
927

Sweeping Simple Polygons with a Chain of Guards

Alon Efrat* Leonidas J. Guibas t Sariel Har-Peled* David C. Lin §

Joseph S. B. Mitchell ¶ T . M . Muralill

A b s t r a c t We consider the problem of locat ing a
moving target using a group of guards cooperatively
moving inside a simple polygon. Our guards always
form a simple polygonal chain within the polygon
such tha t consecutive guards along the chain are
mutual ly visible. We develop algorithms tha t sweep
such a chain of guards through a polygon to locate
the target. Our two main results are the following:

1. We give an algorithm to compute the minimum
number r* of guards needed to sweep an n-vertex
polygon tha t runs in O(n 3) t ime and uses O(n 2)
working space, and

2. We also provide a faster algorithm, using
O(nlogn) t ime and O(n) space, to compute an
integer r such that max(r - 16, 2) < r* < r and
P can be swept with a chain of r guards.

We develop two other techniques to approximate r*.
Using O(n 2) t ime and space, we show how to sweep

~ p u t e r Science Dept., Stanford University, 353 Serra
Mall, Stanford CA 94305. Email: alon@cs.stanford.edu.
Supported by a Rothschild Fellowship and by DARPA grant
DAAEO7-98-C-L027.

tComputer Science Dept., Stanford University, 353 Serra
Mall, Stanford CA 94305. Email: guibas~cs.stanford.edu.
Partially supported by DARPA grant DAAE07-98-C-L027,
ARO MURI grant DAAH04-96-1-007, and NSF grant CCR-
9623851.

$School of Mathematical Sciences, Tel Aviv University, Tel
Aviv 69978, Israel. Email: saviel@math.tau.ac.il.

§Computer Science Dept., Stanford University, 353 Serra
Mall, Stanford CA 94305. Emaih dlin@cs.stanford.edu. Sup-
ported by DARPA grant DAAE07-98-C-L027 and by ARO
MURI grant DAAH04-96-1-007.

¶Dept. Applied Math, University at Stony Brook, Stony
Brook, NY 11794-3600. Email: jsbm@ams.sunysb.edu. Par-
tially supported by NSF (CCR-9732220), and grants from
Hughes Research Labs, ISX Corporation, NASA, Seagull Tech-
nologies, and Sun Microsystems.

IICompaq Computer Corporation~ Cambridge Research
Lab, One Kendall Square, Bldg. 700, Cambridge MA 02139.
Email: murali@crl.dec.com, This author performed this re-
search when he was affiliated with Stanford University and
was supported by DARPA grant DAAEO7-98-C-L027.

the polygon using at most r* + 2 guards. We also
show tha t any polygon can be swept by a number of
guards equal to two more than the link radius of the
polygon.

For our exact algorithm, we introduce the notion
of the link diagram of a polygon, which encodes the
link distance between all pairs of points on the bound-
ary of the polygon. We prove tha t the link diagram
has size O(n 3) and can be constructed in O(n 3) time.
We also show tha t the link diagram provides a da ta
structure for opt imal two-point link-distance queries,
matching an earlier result of Arkin et al.

As a key component of our O(n log n)- t ime ap-
proximation algorithm, we introduce the notion of the
"link width" of a polygon, which may have indepen-
dent interest, as it captures an impor tan t s tructural
proper ty of a simple polygon.

1 I n t r o d u c t i o n

Both visibility and motion planning questions have
instigated fruitful investigations in computat ional ge-
ometry and given rise to well-studied areas, such as
art-gallery problems [16, 23, 31], ray-shooting queries
of various sorts [2, 7, 10, 25], and the combinatorics
and algorithms of arrangements [1, 13, 14]. Little
work, however, has been done at the interface be-
tween these two areas, where visibility becomes a
tool, or a goal of motion planning. Perhaps the most
classic example of such work is the computa t ion of
"watchman tours" inside a simple polygon [4, 6, 8];
a watchman tour of a polygon is a closed pa th inside
the polygon such tha t every point of the polygon is
visible from some point on the tour.

In this paper, we focus on multiple mobile guards
whose motion planning goal is to explore a 2-D
workspace, which in our case is a simple polygon.
In this polygon, there may be one or more moving
targets; nothing is known about the location of the
targets or their motion abilities, except tha t their
motion must be continuous. The goal of the guards
is to "see" the targets, or to verify tha t no target is

928

present in the polygon. The guards see a target when
there is an unobstructed line-of-sight between it and
one of the guards. We may impose various limitations
on the viewing frustum and the range of the vision
sensors of the guards.

Parsons [24] and Megiddo et al. [22] s tudy a sim-
ilar problem in the context of pursuit-evasion in a
graph; in this scenario, the guards and target can
move from vertex to vertex of a graph, until a guard
and the target eventually lie in the same vertex. In
our geometric setting, what makes this problem chal-
lenging is the issue of recontamination: a particular
region of the polygon may have been cleared by the
guards, but if the target can find a way to enter the
region again, it becomes recontaminated and must
again be cleared. Thus, unless one has sufficiently
many guards, the target finding problem is not always
solvable. Crass et al. [9], Suzuki and Yamashita [28],
Guibas et al. [12], and LaValle et al. [21] study var-
ious versions of this problem where the guards move
independently. Guibas et al. prove tha t for a polygon
with n vertices and h holes, O(v/-h+logn) guards are
needed in the worst case to detect all targets. They
also prove that computing the smallest number of
guards needed to find a moving target in a polygonal
environment is NP-ha rd .

