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SHARP WEIGHTED ESTIMATES FOR MULTILINEAR
COMMUTATORS

C. PEREZ anp R. TRUJILLO-GONZALEZ

ABSTRACT

Multilinear commutators with vector symbol b= (b1,-..,by) defined by

m

T (f)(x) = (bj(x) = b;(y))
]:RH

Jj=1

K(x,y)f(y)dy

are considered, where K is a Calderon-Zygmund kernel. The following a priori estimates are proved for
w € Agy. For 0 < p < o0, there exists a constant C such that

15N loowy < CIBIIM o e (D) 20w)

and

1
sup )W({y eR" :|T;f(y)| > 1t}) < Csug
>

: w{y € R = My o, 1 (IB1F)) > 1),
>0 (7

1
D(+)
where

m
180 =TT 1Bl v,
j=1

. 1 1 1
@(t) = tlog" (e + 1), ;=r—+...+—,
1

'm

and M jog 1y is an Orlicz type maximal operator. This extends, with a different approach, classical results
by Coifman.

As a corollary, it is deduced that the operators T; are bounded on LP(w) when w € A4, and that they
satisfy corresponding weighted L(log L)!/"-type estimates with w € 4.

1. Introduction

The main purpose of this paper is to prove sharp estimates for multilinear
commutators involving nonstandard symbols. These will be established by means
of appropriate maximal operators that somehow control the commutators. This
illustrates the classical Calderon—Zygmund principle, which roughly states that any
singular integral operator is controlled by a suitable maximal operator.

1.1. Background

Motivated by the work of Calderon on commutators, Coifman, Rochberg and
Weiss introduced in [8] the operator

Tpf(x) = LRn(b(X) — b(y)K(x,y)f (v)dy, (L.1)
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where K is a kernel satisfying the standard Calderon-Zygmund estimates (see
Section 3.1), and b, the ‘symbol’ of the operator, is any locally integrable function.
The operator is called a commutator since T, = [b, T] = bT — T(b"), where T is
the Calderon—Zygmund singular integral operator associated to K. The main result
from [8] states that [b, T] is a bounded operator on L?(IR"), 1 < p < oo, when the
symbol b is a BMO function.

These commutators have proved to be of interest in many situations. We only
mention the recent results in the theory of non-divergent elliptic equations with
discontinuous coefficients [3, 4, 9]. There is also an interesting connection, as pointed
out in [21], with the nonlinear commutator considered by Rochberg and Weiss in
[23] and defined by

f— Nf =T(flogl|fl) = Tflog|Tfl.

This in turn is related to the Jacobian mapping of vector functions and with
nonlinear partial differential equations, as shown in [13, 14].
A natural generalization of the commutator [b, T] is given by

T)'f(x) = LR (b(x) = b(y)"K (x, )f(y) dy, (1.2)

n

where m € IN. The case m = 0 recaptures the Calderon—-Zygmund singular integral
operator.

It was shown in [21] that there is an intimate connection between the commutator
T}" and iterations of the maximal operators. Indeed, the main theorem from [8] was
sharpened in [21] as follows: for any 0 < p < co and any w € A4, there is a constant
C such that

| imrreoreix < cinigo | (eriorweas 0

where M1 denotes the m+1 iterations of the Hardy-Littlewood maximal operator,
namely

(m times)
——N—
M"=Mo...oM.

Furthermore, this inequality is sharp, since, by the Lebesgue differentiation theorem,
M"™*! cannot be replaced by the smaller operator M™.

Estimate (1.3) can also be seen as a generalization of a by now classical result of
Coifman for Calderon-Zygmund singular integral operators. See [6, 7].

A weak version of inequality (1.3) is obtained in [20]. Indeed, if we let ®,(t) =
tlog"(e + t), for any w € A,, and b € BMO there is a constant C such that

n m 1 n m
sup mW({y eR" T f(y) > t}) < Cs{gop mW({y eR": M™f(y) > :};)4)

A priori inequalities of the form (1.3) (or (1.4)) encode a considerable amount
of information about the behavior of the operator. The first observation is that in
any case they reflect the higher degree of singularity of T}, as compared with T,
since a larger operator than M, namely M™*!, is needed to balance the inequality.
As a second instance, if p > 1, we can apply Muckenhoupt’s theorem m+ 1 times to
conclude from (1.3) the well known fact that high-order commutators are bounded
on L?(w) whenever w € A4,. It should be mentioned that this A, estimate follows,
as is well known, from an estimate due to Stromberg (see [15, p. 268; 25, p. 417]).
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This method is powerful, and it can be applied to various situations. As an example,
we refer the reader to [11] for a very nice application to commutators with strongly
singular integral operators. However, this estimate of Stromberg is not sharp enough
to derive (1.3) or (1.4). In fact, the following ((L log L)-type) endpoint estimate first
deduced in [20] can be shown from (1.4). Let w € A1 and b € BMO; then there
exists a constant C such that, for all 2 > 0,

ity <R s 100> ) < €| T (1nogt (L0)) iy

2
(1.5)

As a third instance, it was shown in [21] that estimate (1.3) implies sharp two
weighted inequalities for the commutator of the form

J \T#f(xnpw(x)dxscubu’l’;ﬁdoj GO MU+ (x) dx,
R” R

where no condition on the weight w is assumed. This result is an extension of the
case m = 0 proved in [18] that generalized some previous partial results by Wilson
[26]. The approach considered in [18] is different from that in [26], and it combines
(1.3) with certain sharp two weighted estimates for the Hardy—Littlewood maximal
function derived in [19].

