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ABSTRACT 
Wireless Sensor Networks (WSNs) consist of numerous small 
sensors that are wirelessly connected to each other. In these 
networks, time synchronization is an important issue. Correct 
time-stamping of events is crucial for data processing. 

Time synchronization protocols that are used for 
synchronization in traditional wired networks are not applicable 
in WSNS. This paper provides a survey of a number of 
synchronization protocols that have been specified for use in 
WSNs. Moreover, a comparison of these protocols is provided 
in order to identify the most efficient one.  
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1. INTRODUCTION 
Recently, small, low power sensors with embedded processors 
and radios have become available [EST02]. Moreover, a wide 
range of application areas, including military, environment, 
health, home and other commercial areas [AKY02] has been 
identified that could very much profit from using a network of 
such sensors. As a result of this, wireless sensor networks 
(WSNs) have become an important and growing research area. 
A WSN consists of numerous cooperating sensors, connected to 
each other in a wireless network.  
In WSNs, time synchronization is an important issue. Precise 
and synchronized time is needed for several reasons. For 
example, an exact and synchronized clock is necessary to 
determine the right chronological order of events. A lack of 
synchronization may lead to incorrect time-stamping of 
readings. As a base station collects the sensor data, it may not 
be reordered right [DAI04]. Further, accurate time is needed for 
applications as time-of-flight measurements, low power TDMA 
radio schedules and duplicate detection recognition [ELS03]. 
These many applications make time synchronization an 
important issue in WSN research. In the last few years, 
numerous time synchronization protocols and methods have 
been proposed based on different approaches. In this paper, a 
comparison between these protocols and methods is provided, 
in order to find the most efficient one. 
The organisation of the remainder of this paper is as follows. In 
section 2 an overview of the different aspects and 

characteristics of WSNs is given. Section 3 gives an overview 
of existing time synchronization protocols in traditional 
networks and discusses why these protocols are not suitable for 
WSNs. An overview of proposed time synchronization methods 
for WSNs is given in section 4. These methods are compared to 
each other in section 5. Finally, in section 6, conclusions and 
suggestions for future work are given. 

2. WIRELESS SENSOR NETWORKS 
This chapter gives an overview of the different aspects and 
characteristics of WSNs.  

2.1 Sensors 
A WSN consists of a number of sensors, ranging from a few to 
thousands of sensors that are wirelessly connected to each other 
or to a base station. For wireless communication, a number of 
communication technologies can be used. Examples of such 
technologies are radio, infrared light, laser and inductive and 
capacitive coupling. Radio communication is currently the most 
common, since no line of sight is required and communication 
over medium ranges is possible with acceptable power 
consumption [ROM04]. In networks where line-of-sight is 
possible, infrared or laser may be used to achieve an even lower 
power consumption. 
Many different sensors exist, which makes it possible to do a 
wide variety of different measurements. A few examples from a 
long list are the ability to sense light, temperature, humidity, 
acceleration, chemical vapors, gas concentrations and noise 
levels [MAI02]. 
Depending on the application, the size of a single sensor may 
vary from the size of a shoebox down to a few millimeters. 
Also, the cost of a single device may range from a few hundred 
Euros for networks of few powerful nodes, to just a few cents 
for networks of many simple nodes [ROM04]. These devices 
are very limited in the amount of energy they can store or 
harvest from their environment. Therefore, energy efficiency is 
a very important issue in WSN development. Manually 
replacing batteries or doing maintenance on sensors is 
undesired and often also impossible to perform. Most sensors 
thus require untethered (wireless), autonomous operation.  

2.2 Dynamic operation 
In contrast to traditional wired networks, most WSNs are highly 
dynamic. The system must continuously adapt to changes in the 
environment. The sensors may be deployed randomly, for 
example by dropping them from an aircraft into an area of 
interest. Over time, sensors may fail and batteries get depleted. 
The WSN must adept to these changes to prevent network 
failure [HIL03]. 
Mobility and scalability are important design principles. A 
sensor or an entire WSN may physically be moved to another 
area or be combined with another WSN. In this type of 
situations WSN self-configuration (i.e., auto-configuration) is 
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often required because static configuration is difficult to be 
performed.  

2.3 Network topology 
The network topology of WSNs may vary. Traditional wired 
networks are connected to each other through switches and 
routers. As a result, some sort of infrastructure hierarchy is 
always present. In WSNs, such an infrastructure hierarchy is 
absent.  
The most important factor is the diameter of a network, which 
is defined as the maximum number of hops between any two 
end-nodes in the network [ROM04]. The diameter depends on 
the size of the network, but also on the communication range of 
the nodes. 
The simplest form is a single-hop network, where every node 
can directly communicate with every other node in the network. 
This is only possible in small networks or when nodes have a 
wide communication range. A more common topology is a 
multi-hop ad hoc network topology [MEG01], in which data 
packets are forwarded via multiple nodes in order to reach the 
destination. 

