GATE user’s manual

Version 2.2

by Erik T. Mueller

| ntr oduction

GATE is an Al development tool for Common Lisp. GATE includes slot-filler objects, a type hier
unification, instantiation, variabilization, theorem proving, and a context mechanism.

GATE has been used in the construction of three Al programs: Daydreamer (Mueller, 1990), a ¢
model of human daydreaming, RINA (Zernik & Dyer, 1987), a program for learning new English
idioms in context, and OpEd (Alvarado, 1990), an editorial comprehension program.

A tutorial introduction to GATE

This section provides a tutorial introduction to GATE. It walks the new user through most of the
important capabilities of GATE.

L oading

Start up Common Lisp andi to thesr ¢ subdirectory of the downloaded Daydreamer/GATE
distribution. Then type:

(load "load.cl")

The system will ask you whether you want to load Daydreamer or GATE. Once GATE is loaded
message such as the following will be printed:

Wl cone to GATE 2.2, Common Lisp version of 19990506
Bugs/ pr obl ens/ questions to eri k@ani x. com

Obs and types

The basic data objects of GATE are calbdbd. Obs are similar to records or structures in programn
languages such as Pascal, C, and Common Lisp, but with additional features useful for Al prog

Obs are used to represent the entities of interest in your program. For example, suppose you w
represent a person. First, defingyae calledPERSON, havingsots for name, age, and occupation:

> (ty$fcreate 'PERSON nil '(nane age occupation))
#{ PERSON}
>

(The case of input is ignored by GATE. However, by convention, types are in all upper case, slc
lower case, and obnames are in upper and lower case.) Next, create some obs wistehcasof this

type:

> (ob$fcreate ' (PERSON nane "Karen"
age 27
occupati on ' DOCTOR
obnane Karenl))
#{ KAREN1: (PERSON nane "Karen" age 27...)}
> (ob$fcreate ' (PERSON nane "Jinf
age 31
occupati on ' COVPOSER
obnane Jintl))
#{JI ML: (PERSON nanme "Jini' age 31 occupation ...)}
>

The optionabbnane slot enables you to specify a name for an ob. You can then refer to the ob b

> MKarenl

#{ KAREN1: (PERSON nane "Karen" age 27...)}

> AJiml

#{JI ML: (PERSON nane "Jini' age 31 occupation ...)}
>

You can print an ob in its entirety:

> (po "Karenl)
(PERSON nane "Karen"
age 27
occupati on ' DOCTOR)
> (po "NJinl)
(PERSON nane "Jinf
age 31
occupati on ' COVPOSER)
>

You can get thealues of particular slots:

> (ob$get ~Karenl ' nane)
"Karen"

> (ob$get ~Jiml 'age)

31

> (ob$get ~Jinl 'occupation)
COVPOSER
>

You can also set the value of a slot:

> (ob$set ~Jinl 'age 32)
32
> (po "Jiml)
(PERSON nane "Jint
age 32
occupati on ' COVPOSER)
>

Now suppose you want to represent simple world actions, as in Conceptual Dependency (CD) 1

(Schank & Abelson, 1977). First, define a type called o\

> (ty$fcreate 'ACTION nil ’(actor fromto obj))
#{ ACTI ON}
>

Then, definesubtypes of ACTI ON calledATRANS, MTRANS, andPTRANS:

> (ty$fcreate ' ATRANS ' (ACTION) nil)

#{ ATRANS}

> (ty$fcreate ' MTRANS ' (ACTION) nil)
#{ MTRANS}

> (ty$fcreate 'PTRANS ' (ACTION) nil)
#{ PTRANS}

>

In CD, anATRANS represents transfer of possession of a physical object from one person to anotl
example, create an ob to represent the action "Jim gives Karen a copy of Ear Magazine":

> (ty$fcreate 'MAGAZINE nil ' (nane))

#{ MAGAZI NE}

> (ob$fcreate ' (ATRANS actor Jinl
fromJim
to Karenl

obj (MAGAZI NE nane "Ear Magazi ne")
obname Atransl))

#{ ATRANSL1: (ATRANS actor Jinml fromJini...)}

>

An MTRANS represents transfer of mental information from one person to another. For example, ¢
ob to represent "Jim tells Peter that he gave Karen a copy of Ear Magazine":

