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Sweeping Simple Polygons with a Chain of Guards 

Alon Efrat* Leonidas J. Guibas t Sariel Har-Peled* David C. Lin § 

Joseph S. B. Mitchell ¶ T . M .  Muralill 

A b s t r a c t  We consider the problem of locat ing a 
moving target  using a group of guards cooperatively 
moving inside a simple polygon. Our guards always 
form a simple polygonal chain within the polygon 
such tha t  consecutive guards along the chain are 
mutual ly visible. We develop algorithms tha t  sweep 
such a chain of guards through a polygon to locate 
the target.  Our two main results are the following: 

1. We give an algorithm to compute the minimum 
number  r* of guards needed to sweep an n-vertex 
polygon tha t  runs in O(n 3) t ime and uses O(n 2) 
working space, and 

2. We also provide a faster algorithm, using 
O(nlogn) t ime and O(n) space, to compute  an 
integer r such that  max( r  - 16, 2) < r* < r and 
P can be swept with a chain of r guards. 

We develop two other techniques to approximate  r*. 
Using O(n 2) t ime and space, we show how to sweep 
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the polygon using at  most r* + 2 guards. We also 
show tha t  any polygon can be swept by a number  of  
guards equal to two more than the link radius of the 
polygon. 

For our exact algorithm, we introduce the notion 
of the link diagram of a polygon, which encodes the 
link distance between all pairs of points on the bound- 
ary  of the polygon. We prove tha t  the link diagram 
has size O(n 3) and can be constructed in O(n 3) time. 
We also show tha t  the link diagram provides a da ta  
structure for opt imal  two-point link-distance queries, 
matching an earlier result of Arkin et al. 

As a key component  of our O(n log n)- t ime ap- 
proximation algorithm, we introduce the notion of the 
"link width" of a polygon, which may  have indepen- 
dent interest, as it captures an impor tan t  s tructural  
proper ty  of a simple polygon. 

1 I n t r o d u c t i o n  

Both visibility and motion planning questions have 
instigated fruitful investigations in computat ional  ge- 
ometry  and given rise to well-studied areas, such as 
art-gallery problems [16, 23, 31], ray-shooting queries 
of various sorts [2, 7, 10, 25], and the combinatorics 
and algorithms of arrangements [1, 13, 14]. Little 
work, however, has been done at  the interface be- 
tween these two areas, where visibility becomes a 
tool, or a goal of motion planning. Perhaps  the most 
classic example of such work is the computa t ion  of 
"watchman tours" inside a simple polygon [4, 6, 8]; 
a watchman tour of a polygon is a closed pa th  inside 
the polygon such tha t  every point of the polygon is 
visible from some point on the tour. 

In this paper,  we focus on multiple mobile guards 
whose motion planning goal is to explore a 2-D 
workspace, which in our case is a simple polygon. 
In this polygon, there may be one or more moving 
targets; nothing is known about the location of the 
targets or their motion abilities, except tha t  their 
motion must  be continuous. The goal of the guards 
is to "see" the targets,  or to verify tha t  no target  is 
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present in the polygon. The guards see a target  when 
there is an unobstructed line-of-sight between it and 
one of the guards. We may impose various limitations 
on the viewing frustum and the range of the vision 
sensors of the guards. 

Parsons [24] and  Megiddo et al. [22] s tudy a sim- 
ilar problem in the context of pursuit-evasion in a 
graph; in this scenario, the guards and target can 
move from vertex to vertex of a graph, until a guard 
and the target eventually lie in the same vertex. In 
our geometric setting, what makes this problem chal- 
lenging is the issue of recontamination: a particular 
region of the polygon may have been cleared by the 
guards, but  if the target  can find a way to enter the 
region again, it becomes recontaminated and must 
again be cleared. Thus, unless one has sufficiently 
many guards, the target  finding problem is not always 
solvable. Crass et al. [9], Suzuki and Yamashita [28], 
Guibas et al. [12], and LaValle et al. [21] study var- 
ious versions of this problem where the guards move 
independently. Guibas et al. prove tha t  for a polygon 
with n vertices and h holes, O(v/-h+logn)  guards are 
needed in the worst case to detect all targets. They 
also prove that  computing the smallest number of 
guards needed to find a moving target  in a polygonal 
environment is NP-ha rd .  

In this paper, we look at a more constrained but 
still realistic model of how a polygon might be cleared 
by a group of guards. We assume tha t  the guards 
always form a simple polygonal chain through the 
polygon; the guards at the ends of the chain are 
always on two edges of the polygon, while the rest 
can be at arbitrary interior or boundary  points of 
the polygon. All links in the chain are segments 
inside the polygon. Thus the guards are mutually 
visible in pairs and are all linked together.  Such a 
guard configuration has obvious advantages for safety 
and communication, if this target-finding operation 
happens in adversarial settings. Our goal is to sweep 
the polygon with a continuously moving chain of 
guards, so that,  at any instant, the chain of guards 
partitions the polygon into a "cleared" region and 
an "uncleared" region. In the end, we would like 
to ensure that  every point of the polygon has been 
swept over an odd number of times. This property 
guarantees that  if any targets are present in the 
polygon, they will have to be swept over by the guard 
chain and thus discovered. 

