
Complete Finite Prefixes of Symbolic Unfoldings

of Safe Time Petri Nets

Thomas Chatain1 and Claude Jard2

1 IRISA/INRIA,
Campus de Beaulieu, F-35042 Rennes cedex, France

Thomas.Chatain@irisa.fr

2 IRISA/ENS Cachan-Bretagne,
Campus de Ker Lann, F-35170 Bruz, France

Claude.Jard@bretagne.ens-cachan.fr

Abstract. Time Petri nets have proved their interest in modeling real-
time concurrent systems. Their usual semantics is defined in term of firing
sequences, which can be coded in a (symbolic and global) state graph,
computable from a bounded net. An alternative is to consider a “par-
tial order” semantics given in term of processes, which keep explicit the
notions of causality and concurrency without computing arbitrary inter-
leavings. In ordinary place/transition bounded nets, it has been shown
for many years that the whole set of processes can be finitely represented
by a prefix of what is called the “unfolding”. This paper defines such a
prefix for safe time Petri nets. It is based on a symbolic unfolding of the
net, using a notion of “partial state”.

1 Introduction and Related Work

Time Petri nets have proved their interest in modeling real-time concurrent
systems. Their usual semantics is defined in term of firing sequences, which
can be coded in a (symbolic and global) state graph, computable if the net is
bounded. Although efficient for many verification problems, the main drawback
of this approach is to mask the concurrent aspects of the model behind the
explicit computation of the possible interleavings of actions, leading to the usual
state explosion problem. This can be circumvented by the use of heuristics,
named as “partial-order reductions”. The idea is to explore only the subset
of states and transitions that are relevant for properties that are not concerned
with commutation of concurrent actions. The main difficulty is the identification
of concurrency among the symbolic representation of states. Examples of this
approach can be found in [1,2].

An alternative is to consider a “partial order” semantics given in term of
processes, which keep explicit the notions of causality and concurrency without
computing arbitrary interleavings. This is our framework. The goal is not only
to avoid the cost of having in memory all the interleavings when performing ver-
ification, but also to have a graphical representation of the timed processes. This
opens new perspectives to other applications like supervision and diagnosis [3].

The first definition of a (denotational) partial-order semantics for time Petri

nets was given in 1996 by Aura and Lilius [4,5], who formally defined the timed
processes of a net. The question of a finite representation of the whole set of
timed processes was left open. To do that, two approaches have been explored.
The first one is limited to the discrete time framework. It is based on a modeling
of clock ticks, which defines an embedding of time Petri nets into ordinary Petri
nets. In ordinary place/transition bounded nets, it has been shown for many
years that the whole set of processes can be finitely represented by a prefix of
what is called the “unfolding” [6,7]. The drawback is the explosive nature of the
transformation. The advantage is to recover the unfolding technology and the
existence of a complete finite prefix. This is the historical approach of [8,9], who
defined for the first time the notion of finite prefix for time Petri nets.

We follow a second approach, which definitely uses a symbolic framework
to code the time constraints associated with the timed processes. It can deal
with dense time and is in the continuation of Berthomieu’s works on symbolic
representations of the global states of time Petri nets [10]. The first contribution
in that direction was made in 1996 by Semenov [11], who has considered a
restrictive subclass of safe time Petri nets, named “time independent choice
nets”. It is a very simple case where the timed aspects do not actually introduce
so many constraints. The interest is that the whole set of timed processes can
be simply represented as a subset of the unfolding of the underlying ordinary
Petri net, by copying the interval constraints. The general case is much more
complicated. We have shown in [3] that a new definition of unfoldings is required.
These use symbolic constraints on the possible firing dates of transitions, and
are based on a notion of “partial state”, richer than the usual marking of the
input places. This is required by the fact that firing a timed transition cannot be
decided locally, and may depend on the dates of arrival of tokens in places feeding
transitions that are in conflict (this situation is often called “confusion” in Petri
nets). [3] presented this new notion of unfolding and its application for diagnosing
timed distributed systems. In this paper, we show that there also exists a notion
of complete and finite prefix of this unfolding. It opens new perspectives in the
verification of timed systems, based on a time Petri net modeling.

The rest of the paper is organized as follows. Section 2 presents the safe
time Petri net model, with their interleaving semantics and their partial order
representation given in term of processes. The concurrent operational semantics
and the merging of the induced extended processes into a symbolic unfolding is
described in Section 3. Section 4 is dedicated to its finite representation using
the notion of complete finite prefix, before conclusion.

2 Safe Time Petri Nets

2.1 Definition

Notations. We denote f−1 the inverse of a bijection f . We denote f|A the
restriction of a mapping f to a set A. The restriction has higher priority than
the inverse: f−1

|A = (f|A)−1. We denote ◦ the usual composition of functions. Q

denotes the set of nonnegative rational numbers.

Time Petri nets were introduced in [12]. A time Petri net is a tuple
〈P, T, pre , post , efd , lfd 〉 where P and T are finite sets of places and transitions
respectively, pre and post map each transition t ∈ T to its preset often denoted
•t

def

= pre(t) ⊆ P (•t 6= ∅) and its postset often denoted t•
def

= post(t) ⊆ P ;
efd : T −→ Q and lfd : T −→ Q ∪ {∞} associate the earliest firing delay efd(t)
and latest firing delay lfd (t) with each transition t. A time Petri net is represented
as a graph with two types of nodes: places (circles) and transitions (rectangles).
The closed interval [efd(t), lfd (t)] is written near each transition (see Figure 1).

2.2 Interleaving Semantics

A state of a time Petri net is given by a triple 〈M, dob , θ〉, where M ⊆ P is a
marking denoted with tokens (thick dots), θ ∈ Q is its date and dob : M −→ Q
associates a date of birth dob(p) ≤ θ with each token (marked place) p ∈ M .
A transition t ∈ T is enabled in the state 〈M, dob, θ〉 if all of its input places
are marked: •t ⊆ M . Its date of enabling doe(t) is the date of birth of the

youngest token in its input places: doe(t)
def

= maxp∈•t dob(p). All the time Petri
nets we consider in this article are safe, i.e. in each reachable state 〈M, dob, θ〉,
if a transition t is enabled in 〈M, dob, θ〉, then t• ∩ (M \ •t) = ∅.

A time Petri net starts in an initial state 〈M0, dob0, θ0〉, which is given by
the initial marking M0 and the initial date θ0. Initially, all the tokens carry the

date θ0 as date of birth: for all p ∈ M0, dob0(p)
def

= θ0.
The transition t can fire at date θ′ ≥ θ from state 〈M, dob , θ〉, if:

– t is enabled: •t ⊆M ;
– the minimum delay is reached: θ′ ≥ doe(t) + efd (t);
– the enabled transitions do not overtake the maximum delays:

∀t′ ∈ T •t′ ⊆M =⇒ θ′ ≤ doe(t′) + lfd (t′).

The firing of t at date θ′ leads to the state 〈(M \ •t) ∪ t•, dob ′, θ′〉, where

dob ′(p)
def

= dob(p) if p ∈M \ •t and dob ′(p)
def

= θ′ if p ∈ t•.
We call firing sequence starting from the initial state S0 any sequence

((t1, θ1), . . . , (tn, θn)) where there exist states S1, . . . , Sn such that for all i ∈
{1, . . . , n}, firing ti from Si−1 at date θi is possible and leads to Si. The empty
firing sequence is denoted ε.

Finally we assume that time diverges: when infinitely many transitions fire,
time necessarily diverges to infinity.

