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Abstract

It is shown that an algebra Λ can be lifted with nilpotent Jacobson radical

r = r(Λ) and has a generalized matrix unit {eii}I with each ēii in the center of

Λ̄ = Λ/r iff Λ is isomorphic to a generalized path algebra with weak relations.

Representations of the generalized path algebras are given. As a corollary, Λ is a

finite algebra with non-zero unity element over perfect field k (e.g. a field with

character zero or a finite field ) iff Λ is isomorphic to a generalized path algebra

k(D,Ω, ρ) of finite directed graph with weak relations and dim Ω < ∞; Λ is a

generalized elementary algebra which can be lifted with nilpotent Jacobson radical

and has a complete set of pairwise orthogonal idempotents iff Λ is isomorphic to a

path algebra with relations.

0 Introduction

It is well known that every elementary algebra is isomorphic to a path algebra of a finite

directed graph with relations (see [2]). In fact, every path algebra of a finite directed

graph with relations is also an elementary algebra. The results are very useful because

all representations of path algebras can be obtained easily. In [3] F.U. Coelho and S.X.

Liu introduced the concept of generalized path algebras to study other algebras.

The aim of this paper is to give the structures and representations of generalized path

algebras with weak relations. We study generalized path algebras by using generalized

matrix algebras introduced in [6]. In fact, every generalized path algebra is a generalized

matrix algebra. In section 1, we study the structure of generalized matrix rings. We find
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the relations among the decomposition of a ring, the complete set of pairwise orthogonal

idempotents (possibly infinite many) and generalized matrix ring. This generalizes the

theory about decomposition of rings. In section 2, we study the representations of the

generalized path algebras. In section 3, we characterize the generalized path algebras with

weak relations by algebras which can be lifted with nilpotent Jacobson radical.

We say that an algebra Λ can be lifted, if there exists a subalgebra A of Λ such that

Λ = A ⊕ r(Λ). By the famous Wedderburn-Malcev Theorem (see [5, Theorem 11.6 and

Corollary 11.6]), for every finite dimensional algebra Λ over field k with char k = 0, Λ

can be lifted and r(Λ) is nilpotent. We shall see, in section 3, that every generalized path

algebra with weak relations can be also lifted and its Jacobson radical is nilpotent. In

that section we show that the converse also holds. That is, it is shown that an algebra

Λ is isomorphic to a generalized path algebra with weak relations iff Λ can be lifted

with nilpotent Jacobson radical r(Λ) and has a complete set {eii}I of pairwise orthogonal

idempotents with each ēii in the center of Λ̄ = Λ/r. As a corollary, Λ is a finite algebra

with non-zero unity element over field k iff Λ is isomorphic to a generalized path algebra

k(D, Ω, ρ) of finite directed graph with weak relations and the dimension of Ω is finite; Λ

is a generalized elementary algebra which can be lifted with nilpotent Jacobson radical iff

Λ is isomorphic to a path algebra with relations.

Preliminaries

Let k be a field. We first recall the concepts of ΓI-systems, generalized matrix rings

(algebras ) and generalized path algebras. Let I be a non-empty set. If for any i, j, l, s ∈

I, Aij is an additive group and there exists a map µijl from Aij × Ajl to Ail (written

µijl(x, y) = xy) such that the following conditions hold:

(i) (x + y)z = xz + yz, w(x + y) = wx + wy;

(ii) w(xz) = (wx)z,

for any x, y ∈ Aij , z ∈ Ajl, w ∈ Ali, then the set {Aij | i, j ∈ I} is a ΓI -system with index

I.

Let A be the external direct sum of {Aij | i, j ∈ I}. We define the multiplication in A

as

xy = {
∑

k

xikykj}

for any x = {xij}, y = {yij} ∈ A. It is easy to check that A is a ring (possibly without

the unity element ). We call A a generalized matrix ring, or a gm ring in short, written as

A =
∑
{Aij | i, j ∈ I}. For any non-empty subset S of A and i, j ∈ I, set Sij = {a ∈ Aij |

there exists x ∈ S such that xij = a}. If B is an ideal of A and B =
∑
{Bij | i, j ∈ I},

then B is called a gm ideal. If for any i, j ∈ I, there exists 0 6= eii ∈ Aii such that xijejj =

eiixij = xij for any xij ∈ Aij , then the set {eii | i ∈ I} is called a generalized matrix unit of
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ΓI-system {Aij | i, j ∈ I}, or a generalized matrix unit of gm ring A =
∑
{Aij | i, j ∈ I},

or a gm unit in short. It is easy to show that if A has a gm unit {eii | i ∈ I}, then

every ideal B of A is a gm ideal. Indeed, for any x =
∑

i,j∈I xij ∈ B and i0, j0 ∈ I, since

ei0i0xej0j0 = xi0j0 ∈ B, we have Bi0j0 ⊆ B. Furthermore, if B is a gm ideal of A, then

{Aij/Bij | i, j ∈ I} is a ΓI-system and A/B ∼=
∑
{Aij/Bij | i, j ∈ I} as rings.

If for any i, j, l, s ∈ I, Aij is a vector space over field k and there exists a k-linear map

µijl from Aij ⊗ Ajl into Ail (written µijl(x, y) = xy) such that x(yz) = (xy)z for any

x ∈ Aij, y ∈ Ajl, z ∈ Als, then the set {Aij | i, j ∈ I} is a ΓI- system with index I over

field k. Similarly, we get an algebra A =
∑
{Aij | i, j ∈ I}, called a generalized matrix

algebra, or a gm algebra in short.

Assume that D is a directed (or oriented) graph (D is possibly an infinite directed

graph and also possibly not a simple graph) (or quiver ). Let I = D0 denote the vertex

set of D and D1 denote the set of arrows of D. Let Ω be a generalized matrix algebra over

field k with gm unit {eii | i ∈ I}, the Jacobson radical r(Ωii) of Ωii is zero and Ωij = 0 for

any i 6= j ∈ I. The sequence x = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1inain is called a generalized

path (or Ω-path) from i0 to in via arrows xi0i1 , xi1i2, xi2i3 , · · · , xin−1in , where 0 6= aip ∈ Ωipip

for p = 0, 1, 2, · · · , n. In this case, n is called the length of x, written l(x). For two Ω-

paths x = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1inain and y = bj0yj0j1bj1yj1j2bj2yj2j3 · · · yjm−1jm
bjm

of D with in = j0, we define the multiplication of x and y as

xy = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1in(ainbj0)yj0j1yj1j2bj1yj2j3 · · · yjm−1jm
bjm

. (∗)

