
Multidimensional Modeling with UML Package

Diagrams?

Sergio Luján-Mora1, Juan Trujillo1, and Il-Yeol Song2

1 Dept. de Lenguajes y Sistemas Informáticos
Universidad de Alicante (Spain)
{slujan,jtrujillo}@dlsi.ua.es

2 College of Information Science and Technology
Drexel University (USA)

songiy@drexel.edu

Abstract. The Uni�ed Modeling Language (UML) has become the de
facto standard for object-oriented analysis and design, providing di�er-
ent diagrams for modeling di�erent aspects of a system. In this paper, we
present the development of multidimensional (MD) models for data ware-
houses (DW) using UML package diagrams. In this way, when modeling
complex and large DW systems, we are not restricted to use �at UML
class diagrams. We present design guidelines and illustrate them with
various examples. We show that the correct use of the package diagrams
using our design guidelines will produce a very simple yet powerful de-
sign of MD models. Furthermore, we provide a UML extension by means
of stereotypes of the particular package items we use. Finally, we show
how to use these stereotypes in Rational Rose 2000 for MD modeling.

Keywords: UML, multidimensional modeling, data warehouses, UML ex-
tension, UML packages

1 Introduction

Multidimensional (MD) modeling is the foundation of data warehouses (DW),
MD databases, and OLAP applications. These systems provide companies with
many years of historical information for the decision making process. MD mod-
eling structures information into facts and dimensions. A fact table contains
interesting measures of a business process (sales, deliveries, etc.), whereas a di-
mension table represents the context for analyzing a fact (product, customer,
time, etc.). Various approaches for the conceptual design of MD systems have
been proposed in the last few years [1][2][3][4] to represent main MD structural
and dynamic properties. However, none of them has been accepted as a standard
conceptual model for MD modeling. Due to space constraints, we refer the reader
to [5] for a detailed comparison and discussion about most of these models.

? This paper has been partially supported by the Spanish Ministery of Science and
Technology, project number TIC2001-3530-C02-02.



On the other hand, the Uni�ed Modeling Language (UML) [6] has been
widely accepted as the standard object-oriented (OO) modeling language for
describing and designing various aspects of software systems. Therefore, any ap-
proach using the UML will minimize the e�orts of developers in learning new
diagrams or methodologies for every subsystem to be modeled. Following this
consideration, we have previously proposed in [7] an OO conceptual MD model-
ing approach, based on the UML, for a powerful conceptual MD modeling. This
proposal considers major relevant MD properties at the conceptual level in an
elegant and easy way.

In this paper, we start from our previously presented approach [7] and show
how to apply the grouping mechanism called package provided by the UML. A
package groups classes together into higher level units creating di�erent levels
of abstraction, and therefore, simplifying the �nal model. In this way, when
modeling complex and large data warehouse systems, we are not restricted to
use �at UML class diagrams.

Furthermore, based on our experience in developing real world cases, we
provide design guidelines to properly and easily apply packages to MD modeling.
These design guidelines are extremely relevant for two reasons. First, the UML
Speci�cation does not formally de�ne how to apply packages, and therefore,
di�erent people may use them in di�erent ways. Second, these guidelines are very
close to the natural way both designers and analyzers understand and accomplish
MD modeling. Our experience indicates that these guidelines produce a very
simple yet powerful design of large and complex MD models.

To facilitate the MD modeling using our package diagrams, we provide a
UML extension by using stereotypes of the particular package items we de�ne.
Our extension uses the Object Constraint Language (OCL) [6] for expressing
well-formedness rules of the new de�ned elements, thereby avoiding an arbitrary
use of our extension. Finally, we use these package stereotypes in Rational Rose
2000 for MD modeling to show the applicability of our proposal.

The remainder of the paper is structured as follows: Section 2 brie�y presents
other works related to grouping mechanisms in conceptual modeling. Section 3
summarizes how we have previously used the UML for proper conceptual MD
modeling. Section 4 presents our design guidelines for using packages in MD
modeling. Section 5 presents a case study to show how our guidelines are properly
applied for MD modeling. Section 6 presents the de�nition of our UML extension
in terms of package stereotypes. Section 7 shows how to apply our package
extension in Rational Rose. Finally, Section 8 presents the main conclusions and
introduces our immediate future work.