> (ob$fcreate ' (MIRANS actor Jindl
fromJim
to (PERSON nanme "Peter" age 26 occupation ' MJSI Cl AN)
obj Atransl
obname Mransl))
#{ MTRANS1: (MIRANS actor Jiml fromJinl...)}
>

You can interrogate whether an ob is of a given type:

> (ty$instance? “Atransl ' ACTI ON)
ﬁT(ty$i nstance? ~Atransl ' ATRANS)
iT(ty$i nstance? "Atransl ' MIRANS)
(>) (ty$i nstance? "Atransl ' PERSON)
gr(ty$i nstance? "Mransl ' MTRANS)

>

As you can see, an ob of tymerANS is also considered to be of typerl ON, SINCEATRANS is a subtype
of ACTI ON.

Unification and instantiation

Al programs are built out of two basic operatiamsfication (pattern matching) andstantiation. For
example, create a pattern ob as follows:

> (I set pattern (ob$fcreate ' (MIRANS actor ?Personl
from ?Personl
to ?Person2
obj ?Anything)))

#{0B. 60: (MIRANS actor ?Personl from......)}

>

?Per sonl, ?Per son2, and?Anyt hi ng arevariables. Two obs unify if values for variables can be fou
such that substituting the values for those variables in the obs would produce equivalent structt
example, unify the above pattern with the previously created ains1 as follows:

> (I set bd (ob$unify pattern "Mransl *enpty-hbd*))
(T (ANYTHI NG #{ ATRANS1: (ATRANS actor Jinl fromJintl...)})
(PERSON2 #{OB.50: (PERSON nane "Peter" age 26...)})
(PERSONL #{JI ML: (PERSON nane "Jinm' age 32 occupation ...)}))
>

The result is a list of the found variable values-callbthding list.

Instantiation creates a copy of an ob (and embedded obs) in which all variables have been repl
their values specified by a given binding list. For example:

> (Iset instan-ob (ob$instantiate pattern bd))
#{0B. 61: (MIRANS actor Jinl fromJdiml...)}
> (po instan-ob)
(MIRANS actor Jinl
from Ji ml
to (PERSON nanme "Peter"
age 26
occupati on ' MUSI Cl AN
obj Atransl)
>

Here, you instantiate the pattern with the bindings resulting from the unification of the pattern wi
obM rans1. This results in an ob similar idr ans1:

> (po "M ransl)
(MIRANS actor Jinml
fromJim
to (PERSON nane "Peter"
age 26
occupati on ' MJSI Cl AN
obj Atransl)
>

A simple application: Inferencing
Suppose you wish to build a simple program to generate inferences from CD actions. For exam

anATRANS of an object from one person to another, you would like to infer possession of that obj
the other person.

First, define a type for states and a subtype for possession as follows:

> (ty$fcreate ' STATE nil nil)

#{ STATE}

> (ty$fcreate ' POSS ' (STATE) ' (actor obj))
#{ POSS}

>

Next, define a type for inference rules:

> (ty$fcreate 'INFERENCE nil ' (if then))
#{ | NFERENCE}
>

An inference rule consists of ah action and ahen state.

Next, create a list of inference rules:

> (I set *infs*

(list (ob$fcreate ' (I NFERENCE i f (ATRANS actor ?Personl
from ?Personl
to ?Person2
obj ?Mnj ect)

t hen (POSS actor ?Person2
obj ?bject)))))
(#{OB. 73: (I NFERENCE i f (ATRANS actor)...)})
>

So far, the list consists of one rule for inferring possession afterRans.

Now, define a function for generating inferences:

> (defun forward-inferences (cd)
(yloop (initial (bd nil) (result nil))
(yfor inf in *infs*)
(ydo (if (setq bd (ob$unify (ob$get inf "if) cd *enpty-bd*))
(setqg result (cons (ob%instantiate (ob$get inf ’then) bd)
result))))
(yresult result)))
>

In order to generate inferences from a given action CD, the function loops through all inference
Whenever an inference rule is found whoseinifies with the action CD, thenen of that rule is
instantiated with the bindings resulting from the unification and added to a list of inferred states.
list is returned at the end.

