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ABSTRACT

Structural systems are often composed of multiple compo-
nents joined together at localized interfaces. Compared to
a corresponding monolithic system, these interfaces are de-
signed to leave the load carrying capability of the system
unchanged and the resulting effect on the system stiffness
is minimal. Hence the mode shapes and frequencies of the
dominant structural modes are relatively insensitive to the
presence of the interfaces. However, the energy dissipation
in such systems is strongly dependent on the joints. The
microslip that occurs at each interface couples together the
structural modes of the system and introduces nonlinear
damping into the system, effectively altering the observed
damping of the structural modes. This work develops equa-
tions of motion for a jointed structure in terms of the struc-
tural modal coordinates and implements a reduced-order
description of the microslip that occurs at the interface be-
tween components. The interface is incorporated into the
modal description of the system through an existing decom-
position of a series-series Iwan interface model and a con-
tinuum approximation for microslip of a elastic rod. The
developed framework is illustrated through a discrete three
degree-of-freedom system.

1 INTRODUCTION

Complex engineering structures are typically composed of
multiple components, connected by mechanical interfaces
such as bolted joints and/or threaded connections. These
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connections are designed so as not to alter the stiffness and
load carrying capacity of the structure as compared to a
monolithic version. However, these interfaces often con-
tribute significantly to the overall observed dissipation in
the dynamical response of such structures [1–3] and intro-
duces nonlinear behavior into the structural response that
can be observed both experimentally [4, 5] and in detailed
finite element calculations [6, 7]. This interfacial damping
typically arises from microslip, that is, rough sliding contact
which occurs over a small spatial interval. This localized
phenomena is distinct from macroslip, whereby the entire
interface undergoes slip.

Unfortunately, when modeling microslip even the in-
corporation of simple friction laws, such as Coulomb fric-
tion, into larger computational models is problematic. As
the length scale of the computational model is reduced to
resolve the interface and the region of microslip, the cor-
responding time scale for the simulation is reduced accord-
ingly. Thus, when a simulation of specified time duration is
required, the computational effort can grow unacceptably
large [8, 9]. To overcome these computational limitations,
simulations often introduce non-physical damping that can
be easily incorporated into the model (e.g., the use of pro-
portional damping), and then identify the damping parame-
ters to match experimentally observed results [6, 10]. How-
ever, this approach significantly constrains the true predic-
tive capability of the simulation. For different loading lev-
els or operational conditions, one must first determine the
appropriate damping parameters to match available obser-
vations.
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Recently, a number of models for the interface have
been developed with the goal of reducing the computa-
tional load that occurs with the introduction of the inter-
face. Representations for the dissipation induced by the
interface have been developed based on, for example, col-
lections of discrete Jenkins elements or Iwan models [11–16]
or other hysteretic laws [14, 17, 18].

Despite the presence of the interface, the response of a
typical structure is still well-described by the linear struc-
tural modal frequencies and mode shapes. While the cou-
pling between modes due to the interface (absent in the lin-
ear monolithic component) is minor, the nonlinear damping
introduced by the interface alters the decay of these modes.
This work develops the structural equations of motion for
jointed structures in terms of modal coordinates, and iden-
tifies a reduced-order model for the interfacial damping that
can be incorporated into this framework. In the context of
interface damping, the idea of a modal description of the
structural equations of motion has recently been described
by Segalman [19]. The damping was then postulated to
give rise to a decoupled set of modal equations in which
each mode was subject to a parallel-series Iwan model to
describe the presence of the joint. In contrast, the current
paper describes the deformation across the the joint exactly
in terms of the modal coordinates and then relates this back
to the modal forces in the modal equations of motion, based
on work by Miller and Quinn [20] and Quinn and Segalman
[13].

2 MODAL ANALYSIS OF JOINTED STRUCTURES

We consider a general jointed structure as shown in Fig-
ure 1, consisting of two components, C1 and C2, which over-
lap in a region J containing an interface. Thus we identify
three regions Ĉ1, Ĉ2, and J , where

Ĉ1 = C1 − J , Ĉ2 = C2 − J . (1)

In this, it is assumed that the regions Ĉ1 and Ĉ2 are not adja-
cent. Instead they are separated by the region J . Moreover,
the region J is not taken to be the physical interface, but
instead contains the interface. Thus the boundary of J is
located at some distance away from the physical interface.

