
The Self Triggered Task Model for Real-Time Control Systems

Manel Velasco, Pau Martí and Josep M. Fuertes
Dept. of Automatic Control and Computer Engineering

Technical University of Catalonia
Pau Gargallo 5, 08028 Barcelona, Spain

{manel.velasco, pau.marti, josep.m.fuertes}@.upc.es

Abstract- In this paper we present a control-based model for
control tasks that allows each control task to trigger itself
optimizing computing resources and control performance.
Using this model, at each control task instance execution, the
executing instance informs the scheduler when the next
instance should be executed. The next instance execution
point in time is dynamically obtained as a function of the
utilization factor and control performance. Preliminary
results show that control activities, at run time, are able to
define self-execution patterns that dynamically balance
optimal levels of control performance and resource
utilization.

I. INTRODUCTION

In real-time control systems, the objective of control
activities (to control processes) and the objective of
scheduling policies (to meet deadlines) are accomplished
separately. This may derive in sub-optimal designs in
terms of both control performance and resource utilization.

On one hand, control activities optimize control
performance regardless the computational demands of
other tasks. In control design, a discrete-time controller is
designed assuming a constant sampling period. In terms of
task execution, that means that at run time the controller
will execute demanding a constant processing capacity.
Therefore, in the design process, it is not usually taken into
account the possibility that the controller could take
advantage of the processing capacity that may be released
by other tasks. That is, the controller design does not allow
increasing the execution rate to exploit available resources.

 On the other hand, scheduling techniques optimize the
use of resources regardless the dynamics of the control
application. For instance, a periodic control tasks may not
require the designed execution rate (processing capacity) if
the controlled plant is in equilibrium. When a plant is in
equilibrium, the contribution of each control task instance
execution can be considered as useless. Its processing
capacity could have been used by other tasks with higher
processing capacity demands.

To overcome these problems, we present a control-based
model for control tasks in which computing resources and
control performance are jointly considered. The model
allows each control task to trigger itself: at each control
task instance execution, the executing instance informs the
scheduler when the next instance should be executed, thus
adjusting at run time its timing constraints. The next
instance execution point in time is dynamically obtained as
a function of the utilization factor (global parameter) and
control performance (local parameter)1. Consequently, we

1 The utilization factor of the system is obtained taken into
account all tasks in the system. Therefore, it is a global parameter
and affects all tasks. The control performance is obtained by each
task from the corresponding controlled plant. Therefore, it is a
local parameter and affects each task.

could say that each control task acts as a co-scheduler,
helping the scheduler at the scheduling decisions. Figure 1
illustrates the operation of the whole system.

Figure 1. System operation model

Preliminary results show that control activities, at run

time, are able to define self-execution patterns that
dynamically balance optimal levels of control performance
and resource utilization.

The rest of the paper is organized as follows. In section
II we discuss the state of the art. The problem formulation
is given in section III. In section IV the self-triggered tasks
model is developed. Preliminary simulations results are
presented in section V. Finally, in section VI we conclude
and point to future research work.

II. STATE OF THE ART

The model we present resembles the model presented in
[3]. They propose to use feedback information from the
controlled plants to take scheduling decisions. Specifically,
all control tasks periods are proportionally enlarged or
shorted at a given time instant as a function of the
utilization factor. Therefore, they do not allow the
exchange of processing capacity if the control application
requires higher execution rates of specific tasks , as we do.

The later can be achieved using the elastic model of [2].
In such model, the elastic coefficient of each task allows
the scheduler change the task execution rate within
specified ranges. The elastic coefficients are regarded as
fixed parameters to be specified before run-time. The
model we propose matches the elastic model if the elastic
coefficient of each control task could be treated as a
dynamic parameter, being a function of the resource
utilization and control performance.

 It should be stressed that the work we present derives
from [6]. The authors point out that novel methods for
control task scheduling in which scheduling decisions
should depend on control performance and resource
utilization are needed.

 Some similarities may be identified between our model
and event-based systems. In event-based systems the
sampling period takes random values. The sampling period
for our model varies, but there exist a slightly difference:

Feedback: control performance

Feedback: Utilization factor

Sc
he

du
le

r

Control tasks
execution

CPU

Plant1

Plant2

PlantN

T
as

ks
 ti

m
in

g
co

ns
tra

in
ts

in event-based systems the next execution point in time is
unknown; the suggested model in this paper deals with
known future periods because they are a result of the
model execution.

III. PROBLEM FORMULATION

For control tasks, the task period is given by the
sampling period (hi) that has to balance the desired control
performance and the feasible computational demand. The
sampling period hi can be selected form a range of values
(see [1] for further reading on the sampling period
selection). Each possible choice has advantages and
disadvantages. In short, a short period allows a quick
reaction in front of perturbations (which is positive from a
control point of view), but increases the processor’s load
(which in negative from a resource utilization point of
view). Using long periods decreases the processor’s load
but may give poor response in front of perturbations.