There has been considerable work on the class of 
polygons that  can be swept with a chain of only two 
observers--these polygons are called streets [15, 17, 

20, 30]. In the framework of Icking and Klein [17], 
the guards are required to start  at a point p on 
the boundary of the polygon and finish at a point 
q also on the boundary of the polygon. One guard 
moves clockwise from p to q and the other moves 
counterclockwise from p to q. Given p and q, Icking 
and Klein show how to check whether the polygon can 
be swept by the two guards under these constraints 
in O(nlogn) time. If a sweep exists, they construct 
it in O(n log n + k) time, where k is the number of 
"walk" instructions given to the guards to implement 
the sweep. Heffernan [15] shows tha t  O(n) time 
suffices to check whether a sweep by two guards 
exists between p and q. Tseng et al. [30] consider 
the problem of finding two points p and q on the 
boundary of the polygon such that  a straight walk or 
a straight counter-walk exists between p and q that  
sweeps the polygon (the guards are not allowed to 
backtrack in a straight walk, whereas in a straight 
counter-walk, one guard moves from p to q and the 
other from q to p without backtracking). They 
check if two such points exist (and output  a pair) 
in O(nlogn) time. Based on initial work by Suzuki 
and Yamashita [28], Tan [29] describes techniques to 
check in O(n 2) time if a chain of two or three guards 
can sweep a polygon and to produce such a sweep in 
O(n 3) time. 

While these results are restricted to streets and 
to polygons that  can be swept by three guards, we 
are interested in sweeping polygons that  may require 
more than three guards. Let P be a polygon with n 
vertices and let r* be the minimum number of guards 
needed to sweep P.  Our aim is to compute r* (or to 
find a good approximation to r*) and to determine 
a search schedule of small complexity for the guards 
to perform the sweep (we formally define a search 
schedule and its complexity later). In this paper, we 
describe the following results: 

1. We compute r* in O(n 3) time, using O(n 2) 
working space, and generate a search schedule 
of size O(r*n3); 

2. Using O(n 2) time and O(n 2) space, we compute 
an integer r <_ r* + 2 such that  we can sweep P 
using r guards with a search schedule of size 
O(rn2). We can also compute in O(rn 2 logr)  
time a search schedule of size O(rn 2) for P that  
uses r + 4 guards; 

3. Using O(nlogn) t ime and O(n) space, we com- 
pute an integer r such that  r < r* + 16, and we 
can sweep P using r guards; and 
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4. We show how to sweep P using r guards, where r 
is two more than the link radius of P,  and 
generate a search schedule of size O(rn).  (We 
omit the proof  of this result from this abstract.) 

The pr imary  difficulty in planning motions for 
greater than two guards is that  the guards at the 
internal vertices of the chain can be located anywhere 
in the interior of P.  To solve this problem, we 
introduce a structure called the link diagram (we 
formally define this notion later), which represents 
the link distance and minimum-link paths between 
all pairs of points on the boundary of P.  As far 
as we are aware, this structure appears to be a new 
concept. We prove that  the link diagram has O(n 3) 
size and describe an algorithm to construct it in 
O(n 3) time. In the full version of the paper, we also 
show how to use the link diagram to answer link- 
distance and minimum-link-path queries between two 
points in P in optimal time, matching the earlier 
result of Arkin et al. [5]. Our query algorithm is 
especially simple and avoids the case analysis of the 
algorithm of Arkin et al. 

Our first approximation algorithm (with an ad- 
ditive error of two) is based on the observation that  
we can approximate the link diagram of P by the link 
distances between the O(n 2) pairs of vertices of P,  if 
we are willing to tolerate a small additive error (of at 
most two). Our second, and more efficient, approx- 
imation algorithm (also with a small additive error) 
is based on an interesting relationship we establish 
between r* and the link width of P - -  a quantity 
that  measures the maximum link distance of a vertex 
to a link diameter of P.  Surprisingly, we can show 
that  r* is bounded from above and from below by the 
link width (ignoring additive constants). 

In the next section, we give some basic defini- 
tions, introduce the concept of the link diagram, and 
review some facts about window partitions. The fol- 
lowing sections describe the main results, first for ex- 
act optimization and then for approximation. Due to 
lack of space, we defer most proofs to the full version 
of the paper. We present some lower bound construc- 
tions in the appendix. 