Thus, for example, this function produces the following result when applred 4as1:

> (lset states (forward-inferences "Atransl))
(#{0B.79: (PCSS actor Karenl obj (MAGAZINE...))})
> (po (car states))
(PCSS actor Karenl

obj (MAGAZI NE nane "Ear Magazi ne"))
>

Summary
The eight most common functions of GATE are:

1. Create type:
(ty$fcreate type-nane supertypes slots) -> type
2. Create ob:
(ob$fcreate oblist) -> ob
3. Get slot value:
(ob$get ob slot) -> value
4. Set slot value:
(ob$set ob slot value) -> value
5. Print ob:
(po ob)
6. Unify:
(ob$uni fy obl ob2 bindings) -> bindings
7. Instantiate:
(ob$i nstantiate ob bindings) -> ob
8. Determine if type:

(ty$i nstance? ob type-nane) -> bool ean

Refer ence manual

This section forms a reference manual on GATE.

Obs

The basic data structure of GATE is calledaheObs are similar to the slot-filler objects of Schank
Riesbeck (1981), frames (Minsky, 1975), Lisp a-lists (McCarthy et al., 1965), and the structures
records of traditional programming languages such as Pascal (Wirth, 1971).

An ob consists of:
® one or morebnames,

® an optionatype,
® zero or more pairs, where each pair consistssitaname and aslot value.

Obnames and slot names are Lisp atoms. A slot value is either an ob or some other Lisp object
character string or a function). Several pairs with the same slot name are permitted. Only one o
have a given obname.
The following functions are used to create an ob:
® (ob$create-enpty) -> ob
Create and return a new empty ob.
® (ob$creat e-naned-enpty obnane) -> ob
Create and return a new empty ob with the specified obname.
® (ob$fcreate list) -> ob
Create and return a new ob according to a given list which specifies the type, slot names ¢
values of the ob. (See the section below on printing and reading obs for the form of this lis
also the tutorial above for examples.) This function also creates any enclosed obs.
The following functions deal with obnames:
® (ob$add- nane ob obnane) -> obname
Add an obname to a given ob.
® (ob$nanes ob) -> obnanes
Return a list of the obnames of a given ob.
® (ob$name->ob obname) -> ob or NIL
Return the ob having the given obnameniar if no ob has that name.
The following functions deal with types:
® (ob$ty ob) ->ty
Return the type of a given ob.
The following functions manipulate pairs of an ob:
® (ob%add ob sl ot-name slot-value) -> slot-value

Add a pair consisting of the given slot-name and slot-value to a given ob.

® (ob$renove ob slot-nane slot-val ue)

Remove a pair consisting of the given slot-name and slot-value from a given ob (or signal
if there is no such pair).

® (ob$gets ob slot-name) -> slot-val ues

Return a (possiblyi L) list of the slot values of those pairs of a given ob whose slot name is
given slot-name.

® (ob$get ob slot-name) -> slot-val ue

Return the slot value of an arbitrary pair of a given ob whose slot name is the given slot ne
NI L if there are no such pairs.

® (ob$pairs ob) -> list
Return a (possibly L) list of all the pairs of a given ob.

The following functions are similar to the above functions, except thaihanay be specified in orde
to traverse a path starting from the top-level ob to reach a pair in an embedded ob:

® (ob$padd ob slot-path slot-value) -> slot-value
Add a slot-value according to the given slot-name path to a given ob.
® (ob$prenove ob slot-path slot-val ue)

Remove the pair according to the given slot-name path and slot-value from a given ob (or
an error if there is no such pair).

® (ob$pget ob slot-path) -> slot-val ue

Return the slot value of an arbitrary pair of a given ob according to the given slot-name pa
NI L if there are no such pairs.

Other functions dealing with obs are as follows:
® (ob? obj) -> bool ean
Given an arbitrary Lisp object, returnf it is an ob, otherwise retuma L.
® (ob$copy ob) -> ob
Return a new ob having the same type and pairs (but not obname) as a given ob.
Printing and reading obs

The following functions deal with ob printing and reading:

® (ob$print ob stream
Print a given ob on a given stream.
® (po ob)
Print a given ob on the standard output.
® (ob$fread stream -> ob
Read and create an ob from a given stream.
® (ob$fcreate list) -> ob
Read and create an ob according to the given list.