In the initial state of the net of Figure 1, p1 and p2 are marked and their
date of birth is 0. t1 and t2 are enabled and their date of enabling is the initial
date 0. t2 can fire in the initial state at any time between 1 and 2. Choose time
1.3. After this firing, p1 and p4 are marked, t1 is the only enabled transition
and it has already waited 1.3 time unit. t1 can fire at any time θ, provided it is
greater than 1.3. Let t1 fire at time 3. p3 and p4 are marked in the new state,
and transitions t3 and t0 are enabled, and their date of enabling is 3 because
they have just been enabled by the firing of t1. To fire, t3 would have to wait
2 time units. But transition t0 cannot wait at all. So t0 will necessarily fire (at
time 3), and t3 cannot fire.

p1 p2

p3 p4

p5

t0[0, 0]t1[0,∞[t2 [1, 2]

t3 [2, 2]

σ1

def

= ((t2, 1.3), (t1, 3), (t0, 3), (t1, 3), (t2, 5), (t3, 5))

σ2

def

= ((t2, 1.3), (t1, 3), (t0, 3), (t1, 3), (t3, 5), (t2, 5))

e1

def

= ({(⊥, p1)}, t1) e2

def

= ({(⊥, p2)}, t2)

e3

def

= ({(e1, p3), (e2, p4)}, t0) e4

def

= ({(e3, p1)}, t1)

e5

def

= ({(e3, p2)}, t2) e6

def

= ({(e4, p3)}, t3)

-⊥
(0)

p1 p2

t1
e1

(3)

p3

t2
e2

(1.3)

p4

t0
e3

(3)

p1 p2

t1
e4

(3)

p3

t2
e5

(5)

p4

t3
e6

(5)

p5

Fig. 1. A safe time Petri net and two of its firing sequences σ1 and σ2 starting at date

0 from the marking M0

def

= {p1, p2}, that lead to the same process, represented on the
right, with the date of the events in parentheses.

Remark. The semantics of time Petri nets are often defined in a slightly differ-
ent way: the state of the net is given as a pair 〈M, I〉, where M is the marking,
and I maps each enabled transition t to the delay that has elapsed since it was
enabled, that is θ − doe(t) with our notations. It is more convenient for us to
attach time information to the tokens of the marking than to the enabled tran-
sitions. We have chosen the date of birth of the tokens rather than their age,
because we want to make the impact of the firing of transitions as local as pos-
sible. And the age of each token in the marking must be updated each time a
transition t fires, whereas the date of birth has to be set only for the tokens that
are created by t. Furthermore, usual semantics often deal with the delay between
the firing of two consecutive transitions. In this paper we use the absolute firing
date of the transitions instead. This fits better to our approach in which we are
not interested in the total ordering of the events.

2.3 Partial Order Representation of the Runs: Processes

Processes are a way to represent an execution of a Petri net so that the actions
(called events) are not totally ordered like in firing sequences: only causality
orders the events. We will define the mapping Π from the firing sequences of
a safe time Petri net to their partial order representation as processes. These
processes are those described in [4]. We use a canonical coding like in [13].

Each process will be a pair x
def

= 〈E,Θ〉, where E is a set of events, and
Θ : E −→ Q maps each event to its firing date. Θ is sometimes represented as a
set of pairs (e,Θ(e)). Each event e is a pair (•e, τ(e)) that codes an occurrence of

the transition τ(e) in the process. •e is a set of pairs b
def

= (•b, place(b)) ∈ E ×P .
Such a pair is called a condition and refers to the token that has been created by

the event •b in the place place(b). We say that the event e
def

= (•e, τ(e)) consumes
the conditions in •e. Symmetrically the set {(e, p) | p ∈ τ(e)

•} of conditions that
are created by e is denoted e•.

For all set B of conditions, we denote Place(B)
def

= {place(b) | b ∈ B}, and
when the restriction of place to B is injective, we denote place−1

|B its inverse,

and for all P ⊆ Place(B), Place−1
|B (P)

def

= {place−1
|B (p) | p ∈ P}. The set of

conditions that remain at the end of the process 〈E,Θ〉 (meaning that they
have been created by an event of E, and no event of E has consumed them) is

↑(E)
def

=
⋃

e∈E e
• \

⋃

e∈E
•e (it does not depend on Θ).

The function Π that maps each firing sequence ((t1, θ1), . . . , (tn, θn)) to a
process is defined as follows:

– Π(ε)
def

= 〈{⊥}, {(⊥, θ0)}〉, where ⊥
def

= (∅, -) represents the initial event and
θ0 the initial date. Notice that the initial event does not actually represent
the firing of a transition, which explains the use of the special value - /∈ T .
For the same reason, the set of conditions that are created by ⊥ is defined

in a special way: ⊥• def

= {(⊥, p) | p ∈M0}.
– Π(((t1, θ1), . . . , (tn+1, θn+1)))

def

= 〈E ∪ {e}, Θ ∪ {(e, θn+1)}〉, where 〈E,Θ〉
def

=

Π(((t1, θ1), . . . , (tn, θn))) and the event e
def

= (Place−1
|↑(E)(

•tn+1), tn+1) repre-
sents the last firing of the sequence.

The set of all the processes obtained as the image by Π of the firing sequences
is denoted X .

We define the relation → on the events as: e→ e′ iff e• ∩ •e′ 6= ∅. The reflex-
ive transitive closure →∗ of → is called the causality relation. Two events of a
process that are not causally related are called concurrent. For all event e, we

denote dee
def

= {f ∈ E | f →∗ e}, and for all set E of events, dEe
def

=
⋃

e∈Edee.

Figure 1 shows two firing sequences that correspond to the same process. In
the representation of the process, the rectangles represent the events, and the
circles represent the conditions. An arrow from a condition b to an event e means
that b ∈ •e. An arrow from an event e to a condition b means that b ∈ e•.

3 Symbolic Unfoldings of Safe Time Petri Nets

3.1 Introduction

Symbolic unfoldings have already been addressed in the context of high-level
Petri nets [14] to reflect the genericity that appears in the model. In this section
we define the symbolic unfolding of time Petri nets, i.e. a compact structure that
contains all the processes and exhibits concurrency. When we build unfoldings,
we would like to be able to unfold seperately two parts of the system when these

two parts do not communicate, like the left part and the right part of the net of
Figure 1 when t1 and t2 fire. As opposed to untimed Petri nets, in a timed context
we accept that this may not yield proper processes but only what we will call
pre-processes, in which the different parts of the system may not have reached
the same date, provided the events that have been built are contained in a real
execution. Let us define formally these pre-process as prefixes of the processes.
Notice that in an untimed context pre-processes would simply be processes.

Definition 1 (pre-processes). For all process 〈E,Θ〉, and for all nonempty,
causally closed set of events E ′ ⊆ E (⊥ ∈ E′ and dE′e = E′), 〈E′, Θ|E′〉 is called
a pre-process. We sometimes write 〈E ′, Θ〉 instead of 〈E′, Θ|E′〉 for short.

Definition 2 (prefix relation on pre-processes). We define the prefix rela-
tion ≤ on pre-processes as follows: 〈E,Θ〉 ≤ 〈E ′, Θ′〉 iff E ⊆ E′ ∧ Θ = Θ′

|E .

In the case of untimed Petri nets, the unfolding can be defined as the super-
imposition of all the processes, that is the set of all the events that appear in
the processes. This structure is quite compact since an event generally occurs in
many different processes. However, it has to be easy to extract a process from
the unfolding. Especially, given a causally closed set of events, it has to be easy
to tell if there is a process that contains all these events, or containing at least
these events. With untimed Petri nets, these two questions are the same and can
be solved easily. In some special classes of time Petri nets, especially when the
underlying untimed Petri net is extended free choice [15], we could simply define
a symbolic unfolding of a time Petri net as in the untimed case. [11] defines such
an unfolding for “time independent choice nets”.

On the contrary, in the general timed case, a similar definition would not
give good results. [4] explains how to know if there is a valid timed execution
of a time Petri net that corresponds to a set of events taken from the unfolding
of the underlying untimed Petri net. But this does not give a way to build an
unfolding of a time Petri net and does not tell if there is a process that contains
at least these events.

To be convinced that things are much more complicated than in the untimed
case, it may be interesting to remark that in the timed case, the union of two
pre-processes 〈E,Θ〉 and 〈E ′, Θ′〉 is not necessarily a pre-process, even if E ∪E ′

is conflict free and Θ|E∩E′ = Θ′
|E∩E′ . In the example of Figure 1, we observe

this if 〈E,Θ〉 is the process which contains a firing of t1 at time 0 and a firing
of t2 at time 1, and 〈E′, Θ′〉 is the pre-process that we obtain by removing the
firing of t2 from the process made of t1 at time 0, t2 at time 2 and t3 at time 2.

