C|
Output: Is there a sequence of legal moves that solves the given RH in-
stance?

Problem name: rush hour, parameterized by moves (RH (moves))
Given: A RH tuple (C, S, p0, d, Z) of an APR instance
Parameter: a positive integer m
Output: Is there a sequence of at most m legal moves that solves the given
RH instance?
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[60] L. Branković and H. Fernau. Approximability of a {0, 1}-matrix prob-
lem. Presented at ACCMCC in Auckland, NZ, 2004.

[61] L. Branković, P. Horak, and M. Miller. An optimization problem in
statistical databases. SIAM Journal on Discrete Mathematics, 13:346–
353, 2000.

[62] A. P. Burger and C. M. Mynhardt. An upper bound for the minimum
number of queens covering the n × n chessboard. Discrete Applied
Mathematics, 121:51–60, 2002.

[63] A. P. Burger and C. M. Mynhardt. An improved upper bound for
queens domination numbers. Discrete Mathematics, 266:119–131, 2003.



BIBLIOGRAPHY 499

[64] J. F. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal
Comput., 22(3):560–572, 1993.

[65] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size
of a revised knowledge base. In Proceedings of the Fourteenth ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems PODS’95, pages 151–162, 1995.

[66] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Preprocessing
of intractable problems. Information and Computation, 176:89–120,
2002.

[67] L. Cai. Fixed-parameter tractability of graph modification problems
for hereditary properties. Information Processing Letters, 58:171–176,
1996.

[68] L. Cai and J. Chen. On fixed-parameter tractability and approxima-
bility of NP optimization problems. Journal of Computer and System
Sciences, 54:465–474, 1997.

[69] L. Cai and D. Juedes. On the existence of subexponential parameter-
ized algorithms. Journal of Computer and System Sciences, 67:789–
807, 2003.

[70] R. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2 1/10 approxi-
mation algorithm for a generalization of the weighted edge-dominating
set problem. Journal of Combinatorial Optimization, 5:317–326, 2001.

[71] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum
clique problem. Operations Research Letters, 9:375–382, 1990.

[72] N. de Castro, F. J. Cobos, J. C. Dana, A. Márquez, and M. Noy.
Triangle-free planar graphs as segment intersection graphs. Journal of
Graph Algorithms and Applications, 6:7–26, 2002.

[73] S. Ceria, P. Nobili, and A. Sassano. Set covering problems. In An-
notated Bibliographies in Combinatorial Optimization, pages 415–428.
Wiley, 1997.

[74] M. Cesati. The Turing way to parameterized complexity. Journal of
Computer and System Sciences, 67:654–685, 2003.

[75] M. Cesati and M. Di Ianni. Computation models for parameterized
complexity. Mathematical Logic Quarterly, 43:179–202, 1997.



500 BIBLIOGRAPHY

[76] M. Cesati and H. T. Wareham. Parameterized complexity analysis of
robot motion planning. In Proc. 25th IEEE Int. Conf. on Systems,
Man and Cybernetics, 1995.

[77] L. Sunil Chandran and F. Grandoni. Refined memorization for ver-
tex cover. In R. Downey, M. Fellows, and F. Dehne, editors, Inter-
national Workshop on Parameterized and Exact Computation IWPEC
2004, volume 3162 of LNCS, pages 61–70. Springer, 2004.

[78] M. Chean and J. A. B. Fortes. A taxonomy of reconfiguration tech-
niques for fault-tolerant processor arrays. IEEE Computer, pages 55–
69, January 1990.

[79] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. A
parallel FPT application for clusters. In CCGRID, pages 70–77. IEEE
Computer Society, 2003.

[80] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Tail-
lon. Solving large FPT problems on coarse-grained parallel machines.
Journal of Computer and System Sciences, 67:691–706, 2003.

[81] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. Kanj, and
G. Xia. Tight lower bounds for certain parameterized NP-hard prob-
lems. In Proc. 19th Annual IEEE Conference on Computational Com-
plexity CCC, pages 150–160, 2004.

[82] J. Chen, H. Fernau, I. A. Kanj, and Ge Xia. Parametric duality and
kernelization: Lower bounds and upper bounds on kernel size. In
V. Diekert and B. Durand, editors, Symposium on Theoretical Aspects
of Computer Science STACS 2005, volume 3404 of LNCS, pages 269–
280. Springer, 2005.

[83] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT reduc-
tions and computational lower bounds. In Proceedings of the 36th An-
nual ACM Symposium on Theory of Computing STOC, pages 212–221.
ACM Press, 2004.

[84] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Polynomial time ap-
proximation schemes and parameterized complexity. In Mathematical
Foundations of Computer Science MFCS 2004, volume 3153 of LNCS,
pages 500–512. Springer, 2004.



