
Time synchronization in wireless sensor networks
Bertold van Voorst

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, the Netherlands

b.g.vanvoorst@student.utwente.nl

ABSTRACT
Wireless Sensor Networks (WSNs) consist of numerous small
sensors that are wirelessly connected to each other. In these
networks, time synchronization is an important issue. Correct
time-stamping of events is crucial for data processing.

Time synchronization protocols that are used for
synchronization in traditional wired networks are not applicable
in WSNS. This paper provides a survey of a number of
synchronization protocols that have been specified for use in
WSNs. Moreover, a comparison of these protocols is provided
in order to identify the most efficient one.

Keywords
wireless sensor network, time synchronization

1. INTRODUCTION
Recently, small, low power sensors with embedded processors
and radios have become available [EST02]. Moreover, a wide
range of application areas, including military, environment,
health, home and other commercial areas [AKY02] has been
identified that could very much profit from using a network of
such sensors. As a result of this, wireless sensor networks
(WSNs) have become an important and growing research area.
A WSN consists of numerous cooperating sensors, connected to
each other in a wireless network.
In WSNs, time synchronization is an important issue. Precise
and synchronized time is needed for several reasons. For
example, an exact and synchronized clock is necessary to
determine the right chronological order of events. A lack of
synchronization may lead to incorrect time-stamping of
readings. As a base station collects the sensor data, it may not
be reordered right [DAI04]. Further, accurate time is needed for
applications as time-of-flight measurements, low power TDMA
radio schedules and duplicate detection recognition [ELS03].
These many applications make time synchronization an
important issue in WSN research. In the last few years,
numerous time synchronization protocols and methods have
been proposed based on different approaches. In this paper, a
comparison between these protocols and methods is provided,
in order to find the most efficient one.
The organisation of the remainder of this paper is as follows. In
section 2 an overview of the different aspects and

characteristics of WSNs is given. Section 3 gives an overview
of existing time synchronization protocols in traditional
networks and discusses why these protocols are not suitable for
WSNs. An overview of proposed time synchronization methods
for WSNs is given in section 4. These methods are compared to
each other in section 5. Finally, in section 6, conclusions and
suggestions for future work are given.

2. WIRELESS SENSOR NETWORKS
This chapter gives an overview of the different aspects and
characteristics of WSNs.

2.1 Sensors
A WSN consists of a number of sensors, ranging from a few to
thousands of sensors that are wirelessly connected to each other
or to a base station. For wireless communication, a number of
communication technologies can be used. Examples of such
technologies are radio, infrared light, laser and inductive and
capacitive coupling. Radio communication is currently the most
common, since no line of sight is required and communication
over medium ranges is possible with acceptable power
consumption [ROM04]. In networks where line-of-sight is
possible, infrared or laser may be used to achieve an even lower
power consumption.
Many different sensors exist, which makes it possible to do a
wide variety of different measurements. A few examples from a
long list are the ability to sense light, temperature, humidity,
acceleration, chemical vapors, gas concentrations and noise
levels [MAI02].
Depending on the application, the size of a single sensor may
vary from the size of a shoebox down to a few millimeters.
Also, the cost of a single device may range from a few hundred
Euros for networks of few powerful nodes, to just a few cents
for networks of many simple nodes [ROM04]. These devices
are very limited in the amount of energy they can store or
harvest from their environment. Therefore, energy efficiency is
a very important issue in WSN development. Manually
replacing batteries or doing maintenance on sensors is
undesired and often also impossible to perform. Most sensors
thus require untethered (wireless), autonomous operation.

2.2 Dynamic operation
In contrast to traditional wired networks, most WSNs are highly
dynamic. The system must continuously adapt to changes in the
environment. The sensors may be deployed randomly, for
example by dropping them from an aircraft into an area of
interest. Over time, sensors may fail and batteries get depleted.
The WSN must adept to these changes to prevent network
failure [HIL03].
Mobility and scalability are important design principles. A
sensor or an entire WSN may physically be moved to another
area or be combined with another WSN. In this type of
situations WSN self-configuration (i.e., auto-configuration) is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission.
4th Twente Student Conference on IT, Enschede 30 January, 2006
Copyright 2006, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science

often required because static configuration is difficult to be
performed.

2.3 Network topology
The network topology of WSNs may vary. Traditional wired
networks are connected to each other through switches and
routers. As a result, some sort of infrastructure hierarchy is
always present. In WSNs, such an infrastructure hierarchy is
absent.
The most important factor is the diameter of a network, which
is defined as the maximum number of hops between any two
end-nodes in the network [ROM04]. The diameter depends on
the size of the network, but also on the communication range of
the nodes.
The simplest form is a single-hop network, where every node
can directly communicate with every other node in the network.
This is only possible in small networks or when nodes have a
wide communication range. A more common topology is a
multi-hop ad hoc network topology [MEG01], in which data
packets are forwarded via multiple nodes in order to reach the
destination.

2.4 Operating system
The operating system that runs on most sensors is the TinyOS
[GAY05]. This operation system is specially designed for
WSNs. It was built with an emphasis on reacting to external
events and extremely low power operation. Examples of other
operating systems that can be run on wireless sensor nodes are
an embedded version of Linux operating system [MAI02] and a
multithreaded µ-OS operating system [AKY02].