2 G e o m e t r i c  P r e l i m i n a r i e s  

Let P be a simple polygon in the plane. Let G -- 
{G1, G 2 , . . . ,  Gr} be a set of point guards in P.  For 
a guard Gi E 9, let 7i(t) denote the position of Gi 
in P at time t; we require that  "yi(t) : [0, oc) --~ P be 
a continuous function. A configuration of G at time 

t, denoted F(t) is the set of points {'h(t) [ 1 < i < r}. 
We say tha t  F(t) is legal if 

1. ~/1 (t) and ~/~(t) both lie in OP, and 

2. for every 1 < i < r,  the segment 3,i(t)Ti+l(t ) 
does not intersect the exterior of P.  

From now on, we will use the term configuration to 
mean legal configuration. A useful way to think of 
a configuration of G is as a piecewise-linear path 
connecting the points "yl(t) and 7~(t) that  runs 
through P .  

A motion strategy (7, G) = {7i,1 < i < r )  is a 
specification of 7/, for each guard Gi E 9. We assume 
that  each guard can follow an algebraic path, once 
the path  is specified. Thus, each 7i is a piecewise- 
algebraic function. The complexity of 7/ is the 
number of algebraic functions needed to define it. 
The complexity of a motion strategy is the total 
complexity of the 7i's. 

In order to formalize the notion of sweeping a 
polygon, we assume that  the chain corresponding to 
the configuration of the guards is oriented from G1 
to G~. For a motion strategy (7, G), let Ap(t) denote 
the fraction of the area of P to the right of the 
configuration F(t); Ap(O) = 0. We say that  a motion 
strategy (% G) is a search schedule for P if Ap(t) = 1, 
for some t > 0. Finally, we say that  P is r-searchable 
if a search schedule that  uses at most r guards exists 
for P.  See Figure 1 for an example of such a sweep. 
In the Appendix, we show that  there are n-vertex 
polygons that  are not o(n)-searchable. 

We assume without loss of generality that  all 
of the guards start  at the same point in OP at the 
beginning of the sweep and converge at another point 
of 0 P  at the end of the sweep. The following lemma 
characterizes when a motion strategy is a search 
schedule: 

LEMMA 2.1. Given a motion strategy (%G), let dl 
(resp., d2) denote the total distance that G1 (resp., 
Gr) travels in the counterclockwise (resp., clockwise) 
direction during 7, divided by the perimeter of P. If  
Idl + d21 = 1, then (% G) is a search schedule for P. 

Using this lemma, it is easy to show that  in any search 
schedule, each point in P is swept over an odd number 
of times. 

In all of our algorithms, we construct search 
schedules where each configuration of the guards 
corresponds to a minimum-link path between the 
first and last guards. We now give some standard 
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pair  of faces. 1 Note tha t  £ p  is symmetr ic  since d 0 
is a symmetr ic  function. 
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Figure 2: (a) A polygon P and (b) its link diagram. 
Shaded areas correspond to pairs of points on OP 
with link distance two. 

Figure 1: A search schedule with three guards. The 
unswept region is shown shaded. 

definitions related to such paths. Given two points 
p, q E P,  a minimum-link path between p and q is 
a piecewise-linear pa th  between p and q that  does 
not intersect the exterior of P and has the minimum 
number  of  line segments; the link distance dL(p,q) 
between p and q is the number  of line segments in 
such a path.  

We now define the link diagram of P ,  a structure 
tha t  is central to our algori thm for computing r*. 
We first select an a rb i t ra ry  point o E OP as the 
origin of  COP and parameter ize  every point p E OP 
by the clockwise distance from o to p along 0P ,  
divided by the perimeter  of P .  Let f : [0, 1) --~ OP 
denote the  bijective function corresponding to this 
parameter izat ion;  thus, f 0  maps every point in OP 
to a dual point in the interval [0, 1). For any point 
(x, y) in the unit square of a dual plane, let dL(X, y) : 
[t3, 1) x [0, 1) -+ N denote the link distance between 
the points f ( x )  E COP and f (y)  E cOP. The link 
diagram f~p is the graph of the function d 0.  See 
Figure 2 for an example of  Z:p. A face o f  ~ p  is a 
maximally-connected region where the function d 0 
assumes the same value; an arc of £ p  separates two 
different faces of L:p (the values of d 0 in these two 
faces differ by 1); and a node of ~ p  is a point on 
the boundary  of four or more faces of ~ p  o r  a point 
adjacent to two different arcs that  separate  the same 

Given two points p, q E P ,  we say tha t  p and q 
see each Other if the segment pq does not intersect the 
exter ior  of P .  Given two points p, q E P tha t  see each 
other ,  let e be the line passing through p and q. Then 
the  extension of (p, q) is the connected component  of 