In this paper, we look at a more constrained but
still realistic model of how a polygon might be cleared
by a group of guards. We assume tha t the guards
always form a simple polygonal chain through the
polygon; the guards at the ends of the chain are
always on two edges of the polygon, while the rest
can be at arbitrary interior or boundary points of
the polygon. All links in the chain are segments
inside the polygon. Thus the guards are mutually
visible in pairs and are all linked together. Such a
guard configuration has obvious advantages for safety
and communication, if this target-finding operation
happens in adversarial settings. Our goal is to sweep
the polygon with a continuously moving chain of
guards, so that, at any instant, the chain of guards
partitions the polygon into a "cleared" region and
an "uncleared" region. In the end, we would like
to ensure that every point of the polygon has been
swept over an odd number of times. This property
guarantees that if any targets are present in the
polygon, they will have to be swept over by the guard
chain and thus discovered.

There has been considerable work on the class of
polygons that can be swept with a chain of only two
observers--these polygons are called streets [15, 17,

20, 30]. In the framework of Icking and Klein [17],
the guards are required to start at a point p on
the boundary of the polygon and finish at a point
q also on the boundary of the polygon. One guard
moves clockwise from p to q and the other moves
counterclockwise from p to q. Given p and q, Icking
and Klein show how to check whether the polygon can
be swept by the two guards under these constraints
in O(nlogn) time. If a sweep exists, they construct
it in O(n log n + k) time, where k is the number of
"walk" instructions given to the guards to implement
the sweep. Heffernan [15] shows tha t O(n) time
suffices to check whether a sweep by two guards
exists between p and q. Tseng et al. [30] consider
the problem of finding two points p and q on the
boundary of the polygon such that a straight walk or
a straight counter-walk exists between p and q that
sweeps the polygon (the guards are not allowed to
backtrack in a straight walk, whereas in a straight
counter-walk, one guard moves from p to q and the
other from q to p without backtracking). They
check if two such points exist (and output a pair)
in O(nlogn) time. Based on initial work by Suzuki
and Yamashita [28], Tan [29] describes techniques to
check in O(n 2) time if a chain of two or three guards
can sweep a polygon and to produce such a sweep in
O(n 3) time.

While these results are restricted to streets and
to polygons that can be swept by three guards, we
are interested in sweeping polygons that may require
more than three guards. Let P be a polygon with n
vertices and let r* be the minimum number of guards
needed to sweep P. Our aim is to compute r* (or to
find a good approximation to r*) and to determine
a search schedule of small complexity for the guards
to perform the sweep (we formally define a search
schedule and its complexity later). In this paper, we
describe the following results:

1. We compute r* in O(n 3) time, using O(n 2)
working space, and generate a search schedule
of size O(r*n3);

2. Using O(n 2) time and O(n 2) space, we compute
an integer r <_ r* + 2 such that we can sweep P
using r guards with a search schedule of size
O(rn2). We can also compute in O(rn 2 logr)
time a search schedule of size O(rn 2) for P that
uses r + 4 guards;

3. Using O(nlogn) t ime and O(n) space, we com-
pute an integer r such that r < r* + 16, and we
can sweep P using r guards; and

929

4. We show how to sweep P using r guards, where r
is two more than the link radius of P, and
generate a search schedule of size O(rn). (We
omit the proof of this result from this abstract.)

The pr imary difficulty in planning motions for
greater than two guards is that the guards at the
internal vertices of the chain can be located anywhere
in the interior of P. To solve this problem, we
introduce a structure called the link diagram (we
formally define this notion later), which represents
the link distance and minimum-link paths between
all pairs of points on the boundary of P. As far
as we are aware, this structure appears to be a new
concept. We prove that the link diagram has O(n 3)
size and describe an algorithm to construct it in
O(n 3) time. In the full version of the paper, we also
show how to use the link diagram to answer link-
distance and minimum-link-path queries between two
points in P in optimal time, matching the earlier
result of Arkin et al. [5]. Our query algorithm is
especially simple and avoids the case analysis of the
algorithm of Arkin et al.

Our first approximation algorithm (with an ad-
ditive error of two) is based on the observation that
we can approximate the link diagram of P by the link
distances between the O(n 2) pairs of vertices of P, if
we are willing to tolerate a small additive error (of at
most two). Our second, and more efficient, approx-
imation algorithm (also with a small additive error)
is based on an interesting relationship we establish
between r* and the link width of P - - a quantity
that measures the maximum link distance of a vertex
to a link diameter of P. Surprisingly, we can show
that r* is bounded from above and from below by the
link width (ignoring additive constants).

In the next section, we give some basic defini-
tions, introduce the concept of the link diagram, and
review some facts about window partitions. The fol-
lowing sections describe the main results, first for ex-
act optimization and then for approximation. Due to
lack of space, we defer most proofs to the full version
of the paper. We present some lower bound construc-
tions in the appendix.

2 G e o m e t r i c P r e l i m i n a r i e s

Let P be a simple polygon in the plane. Let G --
{G1, G 2 , . . . , Gr} be a set of point guards in P. For
a guard Gi E 9, let 7i(t) denote the position of Gi
in P at time t; we require that "yi(t) : [0, oc) --~ P be
a continuous function. A configuration of G at time

t, denoted F(t) is the set of points {'h(t) [1 < i < r}.
We say tha t F(t) is legal if

1. ~/1 (t) and ~/~(t) both lie in OP, and

2. for every 1 < i < r, the segment 3,i(t)Ti+l(t)
does not intersect the exterior of P.

