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Introduction

GATE is an AI development tool for Common Lisp. GATE includes slot-filler objects, a type hierarchy,
unification, instantiation, variabilization, theorem proving, and a context mechanism. 

GATE has been used in the construction of three AI programs: Daydreamer (Mueller, 1990), a computer
model of human daydreaming, RINA (Zernik & Dyer, 1987), a program for learning new English
idioms in context, and OpEd (Alvarado, 1990), an editorial comprehension program. 

A tutorial introduction to GATE

This section provides a tutorial introduction to GATE. It walks the new user through most of the
important capabilities of GATE. 

Loading

Start up Common Lisp and cd to the src subdirectory of the downloaded Daydreamer/GATE
distribution. Then type: 

(load "load.cl")

The system will ask you whether you want to load Daydreamer or GATE. Once GATE is loaded a
message such as the following will be printed: 

=======================
Welcome to GATE 2.2, Common Lisp version of 19990506
Bugs/problems/questions to erik@panix.com
=======================

Obs and types

The basic data objects of GATE are called obs. Obs are similar to records or structures in programming
languages such as Pascal, C, and Common Lisp, but with additional features useful for AI programming.

Obs are used to represent the entities of interest in your program. For example, suppose you want to
represent a person. First, define a type called PERSON, having slots for name, age, and occupation: 

> (ty$fcreate ’PERSON nil ’(name age occupation))
#{PERSON}
>



(The case of input is ignored by GATE. However, by convention, types are in all upper case, slots are in
lower case, and obnames are in upper and lower case.) Next, create some obs which are instances of this
type: 

> (ob$fcreate ’(PERSON name "Karen"
                       age 27
                       occupation ’DOCTOR
                       obname Karen1))
#{KAREN1: (PERSON name "Karen" age 27...)}
> (ob$fcreate ’(PERSON name "Jim"
                       age 31
                       occupation ’COMPOSER
                       obname Jim1))
#{JIM1: (PERSON name "Jim" age 31 occupation ...)}
>

The optional obname slot enables you to specify a name for an ob. You can then refer to the ob by name:

> ^Karen1
#{KAREN1: (PERSON name "Karen" age 27...)}
> ^Jim1
#{JIM1: (PERSON name "Jim" age 31 occupation ...)}
>

You can print an ob in its entirety: 

> (po ^Karen1)
(PERSON name "Karen"
        age 27
        occupation ’DOCTOR)
> (po ^Jim1)
(PERSON name "Jim"
        age 31
        occupation ’COMPOSER)
>

You can get the values of particular slots: 

> (ob$get ^Karen1 ’name)
"Karen"
> (ob$get ^Jim1 ’age)
31
> (ob$get ^Jim1 ’occupation)
COMPOSER
>

You can also set the value of a slot: 

> (ob$set ^Jim1 ’age 32)
32
> (po ^Jim1)
(PERSON name "Jim"
        age 32
        occupation ’COMPOSER)
>

Now suppose you want to represent simple world actions, as in Conceptual Dependency (CD) notation



(Schank & Abelson, 1977). First, define a type called ACTION: 

> (ty$fcreate ’ACTION nil ’(actor from to obj))
#{ACTION}
>

Then, define subtypes of ACTION called ATRANS, MTRANS, and PTRANS: 

> (ty$fcreate ’ATRANS ’(ACTION) nil)
#{ATRANS}
> (ty$fcreate ’MTRANS ’(ACTION) nil)
#{MTRANS}
> (ty$fcreate ’PTRANS ’(ACTION) nil)
#{PTRANS}
>

In CD, an ATRANS represents transfer of possession of a physical object from one person to another. For
example, create an ob to represent the action "Jim gives Karen a copy of Ear Magazine": 

> (ty$fcreate ’MAGAZINE nil ’(name))
#{MAGAZINE}
> (ob$fcreate ’(ATRANS actor Jim1
                       from Jim1
                       to Karen1
                       obj (MAGAZINE name "Ear Magazine")
                       obname Atrans1))
#{ATRANS1: (ATRANS actor Jim1 from Jim1...)}
>