M P tha t  contains the segment pq. 
The  window partition Wp of a p E P is a part i t ion 

of P into maximal  regions of constant  link distance 
f rom p. An edge of Wp is either a portion of an edge 
of P or is a segment that  separates two regions of Wp; 
we call such a segment a window of Wp. If  a window 
w E ]4;p has endpoints x a~d y, then one endpoint  
of w (say, x) is a reflex vertex v of P and the other 
endpoint  (y) lies on an edge e of P;  x is closer to p 
t han  y in terms of geodesic distance. We say tha t  
the combinatorial type of w is the vertex-edge pair 
(v, e). The  combinatorial type of Wp is a list of the 
combinatorial  types of all its windows. The planar 
dual  of Wp is the window tree, which we denote by Tp. 
Suri [27] introduced the notion of window part i t ion 
and showed tha t  it can be constructed in t ime and 
space O(n). The definitions of window parti t ion and 
window tree extend natural ly to the case when the 
source is a line segment, instead of a point. 

We can use the window parti t ion Wp to compute  
a rain-link pa th  from p to any other point in P.  
In general, min-link paths are not unique. The 

r~A node of •p cannot be adjacent to an odd number of 
faces; if it is, then one of the arcs adjacent to the node separates 
faces where the value of d 0 differs by zero or at least by two, 
which is impossible. 
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canonical min-link path 7( L (p, q) between p E OP and 
q E OP is a path that  uses only extensions of windows 
in Wp, with the last link chosen to pass through the 
last vertex of the geodesic shortest path between p 
and q. We define the combinatorial type of a link 
of 7rL(p,q)(except, possibly, the last link) to be the 
combinatorial type of the window of Wp of which it is 
an extension. Each link of 7rL (/9, q) passes through a 
reflex vertex of P (the reflex vertex is also a vertex of 
the geodesic shortest path between p and q). We say 
that a link of 7rL (p, q) is pinned if it passes through 
two reflex vertices of P such that  the vertices lie on 
opposite sides of the link. 

Let p = f(t),  for some t E [0,1), let ,k be a 
window in Wp with combinatorial type (v,e), and 
let q be the endpoint of A lying on e. Suppose that  
the canonical min-link path 7rL (p, q) from p to q does 
not contain any pinned edge. We can show that we 
can parameterize the position of q as a homography 
q = g(t) = (A + Bt) / (C + Dt). 

3 T h e  L ink  D i a g r a m  

In this section, we prove an O(n 3) bound on the size 
of the link diagram ~p of a n-vertex polygon P and 
describe an algorithm to construct  £p in O(n 3) time. 
We also show how to compute r* by searching £ p  
and produce a search schedule of O(r*n 3) complexity 
for P using r* guards. 

We first sketch the proof for bounding the size 
of /Zp. The first property we establish is that  
every vertical (or horizontal) line intersects the arcs 
of ~p at O(n) points; if the line passes through the 
point (t, 0), then these intersections correspond to the 
endpoints of the windows of Wf(t). We then show 
tha t  if we sweep a vertical line across the plane, the 
line intersects nodes of £p exactly at values of t such 
that the combinatorial type of )4;f(t) changes. At 
each such value of t, the line intersects O(n) nodes 
of £p .  Arkin et al. [5] show that  the combinatorial 
type of Wy(t) changes at O(n 2) value of t. These 
facts imply that £p has O(n 3) size. An interesting 
implication of these arguments is that  the nodes 
of ~p lie in a total of O(n 2) vertical (or horizontal) 
lines. 

Below, we describe the proof in some more detail. 
We first introduce some notation. Let g(t) be the 
vertical line through the point (t, 0) in the dual plane. 
Throughout this section, we will use ~ > 0 to denote a 
sufficiently small real number. We will abuse notation 
and use Wt, where t E [0, 1), to denote Wf(t) and use 
7rL(t,u), where t ,u E [0, 1), to denote 7rL(f(t),f(u)). 

We first state a simple lemma that  relates arcs of £ p  
to window partitions of points on OP. 

LEMMA 3.1. Suppose the vertical line g(t) does not 
intersect any nodes of £p.  The line ~(t) intersects 
an arc of £p at a point (t, u) iff f (u)  is the endpoint 
of a window of VI;t. 

Using the above lemma, it is not difficult to establish 
the following: 

LEMMA 3.2. Let t, u E [0, 1) be such that no nodes of 
£p are contained in the vertical strip bounded by e(t) 
and e(u). Then the combinatorial types of the window 
partitions Wt and )'Yu are identical. 

The above lemma implies that  if  we sweep a 
vertical line £(t) across £ p ,  then at  every value of t 
such that  the combinatorial types of the window 
partitions Wt-e  and Wt+6 are different, e(t) intersects 
a node of £p. We now prove that  the converse is also 
true, i.e., if e(t) intersects a node of £p ,  then the 
combinatorial types of the window partitions Wt-e 
and ~4;t+~ are different. In order to prove this fact, 
we first show some more properties of the arcs and 
nodes of £ p .  The next two lemmas establish precise 
conditions for a point on an arc o f / : p  to be a node 
of £p. 