For any i, j ∈ I, let A′
ij denote the vector space over field k with basis being all Ω-paths

from i to j with length > 0. Bij is the sub-space spanned by all elements of forms:

ai0xi0i1ai1xi1i2ai2 · · ·xis−1is(a
(1)
is + a

(2)
is + · · ·+ a

(m)
is )xisis+1

· · ·xin−1inain

−
m∑

l=1

ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xis−1isa
(l)
is xisis+1

· · ·xin−1inain ,

where i0 = i, in = j, a
(l)
is ∈ Ωisis , aip ∈ Ωipip, xitit+1

is an arrow, p = 0, 1, · · · , n, t =

0, 1, · · · , n−1, l = 0, 1, · · · , m, 0 ≤ s ≤ n, n and m are natural numbers. Let Aij = A′
ij/Bij

when i 6= j and Aii = (A′
ii + Ωii)/Bii, written [α] = α + Bij for any generalized path α

from i to j. We can get a k-linear map from Aij ⊗ Ajl to Ail induced by (∗). We write a

instead of [a] when a ∈ Ω. In fact, [Ωii] ∼= Ωii as algebras for any i ∈ I. Notice that we

write eiixij = xijejj = xij for any arrow xij from i to j. It is clear that {Aij | i, j ∈ I}

is a ΓI-system with gm unit {eii | i ∈ I}. The gm algebra
∑
{Aij | i, j ∈ I} is called

the generalized path algebra, or Ω-path algebra, written as k(D, Ω) (see, [2, Chapter

3] and [3]). Let J denote the ideal generated by all arrows in D of k(D, Ω). If ρ is a

non-empty subset of k(D, Ω) and the ideal (ρ) generated by ρ satisfies J t ⊆ (ρ) ⊆ J2,
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then k(D, Ω)/(ρ) is called generalized path algebra with relations. If J t ⊆ (ρ) ⊆ J , then

k(D, Ω)/(ρ) is called generalized path algebra with weak relations. If Ωii = keii for any

i ∈ I, then k(D, Ω) is called a path algebra, written as kD. If D0 and D1 are finite sets,

then D is called a finite directed graph.

Let r(Λ) denote the Jacobson radical of ring Λ. Let |S| denote the number of elements

in set S. Let δij denote the Kronecker δ-function. Rings and algebras are possible without

unity elements.

1 Decomposition of generalized matrix rings

In this section, we study the structure of generalized matrix rings. We find the relations

among the decomposition of a ring, the complete set of pairwise orthogonal idempotents

(possible infinite many) and generalized matrix rings. This generalizes the theory of direct

sum decomposition of rings in [1].

Definition 1.1 If A is a ring and {eii | i ∈ I} ⊆ A such that the following conditions

are satisfied (i) eiiejj = δijeii for any i, j ∈ I; (ii) for any x ∈ A, there exists a finite

subset F of I such that (
∑

i∈F eii)x = x(
∑

i∈F eii) = x; (iii) eii 6= 0 for any i ∈ I, then

{eii | i ∈ I} is called the complete set of pairwise orthogonal idempotents of A with index

I. Moreover, if each eii is a primitive idempotent (i.e. it can not be written as a sum

of two non-zero orthogonal idempotents), then {eii | i ∈ I} is called a complete set of

pairwise orthogonal primitive idempotents of A with index I

Remark : (i) Let {eii | i ∈ I} be a complete set of pairwise orthogonal idempotents of

A. Assume that x ∈ A and finite subset F ⊆ I such that x = (
∑

i∈F eii)x = x(
∑

i∈F eii) =

x. If F ′ is a finite subset of I and F ⊆ F ′, then x = (
∑

i∈F ′ eii)x = x(
∑

i∈F ′ eii) = x.

Indeed,

(
∑

i∈F ′

eii)x = (
∑

i∈F ′

eii)((
∑

i∈F

eii)x)

= ((
∑

i∈F ′

eii)(
∑

i∈F

eii))x

= (
∑

i∈F

eii)x

= x.

Similarly, x(
∑

i∈F ′ eii) = x.

(ii) Let I be a non-empty set and A a ring with additive sub-groups Aij for any

i, j ∈ I. If A =
∑

i,j∈I Aij as additive groups and AijAst ⊆ δjsAit for any i, j, s, t ∈ I,

then {Aij , | i, j ∈ I} is a ΓI -system. Let A′ denote the gm ring
∑
{Aij | i, j ∈ I} of
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ΓI-system {Aij , | i, j ∈ I}. Moreover, if Aii has a non-zero unity element eii for any i ∈ I,

then A is the inner direct sum of {Aij , | i, j ∈ I} as additive groups and A′ is isomorphic

to A under canonical isomorphism φ by sending {xij} to
∑

i,j∈I xij for any {xij} ∈ A′.

In this case, A is called the inner gm ring of ΓI-system {Aij , | i, j ∈ I}, also written

A =
∑
{Aij , | i, j ∈ I}. If we view each element in Aij as one in

∑
{Aij | i, j ∈ I}, then

every gm ring can be viewed as an inner gm ring. Similarly, every inner gm ring can be

viewed as a gm ring.

Theorem 1.2 A has a complete set {eii | i ∈ I} of pairwise orthogonal idempotents

with index I iff A =
∑
{Ai,j | i, j ∈ I} is a gm ring with gm unit {eii | i ∈ I} and

Aij = eiiAejj for any i, j ∈ I.

Proof. The sufficiency is obvious. We now prove the necessity. Assume that A has a

complete set {eii | i ∈ I} of pairwise orthogonal idempotents with index I. Let Aij =

eiiAejj for any i, j ∈ I. It is easy to check AijAst ⊆ δjsAit for any i, j, s, t ∈ I. Thus A is

an inner gm ring of {Ai,j | i, j ∈ I} with gm unit {eii | i ∈ I}. 2

This theorem implies that an algebra A has a complete set of pairwise orthogonal

idempotents iff A is a gm ring with gm unit.

Proposition 1.3 (i) If A has the non-zero unity element u then A has a complete set

{eii | i ∈ I} of pairwise orthogonal idempotents with finite index I and
∑

i∈I eii = u.

(ii) If ring A has the non-zero unity element u and a complete set {eii | i ∈ I} of

pairwise orthogonal idempotents with index I, then I is a finite set and
∑

i∈I eii = u.

(iii) If A is a finite dimensional algebra over field k, then A has the non-zero unity

element iff A has gm unit.

Proof. (i) Let I = {1} and u = e11.

(ii) Since A has a gm unit {eii}I , by Theorem 1.2, A =
∑
{Aij | i, j ∈ I} is a gm ring

with gm unit {eii}I and Aij = eiiAejj for any i.j ∈ I. Let u =
∑

i,j∈F uij with finite subset

F of I and uij ∈ Aij for any i, j ∈ F . Since u is the unity element of A, Aij = 0 for any

i 6∈ F or j 6∈ F . Thus F = I since eii 6= 0 for any i ∈ I. For any s ∈ I and xss ∈ Ass, since

uxss = xss and xssu = xss, we have ussxss = xss and xssuss = xss. This implies uss = ess

for any s ∈ F. Next we show uij = 0 when i 6= j. On the one hand, uiiu = uii. On the

other hand, uiiu =
∑

s∈I uiiuis. Consequently, uij = 0 for any i 6= j.