This demands models that can dynamically
accommodate different values for the control task period.
The model we present allows control tasks to have varying
values for the period. The exact value for the period (at
each control task instance execution) is dynamically
adjusted depending on the controlled system status and the
CPU load.

IV. SELF-TRIGGERED TASK MODEL

The main idea of the model we present is to use the
common models that are used in the analysis and design of
control systems. Concretely, we propose to use an
extended state-space representation. State-space models
allow us to describe the future response of a system, given
the present state (characterized by the state variables), the
excitation inputs and the equations describing its dynamics
(see [1] for further reading on discrete-time state space
models).

The extension we suggest is to incorporate as new state
variables the task period and the utilization factor.
Therefore, we will be mixing the control behavior (already
represented in the state space model) with the execution
rate of the task and the processing demand. In the
following subsections, step-by-step, we develop the model.

A. Basic model

Let us think on a closed loop system formed by a ball
and beam, which is the plant to be controlled, and a control
task that has to be executed on a processor and has to
control the ball and beam. The ball and beam system has a
motor that balances (by rotating movements) a beam in
order to keep the ball (that can rotate freely along the
beam) in the desired beam position [1]. The objective of
the controller is to actuate on the motor to locate the ball in
the desired position. To do so, at each sampling time, the
controller takes the value of the position of the ball and the
angle of the beam and generates the new angle for the
beam that derives in the corresponding actuation on the
motor. A linear discrete-time invariant state-space model
[1] of the ball and beam is given in (1)

(1)

In equation (1), xk and yk (which are the state variables)
represent the position of the ball and the beam angle at the
k sampling instant. The first matrix (2x2 dimension),
called system matrix, describes the dynamics of the ball
and beam. The second matrix (2x1 dimensions), called
input coefficient matrix, links the inputs U with the system
dynamics. In both matrices, h is the sampling period. U is
the available vector of inputs; in our case it is the tension
(1x1 dimensions) that we provide to the motor. The input
can adopt positive and negative values, allowing the motor
of the beam to rotate to both sides.

Note that in the state space representation of the ball and
beam, at each sampling instant, xk and yk vary according to
the system dynamics and the input. However, h, the
sampling period, which appears on the matrices as a result
of the discretization process, has a constant value that has
been chosen at the controller design stage. Recall that (3) is
a discrete-time model obtained via discretization of the
continuous-time model. Therefore, h has nothing to do
with the system state, although it influences its dynamics.

Recall that the state of the system can be directly related
to control performance. For instance, a simple rule could
be the smaller the norm of the state vector, the better the
controlled system performance. In terms of the ball and
beam: the smaller the deviation of the beam with respect to
the horizontal position and the smaller the distance of the
ball with respect to the desired location, the better the
performance. Therefore, at each task instance execution,
the added state variable determines the next task instance
execution point in time as a function of control
performance.

B. First model modification

As we stressed in section III, we want a model able to
accommodate different values for the sampling period (i.e.,
the task period). The first extension we propose for the
previous model allows us to have varying sampling periods
according the controlled system dynamics. To do so, we
extend the state representation of the system with a new
state variable, the task period, hk, as represented in (2)2.
Note that for the system in (2) a new control law giving the
appropriate sequence of values for the input U is needed.

(2)

In (2), at each task instance execution, the task period

will be changed according to the state of the system given
by xk, yk and the new state variable hk. The dependency of
this new variable with the others system variables is given

2 Note that hk+1 (and not hk) appears inside of the system and
input matrices. This is due to the solution of the system
equations. In the non-extended model, the sampling period of the
system and input matrices has no index (k+1 or k) because it is
constant (h at the k instant and h at the k+1 instant have the same
value). In the present model, since hk is a system variable that
varies form instance execution to instance execution, it is
necessary to distinguish in the matrices which is the appropriate k
index.

2

1

1

1
2

0 1
2

k k

k k

hx xh
U

y y
h

+

+

= ⋅ +

⋅

 
                   

2
1

1 1

1 1

1

1 0 2
0 1 0 2

0

k

k k k

k k k

k k

h
x h x

y y h U

h hα β ω

+

+ +

+ +

+

= ⋅ + ⋅

 
                                  
  

2

1

1

1

(, , ,)
(, , ,) 2

2 (, , ,)

(, , ,) 0

k k k

k k k k k k

k k k k k

k k k k

f x y h
x x y f x y h

y y f x y h U

h f x y h

ζ
ζ

ζ

ζ

+

+

+

+ ⋅

= + ⋅

 
    
                   
  