An MTRANS represents transfer of mental information from one person to another. For example, create an
ob to represent "Jim tells Peter that he gave Karen a copy of Ear Magazine": 

> (ob$fcreate ’(MTRANS actor Jim1
                       from Jim1
                       to (PERSON name "Peter" age 26 occupation ’MUSICIAN)
                       obj Atrans1
                       obname Mtrans1))
#{MTRANS1: (MTRANS actor Jim1 from Jim1...)}
>

You can interrogate whether an ob is of a given type: 

> (ty$instance? ^Atrans1 ’ACTION)
#T
> (ty$instance? ^Atrans1 ’ATRANS)
#T
> (ty$instance? ^Atrans1 ’MTRANS)
()
> (ty$instance? ^Atrans1 ’PERSON)
()
> (ty$instance? ^Mtrans1 ’MTRANS)
#T
>

As you can see, an ob of type ATRANS is also considered to be of type ACTION, since ATRANS is a subtype
of ACTION. 



Unification and instantiation

AI programs are built out of two basic operations: unification (pattern matching) and instantiation. For
example, create a pattern ob as follows: 

> (lset pattern (ob$fcreate ’(MTRANS actor ?Person1
                                     from ?Person1
                                     to ?Person2
                                     obj ?Anything)))
#{OB.60: (MTRANS actor ?Person1 from ......)}
>

?Person1, ?Person2, and ?Anything are variables. Two obs unify if values for variables can be found
such that substituting the values for those variables in the obs would produce equivalent structures. For
example, unify the above pattern with the previously created ob Mtrans1 as follows: 

> (lset bd (ob$unify pattern ^Mtrans1 *empty-bd*))
(T (ANYTHING #{ATRANS1: (ATRANS actor Jim1 from Jim1...)})
   (PERSON2 #{OB.50: (PERSON name "Peter" age 26...)})
   (PERSON1 #{JIM1: (PERSON name "Jim" age 32 occupation ...)}))
>

The result is a list of the found variable values-called a binding list. 

Instantiation creates a copy of an ob (and embedded obs) in which all variables have been replaced by
their values specified by a given binding list. For example: 

> (lset instan-ob (ob$instantiate pattern bd))
#{OB.61: (MTRANS actor Jim1 from Jim1...)}
> (po instan-ob)
(MTRANS actor Jim1
        from Jim1
        to (PERSON name "Peter"
                   age 26
                   occupation ’MUSICIAN)
        obj Atrans1)
>

Here, you instantiate the pattern with the bindings resulting from the unification of the pattern with the
ob Mtrans1. This results in an ob similar to Mtrans1: 

> (po ^Mtrans1)
(MTRANS actor Jim1
        from Jim1
        to (PERSON name "Peter"
                   age 26
                   occupation ’MUSICIAN)
        obj Atrans1)
>

A simple application: Inferencing

Suppose you wish to build a simple program to generate inferences from CD actions. For example, after
an ATRANS of an object from one person to another, you would like to infer possession of that object by
the other person. 



First, define a type for states and a subtype for possession as follows: 

> (ty$fcreate ’STATE nil nil)
#{STATE}
> (ty$fcreate ’POSS ’(STATE) ’(actor obj))
#{POSS}
>

Next, define a type for inference rules: 

> (ty$fcreate ’INFERENCE nil ’(if then))
#{INFERENCE}
>

An inference rule consists of an if action and a then state. 

Next, create a list of inference rules: 

> (lset *infs*
        (list (ob$fcreate ’(INFERENCE if (ATRANS actor ?Person1
                                                 from ?Person1
                                                 to ?Person2
                                                 obj ?Object)
                                      then (POSS actor ?Person2
                                                 obj ?Object)))))
(#{OB.73: (INFERENCE if (ATRANS actor ......)...)})
>

So far, the list consists of one rule for inferring possession after an ATRANS. 

