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SHARP WEIGHTED ESTIMATES FOR MULTILINEAR
COMMUTATORS

C. PÉREZ and R. TRUJILLO-GONZÁLEZ

Abstract

Multilinear commutators with vector symbol ~b = (b1, . . . , bm) defined by

T~b(f)(x) =

∫
Rn

 m∏
j=1

(bj (x)− bj (y))

K(x, y)f(y) dy

are considered, where K is a Calderón–Zygmund kernel. The following a priori estimates are proved for
w ∈ A∞. For 0 < p < ∞, there exists a constant C such that

‖Ṫ~b(f)‖Lp(w) 6 C‖~b‖‖ML(logL)1/r (f)‖Lp(w)

and

sup
t>0

1

Φ( 1
t )
w({y ∈ Rn : |T~bf(y)| > t}) 6 C sup

t>0

1

Φ( 1
t )
w({y ∈ Rn : M

L(logL)1/r (‖~b‖f)(y) > t}),

where

‖~b‖ =

m∏
j=1

‖bj‖osc
expL

rj
,

Φ(t) = t log1/r(e+ t),
1

r
=

1

r1
+ . . .+

1

rm
,

and ML(logL)α is an Orlicz type maximal operator. This extends, with a different approach, classical results
by Coifman.

As a corollary, it is deduced that the operators T~b are bounded on Lp(w) when w ∈ Ap, and that they

satisfy corresponding weighted L(logL)1/r-type estimates with w ∈ A1.

1. Introduction

The main purpose of this paper is to prove sharp estimates for multilinear
commutators involving nonstandard symbols. These will be established by means
of appropriate maximal operators that somehow control the commutators. This
illustrates the classical Calderón–Zygmund principle, which roughly states that any
singular integral operator is controlled by a suitable maximal operator.

1.1. Background

Motivated by the work of Calderón on commutators, Coifman, Rochberg and
Weiss introduced in [8] the operator

Tbf(x) =

∫
Rn

(b(x)− b(y))K(x, y)f(y) dy, (1.1)
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where K is a kernel satisfying the standard Calderón–Zygmund estimates (see
Section 3.1), and b, the ‘symbol’ of the operator, is any locally integrable function.
The operator is called a commutator since Tb = [b, T ] = bT − T (b·), where T is
the Calderón–Zygmund singular integral operator associated to K . The main result
from [8] states that [b, T ] is a bounded operator on Lp(Rn), 1 < p < ∞, when the
symbol b is a BMO function.

These commutators have proved to be of interest in many situations. We only
mention the recent results in the theory of non-divergent elliptic equations with
discontinuous coefficients [3, 4, 9]. There is also an interesting connection, as pointed
out in [21], with the nonlinear commutator considered by Rochberg and Weiss in
[23] and defined by

f −→ Nf = T (f log |f|)− Tf log |Tf|.
This in turn is related to the Jacobian mapping of vector functions and with
nonlinear partial differential equations, as shown in [13, 14].

A natural generalization of the commutator [b, T ] is given by

Tm
b f(x) =

∫
Rn

(b(x)− b(y))mK(x, y)f(y) dy, (1.2)

where m ∈ N. The case m = 0 recaptures the Calderón–Zygmund singular integral
operator.

It was shown in [21] that there is an intimate connection between the commutator
Tm
b and iterations of the maximal operators. Indeed, the main theorem from [8] was

sharpened in [21] as follows: for any 0 < p < ∞ and any w ∈ A∞, there is a constant
C such that ∫

Rn

|Tm
b f(x)|pw(x) dx 6 C‖b‖mpBMO

∫
Rn

(Mm+1f(x))pw(x) dx, (1.3)

where Mm+1 denotes the m+1 iterations of the Hardy–Littlewood maximal operator,
namely

Mm =

(m times)︷ ︸︸ ︷
M ◦ . . . ◦M .

Furthermore, this inequality is sharp, since, by the Lebesgue differentiation theorem,
Mm+1 cannot be replaced by the smaller operator Mm.

Estimate (1.3) can also be seen as a generalization of a by now classical result of
Coifman for Calderón–Zygmund singular integral operators. See [6, 7].

A weak version of inequality (1.3) is obtained in [20]. Indeed, if we let Φm(t) =
t logm(e+ t), for any w ∈ A∞ and b ∈ BMO there is a constant C such that

sup
t>0

1

Φm( 1
t
)
w({y ∈ Rn : |Tm

b f(y)| > t}) 6 C sup
t>0

1

Φm( 1
t
)
w({y ∈ Rn : Mm+1f(y) > t}).

(1.4)
A priori inequalities of the form (1.3) (or (1.4)) encode a considerable amount

of information about the behavior of the operator. The first observation is that in
any case they reflect the higher degree of singularity of Tm

b , as compared with T ,
since a larger operator than M, namely Mm+1, is needed to balance the inequality.
As a second instance, if p > 1, we can apply Muckenhoupt’s theorem m+ 1 times to
conclude from (1.3) the well known fact that high-order commutators are bounded
on Lp(w) whenever w ∈ Ap. It should be mentioned that this Ap estimate follows,
as is well known, from an estimate due to Strömberg (see [15, p. 268; 25, p. 417]).
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This method is powerful, and it can be applied to various situations. As an example,
we refer the reader to [11] for a very nice application to commutators with strongly
singular integral operators. However, this estimate of Strömberg is not sharp enough
to derive (1.3) or (1.4). In fact, the following ((L logL)-type) endpoint estimate first
deduced in [20] can be shown from (1.4). Let w ∈ A1 and b ∈ BMO; then there
exists a constant C such that, for all λ > 0,

w({y ∈ Rn : |Tm
b f(y)| > λ}) 6 C

∫
Rn

|f(y)|
λ

(
1 + log+

( |f(y)|
λ

))m
w(y) dy.

(1.5)

As a third instance, it was shown in [21] that estimate (1.3) implies sharp two
weighted inequalities for the commutator of the form∫

Rn

|Tm
b f(x)|pw(x) dx 6 C‖b‖mpBMO

∫
Rn
|f(x)|pM[(m+1)p]+1w(x) dx,

where no condition on the weight w is assumed. This result is an extension of the
case m = 0 proved in [18] that generalized some previous partial results by Wilson
[26]. The approach considered in [18] is different from that in [26], and it combines
(1.3) with certain sharp two weighted estimates for the Hardy–Littlewood maximal
function derived in [19].