3. TIME SYNCHRONIZATION IN
TRADITIONAL NETWORKS
Network time synchronization is not a new research topic,
though it is in the area of WSNs. Much research has been done
on how to transfer time information in order to synchronize
clocks in a network.
In this chapter, an overview of time synchronization protocols
in traditional networks is given. Furthermore, the differences in
time synchronization between traditional networks and WSNs
are explained.

3.1 Existing time synchronization
mechanisms in traditional wireless/wired
networks
The most common time synchronization protocol that is used in
traditional networks is the Network Time Protocol (NTP)
[MIL92]. A client using NTP connects to a server to
synchronize time. The time given by the server is corrected
with half the measured round trip time. This results in a
synchronization with an error of at most a few milliseconds.
NTP is a two-way time synchronization method, in which a
timestamp is sent in two directions. To improve the accuracy,
there is also a method available that sends double packets
[GOT02].
The Simple Network Time Protocol (SNTP) [MIL96] is a
simplified version of the NTP. This protocol allows operation in
a stateless remote-procedure call (RPC) mode. It is less
complex then the full NTP, which makes it easier to implement,
but decreases accuracy. SNTP is therefore useful in systems
where the performance of a full NTP implementation is not
significant.

Where NTP and SNTP are based on a hierarchical structure, the
Classless Time Protocol (CTP) [GUR03] uses a peer-to-peer
approach. Using this protocol, a node sends and receives
packets only to and from its direct neighbors. The CTP uses the
same format and number of network messages as the NTP.
According to [GUR03], the performance of the CTP is better
than the performance of the NTP without an increase of
complexity.
The Global Positioning System (GPS) can also be used for time
synchronization [BER00, JUA02]. The accuracy can be high,
with an error of less than a millisecond. This is however hardly
used in computer networks. GPS requires a clear view on the
sky for continuous reception of multiple satellites, which is hard
to achieve indoors. Also, specific hardware is required to
receive the GPS signals which makes GPS an expensive
solution for networks with many nodes.

3.2 Differences between time
synchronization mechanisms in traditional
networks and WSNs
It would be easy if these existing time synchronization
protocols could be directly used in WSNs. This is however not
possible. Many requirements on which these protocols are
based do not hold for WSNs.

3.2.1 Energy awareness
One of the most important issues in WSNs is energy efficiency.
For time synchronization protocols in traditional wired
networks, using the CPU power listening to the signaling
messages from the network and supporting occasional
transmissions have a negligible impact on the operation of a
communicating node. Traditional time synchronization
protocols are based on the following assumptions. NTP assumes
that the CPU is always available and it listens to the network all
the time. These assumptions do not hold for WSNs [POT00].
WSN nodes often have slow CPU's that are operating most of
the time in an idle power mode. Even though processing power
costs decrease with time, there are limits that keep it relatively
expensive for nodes in a WSN. Listening to, receiving from and
sending to the network also cost a significant amount of energy,
compared to the overall system budget. This could very difficult
be supported by wireless sensor nodes that are typically using
batteries, which have a limited energy lifetime and power and
are difficult to be replaced.

3.2.2 Ad hoc network topology
Most time synchronization protocols are based on a hierarchical
network infrastructure. The servers on the highest level, often
referred to as stratum 1 servers, synchronize with each other
using technologies as GPS. Nodes in these hierarchical
networks will usually have a stratum 1 server only a few hops
away. In WSNs on the other hand, a hierarchical infrastructure
is usually absent. Even if we can create such a hierarchy, most
nodes will be far away from it. Nodes that are far away from the
stratum 1 server will be poorly synchronized. In WSNs, this is
especially a bad situation, since nodes that are close to each
other often require the most precise synchronization [ELS02].
This is illustrated in figure 1. Nodes A, B and C are far away
from the stratum 1 server, but close to each other. In a scheme
as NTP, C will choose either A or B as its synchronization
source. The synchronization error with the opposite neighbor
will be large. This is caused by the fact that the path to the
stratum 1 server is dependent on the synchronization source that
is chosen. If C synchronizes with A, the error with B will be
large; if it synchronizes with B, the error with A will be large.

Figure 1. Nodes that are far away from the stratum 1 server
will be poorly synchronized, which is especially a bad
situation in WSNs.

Solving this problem by creating many stratum 1 servers within
a WSN is not an option. Equipping nodes with GPS receivers is
difficult, since it is expensive in energy consumption as well as
monetary and it requires a line of sight to the GPS satellites.

3.2.3 Dynamic infrastructure
Traditional networks are based on a static infrastructure. For
time synchronization, nodes are manually configured to connect
to certain time synchronization servers. Although it is possible
to use statistical information to decide which servers to use,
nodes are still dependent on their initial configuration. Because
of the highly dynamic nature of WSNs, such a static
configuration is not possible. Moreover, the need for unattended
operation makes a manual configuration of individual nodes
highly undesirable.