Finally, there is a relationship between (1.4) and the endpoint behavior of the
operator. Indeed, an interesting observation that occurs in the development of the
theory of commutators is that the L theory, p > 1, was developed without an appeal
to any endpoint estimate. On the other hand, it is well known that in the classical
Calderon—Zygmund LP theory, p > 1, a crucial step is to show that the operators
are of weak type (1,1). However, this is not the case with the commutator [b, T']
when b € BMO as shown in [20] and estimate (1.5) is the correct replacement. This
can be seen as another way of expressing the fact that commutators have a higher
degree of singularity than the Calderon-Zygmund singular integral operators.

1.2. Results of the paper

In this paper, we obtain similar estimates for a wider class of commutators. Given
a Calderon—Zygmund singular integral operator T with kernel K in IR" x IR" and

a vector b = (by,...,b,) of locally integrable functions, we define the multilinear
operator
T;f(x) =J [0 — ;00 | K(x 01 () ., (16)
n j:1

generalizing the commutator (1.2). We refer the reader to [7] for an extensive study
of multilinear operators.

We will be considering the following class of symbols: for » > 1 and for any
locally integrable function f, we define

Hf”osccxp,)- = Slép ”f - fQ”eXpL'}Qa

which is the supremum taken over all the cubes Q with sides parallel to the axes.
Here [|glexprro is the mean value of g on the cube Q with respect to the Young
function ®(t) = " — 1. See Section 2.2 for the precise definition. As usual, fo denotes
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the average of f on Q. For r > 1, we define the space Oscexprr by
OSCEXPU = {f S LIIO(’(IRn) : HfHOscexer < OO}

In the particular case of r = 1, Osceyp, 11 coincides with the BMO space by the
John-Nirenberg theorem. Also we have Osceprr & BMO for any r > 1. Other
examples are provided by Trudinger’s inequality for Riesz potentials. To be more
precise, for any 0 < « < n and any f € L"/*(IR"), the Riesz potential I,f of order o
belongs to O5Ceypy ey (cf. [12, 27]).

For the statement of our results, we introduce some notation that will simplify
the presentation. Throughout this paper, m will always be the number of symbols of

the operator T; where b = (by,...,by) is a family of m locally integrable functions.
If ry,...,r, are m positive real numbers, we denote

1 1 1
and

1|

m
H Hbj HOscexer/ .
j=1

Our main results are the following.

THEOREM 1.1.  Let 0 < p <0, w € Ay. Suppose that Tyf is the commutator (1.6),
where b is as above such that b; € Oscexprni, 1 = 1, 1 < i < m. Then there exists a
constant C > 0 such that

|, T < B | Mg s 1)

for all bounded functions f with compact support.

For the precise definition of the operator My o1y, see Section 2.2.

Inequality (1.7) shows that the maximal operator Mo, - is the one that controls
the multilinear commutators Tj. Since r; = 1 for each i, it follows that Mo py1r
is pointwise smaller than M ogr)», and this in turn is known to be equivalent to
m + 1 iterations of the Hardy-Littlewood maximal operator M™*!. Hence we can
use Muckenhoupt’s theorem again and deduce the boundedness of T, on L?(w) for
p>1land any w € 4,.

CorOLLARY 1.2. Let 1 < p < o0 and w € A,. Suppose that T;f is the commutator
(1.6), where b is as above such that b; € Oscexprri, i = 1, 1 <i < m. Then there exists
a constant C > 0 such that

J IT,(F))Pw(x) dx < C[B? J FCOIPw(x) dx (18)
IRH ]Rt‘l

for all bounded functions f with compact support.

As mentioned above, this estimate is a generalized version of Coifman’s result in
[6]. However, our approach is different, and it is based on a pointwise inequality
that can roughly be expressed as

MI(T;1)(x) < C1B|I M og 1y f(x) + R(f)(x) (1.9)
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for an appropriate positive but small enough number §. R denotes a certain ‘remain-
der’ operator that is smoother and less singular than M,y in some suitable
sense. See Lemma 3.1 for a complete and precise statement of this estimate.
Moreover, reasoning as in [21, Theorem 2], from this thecorem we deduce the
following estimate for general weights. As usual, [«] denotes the integer part of a.

THEOREM 1.3.  Let 1 <p < oo, and let T; be as in Theorem 1.1. Then there exists
a constant C such that, for any weight w,
[, 1m0 e < b | ipeorartr e ax
]Rﬂ ]RPI

for all bounded functions f with compact support.

REMARK 1.4. We remark that the number of iterations of the maximal function
needed in the theorem is optimal, as can be seen in [21, Section 5]. In fact, it follows
from the proof of Theorem 1.3 that there is a sharper estimate

[ TPy < CIBIP [ M,y )0
R R

where € > 0, the result being false for e = 0.