BIBLIOGRAPHY 501

[85] J. Chen and I. A. Kanj. Constrained minimum vertex cover in bipar-
tite graphs: complexity and parameterized algorithmics. Journal of
Computer and System Sciences, 67:833–847, 2003.

[86] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations
and further improvements. Journal of Algorithms, 41:280–301, 2001.

[87] J. Chen, I. A. Kanj, L. Perkovic, E. Sedgwick, and G. Xia. Genus
characterizes the complexity of graph problems: Some tight results. In
ICALP 2003, volume 2719 of LNCS, pages 845–856, 2003.

[88] J. Chen, I. A. Kanj, and G. Xia. Labeled search trees and amortized
analysis: improved upper bounds for NP-hard problems. In T. Ibaraki,
N. Katoh, and H. Ono, editors, Proc. 14th Annual International Sym-
posium on Algorithms and Computation, volume 2906 of LNCS, pages
148–157, 2003.

[89] J. Chen, L. Liu, and W. Jia. Improvement for vertex cover on
low-degree graphs. Networks, 35:253–259, 2000.

[90] Y. Chen and J. Flum. Machine characterization of the classes of the W-
hierarchy. In M. Baaz and J. A. Makowsky, editors, Computer Science
Logic, 17th International Workshop, CSL 2003, volume 2803 of LNCS,
pages 114–127. Springer, 2003.

[91] Y. Chen and J. Flum. On miniaturized problems in parameterized
complexity theory. In R. Downey, M. Fellows, and F. Dehne, editors,
International Workshop on Parameterized and Exact Computation IW-
PEC 2004, volume 3162 of LNCS, pages 108–120. Springer, 2004.

[92] Z.-Z. Chen. Approximation algorithms for independent sets in map
graphs. Journal of Algorithms, 41:20–40, 2001.

[93] Z.-Z. Chen, M. Grigni, and C. H. Papadimitriou. Map graphs. Journal
of the ACM, 49(2):127–138, 2002.

[94] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm
for embedding planar graphs using pq-trees. Journal of Computer and
System Sciences, 30:54–76, 1985.

[95] M. Chleb́ık and J. Chleb́ıková. Crown reductions for the minimum
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[144] V. Dujmović, H. Fernau, and M. Kaufmann. Fixed parameter algo-
rithms for one-sided crossing minimization revisited. In G. Liotta, ed-
itor, Graph Drawing, 11th International Symposium GD 2003, volume
2912 of LNCS, pages 332–344. Springer, 2004.

[145] V. Dujmovič and S. Whitesides. An efficient fixed parameter tractable
algorithm for 1-sided crossing minimization. In M. T. Goodrich and
S. G. Kobourov, editors, Graph Drawing GD 2002, volume 2528 of
LNCS, pages 118–129. Springer, 2002.
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[218] M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for
the linear ordering problem. Operations Reseach, 32:1195–1220, 1984.
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[264] D. König. Über Graphen und Matrizen. Matematikai és Fizikai Lápok,
38:116–119, 1931.

[265] H. Kronk and J. Mitchem. A seven-color theorem on the sphere. Dis-
crete Mathematics, 5:255–260, 1973.

[266] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223:1–72, 1999.

[267] S.-Y. Kuo and W.K. Fuchs. Efficient spare allocation for reconfigurable
arrays. IEEE Design and Test, 4:24–31, February 1987.

[268] S. Langerman and W. Steiger. Optimization in arrangements. In H. Alt
and M. Habib, editors, STACS 2003: 20th Annual Symposium on The-
oretical Aspects of Computer Science, volume 2607 of LNCS, pages
50–61. Springer, 2003.

[269] E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating
all maximal independent sets: NP-hardness and polynomial-time algo-
rithms. SIAM Journal Comput., 9:558–565, 1980.

[270] C. Letavec and J. Ruggiero. The n-queens problem. INFORMS Trans-
actions on Education, 2(3):101–103, 2002.

[271] M. E. Levitt. Designing UltraSparc for testability. IEEE Design and
Test, 14(1):10–17, 1997.

[272] P. Liberatore. Monotonic reductions, representative equivalence, and
compilation of intractable problems. Journal of the ACM, 48:1091–
1125, 2001.

[273] L. Lin and Y. Jiang. The computation of hitting sets: review and new
algorithms. Information Processing Letters, 86:177–184, 2003.



518 BIBLIOGRAPHY

[274] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cam-
bridge University Press, 1992.

[275] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM J[ournal of] Appl[ied] Math[ematics], 36(2):177–189, 1979.

[276] R. J. Lipton and R. E. Tarjan. Applications of a planar separator
theorem. SIAM Journal Comput., 9(3):615–627, 1980.