3.2.4 One-way synchronization
Most existing time synchronization protocols use two-way
methods, meaning that information is sent in two directions.
Ping [PIN03] argues that two-way methods are not suitable in
WSNs. If the path between the node and the time
synchronization server is reciprocal or symmetric, the one-way
delay can be estimated as half the round-trip time. In WSNs,
this path is often not reciprocal, which makes it difficult to
estimate the delay. One-way methods for time synchronization
are therefore better candidates for WSNs.

3.2.5 Tunable accuracy
Time synchronization protocols in traditional networks are
designed to achieve the highest accuracy possible. The higher
the required accuracy, the higher the resource requirements. In
WSNs, it may be useful to make a trade-off between accuracy
and resource requirements [TUL04]. This way, a time
synchronization protocol may use less energy or use a less
advanced CPU when high accuracy is not required.

4. TIME SYNCHRONIZATION
METHODS FOR WSNS
In the last few years, numerous time synchronization protocols
for WSNs that are using different approaches have been
proposed. A number of these protocols are summarized in this
chapter.

4.1 Reference Broadcast Synchronization
Reference Broadcast Synchronization (RBS) [EGE02, ELS03]
is a time synchronization protocol in which nodes send

reference beacons to their neighbors, by making use of the
broadcast possibility of the network. These beacons do not
contain a timestamp. Receivers use the arrival time of these
beacons as points of reference for comparing their clocks. A
beacon can be sent by any node in the network, thus no special
nodes are needed.
The simplest form of RBS is executed in three steps:

1. A node broadcasts a reference beacon.
2. Each node that receives the beacon, records its arrival

time according to the node's local clock.
3. The nodes exchange their observations. Using this

information, each node can compute its offset to any
other node.

Using this protocol, a relative timescale can be formed. It is
also possible to synchronize with an external timescale. For
example, consider a GPS receiver connected to one of the nodes
in the network. This GPS node is treated exactly as other nodes
in the network. The offset from any node to the GPS node can
then be used to calculate the absolute time.
The description of RBS given so far assumes that the network is
fully connected, which means that a broadcasted beacon is
received by all nodes. In reality, this will hardly ever be the
case. Figure 2 explains how this problem is handled. Nodes a
and b send out beacons that create neighborhoods, i.e., groups
of nodes that are in the transmission range of a single beacon
node. Node a has four other nodes in its neighborhood. Node 4
receives signals from both a and b, and can act as a "gateway"
to relate nodes in each neighborhood to each other.

Figure 2. A simple multihop network. Nodes a and b send
beacons; node 4 acts as a "gateway".

To illustrate how this works, imagine we would like to relate
the times of two events that happen in the network of figure 2.
Node 1 observes event E1 2 seconds after hearing the beacon
signal Ba (E1 = Ba + 2). Node 6 observes event E6 9 seconds
after hearing beacon signal Bb (E6 = Bb + 9). Node 4 has heard
beacon signal Ba 5 second prior to Bb (Ba + 5 = Bb). Given these
constraints, we can easily calculate the time that has passed
between E1 and E6:
 E1 = Ba + 2
 E6 = Bb + 9
 Ba + 5 = Bb
→ E1 + 12 = E6
Event E6 has thus occurred 12 seconds after the occurrence of
event E1.
The precision can be improved by sending more than one
reference beacon. The offset between two nodes is then
computed as the average of the offsets of each single node.
Clock skew, caused by the fact that clocks never run at exactly
the same rate, can also be corrected. This clock skew can be
estimated from the time that has passed between hearing
multiple reference beacons.

4.2 Probabilistic extension to RBS
Guarantee can not be provided when delays can be unbounded
or messages can get lost. This may be a problem when RBS is
implemented. PalChaudhuri et al. [PAL04] therefore present a
probabilistic extension to RBS. This extension is based on the
possibility of RBS to send multiple beacon messages to
improve accuracy.
For this protocol we need to specify the maximum
synchronization error and the confidence probability. The
minimum number of messages and the synchronization interval
are then derived from this specification. This is possible,
because the error among receivers has a normal distribution.
The following steps are taken to synchronize a broadcast
neighborhood:

1. A sender broadcasts n reference beacons to its
neighbors at fixed intervals.

2. Each node that receives the beacons, records the
arrival times of each beacon according to the node's
local clock. This data is plotted and a line is derived
from it. The slope of this line approximates the
relative clock skew between sender and receiver.

3. All receivers send their graph back to the sender.
4. The sender combines all graphs and broadcasts a

message containing its relative clock skew to all the
receivers.

5. Every receiver can now calculate its own clock skew
and clock offset relative to all other nodes in the
neighborhood.

For multihop networks, the protocol is also extended. RBS as
described in section 4.1 assumes that there is always a
"gateway" node that receives beacons from both neighborhoods
to link them together. In this extension, it is not necessary to
make such an assumption. Synchronization outside the
neighborhood of a sender is handled by making nodes senders
themselves once they get synchronized. This may cause a chain
reaction and flood the network with synchronization messages.
To avoid this, a sender will only broadcast a beacon when a
synchronization request is made by a receiver in its
neighborhood.