Obs havedextual representations for printing and reading. The textual representation for printing ot
of the following form:

(TYPE sl ot-nanel slot-val uela slot-val uelb ..
sl ot - name2 sl ot -val ue2a sl ot-val ue2b ..

-)

Rather than displaying each pair separately, all of the slot values of those pairs having the sami
name are displayed together in a single line (space permitting). Slot values may be obs themse
printing, if the slot value ob has a (non-automatically generated) name, only the name is printed
otherwise, the full textual representation is recursively printed. Slot values which are Lisp object
than numbers and strings (such as atoms, lists, and functions) appear quoted in the ob textual
representation.

Type names, slot names, and obnames are all represented as Lisp atoms. Although Lisp atoms
normally printed in uppercase, these ob entities are printed in special cases to distinguish them
other atoms: types are displayed in uppercase; slot names are displayed in lowercase; obname
displayed in a capitalized lowercase.

For example, consider the following ob:

(PTRANS actor Johnl
from (RESI DENCE obj John1l)
to Storel
obj Johnl Maryl)

The ob is of typ@TRANS and consists of 5 pairs. One pair of the ob consists of the slotasameand
slot valuelohn1. This slot value refers to another ob whose namehis1. The slot value of the pair
whose slot name fg omis another ob which does not have a name. The textual representation o
thus appears recursively in the textual representation of the enclosing ob. There are two pairs ¢
ob whose slot name i»j . The slot value of one pairJishnl while the slot value of the otherngry1.
Both pairs are displayed in a single line.

The textual representation for reading obs is similar to the representation for printing, with the fc

differences:
® Only one slot value is permitted per slot. If you wish to specify several pairs, you must spe
each slot name and value separately.
® The value of thebnane slot may be used to indicate the name of the ob.

® An atom slot value refers to an existing ob of that name, while a full textual representation
in the creation of a new ob.

Types

Types are organized into a hierarchy. The purpose of types is to enable classification of obs ani
specify their textual representation.

The following functions manipulate types:
® (ty$fcreate type-name supertype-nanes slots) -> type
Create a new type having the given supertypes and slots.
® (ty$instance? ob type-nane) -> bool ean

Given an ob, returm if it is an instance of the specified type (directly or indirectly through
inheritance), otherwise retuNnL.

® (ty$supertypes type) -> types
Return the parent types of the given type.
® (ty$subtypes type) -> types
Return the children types of the given type.
® (ty$supertypes* type) -> types
Return the improper ancestor types of the given type.
® (ty$subtypes* type) -> types
Return the improper descendant types of the given type.
® (ty$l east-comon-supertype typel type2) -> type
Return the least common supertype of two types.
Unification

Unification is a pattern-matching operation performed on two obs. The obs may contain a specii
of ob called aariable. Two obs unify if values for variables can be found such that substituting tt

values for those variables in the obs would produce equivalent structures. For example, if

(PTRANS actor ?Person
to ?Location)

is unified with

(PTRANS actor Johnl
to Storel)

the resulting variableinding list is:

(T (PERSON #{JOHN1: (PERSON)})
(LOCATI ON #{ STOREL: (STORE)}))

The GATE unification algorithm is based on previous unifiers (Schank & Riesbeck, 1981; Charr
Riesbeck, & McDermott, 1980) with appropriate extensions for typed variables and obs, multiple
values per slot name, special obs, and cyclic data structures. The following functions deal with
unification:

® (ob$unify obl ob2 bd) -> bd or NIL

Given two obs and a binding list, attempt to unify the two obs. If unification is successful, t
original binding list augmented with new variable values is returned. Othenvises returned.

® (ob$unifyl obl ob2 bd ignore-slots) -> bd or NIL
Same as above except the specified slots are ignored in the unification process.

The structures resulting from substitution do not actually have to be equivalent. Rather, one strt
must be a substructure of the other: one ob unifies with another if each pair in the first ob unifie:
unique pair in the second ob; however, each pair in the second ob need not have been account
example,

(PTRANS act or ?Person)
will unify with

(PTRANS actor Johnl
to Storel)

but

(PTRANS actor ?Person
from ?Locationl
to ?Locati on2)

will not unify with

(PTRANS actor Johnl
to Storel)

Thus unification in GATE is asymmetrical.