These difficulties come from the fact that the condition that allows us to
extend a process x

def

= 〈E,Θ〉 with a new event e concerns all the state reached
after the process x, and however the conditions in •e refer only to the tokens in
the input places of τ(e).

3.2 Concurrent Operational Semantics for Safe Time Petri Nets

Although the semantics of time Petri nets requires to check time conditions for all
the enabled transitions in the net before firing a transition, there are cases when

we know that a transition can fire at a given date θ, even if other transitions will
fire before θ in other parts of the net. As an example consider the net of Figure 1
starting at time 0 in the marking {p1, p2}. The semantics forbids to fire t1 at
time 10 from the initial state because t2 is enabled and must fire before time 2.
However we are allowed to run the net until time 10 without firing t1 (because
its latest firing delay is infinite). Then, whatever has occurred until time 10,
nothing can prevent t1 from firing at date 10, because only t1 can remove the
token in place p1. On the contrary, the firing of t3 highly depends on the firing
date of t2 because when t0 is enabled it fires immediately and disables t3. So if we
want to fire t3 we have to check whether p2 or p4 is marked. This intuition leads
us to define a concurrent operational semantics where it is possible to fire
a transition without knowing the entire marking of the net, but only a partial
marking made of the consumed tokens plus possibly some tokens which are only
read (not consumed) in order to get enough information. Theorems 1 and 2 will
validate our concurrent partial order semantics by establishing connections with
the processes of Section 2.3.

Assumption. From now on we assume that we know a partition of the set P
of places of the net in sets Pi ⊆ P of mutually exclusive places3; more precisely
we demand that for all reachable marking M , Pi ∩ M is a singleton. For all

place p ∈ Pi, we denote p̄
def

= Pi \ {p}. In the example of Figure 1, we will use
the partition {p1, p3, p5}, {p2, p4}. In fact this partition will be used to test the
absence of a token in a marking. For instance if we want to fire t3, we have to
check that t0 will not fire before t3 and remove the token in place p3; if we know
that p2 is marked then we can deduce that p4 is not, and that t0 is disabled.

Definition 3 (partial state). A partial state of a time Petri net is a triple
〈L, dob, lrd〉 where L ⊆ P is a partial marking and dob, lrd : L −→ Q associate
a date of birth dob(p) and a latest reading date lrd(p) with each token p ∈ L.

As opposed to global states, partial states may give only partial information on
the state of the net since the partial marking L may not contain one place per set
of mutually exclusive places. Notice also that the date θ that appears in global
states is replaced by a function that gives the latest reading date of each token
of the partial marking, since the global time of the system is not relevant any
more in a concurrent semantics.

Definition 4 (maximal partial state). A partial state 〈L, dob, lrd〉 is maxi-
mal if L contains one place per set of mutually exclusive places (see the assump-
tion before). From now on the notion of maximal partial state or maximal state
will replace the notion of global state.

3 If we do not know any such partition, a solution is to extend the structure of the net
with one complementary place for each place of the net and to add these new places
in the preset and in the postset of the transitions such that in any reachable marking
each place p ∈ P is marked iff its complementary place is not. This operation does
not change the behavior of the time Petri net.

Definition 5 (age of a token in a maximal state). Let S
def

= 〈M, dob , lrd〉 be
a maximal state and let p ∈ M a token (marked place). The date that is reached
by the system can be defined as maxp′∈M lrd(p′). We define the age IS(p) of p

in the state S as the difference: IS(p)
def

= maxp′∈M lrd(p′) − dob(p).

Definition 6 (temporally consistent maximal state (or consistent

state)). A maximal state S
def

= 〈M, dob, lrd〉 is temporally consistent if for each
transition t ∈ T which is enabled in M (•t ⊆ M), minp∈•t IS(p) ≤ lfd (t). A
temporally consistent maximal state is also called a consistent state for short.

We will construct a predicate that applies to tuples (L, dob, t, θ), where L ⊆ P
is a partial marking, dob : L −→ Q associates a date of birth dob(p) with each
token (marked place) p ∈ L, t is a transition and θ ≥ maxp∈L dob(p) is a date.

Such a predicate is called a local firing condition and is supposed to tell if
knowing that the net is in a state that contains a partial state 〈L, dob, lrd〉 with
lrd(p) ≤ θ for all p ∈ L is enough to be sure that t can fire at date θ.

Several local firing conditions are possible; some possibilities are discussed in
[3]. In this article we will only use a local firing condition LFC that will allow
us to build a complete finite prefix of the symbolic unfolding of a time Petri net.

Definition 7 (local firing condition LFC ′). We first define a predicate
LFC ′ as follows: LFC ′(L, dob, t, θ) holds iff

– t is enabled: •t ⊆ L;
– the minimum delay is reached: θ ≥ doe(t) + efd (t);
– the transitions that may consume tokens of L are disabled or do not overtake

the maximum delays:

∀t′ ∈ T •t′ ∩ L 6= ∅ =⇒

{

∃p ∈ •t′ p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t′∩L
dob(p) + lfd (t′)

The predicate LFC ′ guarantees that a partial state 〈L, dob, lrd〉 with lrd(p) ≤ θ
for all p ∈ L is enough to be sure that t can fire at date θ. We define a new local
firing condition LFC by demanding that the partial marking L is minimal.

Definition 8 (local firing condition LFC). LFC is defined as:

LFC (L, dob, t, θ) iff

{

(LFC ′(L, dob, t, θ)
@L′ (L LFC ′(L′, dob |L′ , t, θ).

Semantics of Local Firings. We will now define formally the concurrent
operational semantics that we obtain when we allow transitions to fire from a
partial state if the local firing condition LFC is satisfied.

The time Petri net starts in an initial maximal state 〈M0, dob0, lrd0〉, which
is given by the initial marking M0 and the initial date θ0. Initially, all the tokens
carry the date θ0 as date of birth and latest reading date: for all p ∈ M0,

dob0(p)
def

= lrd0(p)
def

= θ0.

The transition t can fire at date θ using the partial marking L ⊆ M , from
the maximal state 〈M, dob , lrd〉 if (L, dob |L, t, θ) satisfies LFC and for all p ∈ L,
θ ≥ lrd(p).

This action leads to the maximal state 〈(M \ •t) ∪ t•, dob ′, lrd ′〉 with

dob ′(p)
def

=

{

dob(p) if p ∈M \ •t
θ if p ∈ t•

and lrd ′(p)
def

=

{

lrd(p) if p ∈ M \ L
θ if p ∈ (L \ •t) ∪ t•.

We call sequence of local firings starting from the initial state S0 any sequence
((t1, L1, θ1), . . . , (tn, Ln, θn)) where there exist states S1, . . . , Sn such that for all
i ∈ {1, . . . , n}, firing ti from Si−1 at date θi using the partial marking Li is
possible and leads to Si. The empty sequence of local firings is denoted ε.

Extended Processes. We will define a notion of extended process, which is
close to the notion of process, but the events are replaced by extended events
which represent firings from partial states and keep track of all the conditions
corresponding to the partial state, not only those that are consumed by the
transition: the other conditions will be treated as context of the event. This uses
classical techniques of contextual nets or nets with read arcs (see [16,17]). It
would also be possible to consume and rewrite the conditions in the context of
an event, but we feel that the notion of read arc or contextual net is a good way
to capture the idea that we develop here.

For all extended event ė
def

= (B, t), denote τ(ė)
def

= t and ė•
def

= {(ė, p) | p ∈ t•}.
In an extended event, not all the conditions of B are consumed, but only
•ė

def

= Place−1
|B (•t); the conditions in ė

def

= B \ •ė are only read by ė, which is rep-
resented by read arcs. Like for processes, we define the set of conditions that

remain at the end of the extended process 〈Ė, Θ〉 as ↑(Ė)
def

=
⋃

ė∈Ė ė
• \

⋃

ė∈Ė
•ė.

The function Π̇ that maps each sequence of local firings ((t1, L1, θ1), . . . ,
(tn, Ln, θn)) to an extended process is defined as follows:

– Like for processes, Π̇(ε)
def

= 〈{⊥}, {(⊥, θ0)}〉, where ⊥
def

= (∅, -) represents
the initial event. The set of conditions that are created by ⊥ is defined as:

⊥• def

= {(⊥, p) | p ∈M0}.