4.3 Timing-sync Protocol for Sensor
Networks
The Timing-syncs Protocol for Sensor Networks (TPSN)
[GAN03] synchronizes time in a sensor network by first
creating a hierarchical structure and then synchronizing nodes
along this structure. In this way, a global timescale is
established throughout the network.
A hierarchical topology is created by assigning a level to every
node in the network. Only one node is assigned level 0, which
will be the master node. Every other node at level i can
communicate with at least one other node at level i - 1. The
creation of this hierarchical topology is called the level
discovery phase, and occurs when the network is deployed.
This phase is initiated by the level 0 node, by broadcasting a
level_discovery packet, containing the level and identity of the
sender. Every node that receives this packet, assigns itself a
level one greater than the level they received. After this, they
broadcast a new level_discovery packet which contains their
own level and identity. Eventually, all connected nodes will
have a level assigned. To prevent network flooding, a node
neglects all level_discovery packets once it has a level assigned.

It may be possible that a node does not receive a
level_discovery packet. When a node has not been assigned a
level after a certain period, it timeouts and broadcasts a
level_request message. Nodes that receive this level_request
message, reply to this by sending their own level.

Figure 3. Pair wise synchronization between A and B.

When a hierarchical structure is established, the
synchronization phase can be started. In this phase, pair-wise
synchronization is performed along the edges of the structure.
This pair-wise synchronization works as shown in figure 3.
Here, node A synchronizes with node B. T1 and T4 represent
time as measured by node A, T2 and T4 represent time as
measured by node B.

1. At T1, node A sends a synchronization_pulse to node
B.

2. Node B receives this packet at T2 and sends an
acknowledgement packet back to node A at T3,
containing T1, T2, and T3.

3. Node A can now calculate the clock skew using the
following formula:

2
)()(3412 TTTT −−−

=∆

The synchronization phase is initiated when the level 0 node
broadcasts a time-sync packet. When the level 1 nodes receive
this packet, they will wait for some random time before starting
pair-wise synchronization with the level 0 node. This
randomization is to avoid congestions. The nodes on level 2
will hear this message exchange. After a random delay they
synchronize with the level 1 node. This way the
synchronization works down the hierarchy until all nodes have
been synchronized.
Due to the dynamic nature of wireless sensor networks, it may
happen that a situation occurs where a node at level i can not
communicate to a node at level i - 1. In this case, a node will
not receive an acknowledgement back when it sends a
synchronization_pulse. This node can then broadcast a
level_request message. Assuming that the node is still
connected to the network, it will be assigned a new level. If this
happens at level 1, it means that the single level 0 node can no
longer be reached. The level 1 nodes will now run a leader
election algorithm to determine the new level 0 node.

4.4 Time-Diffusion Synchronization
Protocol
The Time-Diffusion Synchronization Protocol (TDP) [SU05] is
a protocol that allows synchronization of a whole sensor
network. Initially, an election protocol is run to select a set of
master nodes. These masters then send a broadcast message,
containing their local time. All receivers send back a message,
allowing the masters to calculate the round-trip times as in
Figure 3. The average of these round-trip times is used to

estimate the one-way delay between the master and its
neighboring nodes.
The masters now broadcast the one-way delay time and the
standard deviation. The receiving nodes store this information.
Then, they run the election protocol and a number of them
become masters themselves. The average delay time and
standard deviations are accumulated along the path. This
procedure is repeated until a number of hops from the initial
masters is reached. This number depends on the implementation
of the protocol and can differ per network.
Finally, all nodes have received the total delay time and
standard deviation from one or more masters. Using these
values, every node calculates a new time value and adjusts its
clock.
After all nodes have updated their clocks, new masters are
selected and the procedure is started from the beginning.
Running this procedure multiple times will allow the nodes to
converge to an equilibrium time. The clock differences between
neighboring nodes will be small.

4.5 TSync
TSync [DAI04] is a bidirectional time synchronization service
that offers both a push mechanism for synchronizing the whole
network as well as a pull mechanism for on-demand
synchronization of a single node.
This protocol uses the ability of node radios to communicate
over multiple channels for frequency diversity. By doing this, it
is possible to reduce packet collisions and prevent jamming. All
time-critical packets are sent through a dedicated channel,
called the clock channel.

4.5.1 Push: Hierarchy Referencing Time
Synchronization Protocol
The Hierarchy Referencing Time Synchronization Protocol
(HRTS) can synchronize a whole network. We assume there is
a master node or base station that starts the synchronization
procedure. The synchronization between two nodes works as
shown in Figure 3. The following steps are executed.

1. The master node (A) broadcasts a sync_begin
message containing its local time T1 and the name of
one of the receivers, node B in this example.

2. All receivers record the time T2' that this message was
received. Only the node that was specified by the
master (node B in this example), sends a message
over the clock channel back to the master, containing
timestamps T2 and T3.

3. The master node now knows the values of T1, T2, T3
and T4. It calculates ∆ and broadcasts a message
containing T2 and ∆.