[277] W. Liu and A. Vannelli. Generating lower bounds for the linear ar-
rangement problems. Discrete Applied Mathematics, 59:137–151, 1995.

[278] F. Lombardi and W. K. Huang. Approaches to the repair of VLSI/WSI
PRAMs by row/column deletion. In International Symposium on Fault-
Tolerant Computing (FTCS ’88), pages 342–347, Washington, D.C.,
USA, June 1988. IEEE Computer Society Press.

[279] C. P. Low and H. W. Leong. A new class of efficient algorithms for
reconfiguration of memory arrays. IEEE Transactions on Computers,
45(5):614–618, 1996.

[280] V.V. Lozin and D. Rautenbach. On the band-, tree- and clique-width
of graphs with bounded vertex degree. SIAM J[ournal of] Discrete
Math[ematics], 18:195–206, 2004.

[281] C. L. Lu, M.-T. Ko, and C. Y. Tang. Perfect edge domination and
efficient edge domination in graphs. Discrete Applied Mathematics,
119(3):227–250, 2002.

[282] A. Lubiw. The boolean basis problem and how to cover some polygons
by rectangles. SIAM J[ournal of] Discrete Math[ematics], 3:98–115,
1990.

[283] D. Wagner M. Kaufmann. Drawing Graphs, Methods and Models, vol-
ume 2025 of LNCS. Springer, 2001.

[284] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Technical Report TR97-033, ECCC Trier, 1997.

[285] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31(2):335–354, 1999.

[286] D. Marx. Parameterized complexity of constraint satisfaction prob-
lems. In 19th IEEE Annual Conference on Computational Complexity
(CCC’04), pages 139–149. IEEE, 2004.



BIBLIOGRAPHY 519

[287] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing
minimization in linear embeddings of graphs. IEEE Transactions on
Computers, 39:124–127, 1990.

[288] L. R. Matheson and R. E. Tarjan. Dominating sets in planar graphs.
European Journal of Combinatorics, 17:565–568, 1996.

[289] L. Mathieson, E. Prieto, and C. Sloper. Packing edge-disjoint trian-
gles: a paramaterized view. In R. Downey, M. Fellows, and F. Dehne,
editors, International Workshop on Parameterized and Exact Compu-
tation IWPEC 2004, volume 3162 of LNCS, pages 127–137. Springer,
2004.

[290] C. McCartin. Parameterized counting problems. In K. Diks and
W. Rytter, editors, Mathematical Foundations of Computer Science
2002, 27th International Symposium, MFCS 2002, volume 2420 of
LNCS, pages 556–567. Springer, 2002.

[291] B. McCuaig and B. Shepherd. Domination in graphs of minimum de-
gree two. Journal of Graph Theory, 13:749–762, 1989.

[292] K. Mehlhorn. Graph algorithms and NP-completeness. Heidelberg:
Springer, 1984.
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Computer Science, 10/2001.

[319] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes. Journal of Computer and System Sciences,
43:425–440, 1991.

[320] V. T. Paschos. A survey of approximately optimal solutions to some
covering and packing problems. ACM Computing Surveys, 29(2):171–
209, 1997.



522 BIBLIOGRAPHY

[321] J. Petit. Experiments on the minimum linear arrangement problem. J.
Exp. Algorithmics, 8, 2003.

[322] E. Prieto. The method of extremal structure on the k-maximum cut
problem. In M. Atkinson and F. Dehne, editors, Eleventh Comput-
ing: The Australasian Theory Symposium (CATS2005), volume 41 of
CRPIT, pages 119–126, Newcastle, Australia, 2005. ACS (Australian
Computer Society).

[323] E. Prieto. Systematic Kernelization in FPT Algorithm Design. PhD
thesis, The University of Newcastle, Australia, 2005.

[324] E. Prieto and C. Sloper. Either/or: Using vertex cover structure in
designing FPT-algorithms—the case of k-internal spanning tree. In
Proceedings of WADS 2003, Workshop on Algorithms and Data Struc-
tures, volume 2748 of LNCS, pages 465–483. Springer, 2003.

[325] E. Prieto and C. Sloper. Looking at the stars. In R. Downey, M. Fel-
lows, and F. Dehne, editors, International Workshop on Parameterized
and Exact Computation IWPEC 2004, volume 3162 of LNCS, pages
138–148. Springer, 2004.
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lems. In L. Kučera, editor, Graph-Theoretic Concepts in Computer
Science WG 2002, volume 2573 of LNCS, pages 379–390. Springer,
2002.

[352] Y. Shiloach. A minimum linear arrangement algorithm for undirected
trees. SIAM Journal Comput., 8:15–32, 1979.

[353] D. A. Spielman and S.-H. Teng. Disk packings and planar separators. In
SCG 96: 12th Annual ACM Symposium on Computational Geometry,
pages 349–358, 1996.