(iii) If A has gm unit {eii}I , then I is finite since A is finite dimensional. It is clear

that u =
∑

i∈I eii is the unity element of A. The converse follows from (i). 2

Proposition 1.4 If A is a left (or right ) artinian or noetherian ring with gm unit

{eii}I , then I is finite and
∑

i∈I eii is the unity element of A.
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Proof. By Theorem 1.2, A =
∑
{Aij | i, j ∈ I} with Aij = eiiAejj for any i, j ∈ I.

If I is infinite, then there exists an infinite sequence i1, i2, · · · , in, · · · in I. Let A1 =

Aei1i!, A2 = A1 + Aei2i2 , · · · , An+1 = An + Ain+1in+1
, · · ·. Obviously A1 ⊂ A2 ⊂ · · · ⊂

An ⊂ · · · is an ascending chain of left ideals of A. Let B1 =
∑

j∈I,j 6=i1 Aejj, B2 =
∑

j∈I,j 6=i1,i2 Aejj, · · · , Bn+1 =
∑

j∈I,j 6=i1,i2,···,in+1
Aejj for any natural number n. Obviously,

B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · · is an descending chain of left ideals of A. We get a contradic-

tion. Consequently, I is finite. 2

Let AΓI denote the category of all ΓI -systems with gm unit, the morphism of two

objects from {Aij | i, j ∈ I} with gm unit {eii}I to {Bij | i, j ∈ I} with gm unit

{e′ii}I is a set {fij}I , where fij is an additive group homomorphism from Aij to Bij with

fij(xy) = fis(x)fsj(y) and fii(eii) = e′ii for any i, j, s ∈ I, x ∈ Ais, y ∈ Asj. Let GMI

denote the category of all generalized matrix algebras with index I and gm unit, the

morphism between the two objects is gm homomorphism. A gm homomorphism of two

objects from A =
∑
{Aij | i, j ∈ I} with gm unit {eii}I to B =

∑
{Bij | i, j ∈ I} with gm

unit {e′ii}I is a ring homomorphism f : A → B such that f(Aij) ⊆ Bij and f(eii) = e′ii
for any i, j ∈ I.

Proposition 1.5 AΓI and GMI are two equivalent categories.

Proof. Let H : AΓI → GMI by H({Aij}I) =
∑
{Aij | i, j ∈ I}, H({fij}I) = ⊕i,j∈Ifij

for any morphism {fij}I from {Aij | i, j ∈ I} to {Bij | i, j ∈ I}. Let G : GMI → AΓI

by G(
∑
{Aij | i, j ∈ I}) = {Aij}I and G(f) = {fij}I with fij = f |Aij

for any i, j ∈ I.

Obviously, HG = id and GH = id. 2

2 Representations of generalized path algebras

In this section, we study representations of the generalized path algebras.

Definition 2.1 Let {Aij | i, j ∈ I} be an ΓI-system with gm unit {eii}I . For any

i, j ∈ I, Mi is an additive group and there exists a map φij from Aij × Mj to Mi (written

φij(a, x) = ax) such that the following conditions are satisfied:

(i) a(x + y) = ax + ay and (a + b)x = ax + bx.

(ii) (ca)x = c(ax).

(iii) ejjx = x

For any x, y ∈ Mj , a, b ∈ Aij , c ∈ Asi, then {Mi | i ∈ I} is called an {Aij}I- module

system.

Let Rep {Aij}I denote the category of {Aij}I-module systems. The morphism of two

objects {Mi}I and {Ni}I is a collection {fi}I such that fi is an additive group homomor-

phism from Mi to Ni with fi(aijxj) = aijfj(xj) for any aij ∈ Aij, xj ∈ Mj .
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An A-module is called a local unitary A-module if for any x ∈ M there exists u ∈ A

such that ux = x.

Lemma 2.2 If A is a gm ring with gm unit {eii}I , then M is a local unitary A-module

iff M is an A-module with AM = M .

Proof. Assume AM = M . For any x ∈ M, there exist a(p) ∈ A, xp ∈ M such

that x =
∑n

p=1 a(p)x(p). There exists a finite subset F of I such that a(p) ∈
∑

i,j∈F Aij

for p = 1, 2, · · · , n. Let u =
∑

i∈F eii. We have that ux = u(
∑

p=1,2,···,n a(p)x(p)) =
∑

p=1,2,···,n a(p)x(p) = x. Therefore, M is a local unitary A-module. Conversely, it is

clear that AM = M when M is a local unitary A-module. 2

Lemma 2.3 Let A be a gm ring with gm unit {eii}I.

(i) If M is a local unitary A-module, then {Mi | i ∈ I} is an {Aij}I-module system

with eiiM = Mi.

(ii) If {Mi}I is an {Aij}I-module system, then the external direct sum M of {Mi}I

becomes a local unitary A-module under module operation ax = {
∑

s∈I aisxs}I for any

a = {aij}I ∈ A, x = {xi}I ∈ M .

Proof. (i) If M is a local unitary A-module. Set eiiM = Mi for any i ∈ I. It is clear

that {Mi}I is an {Aij}I-module system. Indeed, for any x, y ∈ Mj , a, b ∈ Aij and c ∈ Asi,

we have that a(x + y) = ax + ay, (a + b)x = ax + bx, (ca)x = c(ax) and ejjx = x.

(ii) It is clear. Indeed, for any a = {aij}I , b = {bij}I ∈ A and x = {xi}I ∈ M , it is

easy to check (ab)x = a(bx). Since there exists finite subset F of I such that x =
∑

i∈F xi,

we have that (
∑

i∈F eii)x = x. Thus M is a local unitary A-module. 2

Let AMLU denote the category of local unitary A-modules. every morphism of two

objects M and N is a homomorphism of A- modules.

Theorem 2.4 Let A =
∑
{Aij | i, j ∈ I} be a gm ring with gm unit. Then Rep {Aij}I

and AMLU are equivalent.

Proof. Let H : Rep {Aij}I → AMLU by H({Mi}I) =
∑
{Mi | i ∈ I}, H({fi}I) =

⊕i∈Ifi for any morphism {fi}I between two objects {Mi}I and {Ni}I . Let G : AMLU →

Rep {Aij}I by G(M) = {Mi}I with Mi = eiiM for any i ∈ I. G(f) = {fi}I with fi = f |Mi

for any morphism f between two objects M and N . It is clear HG = id and GH = id. 2

If A =
∑
{Aij | i, j ∈ I} is a gm algebra over field k with gm unit {eii}I , we can

similarly define {Aij}I-module systems as follows.

Let {Aij | i, j ∈ I} be a ΓI -system over field k with gm unit {eii}I . If for any

i, j ∈ I, Mi is a vector space and there exists k-linear map φij from Aij ⊗ Mj to Mi

(written φij(a, x) = ax) such that the following conditions are satisfied:

7



(i) (ca)x = c(ax).