LEMMA 3.3. Suppose that the point (t, u) is on an 
arc of £p and 7rL(t, u) does not contain a pinned link. 
The point (t, u) is a node of £p  iff one of the links of. 
7rL (t, u) touches two vertices of P. 

LEMMA 3.4. Suppose that the point (t, u) is on an 
arc o f  f~p and 7rL(t,u) contains a pinned link )~. The 
point (t,u) is a node of £p  iff f ( t)  and f(u) are 
endpoints of a window of )/V~. 

The two lemmas above have the following corollary 
(a window A E Wt divides P into two or more 
sub-polygons; we use P[A; f ( t ) ]  to denote the sub- 
polygons not containing f ( t ) ) :  

COROLLARY 3.1. If  a window )~ E Wt touches two 
vertices of P, then the point (t, u) is a node of £e  for 
every value of u such that f (u)  is the endpoint of a 
window of W:~ and f(u) E OP[)~; f( t )] .  

Using Lemmas 3.3 and 3.4, we can prove the follow- 
ing: 

LEMMA 3.5. If  the point (t, u) is a node of £p, then 
the window partitions }A;t-6 and )4;t+e have different 
combinatorial types. 
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We have now assembled all the ingredients we 
need to prove an O(n 3) bound on the size of £ p .  
We sweep the vertical line ~(t) across £p from £(0) 
to ~(1) and consider the intersection of ~(t) with the 
arcs o f / : p .  Lemma 3.1 implies that  this process is 
equivalent to moving the point  f ( t )  along OP and 
considering Wt. Lemmas 3.2 and 3.5 imply that  g(t) 
intersects a node of ~p iff the combinatorial type 
of Wt changes. Arkin et al. [5] show that  for a 
polygon P with n vertices, there are O(n 2) values 
of t • [0, 1) such that  )4;t-e and Wt+e have different 
combinatorial types. Let t ~ be such a value of t and let 
)~ be the window of Wt, tha t  touches two vertices of P.  
Corollary 3.1 implies tha t  the point (g, u) is a node 
of £ p  only if f(u) is the endpoint  of a window in Wx. 
There  are O(n) such values of u. Therefore, at each 
of the O(n 2) values of t where the combinatorial types 
of )4;t-e and Wt+e are different, g(t) intersects O(n) 
nodes of £p .  This argument proves an O(n 3) bound 
on the size of £p .  In the Appendix, we show that  
this bound is tight: there are n-vertex polygons for 
which £ p  has size 12(n3). 

"THEOREM 3.1. The link diagram £p of a polygon P 
with n vertices has size O(na). 

We now describe an algori thm to construct ~p. 
The algorithm simply mimics the proof of the size 
bound by sweeping a vertical line ~(t) across £ p  
and maintaining the intersection of g(t) with £p .  
We represent this intersection by a sequence L(t) of 
O(n) sorted numbers in [0,1); u • L(t) iff f(u) is 
the endpoint of a window in Wt. If u • L(t), we 
use a(t, u) to denote the arc of £ p  that  the point (t, u) 
lies on, and we store the combinatorial  type of a(t, u) 
with u in L(t). Before describing the algorithm, we 
need a simple definition. Let  v be a vertex of P 
and let p be the endpoint  of a window in W~. If 
dL(v,p) > 1, then the first link in 7rL(v,p ) passes 
through v and another vertex of P .  We call this link 
p's source link and denote it by sp. 

1. For each vertex v E P, we compute Wv. For 
every endpoint p of a window in Wv, we com- 
pute sp. We sort all of  these endpoints around 
OP. Let Q be the sorted sequence of these end- 
points. 

. We compute L(0) and maintain L(t) as t in- 
creases from 0 to 1. For every value of t such 
that  f ( t )  is a window endpoint  in Q, we locate 
the window (with the same combinatorial type 

as) sf(t) in L(t). For every value of u such that  
f(u) is the endpoint of a window of Wsj(,) and 
f(u) E OP[sf(t); f ( t ) ] ,  we add (t, u) as a node to 
£ p  and end the arc a(t, u) at (t, u). 

(a) If sf(t) is not pinned, then for every new 
node (t, u) (added above), we add a new 
arc a(t, u) to £:p. We obtain the equation 
of a(t,u) by appropriately updating the 
homography defining the arc a(t - G u). 

(b) If sy(t) is pinned, we add to £ p  a vertical arc 
for each pair of new nodes that  are adjacent 
along g(t). For every new node (t, u), we 
also add a new horizontal arc a(t, u) to Lp .  

The correctness of the algorithm follows from 
Corollary 3.1. It is easy to analyze the running time 
of the algorithm. The first step takes O(n 2 log n) 
time. We execute the second step O(n 2) times [5], 
spending O(n) time per execution. Thus, we have 
the following theorem: 

THEOREM 3.2. We can construct ~p in O(n 3) time, 
using O(n 2) working space. 