In addition, consider a monolithic structure M as the
union of C1 and C2. The region of overlap no longer contains
an interface and is instead denoted as K. Note that J and
K are identical in terms of physical extent, differing only in
the presence of the interface.

2.1 Monolithic Structure

The monolithic structure is assumed to be linear and un-
damped, with its deformation overM governed by the equa-

C1 C2J

Figure 1: Jointed structure; components C1 and C2 overlap
in the region J .

tion of motion

MM ü+KM u = 0. (2)

The above monolithic structure, subject to specified bound-
ary conditions, admits a modal decomposition with modal
functions φj , so that

u(t) =

∞
∑

j=1

Aj(t)φj . (3)

The equation of motion for each mode can therefore be ob-
tained as

(

φT
i MM φi

)

Äi +
(

φT
i KM φi

)

Ai = 0, (4)

where φi is the ith mode shape for the monolithic structure
obtained by solving the standard eigenvalue problem from
structural analysis.

Note that the integral over the domain M can be split
over each of the subdomains identified above, so that

M = Ĉ1 +K + Ĉ2. (5)

where the mass and stiffness matrices can be decomposed
over each of the three regions as





M
Ĉ1

0 0

0 MK 0

0 0 M
Ĉ2









ü
Ĉ1

üK

ü
Ĉ2





+





K
Ĉ1

0 0

0 KK 0

0 0 K
Ĉ2









u
Ĉ1

uK

u
Ĉ2





+





T1K TK1 0

−T1K −TK1 −TK2 −T2K

0 TK2 T2K









u
Ĉ1

uK

u
Ĉ2



 = 0 (6)

Here the monolithic mass matrixMM has been decomposed
into a block diagonal component over each of the subdo-
mains, so that there is no mass coupling between the com-
ponents. Likewise, the stiffness KM has been decomposed
into a block diagonal component together with a second
component T, where the stiffness components Tij describe
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the coupling between the exterior regions Ĉ1 and Ĉ2 and
the region K. Recall that the K represents the region in
the monolithic structure that corresponds to the interface
region J in the jointed structure. Thus in the monolithic
structure the contact forces QK between the regions can be
represented as





QK
1

−QK
1 −QK

2

QK
2





=





T1K TK1 0

−T1K −TK1 +TK2 −T2K

0 TK2 T2K









u
Ĉ1

uK

u
Ĉ2



 (7)

Finally, the mode shapes can be decomposed over these
regions as well, so that

φM =
[

φ
Ĉ1

φK φ
Ĉ2

]T
(8)

With this, the modal equations of motion over each
region can be expressed as

φT
Ĉ1,i











N
∑

j=1

M
Ĉ1

φ
Ĉ1,j

Äj



+





N
∑

j=1

K
Ĉ1

φ
Ĉ1,j

Aj











= −φT
Ĉ1,i

QK
1 , (9)

φT
K,i











N
∑

j=1

MK φK,j Äj



+





N
∑

j=1

KK φK,j Aj











= φT
K,i

(

QK
1 +QK

2

)

, (10)

φT
Ĉ2,i











N
∑

j=1

M
Ĉ2

φ
Ĉ2,j

Äj



+





N
∑

j=1

K
Ĉ2

φ
Ĉ2,j

Aj











= −φT
Ĉ2,i

QK
2 , (11)

Combining Eqs. (9) and (11) yields

φT
Ĉ1,i











N
∑

j=1

M
Ĉ1

φ
Ĉ1,j

Äj



+





N
∑

j=1

K
Ĉ1

φ
Ĉ1,j

Aj











+ φT
Ĉ2,i











N
∑

j=1

M
Ĉ2

φ
Ĉ2,j

Äj



+





N
∑

j=1

K
Ĉ2

φ
Ĉ2,j

Aj











= −φT
Ĉ1,i

QK
1 − φT

Ĉ2,i
QK

2 , (12)

The right hand side of Eq. (12) represents the influence of
the region of overlap K on the overall monolithic structure
M in the regions Ĉ1 and Ĉ2. In general the contact forces
QK

i (t) must be determined appropriately to describe this
(monolithic) region of the structure. Specifically, the right
hand side of these equations of motion is not decoupled, that
is, the ith equation possibly depends on each modal ampli-
tude Aj , j = 1, . . . , N . It is only with the inclusion of the

appropriate contact forces QK that the resulting equations
decouple into the familiar modal form (c.f. Eq. (4)).