Binding listsand variables
The following operations on binding lists are provided:
® bd-create -> bd
Create an empty binding list.
® (bd-bind variabl e-nane val ue bd) -> bd

Bind a given variable to a new value returning a new binding list. This is sometimes called
augmenting the binding list with a new binding.

® (bd-1 ookup vari abl e-nanme bd) -> val ue
Look up the value of the given variable in the binding list. Retutnif no value is found.

Variables are obs of the following form:

(UWAR nane namne
uni fication-type type)

An unbound variable unifies with an ob if the ob is an instance of that variable’s unification type
an unbound variable successfully unifies with an ob, that variable is bound to the ob. A bound v
unifies with an ob if the value of that variable unifies with the ob. Two variables unify if one unifi
type is an improper supertype of the other.

Note that thevd- bi nd andbd- | ookup functions do not take variable obs, but rather their names. T
the name of a given variable ob, use the function abl e- nane.

Variables are not normally represented textually as above, but rather in the following form:
?nanme: TYPE

In addition, a short form is available in which the type of the variable is implicitly specified by its
The following variables are of typ&ERSON:

?Sel f ?Qt her ?Person ?Personl ?Person2 ?Person3 ...
The full representation afSel f, for example, is:

(UVAR nane Sel f
type PERSON)

The following variables are of typaiys- 0BJ:
?Phys- Gbj ?Phys-(Cbj 1 ?Phys-Cbhj2 ...

The following variables are of typeCATI ON:

?Locati on ?Locationl ?Location2 ...

Other variables follow a similar convention; this works for any defined type.

Variables which unify with anything (including obs and Lisp objects) are specified by:
?name: NOTYPE

Unnamed variables (which do not have values) are specified by the following forms:
?: TYPE ??

Special obs

In addition to variables, a set ggecial obs provide an extended syntax and semantics for unificati
These features were inspired by the pattern matcher of the DIRECTOR language (Kahn, 1978)
extended the constructs to full unification-that is, the constructs may now be used in both argun
the matcher, with a well-defined semantics.

The special obs are as follows:
(UAND obj obj1 obj2 ...)

A UAND ob unifies with another object if all obj1 obj2 ... unify with that object. Bindings are
augmented in a cumulative manner from each unification.

(UOR obj obj1 obj2 ...)

A UOR 0ob unifies with another object if any alfj1 obj2 ... unifies with that object. Bindings are
augmented by the first successful unification.

(UNOT obj obj)
A UNOT ob unifies with another objectabj does not unify with that object. Bindings are not augme
(UPRCC proc proc)

A UPRCC ob unifies with another objectjiroc (a Lisp lambda expression) applied to that object reti
a nonni L value. Bindings are not augmented.

What if both arguments to unification are special obs? Although this case may appear to be acc
for in the above definitions through appropriate recursion, there are certain subtleties which me
examination. We consider each possibility in turn.

If both obs are of typeAND, then every element of one ob must unify successfully with every elen
the other-that is, unification succeeds if every pair irctbss product of the elements of the two obs
unifies successfully. Each unification is performed in the context of bindings which have been
accumulated in previous unifications. For example, if the special ob

(UAND obj obj 1 obj2)

is unified with
(UAND obj obj 3 obj 4)

thenobj1 will first be unified withobj3. If this unification is successful, the resulting bindings are
employed in the unification afbj1 with obj4. If this unification is successful, the resulting bindings
then employed in the unification obj2 with obj3. The resulting bindings are similarly employed in
final unification ofobj2 with obj4. The final bindings are the result of the unification of the haxDs.
If at any point a unification fails, then the result of the unification of theuaps iSNI L.

If both obs are of typeor, then some element of one ob must unify successfully with some elem
the other-that is, unification succeeds if any pair in the cross product of the elements of the two
unifies successfully. The bindings which result from such a unification are simply the bindings p
the algorithm augmented with the bindings resulting from a single unification (of one of the pairs
cross product).