(ii) ejjx = x,

for any x ∈ Mj , a ∈ Aij , c ∈ Asi, then {Mi | i ∈ I} is called an {Aij}I- module system. We

still use the two notations Rep {Aij}I and AMLU to denote the corresponding categories.

Theorem 2.5 Let A =
∑
{Aij | i, j ∈ I} be a gm algebra with gm unit. Then Rep

{Aij}I and AMLU are equivalent.

For a generalized path algebra k(D, Ω, ρ) with weak relations, let P = k(D, Ω), N =

(ρ) and Q = P/N. It is clear that the generalized path algebra k(D, Ω, ρ) with weak

relations is a gm algebra, so its representation corresponds to {Qij}I-module system.

That is, Rep {Qij}I and QMLU are equivalent. However, we have a simpler category.

A representation of (D, Ω) is a set (V, f) =: {Vi, fα | Vi is an unitary Ωii-module,

fα : Vi → Vj is a k-linear map, i, j ∈ I, α is an arrow from j to i}. A morphism

h : (V, f) → (V ′, f ′) between tow representations of (D, Ω) is the collection {hi}I such

that hi : Vi → V ′
i is a k-linear map and hjfα = f ′

αhi for any arrow α : i → j and i, j ∈ I.

Let Rep (D, Ω) denote the category of representations of (D, Ω).

Lemma 2.6 Let P = k(D, Ω) and Q = k(D, Ω, ρ).

(i) If (V, f) is an object in Rep (D, Ω), then {Vi}I is a {Pij}I-module system un-

der operation α · vin = ai0 · fxi0i1
(ai1 · (fxi1i2

· · · fxin−1in
(ain · vin))) for any Ω-path α =

ai0xi0i1ai1xi1i2 · · ·xin−1inain from i0 to in and vin ∈ Vin.

(ii) If {Vi}I is a {Pij}I-module system, then (V, f) is an object in Rep (D, Ω) under

operation fxij
(vj) = xij · vj for any arrow xij ∈ Pij and vj ∈ Vj .

Proof. (i) It is sufficient to show that

(αβ) · vjm
= α · (β · xjm

) (∗)

for two Ω- paths α = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1inain and

β = bj0yj0j1bj1yj1j2bj2yj2j3 · · · yjm−1jm
bjm

of D with in = j0.

When αβ 6= 0, i.e. ainbj0 6= 0, αβ is an Ω-path. By definition, (*) holds. When

αβ = 0, i.e. ainbj0 = 0, αβ is not an Ω-path. Obviously the left side of (*) =0.

The right side of (∗) = α · (bj0 · fyj0j1
(bj1 · fyj1j2

(· · ·fyym−1jm
(bim · vim))))

= ai0 · fxi0i1
(ai1 · fxi1i2

(· · ·

fxin−1in
((ainbj0) · fyj0j1

(bj1 · fyj1j2
(· · ·fyym−1jm

(bim · vim))))))

= 0.

Consequently, (*) holds.

(ii) It is obvious. 2

Combining Lemma 2.6 and Theorem 2.5, we have
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Theorem 2.7 Rep (D, Ω) and k(Γ,Ω)MLU are equivalent.

For a representation (V, f) in Rep (D, Ω) and any element σ ∈ k(D, Ω), by Lamma

2.6 and Theorem 2.5, (V, f) can be viewed as k(D, Ω)-module, so for any σ ∈ k(D, Ω), we

write fσ : V → V by sending x to σ · x for any x ∈ V . Let Rep (D, Ω, ρ) denote the full

subcategory of Rep (D, Ω) whose objects are (V, f) with fσ = 0 for each σ ∈ ρ.

Lemma 2.8 Let P = k(D, Ω) and Q = k(D, Ω, ρ).

(i) If (V, f) is an object in Rep (D, Ω, ρ), then {Vi}I is a {Qij}I-module system under

operation induced by operation of {Pij}- module system in Lemma 2.6.

(ii) If {Vi}I is a {Qij}I-module system, then (V, f) is an object in Rep (D, Ω, ρ) under

operation fxij
(vj) = xij · vj for any arrow xij ∈ Pij and vj ∈ Vj .

Theorem 2.9 (i) Rep (D, Ω, ρ) and k(Γ,Ω,ρ)MLU are equivalent.

(ii) If D is finite (i.e. I is finite and the number of arrows between any two ver-

texes is finite ), then f.d.Rep (D, Ω, ρ) and f.d.k(Γ,Ω,ρMLU are equivalent. Here, f.d.Rep

(D, Ω, ρ) and f.d.k(Γ,Ω,ρ)MLU denote the full subcategories of finite dimensional objects

in the corresponding categories, respectively.

3 Generalized path algebras

In this section, we characterize the generalized path algebras with weak relations by some

algebras which can be lifted with nilpotent Jacobson radical.

If V = U ⊕ W as vector spaces and x ∈ V , then there exist a ∈ U and b ∈ W such

that x = a + b. For convenience, we denote a and b by xU and xW , respectively.

Lemma 3.1 Let Λ be an algebra and N an ideal of Λ. Then the following conditions

are equivalent:

(i) There exists a subalgebra A of Λ such that Λ = A ⊕ N as vector spaces.

(ii) The canonical homomorphism π : Λ → Λ/N is split in the category of algebras,

i.e. there exists an algebra homomorphism ξ : Λ/N → Λ such that πξ = idΛ/N .

Proof. (i) ⇒ (ii). Define ξ : Λ/N → Λ by sending ξ(x + N) = xA for any x =

xA + xN ∈ Λ with xA ∈ A, xN ∈ N. It is clear that ξ is an algebra homomorphism and

πξ = id.

(ii) ⇒ (i). Obviously Λ = A ⊕ N with A = Imξ. 2

We say that an algebra Λ can be lifted if Λ = A ⊕ r(Λ) with subalgebra A 1.

1The concept was introduced by Li Fang
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Lemma 3.2 Let Λ be an algebra, N an ideal of Λ and A a subalgebra of Λ. If Λ =

A⊕N , then Λ/B = (A+B)/B⊕ (N +B)/B for any ideal B of Λ with B ⊆ A or B ⊆ N .

Proof. For any x = xA + xN ∈ Λ with xA ∈ A and xN ∈ N , x̄ = x + B =

(xA+B)+(xN+B) ∈ Λ/B with (xA+B) ∈ (A+B)/B, (xN+B) ∈ (N+B)/B. This implies

that Λ/B = (A + B)/B + (N + B)/B. Assume B ⊆ A. then (A/B) ∩ ((N + B)/B) = 0

and Λ/B = A/B ⊕ (N + B)/B. Similarly, when B ⊆ N , Λ/B = (A + B)/B ⊕ N/B. 2

Lemma 3.3 Let Λ be an algebra, N a nilpotent ideal of Λ and A a subalgebra of Λ.