Finally, there is a relationship between (1.4) and the endpoint behavior of the
operator. Indeed, an interesting observation that occurs in the development of the
theory of commutators is that the Lp theory, p > 1, was developed without an appeal
to any endpoint estimate. On the other hand, it is well known that in the classical
Calderón–Zygmund Lp theory, p > 1, a crucial step is to show that the operators
are of weak type (1, 1). However, this is not the case with the commutator [b, T ]
when b ∈ BMO as shown in [20] and estimate (1.5) is the correct replacement. This
can be seen as another way of expressing the fact that commutators have a higher
degree of singularity than the Calderón–Zygmund singular integral operators.

1.2. Results of the paper

In this paper, we obtain similar estimates for a wider class of commutators. Given
a Calderón–Zygmund singular integral operator T with kernel K in Rn ×Rn and
a vector ~b = (b1, . . . , bm) of locally integrable functions, we define the multilinear
operator

T~bf(x) =

∫
Rn

 m∏
j=1

(bj(x)− bj(y))

K(x, y)f(y) dy, (1.6)

generalizing the commutator (1.2). We refer the reader to [7] for an extensive study
of multilinear operators.

We will be considering the following class of symbols: for r > 1 and for any
locally integrable function f, we define

‖f‖oscexpLr
= sup

Q

‖f − fQ‖expLr,Q,

which is the supremum taken over all the cubes Q with sides parallel to the axes.
Here ‖g‖expLr,Q is the mean value of g on the cube Q with respect to the Young
function Φ(t) = et

r−1. See Section 2.2 for the precise definition. As usual, fQ denotes
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the average of f on Q. For r > 1, we define the space OscexpLr by

OscexpLr = {f ∈ L1
loc(R

n) : ‖f‖OscexpLr
< ∞}.

In the particular case of r = 1, OscexpL1 coincides with the BMO space by the
John–Nirenberg theorem. Also we have OscexpLr ( BMO for any r > 1. Other
examples are provided by Trudinger’s inequality for Riesz potentials. To be more
precise, for any 0 < α < n and any f ∈ Ln/α(Rn), the Riesz potential Iαf of order α
belongs to OscexpL(n/α)′ (cf. [12, 27]).

For the statement of our results, we introduce some notation that will simplify
the presentation. Throughout this paper, m will always be the number of symbols of
the operator T~b where ~b = (b1, . . . , bm) is a family of m locally integrable functions.
If r1, . . . , rm are m positive real numbers, we denote

1

r
=

1

r1
+ . . .+

1

rm

and

‖~b‖ =

m∏
j=1

‖bj‖Osc
expL

rj
.

Our main results are the following.

Theorem 1.1. Let 0 < p < ∞, w ∈ A∞. Suppose that T~bf is the commutator (1.6),
where b is as above such that bi ∈ OscexpLri , ri > 1, 1 6 i 6 m. Then there exists a
constant C > 0 such that∫

Rn

|T~b(f)(x)|pw(x) dx 6 C‖~b‖p
∫
Rn

(ML(logL)1/r (f)(x))pw(x) dx (1.7)

for all bounded functions f with compact support.

For the precise definition of the operator ML(logL)α , see Section 2.2.
Inequality (1.7) shows that the maximal operator ML(logL)1/r is the one that controls

the multilinear commutators Tb. Since ri > 1 for each i, it follows that ML(logL)1/r

is pointwise smaller than ML(logL)m , and this in turn is known to be equivalent to
m + 1 iterations of the Hardy–Littlewood maximal operator Mm+1. Hence we can
use Muckenhoupt’s theorem again and deduce the boundedness of Tb on Lp(w) for
p > 1 and any w ∈ Ap.

Corollary 1.2. Let 1 < p < ∞ and w ∈ Ap. Suppose that T~bf is the commutator
(1.6), where b is as above such that bi ∈ OscexpLri , ri > 1, 1 6 i 6 m. Then there exists
a constant C > 0 such that∫

Rn

|T~b(f)(x)|pw(x) dx 6 C‖~b‖p
∫
Rn

|f(x)|pw(x) dx (1.8)

for all bounded functions f with compact support.

As mentioned above, this estimate is a generalized version of Coifman’s result in
[6]. However, our approach is different, and it is based on a pointwise inequality
that can roughly be expressed as

M
#
δ (T~bf)(x) 6 C‖~b‖ML(logL)1/r f(x) + R(f)(x) (1.9)
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for an appropriate positive but small enough number δ. R denotes a certain ‘remain-
der’ operator that is smoother and less singular than ML(logL)1/r in some suitable
sense. See Lemma 3.1 for a complete and precise statement of this estimate.

Moreover, reasoning as in [21, Theorem 2], from this theorem we deduce the
following estimate for general weights. As usual, [α] denotes the integer part of α.

Theorem 1.3. Let 1 < p < ∞, and let T~b be as in Theorem 1.1. Then there exists
a constant C such that, for any weight w,∫

Rn

|T~b(f)(x)|pw(x) dx 6 C‖~b‖p
∫
Rn

|f(x)|pM[(1/r+1)p]+1(w)(x) dx

for all bounded functions f with compact support.

Remark 1.4. We remark that the number of iterations of the maximal function
needed in the theorem is optimal, as can be seen in [21, Section 5]. In fact, it follows
from the proof of Theorem 1.3 that there is a sharper estimate∫

Rn

|T~b(f)(x)|pw(x) dx 6 C‖~b‖p
∫
Rn

|f(x)|pML(logL)(1/r+1)p−1+ε (w)(x) dx,

where ε > 0, the result being false for ε = 0.

The key pointwise estimate (1.9) is also used to derive the next endpoint result.
Recall that commutators with BMO functions are not of weak type (1, 1).

Also, recall that we denote ‖~b‖ =
∏m

j=1 ‖bj‖OscexpL
rj

and Φ(t) = t log1/r(e+t), where

1

r
=

1

r1
+ . . .+

1

rm
.

Theorem 1.5. Let w ∈ A1. There exists a constant C > 0 such that, for all λ > 0,

w({y ∈ Rn : |T~bf(y)| > λ}) 6 C
∫
Rn

Φ

(
‖~b‖|f(y)|

λ

)
w(y) dy (1.10)

for all bounded functions f with compact support and for all ~b.

The proof is based on the following result, which generalizes inequality (1.4).

Theorem 1.6. Let w ∈ A∞. Then there exists a positive constant C such that

sup
t>0

1

Φ( 1
t
)
w({y ∈ Rn : |T~bf(y)| > t}) 6 C sup

t>0

1

Φ( 1
t
)
w({y ∈ Rn : MΦ(‖~b‖f)(y) > t})

(1.11)
for all bounded functions f with compact support.

In any of the above results, if we choose b1 = . . . = bm and r1 = . . . = rm = 1, then
we recover completely the corresponding results from [20, 21].