We now turn  our at tention to using ~p to com- 
pute the optimum number r* of guards and a corre- 
sponding search schedule for r* guards. Lemma 2.1 
states tha t  a motion strategy (% ~) is a search sched- 
ule if the total  distance traveled by the extreme 
guards (measured counterclockwise for one guard and 
clockwise for the other) sums to the perimeter of P .  
To exploit this fact, we augment the diagram ~p  by 
placing a translated copy of it ( translated upwards by 
distance 1) just  above it in the dual plane. Lemma 2.1 
implies tha t  any path from the diagonal y = x in the 
bot tom copy to the diagonal y = x + 1 in the top 
copy corresponds to a search schedule for P.  Our al- 
gorithm for computing r* is simple. We consider the 
graph defined by the nodes and arcs of the two copies 
o f / : p .  We label each arc and each node with the 
smallest link distance associated with the faces ad- 
jacent to it. We then perform a breadth-first search 
in this graph to compute the smallest integer r* such 
that  a path exists between the two diagonals that  uses 
only arcs and nodes with labels at most r* - 1 (since 
a chain of r* - 1 links corresponds to r* guards). We 
can adapt  this procedure to compute a search sched- 
ule too; details appear in the full paper. Clearly, the 
breadth-first search takes O(n 3) time and produces 
a path in ~p that  visits O(n 3) nodes. To compute 
the search schedule, at each node of this path, we may 
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need to update the motions of at most r* guards, thus 
computing a search schedule of complexity O(r*n3). 

4 Approximation Algorithms 
In this section, we describe three 
schemes: (1) an algorithm that  uses 
compute r* within an additive error 
algorithm that  uses O(n logn )  time 

approximation 
O(n 2) time to 
of two, (2) an 
to compute r* 

within an additive error of at most 16, and (3) a 
method for sweeping P that  uses at most the link 
radius of P (which we can compute in O(n logn)  
t ime [11]) plus two guards. Here, we give details of 
only the first two results; we defer presenting the link 
radius method (which may give slightly fewer guards 
than method (2) in some cases) to the full paper. 

4.1 A s imp le  a d d i t i v e  approximation method 
We describe a method that  computes in time O(n 2) 
an integer r such that  P can be swept using r guards 
and r < r* + 2. We can also compute in O(rn  2 logr)  
time a search schedule of O(rn 2) complexity that  
sweeps P using a chain of at most r + 4 guards. 

Let e l , e 2 , . . . , e n  be the edges of P.  Define an 
n x n matrix ,~4, where fl4ij is an upper bound 
on the maximum number of guards in a min-link 
path  connecting any point of ei to any point of e j ;  

namely, A4ij = dL(ei ,ej)  + 3, where d L ( e i , e j )  = 

minpeei,qeej dL(p,q). The matrix J~4 can be com- 
puted in O(n2), by computing the link distance from 
ei to all other edges in O(n) time [27]. 

As is easily shown, ~4 forms an approximation 
to the link diagram, £p ,  since, if p is a point on an 
edge ei C OP, and q is a point on an edge ej C OP, 
then dn(p, q) is between -/~ij - -  3 and J~ij - 1. 

LEMMA 4.1. Let 7r and zd be two rain-link paths, 
both connecting an edge f to an edge f t ,  so that 
r = dL(f ,  f ' ) .  Then, we can morph 7r into 7r' using 
at most r + 3 guards. Moreover, using at most r + 7 
guards we can compute a morphing strategy, that 
issues O(r) commands to guards, in O(r logr) time. 

We construct a graph G on the grid 2n x 2n, 
so that  two nodes are adjacent in G iff they are 
vertically or horizontally adjacent in the grid. We 
also connect the vertices on the boundary of G to 
the corresponding vertices on the other side of G 
(i.e., we "glue" together the top side of G to the 
bot tom side of G, and the left side of G to the right 
side of G). For a vertex ( i , j )  E V(G), we assign it 
weight w( i , j )  = J~41+((i-1) rood n),1+((/-1) mod ~)- It 
is easy to verify that a sweeping strategy for P can be 

interpreted as a path a in G connecting the grid point 
(1, 1) to  the grid point (1,n), so that  the maximum 
weight vertex along a has weight at most two greater 
than  the number of guards needed to sweep P.  

On the other hand, a path a in G connecting 
(1, 1) to (1, n), such tha t  the maximum weight along 
a is w, can be interpreted as a sweeping strategy that  
requires at most w guards, by Lemma 4.1. Such a 
min-weight path a in G can be computed in O(n 2) 
t ime using Dijkstra's algorithm. We conclude: 

THEOREM 4.1. Given a simple polygon P,  we can 
compute in O(n 2) time a number r, so that P can 
be swept with r guards and r < r* + 2. Moreover, 
we can compute in O(n2r log r) time a sweep schedule 
for P that uses at most r + 4 guards and has O(rn  2) 
complexity. 