The key pointwise estimate (1.9) is also used to derive the next endpoint result.
Recall that commutators with BMO functions are not of weak type (1, 1).
Also, recall that we denote ||b| = H’;’zl HijOSCc . and ®(t) = tlog!"/"(e+1), where

pLJ

1 1 1
—=— 4.+ —.
r r 'm

THEOREM 1.5. Let w € A;. There exists a constant C > 0 such that, for all A > 0,

1B]1f ()
2

wly eR":ITyf0) > )< | o ( ) Wiy (L10)

for all bounded functions f with compact support and for all b.
The proof is based on the following result, which generalizes inequality (1.4).

THEOREM 1.6. Let w € Ay. Then there exists a positive constant C such that

1 1 -
stgg@w({y eR" :|Tyf(y)l > t}) < Cszli(;)) @W({y e R" : Mo(|bllf)(y) >(1t}1)1)

for all bounded functions f with compact support.

In any of the above results, if we choose by =...=b, and r; =... =r, = 1, then
we recover completely the corresponding results from [20, 21].

As usual, C denotes a positive constant that can change its value on each
statement. If the constant depends on precise parameters, it will be pointed out.

2. Preliminaries

In this section we introduce the basic tools needed for the proof of the main
results.
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2.1. Fefferman—Stein inequality for A, weights

A ‘weight’ will always mean a positive function that is locally integrable. We say
that a weight w belongs to the class 4,, 1 < p < oo, if there is a constant C such that

1 1 ey !
(QIJ W) y)(IQIJ W) pdy) s¢

for each cube Q, where, as usual, 1/p+ 1/p’ = 1. A weight w belongs to the class
A if there is a constant C such that

1
0l J w(y)dy < Cmfw
We will denote the infimum of the constants C by [w]4,. Observe that [w]4, > 1 by
Jensen’s inequality.

Since the A4, classes are increasing with respect to p, the A, class of weights is
defined in a natural way by A, = {J,, 4,. However, the following characterization
is more interesting. There are positive constants ¢ and p such that, for any cube Q
and any measurable set E contained in Q,

" (Y
w(Q) 10|

A simple fact that will be useful is that, for any w € 4, and any m > 0,
Wy = min{w,m} € A, with [wy]4, < Cp[wly,. For more information on A, weights
we refer the reader to [10, 25].

We recall now the definitions of classical maximal operators. If, as usual, M
denotes the Hardy—Littlewood maximal operator, we consider, for 6 > 0,

o _ 1/5
Msf(x) = M(fIP) (x) = (sgp |Q‘J f(ymy) ,

VA = supinf 150 | 170 —cldy % sup o0

and a variant of this sharp maximal operator that will become the main tool in our
scheme:

J 1) — foldy.

MEf(x) = ME(If1°)(x)"°.

The main inequality between these operators to be used is a version of the classical
one due to Fefferman and Stein (see [16, 24]).

LEMMA 2.1.  Let w be an A, weight. Then there exists a constant ¢ depending upon
the A, condition of w such that, for all 1, € > 0,

w({y € R : Mf(y) > 2, M*f(y) < 2¢}) < ce’w ({yeR” M) > ;})

As a consequence, we have the following estimates for 6 > 0.
(a) Let ¢ : (0,00) —> (0,00) doubling. Then there exists a constant ¢ depending
upon the A, condition of w and the doubling condition of ¢ such that

sup p(Aw({y € R" : Msf(y) > 2}) < csup(p Dw(y e R" : MEf(y)>2})  (2.1)
>0

for every function such that the left-hand side is finite.
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(b) Let 0 < p < oo. There exists a positive constant C depending upon the A
condition of w and p such that

J ”(Mgf(x))”w(x) dx < C JW(Mff(x))”w(x) dx (2.2)

for every function f such that the left-hand side is finite

2.2. Orlicz maximal functions

By a Young function ®@, we will mean a continuous, nonnegative, strictly increasing
and convex function on [0, c0) with

. D) . t
R

We define the ®-averages of a function f over a cube Q by

. 1
Iflog = I lowe = lnf{/l >0 Q|JQ‘D (f(;)) ix < 1}.

For Orlicz norms, we are usually only concerned about the behavior of Young
functions for large values of t. Given two functions B and C, we write B(t) = C(t)
if B(t)/C(t) is bounded and bounded below for t > ¢ > 0. We also recall that if
B(t) < C(t) for t = ¢ > 0, then

1fllBo < Cllflic.os

with C an absolute constant. For more information on the subject, see [22].
Associated to this average, we can define a maximal operator Mg given by

Mof(x) = Mo f(x) = SQl;p If o0,

where the supremum is taken over all the cubes containing x.

For example, if ®(x) = ¢* — 1, then || - [exprr,0 and Meyy 1, denote the d-average
and the maximal operator associated to @, respectively. Similarly, we have for
O(x) = xlog"(e +x), || | LgogLy,0 and My iogy. Observe that by the above remarks,
Mf < CMpgogryf for any r > 0. These examples will be relevant in our work.

Finally, we will be using the following known pointwise inequality. If m € N, then

(m+1 times)
—
Mpgogry ~ M™ =Mo ... o M,
the m+ 1 iterations of the Hardy-Littlewood maximal operator. A generalization of
this equivalence can be found in [2].

We begin with some technical lemmas on convex functions whose proofs are
standard.