2.4 Operating system 
The operating system that runs on most sensors is the TinyOS 
[GAY05]. This operation system is specially designed for 
WSNs. It was built with an emphasis on reacting to external 
events and extremely low power operation. Examples of other 
operating systems that can be run on wireless sensor nodes are 
an embedded version of Linux operating system [MAI02] and a 
multithreaded µ-OS operating system [AKY02]. 

3. TIME SYNCHRONIZATION IN 
TRADITIONAL NETWORKS 
Network time synchronization is not a new research topic, 
though it is in the area of WSNs. Much research has been done 
on how to transfer time information in order to synchronize 
clocks in a network. 
In this chapter, an overview of time synchronization protocols 
in traditional networks is given. Furthermore, the differences in 
time synchronization between traditional networks and WSNs 
are explained. 

3.1 Existing time synchronization 
mechanisms in traditional wireless/wired 
networks 
The most common time synchronization protocol that is used in 
traditional networks is the Network Time Protocol (NTP) 
[MIL92]. A client using NTP connects to a server to 
synchronize time. The time given by the server is corrected 
with half the measured round trip time. This results in a 
synchronization with an error of at most a few milliseconds. 
NTP is a two-way time synchronization method, in which a 
timestamp is sent in two directions. To improve the accuracy, 
there is also a method available that sends double packets 
[GOT02]. 
The Simple Network Time Protocol (SNTP) [MIL96] is a 
simplified version of the NTP. This protocol allows operation in 
a stateless remote-procedure call (RPC) mode. It is less 
complex then the full NTP, which makes it easier to implement, 
but decreases accuracy. SNTP is therefore useful in systems 
where the performance of a full NTP implementation is not 
significant. 

Where NTP and SNTP are based on a hierarchical structure, the 
Classless Time Protocol (CTP) [GUR03] uses a peer-to-peer 
approach. Using this protocol, a node sends and receives 
packets only to and from its direct neighbors. The CTP uses the 
same format and number of network messages as the NTP. 
According to [GUR03], the performance of the CTP is better 
than the performance of the NTP without an increase of 
complexity. 
The Global Positioning System (GPS) can also be used for time 
synchronization [BER00, JUA02]. The accuracy can be high, 
with an error of less than a millisecond. This is however hardly 
used in computer networks. GPS requires a clear view on the 
sky for continuous reception of multiple satellites, which is hard 
to achieve indoors. Also, specific hardware is required to 
receive the GPS signals which makes GPS an expensive 
solution for networks with many nodes. 

3.2 Differences between time 
synchronization mechanisms in traditional 
networks and WSNs 
It would be easy if these existing time synchronization 
protocols could be directly used in WSNs. This is however not 
possible. Many requirements on which these protocols are 
based do not hold for WSNs. 

3.2.1 Energy awareness 
One of the most important issues in WSNs is energy efficiency. 
For time synchronization protocols in traditional wired 
networks, using the CPU power listening to the signaling 
messages from the network and supporting occasional 
transmissions have a negligible impact on the operation of a 
communicating node. Traditional time synchronization 
protocols are based on the following assumptions. NTP assumes 
that the CPU is always available and it listens to the network all 
the time. These assumptions do not hold for WSNs [POT00]. 
WSN nodes often have slow CPU's that are operating most of 
the time in an idle power mode. Even though processing power 
costs decrease with time, there are limits that keep it relatively 
expensive for nodes in a WSN. Listening to, receiving from and 
sending to the network also cost a significant amount of energy, 
compared to the overall system budget. This could very difficult 
be supported by wireless sensor nodes that are typically using 
batteries, which have a limited energy lifetime and power and 
are difficult to be replaced.  

3.2.2 Ad hoc network topology 
Most time synchronization protocols are based on a hierarchical 
network infrastructure. The servers on the highest level, often 
referred to as stratum 1 servers, synchronize with each other 
using technologies as GPS. Nodes in these hierarchical 
networks will usually have a stratum 1 server only a few hops 
away. In WSNs on the other hand, a hierarchical infrastructure 
is usually absent. Even if we can create such a hierarchy, most 
nodes will be far away from it. Nodes that are far away from the 
stratum 1 server will be poorly synchronized. In WSNs, this is 
especially a bad situation, since nodes that are close to each 
other often require the most precise synchronization [ELS02]. 
This is illustrated in figure 1. Nodes A, B and C are far away 
from the stratum 1 server, but close to each other. In a scheme 
as NTP, C will choose either A or B as its synchronization 
source. The synchronization error with the opposite neighbor 
will be large. This is caused by the fact that the path to the 
stratum 1 server is dependent on the synchronization source that 
is chosen. If C synchronizes with A, the error with B will be 
large; if it synchronizes with B, the error with A will be large. 