As usual, C denotes a positive constant that can change its value on each
statement. If the constant depends on precise parameters, it will be pointed out.

2. Preliminaries

In this section we introduce the basic tools needed for the proof of the main
results.
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2.1. Fefferman–Stein inequality for A∞ weights

A ‘weight’ will always mean a positive function that is locally integrable. We say
that a weight w belongs to the class Ap, 1 < p < ∞, if there is a constant C such that(

1

|Q|
∫
Q

w(y) dy

)(
1

|Q|
∫
Q

w(y)1−p′dy
)p−1

6 C

for each cube Q, where, as usual, 1/p + 1/p′ = 1. A weight w belongs to the class
A1 if there is a constant C such that

1

|Q|
∫
Q

w(y) dy 6 C inf
Q
w.

We will denote the infimum of the constants C by [w]Ap . Observe that [w]Ap > 1 by
Jensen’s inequality.

Since the Ap classes are increasing with respect to p, the A∞ class of weights is
defined in a natural way by A∞ =

⋃
p>1 Ap. However, the following characterization

is more interesting. There are positive constants c and ρ such that, for any cube Q
and any measurable set E contained in Q,

w(E)

w(Q)
6 c

( |E|
|Q|
)ρ

.

A simple fact that will be useful is that, for any w ∈ Ap and any m > 0,
wm = min{w,m} ∈ Ap with [wm]Ap 6 Cp[w]Ap . For more information on Ap weights
we refer the reader to [10, 25].

We recall now the definitions of classical maximal operators. If, as usual, M
denotes the Hardy–Littlewood maximal operator, we consider, for δ > 0,

Mδf(x) = M(|f|δ)1/δ(x) =

(
sup
Q3x

1

|Q|
∫
Q

|f(y)|δ dy
)1/δ

,

M#(f)(x) = sup
Q3x

inf
c

1

|Q|
∫
Q

|f(y)− c| dy ≈ sup
Q3x

1

|Q|
∫
Q

|f(y)− fQ| dy,
and a variant of this sharp maximal operator that will become the main tool in our
scheme:

M
#
δ f(x) = M#(|f|δ)(x)1/δ.

The main inequality between these operators to be used is a version of the classical
one due to Fefferman and Stein (see [16, 24]).

Lemma 2.1. Let w be an A∞ weight. Then there exists a constant c depending upon
the A∞ condition of w such that, for all λ, ε > 0,

w({y ∈ Rn : Mf(y) > λ, M#f(y) 6 λε}) 6 cερw
({

y ∈ Rn : Mf(y) >
λ

2

})
.

As a consequence, we have the following estimates for δ > 0.

(a) Let ϕ : (0,∞) −→ (0,∞) doubling. Then there exists a constant c depending
upon the A∞ condition of w and the doubling condition of ϕ such that

sup
λ>0

ϕ(λ)w({y ∈ Rn : Mδf(y) > λ}) 6 c sup
λ>0

ϕ(λ)w({y ∈ Rn : M#
δ f(y) > λ}) (2.1)

for every function such that the left-hand side is finite.
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(b) Let 0 < p < ∞. There exists a positive constant C depending upon the A∞
condition of w and p such that∫

Rn

(Mδf(x))pw(x) dx 6 C

∫
Rn

(M#
δ f(x))pw(x) dx (2.2)

for every function f such that the left-hand side is finite

2.2. Orlicz maximal functions

By a Young function Φ, we will mean a continuous, nonnegative, strictly increasing
and convex function on [0,∞) with

lim
t→0+

Φ(t)

t
= lim

t→∞
t

Φ(t)
= 0.

We define the Φ-averages of a function f over a cube Q by

‖f‖Φ,Q = ‖f‖Φ(L),Q = inf

{
λ > 0 :

1

|Q|
∫
Q

Φ

( |f(x)|
λ

)
dx 6 1

}
.

For Orlicz norms, we are usually only concerned about the behavior of Young
functions for large values of t. Given two functions B and C , we write B(t) ≈ C(t)
if B(t)/C(t) is bounded and bounded below for t > c > 0. We also recall that if
B(t) 6 C(t) for t > c > 0, then

‖f‖B,Q 6 C‖f‖C,Q,
with C an absolute constant. For more information on the subject, see [22].

Associated to this average, we can define a maximal operator MΦ given by

MΦf(x) = MΦ(L)f(x) = sup
Q3x
‖f‖Φ,Q,

where the supremum is taken over all the cubes containing x.
For example, if Φ(x) = ex

r − 1, then ‖ · ‖expLr,Q and MexpLr , denote the Φ-average
and the maximal operator associated to Φ, respectively. Similarly, we have for
Φ(x) = x logr(e+ x), ‖ · ‖L(logL)r ,Q and ML(logL)r . Observe that by the above remarks,
Mf 6 CML(logL)r f for any r > 0. These examples will be relevant in our work.

Finally, we will be using the following known pointwise inequality. If m ∈ N, then

ML(logL)m ∼Mm+1 =

(m+1 times)︷ ︸︸ ︷
M ◦ . . . ◦M,

the m+ 1 iterations of the Hardy–Littlewood maximal operator. A generalization of
this equivalence can be found in [2].

We begin with some technical lemmas on convex functions whose proofs are
standard.

Lemma 2.2 [17, Lemma 2.1]. If Φ0,Φ1, . . . ,Φm are real-valued, non-negative, non-
decreasing, left continuous functions defined on [0,∞) such that, with the definition

Φ−1
i (x) = inf{y : Φi(y) > x},

it verifies

Φ−1
1 (x)Φ−1

2 (x) . . .Φ−1
m (x) 6 Φ−1

0 (x), (2.3)
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then, for all 0 6 x1, x2, . . . , xm < ∞,

Φ0(x1x2 . . . xm) 6 Φ1(x1) + Φ2(x2) + . . .+ Φm(xm).