Proof: The algorithm for computing r is described 
above. For the computation of the motion strategy, 
we first compute the rain-weight path a in G that  
connects (1, 1) with (1, n). Next, each edge e of a 
connects two configurations ~r = (ei ,ej)  and 7r' = 
(ei, ck). 

It is now an easy matter  to compute a morph- 
ing between these two configurations by computing a 
middle configuration ~rmid having one guard located 
on a vertex ej N ek of P.  Next, using the algorithm 
of Lemma 4.5 (see below), we compute a morphing 
s t ra tegy between ~r and 7rmid, and a morphing strat- 
egy between 7rmi d and ~r'. n 

4.2 A fas t e r  a d d i t i v e  a p p r o x i m a t i o n  m e t h o d  
In this section, we describe an O(n log n)-time algo- 
r i thm to approximate r* within a small additive error. 

For a polyline ~r, and any two points p, q E 7r, let 
a, b E OP be a pair of points, maximizing dL(a, b); 
we call such a pair a diametrical pair of P ,  and let 
DR = TrL(a, b) denote a corresponding path that  
represents a link diameter of P.  

We define the link width of P relative to D p  to be 
w(P, DR) = ma~vep dL(Dp,  v). The link width of P 
is then defined to be the minimum, minDe w(P, Dp) ,  
taken over all realizations of the diameter. (It turns 
out tha t  different realizations of DR can result in 
different widths, but  there can be variation only by 
one link.) In our discussion, it suffices to fix one 
realization of the diameter, DR, and do analysis with 
respect to the width w = w(P, Dp).  For points p, q E 
OP, we let OP(p, q) denote the portion of OP traced 
when moving from p to q in a clockwise direction 
(i.e., with the interior of P lying to the right). We 
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Figure 3: Definitions for Lemma 4.2 

first s tate two lemmas tha t  establish the relationship 
between the link width and  the link diameter of P .  

LEMMA 4.2. Let Dp -- 7rL(a, b) be a diameter of P ,  
let c be a point that realizes the width, w = dL ( C, Dp  ), 
and let u be a point on Dp that is closest to C in link 
distance. (See Figure 3.) Then, dL (a, u) > w - 7 and 
dL(b,u) > w - 7. 

LEMMA 4.3. Let p E OP(c,a) and q E OP(b,c). 
Then dz (p, b) >_ w - 8, and dz (q, a) > w -- 8. 

LEMMA 4.4. The number of guards needed to sweep 
a polygon P is at least max(w - 7, 2). 

Proof: H there is a sweeping strategy of P by a 
chain of k segments (k + 1 guards), then it is easy 
to verify tha t  during the sweep one of the following 
three events must  happen: 

• One of the guards is located at the point b and 
other one is located on OP(c, a). 

• One of the guards is located at the point a, and 
the other one is located on OP(b, c). 

• One of the guards is located at c, and the other  
one is located on OP(a, b). 

However, by Lemma  4.3, we know that  in the 
first two cases k > w -  8. In the third case, the 
chain of guards must  cross  7rL(a , b), which implies 
that  k > w. [] 

LEMMA 4.5. Let a = (P l , . . .  ,Pro) C_ OP be a subset 
of OP that has no shortcut within P; i.e., pipi+2 ~ P.  
Assume that for any point q E OP, we have dL (a, q) < 
k. Then, the polygon P can be swept using a chain 
of k + 3 guards. 

Proof: Let 5 = O P \ a ,  and let qi E # denote a point 
of ~ tha t  is closest to Pi (in link distance). Arguing 
as in the proof  of Lemma 4.2, it follows tha t  since a 
cannot be shortcut,  any point on a sees a point  of &; 
thus, Piqi C P. (However, note that  Piqi might  cross 
p~qj.) 

Let Qi be the region bounded  by 
cOP(qi, qi+l)[lqi+lPi+l[{pi+lpi[]piqi, for i = 
1 , . . . , m -  1. (Note tha t  the closed curve defining 
Qi may have a self-crossing at the intersection of 
Piqi and pi+lqi+l.) The regions Qi par t i t ion  P.  
For any point p E OQi, there exits a pa th  t ha t  has 
at most  k + 2 segments connecting p with Pi and 
that  lies inside Qi. Indeed, let 7r = ZrL(p, a) be 
a min-link pa th  connecting p with a. The  pa th  ~r 
has at  most  k segments and must intersect (the 
intersection might be the endpoint of 7r) one of the 
segments piqi,piPi+l,Pi+lqi+l, and thus it can be 
modified into a path  zr' tha t  connects p with pi tha t  
has at most  k + 2 segments. 