Now, define a function for generating inferences: 

> (defun forward-inferences (cd)
    (yloop (initial (bd nil) (result nil))
           (yfor inf in *infs*)
           (ydo (if (setq bd (ob$unify (ob$get inf ’if) cd *empty-bd*))
                    (setq result (cons (ob$instantiate (ob$get inf ’then) bd)
                                       result))))
           (yresult result)))
>

In order to generate inferences from a given action CD, the function loops through all inference rules.
Whenever an inference rule is found whose if unifies with the action CD, the then of that rule is
instantiated with the bindings resulting from the unification and added to a list of inferred states. This
list is returned at the end. 

Thus, for example, this function produces the following result when applied to Atrans1: 

> (lset states (forward-inferences ^Atrans1))
(#{OB.79: (POSS actor Karen1 obj (MAGAZINE...))})
> (po (car states))
(POSS actor Karen1
      obj (MAGAZINE name "Ear Magazine"))
>



Summary

The eight most common functions of GATE are: 

1. Create type: 

(ty$fcreate type-name supertypes slots) -> type

2. Create ob: 

(ob$fcreate oblist) -> ob

3. Get slot value: 

(ob$get ob slot) -> value

4. Set slot value: 

(ob$set ob slot value) -> value

5. Print ob: 

(po ob)

6. Unify: 

(ob$unify ob1 ob2 bindings) -> bindings

7. Instantiate: 

(ob$instantiate ob bindings) -> ob

8. Determine if type: 

(ty$instance? ob type-name) -> boolean

Reference manual

This section forms a reference manual on GATE. 

Obs

The basic data structure of GATE is called the ob. Obs are similar to the slot-filler objects of Schank and
Riesbeck (1981), frames (Minsky, 1975), Lisp a-lists (McCarthy et al., 1965), and the structures or
records of traditional programming languages such as Pascal (Wirth, 1971). 

An ob consists of: 

one or more obnames, 
an optional type, 
zero or more pairs, where each pair consists of a slot name and a slot value. 



Obnames and slot names are Lisp atoms. A slot value is either an ob or some other Lisp object (such as a
character string or a function). Several pairs with the same slot name are permitted. Only one ob may
have a given obname. 

The following functions are used to create an ob: 

(ob$create-empty) -> ob 

Create and return a new empty ob. 

(ob$create-named-empty obname) -> ob 

Create and return a new empty ob with the specified obname. 

(ob$fcreate list) -> ob 

Create and return a new ob according to a given list which specifies the type, slot names and
values of the ob. (See the section below on printing and reading obs for the form of this list. See
also the tutorial above for examples.) This function also creates any enclosed obs. 

The following functions deal with obnames: 

(ob$add-name ob obname) -> obname 

Add an obname to a given ob. 

(ob$names ob) -> obnames 

Return a list of the obnames of a given ob. 

(ob$name->ob obname) -> ob or NIL 

Return the ob having the given obname, or NIL if no ob has that name. 

The following functions deal with types: 

(ob$ty ob) -> ty 

Return the type of a given ob. 

The following functions manipulate pairs of an ob: 

(ob$add ob slot-name slot-value) -> slot-value 

Add a pair consisting of the given slot-name and slot-value to a given ob. 

(ob$remove ob slot-name slot-value) 



Remove a pair consisting of the given slot-name and slot-value from a given ob (or signal an error
if there is no such pair). 

(ob$gets ob slot-name) -> slot-values 

Return a (possibly NIL) list of the slot values of those pairs of a given ob whose slot name is the
given slot-name. 

(ob$get ob slot-name) -> slot-value 

Return the slot value of an arbitrary pair of a given ob whose slot name is the given slot name, or
NIL if there are no such pairs. 

(ob$pairs ob) -> list 

Return a (possibly NIL) list of all the pairs of a given ob. 

The following functions are similar to the above functions, except that a path may be specified in order
to traverse a path starting from the top-level ob to reach a pair in an embedded ob: 

(ob$padd ob slot-path slot-value) -> slot-value 

Add a slot-value according to the given slot-name path to a given ob. 