If both obs are of typeNor, then unification succeeds if the (one and only) element of one ob uni
with the element of the other. However, no new bindings result in the process. Thus in this case
yes-no result is given, without specification of the bindings necessary to unify the elements of tt
obs.

If both obs are of typePROC, one function is simply invoked on the other (and unification is succe
if the function returns a noR-L value)-it is assumed that the functions are able to handle such a «
is sometimes safe for such functions simply to retufnnvoked on a function. If it is desired for suc
case to be undefined, functions may be written to produce error messages if invoked on anothe
function.

What, now, if the two special obs are of different type? How do different special obs interact wit|
another? If the first ob is of typgr and the second is of typeND, then unification is successful if
there is an element of the first ob which unifies with every element of the second-that is, unifica
succeeds if any row of the cross product of the elements of the two obs consists of successful
unifications. The bindings which result from such a unification are accumulated from that row.

If the first ob is of typeJAND and the second is of typer (i.e., the situation is the other way around
unification is as above with the first and second obs switched (in recursive unification of compoil
however, it is necessary to switch the order of arguments once again so that the appropriate as
behavior with respect to the first and second arguments is retained).

If the first ob is of typeJor and the second is of typeior, then unification is successful if there is at
element of the first ob which does not unify with the (one and only) element of the second-that i
unification succeeds if any pair of the cross product of the elements of the two obs (which in thit
the cross product of a many-element vector with a one-element vector) consists of an unsucces
unification. No new bindings result from such a unification.

If the first ob is of typeNOT and the second is of typer, the obs are switched and the above algoi
is employed (with appropriate switching for recursive unifications).

If the first ob is of typeJAND and the second is of typeor, then unification is successful if no eleme
of the first ob unifies with the (one and only) element of the second-that is, unification succeeds

pair of the cross product of the elements of the two obs (again a cross product of a many-eleme
with a one-element vector) consists of an unsuccessful unification. No new bindings result from
unification.

If the first ob is of typesNOT and the second is of typanD, the obs are switched and the above
algorithm is employed with appropriate switching.

If the first ob is of typeJAND and the second is of typeroc, then unification is successful if the
function of the second ob returns a non-value for every element of the first ob.

If the first ob is of typeJor and the second is of typeRrcC, then unification is successful if the funct
of the second ob returns a n@irn- value for any element of the first ob.

If the first ob is of typeNOT and the second is of typeRoc, then unification is successful if the
function of the second ob retumis. when applied to the (single) element of the first ob. In each ¢
no new bindings result from the unification and the other orders are handled in the usual way (e
that no recursive switching is required simeec does not result in recursive unifications).

Note thatuor and multiple slot values per slot name introduce the potential for more than one so
(set of bindings) for a given unification. However, only the first solution that is found is returned
current GATE unifier.

| nstantiation

Instantiation takes an ob and a binding list, and returns a copy of the ob in which any variables f
been replaced by their values. Unbound variables remain as variables in the copy. The ob may
other obs-the complete structure with ob as root is copied, with any cycles preserved in the cop
instantiation function is as follows:

® (ob$instantiate ob bd) -> ob
Instantiate a given ob with the given binding list.

For example, if the ob:

(PTRANS actor ?Person
to ?Location)

is instantiated using the binding list:

(T (PERSON #{JOHNL: (PERSON)})
(LOCATI ON #{ STORE1: (STORE)}))

the returned ob is:

(PTRANS actor Johnl
to Storel)

Unification composed with instantiation is almost the identity transformation-if one ob unifies
successfully with another, and then the first ob is instantiated with the bindings from the unificat

result will be a copy of the second ob (however with any pairs not referred to in the first ob omit
Variabilization

Another pseudo-inverse for instantiatiorvasiabilization. Variabilization takes an ob and a predicat
and returns a complete copy of the ob (with cycles preserved) in which any enclosed obs answi
non-Ni L to the predicate have been replaced by unique variables. Multiple occurrences of the s¢
will become the same variable. Variabilization can be used to perform simple inductive generali
from single examples. The variabilization function is as follows:

® (ob$varize ob predicate) -> ob
Variabilize a given ob according to the given predicate.