LEMMA 2.2 [17, Lemma 2.1]. If ®g, @4,..., D,, are real-valued, non-negative, non-
decreasing, left continuous functions defined on [0,00) such that, with the definition
@ (x) = inf{y : ®;(y) > x},
it verifies
O ()5 (x)... D, (x) < Dyl (x), (2.3)



SHARP WEIGHTED ESTIMATES FOR MULTILINEAR COMMUTATORS 679
then, for all 0 < x1,X2,..., Xy < 0,

(DO(XIXZ ce. xm) <P (xl) + ®2(X2) +...+ (I)m(xm)-

LEMMA 2.3. Let ®y be a convex function such that ®y(0) = 0, and let @y,..., O,
as in the previous lemma, all verifying (2.3). If fi,f2,...,fm are functions satisfying
Ifillo,o < oo for all 1 <i<m and for a given cube Q, then

Hfl .. -fm”(l)(),Q < m“fl HCDI,Q ce an1H<Dm,Q- (24)

Proof. Taking ¢ > 0 small enough, by Lemma 2.2 and convexity,

1 F19f2(0) - fnx) >
0l JQ P (m(m oo + 0 f2lore ) (nlong 72 ) &

11 J1(3)f2(x) . fm(x)
< = d
S 10| JQ o <(|f1<1>1,Q + &)l 2llws0 + &) .- ([ fmllo,0 + 8)) ¥

11 fi(x) fi(x)
\77 -~ . ... m - -~ . d ~ 9
S wiol JQ {q’l(wml,we% e (fm|mm,g+e)] <1

which implies that
[f1f2. fmllono < m(lifillo.o+2)...([fmllw,o + ).

Now, letting ¢ — 0, we get (2.4). O
The main example that we will be using is the following:
1
@ JQ If1- fmgl < Cliftllexprrig--- | fmllexprmollg HL(log L)!/r,Qo (2.5)

where ry,...,r, = 1 and
1 1 1
—=—+...+—
rooor Fm

Indeed, in this case, we can write for any x > 0 that
log"" (1 +x)...log"/™(1 + x X < x.
g/ )...log" /™ ( )logl T T 1 )

Then (2.3) holds for
@y(x) = x,
®;!(x) = log"""(1 + x),

i=1,...,m, and
X

logl/rl+...+1/rm(e + x) ’

The inverse functions are given by ®;j(x) = ¢¥' — 1, i = 1,...,m, and @, (x) ~
xlogl/rlJr..qu/rm(e_l_x)'

D1 (x) =

2.3. The oscillation of a function

We define the oscillation Osco(f, Q) of a function f with respect to any Young
function @ as

Osco(f,Q) = |f — follwo-

We list the following properties that are very easy to check.
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LEMMA 2.4.  For any cube Q and any locally integrable functions f and g, we have
the following :
(i) Osce

(ii

(iii

(iv

(v

(f £2,0) < Osco(f, Q) + Osca(g, Q).
Osco(Af, Q) = |4|0sco(f,Q) for all 1 € R.
Osco(|f], Q) < 20sco(f, Q).

Osco(min{f, g},0) < 3(Osca(f, Q) + Osca(g, Q).
Osco(max{f, g}, Q) < 3(0sca(f, Q) + Osca(g, Q).

~_— — — —

Given a function g, we define, for any N € N,

N g(x) >N
gV(x) =14 g(x) lgx)I<N (2.6)
—N g(x) < —N.

Now, from Lemma 2.4, and taking into account that g% = max{min{g, N}, —N},
we infer that, for any locally integrable function, Osce(g”, Q) < COsce(g, Q), and
consequently

”gNHOSca, < CHgHOSCq, (27)

for all N € N and where C > 0 is an absolute constant.

3. Proofs of the main results
3.1. Proof of Theorem 1.1

By a kernel K in R” x R", we mean a locally integrable function defined away
from the diagonal. We say that K satisfies the standard estimates if there exist
positive and finite constants y and C such that, for all distinct x,y € IR” and all z
with 2|x — z| < |x — y|, the following hold:

(1) IK(x,y) < Clx—y[™

(ii) [K(x,y) —K(z,y)| < Cl(x —z)/(x = y)I"]x — y|™".

(i) [K(y,x) —K(p,2)| < Cl(x —2)/(x = y)I"|x — y| ™"

We define a linear and continuous operator T : C’(R") — Z'(R") associated to
the kernel K by

1100 = | Keenody.

where f € C°(IR") and x is not in the support of f. T is called a Calderon-Zygmund
operator if K satisfies the standard estimates and if it extends to a bounded linear
operator on L*(R"). These conditions imply that T is also bounded on LP(IR"),
1 < p < oo, and is of weak type (1,1). For more information on this subject, see
[5, 7, 16].

Given any positive integer m, for all 1 < j < m, we denote by C}' the family of
all finite subsets ¢ = {a(1),...,a(j)} of {1,...,m} of j different elements. For any
o € C}', we associate the complementary sequence ¢’ given by ¢’ = {1,2,...,m}\o.

Let b = (b1,b,...,by) be a finite family of integrable functions. For all 1 <
j < mand any ¢ = {o(1),...,0(j)} € C¥, we will denote b, = (bo1y, - -+ ba(j))
and the product b, = bg)...bs). With this notation, we write, for any m-tuple
r=(ry,...,ry) of positive numbers,

HbJHOSCCXPLw - Hbo'(l)HOSCeXerU(“ ”bzr(j)HOscexerg(j) .
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For the product of all the functions, we simply write

R
HbHosCexer = Hbl HOsc cee Hbm HOscexerm .

expL’l

For any ¢ € C”, we denote

Ty f(x) = J]Rn(ba(l)(x) —bs1)(y) - - (bo(j)(X) = bs(j)(V))K (X, y)f (y) dy.