[354] U. Stege, I. van Rooij, A. Hertel, and P. Hertel. An O(pn + 1.151p)-
algorithm for p-profit cover and its practical implications for vertex
cover. In P. Bose and P. Morin, editors, Algorithms and Computation,
13th International Symposium, ISAAC 2002, volume 2518 of LNCS,
pages 249–261. Springer, 2002.
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λ-precision, 388
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m-complex, 382
n-Queens Problem, 42
r-outerplanar, 323, 323

t-vertex cover, 83, 83, 472
YES-instance, 18
O-notation, 11
O∗-notation, 12

δ-nonblocker set (δ-NB), 112

d-CallControl-Pre, 227, 486

d-hitting set (d-HS), 36, 485

t-vertex cover (tVC), 83, 472

CallControl in trees of rings, 230,
486

CallControl in trees with capac-
ities one or two (CallCon-
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CallControl-Pre, 226, 486

CallControl, 225, 486

Facility Location (matrix formu-
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Roman domination (ROMAN), 310,
475

annotated dominating set (ADS),
172

annotated face cover (FCann), 197

bandwidth (BW), 66, 482

bipartization improvement, 396, 478

bipartization, edge variant (BPedge),
87, 478

bipartization, replacing edges by
2-paths variant (BPedgevar),
242

bipartization (BP), 393, 478

bounded nondeterminism Turing ma-
chine computation (BNTMC),
440, 488

clique complement cover (CCC), 29,
239, 472
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clique (CQ), 28, 471
clique (CQE), 28, 472
cluster vertex deletion (CVD), 238,

478
cograph vertex deletion (CoVD),

239, 478
compact deterministic Turing ma-

chine computation (CDTMC),
441, 488

connected dominating set (CDS),
39, 88, 476

constraint bipartite dominating set
(CBDS), 453, 475

constraint bipartite vertex cover
(CBVC), 80, 473

counting independent set of queens
(CQIS), 424, 474

crossing number (CRN), 24, 482
cutwidth (CW), 72, 482
directed linear arrangement (DLA),

parameterized above guar-
anteed value, 248, 483

directed linear arrangement (DLA),
247, 483

dominating rearrangement (DR), 439,
475

dominating set of queens (QDS),
parameterized above guar-
anteed value, 75, 477

dominating set of queens (QDS),
113, 320, 476

dominating set on bounded genus
graphs, 474

dominating set, given vertex cover
number (DSvc), 451, 475

dominating set (DS), 39, 474
edge dominating set (EDS), 412, 477
edge induced forest (EiF), 480
face cover (FC), 196, 480
facility location (FL), 58, 491
feedback edge set (FES), 479

feedback vertex set (FVS), 86, 479
generalized edge dominating set (GEDS),

416, 477
generalized vertex cover (VCgen),

122, 472
hitting set (HS), 37
independent dominating set (IDS),

39, 476
independent set on disks graphs (DIS),

388, 473
independent set (IS), 36, 471
linear arrangement by deleting edges

(LADE), 244, 483
linear arrangement (LA), param-

eterized above guaranteed
value, 75, 244, 482

linear arrangement (LA), 62, 243,
482

linear arrangement (generalized
to a vector norm ‖ · ‖), 67

matrix domination set (MDS), 419,
490

matrix row column merging (MRCM),
208, 490

matrix row merging (MRM), 215
maximum agreement subtree (MAST),

223, 489
maximum cut (MAXCUT), parame-

terized above guaranteed value,
77

maximum cut (MAXCUT), 76, 481
maximum knapsack, minimum weight

(KSMW), 61, 100, 492
maximum knapsack (KS), 60, 491
maximum leaf spanning tree (MaxLST),

87, 480
maximum minimal dominating set (MMDS),

95, 481
maximum minimal vertex cover (MMVC),

88, 235, 481
maximum satisfiability (MAXSAT),
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parameterized above guar-
anteed value, 76, 489

maximum satisfiability (MAXSAT),
76, 488

miniaturized vertex cover (VCmini),
442, 472

minimal diagnosis (MD), 134, 490
minimum hitting set, parameterized

by # edges (HSE), 391, 485
minimum inner node spanning tree

(MinINST), 39, 87, 481
minimum maximal independent set

(MMIS), 39, 481
minimum partition (PART), 97, 491
module placement problem (MPP),

70, 490
multi-hitting set (HSmulti), 223, 485
nonblocker set with catalytic ver-

tex (NBcat), 107, 476
nonblocker set (NB), 85, 106, 476
one-layer planarization (OLP), 265,