2.2 Jointed Structure

Now turning to the jointed structure, Eq. (12) is still valid,
provided QK

i (t) is replaced by the appropriate contact force
arising within the jointed structure, defined as QJ

i (t). The
contact forces of the jointed and monolithic structure can
be related as

QJ
i (t) = QK

i (t) + δQi(t), (13)

Thus the term δQi characterizes the deviation in the con-
tact force of the jointed structure at the boundary between
Ĉi and K, as compared to that of the corresponding mono-
lithic structure. These equations of motion become

φT
Ĉ1,i











N
∑

j=1

M
Ĉ1

φ
Ĉ1,j

Äj



+





N
∑

j=1

K
Ĉ1

φ
Ĉ1,j

Aj











+ φT
Ĉ2,i











N
∑

j=1

M
Ĉ2

φ
Ĉ2,j

Äj



+





N
∑

j=1

K
Ĉ2

φ
Ĉ2,j

Aj











= −φT
Ĉ1,i

(

QK
1 (t) + δQ1(t)

)

−φT
Ĉ2,i

(

QK
1 (t) + δQ1(t)

)

.

(14)

Making use of Eqs. (4), (10), and (5), the equations of mo-
tion for the jointed structure can be written as

(

φT
i MM φi

)

Äi +
(

φT
i KM φi

)

Ai

= φT
K,i (δQ1(t) + δQ2(t))

−
(

φT
Ĉ1,i

δQ1(t) + φT
Ĉ2,i

δQ2(t)
)

. (15)

Here the left-hand side of the equations is the familiar modal
equations for the structure. The right-hand side represents
the effect of the isolated interface, which is incorporated
through the terms δQ1 and δQ2. Note that the modal
functions φi are defined over the entire monolithic struc-
ture. Thus, this approach is not considered as a compo-
nent mode synthesis, where the interface might exist at the
boundary of the individual components. Rather, the joint
is accounted for as an internal feature of the component.
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This approach allows for the straightforward incorpo-
ration of isolated effects into the equations of motion, as
written in terms of the linear mode shapes of the structure.
While the equations of motion can be written in terms of
any complete set of coordinates, the compact representation
of the isolated forces described above is a distinguishing fea-
ture of this approach. Moreover, provided the terms δQ1

and δQ2 can be identified, this approach can be applied to
any localized effects, including for example isolated nonlin-
earities [9]. If the isolated force is known in terms of the sys-
tem coordinates, then this approach leads to the exact equa-
tions of motion. In addition, by expressing these equations
in terms of the linear modal coordinates, this provides an
appropriate beginning for model reduction techniques. The
ability of this approach to describe the response of a general
jointed structure depends on how well the assumed consti-
tutive law describing δQi represents the contribution from
the interfacial forces in the actual model (c.f., Eq. (13)).
This places particular importance on the identification of
the region J containing the joint. This region must be large
enough to contain the interface, but allow for an accurate
representation of the contact force.

2.3 Example: Discrete Linear Damping.

As an illustrative example, we consider a discrete three
degree-of-freedom system with a single linear damper lo-
cated between masses 2 and 3, as shown in Figure 2. In
this example, each mass m and stiffness k are assumed to
be identical. In the absence of damping (b = 0) the eigen-
pairs (ω2

i ,ui) and modal equations of motion can be written
as

(

ω2
1 = (2−

√
2)

k

m
, φ1 =

[

1
√
2 1

]T
)

mÄ1 + (2−
√
2) k A1 = 0, (16a)

(

ω2
2 = 2

k

m
, φ2 =

[

1 0 −1
]T

)

mÄ2 + 2 k A2 = 0, (16b)

(

ω2
3 = (2 +

√
2)

k

m
, φ3 =

[

1 −
√
2 1

]T
)

mÄ3 + (2 +
√
2) k A3 = 0. (16c)

In the above formulation, the first component Ĉ1 is identified
with masses 1 and 2, while the second component Ĉ2 is
identified with mass 3, so that, for example

φ
Ĉ1,1

=
[

1
√
2
]T

, φ
Ĉ2,1

=
[

1
]T

. (17)

m
k

u1

m
k

u2

m

b

k
k

u3

Figure 2: Discrete structure with damping.