This implies that  we can sweep Qi in the follow- 
ing canonical way: (i) In the beginning the  guards 
stand along the segment Piqi, and connect  those 
two endpoints,  (ii) In the end of the first stage 
of the sweep, the guards s tand along the segments 
PiPi+l{]Pi+lqi+l, and (iii) In the second stage of the 
sweep, all of the guards standing along pipi+l are 
moved to s tand at Pi+l. This sweeping requires at 
most k + 3  guards. Thus, we can sweep P by sweeping 
Q1, Q 2 , . . . ,  in succession, using the above strategy. 
Overall, this combined s t ra tegy sweeps P using k + 3 
guards, so tha t  the guard who is always located on a 
moves monotonically along a. [] 

THEOREM 4.2. max(w -- 7, 2) <_ r* < w + 5. 

Proof: Let P1, P2 be the two polygons formed by 
splitting P along D p  -= 7rL(a, b). By L e m m a  4.5, P1 
and P2 can each be swept with w + 3 guards,  so that  
one of the guards lies on Dp, and its movement  is 
monotone from a towards b. Moreover, the sweep- 
ing of/°1 and P2 is decomposed into steps where in 
the intermediate step only three guards are necessary 
(namely,  two guards placed on an edge of the diam- 
eter, a n d  the other guard placed on an edge of the 
polygon). Thus,  by sweeping the regions of P1, P2 in 
an interleaving manner,  we have tha t  the number  of 
guards necessary to sweep P is at most  a; + 5. The 
lower bound follows from Lemma  4.4. [] 

THEOREM 4.3. Given a polygon P, we can compute 
in O(nlogn)  time a number k, so that the number of 
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guards needed to sweep P is between max(k - 11, 2) 
and k + 5. 

Proof: Compute  the link-diameter, Dp, of P in 
O(nlogn) t ime [18, 19, 26]. Pick a vertex v of 
P,  and compute the window partition, W~, and the 
window tree, T~, in O(n) time. We now mark,  in 
linear time, all of the nodes V of T~ that  correspond 
to regions of Wv tha t  intersect Dp. Let # be the 
vertex of T~ such tha t  the minimum distance (in Tv) 
to any vertex of V is maximized, and let d be  this 
minimum distance between ~ and a vertex of %.  

It  is s traightforward to verify that  # < w < # + 4. 
Set k = # + 4 .  We know by Theorem 4.2, tha t  P 
can be swept using k + 5 guards and that  a t  least 
max(k  - 11, 2) guards are needed. [] 
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A L o w e r  B o u n d s  

We show tha t  there are n-vertex polygons that  are 
not o(n)-searchable. Figure 4 shows such a poly- 
gon P .  It consists of three "arms," L1,L2 and L3, 
joined by a central region. Any polygonal chain lying 
inside P t ha t  joins a point p in the central region to 
the tip Pi of an arm Li has fl(n) segments. Suppose 
L3 is the last arm to be searched in a sweep. Then, 
while a guard visits P3, a guard must be positioned at 
a point in the central region. Otherwise, the target 
might escape from L1 to L2 or vice-versa. A similar 
fact holds if L1 or L2 is the last arm to be searched. 
Therefore, ~ (n)  guards are needed to sweep P.  

p~ 

Ll 

P~ 

La 

There are polygons for which the link diagram 
has size fl(n3). In Figure 5 we show a polygon P 
whose boundary consists of three portions: "yl is 
a convex chain of n vertices while "Y2 and 73 are 
sequences of n "teeth" each. Let c~, 1 < i < n denote 
the "base" of each tooth  in ~/~ and let d~, 1 < i < n 
denote the bases in 73- We choose 71 to be small 
enough that  every point in ~1 can see every point 
of ci and every point of dj, for 1 < i , j  < n. Let 
ci have endpoints Pi and qi. Consider Wp,. Since 
Pi can see every point on 71, a window of Wpl (in 
fact, a chord of the visibility polygon Vpi) has an 
endpoint p' in OP to the left of the vertices of ~'1. 
For every j,  1 < i < n, there is a window w' in Wp~ 
such that  w' has an endpoint q E dj. We can show 
that  the point ( f - l ( p i ) , f - l ( q ) )  is on an arc o f / : p .  
Now consider moving a point p from pi to qi. This 
motion causes p' to move clockwise along ~/1 and q 
to move clockwise along dj. Every time p' passes a 
vertex of ~/1, the homography defining the motion of 
q (with respect to p) changes. Therefore, by the time 
p reaches qi, the point ( f - l ( p ) , f - ~ ( q ) )  has traced 
~(n) arcs o f / : p .  The same process can be repeated 
for every ci and dj, 1 < i , j  < n, which implies that  
Ep has size f~(n3). 

")/1 

q3 

~2 73 

Figure 5: Lower bound construction for the size of 
/:p. 

Figure 4: A polygon P such that  r* = fl(n). 