Lemma 2.3. Let Φ0 be a convex function such that Φ0(0) = 0, and let Φ1, . . . , Φm

as in the previous lemma, all verifying (2.3). If f1, f2, . . . , fm are functions satisfying
‖fi‖Φi ,Q < ∞ for all 1 6 i 6 m and for a given cube Q, then

‖f1 . . . fm‖Φ0 ,Q 6 m‖f1‖Φ1 ,Q . . . ‖fm‖Φm,Q. (2.4)

Proof. Taking ε > 0 small enough, by Lemma 2.2 and convexity,

1

|Q|
∫
Q

Φ0

(
f1(x)f2(x) . . . fm(x)

m(‖f1‖Φ1 ,Q + ε)(‖f2‖Φ2 ,Q + ε) . . . (‖fm‖Φm,Q + ε)

)
dx

6
1

m

1

|Q|
∫
Q

Φ0

(
f1(x)f2(x) . . . fm(x)

(‖f1‖Φ1 ,Q + ε)(‖f2‖Φ2 ,Q + ε) . . . (‖fm‖Φm,Q + ε)

)
dx

6
1

m

1

|Q|
∫
Q

[
Φ1

(
f1(x)

‖f1‖Φ1 ,Q + ε

)
+ . . .+ Φm

(
f1(x)

‖fm‖Φm,Q + ε

)]
dx 6 1,

which implies that

‖f1f2 . . . fm‖Φ0 ,Q 6 m(‖f1‖Φ1 ,Q + ε) . . . (‖fm‖Φm,Q + ε).

Now, letting ε→ 0, we get (2.4). q

The main example that we will be using is the following:

1

|Q|
∫
Q

|f1 . . . fmg| 6 C‖f1‖expLr1 ,Q . . . ‖fm‖expLrm ,Q‖g‖L(logL)1/r ,Q, (2.5)

where r1, . . . , rm > 1 and
1

r
=

1

r1
+ . . .+

1

rm
.

Indeed, in this case, we can write for any x > 0 that

log1/r1 (1 + x) . . . log1/rm (1 + x)
x

log1/r1+...+1/rm (e+ x)
6 x.

Then (2.3) holds for

Φ0(x) = x,

Φ−1
i (x) = log1/ri (1 + x),

i = 1, . . . , m, and

Φ−1
m+1(x) =

x

log1/r1+...+1/rm (e+ x)
.

The inverse functions are given by Φi(x) = ex
ri − 1, i = 1, . . . , m, and Φm+1(x) ≈

x log1/r1+...+1/rm (e+ x).

2.3. The oscillation of a function

We define the oscillation OscΦ(f, Q) of a function f with respect to any Young
function Φ as

OscΦ(f, Q) = ‖f − fQ‖Φ,Q.

We list the following properties that are very easy to check.
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Lemma 2.4. For any cube Q and any locally integrable functions f and g, we have
the following:

(i) OscΦ(f ± g, Q) 6 OscΦ(f, Q) + OscΦ(g, Q).
(ii) OscΦ(λf, Q) = |λ|OscΦ(f, Q) for all λ ∈ R.
(iii) OscΦ(|f|, Q) 6 2OscΦ(f, Q).
(iv) OscΦ(min{f, g}, Q) 6 3

2
(OscΦ(f, Q) + OscΦ(g, Q)).

(v) OscΦ(max{f, g}, Q) 6 3
2
(OscΦ(f, Q) + OscΦ(g, Q)).

Given a function g, we define, for any N ∈ N,

gN(x) =

 N g(x) > N

g(x) |g(x)| 6 N
−N g(x) < −N.

(2.6)

Now, from Lemma 2.4, and taking into account that gN = max{min{g,N},−N},
we infer that, for any locally integrable function, OscΦ(gN, Q) 6 COscΦ(g, Q), and
consequently

‖gN‖OscΦ
6 C‖g‖OscΦ

(2.7)

for all N ∈ N and where C > 0 is an absolute constant.

3. Proofs of the main results

3.1. Proof of Theorem 1.1

By a kernel K in Rn ×Rn, we mean a locally integrable function defined away
from the diagonal. We say that K satisfies the standard estimates if there exist
positive and finite constants γ and C such that, for all distinct x, y ∈ Rn and all z
with 2|x− z| < |x− y|, the following hold:

(i) |K(x, y)| 6 C|x− y|−n.
(ii) |K(x, y)−K(z, y)| 6 C|(x− z)/(x− y)|γ|x− y|−n.

(iii) |K(y, x)−K(y, z)| 6 C|(x− z)/(x− y)|γ|x− y|−n.
We define a linear and continuous operator T : C∞0 (Rn) −→ D′(Rn) associated to

the kernel K by

Tf(x) =

∫
Rn

K(x, y)f(y) dy,

where f ∈ C∞0 (Rn) and x is not in the support of f. T is called a Calderón–Zygmund
operator if K satisfies the standard estimates and if it extends to a bounded linear
operator on L2(Rn). These conditions imply that T is also bounded on Lp(Rn),
1 < p < ∞, and is of weak type (1, 1). For more information on this subject, see
[5, 7, 16].

Given any positive integer m, for all 1 6 j 6 m, we denote by Cm
j the family of

all finite subsets σ = {σ(1), . . . , σ(j)} of {1, . . . , m} of j different elements. For any
σ ∈ Cm

j , we associate the complementary sequence σ′ given by σ′ = {1, 2, . . . , m}\σ.

Let ~b = (b1, b2, . . . , bm) be a finite family of integrable functions. For all 1 6
j 6 m and any σ = {σ(1), . . . , σ(j)} ∈ Cm

j , we will denote ~bσ = (bσ(1), . . . , bσ(j))
and the product bσ = bσ(1) . . . bσ(j). With this notation, we write, for any m-tuple
r = (r1, . . . , rm) of positive numbers,

‖~bσ‖OscexpLrσ
= ‖bσ(1)‖Osc

expL
rσ(1)

. . . ‖bσ(j)‖Osc
expL

rσ(j)
.
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For the product of all the functions, we simply write

‖~b‖OscexpLr
= ‖b1‖OscexpLr1

. . . ‖bm‖OscexpLrm
.

For any σ ∈ Cm
j , we denote

T~bσ
f(x) =

∫
Rn

(bσ(1)(x)− bσ(1)(y)) . . . (bσ(j)(x)− bσ(j)(y))K(x, y)f(y) dy.

In the particular case of σ = {1, . . . , m}, we understand T~bσ
as simply T~b.

Finally, observe that T~b(f) satisfies the following homogeneity on the symbol

T~b

(
f

‖~b‖

)
= T~̃b

(f)

where

b̃ = (b1/‖b1‖Osc
expL

rj
, . . . , bm/‖bm‖OscexpLrm

)

such that ‖b̃‖ = 1.

The following lemma gives a pointwise estimate of M#
δ (T~bf) in terms of other

maximal functions of operators of lower order. This result can be understood as
the extension of [20, Lemma 7.1] to high-order commutators and for the classes of
symbol considered in this paper.

Lemma 3.1. Let T~b be as in Theorem 1.1, and let 0 < δ < ε < 1. Then there exists
a constant C > 0, depending only on δ and ε, such that

M
#
δ (T~bf)(x) 6 C

‖~b‖ML(logL)1/r f(x) +

m∑
j=1

∑
σ∈Cmj
‖bσ‖OscexpLrσ

Mε(T ~bσ ′f)(x)

 (3.1)

for any bounded function f with compact support.