Also, the damping force between masses 2 and 3 lead to
interface forces of the form

δQ = b (u̇3 − u̇2), −→
δQ1 =

[

0 δQ
]T

, δQ2 =
[

−δQ
]T

. (18)

Therefore, for the first modal equation

−
(

φ
Ĉ1,1

δQ1 + φ
Ĉ2,1

δQ2

)

= −
(

(
√
2− 1) b (u̇2 − u̇3)

)

, (19)

and

−
(

φ
Ĉ1,2

δQ1 + φ
Ĉ2,2

δQ2

)

= − (b (u̇2 − u̇3)) , (20)

−
(

φ
Ĉ1,3

δQ1 + φ
Ĉ2,3

δQ2

)

= −
(

(
√
2 + 1) b (u̇3 − u̇2)

)

. (21)

In terms of the modal amplitudes the physical coordinates
can be written as

u1 = A1 +A2 +A3, u2 =
√
2A1 −

√
2A3,

u3 = A1 −A2 +A3.
(22)

Finally, in matrix form the damped equations of motion
become

m





1 0 0
0 1 0
0 0 1









Ä1

Ä2

Ä3





+ b





(
√
2− 1)2 (

√
2− 1) −1

(
√
2− 1) 1 −(

√
2 + 1)

−1 −(
√
2 + 1) (

√
2 + 1)2









Ȧ1

Ȧ2

Ȧ3





+ k





2−
√
2 0 0

0 2 0

0 0 2 +
√
2









A1

A2

A3



 = 0. (23)
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While the mass and stiffness matrix remain diagonal, the
damping now fully couples each mode of the system, al-
lowing for energy to be not only dissipated but dispersed
throughout the modes of the structure. Note that while
this example essentially describes a simple change of vari-
ables from physical to modal coordinates in the damped
system, it serves to illustrate the methodology. In what fol-
lows, this methodology is combined with a novel description
of the interface forces δQi to develop a description of the
equations of motion for jointed structures.

3 DISTRIBUTED INTERFACE

We again consider the three degree-of-freedom system de-
scribed above, but in the presence of a mechanical joint.
The modal equations of motion for the monolithic structure
are identical to those listed in Eq. (16), and the presence of
a distributed interface can be incorporated in a straightfor-
ward manner provided the contact forces δQi are identified
appropriately. For this system, the contact forces can be
expressed as

QJ
1 =

[

0 QJ
]T

, QJ
2 =

[

−QJ
]T

,

QJ = QK + δQ.
(24)

Previous work by Miller and Quinn [20] studied a two-
sided interface model for the response of a one-dimensional
joint to external loading. The resulting model allowed for
a decoupling of the elastic and dissipative effects. The elas-
tic component of this model is equivalent to the monolithic
structure while the dissipative component reduces to a dis-
crete series-series Iwan model. In Quinn and Segalman [13],
the dissipative properties of this Iwan model were analyzed
and in the continuum limit the dissipation of the interface is
equivalent to that of an elastic rod sliding on a rough, rigid
foundation. From this, in the continuum limit the response
of the dissipative component to general loading conditions
can be developed in terms of the response to unidirectional
loading of the undeformed rod, identified as F = g(x). Fol-
lowing Masing’s hypothesis [21], if this unidirectional load-
ing curve is known, upon reversal of the loading direction
the force evolution follows

F (x) = F ⋆ − 2σ⋆ g

(

x− x⋆

2σ⋆

)

, (25)

where the displacement and loading at the reversal point
is identified as x⋆ and F ⋆ respectively and σ⋆ indicates the
sign of the loading direction. A representative hysteresis
curve for cyclic loading is shown in Figure 3. Note that the
initial tangent stiffness of this system is infinite, as is the
tangent stiffness upon load reversal.

(x⋆, F ⋆)

F

x

−2.0

−1.0

0.0

1.0

2.0

−2.0 −1.0 0.0 1.0 2.0

Figure 3: Illustrative hysteresis curve for cyclic loading. The
unidirectional loading curve is shown dotted.