From now on, we will use the term configuration to
mean legal configuration. A useful way to think of
a configuration of G is as a piecewise-linear path
connecting the points "yl(t) and 7~(t) that runs
through P .

A motion strategy (7, G) = {7i,1 < i < r) is a
specification of 7/, for each guard Gi E 9. We assume
that each guard can follow an algebraic path, once
the path is specified. Thus, each 7i is a piecewise-
algebraic function. The complexity of 7/ is the
number of algebraic functions needed to define it.
The complexity of a motion strategy is the total
complexity of the 7i's.

In order to formalize the notion of sweeping a
polygon, we assume that the chain corresponding to
the configuration of the guards is oriented from G1
to G~. For a motion strategy (7, G), let Ap(t) denote
the fraction of the area of P to the right of the
configuration F(t); Ap(O) = 0. We say that a motion
strategy (% G) is a search schedule for P if Ap(t) = 1,
for some t > 0. Finally, we say that P is r-searchable
if a search schedule that uses at most r guards exists
for P. See Figure 1 for an example of such a sweep.
In the Appendix, we show that there are n-vertex
polygons that are not o(n)-searchable.

We assume without loss of generality that all
of the guards start at the same point in OP at the
beginning of the sweep and converge at another point
of 0 P at the end of the sweep. The following lemma
characterizes when a motion strategy is a search
schedule:

LEMMA 2.1. Given a motion strategy (%G), let dl
(resp., d2) denote the total distance that G1 (resp.,
Gr) travels in the counterclockwise (resp., clockwise)
direction during 7, divided by the perimeter of P. If
Idl + d21 = 1, then (% G) is a search schedule for P.

Using this lemma, it is easy to show that in any search
schedule, each point in P is swept over an odd number
of times.

In all of our algorithms, we construct search
schedules where each configuration of the guards
corresponds to a minimum-link path between the
first and last guards. We now give some standard

930

(a) (b) (c)

(d) (e) (f)

pair of faces. 1 Note tha t £ p is symmetr ic since d 0
is a symmetr ic function.

P2 P4

~:5~: ~
p6 ,~ ;.;,

P5

p4

Pl
Pt I95

(a) (b)

Figure 2: (a) A polygon P and (b) its link diagram.
Shaded areas correspond to pairs of points on OP
with link distance two.

Figure 1: A search schedule with three guards. The
unswept region is shown shaded.

definitions related to such paths. Given two points
p, q E P, a minimum-link path between p and q is
a piecewise-linear pa th between p and q that does
not intersect the exterior of P and has the minimum
number of line segments; the link distance dL(p,q)
between p and q is the number of line segments in
such a path.

We now define the link diagram of P , a structure
tha t is central to our algori thm for computing r*.
We first select an a rb i t ra ry point o E OP as the
origin of COP and parameter ize every point p E OP
by the clockwise distance from o to p along 0P ,
divided by the perimeter of P . Let f : [0, 1) --~ OP
denote the bijective function corresponding to this
parameter izat ion; thus, f 0 maps every point in OP
to a dual point in the interval [0, 1). For any point
(x, y) in the unit square of a dual plane, let dL(X, y) :
[t3, 1) x [0, 1) -+ N denote the link distance between
the points f (x) E COP and f (y) E cOP. The link
diagram f~p is the graph of the function d 0. See
Figure 2 for an example of Z:p. A face o f ~ p is a
maximally-connected region where the function d 0
assumes the same value; an arc of £ p separates two
different faces of L:p (the values of d 0 in these two
faces differ by 1); and a node of ~ p is a point on
the boundary of four or more faces of ~ p o r a point
adjacent to two different arcs that separate the same

Given two points p, q E P , we say tha t p and q
see each Other if the segment pq does not intersect the
exter ior of P . Given two points p, q E P tha t see each
other , let e be the line passing through p and q. Then
the extension of (p, q) is the connected component of

M P tha t contains the segment pq.
The window partition Wp of a p E P is a part i t ion

of P into maximal regions of constant link distance
f rom p. An edge of Wp is either a portion of an edge
of P or is a segment that separates two regions of Wp;
we call such a segment a window of Wp. If a window
w E]4;p has endpoints x a~d y, then one endpoint
of w (say, x) is a reflex vertex v of P and the other
endpoint (y) lies on an edge e of P; x is closer to p
t han y in terms of geodesic distance. We say tha t
the combinatorial type of w is the vertex-edge pair
(v, e). The combinatorial type of Wp is a list of the
combinatorial types of all its windows. The planar
dual of Wp is the window tree, which we denote by Tp.
Suri [27] introduced the notion of window part i t ion
and showed tha t it can be constructed in t ime and
space O(n). The definitions of window parti t ion and
window tree extend natural ly to the case when the
source is a line segment, instead of a point.

We can use the window parti t ion Wp to compute
a rain-link pa th from p to any other point in P.
In general, min-link paths are not unique. The

r~A node of •p cannot be adjacent to an odd number of
faces; if it is, then one of the arcs adjacent to the node separates
faces where the value of d 0 differs by zero or at least by two,
which is impossible.