484
one-sided crossing minimization (OSCM),

251, 484
one-tree crossing minimization (OTCM),

292, 484
one-tree drawing by deleting edges

(OTDE), 293, 485
planar Roman domination (pROMAN),

176, 475
planar dominating set (PDS), 123,

474
planar independent dominating set

(PIDS), 171, 476
planar independent set (PIS), 94,

473
positive weighted completion of an

ordering (PCO), 257, 491
profit vertex cover (PrVC), 60, 472
red-blue dominating set (RBDS), 37,

475

rush hour, parameterized by cars
(RH (cars)), 55, 492

rush hour, parameterized by moves
(RH (moves)), 56, 492

satisfiability problem with clauses
of size three (clause param-
eterization) (3-SAT), 89, 489

satisfiability problem with clauses
of size three (variable pa-
rameterization) (3-SAT (vari-
able)), 457, 489

separating vertex sets enumeration
(SVS), 420, 481

set cover (SC), 38, 485
short multi-tape nondeterministic

Turing machine computation
(SMNTMC), 434, 488

short nondeterministic Turing ma-
chine computation (SNTMC),
432, 487

short nondeterministic small Tur-
ing machine computation (SNSTMC),
434, 487

spare allocation (SAP), 79, 490
triangle edge deletion (TED), 237,

477
triangle vertex deletion (TVD),

238, 478
two-layer planarization (TLP), 265,

484
two-tree crossing minimization (TTCM),

282, 484
two-tree drawing by deleting edges

(TTDE), 284, 484
vertex clique complement cover (VCCC),

29, 473
vertex cover, parameterized by num-

ber of vertices of degree three
or larger (VCdeg), 75, 473

vertex cover, parameterized by treewidth
(VCTW), 310, 474
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vertex cover (VC), 19, 139, 471
vertex induced forest in planar graphs

(PViF), 104, 480
vertex induced forest (ViF), 86, 479
weighted edge dominating set (WEDS),

415, 477
weighted vertex cover (WVC), 153,

473
minimum quartet inconsistency prob-

lem, 421
2-claw, 265, 266
3-SAT, 89, 246, 442

A-hierarchy, 441
abnormal, 405
accepted request, 225
acyclic, 31
acyclic coloring, 104
adjacency matrix, 32
admissible, 375
algorithm schemes, 131
alternating paths, 117
annotated dominating set, 172, 176
annotated face cover, 198–200, 203, 205,

387
anticlique, 36
applicable rule, 93
approximation schemes, 132
APR instance, 55
Artificial Intelligence, 57, 78, 398
attachment link, 289
autarkness principle, 458
auxiliary parameter, 150
auxiliary parameter,, 180
axes-parallel rectangles, 55

bag, 302
bandwidth, 66–68, 71, 244
bandwidth of hypergraph, 71
beehive, 41
Bell’s number, 467

bicriteria problem, 39, 83, 88
bidimensionality, 301
bipartite, 32
bipartite adjacency matrix, 32, 80
bipartite graph variant, 116
bipartization, 89, 394, 395, 397
bipartization improvement, 394
bipartization set, 87, 242, 393, 396, 478,

479
bipartization variant, 393
bipartization, edge variant, 242, 397
bipartization, replacing edges by 2-paths

variant, 242, 397
biplanar, 264, 264
biplanarization number, 273
biplanarization problem, 264
black and white graph, 172
bonus point trick, 156
book embedding, 282
boolean test, 444
boundary cycle, 325
boundary-adjacent vertices, 129
bounded edge capacities, 226
bounded revision, 135
branching number, 149
branching vector, 149
brute force, 92
Buss’ rule, 21, 81, 96

call admission, 225
call admission control problem, 224
CallControl, 225
CallControl in trees of rings, 231, 233
CallControl in trees with capacities one

or two, 234
CallControl-Pre, 226–228, 230, 231, 234
candidate set, 140, 140, 213, 223, 226
candidate sets, 266
car, 54
car shape, 54
catalytic vertex, 106
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caterpillar, 266
characteristic polynomial, 149
chess puzzles, 467
chessboard, 42
chord, 232
classical language, 18
clique, 28–30, 36, 80, 85, 309, 442, 443,

471
clique (edge-induced), 28–30, 85
clique complement cover, 29, 29, 30, 85,

238–242, 473
cliquewidth, 300, 468
closed line, 426
closed neighborhood, 31
cluster graph, 238
cluster vertex deletion, 238
CNF, 458
cograph, 238, 239, 478
cograph vertex deletion, 239
color coding, 428
colorable, 32
coloring, 32
commit, 254
communication network, 225
communication request, 225
compact deterministic Turing machine com-

putation, 441
compact representations, 402
Compendium of Parameterized Problems,

467
compilability, 133
compilable, 133
compilation, 133
complement graph, 36
complement-reducible graph, 238
component, 31
conflict set, 406
conflicting edges, 240
connected, 31
connected component, 31

connected dominating set, 39, 39, 88, 88,
476

connected dominating set on planar graphs,
331

connection link, 291
consecutive ones property, 75
constraint bipartite dominating set, 453
constraint bipartite vertex cover, 21, 80–