In terms of the monolithic component, the contact force
is assumed to be

QK = k∆, (26)

where ∆ is the displacement across the interface and k rep-
resents the equivalent stiffness of the interface. In addition,
for the joint model of Miller and Quinn, we find that

QJ = g(ξ) = k w, ∆ = w + ξ, (27)

where w and ξ are internal displacements associated with
the elastic and dissipative components respectively and g(ξ)
is the unidirectional loading curve described above. Note
that the force across each of these decomposed elements is
identical and the total displacement ∆ equals the sum of
the individual component displacements, so that they can
be considered to be in series, as illustrated in Figure 4. From
this constitutive model for the interface

g(ξ) = k (∆− ξ). (28)

In addition, using Eq. (13) one finds that δQ = −k ξ (c.f.,
Eq. (18)). Finally, combining these expressions

g

(

−δQ

k

)

= k∆+ δQ. (29)

Solving for δQ describes the unidirectional loading curve of
the interface, which can then be used to determine the con-
stitutive model for the joint under arbitrary loading con-
ditions. In general, Eq. (29) cannot be solved in closed
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QJQJ

w ξ

∆

k g(ξ)

Figure 4: Interface constitutive framework.

form except under specific assumptions regarding the joint
response. For example, from Quinn and Segalman the uni-
directional loading response g can be expressed as

g(ξ) = F0

(

ξ

ℓ0

)
β

β+1

, (30)

where β is related to the distribution of the frictional inten-
sity (coefficient of friction multiplied by the normal trac-
tion) over the interface. Thus Eq. (29) is algebraic but
reduces to a quadratic equation only for β = 1, which cor-
responds to a uniform frictional intensity.

Note that if δQ = QJ − QK, the difference between
the joint and monolithic force, is small compared to the
monolithic force QK = k∆, then the term δQ on the right-
hand side of Eq. (29) can be neglected, so that

g

(

−δQ

k

)

∼ k∆, −→ δQ ∼ −k g−1(k∆). (31)

For the unidirectional loading given in Eq. (30), this reduces
to

δQ(∆) ∼ −(k ℓ0)

(

k∆

F0

)(1+β)/β

. (32)

Therefore the contribution of the interface to the modal
equations can be determined for arbitrary loading condi-
tions from this loading curve.

In terms of this expression for δQ, the damped equa-
tions of motion can be written as

mÄ1 − (
√
2− 1) δQ+ (2−

√
2) k A1 = 0, (33a)

mÄ2 − δQ+ 2 k A2 = 0, (33b)

mÄ3 + (
√
2 + 1) δQ+ (2 +

√
2) k A3 = 0. (33c)

In the description of the interface force the displacement
across the interface ∆ is written as

∆(t) = u3(t)− u2(t)

=
(

1−
√
2
)

A1(t) + (−1) A2(t) +
(

1 +
√
2
)

A3(t). (34)

Once again, the resulting equations of motion are coupled
only through the interface force δQ.

u1

t

u2

u3

−0.50

−0.25

0.00

0.25

0.50

Figure 5: Response of the 3-dof system with a mechanical
joint between masses 2 and 3; 0 ≤ t < 50. The initial
conditions excite only the second mode.

In Figure 5 the numerical simulation of this system
is shown with m = 1.00 and k = 4.00. In addition, the
interface parameters are chosen as

β = 1.00, ℓ0 = 10.00, F0 = 20.00. (35)

At t = 0 the conditions of the system are such that the
system initially responds in the second mode, so that

A1(0) = 0, A2(0) = 0, A3(0) = 0,

Ȧ1(0) = 0, Ȧ2(0) = 1.00, Ȧ3(0) = 0,
(36)

while the interface is initially undeformed. In the figure the
response of each mass is shown for 0 ≤ t < 50, reconstructed
from the equations of motion in modal form. The response
of the system decays due to the presence of the dissipation
at the mechanical joint. For comparison, if the interface
were not present, with these initial conditions the second
mass would remain stationary while u1 and u3 would move
out of phase with identical amplitudes.

In Figure 6 the corresponding hysteresis curve is shown
for this response. Recall that δQ represents the difference
between the interface force and the force arising from the
monolithic structure. Thus the overall shape of the hys-
teresis curves indicate that overall the joint has a softening
effect on the structure as compared to the monolithic sys-
tem.

The mechanical energy in each mode is defined as

Ei(t) =
Ȧ2

i (t)

2
+

ω2
i A

2
i (t)

2
. (37)
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δ
Q

∆

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Figure 6: Hysteresis curve.