Assume Λ = A ⊕ N as vector spaces. If {eii}I is a complete set of pairwise orthogonal

idempotents of Λ, then {eii}I ⊆ A.

Proof. We first show that if e is idempotent in Λ with e = eA + eN and eA ∈ A, eN ∈ N ,

then eA is idempotent. Indeed, since ee = e and N is an ideal of Λ, we have eAeA +

(eAeN + eNeN + eNeA) = eA + eN , which implies that eAeA = eA.

Next we show that if e and f are pairwise orthogonal idempotents of Λ, then so are eA

and fA. Indeed, since ef = 0, i.e. eAfA + (eAfN + eNfA + eNfN) = 0, we have eAfA = 0.

Similarly, fAeA = 0.

We now show that each eii ∈ A by induction for m, where Nm = 0.

When m = 1, N = 0. In this case, (eii)A = eii ∈ A for any i ∈ I.

Assume now that the claim holds when m ≤ l and we show that the claim also holds

when m = l + 1. Let Λ̄ = Λ/N l. By Lemma 3.2, Λ̄ = (A + N l)/N l ⊕ N/N l. It is clear

{ēii}I is a complete set of pairwise orthogonal idempotents of Λ/N l. By the inductive

assumption, ēii ∈ Ā, i.e. (eii)N ∈ N l for any i ∈ I.

For any x ∈ Λ, there exists a finite subset F of I such that

x = (
∑

i∈F

eii)x and xA = (
∑

i∈F

eii)xA. (1)

By (1),

0 = (
∑

i∈F

(eii)N)xA and xA = (
∑

i∈F

(eii)A)xA. (2)

Since (
∑

i∈F (eii)N)xN ∈ N l+1 = 0, (
∑

i∈F (eii)N )xN = 0. By (1) and (2),

xN = (
∑

i∈F

(eii)A)xN . (3)

Combining (2) and ( 3), we have that x = (
∑

i∈F (eii)A)x. Similarly, x = x(
∑

i∈F (eii)A).

Consequently, {(eii)A}I is a complete set of pairwise orthogonal idempotents of Λ. Since

eii and (eii)A are the unity element of Λii, eii = (eii)A ∈ A for any i ∈ I. 2

By Lemma 3.3, we have immediately:
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Lemma 3.4 Let Λ be an algebra with non-zero unity element u, N a nilpotent ideal of

Λ and A a subalgebra of Λ. If Λ = A ⊕ N as vector spaces, then u ∈ A.

Lemma 3.5 Let A be a subalgebra of Λ and Λ = A⊕ r with nilpotent Jacobson radical

r = r(Λ). Let B = {ru | u ∈ U} ⊆ r. If B̄ = {r̄u | u ∈ U} generates r/r2 as Λ/r-modules,

then A ∪ B generates Λ as algebras.

Proof. Since r nilpotent, there is m such that rm = 0. We use induction on m. It

is obvious that r = 0 and Λ = A when m = 1. When m = 2, we have that r2 = 0 and

r = r/r2. Thus B̄ = B generates r as Λ/r-modules. That is, r =
∑

u∈U Λru =
∑

u∈U Aru

and Λ = A + r = A +
∑

u∈U Aru. This proves our claim for m = 2.

Assume now that the claim holds when m ≤ l ( where l ≥ 2) and we show that the

claim also holds when m = l + 1. Let W denote the subalgebra generated by A ∪ B as

algebras in Λ. For Λ̄ = Λ/rl, by Lemma 3.2, Λ̄ = (A + rl)/rl ⊕ r/rl. It is clear r(Λ/rl) =

r/rl. Indeed, obviously r/rl ⊆ r(Λ/rl). Since (Λ/rl)/(r/rl) ∼= Λ/r, r(Λ/rl) ⊆ r/rl.

Thus r(Λ/rl) = r/rl. Let φ : Λ/r2 → (Λ/rl)/(r2/rl) be the canonical isomorphism, i.e.

φ(x + r2) = (x + rl) + (r2/rl) for any x ∈ Λ. See

(r/rl)/(r2/rl) = φ(r/r2)

= φ(
∑

u∈U

(Λru) + r2) by assumption

= (
∑

u∈U

(Λru + rl) + (r2/rl).

Therefore, {ru + rl | u ∈ U} generates (r/rl)/(r2/rl) as (Λ/rl)/(r/rl)-modules. By induc-

tion assumption, we have Λ/rl = (W + rl)/rl.

Let x ∈ Λ. There is y ∈ W and z ∈ rl such that x − y = z. Since l ≥ 2, there exist

αi ∈ rl−1, βi ∈ r for i = 1, 2, · · · , n such that z =
∑

αiβi. Again using Λ/rl = (W + rl)/rl,

we have that there are ai, bi ∈ W, ui, vi ∈ rl such that αi = ai + ui and βi = bi + vi, so

ai = αi − ui ∈ rl−1 and bi = βi − vi ∈ r for any i = 1, 2, · · · , n. By computation and

rl+1 = 0, we have x − y ∈ W and x ∈ W . We complete the proof. 2

Recall that J is the ideal generated by all arrows in D of k(D, Ω) and J̄ is the ideal

J/(ρ) of k(D, Ω, ρ).

Lemma 3.6 2 If J t ⊆ (ρ) for some t, then r(k(D, Ω, ρ)) = J̄

Proof. Let P = k(D, Ω) and Q = k(D, Ω, ρ). Obviously Q/J̄ ∼= P/J ∼=
∑
{Pij/Jij |

i, j ∈ I}. It is clear that Pij = Jij when i 6= j and Pii/Jii
∼= Ωii. Thus r(k(D, Ω, ρ)) ⊆ J̄ .

Conversely, since J t ⊆ (ρ) for some t, J̄ is nilpotent and J̄ ⊆ r(k(D, Ω, ρ)). 2

2The lemma was proved by Li Fang
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Lemma 3.7 Let Λ be an algebra.

(i) If f is an algebra homomorphism from k(D, Ω) to Λ, then f |Ω is an algebra ho-

momorphism and f(xij) = f(eii)f(xij) = f(xij)f(ejj) for any arrow xij from i to j and

i, j ∈ I.

(ii) If f is a map from Ω ⊕ D1 to Λ and f |Ω is an algebra homomorphism with

f(xij) = f(eii)f(xij) = f(xij)f(ejj) for any arrow xij from i to j and i, j ∈ I, then

there exists (unique) algebra homomorphism f̄ : k(D, Ω) → Λ such that f̄ |Ω⊕D1
= f .

Proof. (i) It is obvious.