In the particular case of ¢ = {1,...,m}, we understand T assimply T;.
Finally, observe that T;(f) satisfies the following homogeneity on the symbol

w{ih)-

b= (b1/|b1] 0

T;(f)

S

where
) bm/ Hbm HOS(’cxerm )

expL’i "

such that ||b|| = 1.

The following lemma gives a pointwise estimate of M?(Tzf) in terms of other
maximal functions of operators of lower order. This result can be understood as
the extension of [20, Lemma 7.1] to high-order commutators and for the classes of
symbol considered in this paper.

Lemma 3.1, Let Ty be as in Theorem 1.1, and let 0 < 6 < ¢ < 1. Then there exists
a constant C > 0, depending only on 6 and ¢, such that

ME(T;f)(x) < C 1B Moy f () + > > balloscapie Mo Ty )(X) | (3.1)
j=1oeCy

for any bounded function f with compact support.

Recall that

m
161 =TT Ibsllosc,,. -
j=1

Proof of Lemma 3.1. Recall that the operator Tj = Ty, s, is defined by

,,,,,

Tyf(x) = LR" T[Tbsx) = b, | K (x.1)f () dy.
j=1

By homogeneity, we can assume that HEH =1
We first consider the case m = 1. We only have one symbol b € Oscexprr, 1 2 1,
and (3.1) becomes

ME(Thf)(x) < Cl1b]l0sepr IMrog i f (%) + Mo(T£)(x)]. (32)
For any 1 € R, we have

Tpf(x) = LRn(b(X) — b(y)K(x,y)f (v)dy
= (b(x) = )T f(x) = T((b = A)f)(x).

Now, for fixed x € R”, for any number ¢ and any ball B centered at x and radius
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R > 0, since 0 < 6 < 1 implies that ||o|® — |B|°| < |o— B|° for any a, f € R, we can
estimate that

i s 1/0 (1 B )1/(5
(g0 ], Imson —ierlar) < (g [ i - an

! ) 1/6
— b(y)— 4 d
(15|, 1001 =1 s00° av)

! . 1/5
+<|mL'T(”’_W)(”_C' dy) ]

=I+1IL

We analyze each term separately, and we let 1 = (b),p, the average of b over the
ball 2B. For any 1 < q < ¢/d, we have, by Holder and Jensen’s inequality,

1 s 1/6q 1 5 1/dq
I<C —J b —)L‘fd) (J T qd>
<|2B| 2BI (y) = 4" dy B| BI f)I*dy

< Clblloseoy Mog(Tf)(x)
< CM(Tf)(x). (3.3)

To deal with I, we split f as usual by f = f+f>, where f1 = fy2p and f2 = f—f1.
This yields

n<c ! T(b—4 od v
< N —
< <B|JB| (( W) y)
1 T(b—J od v
+<|B|L| (b —=2)f2)(y) —cl y) ]
=1 +1V.

For 111, since (b— 1)f; is integrable and T is of weak type (1, 1), by Kolmogorov’s
inequality [25, p. 104] and (2.5), we get

< o )= 2l dy
< Cllb — Alexprr28 1 f I Ltog Ly 28
< ClIbl[0scenp1r ML10g Ly f (X)
= CMpiog Ly f(x). (3.4)
For the last term IV, we make the election ¢ = (T ((b — 4)f2))s. Hence, by Jensen’s
inequality, it follows that
C

V< — J IT((b—A)f2)(y) = T((b—A)f2))8|dy
|B| Jg

_QJ
1B| Jp

1
|B|

(| Kwombon = pstmra)

J (J K(z,w)(b(w)—i)fﬂw)dw) dz|dy
B \JR»
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C 1
=—J —J U (K(y,w)—K(z,w))(b(w)—z)f(w)dw] dz
|B| |B R"\2B
zj J U |K(y,w)—1<(z,w>|b(w)—z||f(w)dw} dzdy
\B| R"\2B
\B| J. J'B p 1LkR<w—x|<2k+1R
“/2R\" 1
< 2R .
<cy (3R) TR |, 1000 = HfC0

o0
—ky
<CD 27— Alexp e 20151 f | Litog £y 21 - (3.5)
k=1

dy

1
ly —wl|"

y—z|
y—w

Ib(w) — Allf (w)| dW] dzdy

The fifth inequality follows because y,z € B and w € R™\ B, and therefore 2|y —w| <
|z — w]|. The sixth does since |y —z| < 2R and |y —w|~' < ((2F —1)R)~! < C(2*R)™!
and the last one is an application of the generalized Holder inequality (2.5).