Recall that

‖~b‖ =

m∏
j=1

‖bj‖Osc
expL

rj
.

Proof of Lemma 3.1. Recall that the operator T~b = Tb1 ,...,bm is defined by

T~bf(x) =

∫
Rn

 m∏
j=1

(bj(x)− bj(y))

K(x, y)f(y) dy.

By homogeneity, we can assume that ‖~b‖ = 1.
We first consider the case m = 1. We only have one symbol b ∈ OscexpLr , r > 1,

and (3.1) becomes

M
#
δ (Tbf)(x) 6 C‖b‖OscexpLr

[ML(logL)1/r f(x) +Mε(Tf)(x)]. (3.2)

For any λ ∈ R, we have

Tbf(x) =

∫
Rn

(b(x)− b(y))K(x, y)f(y) dy

= (b(x)− λ)Tf(x)− T ((b− λ)f)(x).

Now, for fixed x ∈ Rn, for any number c and any ball B centered at x and radius
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R > 0, since 0 < δ < 1 implies that ||α|δ − |β|δ | 6 |α− β|δ for any α, β ∈ R, we can
estimate that(

1

|B|
∫
B

∣∣|Tbf(y)|δ − |c|δ∣∣ dy)1/δ

6

(
1

|B|
∫
B

|Tbf(y)− c|δ dy
)1/δ

6 C

[(
1

|B|
∫
B

|(b(y)− λ)Tf(y)|δ dy
)1/δ

+

(
1

|B|
∫
B

|T ((b− λ)f)(y)− c|δ dy
)1/δ

]
= I + II.

We analyze each term separately, and we let λ = (b)2B , the average of b over the
ball 2B. For any 1 < q < ε/δ, we have, by Hölder and Jensen’s inequality,

I 6 C

(
1

|2B|
∫

2B

|b(y)− λ|δq′ dy
)1/δq′ (

1

|B|
∫
B

|Tf(y)|δq dy
)1/δq

6 C‖b‖OscexpLr
Mδq(Tf)(x)

6 CMε(Tf)(x). (3.3)

To deal with II, we split f as usual by f = f1+f2, where f1 = fχ2B and f2 = f−f1.
This yields

II 6 C

[(
1

|B|
∫
B

|T ((b− λ)f1)(y)|δ dy
)1/δ

+

(
1

|B|
∫
B

|T ((b− λ)f2)(y)− c|δ dy
)1/δ

]
= III + IV.

For III, since (b−λ)f1 is integrable and T is of weak type (1, 1), by Kolmogorov’s
inequality [25, p. 104] and (2.5), we get

III 6
C

|2B|
∫

2B

|b(y)− λ)||f(y)| dy
6 C‖b− λ‖expLr,2B‖f‖L(logL)1/r ,2B

6 C‖b‖OscexpLr
ML(logL)1/r f(x)

= CML(logL)1/r f(x). (3.4)

For the last term IV, we make the election c = (T ((b − λ)f2))B . Hence, by Jensen’s
inequality, it follows that

IV 6
C

|B|
∫
B

|T ((b− λ)f2)(y)− T ((b− λ)f2))B | dy

=
C

|B|
∫
B

∣∣∣∣(∫
Rn

K(y, w)(b(w)− λ)f2(w) dw

)
− 1

|B|
∫
B

(∫
Rn

K(z, w)(b(w)− λ)f2(w) dw

)
dz

∣∣∣∣ dy
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=
C

|B|
∫
B

∣∣∣∣ 1

|B|
∫
B

[∫
Rn\2B

(K(y, w)−K(z, w))(b(w)− λ)f(w) dw

]
dz

∣∣∣∣ dy
6

C

|B|2
∫
B

∫
B

[∫
Rn\2B

|K(y, w)−K(z, w)||b(w)− λ||f(w)| dw
]
dzdy

6
C

|B|2
∫
B

∫
B

[ ∞∑
k=1

∫
2kR6|w−x|<2k+1R

∣∣∣∣ y − zy − w
∣∣∣∣γ 1

|y − w|n |b(w)− λ||f(w)| dw
]
dzdy

6 C
∞∑
k=1

(
2R

2kR

)γ
1

(2kR)n

∫
2k+1B

|b(w)− λ||f(w)| dw

6 C
∞∑
k=1

2−kγ‖b− λ‖expLr,2k+1B‖f‖L(logL)1/r ,2k+1B. (3.5)

The fifth inequality follows because y, z ∈ B and w ∈ Rn\B, and therefore 2|y−w| <
|z−w|. The sixth does since |y− z| 6 2R and |y−w|−1 6 ((2k − 1)R)−1 6 C(2kR)−1,
and the last one is an application of the generalized Hölder inequality (2.5).

Now, we claim that

‖b− λ‖expLr,2k+1B 6 Ck‖b‖OscexpLr
. (3.6)

Indeed

‖b− λ‖expLr,2k+1B 6 ‖b− (b)2k+1B‖expLr,2k+1B + ‖(b)2k+1B − λ‖expLr,2k+1B

6 ‖b− (b)2k+1B‖expLr,2k+1B + |(b)2k+1B − λ|
6 Ck‖b‖OscexpLr

,

where the last estimate follows by the standard inequality |(b)2B − bB | 6 2‖b‖OscexpLr

(cf. [16, p. 31]), and then we take the supremum over the balls.

Thus IV is estimated by

IV 6 C
∞∑
k=1

(2−k)γk‖b‖OscexpLr
ML(logL)1/r f(x)

6 CML(logL)1/r f(x). (3.7)

From (3.4) and (3.7), we conclude that

II 6 CML(logL)1/r f(x),

which, together with (3.3), gives (3.2) and proves the lemma for m = 1.