(ii) Let P denote the generalized path algebra k(D, Ω). For any i, j ∈ I and gener-

alized path α = ai0xi0i1ai1xi1i2 · · ·ain−1
xin−1inain from i0 = i to in = j, define fij(α) =

f(ai0)f(xi0i1)f(ai1)f(xi1i2) · · ·f(ain−1
)f(xin−1in)f(ain). We get a k-linear map fij from Pij

to Λ. Now we show

fis(αβ) = fij(α)fjs(β) (∗)

for two Ω- paths α = ai0xi0i1ai1xi1i2ai2xi2i3 · · ·xin−1inain and

β = bj0yj0j1bj1yj1j2bj2yj2j3 · · · yjm−1jm
bjm

of D with in = j0 = j, i0 = i and jm = s. When

αβ 6= 0, i.e. ainbj0 6= 0, αβ is an Ω-path. By definition, (*) holds. When αβ = 0, i.e.

ainbj0 = 0, αβ is not an Ω-path. Obviously the left side of (*) =0.

The right side of (∗) = f(ai0)f(xi0i1)f(ai1)f(xi1i2) · · · f(ain−1
)f(xin−1in)f(ain)

f(bj0)f(yj0j1)f(bj1)f(yj1j2)f(bj2)f(yj2j3) · · ·f(yjm−1jm
)f(bjm

)

= 0

Consequently, holds. For any i, j ∈ I, fij naturally becomes a k-linear map from Pij

to Λ with fij(xisysj) = fis(xis)fsj(ysj) and f(xis) = f(eii)f(xis) = f(xis)f(ess) for any

xis ∈ Pis and ysj ∈ Psj and i, s, j ∈ I. Let f̄ = ⊕i,j∈Ifij . This f̄ fulfills our requirement.

2

Now we give our main theorem.

Theorem 3.8 Algebra Λ can be lifted with nilpotent Jacobson radical r = r(Λ) and has

gm unit {e′ii}I with each e′ii in the center of Λ̄ = Λ/r iff Λ is isomorphic to a generalized

path algebra with weak relations.

Proof. Assume that Λ = A ⊕ r with nilpotent Jacobson radical r = r(Λ) and

subalgebra A. By Lemma 3.3, e′ii ∈ A for any i ∈ I. Let eii = e′ii = e′ii + r in Λ/r

for any i ∈ I. By Lemma 3.1, we have that πξ = id, where π : Λ → Λ/r(Λ) is the

canonical homomorphism and ξ : Λ/r(Λ) → Λ is an algebra homomorphism by defining

ξ(x + r) = xA for any x = xA + xr ∈ Λ with xA ∈ A and xr ∈ r. Let Ωii = eii(Λ/r)eii.

12



Obviously {eii}I is gm unit of Ω and r(Ω) = 0. For any i, j ∈ I, let Bij ⊆ e′iire
′
jj = rij

such that B̄ij =: {x̄ = x+ r2 | x ∈ Bij} ⊆ r/r2 is the k-basis of e′ii(r/r
2)e′jj = eii(r/r

2)ejj.

We now construct a generalized path algebra k(D, Ω). Let I be the vertex set of D and

Bij all of arrows from i to j. Next we define an algebra homomorphism ϕ : k(D, Ω) → Λ

by ϕ|Ω= ξ and ϕ(x) = x for any arrow x from i to j. Indeed, since ξ(eii) = e′ii, we have

ϕ(xij) = xij and ϕ(eii)ϕ(xij) = ξ(eii)ϕ(xij) = e′iixij = xij , so ϕ(xij) = ϕ(eii)ϕ(xij) for any

arrow xij from i to j and i, j ∈ I. Similarly, ϕ(xij) = ϕ(xij)ϕ(ejj) for any arrow xij from i

to j and i, j ∈ I. By Lemma 3.7, ϕ can become an algebra homomorphism from k(D, Ω) to

Λ. Since B̄ij is a k-basis of eii(r/r
2)ejj for any i, j ∈ I and r/r2 =

∑
i,j∈I eii(r/r

2)ejj, r/r2

is generated by ∪i,j∈IB̄ij as Λ/r-modules. By Lemma 3.5, Λ is generated by A∪(∪i,j∈IBij)

as algebras. This proves that ϕ is surjective.

We now consider N =: kerϕ. Assume rt = 0. Since ϕ(J) ⊆ r, ϕ(J t) = 0. Thus

J t ⊆ N . For any x ∈ kerϕ, obviously, there exist a ∈ Ω and α ∈ J such that x = a + α.

Thus 0 = ϕ(x) = ϕ(a) + ϕ(x) = ξ(a) + ϕ(x). Considering ϕ(J) ⊆ r and Λ = A ⊕ r, we

have a = 0. J t ⊆ N ⊆ J has been proved.

Conversely, assume that Λ is a generalized path algebra k(D, Ω, ρ) with weak relations.

Let P = k(D, Ω), Q = k(D, Ω, ρ) and N = (ρ). Since P = Ω ⊕ J and (ρ) ⊆ J , by Lemma

3.2, we have that Q = P/(ρ) = Ω/(ρ) ⊕ J/(ρ). By Lemma 3.6, the Jacobson radical

r(Q) = J̄ . Thus Q can be lifted. r(Q)t = J̄ t = 0 since J t ⊆ N. Since {eii}I is a

complete set of pairwise orthogonal idempotents of P , {eii + N}I is a complete set of

pairwise orthogonal idempotents of Q. Obviously, Ω
φ1
∼= P/J

φ2
∼= Q/J̄ as algebras and

φ2φ1(eii) = (eii + N) + J̄ for any i ∈ I. Since eii is in the center of Ω, (eii + N) + J̄ is in

center of Q/J̄ for any i ∈ I. 2

Corollary 3.9 Λ can be lifted with nilpotent Jacobson radical and with non-zero unity

element iff Λ isomorphic to a generalized path algebra with one vertex and with weak

relations

Proof. The sufficiency follows from Theorem 3.8 and its proof. We now show the

necessity. Let u be the unity element of Λ. Obviously, {u} is a gm unit of Λ and ū is in

the center of Λ̄ = Λ/r(Λ). By Theorem 3.8 and its proof, Λ isomorphic to a generalized

path algebra k(D, Ω, ρ) with one vertex and with weak relations. 2

Lemma 3.10 Let Λ = A ⊕ r with subalgebra A and with nilpotent Jacobson radical

r = r(Λ). If Λ has the non-zero unity element u and {ēii}I is a complete set of pairwise

orthogonal idempotents of Λ̄ = Λ/r, then {(eii)A}I is a complete set of pairwise orthogonal

idempotents of Λ.

Proof. Let ξ : Λ/r → Λ by sending x + r to xA for any x ∈ Λ. Since ξ is an algebra

homomorphism, we have that {(eii)A}I is a set of pairwise orthogonal idempotents. By
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Proposition 1.3 (ii), I is finite and ū =
∑

i∈I ēii. By Lemma 3.4, u ∈ A. Thus u =
∑

i∈I(eii)A and {(eii)A}I is a complete set of pairwise orthogonal idempotents of Λ. 2

It is well known that, for any algebra Λ, if Λ/r(Λ) is a left (or right) artinian algebra

with non-zero unity element, then, by Wedderburn-Artin Theorem, Λ/r(Λ) = B1 ⊕B2 ⊕

· · ·⊕Bn as algebras and Bi is a simple subalgebra of Λ/r(Λ) for any i ∈ I = {1, 2, · · · , n}.