 

 
Figure 1. Nodes that are far away from the stratum 1 server 
will be poorly synchronized, which is especially a bad 
situation in WSNs. 
  
Solving this problem by creating many stratum 1 servers within 
a WSN is not an option. Equipping nodes with GPS receivers is 
difficult, since it is expensive in energy consumption as well as 
monetary and it requires a line of sight to the GPS satellites. 

3.2.3 Dynamic infrastructure 
Traditional networks are based on a static infrastructure. For 
time synchronization, nodes are manually configured to connect 
to certain time synchronization servers. Although it is possible 
to use statistical information to decide which servers to use, 
nodes are still dependent on their initial configuration. Because 
of the highly dynamic nature of WSNs, such a static 
configuration is not possible. Moreover, the need for unattended 
operation makes a manual configuration of individual nodes 
highly undesirable. 

3.2.4 One-way synchronization 
Most existing time synchronization protocols use two-way 
methods, meaning that information is sent in two directions. 
Ping [PIN03] argues that two-way methods are not suitable in 
WSNs. If the path between the node and the time 
synchronization server is reciprocal or symmetric, the one-way 
delay can be estimated as half the round-trip time. In WSNs, 
this path is often not reciprocal, which makes it difficult to 
estimate the delay. One-way methods for time synchronization 
are therefore better candidates for WSNs. 

3.2.5 Tunable accuracy 
Time synchronization protocols in traditional networks are 
designed to achieve the highest accuracy possible. The higher 
the required accuracy, the higher the resource requirements. In 
WSNs, it may be useful to make a trade-off between accuracy 
and resource requirements [TUL04]. This way, a time 
synchronization protocol may use less energy or use a less 
advanced CPU when high accuracy is not required. 

4. TIME SYNCHRONIZATION 
METHODS FOR WSNS 
In the last few years, numerous time synchronization protocols 
for WSNs that are using different approaches have been 
proposed. A number of these protocols are summarized in this 
chapter. 

4.1 Reference Broadcast Synchronization 
Reference Broadcast Synchronization (RBS) [EGE02, ELS03] 
is a time synchronization protocol in which nodes send 

reference beacons to their neighbors, by making use of the 
broadcast possibility of the network. These beacons do not 
contain a timestamp. Receivers use the arrival time of these 
beacons as points of reference for comparing their clocks. A 
beacon can be sent by any node in the network, thus no special 
nodes are needed. 
The simplest form of RBS is executed in three steps: 

1. A node broadcasts a reference beacon. 
2. Each node that receives the beacon, records its arrival 

time according to the node's local clock. 
3. The nodes exchange their observations. Using this 

information, each node can compute its offset to any 
other node. 

Using this protocol, a relative timescale can be formed. It is 
also possible to synchronize with an external timescale. For 
example, consider a GPS receiver connected to one of the nodes 
in the network. This GPS node is treated exactly as other nodes 
in the network. The offset from any node to the GPS node can 
then be used to calculate the absolute time. 
The description of RBS given so far assumes that the network is 
fully connected, which means that a broadcasted beacon is 
received by all nodes. In reality, this will hardly ever be the 
case. Figure 2 explains how this problem is handled. Nodes a 
and b send out beacons that create neighborhoods, i.e., groups 
of nodes that are in the transmission range of a single beacon 
node. Node a has four other nodes in its neighborhood. Node 4 
receives signals from both a and b, and can act as a "gateway" 
to relate nodes in each neighborhood to each other. 

 
Figure 2. A simple multihop network. Nodes a and b send 
beacons; node 4 acts as a "gateway". 
 
To illustrate how this works, imagine we would like to relate 
the times of two events that happen in the network of figure 2. 
Node 1 observes event E1 2 seconds after hearing the beacon 
signal Ba (E1 = Ba + 2). Node 6 observes event E6 9 seconds 
after hearing beacon signal Bb (E6 = Bb + 9). Node 4 has heard 
beacon signal Ba 5 second prior to Bb (Ba + 5 = Bb). Given these 
constraints, we can easily calculate the time that has passed 
between E1 and E6: 
 E1 = Ba + 2 
 E6 = Bb + 9 
 Ba + 5 = Bb 
→  E1 + 12 = E6 
Event E6 has thus occurred 12 seconds after the occurrence of 
event E1. 
The precision can be improved by sending more than one 
reference beacon. The offset between two nodes is then 
computed as the average of the offsets of each single node. 
Clock skew, caused by the fact that clocks never run at exactly 
the same rate, can also be corrected. This clock skew can be 
estimated from the time that has passed between hearing 
multiple reference beacons. 