4. All nodes now compare the value of T2 with their
local value T2' that was recorded in step 2. They can
calculate the offset δ between their local clock and the
clock of node B as:

'22 TT −=δ

The clock is now corrected as:
δ+∆+= timelocalT _

5. The synchronized nodes now become masters
themselves and broadcast a sync_begin messages to
synchronize more distant nodes.

As the synchronization ripple is going through the network, a
hierarchy is constructed. Each node is assigned a level based on

its distance to the master node, as in the TPSN protocol. This
level is used by nodes to avoid being synchronized with a less
accurate source. Once a node is synchronized and has been
assigned a level, it will ignore sync_begin messages from nodes
with a higher level number. This way, it is possible to use
multiple master nodes.
In step 1, we assume that the master node knows its neighbors,
since the name of one of the neighbors is specified in the
sync_begin message. It may be necessary to run a neighbor
discovery procedure in advance.

4.5.2 Pull: Individual-based Time Request Protocol
A situation may occur where a single node needs
synchronization, but a full network synchronization is
unnecessary. In these cases the Individual-based Time Request
Protocol (ITR) may be used.

1. When a node n1 needs to be synchronized, it sends a
query to its parent in the hierarchy. The request is
forwarded until it reaches a master node.

2. The path to the master node is now known, and all
nodes along the path switch to the clock channel.

3. The node n1 now sends the actual synchronization
request at the clock channel which is forwarded to the
master, also at the clock channel.

4. The master now sends the time back to node n1, again
at the clock channel. Upon receiving the time, n1 can
adjust its clock.

4.6 Lightweight Tree-based Synchronization
The Lightweight Tree-based Synchronization protocol (LTS)
[GRE03] also consists of a push mechanism and a pull
mechanism.

4.6.1 Push mechanism
The push mechanism and the TPSN are very much alike. In the
first phase, a tree hierarchy is constructed. In the second phase,
nodes synchronize to their parents by means of pair wise
synchronization (figure 3). An algorithm is given to calculate
the minimum synchronization frequency that is needed to
achieve a specified precision.

4.6.2 Pull mechanism
This mechanism uses a tree hierarchy in the network, though it
does assume that there are one or more master nodes to
synchronize with. When a node n determines that it needs to be
synchronized, it sends a synchronization request to a master
node. The routing protocol for this procedure is not specified. In
order for n to synchronize with a master node, all nodes on the
path must be synchronized using pair wise synchronization.
There are a few enhancements possible when using this
mechanism. When a node needs synchronization, it can first
check its neighbors for pending synchronization requests.
Another possible enhancement is path diversification. When a
node n requests synchronization, all nodes on the path to the
master node are synchronized as well. Choosing a path along
nodes that will otherwise soon need synchronization for
themselves can prevent extra synchronizations in the near
future.

5. COMPARISON BETWEEN TIME
SYNCHRONIZATION METHODS FOR
WSNS
The methods that are listed in chapter 4 will be compared here.
In order to do this, some criteria are given first.

5.1 Accuracy
The accuracy of a synchronization protocol is one of the most
important criteria. The higher the accuracy of a protocol, the
more precise the clocks in a WSN will be synchronized. Delays
in message delivery lead to synchronization errors. There are
four sources defined that cause these errors [EGE02, GRE03,
GAN03, MAR04].

• Send time. This is the time it takes an application to
send a network message. This includes the execution
of system calls and access time to the network
interface.

• Access time. When a network interface of a node is
ready to send a message, it must wait for access to the
transmit channel before actually sending the message.
This delay depends on the current network load.

• Transmission time. The time it takes for the sender
to send the message. This time depends on the speed
of the radio.

• Propagation time. This is the time it takes the radio
signal to travel through the air from the sender to the
receiver. This depends on the distance between the
sender and the receiver and on the propagation speed
of the wireless medium.

• Reception time. The time it takes for the receiver to
receive the message. This is similar to the
transmission time.

• Receive time. Analogue to send time, it also takes
some time for a network interface to process a
received message and to send it to the application.

In order to gain a high accuracy, we must remove delay
uncertainties as much as possible. The protocols that are
explained in section 4 use different methods to accomplish this.
In pair wise synchronization where symmetric links are used,
the error caused by propagation time is negligible. The
propagation time is the same in both directions between two
nodes. This assumption is true as long as nodes do not move
very fast.
In TPSN and LTS, the send time error is minimized by using
time-stamping packets at the MAC-level instead of at the
application level. That means that the timestamp is added to the
packet when it is ready to be transmitted. The receive time in
TPSN is also minimized by time-stamping received messages at
the MAC-level. LTS however, does not do this. This solution of
time-stamping at the MAC-level depends on the sensor
hardware support.
TSync uses a method to reduce access time. All time-critical
packets are sent through a dedicated channel. The network load
on this channel is very low because it is only used to send time-
synchronization messages. On such a sparsely used channel,
packet collisions and jamming will occur less often.
RBS eliminates both send time and access time. The beacon
message that is initially sent does not contain a timestamp, nor
is it important when exactly the message was sent. In contrast to
pair wise synchronization methods, propagation time does

account for a considerable error. The beacon message is sent in
one way, and thus the propagation time can be large, depending
on the distance between the nodes.
The accuracy of all protocols that are mentioned in this paper
have already been tested by their developers. These tests are
described in the papers in which the protocols are proposed, see
[EGE02], [PAL04], [GAN03], [SU05], [DAI04] and [GRE03].
The synchronization errors that were measured, vary between
20 µs and 30 µs. However, these test results can not be
compared directly to each other. The testing environments and
circumstances are different in all of the tests. For example
different hardware was used and the WSNs used for testing
varied in size. There are no protocols that perform much better
or much worse than others.