Now, we claim that

16— Allexp Lr 2418 < CKI[D| 0sceyy - (3.6)
Indeed
[b— Allexprr ot < b — (D)y+1B llexp rr 218 + [[(B)2kt1p — Allexp 26418
< |[b — (b)y+1gllexprr2e+18 + [(B)okr1p — 4
< CKk[D| 0sceyp 1 »

where the last estimate follows by the standard inequality |(b)2p — bp| < 2[[b] 0sc.yy 1
(cf. [16, p. 31]), and then we take the supremum over the balls.
Thus IV is estimated by

<C Z Y RIB] 0scury1r MLitog Ly (X)
k=1
< CMog 1y f (). (3.7)

From (3.4) and (3.7), we conclude that

II < CML“OgL)l/ff(X)’

which, together with (3.3), gives (3.2) and proves the lemma for m = 1.
Consider now the case m > 2. For any jo= (A15---,4m) € R", we have

Tpf(x) = L{n(bl(X) —b1(»))... (bu(x) — bu(Y)K (x, y) f (v) dy

= [, 100 =20 = (i) = 20D () = )

— (bn(y) — An)K (x, y)f (y) dy

>

. Z Z m j A)JJ n(b(y)—j»)(;/K(X,Y)f(y)dy

Jj=0 oeCy’
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= (b1(x) — A1) ... (bm(x) — ) T f(x)
+(=D)"T (b1 — Z1) ... (b — Am)f)(X)

m—1

n Z Z D)™ (b(x) — 1), J ”(b(y) — b(x))s K(x,y)f (y)dy

j=1oeCy

Now, expanding (b(y) — 4)s = [(b(y) — b(x)) + (b(x) — 4)] as above, it is easy to see
that

Ty f(x) = (b1(x) = A1) ... (bu(x) — 2n) T f (x)
( )m (( /11) cee (bm - lm)f)(x)

m—1

+ Z Z cm,j(b(x) - jv)o Tb;/f(X),

j=1 geCy

where c,,; are absolute constants depending only on m and j.
Now, for fixed x € R", for any number ¢ and any ball B centered at x and radius
R > 0, it follows, since 0 < 0 < 1,

‘ 1/6
(131 ], I = el ay )
N1
< (g [ 1mrm-aay)

1 N 5 1/
<B| JB [(b1(y) — A1) ... (by(y) = 2a) Tf(¥)] dy)

Sy (51, [0 =D dy)l/é

1 s 1/0
+ (|BJ IT((by — 24) . (b — 2a))() — €] dy> ]

=I4+1I+IIL

Reasoning as in (3.3) with 4; = (bi)2p, i = 1,...,m, using this time the standard
Holder inequality for finitely many functions with 1 < ¢ < ¢/0, we have

[ < CM(TSf)(x) (3.8)
and
m—1
I<CY D M(Ty, ), (39)
j=1 geC?

with C > 0 depending only on m.
For II1, we split f = f1 + f» with f; = fyop and f, = f — f1. Thus

< | (

! . s 1/6
+(u&zJ IT((br = 1) (b — Zn)f2)(¥) — ¢ dy) 1
=1V +V.
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Now, as in (3.4) and again making use of Kolmogorov’s inequality and (2.5), we can
estimate IV by

C )
V< o [ D00 = Al ) = Al )y
[2B| J2p
< C Hbl - ;bl HexpL"l 2B .- Hbm - ;hnl HexpL"‘ﬂ,ZB Hf”L(log L)'/r 2B
< CM o 1y (%), (3.10)
recalling that

1_1 1
roon i

Finally, for V, choosing ¢ = (T((b; — 41)...(bm — 4m)f2))p, and repeating the
argument used to get (3.5), it follows from (2.5) and (3.6) that

o0 ) 1 m
vy ot [ TIbm =241 | 1ol

k=1 248\ G

NgE

m
—ky n
<CY 2 TT1b = Allexprrrzes | 1 gogryrasis
k=1 j=1
o0 m
_kh.
<c|y2 k] [T 1bil0se,, i | Migoguyrf (). (3.11)
k=1 j=1

Finally, from (3.10) and (3.11), we conclude that

HI < CMygog Ly f(X),
which, together with (3.8) and (3.9), gives (3.1), and the proof of the lemma is
finished. O

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We can assume that

JR/1(ML(1°g Ly f()w(x)dx < oo, (3.12)

since otherwise there is nothing to be proved.

To apply the Fefferman—Stein inequality (2.2), we first take it for granted that
[ Ms(T;f) Lr(w) is finite. We will check this to the end of the proof.

We proceed by induction on m. For m = 1, by (2.2) and Lemma 3.1, we can
estimate that

I Th, f Il Lrwy < IMs(Th, )l o)

CIME(To, )l Lrw)
Clbtlloseoy i HIMXT ) Loewy + IM L iog yn £l Lron]
CHbl HOsccxerl [HTfHLP(w) + HML(logL)l/flf”L”(w)]
Clbillose,n IMS Loow) + 1M Log Lym fllLraw]
C

<
<
<
<
<
< Clbtloseoy i M 1o Lyir I Lr(w)s
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where the fourth inequality follows since w € A, and therefore there exists g > 1
such that w € 4,. Then we can choose ¢ such that 0 < ¢ < p/q (we can take
q > p if necessary). The fifth holds by the classical estimate (1.3) for m = 0 (see
[7, Chapter 1]).