– Π̇(((t1, L1, θ1), . . . , (tn+1, Ln+1, θn+1)))
def

= 〈Ė ∪ {ė}, Θ ∪ {(ė, θn+1)}〉, where

〈Ė, Θ〉
def

= Π̇(((t1, L1, θ1), . . . , (tn, Ln, θn))) and the extended event ė
def

=
(Place−1

|↑(Ė)
(Ln+1), tn+1) represents the last local firing of the sequence.

The set of all the extended processes obtained as the image by Π̇ of the
sequences of local firings is denoted Ẋ .

As we use read arcs, the usual causality is not sufficient any more: we have to
define an unconditional or strong causality → and a conditional or weak causality
↗ between extended events as:

– ė→ ḟ iff ė• ∩ (•ḟ ∪ ḟ) 6= ∅ and

– ė↗ ḟ iff (ė→ ḟ) ∨ (ė ∩ •ḟ 6= ∅).

For all extended event ė, we denote dėe
def

= {ḟ ∈ Ė | ḟ →∗ ė} and for all set Ė of

extended events, dĖe
def

=
⋃

ė∈Ėdėe.

Figure 2 shows several extended processes. An arrow from a condition b to
an extended event ė means that b ∈ •ė. An arrow from an extended event ė to a
condition b means that b ∈ ė•. When b ∈ ė, the read arc is represented by a line
without arrow between b and ė.

Definition 9 (RS(〈Ė, Θ〉)). The maximal state that is reached after an ex-

tended process 〈Ė, Θ〉 is defined as RS (〈Ė, Θ〉)
def

= 〈Place(↑(Ė)), dob , lrd〉 where

for all b = (•b, p) ∈ ↑(Ė), dob(p)
def

= Θ(•b) and lrd(p)
def

= maxė∈Ė, b∈ė•∪ėΘ(ė).

Remark that all the sequences of local firings σ such that Π̇(σ) = 〈Ė, Θ〉 lead
to RS(〈Ė, Θ〉).

Definition 10 (temporally complete extended process, Ẏ). We say that
〈Ė, Θ〉 is temporally complete if RS(〈Ė, Θ〉) is temporally consistent. The set of
all temporally complete extended processes is denoted Ẏ .

Correctness and Completeness of LFC . Each extended event ė can be
mapped to the corresponding event

h(ė)
def

=
(

{

(h(ḟ), p) | (ḟ , p) ∈ •ė
}

, τ(ė)
)

.

Given an extended process 〈Ė, Θ〉 ∈ Ẋ, 〈h(Ė), Θ ◦ h−1

|Ė
〉 is intuitively what we

obtain if we remove the read arcs from 〈Ė, Θ〉. For example the extended process
ẋ in Figure 2 would be mapped to the process of Figure 1.

Lemma 1. For all 〈Ė, Θ〉 ∈ Ẋ, 〈h(Ė), Θ ◦ h−1

|Ė
〉 ∈ X iff 〈Ė, Θ〉 ∈ Ẏ .

Proof. Let 〈Ė, Θ〉 ∈ Ẋ be an extended process and denote 〈M, dob , lrd〉
def

=

RS(〈Ė, Θ〉) and θ
def

= maxp∈M lrd(p) = maxė∈Ė Θ(ė).

It follows from the definition of the processes that if 〈h(Ė), Θ ◦ h−1

|Ė
〉 ∈ X ,

then 〈Ė, Θ〉 is temporally complete.
Conversely, assume that 〈Ė, Θ〉 is temporally complete. Choose ė ∈ Ė such

that Θ(ė) = θ and @ḟ ∈ Ė such that ė ↗ ḟ . Then denote 〈M ′, dob ′, lrd ′〉
def

=

RS(〈Ė \ {ė}, Θ〉) and θ′
def

= maxp∈M ′ lrd ′(p), and let t ∈ T such that •t ⊆ M ′.
If •t ∩ •τ(ė) = ∅, then doe ′(t) = doe(t) ≥ θ − lfd (t) ≥ θ′ − lfd(t). Otherwise let

L
def

= •ė ∪ ė. As LFC (L, dob, τ(ė), Θ(ė)) holds, then

{

∃p ∈ •t p̄ ∩ L 6= ∅
∨ θ ≤ max

p∈•t∩L
dob ′(p) + lfd(t)

As •t ⊆ M ′, then @p ∈ •t such that p̄ ∩ L 6= ∅; thus θ ≤ max
p∈•t∩L

dob ′(p) + lfd(t).

Hence doe ′(t) = max
p∈•t

dob ′(p) ≥ max
p∈•t∩L

dob ′(p) ≥ θ − lfd(t) ≥ θ′ − lfd(t). As a

result 〈Ė \ {ė}, Θ〉 ∈ Ẏ .

Assume now that 〈E,Θ′〉
def

= 〈h(Ė \ {ė}), Θ ◦ h−1

|Ė
〉 ∈ X . It leads to the global

state 〈M ′, dob ′, θ′〉. As •τ(ė) ⊆ M ′ and θ ≥ θ′ and θ ≥ doe ′(τ(ė)) + efd(τ(ė))
and for all t ∈ T , •t ⊆M ′ =⇒ θ ≤ doe ′(t) + lfd (t), then τ(ė) can fire at date θ
from 〈M ′, dob ′, θ′〉, which is coded by the event (Place−1

|↑(E)(τ(ė)), τ(ė)) = h(ė).

Thus 〈h(Ė), Θ ◦ h−1

|Ė
〉 ∈ X .

Theorem 1 (correctness of LFC). For all extended process 〈Ė, Θ〉 ∈ Ẋ,
〈h(Ė), Θ ◦ h−1

|Ė
〉 is a pre-process (notice that h|Ė is injective). In other terms

there exists a process 〈E ′, Θ′〉 ∈ X such that 〈h(Ė), Θ ◦ h−1

|Ė
〉 ≤ 〈E′, Θ′〉.

Proof. To prove that LFC is correct, we will prove that for all 〈Ė, Θ〉 ∈ Ẋ,
there exists 〈Ė′, Θ′〉 ∈ Ẏ such that Ė ⊆ Ė′ and Θ = Θ′

|Ė
; as a consequence

〈h(Ė), Θ ◦ h−1

|Ė
〉 ≤ 〈h(Ė′), Θ′ ◦ h−1

|Ė′
〉 ∈ X .

Let 〈Ė, Θ〉 ∈ Ẋ . If 〈Ė, Θ〉 is temporally complete, then it is sufficient to take

〈Ė′, Θ′〉
def

= 〈Ė, Θ〉.

Otherwise, denote 〈M, dob , lrd〉
def

= RS(〈Ė, Θ〉) and θ
def

= maxp∈M lrd(p),

choose t ∈ T such that •t ⊆M∧θ > doe(t)+lfd(t) and such that tminimizes θt
def

=

doe(t) + lfd(t). Let Ḟ
def

= {ḟ ∈ Ė | Θ(ḟ) ≤ θt}. 〈Ḟ , Θ|Ḟ 〉 is a temporally complete

extended process. Denote 〈M ′, dob ′, lrd ′〉
def

= RS(〈Ḟ , Θ|Ḟ 〉). LFC ′(M ′, dob ′, t, θt)

holds. Thus there exists L ⊆ M ′ such that LFC (L, dob ′
|L, t, θt) holds. Let

ė
def

= (Place−1

|↑(Ḟ)
(L), t). We will show that 〈Ė∪{ė}, Θ∪{(ė, θt)}〉 ∈ Ẋ. Θ∪{(ė, θt)}

is compatible with ↗: if an extended event ḟ ∈ Ė is such that ḟ ∩ •ė 6= ∅, then

Θ(ḟ) ≤ θt and if •ḟ ∩ ė 6= ∅, then Θ(ḟ) > θt. The strict inequality in the second
case also guarantees that ↗ is acyclic on Ė ∪ {ė}. As a result, we have built an
extended process 〈Ė ∪ {ė}, Θ ∪ {(ė, θt)}〉 ∈ Ẋ by adding the event to 〈Ė, Θ〉.