(ob$premove ob slot-path slot-value) 

Remove the pair according to the given slot-name path and slot-value from a given ob (or signal
an error if there is no such pair). 

(ob$pget ob slot-path) -> slot-value 

Return the slot value of an arbitrary pair of a given ob according to the given slot-name path, or
NIL if there are no such pairs. 

Other functions dealing with obs are as follows: 

(ob? obj) -> boolean 

Given an arbitrary Lisp object, return T if it is an ob, otherwise return NIL. 

(ob$copy ob) -> ob 

Return a new ob having the same type and pairs (but not obname) as a given ob. 

Printing and reading obs

The following functions deal with ob printing and reading: 



(ob$print ob stream) 

Print a given ob on a given stream. 

(po ob) 

Print a given ob on the standard output. 

(ob$fread stream) -> ob 

Read and create an ob from a given stream. 

(ob$fcreate list) -> ob 

Read and create an ob according to the given list. 

Obs have textual representations for printing and reading. The textual representation for printing obs is
of the following form: 

(TYPE slot-name1 slot-value1a slot-value1b ...
      slot-name2 slot-value2a slot-value2b ...
      ...)

Rather than displaying each pair separately, all of the slot values of those pairs having the same slot
name are displayed together in a single line (space permitting). Slot values may be obs themselves. In
printing, if the slot value ob has a (non-automatically generated) name, only the name is printed;
otherwise, the full textual representation is recursively printed. Slot values which are Lisp objects other
than numbers and strings (such as atoms, lists, and functions) appear quoted in the ob textual
representation. 

Type names, slot names, and obnames are all represented as Lisp atoms. Although Lisp atoms are
normally printed in uppercase, these ob entities are printed in special cases to distinguish them from
other atoms: types are displayed in uppercase; slot names are displayed in lowercase; obnames are
displayed in a capitalized lowercase. 

For example, consider the following ob: 

(PTRANS actor John1
        from (RESIDENCE obj John1)
        to Store1
        obj John1 Mary1)

The ob is of type PTRANS and consists of 5 pairs. One pair of the ob consists of the slot name actor and
slot value John1. This slot value refers to another ob whose name is John1. The slot value of the pair
whose slot name is from is another ob which does not have a name. The textual representation of this ob
thus appears recursively in the textual representation of the enclosing ob. There are two pairs of the main
ob whose slot name is obj. The slot value of one pair is John1 while the slot value of the other is Mary1.
Both pairs are displayed in a single line. 

The textual representation for reading obs is similar to the representation for printing, with the following



differences: 

Only one slot value is permitted per slot. If you wish to specify several pairs, you must specify
each slot name and value separately. 
The value of the obname slot may be used to indicate the name of the ob. 
An atom slot value refers to an existing ob of that name, while a full textual representation results
in the creation of a new ob. 

Types

Types are organized into a hierarchy. The purpose of types is to enable classification of obs and to
specify their textual representation. 

The following functions manipulate types: 

(ty$fcreate type-name supertype-names slots) -> type 

Create a new type having the given supertypes and slots. 

(ty$instance? ob type-name) -> boolean 

Given an ob, return T if it is an instance of the specified type (directly or indirectly through
inheritance), otherwise return NIL. 

(ty$supertypes type) -> types 

Return the parent types of the given type. 

(ty$subtypes type) -> types 

Return the children types of the given type. 

(ty$supertypes* type) -> types 

Return the improper ancestor types of the given type. 

(ty$subtypes* type) -> types 

Return the improper descendant types of the given type. 

(ty$least-common-supertype type1 type2) -> type 

Return the least common supertype of two types. 