931

canonical min-link path 7(L (p, q) between p E OP and
q E OP is a path that uses only extensions of windows
in Wp, with the last link chosen to pass through the
last vertex of the geodesic shortest path between p
and q. We define the combinatorial type of a link
of 7rL(p,q)(except, possibly, the last link) to be the
combinatorial type of the window of Wp of which it is
an extension. Each link of 7rL (/9, q) passes through a
reflex vertex of P (the reflex vertex is also a vertex of
the geodesic shortest path between p and q). We say
that a link of 7rL (p, q) is pinned if it passes through
two reflex vertices of P such that the vertices lie on
opposite sides of the link.

Let p = f(t), for some t E [0,1), let ,k be a
window in Wp with combinatorial type (v,e), and
let q be the endpoint of A lying on e. Suppose that
the canonical min-link path 7rL (p, q) from p to q does
not contain any pinned edge. We can show that we
can parameterize the position of q as a homography
q = g(t) = (A + Bt) / (C + Dt).

3 T h e L ink D i a g r a m

In this section, we prove an O(n 3) bound on the size
of the link diagram ~p of a n-vertex polygon P and
describe an algorithm to construct £p in O(n 3) time.
We also show how to compute r* by searching £ p
and produce a search schedule of O(r*n 3) complexity
for P using r* guards.

We first sketch the proof for bounding the size
of /Zp. The first property we establish is that
every vertical (or horizontal) line intersects the arcs
of ~p at O(n) points; if the line passes through the
point (t, 0), then these intersections correspond to the
endpoints of the windows of Wf(t). We then show
tha t if we sweep a vertical line across the plane, the
line intersects nodes of £p exactly at values of t such
that the combinatorial type of)4;f(t) changes. At
each such value of t, the line intersects O(n) nodes
of £p . Arkin et al. [5] show that the combinatorial
type of Wy(t) changes at O(n 2) value of t. These
facts imply that £p has O(n 3) size. An interesting
implication of these arguments is that the nodes
of ~p lie in a total of O(n 2) vertical (or horizontal)
lines.

Below, we describe the proof in some more detail.
We first introduce some notation. Let g(t) be the
vertical line through the point (t, 0) in the dual plane.
Throughout this section, we will use ~ > 0 to denote a
sufficiently small real number. We will abuse notation
and use Wt, where t E [0, 1), to denote Wf(t) and use
7rL(t,u), where t ,u E [0, 1), to denote 7rL(f(t),f(u)).

We first state a simple lemma that relates arcs of £ p
to window partitions of points on OP.

LEMMA 3.1. Suppose the vertical line g(t) does not
intersect any nodes of £p. The line ~(t) intersects
an arc of £p at a point (t, u) iff f (u) is the endpoint
of a window of VI;t.

Using the above lemma, it is not difficult to establish
the following:

LEMMA 3.2. Let t, u E [0, 1) be such that no nodes of
£p are contained in the vertical strip bounded by e(t)
and e(u). Then the combinatorial types of the window
partitions Wt and)'Yu are identical.

The above lemma implies that if we sweep a
vertical line £(t) across £ p , then at every value of t
such that the combinatorial types of the window
partitions Wt-e and Wt+6 are different, e(t) intersects
a node of £p. We now prove that the converse is also
true, i.e., if e(t) intersects a node of £p , then the
combinatorial types of the window partitions Wt-e
and ~4;t+~ are different. In order to prove this fact,
we first show some more properties of the arcs and
nodes of £ p . The next two lemmas establish precise
conditions for a point on an arc o f / : p to be a node
of £p.

LEMMA 3.3. Suppose that the point (t, u) is on an
arc of £p and 7rL(t, u) does not contain a pinned link.
The point (t, u) is a node of £p iff one of the links of.
7rL (t, u) touches two vertices of P.

LEMMA 3.4. Suppose that the point (t, u) is on an
arc o f f~p and 7rL(t,u) contains a pinned link)~. The
point (t,u) is a node of £p iff f (t) and f(u) are
endpoints of a window of)/V~.

The two lemmas above have the following corollary
(a window A E Wt divides P into two or more
sub-polygons; we use P[A; f (t)] to denote the sub-
polygons not containing f (t)) :

COROLLARY 3.1. If a window)~ E Wt touches two
vertices of P, then the point (t, u) is a node of £e for
every value of u such that f (u) is the endpoint of a
window of W:~ and f(u) E OP[)~; f(t)] .

Using Lemmas 3.3 and 3.4, we can prove the follow-
ing:

LEMMA 3.5. If the point (t, u) is a node of £p, then
the window partitions }A;t-6 and)4;t+e have different
combinatorial types.

932

We have now assembled all the ingredients we
need to prove an O(n 3) bound on the size of £ p .
We sweep the vertical line ~(t) across £p from £(0)
to ~(1) and consider the intersection of ~(t) with the
arcs o f / : p . Lemma 3.1 implies that this process is
equivalent to moving the point f (t) along OP and
considering Wt. Lemmas 3.2 and 3.5 imply that g(t)
intersects a node of ~p iff the combinatorial type
of Wt changes. Arkin et al. [5] show that for a
polygon P with n vertices, there are O(n 2) values
of t • [0, 1) such that)4;t-e and Wt+e have different
combinatorial types. Let t ~ be such a value of t and let
)~ be the window of Wt, tha t touches two vertices of P.
Corollary 3.1 implies tha t the point (g, u) is a node
of £ p only if f(u) is the endpoint of a window in Wx.
There are O(n) such values of u. Therefore, at each
of the O(n 2) values of t where the combinatorial types
of)4;t-e and Wt+e are different, g(t) intersects O(n)
nodes of £p . This argument proves an O(n 3) bound
on the size of £p . In the Appendix, we show that
this bound is tight: there are n-vertex polygons for
which £ p has size 12(n3).