Iterating this until 〈Ė, Θ〉 is temporally complete, terminates if we assume
that time diverges: at each step 〈Ḟ , Θ|Ḟ 〉 is temporally complete, so 〈h(Ḟ), Θ ◦

h−1

|Ḟ
〉 ∈ X ; moreover this process has strictly more events at each step and the

dates remain below θ, which does not increase.

Theorem 2 (completeness of LFC). For all process 〈E,Θ〉 ∈ X, there exists
an extended process 〈Ė, Θ′〉 ∈ Ẋ such that 〈h(Ė), Θ′ ◦ h−1

|Ė
〉 = 〈E,Θ〉.

Proof. Let 〈E,Θ〉 ∈ X leading to the global state 〈M, dob , θ〉, let t ∈ T be a
transition that can fire at date θ′ ≥ θ from 〈M, dob, θ〉, and assume that there
exists an extended process 〈Ė, Θ′〉 ∈ Ẋ such that 〈h(Ė), Θ′ ◦ h−1

|Ė
〉 = 〈E,Θ〉.

LFC ′(M, dob, t, θ′) holds. Thus there exists L ⊆M such that LFC (L, dob |L, t, θ
′)

holds. Define ė
def

= (Place−1

|↑Ė
(L), t). 〈Ė ∪ {ė}, Θ′ ∪ {(ė, θ′)}〉 ∈ Ẋ and the event

h(ė) codes the firing of t at date θ′ after 〈E,Θ〉.

3.3 Symbolic Unfoldings of Safe Time Petri Nets

We have explained in Section 3.1 that the definition of the unfolding has to
rely on a concurrent operational semantics. We will now show how the extended
processes obtained from our concurrent operational semantics for time Petri nets
can be superimposed to build a symbolic unfolding, and that it is easy to recover
the extended processes from their superimposition and to build the unfolding.
After the definition, we give two theorems: the first one gives a way to extract
extended processes from the unfolding, while the second theorem gives a direct
construction of the unfolding.

Definition 11 (symbolic unfolding). We define the symbolic unfolding U of
a time Petri net by collecting all the extended events that appear in its extended

processes: U
def

=
⋃

〈Ė,Θ〉∈Ẋ Ė.

For all set B of conditions such that place |B is injective and for all mapping
Θ :

⋃

b∈Bd•be −→ Q, we denote dobB,Θ the mapping defined as:

for all p ∈ Place(B), dobB,Θ(p)
def

= Θ(•(place−1
|B (p))).

Theorem 3. Let Ė ⊆ U be a nonempty finite set of extended events and
Θ : Ė −→ Q associate a firing date with each extended event of Ė. 〈Ė, Θ〉 is
an extended process iff:






























dĖe = Ė (Ė is causally closed)

@ė, ė′ ∈ Ė ė 6= ė′ ∧ •ė ∩ •ė′ 6= ∅ (Ė is conflict free)

@ė0, ė1, . . . , ėn ∈ Ė ė0 ↗ ė1 ↗ · · · ↗ ėn ↗ ė0 (↗ is acyclic on Ė)

∀ė, ė′ ∈ Ė ė↗ ė′ =⇒ Θ(ė) ≤ Θ(ė′) (Θ is compatible with ↗)

∀ė = (B, t) ∈ Ė \ {⊥} LFC (Place(B), dobB,Θ, t, Θ(ė))
(ė corresponds to a local firing condition)

Proof. Let 〈Ė, Θ〉 ∈ Ẋ be an extended process that satisfies the conditions in the

curly brace, let ė
def

= (B, t) with B ⊆ ↑(Ė) and t ∈ T and θ′ ≥ maxḟ∈Ė, ḟ↗ė Θ(ḟ)
such that LFC (Place(B), dobB,Θ, t, θ

′) holds. Then we will show that the ex-

tended process 〈Ė′, Θ′〉
def

= 〈Ė ∪ {ė}, Θ ∪ {(ė, θ′)}〉 also satisfies the conditions in
the curly brace. By construction Ė′ is causally closed. Moreover for each condi-
tion b ∈ •ė that is consumed by ė, b ∈ ↑(Ė), which implies that b has not been
consumed by any event of Ė. Thus for all ḟ ∈ Ė, •ė ∩ •ḟ = ∅ and ¬(ė↗ ḟ). So
Ė′ is conflict free and ↗ is acyclic on Ė′. Θ′ is compatible with ↗ because Θ is
compatible with ↗ and Θ′(ė) = θ′ ≥ maxḟ∈Ė, ḟ↗ė Θ(ḟ).

Conversely let 〈Ė′, Θ′〉 satisfy the conditions in the curly brace. If Ė′ =
{⊥}, then 〈Ė′, Θ′〉 ∈ Ẋ . Otherwise let ė ∈ Ė′ be an extended event that
has no successor by ↗ in Ė′ (such an extended event exists since ↗ is

acyclic on Ė′). 〈Ė, Θ〉
def

= 〈Ė′ \ {ė}, Θ′
|Ė′\{ė}

〉 satisfies the conditions in the

curly brace. Assume that 〈Ė, Θ〉 ∈ Ẋ . As Ė is conflict free, •ė ⊆ ↑(Ė).
And as ė has no successor by ↗ in Ė′, ė ⊆ ↑(Ė). Furthermore Θ′(ė) ≥
maxḟ∈Ė, ḟ↗ėΘ(ḟ) and LFC

(

Place(•ė ∪ ė), dob•ė∪ė,Θ, τ(ė), Θ
′(ė)

)

holds. Thus

〈Ė′, Θ′〉 = 〈Ė ∪ {ė}, Θ ∪ {(ė, Θ′(ė))}〉 ∈ Ẋ.

Theorem 4. For all ė
def

= (B, t) ∈ (
⋃

ḟ∈U ḟ
•) × T , ė ∈ U iff























@ḟ , ḟ ′ ∈ dėe ḟ 6= ḟ ′ ∧ •ḟ ∩ •ḟ ′ 6= ∅ (1)
@ė0, ė1, . . . , ėn ∈ dėe ė0 ↗ ė1 ↗ · · · ↗ ėn ↗ ė0 (2)

∃Θ : dėe −→ Q







∀ḟ , ḟ ′ ∈ dėe ḟ ↗ ḟ ′ =⇒ Θ(ḟ) ≤ Θ(ḟ ′)

∀ḟ = (B′, t′) ∈ dėe \ {⊥}

LFC
(

Place(B′), dobB′,Θ , t, Θ(ḟ)
)







(3)

This theorem allows us to simply build the unfolding starting from the set {⊥}
and adding extended events one by one when they satisfy the condition.

Proof. Let ė ∈ U . There exists 〈Ė, Θ′〉 ∈ Ẋ such that ė ∈ Ė. 〈Ė, Θ′〉 satisfies
the conditions in the curly brace of Theorem 3. As dĖe ⊆ Ė, dėe also satisfies
them. Then (1) and (2) hold. For (3) a possible Θ is Θ′

|dėe.

Conversely if ė
def

= (B, t) satisfies (1), (2) and (3), consider a possi-
ble Θ for (3). 〈dėe \ {ė}, Θ〉 satisfies the curly brace of Theorem 3. Then
〈dėe \ {ė}, Θ〉 ∈ Ẋ. Moreover (1) implies that B ⊆ ↑(dėe \ {ė}). In addition
Θ(ė) ≥ maxḟ∈dėe, ḟ↗ė Θ(ḟ) and LFC (Place(B), dobB,Θ, t, Θ(ė)) holds. Thus

〈dėe, Θ〉 ∈ Ẋ and therefore ė ∈ U .

4 Complete Finite Prefixes

We have defined the symbolic unfolding of a time Petri net. In general this
structure is infinite, as well as the unfoldings of untimed Petri nets. However in
the untimed case it is possible to define a finite prefix of the unfolding, which
contains complete information about the unfolding [6,7]. To construct this com-
plete finite prefix one remarks that each untimed safe Petri net has finitely many
markings, and that if two processes reach the same marking, then they have the
same possible futures. With time Petri nets, the same is true with two tempo-
rally complete extended processes that reach the same consistent state. But in
general there are infinitely many possible maximal states.