The number n is called the Wedderburn-Artin number of Λ, written as nWA(Λ). If Λ/r(Λ)

is not an artinian algebra with unity element, then we write nWA(Λ) = ∞.

Corollary 3.11 (i) If k(D, Ω, ρ) is a generalized path algebra with weak relations, then

|D0|≤ nWA(k(D, Ω, ρ)).

(ii) Let Λ can be lifted with nilpotent Jacobson radical r and with non-zero unity

element. If Λ/r = B1⊕B2⊕· · ·⊕Bn as algebras and Bi is a non-zero subalgebra of Λ/r(Λ)

for i ∈ I = {1, 2, · · · , n}, then Λ isomorphic to a generalized path algebra k(D, Ω, ρ) with

weak relations and Ωii = Bi for i ∈ I = D0.

(iii) Let Λ can be lifted with nilpotent Jacobson radical r and with non-zero unity

element. If Λ/r(Λ) is artinian, then for any natural number m ≤ nWA(Λ), Λ isomorphic

to a generalized path algebra k(D, Ω, ρ) with weak relations and |D0|= m.

Proof. (i) Let P = k(D, Ω), N = (ρ) and Q = P/N. If Q/r(Q) is artinian with unity

element, then, by Wedderburn-Artin Theorem, Q/r(Q) = B1 ⊕B2 ⊕ · · ·⊕Bn as algebras

and Bi is a simple subalgebra of Q/r(Q) for any i ∈ {1, 2, · · · , n}. It is clear that

⊕i∈IΩii
∼= B1 ⊕ B2 ⊕ · · · ⊕ Bn as algebras.

This implies that

⊕i∈IΩii = B′
1 ⊕ B′

2 ⊕ · · · ⊕ B′
n as algebras ,

where B′
i is a simple subalgebra of Ω for i = 1, 2, · · · , n. Considering B′

1, B
′
2, · · · , B

′
n are

simple subalgebras, we have that each Ωii is a sum of some of {B′
1, B

′
2, · · · , B

′
n}. Thus

|I|=|D0|≤ n = nWA(Q).

If Q/r(Q) is not an artinian algebra with the unity element, obviously |D0|≤ nWA(Q)

since nWA(Q) = ∞.

(ii) Let Λ = A⊕ r with subalgebra A and eii be the unity element of Bi for any i ∈ I.

Obviously, {eii}I is a complete set of pairwise orthogonal central idempotents of Λ/r. Let

e′ii ∈ Λ such that e′ii = eii for any i ∈ I. By Lemma 3.10, {(e′ii)A}I is a complete set of

pairwise orthogonal idempotents of Λ. By Theorem 3.8 and its proof, Λ is isomorphic to

k(D, Ω, ρ) with weak relations and Ωii = Bi for i ∈ I = D0.

(iii) By Wedderburn-Artin Theorem, Λ/r(Λ) = B1 ⊕B2 ⊕· · ·⊕Bn as algebras and Bi

is a simple subalgebra of Λ/r(Λ) for any i ∈ {1, 2, · · · , n} with n = nWA(Λ). Let B′
i = Bi
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for i = 1, 2, · · · , m− 1 and B′
m = Bm + · · ·+Bn. Obviously, Λ/r(Λ) = B′

1 ⊕B′
2 ⊕· · ·⊕B′

m

as algebras. By (ii), Λ is isomorphic to k(D, Ω, ρ) with weak relations and |D0|= m. 2

Corollary 3.12 Λ is isomorphic to a generalized path algebra with weak relations when

one of the following conditions holds:

(i) Λ is a finite dimensional algebra with non-zero unity element over a perfect field k

(e.g. the character of k is zero or k is a finite field ).

(ii) Λ is a finite-dimensional separable algebra with non-zero unity element.

(iii) Λ is an algebra over a field k with non-zero unity element and nilpotent Jacobson

radical, and sup{n | Hn
k (Λ, M) 6= 0 for some Λ-bimodule M} ≤ 1 (see [5, Definition

11.4]).

Proof. It follows from the famous Wedderburn-Malcev Theorem (see [5, Theorem

11.6 and Corollary 11.6]) that Λ can be lifted. We complete the proof by Corollary 3.9.

2

Corollary 3.13 Let k be a perfect field.

(i) Λ is a finite dimensional algebra with non-zero unity element iff Λ is isomorphic to

a generalized path algebra k(D, Ω, ρ) of finite directed graph with weak relations and with

dim Ω < ∞.

(ii) If Λ is a finite dimensional algebra with non-zero unity element over field k, then

Λ is isomorphic to a generalized path algebra k(D, Ω, ρ) of finite directed graph with weak

relations and Ωii = Bi for any i ∈ I = {1, 2, · · · , n}. Here

Λ/r = B1 ⊕ B2 ⊕ · · · ⊕ Bn as algebras and Bi is a simple subalgebra of Λ/r for any

i ∈ I.

(iii) If Λ is a finite dimensional algebra with non-zero unity element over field k, then

for any natural number m ≤ nWA(Λ), there exists a generalized path algebra k(D, Ω, ρ)

with weak relations and |D0|= m.

Proof. (i) Λ is a finite dimensional algebra with non-zero unity element over field

k, then Λ is isomorphic to a generalized path algebra of finite directed graph with weak

relations and dim Ω < ∞ by corollary 3.12 and the proof of Theorem 3.8. Conversely,

assume Λ = k(D, Ω, ρ) is a generalized path algebra of finite directed graph with weak

relations. Let P = k(D, Ω), Q = k(D, Ω, ρ) and N = (ρ). For any i, j ∈ I, Qij is spanned

by {[α] + N | α is a generalized path from i to j with l(α) ≤ t} since J t ⊆ (ρ). However,

{[α] | α is a generalized path from i to j with l(α) ≤ t} is spanned by finite elements

since Ω is finite dimensional. Consequently, Q is finite dimensional.

(ii) By [5, Corollary 11.6], Λ can be lifted. Obviously the Jacobson radical r is nilpo-

tent. By Wedderburn-Artin Theorem, Λ/r = B1 ⊕ B2 ⊕ · · · ⊕ Bn as algebras and Bi is a
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simple subalgebra of Λ for any i ∈ I = {1, 2, · · · , n}. Using Corollary 3.11(ii), we complete

the proof.

(iii) It follows from Corollary 3.11(iii) and [5, Corollary 11.6]. 2

An algebra Λ over field k is called a generalized elementary algebra if Λ/r(Λ) ∼= ⊕i∈IBii

as algebras with Bii = k for any i ∈ I. A finite dimensional generalized elementary algebra

with unity element is called an elementary algebra.