2 Related Work

The bene�ts of layering modeling diagrams have been widely recognized. Dif-
ferent modeling techniques, such as Data Flow Diagrams, Functional Modeling
(IDEF0), Entity Relationship Model (ER) and the UML make use of some kind
of layering mechanism.



Focusing on the aim of this paper, i.e. data modeling, several approaches
have been proposed to provide grouping mechanisms to the ER to simplify com-
plex diagrams. In [8], the Clustered Entity Model, one of the early attempts at
layering ER diagrams, is presented. In this approach, an ER diagram at a lower
level appears as an entity on the next level. In [9], a model and a technique
for clustering entities in an ER diagram is described. This modeling technique
re�nes ER diagrams into higher-level objects that lead to a description of the
conceptual database on a single page. The great bene�t of this proposal is that
it increases the clarity of the database description, and therefore, facilitates a
better communication between end-users and the database designer. In [10], the
Leveled Entity Relationship Model presents another layering formalism for ER
diagrams.

Regarding the UML, and as it is stated in [11], �There are di�erent views
about how to use UML to develop software systems�. The UML is a complex
modeling language and it lacks a systematic way of guiding the users through
the development of systems. With respect to packages, the UML de�nes them
as a mechanism to simplify complex UML diagrams. However, no formal design
guidelines regarding how to properly use them are clearly stated. In this con-
text, many text books and authors have provided guidelines to apply packages in
general or in a speci�c domain. For example, Fowler states [12]: �I use the term
package diagram for a diagram that shows packages of classes and the depen-
dencies among them�. In a speci�c domain such as web applications, Conallen
states [13] that �A package is merely a mechanism to divide the model into more
manageable pieces� and �Try to avoid making the package hierarchy match the
semantics of the business, and instead use packages as a means of managing the
model�. The author proposes to make packages �comprehensible, cohesive, loosely
coupled and hierarchically shallow �. To the best of our knowledge, no work has
been presented showing the bene�ts of using UML packages for MD modeling.

On the other hand, there have lately been proposed several approaches to ac-
complish the conceptual design of data warehouses following the MD paradigm.
Due to space constraints, we will only make a brief reference to those works
which are close to the research topic of this paper [1][2][3][4]. These MD models
are mainly conceived to gain user requirements and provide an easy to be used
but yet powerful set of graphical elements to facilitate the task of conceptual
modeling as well as the speci�cation of queries. Both [2] and [3] extend the ER
model to use it for MD modeling providing speci�c items such as facts, dimen-
sion levels and so on. [1] and [4] propose di�erent graphical notations for data
warehouse conceptual design.

Motivation: All the above-commented MD approaches use ��at design� in
the sense that all the elements that form a MD model (e.g. facts, dimensions,
classi�cation hierarchies and so on) are represented in the same diagram at
the same level. Therefore, these approaches are not often suitable for huge and
complex MD models in which several facts share many dimensions and their
classi�cation hierarchies, thereby leading to cluttered diagrams that are very
di�cult to read. Based on our experience in designing real-world cases, we argue



that in most cases we need an approach that structures the design of complex
data warehouses at di�erent levels.

3 Object-Oriented Multidimensional Modeling

In this section, we summarize3 how an OO MD model can represent main struc-
tural aspects of MD modeling. The main features considered are the many-to-
many relationships between facts and dimensions, degenerate dimensions, mul-
tiple and alternative path classi�cation hierarchies, and non-strict and complete
hierarchies. In this approach, the main structural properties of MD models are
speci�ed by means of a UML class diagram in which the information is clearly
separated into facts and dimensions.

Dimensions and facts are represented by dimension classes and fact classes,
respectively. Then, fact classes are speci�ed as composite classes in shared aggre-
gation relationships of n dimension classes. The �exibility of shared aggregation
in the UML allows us to represent many-to-many relationships between facts
and particular dimensions by indicating the 1..* cardinality on the dimension
class role. In our example in Fig. 1 (a), we can see how the fact class Sales has
a many-to-one relationship with both dimension classes.

By default, all measures in the fact class are considered additive. For non-
additive measures, additive rules are de�ned as constraints and are included in
the fact class. Furthermore, derived measures can also be explicitly considered
(indicated by / ) and their derivation rules are placed between braces near the
fact class, as shown in Fig. 1 (a).