This is why we will try to group them as much as possible. The problem of the
density of time has already been solved by the use of a symbolic representation of
the dates. Another problem is that the time keeps progressing and never loops;
this is why the age of the tokens will now be used instead of their date of birth.
Recall that the date of birth was first preferred in order to define a concurrent
semantics where the system is allowed to reach temporally inconsistent states,
that is states where the different parts of the net have not reached the same
date; from now we will work with temporally consistent states.

A last problem arises: even the age of a token may progress forever. But
we will define a reduced age for each token in a marking, which gives enough
information to know what actions are possible, and remains bounded.

4.1 Equivalence of Two Maximal States

It was already shown in [9] that the age of the tokens can be reduced to bounded
values without losing information about the possible future actions.

Definition 12 (reduced age of a token). The reduced age JS(p) of the token

p ∈M in the maximal state S
def

= 〈M, dob, lrd〉 as:

JS(p)
def

= min{IS(p),max{bound(t) | t ∈ T ∧ p ∈ •t}}

where bound(t)
def

=

{

efd(t) if lfd (t) = ∞
lfd(t) otherwise.

Definition 13 (equivalence of two maximal states). Two maximal states

S1
def

= 〈M1, dob1, lrd1〉 and S2
def

= 〈M2, dob2, lrd2〉 are equivalent (denoted
S1 ∼ S2) iff M1 = M2 and JS1

= JS2
.

Theorem 5 (firing a transition from two equivalent consistent states).
Let S1 and S2 be two equivalent consistent states. Let M be their marking. A
transition t can fire from S1 at date θ1 ≥ maxp∈M lrd1(p) using the partial mark-
ing L ⊆M iff it can fire from S2 at date θ1 −maxp∈M lrd1(p) + maxp∈M lrd2(p)
using the same partial marking L.

Proof. Denote 〈M, dob i, lrd i〉
def

= Si and θ′i
def

= maxp∈M lrd i(p) for i ∈ {1, 2}.
Assume that t can fire from S1 at date θ1 ≥ maxp∈M lrd1(p) using the partial

marking L ⊆M . To prove that t can fire from S2 at date θ2
def

= θ1−θ′1 +θ′2 using
the same partial marking L, we will show that:

1. θ2 ≥ doe2(t) + efd (t), with doe2(t)
def

= maxp∈•t dob2(p),

2. ∀t′ ∈ T

{

•t′ ∩ L 6= ∅
@p ∈ •t′ p̄ ∩ L 6= ∅

}

=⇒ θ2 ≤ max
p∈•t′∩L

dob2(p) + lfd(t′).

Here are the proofs for these two points:

1. If minp∈•t JS1
(p) ≥ efd(t), then minp∈•t IS2

(p) ≥ minp∈•t JS2
(p) =

minp∈•t JS1
(p) ≥ efd(t) and θ1 ≥ θ′1 implies that θ2 ≥ θ′2. Furthermore

θ′2 = doe2(t) + minp∈•t IS2
(p) ≥ doe2(t) + efd(t).

Otherwise, (if minp∈•t JS1
(p) < efd (t)), then θ1 ≥ doe1(t) + efd(t) =

θ′1−minp∈•t IS1
(p)+efd(t). And minp∈•t IS1

(p) = minp∈•t IS2
(p) because for

all p such that IS1
(p) < efd (t), IS1

(p) = JS1
(p) = JS2

(p) = IS2
(p) (the equal-

ities between ISi
(p) and JSi

(p) hold since one of them is strictly smaller than
efd (t)), and for all p such that IS1

(p) ≥ efd(t), IS2
(p) ≥ JS2

(p) = JS1
(p) ≥

efd (t). Thus θ2 ≥ θ′2 − minp∈•t IS2
(p) + efd(t) = doe2(t) + efd (t).

2. Let t′ ∈ T such that •t′ ∩ L 6= ∅ and (@p ∈ •t′ p̄ ∩ L 6= ∅). Then
θ1 ≤ maxp∈•t′∩L dob1(p) + lfd (t′).
If lfd (t′) = ∞ then maxp∈•t′∩L dob2(p) + lfd(t′) = ∞ ≥ θ2.
Otherwise for i ∈ {1, 2}, maxp∈•t′∩L dobi(p) = θ′i − minp∈•t′∩L ISi

(p).
Then θ′1 ≤ θ1 ≤ θ′1 − minp∈•t′∩L IS1

(p) + lfd (t′), and consequently
minp∈•t′∩L IS1

(p) ≤ lfd (t′). So minp∈•t′∩L IS2
(p) ≥ minp∈•t′∩L IS1

(p) be-
cause for all p such that IS1

(p) ≤ lfd(t′), IS1
(p) = JS1

(p) = JS2
(p) ≤ IS2

(p),
and for all p such that IS1

(p) > lfd(t′), IS2
(p) ≥ JS2

(p) = JS1
(p) ≥ lfd (t′).

Thus θ2 ≤ θ′2 − minp∈•t′∩L IS2
(p) + lfd(t′) = maxp∈•t′∩L dob2(p) + lfd (t′).

4.2 Substitution of Prefixes in Extended Processes

Knowing that the same actions are possible from equivalent consistent states,
if we have two temporally complete extended processes that reach equivalent
states, we can translate any continuation of one extended process to the other,
providing we also translate the firing dates of the events. This operation is illus-
trated in Figure 2. It corresponds intuitively to merging the final conditions of
the first extended process with the conditions from which the extension starts
in the second process.

Definition 14 (substitution of prefixes in extended processes).

Let ẋ1
def

= 〈Ė1, Θ1〉 and ẋ2
def

= 〈Ė2, Θ2〉 be two extended processes, and
Ė′

2 ⊆ Ė2 such that ẋ1 and 〈Ė′
2, Θ2|Ė′

2

〉 are temporally complete extended pro-

cesses, RS (〈Ė′
2, Θ2|Ė′

2

〉) ∼ RS(〈Ė1, Θ1〉) and for all ė′ ∈ Ė′
2 and ė ∈ Ė2 \ Ė′

2,

Θ(ė′2) ≤ Θ(ė2) and ¬(ė′2 ↗ ė2). We define the substitution which replaces
〈Ė′

2, Θ2|Ė′

2

〉 by ẋ1 in ẋ2 as:

subst(ẋ1, Ė
′
2, ẋ2)

def

= 〈Ė, Θ〉

where

Ė
def

= Ė1 ∪ φ(Ė2 \ Ė′
2)

Θ(ė)
def

=







Θ1(ė) if ė ∈ Ė1

Θ2(φ
−1(ė)) − max

ḟ∈Ė′

2

Θ2(ḟ) + max
ḟ∈Ė1

Θ1(ḟ) if ė ∈ φ(Ė2 \ Ė′
2)

∀ė
def

= (B, t) ∈ Ė2 \ Ė′
2 φ(ė)

def

= (ψ(B), t)

∀b
def

= (ė, p) ∈
⋃

ė∈Ė2\Ė′

2

•ė ∪ ė ψ(b)
def

=

{

(φ(ė), p) if ė /∈ Ė′
2

place−1

|↑(Ė1)
(p) if ė ∈ Ė′

2

We generalize this notation to more than two extended processes as:

subst(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
n, ẋn)

def

= subst(subst(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
n−1, ẋn−1), Ė

′
n, ẋn)

Theorem 6 (Ẋ is closed under substitution of prefixes).
Let ẋ0, . . . , ẋn ∈ Ẋ and Ė′

1, . . . , Ė
′
n that satisfy the conditions required to define

subst(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
n, ẋn). Then subst(ẋ0, Ė

′
1, ẋ1, . . . , Ė

′
n, ẋn) ∈ Ẋ.