Consider now the case m > 2. For any ~λ = (λ1, . . . , λm) ∈ Rn, we have

T~bf(x) =

∫
Rn

(b1(x)− b1(y)) . . . (bm(x)− bm(y))K(x, y)f(y) dy

=

∫
Rn

((b1(x)− λ1)− (b1(y)− λ1)) . . . ((bm(x)− λm)

− (bm(y)− λm))K(x, y)f(y) dy

=

m∑
j=0

∑
σ∈Cmj

(−1)m−j(b(x)−~λ)σ
∫
Rn

(b(y)−~λ)σ′K(x, y)f(y) dy
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= (b1(x)− λ1) . . . (bm(x)− λm)Tf(x)

+ (−1)mT ((b1 − λ1) . . . (bm − λm)f)(x)

+

m−1∑
j=1

∑
σ∈Cmj

(−1)m−j(b(x)−~λ)σ
∫
Rn

(b(y)− b(x))σ′K(x, y)f(y) dy

Now, expanding (b(y)−~λ)σ′ = [(b(y)− b(x)) + (b(x)−~λ)]σ′ as above, it is easy to see
that

T~bf(x) = (b1(x)− λ1) . . . (bm(x)− λm)Tf(x)

+ (−1)mT ((b1 − λ1) . . . (bm − λm)f)(x)

+

m−1∑
j=1

∑
σ∈Cmj

cm,j(b(x)−~λ)σT ~bσ′
f(x),

where cm,j are absolute constants depending only on m and j.
Now, for fixed x ∈ Rn, for any number c and any ball B centered at x and radius

R > 0, it follows, since 0 < δ < 1,(
1

|B|
∫
B

∣∣|T~bf(y)|δ − |c|δ∣∣ dy)1/δ

6

(
1

|B|
∫
B

|T~bf(y)− c|δdy
)1/δ

6 C

[(
1

|B|
∫
B

|(b1(y)− λ1) . . . (bm(y)− λm)Tf(y)|δdy
)1/δ

+

m−1∑
j=1

∑
σ∈Cmj

(
1

|B|
∫
B

∣∣∣(b−~λ)σT ~bσ′
f(y)

∣∣∣δ dy)1/δ

+

(
1

|B|
∫
B

|T ((b1 − λ1) . . . (bm − λm)f)(y)− c|δdy
)1/δ

]
= I + II + III.

Reasoning as in (3.3) with λi = (bi)2B , i = 1, . . . , m, using this time the standard
Hölder inequality for finitely many functions with 1 < q < ε/δ, we have

I 6 CMε(Tf)(x) (3.8)

and

II 6 C
m−1∑
j=1

∑
σ∈Cmj

Mε(T ~bσ′
f)(x), (3.9)

with C > 0 depending only on m.
For III, we split f = f1 + f2 with f1 = fχ2B and f2 = f − f1. Thus

III 6 C

[(
1

|B|
∫
B

|T ((b1 − λ1) . . . (bm − λm)f1)(y)|δdy
)1/δ

+

(
1

|B|
∫
B

|T ((b1 − λ1) . . . (bm − λm)f2)(y)− c|δdy
)1/δ

]
= IV + V.
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Now, as in (3.4) and again making use of Kolmogorov’s inequality and (2.5), we can
estimate IV by

IV 6
C

|2B|
∫

2B

|b1(y)− λ1| . . . |bm(y)− λm||f(y)| dy
6 C‖b1 − λ1‖expLr1 ,2B . . . ‖bm − λm‖expLrm ,2B‖f‖L(logL)1/r ,2B

6 CML(logL)1/r f(x), (3.10)

recalling that
1

r
=

1

r1
+ . . .+

1

rm
.

Finally, for V, choosing c = (T ((b1 − λ1) . . . (bm − λm)f2))B , and repeating the
argument used to get (3.5), it follows from (2.5) and (3.6) that

V 6 C
∞∑
k=1

2−kγ
1

(2k+1R)n

∫
2k+1B

 m∏
j=1

|bj(w)− λj |
 |f(w)| dw

6 C
∞∑
k=1

2−kγ
 m∏
j=1

‖bj − λj‖expLrj ,2k+1B

 ‖f‖L(logL)1/r ,2k+1B

6 C

[ ∞∑
k=1

2−kγkm
] m∏

j=1

‖bj‖Osc
expL

rj

ML(logL)1/r f(x). (3.11)

Finally, from (3.10) and (3.11), we conclude that

III 6 CML(logL)1/r f(x),

which, together with (3.8) and (3.9), gives (3.1), and the proof of the lemma is
finished. q

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We can assume that∫
Rn

(ML(logL)1/r f(x))pw(x) dx < ∞, (3.12)

since otherwise there is nothing to be proved.
To apply the Fefferman–Stein inequality (2.2), we first take it for granted that
‖Mδ(T~bf)‖Lp(w) is finite. We will check this to the end of the proof.

We proceed by induction on m. For m = 1, by (2.2) and Lemma 3.1, we can
estimate that

‖Tb1
f‖Lp(w) 6 ‖Mδ(Tb1

f)‖Lp(w)

6 C‖M#
δ (Tb1

f)‖Lp(w)

6 C‖b1‖OscexpLr1
[‖Mε(Tf)‖Lp(w) + ‖ML(logL)1/r1 f‖Lp(w)]

6 C‖b1‖OscexpLr1
[‖Tf‖Lp(w) + ‖ML(logL)1/r1 f‖Lp(w)]

6 C‖b1‖OscexpLr1
[‖Mf‖Lp(w) + ‖ML(logL)1/r1 f‖Lp(w)]

6 C‖b1‖OscexpLr1
‖ML(logL)1/r1 f‖Lp(w),
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where the fourth inequality follows since w ∈ A∞, and therefore there exists q > 1
such that w ∈ Aq . Then we can choose ε such that 0 < ε < p/q (we can take
q > p if necessary). The fifth holds by the classical estimate (1.3) for m = 0 (see
[7, Chapter 1]).

Suppose now that for m − 1 the theorem is true, and let us prove it for m. The
same argument as used above and the induction hypothesis give

‖T~bf‖Lp(w) 6 ‖Mδ(T~bf)‖Lp(w)

6 C‖M#
δ (T~bf)‖Lp(w)

6 C

[
‖b1‖OscexpLr1

. . . ‖bm‖OscexpLrm
‖ML(logL)1/r f‖Lp(w)

+

m−1∑
j=1

∑
σ∈Cmj
‖bσ‖OscexpLσ

‖Mε(T ~bσ′
)‖Lp(w)

]

6 C

[
‖b1‖OscexpLr1

. . . ‖bm‖OscexpLrm
‖ML(logL)1/r f‖Lp(w)

+

m−1∑
j=1

∑
σ∈Cmj
‖bσ‖OscexpLσ

‖bσ′ ‖Osc
expLσ

′ ‖ML(logL)1/r
σ′ f‖Lp(w)

]
6 C‖b1‖OscexpLr1

. . . ‖bm‖OscexpLrm
‖ML(logL)1/r f‖Lp(w),

since M
L(logL)1/r

σ′ 6 CML(logL)1/r .

Let us check now that for appropriate δ we have ‖Mδ(T~bf)‖Lp(w) < ∞. Indeed, as
above, since w ∈ A∞, there exists q > 1 such that w ∈ Aq , and we can choose δ small
enough so that p/δ > q. Then, by Muckehoupt’s theorem, the proof is reduced to
checking that ‖Tbf‖Lp(w) < ∞.