5.2 Energy efficiency
As mentioned before in this paper, energy efficiency is very
important in WSNs. There are two actions that require the most
energy consumption: using the CPU and transmitting data.
The calculations that must be made when using the described
protocols are fairly simple. Only a few additions and a single
division are necessary for clock offset calculation. These
calculations are mostly the same in all protocols.
A more significant difference between the protocols can be
found in data transmission. We can make an estimate of the
number of messages that must be transmitted to synchronize a
network.
For simple pair wise synchronization two messages must be
transmitted to synchronize one node with another. For TPSN
and LTS one extra message per node is needed to create the
hierarchy, and another one to send the time-sync packets. In
TSync the number of messages is reduced. Because masters
broadcast their synchronization messages, multiple nodes can
be synchronized while only three messages are transmitted. The
first message is the sync_begin message broadcasted by the
master. Next a reply from only one node is required, and finally
T2 and ∆ are broadcasted to all nodes in the transmission range.
The actual number of nodes that can be synchronized at once
depends on the density of the network and the transmission
range of the node's radio. This protocol will therefore be very
energy-efficient in dense networks, while in networks with low
node density it will need more messages per node.
When RBS is used, synchronization starts by a node
broadcasting a reference beacon. After receiving this beacon,
receiver nodes exchange their observations. It is not specified
how this is done exactly, but it seems reasonable that each
receiver broadcasts the local time at which it received the
beacon. Synchronization is thus possible with a minimum of
only one beacon message and one message per receiver.
However, when more accuracy is needed or the extension to
RBS is used, more beacons must be sent. This may also lead to
more messages for observation exchange between receivers.
For TDP, a master broadcasts a message to all nodes in its
range, next all receivers send a reply back and finally the
master broadcasts another message. In addition to this, the
initial master election algorithm that must be run, will need
extra message exchanges. This number of messages depends on
the chosen algorithm. The synchronization procedure must be
run for several times to allow the node's clocks to converge to
an equilibrium time. When a network is deployed, it will take
about 7 synchronization rounds to reach an acceptable level of
synchronization.

Another energy problem may occur when the load of a few
nodes is much higher compared to other nodes. These nodes
will consume their energy faster, causing their batteries to get
exhausted earlier than batteries of other nodes. The chance that
this problem will occur is especially big when using pull
mechanisms like the ones in TSync and LTS. When a single
node requires synchronization, it must someway require action
from a master. When n nodes use the pull mechanism, the
master node is involved in a synchronization procedure n times,
while each client node is involved just one time.
In RBS this problem may occur at the gateway nodes. TDP
solves this problem by regularly running an election protocol
that elects different masters. The problem does not occur in
TPSN, because all nodes send the same messages in the
synchronization phase.

5.3 Tuning
As mentioned in section 3, tunable accuracy is a useful property
of a synchronization protocol for WSNs. When a protocol
supports tuning, it is possible to make a trade-off between
accuracy and energy consumption.
The most simple form of tuning is adjusting the interval at
which the clocks in a network are synchronized. This is
possible with all protocols. This only helps to reduce the time
that the clocks of different nodes will diverge from each other.
The minimum synchronization error cannot be reduced in this
way. In addition, some protocols have more advanced tuning
options.
The possibility in RBS to send multiple beacon messages is
used in the extension for RBS [PAL04]. This extension offers
an algorithm that allows for specification of the maximum
allowed synchronization error. The number of beacon messages
will be based on this maximum allowed error. A lower allowed
error will lead to more messages and thus higher energy
consumption.
When using TDP, the synchronization procedure must be run
several times for the nodes to reach an equilibrium time. The
interval between these rounds determines how fast equilibrium
is reached. In time, this also determines the accuracy that can be
reached.

5.4 Post-facto synchronization
Post-facto synchronization [ELS01] is a method for further
reducing energy consumption. In this scheme, nodes are
normally unsynchronized. When an event occurs, the node
records the time according to its local clock. The node must
now synchronize its time to know its clock offset. When this
has happened, it can re-calculate the time at which the event
occurred with respect to the synchronized time. This method
allows nodes to turn off their power, waiting only for certain
events to happen.
Post-facto synchronization is not applicable with all protocols.
Synchronization must take place shortly after an event has
occurred. The more time elapses between the event and
synchronization, the larger the error grows. The
synchronization protocol must therefore have some kind of pull
mechanism to trigger the execution of the synchronization
process. RBS, TPSN, TSync and LTS support post-facto
synchronization.