"THEOREM 3.1. The link diagram £p of a polygon P
with n vertices has size O(na).

We now describe an algori thm to construct ~p.
The algorithm simply mimics the proof of the size
bound by sweeping a vertical line ~(t) across £ p
and maintaining the intersection of g(t) with £p .
We represent this intersection by a sequence L(t) of
O(n) sorted numbers in [0,1); u • L(t) iff f(u) is
the endpoint of a window in Wt. If u • L(t), we
use a(t, u) to denote the arc of £ p that the point (t, u)
lies on, and we store the combinatorial type of a(t, u)
with u in L(t). Before describing the algorithm, we
need a simple definition. Let v be a vertex of P
and let p be the endpoint of a window in W~. If
dL(v,p) > 1, then the first link in 7rL(v,p) passes
through v and another vertex of P . We call this link
p's source link and denote it by sp.

1. For each vertex v E P, we compute Wv. For
every endpoint p of a window in Wv, we com-
pute sp. We sort all of these endpoints around
OP. Let Q be the sorted sequence of these end-
points.

. We compute L(0) and maintain L(t) as t in-
creases from 0 to 1. For every value of t such
that f (t) is a window endpoint in Q, we locate
the window (with the same combinatorial type

as) sf(t) in L(t). For every value of u such that
f(u) is the endpoint of a window of Wsj(,) and
f(u) E OP[sf(t); f (t)] , we add (t, u) as a node to
£ p and end the arc a(t, u) at (t, u).

(a) If sf(t) is not pinned, then for every new
node (t, u) (added above), we add a new
arc a(t, u) to £:p. We obtain the equation
of a(t,u) by appropriately updating the
homography defining the arc a(t - G u).

(b) If sy(t) is pinned, we add to £ p a vertical arc
for each pair of new nodes that are adjacent
along g(t). For every new node (t, u), we
also add a new horizontal arc a(t, u) to Lp .

The correctness of the algorithm follows from
Corollary 3.1. It is easy to analyze the running time
of the algorithm. The first step takes O(n 2 log n)
time. We execute the second step O(n 2) times [5],
spending O(n) time per execution. Thus, we have
the following theorem:

THEOREM 3.2. We can construct ~p in O(n 3) time,
using O(n 2) working space.

We now turn our at tention to using ~p to com-
pute the optimum number r* of guards and a corre-
sponding search schedule for r* guards. Lemma 2.1
states tha t a motion strategy (% ~) is a search sched-
ule if the total distance traveled by the extreme
guards (measured counterclockwise for one guard and
clockwise for the other) sums to the perimeter of P .
To exploit this fact, we augment the diagram ~p by
placing a translated copy of it (translated upwards by
distance 1) just above it in the dual plane. Lemma 2.1
implies tha t any path from the diagonal y = x in the
bot tom copy to the diagonal y = x + 1 in the top
copy corresponds to a search schedule for P. Our al-
gorithm for computing r* is simple. We consider the
graph defined by the nodes and arcs of the two copies
o f / : p . We label each arc and each node with the
smallest link distance associated with the faces ad-
jacent to it. We then perform a breadth-first search
in this graph to compute the smallest integer r* such
that a path exists between the two diagonals that uses
only arcs and nodes with labels at most r* - 1 (since
a chain of r* - 1 links corresponds to r* guards). We
can adapt this procedure to compute a search sched-
ule too; details appear in the full paper. Clearly, the
breadth-first search takes O(n 3) time and produces
a path in ~p that visits O(n 3) nodes. To compute
the search schedule, at each node of this path, we may

933

need to update the motions of at most r* guards, thus
computing a search schedule of complexity O(r*n3).

4 Approximation Algorithms
In this section, we describe three
schemes: (1) an algorithm that uses
compute r* within an additive error
algorithm that uses O(n logn) time

approximation
O(n 2) time to
of two, (2) an
to compute r*

within an additive error of at most 16, and (3) a
method for sweeping P that uses at most the link
radius of P (which we can compute in O(n logn)
t ime [11]) plus two guards. Here, we give details of
only the first two results; we defer presenting the link
radius method (which may give slightly fewer guards
than method (2) in some cases) to the full paper.

4.1 A s imp le a d d i t i v e approximation method
We describe a method that computes in time O(n 2)
an integer r such that P can be swept using r guards
and r < r* + 2. We can also compute in O(rn 2 logr)
time a search schedule of O(rn 2) complexity that
sweeps P using a chain of at most r + 4 guards.

Let e l , e 2 , . . . , e n be the edges of P. Define an
n x n matrix ,~4, where fl4ij is an upper bound
on the maximum number of guards in a min-link
path connecting any point of ei to any point of e j ;

namely, A4ij = dL(ei ,ej) + 3, where d L (e i , e j) =

minpeei,qeej dL(p,q). The matrix J~4 can be com-
puted in O(n2), by computing the link distance from
ei to all other edges in O(n) time [27].

As is easily shown, ~4 forms an approximation
to the link diagram, £p , since, if p is a point on an
edge ei C OP, and q is a point on an edge ej C OP,
then dn(p, q) is between -/~ij - - 3 and J~ij - 1.

LEMMA 4.1. Let 7r and zd be two rain-link paths,
both connecting an edge f to an edge f t , so that
r = dL(f , f ') . Then, we can morph 7r into 7r' using
at most r + 3 guards. Moreover, using at most r + 7
guards we can compute a morphing strategy, that
issues O(r) commands to guards, in O(r logr) time.