2 2()
1 (, , ,) ()k kx y

k k k k k kh f x y h geζ ζ− +
+ = =

by parameters a, ß and ? . Let’s discuss some properties of
the extended model, depending on values of a, ß and ? :

• If a,ß=0 and ? =1, then, for each k, hk+1=hk, and the
system may be considered as the original given in (1). The
control law that will give the sequence of inputs U can be
obtained by classical controller design methods.
• If a,ß=0 and and 0<? <1, the sampling period will be
decreased at each instance execution, tending to 0, thus
leading to a non real system.
• If a,ß=0 and and ? ≥1, the sampling period will be
increased at each instance execution, tending to ∞, thus
violating the Shannon’s sampling theorem.
• If a,ß?0 and zero and 0<? <1, we have a system with a
variable period, each one depending on the previous
system state. In particular, each hk+1 value for the next task
period depends on the previous one (? hk), with smooth
transitions in period variations. The main problem of this
combination is that the state space model becomes
nonlinear (that is, a small change in the inputs may result
in chaotic outputs), as we outline later in this section.
Therefore, finding the adequate control law giving the
appropriate sequence of inputs U will be a more difficult
task (see for example [4]), if feasible.
• If a,ß?0 and ? =0, we get a variable period system
depending only on the original state variables.
Consequently, the more quickly these variables move
(angle and position), the faster the period changes, thus
loosing the smooth transitions found in the previous case.
This may result in values for the sampling periods out of
the permissible ranges (as we outlined in section III).
• If a,ß?0 and ? ≥1, the evolution of the system will
depend on the specific chosen values for a, ß and ? , which
require a deeper analysis, out of the scope of this paper.

From the extended model given by (5), three elements

should be highlighted. Firstly, the system is nonlinear,
since h is a state variable and it also appears multiplying to
other state variables. Secondly, it would be possible to
obtain negative values for the task period from the actual
extended state space model. Considering only a theoretical
view, this possibility means that the system should return
to the past in order to modify already taken decisions. But
this is clearly non-programmable in a real system. We
could solve this problem by using the absolute value for
the h in (2) at each task instance execution. This will
guarantee that h will be always positive. Finally, it also
have to be stressed that the system matrix in (2) includes
an hk+1 at the k instant, which is an inconsistency.
However, this can be easily solved by substituting the hk+1
value for the expression hk+1=axk+ßyk+? hk, which is
already known at the k instant.

C. Second model modification

Looking at the final model obtained in the previous
section, two difficulties, beyond having a nonlinear model,
can be identified. First, the absolute value operator makes
the mathematical tractability of the model complex,
because it implies using two symmetric models, one for
positive values of h and the other for negative values.
Second, the possible values that h may take are not
bounded, due to the linear relation between h and the

original state variables. Note that if the state variables take
huge values, h will rapidly increase (and vice versa).

To solve the previous problems, we suggest to bound
the possible h values by introducing an appropriate
function of the state variables, called h-function, instead of
having a simple linear relation. In addition, taking
advantage of the use of the h-function, we incorporate the
utilization factor in the model, as a measure of the
processing capacity. Recall that up to now, the model only
related the varying period of the task with the original state
variables (as a measure of control performance). In this
new extension of the model (adding the h-function),
expressed in (3), we will relate the period variation to the
control performance as well as to the processing capacity.

(3)

In (3), ζ represents the utilization factor of the processor

at the k instant and the h-function is given by ƒ(.). This
new model is obtained as a natural extension of the
previous one. In the previous section hk+1 was obtained as
lineal combination of the other state variables. In the new
extension hk+1 is obtained by an appropriate function of the
state of the controlled system and the CPU load. Note that
the goal of the h-function is to allow the task period to take
values from a bounded range. This allows a grater variety
of possibilities in the selection of how h changes at each
moment. For instance, the same system with two different
h-functions will result in very different behaviors in terms
of CPU load and control performance. Note that choosing
a specific h-function could facilitate system schedulability
(this could be done either offline or even online) as well as
improve control performance.

It is important to point out that for the state space model
given by (3), the analysis and design of a control law can
be a complex task. However, it is possible to design
control laws that guarantee the complete stability of the
system around a desired working point. These techniques
range from the system linearization [4] to the complex
techniques of feedback linearization [7].