5.5 Absolute or relative time
synchronization
The clocks in a WSN can be synchronized with respect to a
global timescale or they can keep their own time but keep track
of the time offsets relative to other nodes.
In the first case, all clocks will have the same time after
synchronization. This is the most common way of
synchronizing, used by TPSN, TDP, TSync and LTS. These
protocols, except DTP, synchronize all nodes in the network to
the clock of a master node. When a node is located further away
from the master node, the synchronization error will be larger.
DTP works in a slightly different way, because the master
nodes are re-elected every synchronization cycle. The clocks
will therefore not be synchronized to a single master node's
clock, but will converge to an equilibrium time.
RBS is a protocol that uses relative time synchronization. This
means that the clocks of all nodes do not need to have the same
value at the same time. The nodes will know their offset to the
other nodes in the network. No master node is needed to which
all nodes will synchronize.
When a WSN is connected to the outside world, it may be
needed to synchronize to an external timescale. A global
timescale that is commonly used is Universal Time Coordinated
(UTC). This timescale is typically distributed via radio systems
or GPS [EGE02].
Synchronization to external timescales is supported by all
protocols. In protocols that use absolute time synchronization,
this can be reached when the master node has access to the
global timescale. In RBS, nodes can calculate their time offset
to a node that has access to the global timescale.

5.6 Robustness
As said, WSNs are naturally very dynamic. Nodes may move,
batteries get depleted or nodes may fail. This can have its
effects on the time synchronization in the WSN. A robust
protocol should still work when the network changes.
Protocols that use a static hierarchy are very sensitive to
changes in the network. When a single node fails, all nodes that
are below it in the hierarchy may get unsynchronized because
they can no longer reach the master node. When the master
node fails, the whole network can no longer be synchronized.
This problem can occur in TPSN, TSync and LTS. Because
TDP regularly changes the masters and creates a new hierarchy,
it will much better adapt to network changes.
RBS is not based on a hierarchy, and is therefore probably the
most robust protocol in this paper. The protocol is not sensitive
to changes in the network. When the network topology changes,
the conversion routes will also change, but as long as all nodes
are connected, they can all still be synchronized.

5.7 Scalability
When a WSN is extended, the computing time used by the new
nodes should automatically be synchronized to the time of the
existing nodes in the network. When TPSN, TSync or LTS are
used, the new nodes will first need to determine their position in
the hierarchy. In RBS and TDP, the new nodes do not need to
perform any special actions. They can just behave like the
existing nodes that are already in the network.
When a WSN grows large, the synchronization error may
increase. This is especially a problem in TPSN, TSync and
LTS, where static master nodes are used. The time must be sent
through the whole network, increasing the error at every hop.

As explained in section 3.2.2 this can result in a large
synchronization error between nodes that are close to each
other. A possible solution to this problem is to use multiple
masters spread through the network. These masters then must
be externally synchronized to each other, for example by using
GPS receivers.

5.8 Hardware requirements
Some of the synchronization protocols have special hardware
requirements. All protocols make use of the broadcasting ability
of the nodes. Broadcasting is very common in wireless
networks and necessary for detecting neighbor nodes.
The protocols that perform pair wise synchronization assume
that the transmission time is symmetric. This means that the
transmission time from node A to node B is the same as the
transmission time from node B to node A.
The TSync protocol uses multi-channel radios to reduce packet
collisions. Multi-channel radios are capable of communicating
on more than one frequency channel. Sensor nodes equipped
with these radios are becoming increasingly more common
[DAI04].

6. CONCLUSIONS AND FUTURE WORK
Time synchronization is crucial in WSNs. WSNs are in many
ways different from traditional wired networks, which makes
existing time synchronization protocols as NTP inapplicable. In
this paper five time synchronization protocols for WSNs are
described. Further, they are compared using a number of
criteria. This comparison is made only based on the available
literature.
When we look at the accuracy of the protocols, we do not see
very big differences. The average synchronization errors of the
different protocols are approximately equal to each other. RBS
and DTP support tuning, allowing to make a trade-off between
accuracy and energy consumption.
To determine the energy consumption of the protocols, the
number of messages is counted that must be sent for a single
synchronization round. TSync seems to be the most efficient
protocol at this point.
The robustness is another very important issue for time
synchronization protocols. RBS and DTP are probably the most
robust protocols, because they are not dependent on a static
hierarchical structure in the network.
In extreme circumstances, the RBS protocol will probably be
the best time synchronization protocol to use. It is much more
robust and dynamic than protocols based on a hierarchy. DTP is
a good alternative.
When the circumstances in which the WSN is deployed are less
extreme and the network is less dynamic, the protocols that are
based on a hierarchy will also perform well. Especially TSync
can be more energy efficient than other protocols. These
protocols work very similar to traditional time synchronization
protocols, which can be an advantage when communication
with wired networks is necessary.
This paper is purely a literature study. For future research, a
good thing would be to do practical tests on these protocols.
When the protocols are all tested in the same environment and
under the same circumstances, the results will be clearer,
especially for the comparison of accuracy and energy
efficiency.

REFERENCES
[AKY02] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 2002.

[BER00] H.G. Berns and R.J. Wilkes. GPS Time
Synchronization System for K2K. IEEE Transactions on
Nuclear Science, 2000.