Proof. We detail the proof for the substitution subst(ẋ1, Ė
′
2, ẋ2); the case of more

than two extended processes follows immediately.
If Ė′

2 = Ė2 then subst(ẋ1, Ė
′
2, ẋ2) = ẋ1 ∈ Ẋ . Now assume that the theorem is

true when Ė2 \ Ė′
2 has n elements and consider the case where there are n + 1

elements. Choose an extended event ė2
def

= (B, t) ∈ Ė2 \ Ė′
2 that is minimal in

Ė2 \ Ė′
2 w.r.t. causality (↗) and temporal ordering by Θ2. Theorem 5 says that

t can fire from RS(ẋ1) at date θ1
def

= Θ2(ė2) − maxė∈Ė′

2

Θ2(ė) + maxė∈Ė′

1

Θ1(ė)

using the same partial marking L
def

= Place(B). This firing can be coded by the

extended event ė1
def

= (Place−1

|↑(Ė1)
(L), t), and ẋ′1

def

= 〈Ė1 ∪ {ė1}, Θ1 ∪ {(ė1, θ1)}〉 ∈

Ẏ . Moreover subst(ẋ1, Ė
′
2, ẋ2) equals subst(ẋ′1, Ė

′
2 ∪ {ė2}, ẋ2), which belongs to

Ẋ since Ė2 \ (Ė′
2 ∪ {ė2}) has n elements.

-⊥(0)

p1 p2

t1(3)

p3

t2(1.3)

p4

t0(3)

p1 p2

t1(3)

p3

t2(5)

p4

t3(5)

p5

ẋ

-⊥(0)

p1 p2

t1(3)

p3

t2(1.3)

p4

t0(3)

p1 p2

ẋ1

ẋ = subst(ẋ1, {⊥}, ẋ2)

-⊥(0)

p1 p2

t1(0)

p3

t2(2)

p4

t3(2)

p5

ẋ2

Fig. 2. Substitution of prefixes in extended processes. The dashed curves show how
the final conditions of ẋ1 are merged with the conditions of ↑({⊥}) in ẋ2.

4.3 Study of the Form of the Constraints

Now we have to deal with the fact that the unfolding we have defined is symbolic,
and thus each event represents an action that may occur at several dates. We
will show how to check that all the actions that are possible after a symbolic
extended process are possible after another one. For this we have to take into
account all the possible values for the date of the events of the symbolic extended
processes. As well as Berthomieu defined a finite graph of symbolic state classes
in [10] using the interleaving semantics, we show that the set of possible reduced
ages after a symbolic extended process is taken in a finite set, which allows us
to define a complete finite prefix of the symbolic unfolding of a time Petri net.

Definition 15 (constraints predJ (Ė)). Let Ė be a nonempty, causally

closed, finite set of extended events and M
def

= Place(↑(Ė)). We define the predi-
cate predJ (Ė) as follows: for all J : M −→ Q, predJ (Ė)(J) holds iff there exists
Θ : Ė → Q such that 〈Ė, Θ〉 ∈ Ẏ and J = J

RS(〈Ė,Θ〉).

Theorem 7. For each maximal marking M , the set of the predJ (Ė) with M
def

=
Place(↑(Ė)) is finite.

Proof. Recall that predJ (Ė) is a predicate on the J(p), p ∈ M . If we denote
ė1, . . . , ėn the events of Ė and introduce a variable θ to represent maxė∈Ė Θ(ė),

which plays a role in the definition of J
RS(〈Ė,Θ〉) and also in checking that 〈Ė, Θ〉

is temporally complete, we can write predJ (Ė)(J) as:

∃Θ(ė1), . . . , Θ(ėn), θ ∈ Q such that


































〈Ė, Θ〉 ∈ Ẋ
θ = maxė∈Ė Θ(ė)

∀t ∈ T •t ⊆M =⇒ θ ≤ maxp∈•tΘ(•(place−1

|↑(Ė)
(p))) + lfd (t)

(to check that 〈Ė, Θ〉 is temporally complete)
∀p ∈M J(p) = min{I(p),max{bound(t) | t ∈ T ∧ p ∈ •t}}

(with I(p)
def

= θ −Θ(•(place−1

|↑(Ė)
(p))))

Consider the system in the curly brace and rewrite all the quantifiers that con-
cern information about the structure of the time Petri net or the structure of
Ė (including those coming from (〈Ė, Θ〉 ∈ Ẋ)) as disjunctions or conjunctions.
For instance (∃p ∈ •t0 f(p)) becomes (f(p3)∨ f(p4)). The result is a system of
inequalities, some of which containing one “min” or one “max”. These inequal-
ities can be rewritten without “min” and “max”, so that we obtain a boolean
combination of inequalities of the following types:

Θ(ė) # Θ(ė′) + c Θ(ė) # θ + c Θ(ė) # θ − J(p)

where ė and ė′ are events of Ė, p is a place, c is a constant taken among the
efd (t) and lfd (t) and # is an operator in {<,≤,≥, >} (= is not necessary).

Rewrite now this boolean combination of inequalities in normal disjunctive
form. The quantifiers (∃Θ(ė1), . . . , Θ(ėn), θ ∈ Q) can be distributed in each term
of the disjunction. predJ (Ė)(J) becomes a disjunction of quantified conjunctions
of inequalities of the types we have described before. We will now eliminate one
by one the quantifiers ∃Θ(ėi) in one quantified conjunction of inequalities: we
show that there remains a quantified conjunction of inequalities of a slightly
more general type than before:

Θ(ė) # Θ(ė′) + c
Θ(ė) # θ + c
Θ(ė) # θ − J(p) + c

J(p) # c
J(p) # J(p′) + c

where the constants c may now be linear combinations of the efd (t) and lfd(t).
To eliminate Θ(ėi), we isolate it in each inequality when it appears, which leads
to a conjunction C of a < Θ(ėi), b ≤ Θ(ėi), c ≥ Θ(ėi) and d > Θ(ėi), where
a, b, c and d are terms of the form (Θ(ė) + c), (θ + c) or (θ − J(p) + c). Then
(∃Θ(ėi) C) is equivalent to the conjunction of all the inequalities (a < c),
(a < d), (b ≤ c) and (b < d), which all have one of the expected forms.

Once all the Θ(ėi) have been eliminated, the remaining inequalities can be
only of the form J(p) # c or J(p) # J(p′) + c. That is, θ does not appear any
more. So the quantifier ∃θ can be removed.

Notice now that by definition 0 ≤ J(p) ≤ maxp
def

= max{bound(t) | t ∈
T ∧ p ∈ •t} for all p ∈ M . Therefore all the inequalities of type (J(p) # c) with
|c| > maxp can be immediately evaluated to true or false. The same happens
for the inequalities of the form (J(p) # J(p′)+ c) with |c| > max{maxp,maxp′}.
The constants c that remain are bounded. Recall also that they are linear com-
binations of the efd (t) and lfd (t). Since the efd (t) and lfd (t) are rationals, there
are finitely many acceptable values for the constants c.

As a consequence, there are finitely many interesting inequalities, and then
finitely many conjunctions of such inequalities, and then finitely many disjunc-
tions of such conjunctions. Finally there is a finite number of predJ (Ė).

Let us take the example of predJ ({⊥, ė1})(J) using the extended events that
are represented in Figure 3. It can be written, after some simplifications, as:

∃Θ(⊥), Θ(ė1), θ































Θ(ė1) ≥ Θ(⊥)
θ = max{Θ(⊥), Θ(ė1)}
θ −Θ(ė1) ≤ 2
θ −Θ(⊥) ≤ 2
J(p2) = min{θ −Θ(⊥), 2}
J(p3) = min{θ −Θ(ė1), 2}

These inequalities can be rewritten without “min” and “max”, so that we obtain
a boolean combination of inequalities, which can be written in normal disjunctive
form. Then the quantified variables can be eliminated one by one, and we obtain:
J(p3) = 0 ∧ 0 ≤ J(p2) ≤ 2.

4.4 Complete Finite Prefix

Now we can define the complete finite prefix of the symbolic unfolding of a
time Petri net, by keeping only a finite number of extended events, that contain
all the information about the unfolding. More precisely, we show that every
temporally complete extended process can be obtained by substitution of prefixes
in extended processes that belong to the prefix. Figure 2 shows an example of
such a decomposition. The complete finite prefix is represented in Figure 3.
The idea behind the construction of the prefix is that a temporally complete
extended process 〈Ė, Θ〉 will not be continued if the predicate predJ (Ė) is equal
to a predJ (Ė′) with |Ė′| < |Ė|. As a possible improvement, the idea of adequate
order, introduced by Esparza [7] seems to be usable in our framework.