Suppose that the symbols bk and the weight w are all bounded functions. Since f
has compact support, we can assume that the support of f is contained in the ball
BR = B(0, R). Then we can split the integral as∫

Rn

|T~bf(x)|pw(x) dx =

∫
|x|62R

|T~bf(x)|pw(x) dx+

∫
|x|>2R

|T~bf(x)|pw(x) dx.

The first integral can easily be estimated by making use of the L∞-boundedness
of the bk and w and the Lq-boundedness for q > 1 of the Calderón–Zygmund
operator T .

For the second term, by the properties of the kernel K and the boundedness of
the symbols bk , since |x| > 2R, we have the following pointwise estimate:

|T~bf(x)| 6 C
∫
BR

|b1(x)− b1(y)| . . . |bm(x)− bm(y)||f(y)|
|x− y|n dy

6
C

|x|n
∫
B(0,|x|)

|f(y)|dy
6 CMf(x)

6 CML(logL)1/r f(x). (3.13)
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Thus ∫
|x|>2R

|T~bf(x)|pw(x) dx 6 C

∫
|x|>2R

(ML(logL)1/r f(x))pw(x) dx,

which is finite by assumption (3.12).
For the general case, we will truncate the symbols bk and the weight w as follows

(cf. [7, p. 40]). We denote by ~bN the vector of truncated elements by N, that
is, ~bN = (bN1 , . . . , b

N
m ), where each bNk is the truncation of bk as defined in (2.6).

Observe that in our case (2.7) becomes

‖bNk ‖OscexpLrk
6 C‖bk‖OscexpLrk

, (3.14)

where C > 0 is a constant independent of N. Analogously, we consider the trunc-
ations of the weight w by wN = inf{w,N} that satisfy

[wN]A∞ 6 C[w]A∞ . (3.15)

Then (1.7) holds for the operator T~bN and the weight wN . Combining (3.14) and
(3.15), this estimate gives∫

Rn

|T~bNf(x)|pwN(x) dx 6 C

 m∏
j=1

‖bj‖pOsc
expL

rj

 ∫
Rn

(ML(logL)1/r f(x))pw(x) dx.

Next, taking into account the fact that f has compact support, we deduce that
any product bNi1 . . . b

N
ik
f converges in any Lq for q > 1 to bi1 . . . bik f as N →∞. Hence

the classical Lq-boundedness of the operator T gives, at least for a subsequence,
that |T~bNf(x)|pwN(x) converges pointwise almost everywhere to |T~bf(x)|pw(x), and
by Fatou’s lemma we conclude that the theorem holds for this general case. The
theorem is proved. q

3.2. Proof of Theorem 1.5

We adapt here some of the arguments from [20]. Since the proof of Theorem 1.5
is based on Theorem 1.6, we prove this first. Namely we must show that

sup
t>0

1

Φ

(
1

t

)w({y ∈ Rn: |T~bf(y)| > t}) 6 C sup
t>0

1

Φ

(
1

t

)w({y ∈ Rn: MΦ(‖~b‖f)(y) > t})

(3.16)

for all bounded functions f with compact support. Recall that Φ(t) = Φ~b(t) =

t log1/r(e+ t).
In fact, we are going to prove something stronger than (3.16), namely the following:
For every ~b, ϕ : (0,∞) −→ (0,∞) doubling with ϕ(t) 6 Ct, t > 0, and for every

0 < δ < 1 there exists a constant C such that

sup
t>0

ϕ(t)w({y ∈ Rn : Mδ(T~bf)(y) > t}) 6 C sup
t>0

ϕ(t)w({y ∈ Rn : MΦ(‖~b‖f)(y) > t})
(3.17)

for all bounded functions f with compact support.
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By the Lebesgue differentiation theorem, and taking

ϕ(t) = Φ

(
1

t

)−1

=
t

log1/r

(
e+

1

t

)
it is clear that (3.17) implies (3.16).

By making use of the weighted version of the Fefferman–Stein Lemma 2.1, and
more precisely estimate (2.1), we have

sup
t>0

ϕ(t)w({y ∈ Rn : Mδ(T~bf)(y) > t}) 6 C sup
t>0

ϕ(t)w({y ∈ Rn : M#
δ (T~bf)(y) > t})

(3.18)
whenever the left-hand side is finite. Therefore (3.17) will follow from

sup
t>0

ϕ(t)w({y ∈ Rn : M#
δ (T~bf)(y) > t}) 6 C sup

t>0
ϕ(t)w({y ∈ Rn : MΦ(‖~b‖f)(y) > t}).

(3.19)

We first check that the left-hand side of (3.18) is finite for all bounded functions
f with compact support. By proceeding as in the proof of Theorem 1.1, we can
assume that b and w are bounded. For the general case of unbounded symbols and
unbounded weight, we reproduce the argument used in the proof of Theorem 1.1,
this time taking into account the weak (1,1) boundedness of the operator T that
gives the convergence in measure.

Suppose that supp f ⊂ BR = B(0, R). Since 0 < δ < 1, it follows that

ϕ(t)w({y ∈ Rn : Mδ(T~bf)(y) > t}) 6 Cϕ(t)|{y ∈ Rn : Mδ(χB2R
T~bf)(y) > t/2}|

+Cϕ(t)|{y ∈ Rn : Mδ(χRn\B2R
T~bf)(y)>t/2}|

= I + II.

For I, we use the fact that M is of weak type (1,1) and that ϕ(t) 6 Ct. Then

I 6 Ct|{y ∈ Rn : M(χB2R
T~bf)(y) > t/2}|

6 C

∫
B2R

|T~bf(y)| dy

6 CRn/2
(∫

Rn

|Tf(y)|2dy
)1/2

,

which is finite since T is a Calderón–Zygmund operator and the fact is used that
the symbols bk are bounded.