Unification

Unification is a pattern-matching operation performed on two obs. The obs may contain a special kind
of ob called a variable. Two obs unify if values for variables can be found such that substituting the



values for those variables in the obs would produce equivalent structures. For example, if 

(PTRANS actor ?Person
        to ?Location)

is unified with 

(PTRANS actor John1
        to Store1)

the resulting variable binding list is: 

(T (PERSON #{JOHN1: (PERSON)})
   (LOCATION #{STORE1: (STORE)}))

The GATE unification algorithm is based on previous unifiers (Schank & Riesbeck, 1981; Charniak,
Riesbeck, & McDermott, 1980) with appropriate extensions for typed variables and obs, multiple slot
values per slot name, special obs, and cyclic data structures. The following functions deal with
unification: 

(ob$unify ob1 ob2 bd) -> bd or NIL 

Given two obs and a binding list, attempt to unify the two obs. If unification is successful, the
original binding list augmented with new variable values is returned. Otherwise, NIL is returned. 

(ob$unify1 ob1 ob2 bd ignore-slots) -> bd or NIL 

Same as above except the specified slots are ignored in the unification process. 

The structures resulting from substitution do not actually have to be equivalent. Rather, one structure
must be a substructure of the other: one ob unifies with another if each pair in the first ob unifies with a
unique pair in the second ob; however, each pair in the second ob need not have been accounted for. For
example, 

(PTRANS actor ?Person)

will unify with 

(PTRANS actor John1
        to Store1)

but 

(PTRANS actor ?Person
        from ?Location1
        to ?Location2)

will not unify with 

(PTRANS actor John1
        to Store1)

Thus unification in GATE is asymmetrical. 



Binding lists and variables

The following operations on binding lists are provided: 

bd-create -> bd 

Create an empty binding list. 

(bd-bind variable-name value bd) -> bd 

Bind a given variable to a new value returning a new binding list. This is sometimes called
augmenting the binding list with a new binding. 

(bd-lookup variable-name bd) -> value 

Look up the value of the given variable in the binding list. Return NIL if no value is found. 

Variables are obs of the following form: 

(UVAR name name
      unification-type type)

An unbound variable unifies with an ob if the ob is an instance of that variable’s unification type. When
an unbound variable successfully unifies with an ob, that variable is bound to the ob. A bound variable
unifies with an ob if the value of that variable unifies with the ob. Two variables unify if one unification
type is an improper supertype of the other. 

Note that the bd-bind and bd-lookup functions do not take variable obs, but rather their names. To get
the name of a given variable ob, use the function variable-name. 

Variables are not normally represented textually as above, but rather in the following form: 

?name:TYPE

In addition, a short form is available in which the type of the variable is implicitly specified by its name.
The following variables are of type PERSON: 

?Self ?Other ?Person ?Person1 ?Person2 ?Person3 ...

The full representation of ?Self, for example, is: 

(UVAR name Self
      type PERSON)

The following variables are of type PHYS-OBJ: 

?Phys-Obj ?Phys-Obj1 ?Phys-Obj2 ...

The following variables are of type LOCATION: 



?Location ?Location1 ?Location2 ... 

Other variables follow a similar convention; this works for any defined type. 

Variables which unify with anything (including obs and Lisp objects) are specified by: 

?name:NOTYPE

Unnamed variables (which do not have values) are specified by the following forms: 

?:TYPE ??

Special obs

In addition to variables, a set of special obs provide an extended syntax and semantics for unification.
These features were inspired by the pattern matcher of the DIRECTOR language (Kahn, 1978). We have
extended the constructs to full unification-that is, the constructs may now be used in both arguments to
the matcher, with a well-defined semantics. 

The special obs are as follows: 

(UAND obj obj1 obj2 ...)

A UAND ob unifies with another object if all of obj1 obj2 ... unify with that object. Bindings are
augmented in a cumulative manner from each unification. 

(UOR obj obj1 obj2 ...)

A UOR ob unifies with another object if any of obj1 obj2 ... unifies with that object. Bindings are
augmented by the first successful unification. 

(UNOT obj obj)

A UNOT ob unifies with another object if obj does not unify with that object. Bindings are not augmented.

(UPROC proc proc)

A UPROC ob unifies with another object if proc (a Lisp lambda expression) applied to that object returns
a non-NIL value. Bindings are not augmented. 