This OO approach also allows us to de�ne identifying attributes in the fact
class, by placing the constraint {OID} next to an attribute name. In this way
we can represent degenerate dimensions [14][15], thereby representing other fact
features in addition to the measures for analysis. For example, we could store
the ticket number (ticket_num) and the line number (line_num) as degenerate
dimensions, as re�ected in Fig. 1 (a).

With respect to dimensions, every classi�cation hierarchy level is speci�ed
by a class (called a base class). An association of classes speci�es the relation-
ships between two levels of a classi�cation hierarchy. The only prerequisite is
that these classes must de�ne a Directed Acyclic Graph (DAG) rooted in the di-
mension class (constraint {dag} placed next to every dimension class). The DAG
structure can represent both alternative path and multiple classi�cation hierar-
chies. Every classi�cation hierarchy level must have an identifying attribute (con-
straint {OID}) and a descriptor attribute4 (constraint {D}). These attributes
are necessary for an automatic generation process into commercial OLAP tools,
as these tools store this information in their metadata. The multiplicity 1 and
1..* de�ned in the target associated class role addresses the concepts of strictness
and non-strictness, respectively. Strictness means that an object at a hierarchy's
lower level belongs to only one higher-level object (e.g., as one month can be

3 We refer the reader to [7] for a complete description of our approach.
4 A descriptor attribute will be used as the default label in the data analysis.



Fig. 1. Multidimensional modeling using UML

related to more than one season, the relationship between them is non-strict).
Moreover, de�ning the {completeness} constraint in the target associated class
role addresses the completeness of a classi�cation hierarchy (see an example in
Fig. 1 (b)). By completeness we mean that all members belong to one higher-
class object and that object consists of those members only. For example, all the
recorded seasons form a year, and all the seasons that form the year have been
recorded. Our approach assumes all classi�cation hierarchies are non-complete
by default.

The categorization of dimensions, used to model additional features for a
class's subtypes, is represented by means of generalization-specialization rela-
tionships. However, only the dimension class can belong to both a classi�cation
and specialization hierarchy at the same time. An example of categorization for
the Product dimension is shown in Fig. 1 (c).

4 Package Design Guidelines for Multidimensional

Modeling

In this section, based on our experience in real-world cases, we present our de-
sign guidelines for using UML packages in MD modeling following the approach
presented in Section 3. We believe these guidelines are very close to the natural
way that both designers and analyzers accomplish and understand MD model-
ing. Our experience indicates that these guidelines produce a very simple yet
powerful design of MD models. We summarize all the design guidelines in Table
1.

Guideline 0 is the foundation of the rest of the guidelines and summarizes
our overall approach. This guideline closely resembles how data analyzers under-
stand MD modeling. We have divided the design process into three levels (Fig.
2 shows a summary of our proposal):



Level 1 : Model de�nition. A package represents a star schema of a conceptual
MD model. A dependency between two packages at this level indicates that
the star schemas share at least one dimension.

Level 2 : Star schema de�nition. A package represents a fact or a dimension of
a star schema. A dependency between two dimension packages at this level
indicates that the packages share at least one level of a dimension hierarchy.

Level 3 : Dimension/fact de�nition. A package is exploded into a set of classes
that represent the hierarchy levels in a dimension package, or the whole star
schema in the case of the fact package.

The MD model is designed in a top-down fashion by further decomposing a
package. We have limited our proposal to three levels because �deep hierarchies
tend to be di�cult to understand, since each level carries its own meanings� [13].

No Level Guideline
0a At the end of the design process, the MD model will be divided

into three levels: model de�nition, star schema de�nition, and dimen-
sion/fact de�nition

0b Before starting the modeling, de�ne facts and dimensions and remark
the shared dimensions and dimensions that share some hierarchy levels

1 1 Draw a package for each star schema, i.e., for every fact considered
2a 1 Decide which star schemas will host the de�nition of the shared dimen-

sions; according to this decision, draw the corresponding dependencies
2b 1 Group together the de�nition of the shared dimensions in order to

minimize the number of dependencies
3 2 Draw a package for the fact (only one in a star package) and a package

for each dimension of the star schema
4a 2 Draw a dependency from the fact package to each one of the dimension

packages
4b 2 Never draw a dependency from a dimension package to a fact package
5 2 Do not de�ne a dimension twice; if a dimension has been previously

de�ned, import it
6 2 Draw a dependency between dimension packages in order to indicate

that the dimensions share hierarchy levels
7 3 In a dimension package, draw a class for the dimension class (only one

in a dimension package) and a class for every classi�cation hierarchy
level

8 3 In a fact package, draw a class for the fact class (only one in a fact
package) and import the dimension classes with their corresponding
hierarchy levels