We construct a graph G on the grid 2n x 2n,
so that two nodes are adjacent in G iff they are
vertically or horizontally adjacent in the grid. We
also connect the vertices on the boundary of G to
the corresponding vertices on the other side of G
(i.e., we "glue" together the top side of G to the
bot tom side of G, and the left side of G to the right
side of G). For a vertex (i , j) E V(G), we assign it
weight w(i , j) = J~41+((i-1) rood n),1+((/-1) mod ~)- It
is easy to verify that a sweeping strategy for P can be

interpreted as a path a in G connecting the grid point
(1, 1) to the grid point (1,n), so that the maximum
weight vertex along a has weight at most two greater
than the number of guards needed to sweep P.

On the other hand, a path a in G connecting
(1, 1) to (1, n), such tha t the maximum weight along
a is w, can be interpreted as a sweeping strategy that
requires at most w guards, by Lemma 4.1. Such a
min-weight path a in G can be computed in O(n 2)
t ime using Dijkstra's algorithm. We conclude:

THEOREM 4.1. Given a simple polygon P, we can
compute in O(n 2) time a number r, so that P can
be swept with r guards and r < r* + 2. Moreover,
we can compute in O(n2r log r) time a sweep schedule
for P that uses at most r + 4 guards and has O(rn 2)
complexity.

Proof: The algorithm for computing r is described
above. For the computation of the motion strategy,
we first compute the rain-weight path a in G that
connects (1, 1) with (1, n). Next, each edge e of a
connects two configurations ~r = (ei ,ej) and 7r' =
(ei, ck).

It is now an easy matter to compute a morph-
ing between these two configurations by computing a
middle configuration ~rmid having one guard located
on a vertex ej N ek of P. Next, using the algorithm
of Lemma 4.5 (see below), we compute a morphing
s t ra tegy between ~r and 7rmid, and a morphing strat-
egy between 7rmi d and ~r'. n

4.2 A fas t e r a d d i t i v e a p p r o x i m a t i o n m e t h o d
In this section, we describe an O(n log n)-time algo-
r i thm to approximate r* within a small additive error.

For a polyline ~r, and any two points p, q E 7r, let
a, b E OP be a pair of points, maximizing dL(a, b);
we call such a pair a diametrical pair of P , and let
DR = TrL(a, b) denote a corresponding path that
represents a link diameter of P.

We define the link width of P relative to D p to be
w(P, DR) = ma~vep dL(Dp, v). The link width of P
is then defined to be the minimum, minDe w(P, Dp) ,
taken over all realizations of the diameter. (It turns
out tha t different realizations of DR can result in
different widths, but there can be variation only by
one link.) In our discussion, it suffices to fix one
realization of the diameter, DR, and do analysis with
respect to the width w = w(P, Dp). For points p, q E
OP, we let OP(p, q) denote the portion of OP traced
when moving from p to q in a clockwise direction
(i.e., with the interior of P lying to the right). We

9 3 4

~b

c

Figure 3: Definitions for Lemma 4.2

first s tate two lemmas tha t establish the relationship
between the link width and the link diameter of P .

LEMMA 4.2. Let Dp -- 7rL(a, b) be a diameter of P ,
let c be a point that realizes the width, w = dL (C, Dp),
and let u be a point on Dp that is closest to C in link
distance. (See Figure 3.) Then, dL (a, u) > w - 7 and
dL(b,u) > w - 7.

LEMMA 4.3. Let p E OP(c,a) and q E OP(b,c).
Then dz (p, b) >_ w - 8, and dz (q, a) > w -- 8.

LEMMA 4.4. The number of guards needed to sweep
a polygon P is at least max(w - 7, 2).

Proof: H there is a sweeping strategy of P by a
chain of k segments (k + 1 guards), then it is easy
to verify tha t during the sweep one of the following
three events must happen:

• One of the guards is located at the point b and
other one is located on OP(c, a).

• One of the guards is located at the point a, and
the other one is located on OP(b, c).

• One of the guards is located at c, and the other
one is located on OP(a, b).

However, by Lemma 4.3, we know that in the
first two cases k > w - 8. In the third case, the
chain of guards must cross 7rL(a , b), which implies
that k > w. []

LEMMA 4.5. Let a = (P l , . . . ,Pro) C_ OP be a subset
of OP that has no shortcut within P; i.e., pipi+2 ~ P.
Assume that for any point q E OP, we have dL (a, q) <
k. Then, the polygon P can be swept using a chain
of k + 3 guards.

Proof: Let 5 = O P \ a , and let qi E # denote a point
of ~ tha t is closest to Pi (in link distance). Arguing
as in the proof of Lemma 4.2, it follows tha t since a
cannot be shortcut, any point on a sees a point of &;
thus, Piqi C P. (However, note that Piqi might cross
p~qj.)

Let Qi be the region bounded by
cOP(qi, qi+l)[lqi+lPi+l[{pi+lpi[]piqi, for i =
1 , . . . , m - 1. (Note tha t the closed curve defining
Qi may have a self-crossing at the intersection of
Piqi and pi+lqi+l.) The regions Qi par t i t ion P.
For any point p E OQi, there exits a pa th t ha t has
at most k + 2 segments connecting p with Pi and
that lies inside Qi. Indeed, let 7r = ZrL(p, a) be
a min-link pa th connecting p with a. The pa th ~r
has at most k segments and must intersect (the
intersection might be the endpoint of 7r) one of the
segments piqi,piPi+l,Pi+lqi+l, and thus it can be
modified into a path zr' tha t connects p with pi tha t
has at most k + 2 segments.