For example, given:

(PTRANS actor Johnl
to Storel
obj Johnl Maryl)

and an appropriate predicate, variabilization returns:

(PTRANS actor ?Personl
to Locationl
obj ?Personl ?Person2)

Contexts
A context consists of a collection of obs calfadts which specify the state of a possible world. Eac
fact which is in a given context is said tothée in that context. Any fact which is not in a given con
is said to benot true in that context. GATE contexts are similar to other context mechanisms suct
OMEGA viewpoints (Barber, 1983) and AP3 contexts (Goldman, 1982), all of which derive from
original contexts of QA4 (Rulifson, Derksen, & Waldinger, 1972).
The following functions manipulate contexts:

® (cx$create) -> cx

Create a new context. Initially, no facts are true in the new context.

® (cx$assert cx fact)

Assert a given fact into a given context. The fact becomes true in the context (whether or 1
was already true).

® (cx$retract cx fact)

Retract a given fact from a given context. After this operation, the fact is not true in the cor
(whether or not it was already not true).

® (cx$true? cx fact) -> bool ean
ReturnT if the given fact is true in the given context, otherwise return

® (cx%retrieve cx ob) -> bds
Retrieve all the true facts in the given context which unify with the given pattern ob. A list ¢
binding lists is returned, in which the first element of each binding list is the retrieved fact.
(Hashing on the types of facts is employed to improve the efficiency of this function.)

® (cx$retrieve-bd cx ob bd) -> bds
Same as above, except unification proceeds starting from the given bindings list.

® (cx$sprout cx) -> cx
Sprout a new context which is a child of the given parent context. Initially, each fact which
in the parent context is true in the new child context. However, subsequent asserts in the «
context may add new facts to this context just as subsequent retract operations may remo
(In the current GATE asserts and retractsatoaffect the truth status of facts in descendant
contexts. That is, there is no dynamic inheritance of the truth status of facts.) The new con
called achild of the old context; the old context is called gaeent of the new context; we also
speak ofancestor anddescendant contexts.

® (cx$children cx) -> cxs
Return the children of a given context.

® (cx$parent cx) -> cx
Return the parent of a given context.

® (cx$ancestors cx) -> cxs
Return the proper ancestors of a given context.

® (cx$descendants cx) -> cxs
Return the proper descendants of a given context.

For example, suppose that the following two objects are asserted into a newly created context:

(PTRANS actor Johnl
to Storel)

(PTRANS actor Maryl
to Storel)

A retrieval from this context using the pattern:

(PTRANS actor ?Person
to Storel)

will return the following binding lists:
(#{ 0B. 245: (PTRANS actor Johnl ...)} (PERSON #{JOHNL: (PERSON)}))
and

(#{O0B. 249: (PTRANS actor Maryl ...)} (PERSON #{ MARY1l: (PERSON)}))
Theorem prover

A Prolog-like theorem prover (Clocksin & Mellish, 1981) is available with GATE. The following
functions are provided:

® (ob$provel ob bd max-number prul es pfacts-cx ignore-slots) -> bds

Prove the given ob, possibly containing variables, with respect to the given binding list, us|
given list of proof rules, using the facts contained in a context, and ignoring the given slot |
Generate at most the given number of solutions. Return a list of augmented bindingNistsf ¢
the proof fails. If the proof fails, a list of unproved facts is returned in the global variable

* PROOF- FAl LURES* .

® (ob$prove ob bd nax-nunber) -> cxs

Same as above, except use the global variablesg Es* and* PFACTS* for the proof rules and
facts. Do not ignore any slots.

Proof rules are of typerRULE. Each proof rule containsgaal slot and aubgoal slot. Thegoal slot
contains a goal ob pattern to be proved. ditgjoal slot specifies how that goal may be proved:

® if thesubgoal slot contains &R ob,any of theobj values of that ob may (recursively) be
proved,

® if thesubgoal slot contains &AND ob,all of theobj values of that ob must (recursively) be
proved;

® if thesubgoal slot contains & OT ob, theobj value of that ob must (recursively) not be prove

® otherwise theubgoal slot must (recursively) be proved.