9 3 In a dimension package, if a dependency from the current package has
been de�ned at level 2, import the corresponding shared hierarchy
levels

10 3 In a dimension package, when importing hierarchy levels form another
package, it is not necessary to import all the levels

Table 1. Multidimensional modeling guidelines



Fig. 2. The three levels of a MD model explosion using packages

5 Applying Package Design Guidelines: a Case Study

In this section, we use a case study to show how our guidelines5 are properly
applied to MD modeling. We use the supply value chain example taken from
Chapter 5 of [15]. As Kimball states, �The supply side of the business consists
of the steps needed to manufacture the products from original ingredients or
parts...�. Typical DWs that support the supply value chain include seven facts
(Purchase Orders, Deliveries, Materials Inventory, Process Monitoring, Bill of Ma-
terials, Finished Goods Inventory, and Manufacturing Plans) and nine dimensions
(Time, Ingredient, Supplier, Deal, Plant, Ship Mode, Process, Product, and Ware-
house).

In Fig. 3, we show the supply value chain example modeled by our approach
presented in [7]. The fact classes have been �lled in a dark colour, while the
dimension classes in a light colour, and the base classes of the dimension hierar-
chies in white. As seen in Fig. 3, the Time dimension is the only one connected
to all the facts. For the sake of clearness, we have omitted the de�nition of the
classi�cation hierarchy levels for both the Process and Ship Mode dimensions.
Moreover, we have not represented the attributes and methods of the classes
either.

Even though we have tried to obtain a clear model, the model is confusing
because there are a lot of lines that cross each other. Furthermore, it is di�cult
to see at a glance the di�erent dimensions connected to a fact. In short, when
the scale of a model is large and includes a large number of interconnections
among its di�erent elements, it may be very di�cult to understand and manage
it, especially for end users.

Guideline 1 and Guideline 2. Fig. 4 shows the �rst level of the model that is
formed by seven packages that represent the di�erent star schemas that form our
5 For the sake of comprehensibility, we explicitly indicate when we apply each guide-
line.



Fig. 3. A partial complex MD model

case study (G.1). A dashed arrow from one package to another one denotes a de-
pendency between packages, i.e., the packages have some dimensions in common
(G.2a). The direction of the dependency indicates that the common dimensions
shared by the two packages were �rst de�ned in the package pointed to by the
arrow (to start with, we have to choose a star schema to de�ne the dimensions,
and then, the other schemas can use them with no need to de�ne them again).
If the common dimensions had been �rst de�ned in another package, the direc-
tion of the arrow would have been di�erent. In any case, it is better to group
together the de�nition of the common dimensions in order to reduce the number
of dependencies (G.2b).

Guideline 3 and Guideline 4. A package that represents a star schema is
shown as a simple icon with names. The package contents can be dynamically
accessed by �zooming� to a detailed view. For example, Fig. 5 shows the content
of the package Purchase Orders Star (level 2). The fact package Purchase Orders
Fact is represented in the middle of Fig. 5, while the dimension packages are
placed around the fact package (G.3). As it can be seen, a dependency is drawn
from the fact package to each one of the dimension packages, because the fact
package comprises the whole de�nition of the star schema (G.4a). At level 2, it
is possible to create a dependency from a fact package to a dimension package or
between dimension packages, but we do not allow a dependency from a dimension
package to a fact package, since it is not semantically correct in our proposal
(G.4b).



Fig. 4. Level 1: di�erent star schemas of the
supply value chain example Fig. 5. Level 2: Purchase Orders Star

Guideline 5 and Guideline 6. Fig. 6 shows the content of the package Deliv-
eries Star (level 2). As in the previous package, the fact package is placed in the
middle of the �gure and the dimension packages are placed around the fact pack-
age in a star fashion. The three dimension packages (Deal Dimension, Supplier
Dimension, and Time Dimension) have been previously de�ned in the Purchase
Orders Star (Fig. 5), so they are imported in this package6 (G.5). Because of this,
the name of the package where they have been previously de�ned appears below
the package name (from Purchase Orders Star). Since Plant Dimension and Ship
Mode Dimension have been de�ned in the current package, they do not show a
package name. At this level, a dependency between dimension packages indicates
that they share some hierarchy levels (G.6). For example, a dependency between
Plant Dimension and Supplier Dimension is represented because there is a shared
hierarchy7 (ZIP, City, ...), as shown in Fig. 3.