This implies that we can sweep Qi in the follow-
ing canonical way: (i) In the beginning the guards
stand along the segment Piqi, and connect those
two endpoints, (ii) In the end of the first stage
of the sweep, the guards s tand along the segments
PiPi+l{]Pi+lqi+l, and (iii) In the second stage of the
sweep, all of the guards standing along pipi+l are
moved to s tand at Pi+l. This sweeping requires at
most k + 3 guards. Thus, we can sweep P by sweeping
Q1, Q 2 , . . . , in succession, using the above strategy.
Overall, this combined s t ra tegy sweeps P using k + 3
guards, so tha t the guard who is always located on a
moves monotonically along a. []

THEOREM 4.2. max(w -- 7, 2) <_ r* < w + 5.

Proof: Let P1, P2 be the two polygons formed by
splitting P along D p -= 7rL(a, b). By L e m m a 4.5, P1
and P2 can each be swept with w + 3 guards, so that
one of the guards lies on Dp, and its movement is
monotone from a towards b. Moreover, the sweep-
ing of/°1 and P2 is decomposed into steps where in
the intermediate step only three guards are necessary
(namely, two guards placed on an edge of the diam-
eter, a n d the other guard placed on an edge of the
polygon). Thus, by sweeping the regions of P1, P2 in
an interleaving manner, we have tha t the number of
guards necessary to sweep P is at most a; + 5. The
lower bound follows from Lemma 4.4. []

THEOREM 4.3. Given a polygon P, we can compute
in O(nlogn) time a number k, so that the number of

935

guards needed to sweep P is between max(k - 11, 2)
and k + 5.

Proof: Compute the link-diameter, Dp, of P in
O(nlogn) t ime [18, 19, 26]. Pick a vertex v of
P, and compute the window partition, W~, and the
window tree, T~, in O(n) time. We now mark, in
linear time, all of the nodes V of T~ that correspond
to regions of Wv tha t intersect Dp. Let # be the
vertex of T~ such tha t the minimum distance (in Tv)
to any vertex of V is maximized, and let d be this
minimum distance between ~ and a vertex of %.

It is s traightforward to verify that # < w < # + 4.
Set k = # + 4 . We know by Theorem 4.2, tha t P
can be swept using k + 5 guards and that a t least
max(k - 11, 2) guards are needed. []

R e f e r e n c e s

[1] P. Agarwal and M. Sharir. Arrangements. In J.-R.
Sack and J. Urrutia, editors, Handbook of Compu-
tational Geometry. Elsevier Science Publishers B.V.
North-Holland, Amsterdam. To appear.

[2] P. K. Agarwal and J. Matou~ek. Ray shooting and
parametric search. SIAM J. Comput., 22(4):794-
806, 1993.

[3] A. Aggarwal, H. Booth, J. O'Rourke, S. Suri, and
C. K. Yap. Finding minimal convex nested poly-
gons. Inform. Comput., 83(1):98-110, Oct. 1989.

[4] E. M. Arkin, J. S. B. Mitchell, and C. Piatko.
Minimum-link watchman tours. Report, University
at Stony Brook, 1994.

[5] E. M. Arkin, J. S. B. Mitchell, and S. Suri.
Logarithmic-time link path queries in a simple poly-
gon. Internat. J. Comput. Geom. Appl., 5(4):369-
395, 1995.

[6J S. Carlsson and H. Jonsson. Computing a shortest
watchman path in a simple polygon in polynomial-
time. In Proc. 4th Workshop Algorithms Data
Struct., volume 955 of Lecture Notes Comput. Sci.,
pages 122-134. Springer-Verlag, 1995.

[7] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J.
Guibas, J. Hershberger, M. Sharir, and J. Snoeyink.
Ray shooting in polygons using geodesic triangula-
tions. Algorithmica, 12:54-68, 1994.

[8] W.-P. Chin and S. Ntafos. Shortest watchman
routes in simple polygons. Discrete Comput. Geom.,
6(1):9-31, 1991.

[9] D. Crass, I. Suzuki, and M. Yamashita. Searching
for a mobile intruder in a corridor - - the open edge
variant of the polygon search problem. Internat. J.
Comput. Geom. Appl., 5:397-412, 1995.

[10] M. de Berg. E~cient algorithms for ray shooting
and hidden surface removal. Ph.D. dissertation,

Dept. Comput. Sci., Utrecht Univ., Utrecht, Nether-
lands, 1992.

[11] H. N. Djidjev, A. Lingas, and J. Sack. An O(nlogn)
algorithm for computing the link center of a simple
polygon. Discrete Comput. Geom., 8(2):131-152,
1992.

[12] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin,
and R. Motwani. Visibility-based pursuit evasion in
a polygonal environment. In Proc. 5th Workshop
Algorithms and Data Structures, pages 17-30, 1997.

[13] D. Halperin. Arrangements. In J. E. Goodman
and J. O'Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 21, pages 389-
412. CRC Press LLC, Boca Raton, FL, 1997.

[14] D. Halperin and M. Sharir. Arrangements and
their applications in robotics: Recent developments.
In K. Goldberg, D. Halperin, J.-C. Latombe, and
R. Wilson, editors, Proc. Workshop Algorithmic
Found. Robot., pages 495-511. A. K. Peters, Welles-
ley, MA, 1995.