What if both arguments to unification are special obs? Although this case may appear to be accounted
for in the above definitions through appropriate recursion, there are certain subtleties which merit
examination. We consider each possibility in turn. 

If both obs are of type UAND, then every element of one ob must unify successfully with every element of
the other-that is, unification succeeds if every pair in the cross product of the elements of the two obs
unifies successfully. Each unification is performed in the context of bindings which have been
accumulated in previous unifications. For example, if the special ob 

(UAND obj obj1 obj2)



is unified with 

(UAND obj obj3 obj4)

then obj1 will first be unified with obj3. If this unification is successful, the resulting bindings are
employed in the unification of obj1 with obj4. If this unification is successful, the resulting bindings are
then employed in the unification of obj2 with obj3. The resulting bindings are similarly employed in the
final unification of obj2 with obj4. The final bindings are the result of the unification of the two UANDs.
If at any point a unification fails, then the result of the unification of the two UANDs is NIL. 

If both obs are of type UOR, then some element of one ob must unify successfully with some element of
the other-that is, unification succeeds if any pair in the cross product of the elements of the two obs
unifies successfully. The bindings which result from such a unification are simply the bindings passed to
the algorithm augmented with the bindings resulting from a single unification (of one of the pairs in the
cross product). 

If both obs are of type UNOT, then unification succeeds if the (one and only) element of one ob unifies
with the element of the other. However, no new bindings result in the process. Thus in this case a simple
yes-no result is given, without specification of the bindings necessary to unify the elements of the two
obs. 

If both obs are of type UPROC, one function is simply invoked on the other (and unification is successful
if the function returns a non-NIL value)-it is assumed that the functions are able to handle such a case. It
is sometimes safe for such functions simply to return T if invoked on a function. If it is desired for such a
case to be undefined, functions may be written to produce error messages if invoked on another
function. 

What, now, if the two special obs are of different type? How do different special obs interact with one
another? If the first ob is of type UOR and the second is of type UAND, then unification is successful if
there is an element of the first ob which unifies with every element of the second-that is, unification
succeeds if any row of the cross product of the elements of the two obs consists of successful
unifications. The bindings which result from such a unification are accumulated from that row. 

If the first ob is of type UAND and the second is of type UOR (i.e., the situation is the other way around),
unification is as above with the first and second obs switched (in recursive unification of components,
however, it is necessary to switch the order of arguments once again so that the appropriate asymmetric
behavior with respect to the first and second arguments is retained). 

If the first ob is of type UOR and the second is of type UNOT, then unification is successful if there is an
element of the first ob which does not unify with the (one and only) element of the second-that is,
unification succeeds if any pair of the cross product of the elements of the two obs (which in this case is
the cross product of a many-element vector with a one-element vector) consists of an unsuccessful
unification. No new bindings result from such a unification. 

If the first ob is of type UNOT and the second is of type UOR, the obs are switched and the above algorithm
is employed (with appropriate switching for recursive unifications). 

If the first ob is of type UAND and the second is of type UNOT, then unification is successful if no element
of the first ob unifies with the (one and only) element of the second-that is, unification succeeds if every



pair of the cross product of the elements of the two obs (again a cross product of a many-element vector
with a one-element vector) consists of an unsuccessful unification. No new bindings result from such a
unification. 

If the first ob is of type UNOT and the second is of type UAND, the obs are switched and the above
algorithm is employed with appropriate switching. 

If the first ob is of type UAND and the second is of type UPROC, then unification is successful if the
function of the second ob returns a non-NIL value for every element of the first ob. 

If the first ob is of type UOR and the second is of type UPROC, then unification is successful if the function
of the second ob returns a non-NIL value for any element of the first ob. 

If the first ob is of type UNOT and the second is of type UPROC, then unification is successful if the
function of the second ob returns NIL when applied to the (single) element of the first ob. In each case,
no new bindings result from the unification and the other orders are handled in the usual way (except
that no recursive switching is required since PROC does not result in recursive unifications). 