Here is a sample proof rule:

(PRULE subgoal (ROR obj (PTRANS actor ?Person
to ?Locati on)
(LI'VES-I N actor ?Person
| oc ?Location))
goal (PROX actor ?Person
| oc ?Location))

Facts are arbitrary obs. A goal is proved whenever it unifies with a fact. Here is a sample fact:

(PTRANS actor Johnl

to Storel)
The following goal can be proved using the above proof rule and fact:

(PROX actor ?Person
| oc Storel)

The following list of binding lists would be returned:

((T (PERSON #{JOHNL: (PERSON)})))

Other functions

There are many useful functions not documented in this manual. To find out about them, you m
at the source code. Also, understanding exactly how certain functions work may require examin
the source code-especially for unification, instantiation, and variabilization.

History and acknowledgements

GATE was developed at the UCLA atrtificial intelligence laboratory. The initial inspiration came f
node and link graphics package that Brigham Bell developed at USC/ISI on Symbolics 3600s. |
summer of 1984, | ported this package to the T dialect of Scheme on Apollo workstations, but it
slowly it had to be scrapped. Then Perry Busalacchi rewrote the node and link graphics in C, m
first version of GATE possible in October 1984. Seth Goldman wrote routines to make use of A|
graphics and, along with Eric Preyss, created the T flavors package in which the first version of
(Mueller & Zernik, 1984) was implemented. The first version contained a demon programming
language by Uri Zernik, but this has since been abandoned. In January 1985, the full unifier wa:
replacing the earlier pattern matcher. The context mechanism was added in June 1985, partiall
response to Inference Corporation’s ART package. The current ob printer and reader were add
November 1985. In January 1986, special unification forms were converted to obs from Lisp ob
September 1986, GATE was rewritten to be independent of flavors, and its speed increased
dramatically. In February 1987, a theorem prover was added. In May 1999, GATE was ported t
Common Lisp from T.

GATE was influenced by previous programs created by members of the AIRHEADS group at U
such as Charlie Dolan’s T-CD**2 package. It was strongly influenced by feedback from its origir
users, Uri Zernik, Sergio Alvarado, and Ric Feifer.

Comments, questions, and improvements should be directed to erik@panix.com.

References

Alvarado, S. J. (1990VUnderstanding editorial text. New York: Kluwer.

Barber, G. (1983). Supporting organizational problem solving with a work stAfM.Transactions
on Office Information Systems, 1(1), 45-67.

Charniak, E., Riesbeck, C. K., & McDermott, D. V. (198&ificial intelligence programming.

Hillsdale, NJ: Lawrence Erlbaum.
Clocksin, W. F., & Mellish, C. S. (1981Frogramming in Prolog. Berlin: Springer-Verlag.

Goldman, N. (1982)AP3 reference manual. Unpublished report. Marina del Rey, CA:
USC/Information Sciences Institute.

Kahn, K. M. (1978)Director guide (Al Memo 482). Cambridge, MA: Massachusetts Institute of
Technology, Atrtificial Intelligence Laboratory.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., & Levin, M. |. (196%).1.5
programmer’s manual. Cambridge, MA: MIT Press.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Huk)psychology
of computer vision. New York: McGraw-Hill.

Mueller, E. T. (1990)Daydreaming in humans and machines. Norwood, NJ: Ablex. [abstract]

Mueller, E. T., & Zernik, U. (1984 GATE reference manual (Technical Report UCLA-AI-84-5). Los
Angeles: University of California, Artificial Intelligence Laboratory.

Rulifson, J., Derksen, J., & Waldinger, R. (197@M\: A procedural calculus for intuitive reasoning
(Technical Note 73). Stanford, CA: Stanford Research Institute, Artificial Intelligence Center.

Schank, R. C., & Abelson, R. P. (197®)ripts, plans, goals, and understanding. Hillsdale, NJ:
Lawrence Erlbaum.

Schank, R. C., & Riesbeck, C. K. (198l)side computer understanding: Five programs plus
miniatures. Hillsdale, NJ: Lawrence Erlbaum.

Wirth, N. (1971). The programming language PASCALtta Informatica, 1, 35-63.

Zernik, U., & Dyer, M. G. (1987). The self-extending phrasal lexi@mmputational Linguistics, 13,
308-327.

Daydreamer home

Copyright © 2000 Erik T. Mueller. All Rights Reserved. Terms of use.
(erik@panix.com, www.panix.com/~erik