4.2 Probabilistic extension to RBS 
Guarantee can not be provided when delays can be unbounded 
or messages can get lost. This may be a problem when RBS is 
implemented. PalChaudhuri et al. [PAL04] therefore present a 
probabilistic extension to RBS. This extension is based on the 
possibility of RBS to send multiple beacon messages to 
improve accuracy. 
For this protocol we need to specify the maximum 
synchronization error and the confidence probability. The 
minimum number of messages and the synchronization interval 
are then derived from this specification. This is possible, 
because the error among receivers has a normal distribution. 
The following steps are taken to synchronize a broadcast 
neighborhood: 

1. A sender broadcasts n reference beacons to its 
neighbors at fixed intervals. 

2. Each node that receives the beacons, records the 
arrival times of each beacon according to the node's 
local clock. This data is plotted and a line is derived 
from it. The slope of this line approximates the 
relative clock skew between sender and receiver. 

3. All receivers send their graph back to the sender. 
4. The sender combines all graphs and broadcasts a 

message containing its relative clock skew to all the 
receivers. 

5. Every receiver can now calculate its own clock skew 
and clock offset relative to all other nodes in the 
neighborhood. 

For multihop networks, the protocol is also extended. RBS as 
described in section 4.1 assumes that there is always a 
"gateway" node that receives beacons from both neighborhoods 
to link them together. In this extension, it is not necessary to 
make such an assumption. Synchronization outside the 
neighborhood of a sender is handled by making nodes senders 
themselves once they get synchronized. This may cause a chain 
reaction and flood the network with synchronization messages. 
To avoid this, a sender will only broadcast a beacon when a 
synchronization request is made by a receiver in its 
neighborhood. 

4.3 Timing-sync Protocol for Sensor 
Networks 
The Timing-syncs Protocol for Sensor Networks (TPSN) 
[GAN03] synchronizes time in a sensor network by first 
creating a hierarchical structure and then synchronizing nodes 
along this structure. In this way, a global timescale is 
established throughout the network. 
A hierarchical topology is created by assigning a level to every 
node in the network. Only one node is assigned level 0, which 
will be the master node. Every other node at level i can 
communicate with at least one other node at level i - 1.  The 
creation of this hierarchical topology is called the level 
discovery phase, and occurs when the network is deployed. 
This phase is initiated by the level 0 node, by broadcasting a 
level_discovery packet, containing the level and identity of the 
sender. Every node that receives this packet, assigns itself a 
level one greater than the level they received. After this, they 
broadcast a new level_discovery packet which contains their 
own level and identity. Eventually, all connected nodes will 
have a level assigned. To prevent network flooding, a node 
neglects all level_discovery packets once it has a level assigned. 

It may be possible that a node does not receive a 
level_discovery packet. When a node has not been assigned a 
level after a certain period, it timeouts and broadcasts a 
level_request message. Nodes that receive this level_request 
message, reply to this by sending their own level. 
 

 
Figure 3. Pair wise synchronization between A and B. 
 
When a hierarchical structure is established, the 
synchronization phase can be started. In this phase, pair-wise 
synchronization is performed along the edges of the structure. 
This pair-wise synchronization works as shown in figure 3. 
Here, node A synchronizes with node B. T1 and T4 represent 
time as measured by node A, T2 and T4 represent time as 
measured by node B. 

1. At T1, node A sends a synchronization_pulse to node 
B. 

2. Node B receives this packet at T2 and sends an 
acknowledgement packet back to node A at T3, 
containing T1, T2, and T3. 

3. Node A can now calculate the clock skew using the 
following formula: 

2
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=∆  

The synchronization phase is initiated when the level 0 node 
broadcasts a time-sync packet. When the level 1 nodes receive 
this packet, they will wait for some random time before starting 
pair-wise synchronization with the level 0 node. This 
randomization is to avoid congestions. The nodes on level 2 
will hear this message exchange. After a random delay they 
synchronize with the level 1 node. This way the 
synchronization works down the hierarchy until all nodes have 
been synchronized. 
Due to the dynamic nature of wireless sensor networks, it may 
happen that a situation occurs where a node at level i can not 
communicate to a node at level i - 1. In this case, a node will 
not receive an acknowledgement back when it sends a 
synchronization_pulse. This node can then broadcast a 
level_request message. Assuming that the node is still 
connected to the network, it will be assigned a new level. If this 
happens at level 1, it means that the single level 0 node can no 
longer be reached. The level 1 nodes will now run a leader 
election algorithm to determine the new level 0 node. 