Suppose now that for m — 1 the theorem is true, and let us prove it for m. The
same argument as used above and the induction hypothesis give

T3 f ey < IMa(T3f) | o)
< CIME(Tyf) | 1wy

< C [lbl HOS(rcxerl .o HbmHOSCeXerm HML(logL)l/'fHL”(w)

m—

1
+D 0 bolloseose |M8<Th;,)u<w)]

j=1 ceCy

<C [lbl HOsccxerl ce HbmHOscexerm HML(logL)l/'fHLp(w)

m—1
3 Wbslloscugis Do o, 1M 1o L)mg,fm(w)]

j=1 seCy
< C”bl HOSCeXqu oo ”bmHOSchp]}'m ”ML(logL)l/’fHLf’(w)a

since M LlogL)w S CM10g Ly

Let us check now that for appropriate 6 we have ||Ms(T;f)llrw) < co. Indeed, as
above, since w € A, there exists ¢ > 1 such that w € 4,, and we can choose ¢ small
enough so that p/é > ¢g. Then, by Muckehoupt’s theorem, the proof is reduced to
checking that | Tpf || Lrw) < 0.

Suppose that the symbols by and the weight w are all bounded functions. Since f
has compact support, we can assume that the support of f is contained in the ball
Br = B(0,R). Then we can split the integral as

| imrerweas = |

|T; f (x)[Pw(x) dx —I—J | T; f (x)[Pw(x) dx.
|x|<2R

|x|>2R

The first integral can easily be estimated by making use of the L*-boundedness
of the b, and w and the Li-boundedness for g > 1 of the Calderon-Zygmund
operator T.

For the second term, by the properties of the kernel K and the boundedness of
the symbols by, since |x| > 2R, we have the following pointwise estimate:

[Ty f ()] < CJ [b1(x) = bi)I.- .. [bw(x) — buIIF W)

Br |x — y|"

J £ )ldy
B(0,|x[)

dy

<
< CMog Ly f(X)- (3.13)
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Thus
J T < CJ (M gog 1y S ()P W(x) dx,

[x|>2R
which is finite by assumption (3.12).
For the general case, we will truncate the symbols by and the weight w as follows
(cf._[7, p. 40]). We denote by bN the vector of truncated elements by N, that
is, BN = (bY,...,bY), where each b} is the truncation of by as defined in (2.6).

Observe that in our case (2.7) becomes

kuN”Oscexerk < C”bk”Osc ) (314)

exp L

where C > 0 is a constant independent of N. Analogously, we consider the trunc-
ations of the weight w by wy = inf{w, N} that satisfy

Wnla, < Clw]a,. (3.15)

Then (1.7) holds for the operator T;y and the weight wy. Combining (3.14) and
(3.15), this estimate gives

|, 1msomeae < (Tl | [ (Mrgu S0P ds
R i expLl] R"

Next, taking into account the fact that f has compact support, we deduce that
any product b{:’ ... b{;’f converges in any L4 for g > 1 to b;, ...b; f as N — oo. Hence
the classical Li-boundedness of the operator T gives, at least for a subsequence,
that |T;vf(x)[Pwy(x) converges pointwise almost everywhere to |T;f(x)[Pw(x), and
by Fatou’s lemma we conclude that the theorem holds for this general case. The
theorem is proved. |

3.2. Proof of Theorem 1.5

We adapt here some of the arguments from [20]. Since the proof of Theorem 1.5
is based on Theorem 1.6, we prove this first. Namely we must show that

sup %w({y € R": [T;f(y)l > t}) < Csup %W({y € R": Mo(Ib[£)(y) > t})
>0 ® <> >0 ® <)
t t

for all bounded functions f with compact support. Recall that ®(t) = ®;(t) =
tlog! (e +1).
In fact, we are going to prove something stronger than (3.16), namely the following:
For every b, ¢ :(0,00) — (0,00) doubling with ¢(¢) < Ct, t > 0, and for every
0 < 0 < 1 there exists a constant C such that

sup pt)w({y € R" : Ms(Tyf)(y) > t}) < C sup p(Ow({y € R" : Mo(|B[f)(y) > t})
(3.17)

(3.16)

for all bounded functions f with compact support.
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By the Lebesgue differentiation theorem, and taking

-1
w=o(l)' o
log!/" (e + t)

it is clear that (3.17) implies (3.16).
By making use of the weighted version of the Fefferman—Stein Lemma 2.1, and
more precisely estimate (2.1), we have

sup p(Ow({y € R" : Ms(Tyf)(y) > t}) < C sup p(tw({y € R" : ME(Tyf)(y) > 1})
> >

(3.18)
whenever the left-hand side is finite. Therefore (3.17) will follow from

sup otw(ly e R" : MU(T;f)(y) > 1)) < C sup p(Ow({y € R" : Mo(|bIIf)(y) > t}).
(3.19)

We first check that the left-hand side of (3.18) is finite for all bounded functions
f with compact support. By proceeding as in the proof of Theorem 1.1, we can
assume that b and w are bounded. For the general case of unbounded symbols and
unbounded weight, we reproduce the argument used in the proof of Theorem 1.1,
this time taking into account the weak (1,1) boundedness of the operator T that
gives the convergence in measure.

Suppose that supp f < Bg = B(0, R). Since 0 < 6 < 1, it follows that

pt)w({y € R" : Ms(Tyf)(y) > t}) < Co(t)[{y € R" : Ms(yp,, Ty )(y) > t/2}]
+Cot)l{y € R" : Ms(yrm 5, T;f )(y) >1/2}]
=14+1IL

For I, we use the fact that M is of weak type (1,1) and that ¢(t) < Ct. Then
I< Ctl{y e R" : M(yp, T3 f)(y) > t/2}]
<c| meia
Bar

12
< CR™? (J |Tf(y)|2dy) ,

which is finite since T is a Calderon—Zygmund operator and the fact is used that
the symbols by are bounded.