83, 154–158, 408, 409, 411, 453
contraction, 35
cost function, 58
counting independent set of queens, 424,

425
cover problem, 138
cover problems, 57, 58
covering problem, 36
cross, 232
crossing number, 24, 25, 252
crown, 119
crown rule, 115
customer, 58, 491
cut, 232
cut set, 76, 77, 481
cutting planes, 79
cutwidth, 72, 73, 73, 74
cycle, 31, 86, 479
cycle-free, 31, 86

data reduction, 43, 91
data reduction rules, 180
Davis-Putnam algorithm, 137
decision tree problem, 444
deficiency, 458
degenerated face, 199
degree, 31
demand, 228
diagnosis, 406
dichotomy theorem, 421
differential approximation, 90
differential approximation ratio, 90
digraph kernel, 436
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directed graph, 30
directed linear arrangement, 248–250
directional vector, 55
discretized configurations, 56
discretized positions, 55
distance from triviality, 74, 78, 89, 234
Document Type Definition (DTD), 398
dominating rearrangement, 439, 440, 475
dominating set, 31, 39–41, 85, 93, 109,

123, 172, 176, 178, 300, 301, 309,
310, 317, 319, 321, 322, 348, 349,
351–354, 367, 369, 383, 384, 436,
442, 451–454, 474–476

dominating set of queens, 75, 93, 113, 115,
309, 321, 427, 428

dominating set on bounded genus graphs,
388

dominating set, given vertex cover num-
ber, 451, 452

dominating set on planar graphs, 93, 123,
124, 131, 171, 172, 176–180, 301,
319, 330–332, 340, 342, 362, 363,
367, 376–378, 382, 443, 447

domination number, 340
domination problem, 39
drawing, 252
dual graph, 327
dual parameter, 85
dual problem, 85
Dulmage-Mendelsohn decomposition, 157
dynamic programming, 426
dynamic programming on subsets, 392,

397

edge, 30
edge adding, 235
edge deletion, 235
edge dominating set, 348, 362, 387, 412,

412, 413–421, 453, 454, 477
edge domination, 43
edge domination rule, 269

edge induced forest, 86, 87
edge list, 32
edge remember number, 329
edge-induced, 31
edge-induced clique, 28, 472
either-or structure, 103
embedding, 35
Euclidean plane, 35
Euler’s formula, 94, 468
evolutionary tree, 421
exhaustive search, 92
explicit internal parameter, 52
external parameter, 53

face, 36
face cover, 196–200, 203, 269, 301, 362,

387, 464
face cover set, 196, 196, 480
face degree, 197
face size, 197
facility location, 51, 58, 58, 92, 98–100,

397, 398, 491
failure models, 57
faulty, 406
feasible path set, 225
feedback edge set, 86, 87, 479
feedback vertex set, 86, 86, 464, 479
finger, 269
Five Queens Problem, 41
fixed input part, 133
fixed-parameter enumerable, 398
folding rule, 146
forest, 33
forest of paths, 244
forget node, 302
Four Color Theorem, 468
fully committed, 254
fully polynomial-time approximation scheme

(FPTAS), 62

generalized edge dominating set, 416, 417
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generalized instance, 254
generalized vertex cover, 122, 123, 158
genus, 388
goal intervals, 55
graph, 30
graph chunk, 332
graph chunks, 361
graph classes, 468
graph complement, 34
graph drawing, 57
graph edit operation, 235
graph modification problem, 86, 244
graph union, 34
greedy algorithms, 94
greedy localization, 96
grid graph, 303, 321
grid graph with diagonals, 305
groundset, 38

Hall’s marriage theorem, 119
head, 119
heuristic priorities, 180, 269
hitting set, 36–39, 43, 45–49, 57, 75, 84,

85, 94, 116, 134, 180–185, 189–
191, 195–197, 207, 222–226, 228–
234, 237–239, 246, 247, 266, 267,
269, 270, 272, 274, 275, 277, 289,
294, 391, 392, 407, 430, 434, 442,
456, 459–461, 485

hitting set for, 392
Hitting Set trees, 94
hitting set trees, 57
horizontal car, 55
Horn clause, 78
hyperedge, 30
hyperedge degree, 31
hyperedge size, 30, 36, 485
hypergraph, 30

implicit internal, 299, 300
implicit internal parameter, 52

improvement problem, 396
incidence matrix, 32
inclusion-exclusion principle, 422
independent dominating set, 39, 88, 97,