Note that UOR and multiple slot values per slot name introduce the potential for more than one solution
(set of bindings) for a given unification. However, only the first solution that is found is returned in the
current GATE unifier. 

Instantiation

Instantiation takes an ob and a binding list, and returns a copy of the ob in which any variables have
been replaced by their values. Unbound variables remain as variables in the copy. The ob may contain
other obs-the complete structure with ob as root is copied, with any cycles preserved in the copy. The
instantiation function is as follows: 

(ob$instantiate ob bd) -> ob 

Instantiate a given ob with the given binding list. 

For example, if the ob: 

(PTRANS actor ?Person
        to ?Location)

is instantiated using the binding list: 

(T (PERSON #{JOHN1: (PERSON)})
   (LOCATION #{STORE1: (STORE)}))

the returned ob is: 

(PTRANS actor John1
        to Store1)

Unification composed with instantiation is almost the identity transformation-if one ob unifies
successfully with another, and then the first ob is instantiated with the bindings from the unification, the



result will be a copy of the second ob (however with any pairs not referred to in the first ob omitted). 

Variabilization

Another pseudo-inverse for instantiation is variabilization. Variabilization takes an ob and a predicate
and returns a complete copy of the ob (with cycles preserved) in which any enclosed obs answering
non-NIL to the predicate have been replaced by unique variables. Multiple occurrences of the same ob
will become the same variable. Variabilization can be used to perform simple inductive generalization
from single examples. The variabilization function is as follows: 

(ob$varize ob predicate) -> ob 

Variabilize a given ob according to the given predicate. 

For example, given: 

(PTRANS actor John1
        to Store1
        obj John1 Mary1)

and an appropriate predicate, variabilization returns: 

(PTRANS actor ?Person1
        to Location1
        obj ?Person1 ?Person2)

Contexts

A context consists of a collection of obs called facts which specify the state of a possible world. Each
fact which is in a given context is said to be true in that context. Any fact which is not in a given context
is said to be not true in that context. GATE contexts are similar to other context mechanisms such as
OMEGA viewpoints (Barber, 1983) and AP3 contexts (Goldman, 1982), all of which derive from the
original contexts of QA4 (Rulifson, Derksen, & Waldinger, 1972). 

The following functions manipulate contexts: 

(cx$create) -> cx 

Create a new context. Initially, no facts are true in the new context. 

(cx$assert cx fact) 

Assert a given fact into a given context. The fact becomes true in the context (whether or not it
was already true). 

(cx$retract cx fact) 

Retract a given fact from a given context. After this operation, the fact is not true in the context
(whether or not it was already not true). 



(cx$true? cx fact) -> boolean 

Return T if the given fact is true in the given context, otherwise return NIL. 

(cx$retrieve cx ob) -> bds 

Retrieve all the true facts in the given context which unify with the given pattern ob. A list of
binding lists is returned, in which the first element of each binding list is the retrieved fact.
(Hashing on the types of facts is employed to improve the efficiency of this function.) 

(cx$retrieve-bd cx ob bd) -> bds 

Same as above, except unification proceeds starting from the given bindings list. 

(cx$sprout cx) -> cx 

Sprout a new context which is a child of the given parent context. Initially, each fact which is true
in the parent context is true in the new child context. However, subsequent asserts in the child
context may add new facts to this context just as subsequent retract operations may remove facts.
(In the current GATE asserts and retracts do not affect the truth status of facts in descendant
contexts. That is, there is no dynamic inheritance of the truth status of facts.) The new context is
called a child of the old context; the old context is called the parent of the new context; we also
speak of ancestor and descendant contexts. 

(cx$children cx) -> cxs 

Return the children of a given context. 

(cx$parent cx) -> cx 

Return the parent of a given context. 

(cx$ancestors cx) -> cxs 

Return the proper ancestors of a given context. 

(cx$descendants cx) -> cxs 

Return the proper descendants of a given context. 