For II, we take into account the pointwise estimate (3.13) and the well known
fact that (Mf)° € A;. Then we have

1< Cil{y € R" : My(Mf)(y) > Ct}]

< Citl{y e R" : Mf(y) > Ct}|

<cC JW F0)ldy < cc.

Combining the homogeneity and the linearity of T;, it is easy to see that we can
assume that ||b|| = 1 in both (1.10) and (3.16).
To prove (3.19), we proceed by induction on m.
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3.3. The case m =1

This case is essentially taken from [20], and we repeat it, with minor modifications,
for the sake of completeness. In this case, the operator T is simply defined by one
single function b:

Tpf = [b, T]f =bT(f) — T(bf),

where T is any Calderon-Zygmund operator. Recall that, by homogeneity, we can
assume that [|b|| = [[b[losc,,,» = 1, and therefore what we must prove is

sup p(tyw({y € R" : ME([b, T1f)(y) > t})

>0
<C sup p(tw({y € R" : My o0y (f)(y) > t})  (3.20)

for all bounded functions f with compact support. Now, applying Lemma 3.1 with
any o such that 6 < a < 1, we find that the left-hand side of (3.20) is estimated by

c sup p(Ow({y € R : CIM g 1y (1)) + Mo(T)(¥)] > £})
< Csup POw({y € R - My oq 1y (f)(y) > 1))

+C sup p(w({y € R" : M(Tf)(y) > t}),

where we have also used the doubling condition of ¢.
Next, considering the estimate

MH(Tf)(y) < C.Mf(y), (3.21)

which holds for all 0 < o < 1 (see [1, Theorem 2.1]), if we further select o such that
0 <0 < a < 1, then the Fefferman—Stein lemma yields

sup p(0)w({y € R" ME([b, TIf)(y) > t})
<C sup p(Ow({y € R" : Mpoq 1y (f)(¥) > t})
+Csupg(ow(ly € R" : METI)) > 1))
<C sup P(OW({y € R" 2 My oq 1y (f) () > t})
+C sup p(t)w({y € R" : M(f)(y) > t})

< Csup Co(thw({y € R" < Myoq 1 ()(y) > 1)),

t>0

since trivially M(f) = ML(f) < Mg 1) (f). This finishes the proof of (3.20).

3.4. The general case
Suppose now that (3.19) holds for m — 1, and let us prove it for m. Recall that
O(t) = Oy(1) = tlog"" (e + 1) with
1 1 1
-—=—+...+—.
r

r I'm
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Then, by Lemma 3.1,
sup p(t)w({y € R : MZ(T;)(v) > t})

<Supgo(t)w<{y€]R”' {Mq)(f 113 balone M (T,;q,f)(y)}w})

t>0 j=1oeCy
<G, sup p(t)w({y € R" : Mo(f)(y) > t})

+C,, Z Z sup p(t)w({y € R" : M( T; (Ibsll0sce e F(W) > t}).

j=1 GGC’” >0

¢ < 1, and we have already checked that the distribution set on the left-hand side
is finite, so combining the Fefferman—Stein lemma with the induction hypothesis on
(3.19) with TE , we can estimate the last expression by

Cm Z Z SUP QD(t W({y eR": ( BJ,(HbGHOS(rexera f))(y) > [})

j=10eCy >
cmz > supo(w(ly R : Ma, (16 llose,, 1, sl 0seeyirs ) > 1)
j=1 rEC’" >0
<Gy Z > supo(w({y € R" : Mg, () > 1}).
j=1 oeCy’ >0

since
1667 [l 0se [b61l0sceprre = I = 1.

Finally, using the trivial observation that

Ma, () < Ma, () = Ma(f),

expLa’

we have

sup e(w({y € R" : MI(Tyf)(y) > 1}) < G sup p(tw({y € R" : Mo(f)(y) > t}),

and claim (3.19) is proved.

We need the following lemma concerning estimates of the maximal operator Mg,
which is a more general version than the one given in [20, Lemma 8.3]. The proof
is standard, and we shall omit it.

LeEMMA 3.2. Let w € Ay. Then there exists a positive constant C such that, for any
t > 0 and any locally integrable function f,

n If ()
Wiy €R": Mof(y) > ) <C | 0 (t w(y)dy.
We are now in position to prove Theorem 1.5.

Proof of Theorem 1.5. By homogeneity, it is enough to assume that t = ||b|| = 1,
and hence we must prove that

w({y e R" :[Tpf(y)] > 1}) < J O w(y) dy
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Now, since @ is submultiplicative, namely ®(ab) < 20(a)d(b), a, b = 0, we have
by Theorem 1.6 and Lemma 3.2,

Wy € R [Ty ()] > 1) < Csup —rwlly € R < Ty (0)] > 1})
ot q)(t)
< Csup 11 w({y € R" : Mof(y) > t})
>0 (I)<>
t
1
<Csup—r— 1 (|f(Y)|) w(y) dy
>0 q)<t>
1 1
< Csup—r | oo (1) v dy
>0 (I)<> R»
t
<c| armimma.
and the proof is concluded. O
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