For II, we take into account the pointwise estimate (3.13) and the well known
fact that (Mf)δ ∈ A1. Then we have

II 6 Ct|{y ∈ Rn : Mδ(Mf)(y) > Ct}|
6 Ct|{y ∈ Rn : Mf(y) > Ct}|

6 C

∫
Rn

|f(y)| dy < ∞.
Combining the homogeneity and the linearity of T~b, it is easy to see that we can

assume that ‖~b‖ = 1 in both (1.10) and (3.16).
To prove (3.19), we proceed by induction on m.
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3.3. The case m = 1

This case is essentially taken from [20], and we repeat it, with minor modifications,
for the sake of completeness. In this case, the operator Tb is simply defined by one
single function b:

Tbf = [b, T ]f = bT (f)− T (bf),

where T is any Calderón–Zygmund operator. Recall that, by homogeneity, we can
assume that ‖b‖ = ‖b‖OscexpLr

= 1, and therefore what we must prove is

sup
t>0

ϕ(t)w({y ∈ Rn : M#
δ ([b, T ]f)(y) > t})
6 C sup

t>0
ϕ(t)w({y ∈ Rn : ML(logL)1/r (f)(y) > t}) (3.20)

for all bounded functions f with compact support. Now, applying Lemma 3.1 with
any α such that δ < α < 1, we find that the left-hand side of (3.20) is estimated by

C sup
t>0

ϕ(t)w({y ∈ Rn : C[ML(logL)1/r (f)(y) +Mα(Tf)(y)] > t})
6 C sup

t>0
ϕ(t)w({y ∈ Rn : ML(logL)1/r (f)(y) > t})

+C sup
t>0

ϕ(t)w({y ∈ Rn : Mα(Tf)(y) > t}),

where we have also used the doubling condition of ϕ.
Next, considering the estimate

M#
α (Tf)(y) 6 CαMf(y), (3.21)

which holds for all 0 < α < 1 (see [1, Theorem 2.1]), if we further select α such that
0 < δ < α < 1, then the Fefferman–Stein lemma yields

sup
t>0

ϕ(t)w({y ∈ Rn : M#
δ ([b, T ]f)(y) > t})

6 C sup
t>0

ϕ(t)w({y ∈ Rn : ML(logL)1/r (f)(y) > t})
+C sup

t>0
ϕ(t)w({y ∈ Rn : M#

α (Tf)(y) > t})
6 C sup

t>0
ϕ(t)w({y ∈ Rn : ML(logL)1/r (f)(y) > t})

+C sup
t>0

ϕ(t)w({y ∈ Rn : M(f)(y) > t})
6 C sup

t>0
Cϕ(t)w({y ∈ Rn : ML(logL)1/r (f)(y) > t}),

since trivially M(f) = ML(f) 6ML(logL)1/r (f). This finishes the proof of (3.20).

3.4. The general case

Suppose now that (3.19) holds for m − 1, and let us prove it for m. Recall that
Φ(t) = Φb(t) = t log1/r(e+ t) with

1

r
=

1

r1
+ . . .+

1

rm
.
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Then, by Lemma 3.1,

sup
t>0

ϕ(t)w({y ∈ Rn : M#
δ (T~bf)(y) > t})

6 sup
t>0

ϕ(t)w

({
y ∈ Rn : C

[
MΦ(f)(y) +

m∑
j=1

∑
σ∈Cmj
‖bσ‖OscexpLrσ

Mε′ (T~bσ′
f)(y)

]
> t

})
6 Cm sup

t>0
ϕ(t)w({y ∈ Rn : MΦ(f)(y) > t})

+Cm

m∑
j=1

∑
σ∈Cmj

sup
t>0

ϕ(t)w({y ∈ Rn : Mε′ (T~bσ′
(‖bσ‖OscexpLrσ

f))(y) > t}).

ε′ < 1, and we have already checked that the distribution set on the left-hand side
is finite, so combining the Fefferman–Stein lemma with the induction hypothesis on
(3.19) with T~bσ′

, we can estimate the last expression by

Cm

m∑
j=1

∑
σ∈Cmj

sup
t>0

ϕ(t)w({y ∈ Rn : M#
ε′ (T~bσ′

(‖bσ‖OscexpLrσ
f))(y) > t})

6 Cm

m∑
j=1

∑
σ∈Cmj

sup
t>0

ϕ(t)w({y ∈ Rn : MΦ~b
σ′

(‖bσ′ ‖Osc
expL

r
σ′ ‖bσ‖OscexpLrσ

f)(y) > t})

6 Cm

m∑
j=1

∑
σ∈Cmj

sup
t>0

ϕ(t)w({y ∈ Rn : MΦ~b
σ′

(f)(y) > t}),

since

‖~bσ′ ‖Osc
expL

r
σ′ ‖~bσ‖OscexpLrσ

= ‖~b‖ = 1.

Finally, using the trivial observation that

MΦ~b
σ′

(f) 6MΦ~bσ
(f) = MΦ(f),

we have

sup
t>0

ϕ(t)w({y ∈ Rn : M#
δ (T~bf)(y) > t}) 6 Cm sup

t>0
ϕ(t)w({y ∈ Rn : MΦ(f)(y) > t}),

and claim (3.19) is proved.
We need the following lemma concerning estimates of the maximal operator MΦ,

which is a more general version than the one given in [20, Lemma 8.3]. The proof
is standard, and we shall omit it.

Lemma 3.2. Let w ∈ A1. Then there exists a positive constant C such that, for any
t > 0 and any locally integrable function f,

w({y ∈ Rn : MΦf(y) > t}) 6 C
∫
Rn

Φ

( |f(y)|
t

)
w(y) dy.

We are now in position to prove Theorem 1.5.

Proof of Theorem 1.5. By homogeneity, it is enough to assume that t = ‖b‖ = 1,
and hence we must prove that

w({y ∈ Rn : |Tbf(y)| > 1}) 6 C
∫
Rn

Φ(|f(y)|)w(y) dy.
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Now, since Φ is submultiplicative, namely Φ(ab) 6 2Φ(a)Φ(b), a, b > 0, we have
by Theorem 1.6 and Lemma 3.2,

w({y ∈ Rn : |Tbf(y)| > 1}) 6 C sup
t>0

1

Φ

(
1

t

)w({y ∈ Rn : |Tbf(y)| > t})

6 C sup
t>0

1

Φ

(
1

t

)w({y ∈ Rn : MΦf(y) > t})

6 C sup
t>0

1

Φ

(
1

t

) ∫
Rn

Φ

( |f(y)|
t

)
w(y) dy

6 C sup
t>0

1

Φ

(
1

t

) ∫
Rn

Φ(|f(y)|)Φ
(

1

t

)
w(y) dy

6 C

∫
Rn

Φ(|f(y)|)w(y) dy,

and the proof is concluded. q
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16. J. L. Journé, Calderón–Zygmund operators, pseudo-differential operator, and the Cauchy integral of
Calderón, Lecture Notes in Mathematics 994 (Springer, New York, 1983).

17. R. O’neil, ‘Fractional integration in Orlicz spaces’, Trans. Amer. Math. Soc. 115 (1963) 300–328.
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19. C. Pérez, ‘On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator
between weighted Lp-spaces with different weights’, Proc. London Math. Soc. (3) 71 (1995)
135–157.
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