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Abstract- In this paper we present a control-based model for 
control tasks that allows each control task to trigger itself 
optimizing computing resources and control performance. 
Using this model, at each control task instance execution, the 
executing instance informs the scheduler when the next 
instance should be executed. The next instance execution 
point in time is dynamically obtained as a function of the 
utilization factor and control performance. Preliminary 
results show that control activities, at run time, are able to 
define self-execution patterns that dynamically balance 
optimal levels of control performance and resource 
utilization. 
 

I. INTRODUCTION 

In real-time control systems, the objective of control 
activities (to control processes) and the objective of 
scheduling policies (to meet deadlines) are accomplished 
separately. This may derive in sub-optimal designs in 
terms of both control performance and resource utilization.  

On one hand, control activities optimize control 
performance regardless the computational demands of 
other tasks. In control design, a discrete-time controller is 
designed assuming a constant sampling period. In terms of 
task execution, that means that at run time the controller 
will execute demanding a constant processing capacity. 
Therefore, in the design process, it is not usually taken into 
account the possibility that the controller could take 
advantage of the processing capacity that may be released 
by other tasks. That is, the controller design does not allow 
increasing the execution rate to exploit available resources.  

 On the other hand, scheduling techniques optimize the 
use of resources regardless the dynamics of the control 
application. For instance, a periodic control tasks may not 
require the designed execution rate (processing capacity) if 
the controlled plant is in equilibrium. When a plant is in 
equilibrium, the contribution of each control task instance 
execution can be considered as useless. Its processing 
capacity could have been used by other tasks with higher 
processing capacity demands.    

To overcome these problems, we present a control-based 
model for control tasks in which computing resources and 
control performance are jointly considered. The model 
allows each control task to trigger itself: at each control 
task instance execution, the executing instance informs the 
scheduler when the next instance should be executed, thus 
adjusting at run time its timing constraints. The next 
instance execution point in time is dynamically obtained as 
a function of the utilization factor (global parameter) and 
control performance (local parameter)1. Consequently, we 

                                                 
1 The utilization factor of the system is obtained taken into 
account all tasks in the system. Therefore, it is a global parameter 
and affects all tasks. The control performance is obtained by each 
task from the corresponding controlled plant. Therefore, it is a 
local parameter and affects each task.   

could say that each control task acts as a co-scheduler, 
helping the scheduler at the scheduling decisions. Figure 1 
illustrates the operation of the whole system. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. System operation model 
 
Preliminary results show that control activities, at run 

time, are able to define self-execution patterns that 
dynamically balance optimal levels of control performance 
and resource utilization. 

The rest of the paper is organized as follows. In section 
II we discuss the state of the art. The problem formulation 
is given in section III. In section IV the self-triggered tasks 
model is developed. Preliminary simulations results are 
presented in section V. Finally, in section VI we conclude 
and point to future research work. 

 
II. STATE OF THE ART 

The model we present resembles the model presented in 
[3]. They propose to use feedback information from the 
controlled plants to take scheduling decisions. Specifically, 
all control tasks periods are proportionally enlarged or 
shorted at a given time instant as a function of the 
utilization factor. Therefore, they do not allow the 
exchange of processing capacity if the control application 
requires higher execution rates of specific tasks , as we do.  

The later can be achieved using the elastic model of [2]. 
In such model, the elastic coefficient of each task allows 
the scheduler change the task execution rate within 
specified ranges. The elastic coefficients are regarded as 
fixed parameters to be specified before run-time. The 
model we propose matches the elastic model if the elastic 
coefficient of each control task could be treated as a 
dynamic parameter, being a function of the resource 
utilization and control performance. 

 It should be stressed that the work we present derives 
from [6]. The authors point out that novel methods for 
control task scheduling in which scheduling decisions 
should depend on control performance and resource 
utilization are needed. 

 Some similarities may be identified between our model 
and event-based systems. In event-based systems the 
sampling period takes random values. The sampling period 
for our model varies, but there exist a slightly difference: 
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in event-based systems the next execution point in time is 
unknown; the suggested model in this paper deals with 
known future periods because they are a result of the 
model execution.  

 
III. PROBLEM FORMULATION 

For control tasks, the task period is given by the 
sampling period (hi) that has to balance the desired control 
performance and the feasible computational demand. The 
sampling period hi can be selected form a range of values 
(see [1] for further reading on the sampling period 
selection). Each possible choice has advantages and 
disadvantages. In short, a short period allows a quick 
reaction in front of perturbations (which is positive from a 
control point of view), but increases the processor’s load 
(which in negative from a resource utilization point of 
view). Using long periods decreases the processor’s load 
but may give poor response in front of perturbations.  