For the undamped structural system or also one with pro-
portional damping, the modes are uncoupled. In addition,
for such systems the modal energy defined above decays ex-
ponentially. Even with general viscous damping, as consid-
ered in the initial example, the energy decay is, on average,
exponential, with slight fluctuations due to the mode cou-
pling. However, with the inclusion of the mechanical joint
the energy decay is no longer exponential. However, fol-
lowing recent work by Sapsis et al. [22] an equivalent time-
dependent decay rate can be identified through the decay of
the energy. For a decoupled mode with damping the modal
equation can be written as

Ä+ σ Ȧ+ ω2 A = 0, (38)

the mechanical energy decays as

Ė(t) = −σ Ȧ2(t). (39)

Define 〈z〉 as the time-averaged value of z over one cycle of
motion, so that

〈z〉 ≡ 1

T

∫ T

0

z(t) dt. (40)

For a system with light damping, the mechanical energy
varies slowly, so that 〈Ȧ2〉 = 〈ω2 A2〉 and 〈E〉 = 〈Ȧ2〉.
Therefore the average mechanical energy evolves as

〈Ė〉 = −σ 〈Ei〉. (41)

For linear damping, the slope of log〈E〉 when viewed on a
log-linear plot is constant and equal to −σ. In the presence

of nonlinear damping, the slope of log〈E〉 is no longer con-
stant. However, an equivalent instantaneous decay rate of
the system can be identified as the instantaneous slope of
this plot and σ becomes a function of time. The slope of
log〈E〉 is calculated by fitting a polynomial to this plot to
represent the time-average, and then explicitly calculating
the derivative.

As seen in Figure 7a, when the evolution of Ei is shown
on a log-linear scale, the decay is not a straight line, as it
would be for linear damping. Note that the response is dom-
inated by the second mode so that E2 is several orders of
magnitude larger than that of the remaining modes. More-
over, its decay is relatively smooth, in contrast to the values
of E1 and E3 which fluctuate due to the additional coupling
and energy exchange between the modes.

In Figure 7b the identified exponential decay rate of the
second mode, defined as σ2, is shown versus time. Clearly,
the exponential decay rate is not constant. Instead, the
equivalent damping decreases with the amplitude of the re-
sponse. The initial decay of the second mode (0 < t < 10)
can be attributed in part to the transfer of energy to the
(initially) unexcited structural modes, due to the mode cou-
pling introduced by the interface. Then, for longer times
(t > 10) the damping within the interface becomes the dom-
inant source of the nonlinear energy dissipation.

Several recent efforts to incorporate interfacial damp-
ing discretize the mechanical joint [8, 12, 15, 19, 23], includ-
ing the series-series Iwan modeling on which this approach
is based [20]. However, as the minimum length scale of
the interface model decreases, the resulting computational
effort required for its solution grows. For several of these
efforts a reduced-order model is then developed within the
interface to reduce the computational effort required by the
initial representation of the dissipation. In contrast, this
simulation uses the continuum approximation for the inter-
face damping of an elastic rod, and suffers no increase in
computational effort arising from time discretization refine-
ment, although in the present model the time at which slip
reversals occur must be accurately calculated. In simple
tests the monolithic system took 0.86 s of cpu time while
the jointed structure required 1.42 s of cpu time for a simu-
lation of 50 time units.

4 CONCLUSIONS

This work has developed a compact form of the equations of
motion for structural systems with isolated nonlinearities,
when written in terms of the linear modal coordinates. As
applied to the problem of a discrete three-mass system as
considered by Segalman [19], the formulation is exact, in
that once the interface force is known the resulting equa-
tions of motion are exact. However, the constitutive be-
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Figure 7: Modal Energy; (a) Ei(t), (b) Identified exponential
decay rate, σ2.

havior of the interface must still be specified. This step
is accomplished referring back to Miller and Quinn [20], in
which a two-sided interface model was decoupled into an
elastic and dissipative component. In the present work the
continuum limit of the dissipative chain, equivalent to a
series-series Iwan model, is used together with Masing’s hy-
pothesis to describe the role of the mechanical joint on the
overall structural response. By relying on the continuum
dissipative model, the resulting simulation is computation-
ally efficient and is described in terms of joint parameters
that can easily be related back to measurable quantities
such as the coefficient of friction.
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