4.4 Time-Diffusion Synchronization 
Protocol 
The Time-Diffusion Synchronization Protocol (TDP) [SU05] is 
a protocol that allows synchronization of a whole sensor 
network. Initially, an election protocol is run to select a set of 
master nodes. These masters then send a broadcast message, 
containing their local time. All receivers send back a message, 
allowing the masters to calculate the round-trip times as in 
Figure 3. The average of these round-trip times is used to 



estimate the one-way delay between the master and its 
neighboring nodes. 
The masters now broadcast the one-way delay time and the 
standard deviation. The receiving nodes store this information. 
Then, they run the election protocol and a number of them 
become masters themselves. The average delay time and 
standard deviations are accumulated along the path. This 
procedure is repeated until a number of hops from the initial 
masters is reached. This number depends on the implementation 
of the protocol and can differ per network. 
Finally, all nodes have received the total delay time and 
standard deviation from one or more masters. Using these 
values, every node calculates a new time value and adjusts its 
clock. 
After all nodes have updated their clocks, new masters are 
selected and the procedure is started from the beginning. 
Running this procedure multiple times will allow the nodes to 
converge to an equilibrium time. The clock differences between 
neighboring nodes will be small. 

4.5 TSync 
TSync [DAI04] is a bidirectional time synchronization service 
that offers both a push mechanism for synchronizing the whole 
network as well as a pull mechanism for on-demand 
synchronization of a single node. 
This protocol uses the ability of node radios to communicate 
over multiple channels for frequency diversity. By doing this, it 
is possible to reduce packet collisions and prevent jamming. All 
time-critical packets are sent through a dedicated channel, 
called the clock channel. 

4.5.1 Push: Hierarchy Referencing Time 
Synchronization Protocol 
The Hierarchy Referencing Time Synchronization Protocol 
(HRTS) can synchronize a whole network. We assume there is 
a master node or base station that starts the synchronization 
procedure. The synchronization between two nodes works as 
shown in Figure 3. The following steps are executed. 

1. The master node (A) broadcasts a sync_begin 
message containing its local time T1 and the name of 
one of the receivers, node B in this example. 

2. All receivers record the time T2' that this message was 
received. Only the node that was specified by the 
master (node B in this example), sends a message 
over the clock channel back to the master, containing 
timestamps T2 and T3. 

3. The master node now knows the values of T1, T2, T3 
and T4. It calculates ∆ and broadcasts a message 
containing T2 and ∆. 

4. All nodes now compare the value of T2 with their 
local value T2' that was recorded in step 2. They can 
calculate the offset δ between their local clock and the 
clock of node B as: 

'22 TT −=δ  

The clock is now corrected as: 
δ+∆+= timelocalT _  

5. The synchronized nodes now become masters 
themselves and broadcast a sync_begin messages to 
synchronize more distant nodes. 

As the synchronization ripple is going through the network, a 
hierarchy is constructed. Each node is assigned a level based on 

its distance to the master node, as in the TPSN protocol. This 
level is used by nodes to avoid being synchronized with a less 
accurate source. Once a node is synchronized and has been 
assigned a level, it will ignore sync_begin messages from nodes 
with a higher level number. This way, it is possible to use 
multiple master nodes. 
In step 1, we assume that the master node knows its neighbors, 
since the name of one of the neighbors is specified in the 
sync_begin message. It may be necessary to run a neighbor 
discovery procedure in advance. 

4.5.2 Pull: Individual-based Time Request Protocol 
A situation may occur where a single node needs 
synchronization, but a full network synchronization is 
unnecessary. In these cases the Individual-based Time Request 
Protocol (ITR) may be used. 

1. When a node n1 needs to be synchronized, it sends a 
query to its parent in the hierarchy. The request is 
forwarded until it reaches a master node.  

2. The path to the master node is now known, and all 
nodes along the path switch to the clock channel. 

3. The node n1 now sends the actual synchronization 
request at the clock channel which is forwarded to the 
master, also at the clock channel. 

4. The master now sends the time back to node n1, again 
at the clock channel. Upon receiving the time, n1 can 
adjust its clock. 

4.6 Lightweight Tree-based Synchronization 
The Lightweight Tree-based Synchronization protocol (LTS) 
[GRE03] also consists of a push mechanism and a pull 
mechanism. 

4.6.1 Push mechanism 
The push mechanism and the TPSN are very much alike. In the 
first phase, a tree hierarchy is constructed. In the second phase, 
nodes synchronize to their parents by means of pair wise 
synchronization (figure 3). An algorithm is given to calculate 
the minimum synchronization frequency that is needed to 
achieve a specified precision. 