Definition 16 (X̄ and complete finite prefix Ū). We define the subset X̄
of Ẋ as:

〈Ė, Θ〉 ∈ X̄ iff ∃σ

{

Π̇(σ) = 〈Ė, Θ〉
@n′, σ′′ |σ′′| < n′ < |σ| ∧ predJ (Ė′) = predJ (Ė′′)

where σ
def

= ((t1, L1, θ1), . . . , (t|σ|, L|σ|, θ|σ|)) and σ′′ are sequences of local firings

and Ė′ (respectively Ė′′) is the set of events that appear in Π̇((t1, L1, θ1), . . . ,
(tn′ , Ln′ , θn′)) (respectively Π̇(σ′′)).

We define the finite complete prefix Ū of the symbolic unfolding U of a
time Petri net by collecting all the extended events that appear in the extended

processes of X̄: Ū
def

=
⋃

〈Ė,Θ〉∈X̄ Ė.

Denote N the cardinality of {predJ (Ė) | 〈Ė, Θ〉 ∈ X̄}, which was proved
finite in Section 4.3. The extended process Π̇(σ) may belong to X̄ only if |σ| < N .
Since there is a finite number of sequences of local firings that are shorter than
N , there is a finite number of extended processes in X̄ and each of them has less
than N events (without ⊥). Thus Ū is finite.

-⊥

p1 p2

p3 p4

p1 p2p5 p5

t1
(ė1)

Θ(ė1) ≥ Θ(⊥)
t2

(ė2)
1 ≤ Θ(ė2) − Θ(⊥) ≤ 2

t0(ė3)
Θ(ė3) = max1,2

t3

(ė4)�
Θ(ė4) = Θ(ė1) + 2
Θ(ė4) ≤ 2

t3

(ė5)�� � Θ(ė5) = Θ(ė1) + 2
Θ(ė5) ≥ Θ(ė2)
Θ(ė5) ≤ max1,2

max1,2
def

= max{Θ(ė1), Θ(ė2)}

Fig. 3. The complete finite prefix of the symbolic unfolding of the time Petri net of
Figure 1. The predicate LFC (Place(B), dobB,Θ, t, Θ(ė)) is written near each extended

event ė
def

= (B, t).

Theorem 8 (decomposition of an extended process in Ū). For all tem-
porally complete extended process 〈Ė, Θ〉 ∈ Ẏ , there exist extended processes

ẋ0, . . . , ẋn ∈ X̄ and Ė′
1, . . . , Ė

′
m with ẋi

def

= 〈Ėi, Θi〉 for all i ∈ {0, . . . ,m} and
Ė′

i (Ėi for all i ∈ {1, . . . ,m}, such that 〈Ė, Θ〉 = subst(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
m, ẋm).

Proof. To build the substitution we take the extended events in a total order that
respects causality and temporal ordering. Each time we add an event, we try to
add it at the end of the last extended process (ẋm) if it remains in X̄. Otherwise
we add an extended process ẋm+1 in the substitution. More formally, let 〈Ė, Θ〉 ∈

Ẏ , ė
def

= (B, t) ∈ Ė a maximal extended event in Ė w.r.t. causality (↗) and tem-
poral ordering by Θ, and assume that there exist ẋ0, . . . , ẋn ∈ X̄ and Ė′

1, . . . , Ė
′
m

such that 〈Ė \ {ė}, Θ〉 = subst(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
m, ẋm). Let 〈Ėm, Θm〉

def

= ẋm and

ẋ′m
def

= 〈Ėm ∪{ė′}, Θ′
m〉

def

= subst(ẋm, Ė \{ė}, 〈Ė, Θ〉), where ė′
def

= φ(ė) in the sub-

stitution. If ẋ′m ∈ X̄ then subst(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
m, ẋ

′
m) fits. Otherwise let Ḟ

def

=

Ėm ∪{ė′} and find a sequence of local firings σn
def

= ((t1, L1, θ1), . . . , (tn, Ln, θn))

such that Π̇(σn) = ẋm. Let tn+1
def

= t, Ln+1
def

= B, and θn+1
def

= Θ′
m(ė′) so that

ẋ′m = Π̇((t1, L1, θ1), . . . , (tn+1, Ln+1, θn+1)). There exist σ′′ and n′ < n+ 1 such
that |σ′′| < n′ and predJ (Ḟ ′) = predJ (Ḟ ′′), where Ḟ ′ (respectively Ḟ ′′) is the set
of events that appear in Π̇((t1, L1, θ1), . . . , (tn′ , Ln′ , θn′)) (respectively Π̇(σ′′)).

Choose σ′′ of minimal length so that ẋm+1
def

= Π̇(σ′′ · (tn+1, Ln+1, θn+1)) ∈ X̄.
It holds that n′ = n since ẋm ∈ X̄. There exists Θ′

m+1 : Ḟ ′′ → Q such that

〈Ḟ ′′, Θm+1〉 is temporally complete and RS(〈Ḟ ′′, Θm+1〉) ∼ RS (〈Ḟ ′, Θm〉). And
〈Ė, Θ〉 = subst(ẋ0, Ė

′
1, ẋ1, . . . , Ė

′
m, ẋm, Ḟ

′′, ẋm+1).

5 Conclusion

We have presented a new notion of complete finite prefix for safe time Petri
nets. It is based on the construction of a symbolic unfolding, and on the study of

the form of constraints associated with the transitions. This required to define
a notion of partial state in order to equip time Petri nets with a concurrent
operational semantics. A prototype has been implemented (a few thousands
lines of Lisp code, and the help of a Simplex subroutine). Several improvements
could be done. In particular, the idea of adequate order, introduced by Esparza
[7] seems to be usable in our framework. Our next work on the subject will be to
make some experiments to try to experimentally prove (or disprove) the interest
of our technique in the context of model-checking or others.

References

1. Kitai, T., Oguro, Y., Yoneda, T., Mercer, E., Myers, C.: Partial order reduction for
timed circuit verification based on a level oriented model. IEICE Trans. E86-D(12)
(2001) 2601–2611

2. Penczek, W., Pólrola, A.: Abstractions and partial order reductions for checking
branching properties of time Petri nets. In: ICATPN. Volume 2075 of LNCS.
(2001) 323–342

3. Chatain, T., Jard, C.: Time supervision of concurrent systems using symbolic
unfoldings of time Petri nets. In: FORMATS. Volume 3829 of LNCS. (2005) 193–
207 Extended version available in INRIA Research Report RR-5706.

4. Aura, T., Lilius, J.: Time processes for time Petri nets. In: ICATPN. Volume 1248
of LNCS. (1997) 136–155

5. Lilius, J.: Efficient state space search for time Petri nets. In: MFCS Workshop on
Concurrency ’98. Volume 18 of ENTCS., Elsevier (1999)

6. McMillan, K.L.: A technique of state space search based on unfolding. Formal
Methods in System Design 6(1) (1995) 45–65

7. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design 20(3) (2002) 285–310

8. Bieber, B., Fleischhack, H.: Model checking of time Petri nets based on partial
order semantics. In: CONCUR. Volume 1664 of LNCS. (1999) 210–225

9. Fleischhack, H., Stehno, C.: Computing a finite prefix of a time Petri net. In:
ICATPN. (2002) 163–181

10. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Software Eng. 17(3) (1991) 259–273

11. Semenov, A.L., Yakovlev, A.: Verification of asynchronous circuits using time Petri
net unfolding. In: DAC, ACM Press (1996) 59–62

12. Merlin, P., Farber, D.: Recoverability of communication protocols – implications
of a theorical study. IEEE Transactions on Communications 24 (1976)

13. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6) (1991) 575–591
14. Chatain, T., Jard, C.: Symbolic diagnosis of partially observable concurrent sys-

tems. In: FORTE. Volume 3235 of LNCS. (2004) 326–342
15. Best, E.: Structure theory of Petri nets: the free choice hiatus. In: Proceedings of an

Advanced Course on Petri Nets: Central Models and Their Properties, Advances
in Petri Nets 1986-Part I, London, UK, Springer-Verlag (1987) 168–205

16. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures, and processes. Inf. Comput. 171(1) (2001) 1–49

17. Vogler, W., Semenov, A.L., Yakovlev, A.: Unfolding and finite prefix for nets with
read arcs. In: CONCUR. Volume 1466 of LNCS. (1998) 501–516