[DAI04] H. Dai and R. Han. TSync : A Lightweight
Bidirectional Time Synchronization Service for Wireless
Sensor Networks. ACM Sigmobile Mobile Computing
and Communications Review, Volume 8 Issue 1,
January 2004.

[EGE02] J. Elson, L. Girod, D. Estrin. Fine-grained network
time synchronization using reference broadcasts. ACM
SIGOPS Operating Systems Review, Volume 36 Issue
SI, December 2002.

[ELS01] J. Elson and D. Estrin. Time Synchronization for
Wireless Sensor Networks. Proceedings of the 15th
International Parallel and Distributed Processing
Symposium., IEEE 2001.

[ELS02] J. Elson and K. Römer. Wireless Sensor Networks: A
New Regime for Time Synchronization. In Proceedings
of the First Workshop on Hot Topics In Networks
(HotNets-I), Princeton, New Jersey, October 2002.

[ELS03] J. Elson. Time Synchronization in Wireless Sensor
Networks. International Parallel and Distributed
Processing Symposium, 2001.

[EST02] D. Estrin, L. Girod, G. Pottie and M. Srivastava.
Instrumenting the world with wireless sensor networks.
In International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2001), Salt Lake City, UT,
May 2001.

[GAN03] S. Ganeriwal, R. Kumar and M.B. Srivastava.
Timing-sync protocol for sensor networks. Proceedings
of SenSys, 2003.

[GAY05] D. Gay, P. Levis and D. Culler. Software Design
Patterns for TinyOS. To appear in Proceedings of the
ACM SIGPLAN/SIGBED 2005 Conference on
Languages, Compilers, and Tools for Embedded
Systems (LCTES'05), Chicago, June 2005.

[GOT02] T. Gotoh, K. Imamura and A. Kaneko. Improvement
of NTP time offset under the asymmetric network with
double packets method. Precision Electromagnetic
Measurements, 2002. Conference Digest 2002
Conference on 16-21 June 2002. Pages 448-449.

[GRE03] J. van Greunen and J. Rabaey. Time synch and
localization: Lightweight time synchronization for
sensor networks. Proceedings of the 2nd ACM
international conference on Wireless sensor networks
and applications, September 2003.

[GUR03] O. Gurewitz, I. Cidon and M. Sidi. Network Time
Synchronization Using Clock Offset Optimization.
Network Protocols, 2003. Proceedings. 11th IEEE
International Conference on 4-7 Nov, 2003. Pages 212-
221.

[HIL03] J. Hill. System Architecture for Wireless Sensor
Networks. PhD thesis, UC Berkeley, May 2003.

[JUA02] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh
and D. Rubenstein. Energy-efficient Computing for
Wildlife Tracking: Design Tradeoffs and Early

Experiences with ZebraNet. In Proceedings of the 10th
Intl Conference on Architectural Support for
Programming Languages and Operating Systems, San
Jose, CA, Oct 2002.

[MAI02] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler
and J. Anderson. Wireless sensor networks for habitat
monitoring. In ACM Workshop on Sensor Networks
and Applications, 2002.

[MAR04] M. Maroti, B. Kusy, G. Simon, A. Ledeczi. The
Flooding Time Synchronization Protocol. In Proc of
The Second ACM Conference on Embedded Networked
Sensor Systems (Sensys), November 2004.

[MEG01] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M.
B. Srivastava. Coverage Problems in Wireless Ad-hoc
Sensor Networks. In Proc. IEEE Infocom 2001, Vol 3,
pp. 1380-1387, Apr. 2001.

[MIL92] D. L. Mills. Network Time Protocol (Version 3).
RFC1305. March 1992. [SU05] W. Su and I. F.
Akyildiz. Time-Diffusion Synchronization Protocol for
Wireless Sensor Networks. IEEE/ACM Transactions On
Networking, vol. 13, no. 2, April 2005.

[MIL96] D.L. Mills. Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI. RFC2030. October
1996.

[TUL04] D. Tulone. A resource-efficient time estimation for
wireless sensor networks. Proceedings of the 2004 joint
workshop on Foundations of mobile computing,
October 2004.

[PAL04] S. PalChaudhuri, A. K. Saha and D. B. Johnson.
Adaptive clock synchronization in sensor networks.
Proceedings of the third international symposium on
Information processing in sensor networks, April 2004.

[PIN03] S. Ping. Delay Measurement Time Synchronization for
Wireless Sensor Networks. Intel Research Berkeley Lab,
June 2003.

[POT00] G.J. Pottie, W.J. Kaiser, L. Clare and H. Marcy.
Wireless integrated network sensors. Communications
of the ACM, 2000.

[ROM04] K. Römer and F. Mattern. The design space of
wireless sensor networks. Wireless Communications,
IEEE, Volume 11, Issue 6, Dec. 2004 Pages 54-61.

[SIC03] M. L. Sichitiu and C. Veerarittiphan. Simple, Accurate
Time Synchronization for Wireless Sensor Networks.
Proc. of the IEEE Wireless Communications and
Networking Conference (WCNC), 2003.