4.6.2 Pull mechanism 
This mechanism uses a tree hierarchy in the network, though it 
does assume that there are one or more master nodes to 
synchronize with. When a node n determines that it needs to be 
synchronized, it sends a synchronization request to a master 
node. The routing protocol for this procedure is not specified. In 
order for n to synchronize with a master node, all nodes on the 
path must be synchronized using pair wise synchronization. 
There are a few enhancements possible when using this 
mechanism. When a node needs synchronization, it can first 
check its neighbors for pending synchronization requests. 
Another possible enhancement is path diversification. When a 
node n requests synchronization, all nodes on the path to the 
master node are synchronized as well. Choosing a path along 
nodes that will otherwise soon need synchronization for 
themselves can prevent extra synchronizations in the near 
future. 



5. COMPARISON BETWEEN TIME 
SYNCHRONIZATION METHODS FOR 
WSNS 
The methods that are listed in chapter 4 will be compared here. 
In order to do this, some criteria are given first.  

5.1 Accuracy 
The accuracy of a synchronization protocol is one of the most 
important criteria. The higher the accuracy of a protocol, the 
more precise the clocks in a WSN will be synchronized. Delays 
in message delivery lead to synchronization errors. There are 
four sources defined that cause these errors [EGE02, GRE03, 
GAN03, MAR04]. 

• Send time. This is the time it takes an application to 
send a network message. This includes the execution 
of system calls and access time to the network 
interface. 

• Access time. When a network interface of a node is 
ready to send a message, it must wait for access to the 
transmit channel before actually sending the message. 
This delay depends on the current network load. 

• Transmission time. The time it takes for the sender 
to send the message. This time depends on the speed 
of the radio. 

• Propagation time. This is the time it takes the radio 
signal to travel through the air from the sender to the 
receiver. This depends on the distance between the 
sender and the receiver and on the propagation speed 
of the wireless medium. 

• Reception time. The time it takes for the receiver to 
receive the message. This is similar to the 
transmission time. 

• Receive time. Analogue to send time, it also takes 
some time for a network interface to process a 
received message and to send it to the application. 

In order to gain a high accuracy, we must remove delay 
uncertainties as much as possible. The protocols that are 
explained in section 4 use different methods to accomplish this. 
In pair wise synchronization where symmetric links are used, 
the error caused by propagation time is negligible. The 
propagation time is the same in both directions between two 
nodes. This assumption is true as long as nodes do not move 
very fast. 
In TPSN and LTS, the send time error is minimized by using 
time-stamping packets at the MAC-level instead of at the 
application level. That means that the timestamp is added to the 
packet when it is ready to be transmitted. The receive time in 
TPSN is also minimized by time-stamping received messages at 
the MAC-level. LTS however, does not do this. This solution of 
time-stamping at the MAC-level depends on the sensor 
hardware support. 
TSync uses a method to reduce access time. All time-critical 
packets are sent through a dedicated channel. The network load 
on this channel is very low because it is only used to send time-
synchronization messages. On such a sparsely used channel, 
packet collisions and jamming will occur less often. 
RBS eliminates both send time and access time. The beacon 
message that is initially sent does not contain a timestamp, nor 
is it important when exactly the message was sent. In contrast to 
pair wise synchronization methods, propagation time does 

account for a considerable error. The beacon message is sent in 
one way, and thus the propagation time can be large, depending 
on the distance between the nodes. 
The accuracy of all protocols that are mentioned in this paper 
have already been tested by their developers. These tests are 
described in the papers in which the protocols are proposed, see 
[EGE02], [PAL04], [GAN03], [SU05], [DAI04] and [GRE03]. 
The synchronization errors that were measured, vary between 
20 µs and 30 µs. However, these test results can not be 
compared directly to each other. The testing environments and 
circumstances are different in all of the tests. For example 
different hardware was used and the WSNs used for testing 
varied in size. There are no protocols that perform much better 
or much worse than others. 