This demands models that can dynamically 
accommodate different values for the control task period. 
The model we present allows control tasks to have varying 
values for the period. The exact value for the period (at 
each control task instance execution) is dynamically 
adjusted depending on the controlled system status and the 
CPU load.   

 
IV. SELF-TRIGGERED TASK MODEL 

The main idea of the model we present is to use the 
common models that are used in the analysis and design of 
control systems. Concretely, we propose to use an 
extended state-space representation. State-space models 
allow us to describe the future response of a system, given 
the present state (characterized by the state variables), the 
excitation inputs and the equations describing its dynamics 
(see [1] for further reading on discrete-time state space 
models).  

The extension we suggest is to incorporate as new state 
variables the task period and the utilization factor. 
Therefore, we will be mixing the control behavior (already 
represented in the state space model) with the execution 
rate of the task and the processing demand. In the 
following subsections, step-by-step, we develop the model. 
 
A. Basic model 

Let us think on a closed loop system formed by a ball 
and beam, which is the plant to be controlled, and a control 
task that has to be executed on a processor and has to 
control the ball and beam. The ball and beam system has a 
motor that balances (by rotating movements) a beam in 
order to keep the ball (that can rotate freely along the 
beam) in the desired beam position [1]. The objective of 
the controller is to actuate on the motor to locate the ball in 
the desired position. To do so, at each sampling time, the 
controller takes the value of the position of the ball and the 
angle of the beam and generates the new angle for the 
beam that derives in the corresponding actuation on the 
motor. A linear discrete-time invariant state-space model 
[1] of the ball and beam is given in (1) 

 
              

(1) 
 

In equation (1), xk and yk (which are the state variables) 
represent the position of the ball and the beam angle at the 
k sampling instant. The first matrix (2x2 dimension), 
called system matrix, describes the dynamics of the ball 
and beam. The second matrix (2x1 dimensions), called 
input coefficient matrix, links the inputs U with the system 
dynamics. In both matrices, h  is the sampling period. U is 
the available vector of inputs; in our case it is the tension 
(1x1 dimensions) that we provide to the motor. The input 
can adopt positive and negative values, allowing the motor 
of the beam to rotate to both sides.   

Note that in the state space representation of the ball and 
beam, at each sampling instant, xk and yk vary according to 
the system dynamics and the input. However, h, the 
sampling period, which appears on the matrices as a result 
of the discretization process, has a constant value that has 
been chosen at the controller design stage. Recall that (3) is 
a discrete-time model obtained via discretization of the 
continuous-time model. Therefore, h has nothing to do 
with the system state, although it influences its dynamics. 

Recall that the state of the system can be directly related 
to control performance. For instance, a simple rule could 
be the smaller the norm of the state vector, the better the 
controlled system performance. In terms of the ball and 
beam: the smaller the deviation of the beam with respect to 
the horizontal position and the smaller the distance of the 
ball with respect to the desired location, the better the 
performance. Therefore, at each task instance execution, 
the added state variable determines the next task instance 
execution point in time as a function of control 
performance.  
 
B. First model modification 

As we stressed in section III, we want a model able to 
accommodate different values for the sampling period (i.e., 
the task period). The first extension we propose for the 
previous model allows us to have varying sampling periods 
according the controlled system dynamics. To do so, we 
extend the state representation of the system with a new 
state variable, the task period, hk, as represented in (2)2. 
Note that for the system in (2) a new control law giving the 
appropriate sequence of values for the input U is needed. 

 
 
 

(2) 
 
 
 
In (2), at each task instance execution, the task period 

will be changed according to the state of the system given 
by xk, yk and the new state variable hk. The dependency of 
this new variable with the others system variables is given 

                                                 
2 Note that hk+1 (and not hk) appears inside of the system and 
input matrices.  This is due to the solution of the system 
equations. In the non-extended model, the sampling period of the 
system and input matrices has no index (k+1 or k) because it is 
constant (h at the k instant and h at the k+1 instant have the same 
value). In the present model, since hk is a system variable that 
varies form instance execution to instance execution, it is 
necessary to distinguish in the matrices which is the appropriate k 
index.  
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by parameters a, ß and ? . Let’s discuss some properties of 
the extended model, depending on values of a, ß and ? : 