D. The selection of the h-function

The selection of the h-function determines controlled
system performance and CPU load. The most natural way
for selecting the h-function is to translate into a
mathematical function the following desired rule: as the
controlled system gets closer to the desired working point
(equilibrium), the period should be as larger as possible,
keeping Shannon limit (recall discussion of section III). If
a perturbation appears on the system, bringing it away
from the equilibrium point, the period should be decreased
(to improve control performance) taking into account the
available processing capacity. Mathematically, this can be
accomplished by the h-function given by (4)

 (4)

Note that (4) has a negative exponential shape, with two

Perturbation
Over system 1

Reactions Reactions

Perturbation
Over system 2

main parts. The fist part is the exponential function, which
contributes to the h values taking only into account,
measures of control performance. It allows each value to
smoothly vary form an upper limit to a lower limit, if the
exponent of the exponential function is kept positive.
That’s why we suggest putting the square exponents over
xk and yk to convert the possible negative values (of the
state variables) into positive ones. Note that as we
explained in section A, in this case, the state variables
already are measure of control performance. Otherwise, the
exponent should include the operation needed to measure
the controlled system performance. The second part, the
function g(ζk), allows to correct the next value of h taking
into account the processor’s utilization factor.

Figure 2 shows possible ranges of h values obtained
using the h-function given by (4). The figure has two
degrees of freedom: the control performance (horizontal
axis) and the utilization factor (which would correspond to
a perpendicular axis). The results are given according to
the vertical axis, which are the possible values for the task
period. When the control performance (understood as the
system deviation with respect to the equilibrium point)
decreases (the deviation increases), the values for the task
period tend to short values, with the aim of quickly correct
the deviation. In addition these values are increased as the
load increases.

Figure 2. Possible values for a task period

V. SIMULATION RESULTS

Using the extended model (3), at each control task
instance execution, the period selection is in consonance
with all the elements that are involved in the control of the
system and in the scheduling of the task set, thus
facilitating the optimization of the whole system in terms
of both control performance and resource utilization. The
main goal of the presented model is that if several tasks are
driven according to this model, the processing capacity can
be dynamically balanced among them according to the
controlled performance measured, as shown next.

In Figure 3 we show the results of two ball and beam
control tasks executing on a single processor. The control
laws implemented in the two tasks have been calculated by
means of linearization techniques. In Figure 3 we can
observer 4 lines. The upper ones correspond to the
sequences of values for each task period, and the lower
ones correspond to the dynamics of each controlled
system. The task period values take into account the
utilization factor, which is injected as a simulation
variable. At the beginning (left side of the figure), both
systems are stable at the desired working point, so both
have the same value for the execution period.

When a perturbation affects system1, it deviates the
system form the desired working point. This perturbation

causes an immediate decrease of the task period
controlling system 1 and an increase of the task period
controlling 2. Therefore, the exchange of the processing
capacity among the two control tasks has taken place.
Once system 1 is in equilibrium (before the perturbation
arrival over system 2), task1 and task2 have again the same
period. A similar processing capacity exchange occurs
when system2 suffers a perturbation, but in inverse
direction.

Figure 3. Analysis of responses and periods enlargements.

The delay observed between the perturbation arrival

time and the first decrease in the task period is due to two
factors. First, there is always an offset among the moment
in which the perturbation takes place and the moment in
which the task samples the system. In the worst case, this
offset could be as big as the task period. Second, after the
perturbation arrival time, the error is small and the
decrease in the sampling period is not very significant. One
period later, the error has increased and the decrease on the
sampling period becomes more remarkable.

VI. CONCLUSIONS

In this paper we have presented the self-triggered task
model that drives control task executions according to
controlled system performance and available processing
capacity. Specifically, the model allows control task to
adjust their execution rate, acting as a co-scheduler.

As we outlined, the main research issues behind this
work is the analysis and design of the controller, which
must give the appropriate inputs to drive the whole system
with the desired behavior.

REFERENCES

[1] K.J. Åström and B. Wittenmark. Computer Controlled
Systems. Third edition. Prentice Hall. 1997.

[2] G. Buttatzzo, G. Lipari, M. Caccoamo, and L. Abeni,
“Elastic Scheduling for Flexible Workload Management”.
IEEE Trans. on Computers, 51:3, March 2002

[3] A. Cervin, J. Eker, B. Bernhardsson, K.-E. Årzén
“Feedback-Feedforward Scheduling of Control Tasks”,
Real-Time Systems, 23:1, 2002.

[4] Isidori, A. Nonlinear Control Systems. Spring Verlag, New
York, 1989.

[5] Leith, D.J., Shorten, R.N., Leithead, W.E., Mason, O., and
Curran P. “Issues in the design of switched linear control
system: A benchmark study”. Int. Journal of Adaptive
Control and Signal Processing. 2003; 17:103-108

[6] P. Marti, G. Fohler, K. Ramamritham, and J.M. Fuertes,
“Improving Quality-of-Control using Flexible Timing
Constraints: Metric and Scheduling Issues.” In Real-Time
Systems Symposium, Dec. 2002.

[7] Nijmeier, H. “Nonlinear Dynamical Control systems”,
Springer-Verlag, 1990.

System
responses

Time

Task1

Task2

Task2

Task1