5.2 Energy efficiency 
As mentioned before in this paper, energy efficiency is very 
important in WSNs. There are two actions that require the most 
energy consumption: using the CPU and transmitting data. 
The calculations that must be made when using the described 
protocols are fairly simple. Only a few additions and a single 
division are necessary for clock offset calculation. These 
calculations are mostly the same in all protocols. 
A more significant difference between the protocols can be 
found in data transmission. We can make an estimate of the 
number of messages that must be transmitted to synchronize a 
network. 
For simple pair wise synchronization two messages must be 
transmitted to synchronize one node with another. For TPSN 
and LTS one extra message per node is needed to create the 
hierarchy, and another one to send the time-sync packets. In 
TSync the number of messages is reduced. Because masters 
broadcast their synchronization messages, multiple nodes can 
be synchronized while only three messages are transmitted. The 
first message is the sync_begin message broadcasted by the 
master. Next a reply from only one node is required, and finally 
T2 and ∆ are broadcasted to all nodes in the transmission range. 
The actual number of nodes that can be synchronized at once 
depends on the density of the network and the transmission 
range of the node's radio. This protocol will therefore be very 
energy-efficient in dense networks, while in networks with low 
node density it will need more messages per node. 
When RBS is used, synchronization starts by a node 
broadcasting a reference beacon. After receiving this beacon, 
receiver nodes exchange their observations. It is not specified 
how this is done exactly, but it seems reasonable that each 
receiver broadcasts the local time at which it received the 
beacon. Synchronization is thus possible with a minimum of 
only one beacon message and one message per receiver. 
However, when more accuracy is needed or the extension to 
RBS is used, more beacons must be sent. This may also lead to 
more messages for observation exchange between receivers. 
For TDP, a master broadcasts a message to all nodes in its 
range, next all receivers send a reply back and finally the 
master broadcasts another message. In addition to this, the 
initial master election algorithm that must be run, will need 
extra message exchanges. This number of messages depends on 
the chosen algorithm. The synchronization procedure must be 
run for several times to allow the node's clocks to converge to 
an equilibrium time. When a network is deployed, it will take 
about 7 synchronization rounds to reach an acceptable level of 
synchronization.  



Another energy problem may occur when the load of a few 
nodes is much higher compared to other nodes. These nodes 
will consume their energy faster, causing their batteries to get 
exhausted earlier than batteries of other nodes. The chance that 
this problem will occur is especially big when using pull 
mechanisms like the ones in TSync and LTS. When a single 
node requires synchronization, it must someway require action 
from a master. When n nodes use the pull mechanism, the 
master node is involved in a synchronization procedure n times, 
while each client node is involved just one time. 
In RBS this problem may occur at the gateway nodes. TDP 
solves this problem by regularly running an election protocol 
that elects different masters. The problem does not occur in 
TPSN, because all nodes send the same messages in the 
synchronization phase. 

5.3 Tuning 
As mentioned in section 3, tunable accuracy is a useful property 
of a synchronization protocol for WSNs. When a protocol 
supports tuning, it is possible to make a trade-off between 
accuracy and energy consumption. 
The most simple form of tuning is adjusting the interval at 
which the clocks in a network are synchronized. This is 
possible with all protocols. This only helps to reduce the time 
that the clocks of different nodes will diverge from each other. 
The minimum synchronization error cannot be reduced in this 
way. In addition, some protocols have more advanced tuning 
options. 
The possibility in RBS to send multiple beacon messages is 
used in the extension for RBS [PAL04]. This extension offers 
an algorithm that allows for specification of the maximum 
allowed synchronization error. The number of beacon messages 
will be based on this maximum allowed error. A lower allowed 
error will lead to more messages and thus higher energy 
consumption. 
When using TDP, the synchronization procedure must be run 
several times for the nodes to reach an equilibrium time. The 
interval between these rounds determines how fast equilibrium 
is reached. In time, this also determines the accuracy that can be 
reached.  

5.4 Post-facto synchronization 
Post-facto synchronization [ELS01] is a method for further 
reducing energy consumption. In this scheme, nodes are 
normally unsynchronized. When an event occurs, the node 
records the time according to its local clock. The node must 
now synchronize its time to know its clock offset. When this 
has happened, it can re-calculate the time at which the event 
occurred with respect to the synchronized time. This method 
allows nodes to turn off their power, waiting only for certain 
events to happen. 
Post-facto synchronization is not applicable with all protocols. 
Synchronization must take place shortly after an event has 
occurred. The more time elapses between the event and 
synchronization, the larger the error grows. The 
synchronization protocol must therefore have some kind of pull 
mechanism to trigger the execution of the synchronization 
process. RBS, TPSN, TSync and LTS support post-facto 
synchronization. 

5.5 Absolute or relative time 
synchronization 
The clocks in a WSN can be synchronized with respect to a 
global timescale or they can keep their own time but keep track 
of the time offsets relative to other nodes. 
In the first case, all clocks will have the same time after 
synchronization. This is the most common way of 
synchronizing, used by TPSN, TDP, TSync and LTS. These 
protocols, except DTP, synchronize all nodes in the network to 
the clock of a master node. When a node is located further away 
from the master node, the synchronization error will be larger. 
DTP works in a slightly different way, because the master 
nodes are re-elected every synchronization cycle. The clocks 
will therefore not be synchronized to a single master node's 
clock, but will converge to an equilibrium time. 
RBS is a protocol that uses relative time synchronization. This 
means that the clocks of all nodes do not need to have the same 
value at the same time. The nodes will know their offset to the 
other nodes in the network. No master node is needed to which 
all nodes will synchronize. 
When a WSN is connected to the outside world, it may be 
needed to synchronize to an external timescale. A global 
timescale that is commonly used is Universal Time Coordinated 
(UTC). This timescale is typically distributed via radio systems 
or GPS [EGE02]. 
Synchronization to external timescales is supported by all 
protocols. In protocols that use absolute time synchronization, 
this can be reached when the master node has access to the 
global timescale. In RBS, nodes can calculate their time offset 
to a node that has access to the global timescale. 