171, 172, 436, 476
independent dominating set on planar graphs,

171, 382
independent set, 31, 36, 85, 94, 94, 104,

172, 309, 322, 348, 351, 354, 367,
369, 388, 432, 442, 443, 472, 473

independent set on disk graphs, 447
independent set on planar graphs, 95, 102,

103, 113, 168–171, 363, 367, 375,
376, 446, 462, 464

initial position, 54
injured, 269
inner node, 33
insert node, 302
instance, 18
integer linear program (ILP), 61, 83, 300
interconnection pattern, 325
interfering, 253
internal parameter, 52
interval graph, 217
intractable, 18
introduce node, 302
irreducible instance, 44
iterative compression, 121, 429

join node, 302
Jordan curve, 35

kernel, 20
kernel size, 20
kernelizable, 20
kernelization, 19
kernelization reduction, 20
kernelization scheme, 258, 259, 444

label deletion, 222
layer, 323
layer component, 324
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layer decomposition, 324
Layerwise Separation Property, 362
layerwise separator, 377
leaf, 33
legal configuration, 55
legal move, 55
length of the cycle, 31
length of the path, 31
limbo, 412
line (on a chessboard), 425
line graph, 454
linear arrangement, 51, 62, 64, 65, 67–69,

71, 74, 75, 132, 207, 243, 247, 248,
250, 251, 281, 321, 469

linear arrangement by deleting edges, 245–
247, 282

linear arrangement number, 63
linear layout, 72
linear ordering problem, 257
Linear Programming, 78
linear-size kernels, 20
linked spares, 82, 410
local treewidth, 366
loop, 30
lower triple, 335, 336, 380

M[1], 442
many-one reduction, 28
map graph, 103
matching, 469
Mathematical Games, 468
matrix domination set, 42, 419, 420, 453,

454
matrix row column merging, 207, 213–

216, 218, 220, 222
matrix row merging, 215, 217
maximal matching, 120
maximization problems, 59
maximum agreement subtree, 222, 223
maximum compatible tree, 222, 223
maximum cut, 77, 87, 89, 322, 397, 450

maximum irredundant set, 96
maximum knapsack, 59–62, 100
maximum knapsack, minimum weight, 92,

100, 101
maximum leaf spanning tree, 88
maximum minimal vertex cover, 95–97,

103, 110, 111, 235, 237
maximum satisfiability, 76, 77, 88, 451
middle triple, 336, 336
Mimimum Description Length (MDL), 398
MINI-1, 442
minimal diagnosis, 134
minimization problems, 57
minimum p-sum problems, 67
minimum gene conflict resolution prob-

lem, 36
minimum maximal independent set, 88,

171
minimum maximal matching, 332
minimum partition, 97
minor, 327, 330, 347, 366, 383, 385, 388
model-based reasoning, 469
module placement problem, 71, 74
multi-hitting set, 223, 224, 485

natural ordering, 254
neighbor, 31
Network Flow, 78
nice tree decomposition, 302
node, 33
non-leaf degree, 266
non-parameterized problem, 52
non-simple vertex, 125
non-vacuous layer, 324
nonblocker set, 77, 85, 85, 93, 106–112,

133, 450, 454–456, 476
nonblocker set with catalytic vertex, 107,

108

observation, 405
Occam’s razor, 57, 406
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off-line algorithm, 144, 226
off-line behavior, 133
on-line algorithm, 226
on-line behavior, 133
one-layer planarization, 245, 247, 264, 265,

271–278
one-sided crossing minimization, 251–259,

263–265
one-tree crossing minimization, 293
one-tree drawing by deleting edges, 294
open neighborhood, 31
Operations Research, 78, 468
ordered digraph, 257
outerplanar embedding, 323
outerplanar graph, 281, 323
outerplanarity, 323
output-sensitivity, 53
outsiders, 120, 121

pairwise crossing number, 24
parallel chords, 232
parameter, 18
parameterized complexity, 27
parameterized dual, 60
parameterized intractability, 431
parameterized problem, 18
parameterized reduction, 27
parameterized versions, 59
parameterizing above guaranteed values,

61, 75, 75, 76
partial k-tree, 302
partial order, 257
path, 31
path assigning function, 225
path decomposition, 303
pathwidth, 72, 244, 303
performance ratio, 90
persistence, 303
phase transition, 89
phylogeny, 222
planar graph, 35

planar Roman domination, 178, 179, 383
plane graph, 35
polynomial-size kernels, 20
positive weighted completion of an order-

ing, 257–261
pretty finger, 269
primal parameter, 85
primal problem, 85
principle of parsimony, 406
profit, 83
profit of a cover, 60
profit problem, 60
profit vertex cover, 60, 83, 472
proper kernelization, 20, 94
proper parameterization, 52
proper reduction, 93

quadruple tree, 283
quartet, 421
quasi-simple region, 125
quasiconvex method, 150
Queen Domination Problem, 41, 320

random access machine (RAM), 11
range sum queries, 209
re-parameterization, 61
reconfiguration strategy, 79, 490
recursive graph, 302
red-blue dominating set, 37–39, 204, 269,