 
• If a,ß=0 and ? =1, then, for each k, hk+1=hk, and the 
system may be considered as the original given in (1). The 
control law that will give the sequence of inputs U can be 
obtained by classical controller design methods.  
• If a,ß=0 and and 0<? <1, the sampling period will be 
decreased at each instance execution, tending to 0, thus 
leading to a non real system.   
• If a,ß=0 and and ? ≥1, the sampling period will be 
increased at each instance execution, tending to ∞, thus 
violating the Shannon’s sampling theorem.  
• If a,ß?0 and zero and 0<? <1, we have a system with a 
variable period, each one depending on the previous 
system state.  In particular, each hk+1 value for the next task 
period depends on the previous one (? hk), with smooth 
transitions in period variations. The main problem of this 
combination is that the state space model becomes 
nonlinear (that is, a small change in the inputs may result 
in chaotic outputs), as we outline later in this section. 
Therefore, finding the adequate control law giving the 
appropriate sequence of inputs U will be a more difficult 
task (see for example [4]), if feasible.   
• If a,ß?0 and ? =0, we get a variable period system 
depending only on the original state variables. 
Consequently, the more quickly these variables move 
(angle and position), the faster the period changes, thus 
loosing the smooth transitions found in the previous case. 
This may result in values for the sampling periods  out of 
the permissible ranges (as we outlined in section III).  
• If a,ß?0 and ? ≥1, the evolution of the system will 
depend on the specific chosen values for a, ß and ? , which 
require a deeper analysis, out of the scope of this paper.   

 
From the extended model given by (5), three elements 

should be highlighted. Firstly, the system is nonlinear, 
since h is a state variable and it also appears multiplying to 
other state variables. Secondly, it would be possible to 
obtain negative values for the task period from the actual 
extended state space model. Considering only a theoretical 
view, this possibility means that the system should return 
to the past in order to modify already taken decisions. But 
this is clearly non-programmable in a real system. We 
could solve this problem by using the absolute value for 
the h in (2) at each task instance execution. This will 
guarantee that h will be always positive. Finally, it also 
have to be stressed that the system matrix in (2) includes 
an hk+1 at the k instant, which is an inconsistency. 
However, this can be easily solved by substituting the hk+1 
value for the expression hk+1=axk+ßyk+? hk, which is 
already known at the k instant. 

 
C. Second model modification 

Looking at the final model obtained in the previous 
section, two difficulties, beyond having a nonlinear model, 
can be identified. First, the absolute value operator makes 
the mathematical tractability of the model complex, 
because it implies using two symmetric models, one for 
positive values of h and the other for negative values. 
Second, the possible values that h may take are not 
bounded, due to the linear relation between h and the 

original state variables. Note that if the state variables take 
huge values, h will rapidly increase (and vice versa). 

To solve the previous problems, we suggest to bound 
the possible h values by introducing an appropriate 
function of the state variables, called h-function, instead of 
having a simple linear relation. In addition, taking 
advantage of the use of the h-function, we incorporate the 
utilization factor in the model, as a measure of the 
processing capacity. Recall that up to now, the model only 
related the varying period of the task with the original state 
variables (as a measure of control performance). In this 
new extension of the model (adding the h-function), 
expressed in (3), we will relate the period variation to the 
control performance as well as to the processing capacity.  

 
 
 

(3) 
 
 
 
In (3), ζ represents the utilization factor of the processor 

at the k instant and the h-function is given by ƒ(.). This 
new model is obtained as a natural extension of the 
previous one. In the previous section hk+1 was obtained as 
lineal combination of the other state variables. In the new 
extension hk+1 is obtained by an appropriate function of the 
state of the controlled system and the CPU load. Note that 
the goal of the h-function is to allow the task period to take 
values from a bounded range. This allows a grater variety 
of possibilities in the selection of how h changes at each 
moment. For instance, the same system with two different 
h-functions will result in very different behaviors in terms 
of CPU load and control performance. Note that choosing 
a specific h-function could facilitate system schedulability 
(this could be done either offline or even online) as well as 
improve control performance.  

It is important to point out that for the state space model 
given by (3), the analysis and design of a control law can 
be a complex task. However, it is possible to design 
control laws that guarantee the complete stability of the 
system around a desired working point. These techniques 
range from the system linearization [4] to the complex 
techniques of feedback linearization [7]. 

 
D. The selection of the h-function 

The selection of the h-function determines controlled 
system performance and CPU load. The most natural way 
for selecting the h-function is to translate into a 
mathematical function the following desired rule:  as the 
controlled system gets closer to the desired working point 
(equilibrium), the period should be as larger as possible, 
keeping Shannon limit (recall discussion of section III). If  
a perturbation appears on the system, bringing it away 
from the equilibrium point, the period should be decreased 
(to improve control performance) taking into account the 
available processing capacity. Mathematically, this can be 
accomplished by the h-function given by (4) 

 
      (4) 

 
Note that (4) has a negative exponential shape, with two 
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main parts. The fist part is the exponential function, which 
contributes to the h values taking only into account, 
measures of control performance. It allows each value to 
smoothly vary form an upper limit to a lower limit, if the 
exponent of the exponential function is kept positive. 
That’s why we suggest putting the square exponents over 
xk and yk to convert the possible negative values (of the 
state variables) into positive ones. Note that as we 
explained in section A, in this case, the state variables 
already are measure of control performance. Otherwise, the 
exponent should include the operation needed to measure 
the controlled system performance.  The second part, the 
function g(ζk), allows to correct the next value of h taking 
into account the processor’s utilization factor.  