5.6 Robustness 
As said, WSNs are naturally very dynamic. Nodes may move, 
batteries get depleted or nodes may fail. This can have its 
effects on the time synchronization in the WSN. A robust 
protocol should still work when the network changes. 
Protocols that use a static hierarchy are very sensitive to 
changes in the network. When a single node fails, all nodes that 
are below it in the hierarchy may get unsynchronized because 
they can no longer reach the master node. When the master 
node fails, the whole network can no longer be synchronized. 
This problem can occur in TPSN, TSync and LTS. Because 
TDP regularly changes the masters and creates a new hierarchy, 
it will much better adapt to network changes. 
RBS is not based on a hierarchy, and is therefore probably the 
most robust protocol in this paper. The protocol is not sensitive 
to changes in the network. When the network topology changes, 
the conversion routes will also change, but as long as all nodes 
are connected, they can all still be synchronized. 

5.7 Scalability 
When a WSN is extended, the computing time used by the new 
nodes should automatically be synchronized to the time of the 
existing nodes in the network. When TPSN, TSync or LTS are 
used, the new nodes will first need to determine their position in 
the hierarchy. In RBS and TDP, the new nodes do not need to 
perform any special actions. They can just behave like the 
existing nodes that are already in the network. 
When a WSN grows large, the synchronization error may 
increase. This is especially a problem in TPSN, TSync and 
LTS, where static master nodes are used. The time must be sent 
through the whole network, increasing the error at every hop. 



As explained in section 3.2.2 this can result in a large 
synchronization error between nodes that are close to each 
other. A possible solution to this problem is to use multiple 
masters spread through the network. These masters then must 
be externally synchronized to each other, for example by using 
GPS receivers. 

5.8 Hardware requirements 
Some of the synchronization protocols have special hardware 
requirements. All protocols make use of the broadcasting ability 
of the nodes. Broadcasting is very common in wireless 
networks and necessary for detecting neighbor nodes. 
The protocols that perform pair wise synchronization assume 
that the transmission time is symmetric. This means that the 
transmission time from node A to node B is the same as the 
transmission time from node B to node A. 
The TSync protocol uses multi-channel radios to reduce packet 
collisions. Multi-channel radios are capable of communicating 
on more than one frequency channel. Sensor nodes equipped 
with these radios are becoming increasingly more common 
[DAI04]. 

6. CONCLUSIONS AND FUTURE WORK 
Time synchronization is crucial in WSNs. WSNs are in many 
ways different from traditional wired networks, which makes 
existing time synchronization protocols as NTP inapplicable. In 
this paper five time synchronization protocols for WSNs are 
described. Further, they are compared using a number of 
criteria. This comparison is made only based on the available 
literature. 
When we look at the accuracy of the protocols, we do not see 
very big differences. The average synchronization errors of the 
different protocols are approximately equal to each other. RBS 
and DTP support tuning, allowing to make a trade-off between 
accuracy and energy consumption.  
To determine the energy consumption of the protocols, the 
number of messages is counted that must be sent for a single 
synchronization round. TSync seems to be the most efficient 
protocol at this point. 
The robustness is another very important issue for time 
synchronization protocols. RBS and DTP are probably the most 
robust protocols, because they are not dependent on a static 
hierarchical structure in the network. 
In extreme circumstances, the RBS protocol will probably be 
the best time synchronization protocol to use. It is much more 
robust and dynamic than protocols based on a hierarchy. DTP is 
a good alternative. 
When the circumstances in which the WSN is deployed are less 
extreme and the network is less dynamic, the protocols that are 
based on a hierarchy will also perform well. Especially TSync 
can be more energy efficient than other protocols. These 
protocols work very similar to traditional time synchronization 
protocols, which can be an advantage when communication 
with wired networks is necessary. 
This paper is purely a literature study. For future research, a 
good thing would be to do practical tests on these protocols. 
When the protocols are all tested in the same environment and 
under the same circumstances, the results will be clearer, 
especially for the comparison of accuracy and energy 
efficiency. 
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