Corollary 3.14 Λ is a generalized elementary algebra which can be lifted with nilpotent

Jacobson radical r = r(Λ) and has a complete set of pairwise orthogonal idempotents iff

Λ is isomorphic to a path algebra with relations.

Proof. The sufficiency follows from Theorem 3.8. We now show the necessity. Assume

that Λ = A⊕ r and Λ/r = ⊕i∈Ikēii as algebras, where A is a subalgebra of Λ and r is the

Jacobson radical of Λ. Obviously, {ēii}I is a complete set of pairwise orthogonal central

idempotents of Λ̄ = Λ/r. Let ξ : Λ/r → Λ by sending x + r to xA for any x ∈ Λ. Since

ξ is an algebra homomorphism by Lemma 3.1, we have that {(eii)A}I is a set of pairwise

orthogonal idempotents. However, Λ = (
∑

i∈I k(eii)A) + r. For any x ∈ (
∑

i∈I k(eii)A)∩ r,

there exist αi ∈ k such that x =
∑

i∈I αi(eii)A. Since 0 = x̄ =
∑

i∈I αi(eii)A, we have αi = 0

for any i ∈ I. This implies x = 0 and Λ = (
∑

i∈I k(eii)A) ⊕ r. Since (
∑

i∈I k(eii)A) ⊆ A,
∑

i∈I k(eii)A = A.

Let {e′ii}I be a complete set of pairwise orthogonal idempotents of Λ. By Lemma 3.3,

{e′ii}I ⊆ A =
∑

i∈I k(eii)A. Since {e′ii}I is a complete set then so is {(eii)A}I . By Theorem

3.8, Λ is isomorphic to a path algebra with weak relations.

It remains to show kerϕ ⊆ J2, where ϕ is the same as in the proof of Theorem 3.8.

For any x ∈ kerϕ, obviously, there exist y ∈ J , y 6∈ J2 and z ∈ J2 such that x = y + z.

Thus 0 = ϕ(x) = ϕ(y) + ϕ(z) and ϕ(z) ∈ r2. Thus ϕ(y) ∈ r2. Since y ∈ J and y 6∈ J2,

there are mutually different arrows x1, x2, · · · , xn such that y =
∑n

p=1 αpxp with αp ∈ k

for p = 1, 2, · · · , n. Notice x1, x2, · · · , xn ∈ ∪i,j∈IBij , where Bij is the same as in the proof

of Theorem 3.8. See that 0 = ϕ(y) =
∑n

p=1 αpx̄p in r/r2. However, {x̄1, x̄2, · · · , x̄n} is

independent, so αp = 0 for p = 1, 2, · · · , n. This implies y = 0. Consequently, kerϕ ⊆ J2.

2

There exist generalized elementary algebras whose Jacobson radicals are not nilpotent.

Example 3.15 Let D be a directed graph with vertex set I = N of natural numbers

and only one arrow from i to i+1 for any i ∈ I. Path algebra kD is an elementary algebra

since its Jacobson radical r(kD) is J . However, r(kD) is not nilpotent.

It immediately follows from Corollary 3.14 that
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Corollary 3.16 Λ is an elementary algebra which can be lifted iff Λ is isomorphic to

a path algebra of finite directed graph with relations.

Remark: In the above corollary, we require the condition that Λ can be lifted, but

this was not mentioned explicitly in [2, Theorem 1.9]. Assume that Λ/r = ⊕i=1,2,···,nkēii

as algebras. It is clear that there exists a complete set {e′ii | i = 1, 2, · · · , m} of pairwise

orthogonal primitive idempotemts of Λ. In the proof of [2, Theorem 1.9], the condition

m = n was used without proof. However, this condition implies that Λ can be lifted.

Indeed, since e′ii is non-zero idempotent, e′ii 6∈ r for any i = 1, 2, · · · , n. Thus {ē′ii |

i = 1, 2, · · · , n} is linear independent in Λ̄ = Λ/r. Consequently, Λ/r = ⊕i=1,2,···,nkēii =

⊕i=1,2,···,nkē′ii. It is easy to check Λ = (⊕i=1,2,···,nke′ii)⊕r and (⊕i=1,2,···,nke′ii) is a subalgebra

of Λ. That is, Λ can be lifted. 2

Finally we give gradations of gm algebras and generalized path algebras.

Proposition 3.17 (see [7, Proposition 2.1]) Let A =
∑
{Aij | i, j ∈ I} be a gm algebra

and G an abelian group. If there exists a bijective map φ : I → G, then A is an algebra

graded by G with Ag =
∑

φ(i)=φ(j)+g Aij for any g ∈ G. In this case, the gradation is called

a generalized matrix gradation, or gm gradation in short.

Proof. For any g, h ∈ G, see that

AgAh = (
∑

φ(i)=φ(j)+g

Aij)(
∑

φ(s)=φ(t)+h

Ast)

⊆
∑

φ(i)=φ(t)+h+g

Ai,φ−1(φ(t)+h))Aφ−1(φ(t)+h),t

⊆ Ag+h.

Thus A =
∑
{Aij | i, j ∈ I} =

∑
g∈G Ag is a G-grading algebra. 2

Proposition 3.18 (i) If A =
∑
{Aij | i, j ∈ I} is a gm algebra, then there exists an

abelian group G with the same cardinality as I such that A has a gm gradation by G.

(ii) Let Q = k(D, Ω, ρ) be a generalized path algebra with weak relations. If D0 is

finite, then Q has a gm gradation by Zm when m ≤ D0.

(iii) Assume that Λ can be lifted with nilpotent Jacobson radical r and with non-zero

unity element. If Λ/r(Λ) is artinian, then for any natural number 0 6= m ≤ nWA(Λ), Λ

has a gm gradation by Zm.

(iv) If Λ is a finite dimensional algebra with non-zero unity element over perfect field

k, then for any natural number m ≤ nWA(Λ), Λ has a gm gradation by Zm.

Proof. (i) Let Gi = 0 for any i ∈ I and G = ⊕i∈IGi. Obviously, I and G have the

same cardinality. By Proposition 3.17, we complete the proof.
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(ii) Assume D0 = {1, 2, · · · , n}. Let e′ii = eii for i = 1, 2, · · ·m− 1, e′mm = emm + · · ·+

enn. It is clear that {e′ii} is a complete set of pairwise orthogonal idempotents of Q with

ē′ii in the center of Q/r(Q) since ējj is in the center of Q/r(Q) for any i = 1, 2, · · ·m and

j = 1, 2, · · · , n. By Theorem 3.8, Q can be lifted. It follows from Theorem 3.8 that Q is

isomorphic to a generalized path algebra with weak relations and with m vertexes. By

Proposition 3.17, Q has a gm gradation by Zm.

(iii) It follows from Proposition 3.17 and Corollary 3.11 (iii).

(iv) It follows Corollary 3.13 and Proposition 3.17. 2
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