301, 362, 383, 385, 387, 392, 434–
438, 440, 453, 475

reduced instance, 22, 44, 93
reduces to, 27
reduction rule, 20, 92, 93, 93, 144
region, 125
region decomposition, 128
rejected request, 225, 226, 227, 230, 234,

486, 486, 487
relaxation, 61, 78
reparameterize, 112
represent graphs on computers, 32
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representative solutions, 409
revised knowledge base, 135
RH configuration, 55
RH goals, 55
RH move, 55
RH position, 55
RH solution, 55
ring, 325
ring decomposition, 325
Roman domination, 176, 177, 309, 310,

318, 319, 383, 436–438, 469, 475
Roman domination number, 177, 437
Roman domination set, 177
Rook Domination Problem, 42
Rush Hour, 51, 53
rush hour, 53–56, 492
rush hour, parameterized by cars, 56

satisfiability problem with clauses of size
three (clause parameterization), 89,
137, 148, 151, 152, 459

satisfiability problem with clauses of size
three (variable parameterization),
457–459

scalable, 62
schematic kernelization lemma, 297
search tree, 27
search tree method, 137
select&verify (graph) problem, 347
separating vertex sets enumeration, 420
separation, 333
separation width, 362
separator, 332
separator of type 2, 344
series-parallel graph, 225
set cover, 38, 39, 75, 485
set of edges, 31
set of paths, 31
set of vertices, 31
shared spares, 82, 409
Sherali-Adams, 299

short multi-tape nondeterministic Turing
machine computation, 435–437

short nondeterministic small Turing ma-
chine computation, 434

short nondeterministic Turing machine com-
putation, 432, 434

simple r-outerplanar, 325
simple path, 31, 35
simple region, 125
simple vertex, 125
size, 18
size function, 18, 84, 85
size-factor, 362
slim problem, 354
soundness, 44
spanning tree, 87, 481
spare allocation, 80, 81
stable set, 36
standard parameter, 46, 51, 52
standard parameterization (for maximiza-

tion problems), 59, 94
standard parameterization (for minimiza-

tion problems), 59
star graph, 52, 73
Steiner tree in graphs, 392, 435
strongly dependent, 260
subgraph, 31
subrequests, 232
Sugiyama approach, 252, 265
suited, 253
system, 405
system description, 405

tardy task problem, 465
theory of diagnosis, 57, 134
thin planar graph, 129
Think big, 296
Think small, 296
Thinkfun, 470
tiny edges, 43
top-down approach, 430



538 INDEX
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toroidal chessboard, 425
tractable, 18
transitive, 260
transversal hypergraph problem, 398
tree, 33
tree decomposition, 302
treewidth, 52, 302
treewidth-based algorithms, 299
triangle edge deletion, 237
triangle vertex deletion, 238
triangulation, 420
trivial kernel, 75
triviality first, 144, 145–147, 154
triviality last, 142, 144, 146, 147, 154,

215, 256
triviality last approach, 154
Turing reduction, 28
two-layer planarization, 265, 267, 271–273,

275, 277, 280, 292
two-sided crossing minimization, 292
two-tree, 282
two-tree crossing minimization, 284, 289
two-tree drawing by deleting edges, 289,

294

undirected graph, 30
upper perfect matching, 119
upper triple, 334, 335, 379

valid partition, 394
varying input part, 133
vector norm, 67
vertex, 30
vertex clique complement cover, 29, 29,

30, 85, 473
vertex cover, 19, 21–23, 30, 36, 40, 47, 52,

57, 60, 74, 75, 80, 83, 85, 86, 93,
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235, 240, 242, 259, 274, 296, 297,
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344, 348, 351, 354, 358, 362, 366,
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442, 443, 446, 447, 451–455, 471–
475

vertex cover, parameterized by treewidth,
310, 313

vertex deletion, 235
vertex domination, 43
vertex domination rule, 269
vertex induced forest, 87, 104–106, 113,

433, 465
vertex merge, 35
vertex packing, 36
vertex remember number, 329
vertex separation number, 72
vertex-induced, 31
vertical car, 55
violated edge, 225
virtual, 269
VLSI, 69

W-hierarchy, 432
W-RAMs, 441
W[1], 29
weakly glueable, 368
weight, 459
weighted F -SAT, 421
weighted edge dominating set, 415
weighted vertex cover, 90, 118, 153, 154,

159, 242, 416, 419
well-quasi-ordering, 98
width of the tree decomposition, 302
wreath, 266
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