For example, suppose that the following two objects are asserted into a newly created context: 

(PTRANS actor John1
        to Store1)

(PTRANS actor Mary1
        to Store1)

A retrieval from this context using the pattern: 



(PTRANS actor ?Person
        to Store1)

will return the following binding lists: 

(#{OB.245: (PTRANS actor John1 ...)} (PERSON #{JOHN1: (PERSON)}))

and 

(#{OB.249: (PTRANS actor Mary1 ...)} (PERSON #{MARY1: (PERSON)}))

Theorem prover

A Prolog-like theorem prover (Clocksin & Mellish, 1981) is available with GATE. The following
functions are provided: 

(ob$prove1 ob bd max-number prules pfacts-cx ignore-slots) -> bds 

Prove the given ob, possibly containing variables, with respect to the given binding list, using the
given list of proof rules, using the facts contained in a context, and ignoring the given slot names.
Generate at most the given number of solutions. Return a list of augmented binding lists, or NIL if
the proof fails. If the proof fails, a list of unproved facts is returned in the global variable
*PROOF-FAILURES*. 

(ob$prove ob bd max-number) -> cxs 

Same as above, except use the global variables *PRULES* and *PFACTS* for the proof rules and
facts. Do not ignore any slots. 

Proof rules are of type PRULE. Each proof rule contains a goal slot and a subgoal slot. The goal slot
contains a goal ob pattern to be proved. The subgoal slot specifies how that goal may be proved: 

if the subgoal slot contains a ROR ob, any of the obj values of that ob may (recursively) be
proved; 
if the subgoal slot contains a RAND ob, all of the obj values of that ob must (recursively) be
proved; 
if the subgoal slot contains a RNOT ob, the obj value of that ob must (recursively) not be proved; 
otherwise the subgoal slot must (recursively) be proved. 

Here is a sample proof rule: 

(PRULE subgoal (ROR obj (PTRANS actor ?Person
                                to ?Location)
                        (LIVES-IN actor ?Person
                                  loc ?Location))
       goal (PROX actor ?Person
                  loc ?Location))

Facts are arbitrary obs. A goal is proved whenever it unifies with a fact. Here is a sample fact: 

(PTRANS actor John1



        to Store1)

The following goal can be proved using the above proof rule and fact: 

(PROX actor ?Person
      loc Store1)

The following list of binding lists would be returned: 

((T (PERSON #{JOHN1: (PERSON)})))

Other functions

There are many useful functions not documented in this manual. To find out about them, you must look
at the source code. Also, understanding exactly how certain functions work may require examination of
the source code-especially for unification, instantiation, and variabilization. 

History and acknowledgements

GATE was developed at the UCLA artificial intelligence laboratory. The initial inspiration came from a
node and link graphics package that Brigham Bell developed at USC/ISI on Symbolics 3600s. In the
summer of 1984, I ported this package to the T dialect of Scheme on Apollo workstations, but it ran so
slowly it had to be scrapped. Then Perry Busalacchi rewrote the node and link graphics in C, making the
first version of GATE possible in October 1984. Seth Goldman wrote routines to make use of Apollo
graphics and, along with Eric Preyss, created the T flavors package in which the first version of GATE
(Mueller & Zernik, 1984) was implemented. The first version contained a demon programming
language by Uri Zernik, but this has since been abandoned. In January 1985, the full unifier was written,
replacing the earlier pattern matcher. The context mechanism was added in June 1985, partially in
response to Inference Corporation’s ART package. The current ob printer and reader were added in
November 1985. In January 1986, special unification forms were converted to obs from Lisp objects. In
September 1986, GATE was rewritten to be independent of flavors, and its speed increased
dramatically. In February 1987, a theorem prover was added. In May 1999, GATE was ported to
Common Lisp from T. 

GATE was influenced by previous programs created by members of the AIRHEADS group at UCLA,
such as Charlie Dolan’s T-CD**2 package. It was strongly influenced by feedback from its original
users, Uri Zernik, Sergio Alvarado, and Ric Feifer. 

Comments, questions, and improvements should be directed to erik@panix.com. 
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