Figure 2 shows possible ranges of h values obtained 
using  the h-function given by (4). The figure has two 
degrees of freedom: the control performance (horizontal 
axis) and the utilization factor (which would correspond to 
a perpendicular axis). The results are given according to 
the vertical axis, which are the possible values for the task 
period. When the control performance (understood as the 
system deviation with respect to the equilibrium point) 
decreases (the deviation increases), the values for the task 
period tend to short values, with the aim of quickly correct 
the deviation. In addition these values are increased as the 
load increases.  

 
 
 
 
 
 
 
 
 
 

Figure 2. Possible values for a  task period 
 

V. SIMULATION RESULTS 

Using the extended model (3), at each control task 
instance execution, the period selection is in consonance 
with all the elements that are involved in the control of the 
system and in the scheduling of the task set, thus 
facilitating the optimization of the whole system in terms 
of both control performance and resource utilization. The 
main goal of the presented model is that if several tasks are 
driven according to this model, the processing capacity can 
be dynamically balanced among them according to the 
controlled performance measured, as shown next. 

In Figure 3 we show the results of two ball and beam 
control tasks executing on a single processor. The control 
laws implemented in the two tasks have been calculated by 
means of linearization techniques. In Figure 3 we can 
observer 4 lines. The upper ones correspond to the 
sequences of values for each task period, and the lower 
ones correspond to the dynamics of each controlled 
system. The task period values take into account the 
utilization factor, which is injected as a simulation 
variable. At the beginning (left side of the figure), both 
systems are stable at the desired working point, so both 
have the same value for the execution period. 

When a perturbation affects system1, it deviates the 
system form the desired working point. This perturbation 

causes an immediate decrease of the task period 
controlling system 1 and an increase of the task period 
controlling 2. Therefore, the  exchange of the processing 
capacity among the two control tasks has taken place. 
Once system 1 is in equilibrium (before the perturbation 
arrival over system 2), task1 and task2 have again the same 
period. A similar processing capacity exchange occurs 
when system2 suffers a perturbation, but in inverse 
direction.  
 

 
 
 
 
 
 
 
Figure 3. Analysis of responses and periods enlargements. 
 
The delay observed between the perturbation arrival 

time and the first decrease in the task period is due to two 
factors. First, there is always an offset among the moment 
in which the perturbation takes place and the moment in 
which the task samples the system. In the worst case, this 
offset could be as big as the task period. Second, after the 
perturbation arrival time, the error is small and the 
decrease in the sampling period is not very significant. One 
period later, the error has increased and the decrease on the 
sampling period becomes more remarkable. 
 

VI. CONCLUSIONS 

In this paper we have presented the self-triggered task 
model that drives control task executions according to 
controlled system performance and available processing 
capacity. Specifically, the model allows control task to 
adjust their execution rate, acting as a co-scheduler. 

As we outlined, the main research issues behind this 
work is the analysis and design of the controller, which 
must give the appropriate inputs to drive the whole system 
with the desired behavior. 

 
REFERENCES  

[1] K.J. Åström and B. Wittenmark. Computer Controlled 
Systems. Third edition. Prentice Hall. 1997. 

[2] G. Buttatzzo, G. Lipari, M. Caccoamo, and L. Abeni, 
“Elastic Scheduling for Flexible Workload Management”. 
IEEE Trans. on Computers, 51:3, March 2002 

[3] A. Cervin, J. Eker, B. Bernhardsson, K.-E. Årzén 
“Feedback-Feedforward Scheduling of Control Tasks”, 
Real-Time Systems, 23:1, 2002. 

[4] Isidori, A. Nonlinear Control Systems. Spring Verlag, New 
York, 1989. 

[5] Leith, D.J., Shorten, R.N., Leithead, W.E., Mason, O., and 
Curran P. “Issues in the design of switched linear control 
system: A benchmark study”. Int. Journal of Adaptive 
Control and Signal Processing. 2003; 17:103-108 

[6] P. Marti, G. Fohler, K. Ramamritham, and J.M. Fuertes, 
“Improving Quality-of-Control using Flexible Timing 
Constraints: Metric and Scheduling Issues.” In Real-Time 
Systems Symposium, Dec. 2002.  

[7] Nijmeier, H. “Nonlinear Dynamical Control systems”, 
Springer-Verlag, 1990. 

 

System 
responses  

Time 

Task1 

Task2 

Task2 

Task1 