[15] P. J. Heffernan. An optimal algorithm for the two-
guard problem. Internat. J. Comput. Geom. Appl.,
6:15-44, 1996.

[16] F. Hoffmann, M. Kaufmann, and K. Kriegel. The
art gallery theorem for polygons with holes. In Proc.
32nd Annu. IEEE Sympos. Found. Comput. Sci.,
pages 39-48, 1991.

[17] C. Icking and R. Klein. The two guards problem.
Internat. J. Comput. Geom. Appl., 2(3):257-285,
1992.

[18] Y. Ke. An efficient algorithm for link-distance prob-
lems. In Proc. 5th Annu. ACM Sympos. Comput.
Geom., pages 69-78, 1989.

[19] Y. Ke. Polygon visibility algorithms for weak visibil-
ity and link distance problems. Ph.D. thesis, Dept.
Comput. Sci., Johns Hopkins Univ., Baltimore, MD,
1989.

[20] R. Klein. Moving along a street. In Proc. Compu-
tational Geometry: Methods, Algorithms and Appli-
cations, volume 553 of Lecture Notes Comput. Sci.,
pages 123-140. Springer-Verlag, 1991.

[21] S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe,
and R. Motwani. Finding an unpredictable target in
a workspace with obstacles. In Proc. IEEE Internat.
Conf. Robot. Autom., Apr. 1997. To appear.

[22] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. John-
son, and C. H. Papadimitriou. On the complexity
of searching a graph. J. ACM, 35:18-44, 1988.

[23] J. O'Rourke. Art Gallery Theorems and Algorithms.
The International Series of Monographs on Com-
puter Science. Oxford University Press, New York,
NY, 1987.

[24] T. D. Parsons. Pursuit-evasion in a graph. In
Y. Alavi and D. Lick, editors, Theory and Applica-
tions of Graphs, volume 642 of Lecture Notes Math.,

936

pages 426-441. Springer-Verl~g, Berlin, West Ger-
many, 1976.

[25] M. Pellegrini. Ray shooting and lines in space. In
J. E. Goodman and J. O'Rourke, editors, Handbook
of Discrete and Computational Geometry, chap-
ter 32, pages 599-614. CRC Press LLC, Boca t~ton,
FL, 1997.

[26] S. Suri. Minimum link paths in polygons and related
problems. Ph.D. thesis, Dept. Comput. Sci., Johns
Hopkins Univ., Baltimore, MD, 1987.

[27] S. Suri. On some link distance problems in a simple
polygon. IEEE Trans. Robot. Autom., 6:108-113,
1990.

[28] I. Suzuki and M. Yamashita. Searching for a mobile
intruder in a polygonal region. SIAM J. Comput.,
21:863-888, 1992.

[29] X. Tan. Searching a simple polygon by a k-searcher.
Unpublished manuscript, 1999.

[30] L. H. Tseng, P. Heffernan, and D. T. Lee. Two-
guard walkability of simple polygons. Internat. J.
Comput. Geom. Appl., 8(1):85-116, 1998.

[31] J. Urrutia. Art gallery and illumination problems.
In J.-R. Sack and J. Urrutia, editors, Handbook on
Computational Geometry, Elsevier Science Publish-
ers B.V. North-Holland, Amsterdam. To appear.

A L o w e r B o u n d s

We show tha t there are n-vertex polygons that are
not o(n)-searchable. Figure 4 shows such a poly-
gon P . It consists of three "arms," L1,L2 and L3,
joined by a central region. Any polygonal chain lying
inside P t ha t joins a point p in the central region to
the tip Pi of an arm Li has fl(n) segments. Suppose
L3 is the last arm to be searched in a sweep. Then,
while a guard visits P3, a guard must be positioned at
a point in the central region. Otherwise, the target
might escape from L1 to L2 or vice-versa. A similar
fact holds if L1 or L2 is the last arm to be searched.
Therefore, ~ (n) guards are needed to sweep P.

p~

Ll

P~

La

There are polygons for which the link diagram
has size fl(n3). In Figure 5 we show a polygon P
whose boundary consists of three portions: "yl is
a convex chain of n vertices while "Y2 and 73 are
sequences of n "teeth" each. Let c~, 1 < i < n denote
the "base" of each tooth in ~/~ and let d~, 1 < i < n
denote the bases in 73- We choose 71 to be small
enough that every point in ~1 can see every point
of ci and every point of dj, for 1 < i , j < n. Let
ci have endpoints Pi and qi. Consider Wp,. Since
Pi can see every point on 71, a window of Wpl (in
fact, a chord of the visibility polygon Vpi) has an
endpoint p' in OP to the left of the vertices of ~'1.
For every j, 1 < i < n, there is a window w' in Wp~
such that w' has an endpoint q E dj. We can show
that the point (f - l (p i) , f - l (q)) is on an arc o f / : p .
Now consider moving a point p from pi to qi. This
motion causes p' to move clockwise along ~/1 and q
to move clockwise along dj. Every time p' passes a
vertex of ~/1, the homography defining the motion of
q (with respect to p) changes. Therefore, by the time
p reaches qi, the point (f - l (p) , f - ~ (q)) has traced
~(n) arcs o f / : p . The same process can be repeated
for every ci and dj, 1 < i , j < n, which implies that
Ep has size f~(n3).

")/1

q3

~2 73

Figure 5: Lower bound construction for the size of
/:p.

Figure 4: A polygon P such that r* = fl(n).