In a similar way, Materials Inventory Star is further decomposed as shown
in Fig. 7 (level 2). All the dimensions that this package contains have been
previously de�ned in other packages. We can notice that it is possible to import
packages de�ned in di�erent star packages.

Guideline 7. The content of the dimension and fact packages is represented at
level 3. The diagrams at this level are only comprised of classes and associations
among them. For example, Fig. 8 shows the content of the package Supplier

6 However, our approach does not forbid de�ning the same dimension twice but with
di�erent names de�ned by views. For example, the designer can de�ne two dimen-
sions, such as Shipment Date and Reception Date with the same structure instead of
de�ning only one Date dimension.

7 We have decided to share a hierarchy for both dimensions to obtain a clearer design,
although the designer may have decided not to do it if such sharing is not totally
feasible.



Fig. 6. Level 2: Deliveries Star Fig. 7. Level 2: Materials Inventory Star

Dimension (level 3), that contains the de�nition of the dimension (Supplier) and
the di�erent hierarchy levels (ZIP, City, County, and State) (G.7). The hierarchy
of a dimension de�nes how the di�erent OLAP operations (roll up, drill down,
etc.) can be applied [15].

Fig. 8. Level 3: Supplier Dimension

Guideline 8. Regarding fact packages, Fig. 9 shows the content of the package
Purchase Orders Fact (level 3). In this package, the whole star schema is displayed:
the fact class (�lled in a dark colour) is de�ned (we show some of its attributes)
and the dimensions with their corresponding hierarchy levels are imported (G.8).
To avoid unnecessary detail, we have hidden the attributes and methods of
dimensions and hierarchy levels.

Guideline 9 and Guideline 10. Fig. 10 shows the content of the package Plant
Dimension (level 3). This dimension shares some hierarchy levels with Supplier
Dimension (Fig. 8). Therefore, we notice that the shared hierarchy levels have
been imported (the name of the package where they have been de�ned appears
below the class name) (G.9). Furthermore, we also notice a salient feature of our
approach: two dimensions, that share hierarchy levels, do not need to share the



Fig. 9. Level 3: Purchase Orders Fact

whole hierarchy (G.10)8. For example, the hierarchy of Plant Dimension does not
include State level de�ned in Supplier Dimension.

Fig. 10. Level 3: Plant Dimension

6 De�nition of Package Stereotypes

In Section 4 and 5, we have shown how the complexity of a MD model is managed
by organizing it into logical packages. We have used three di�erent kinds of
packages: star package, dimension package, and fact package. In this section, we
provide a UML extension by means of stereotypes of the particular packages we
have de�ned.
8 Other proposals, such as [1][2], when sharing dimension hierarchy levels, share all
the hierarchy path from the shared level. However, the package mechanism allows
us to import only the required levels, thereby providing a higher level of �exibility.



For the de�nition of stereotypes, we follow the examples included in the UML
Speci�cation [6]:

� Name: The name of the stereotype.
� Base class (also called Model class): The UML metamodel element that
serves as the base for the stereotype.

� Description: An informal description with possible explanatory comments.
� Icon: It is possible to de�ne a distinctive visual cue for the stereotype.
� Constraints: A list of constraints de�ned by OCL expressions associated with
the stereotype, with an informal explanation of the expressions.

� Tagged values: A list of all tagged values that may be associated with the
stereotype.

We have de�ned three stereotypes that specialize the Package model element:

� Name: StarPackage
� Base class: Package
� Description: Packages of this stereotype represent MD star schemas
� Icon: Fig. 11 (a)
� Constraints:

• A StarPackage can only contain FactPackages or DimensionPackages:9

self.contents->forAll(oclIsTypeOf(FactPackage) or
oclIsTypeOf(DimensionPackage))

• A StarPackage can only contain one FactPackage:
self.contents->select(oclIsTypeOf(FactPackage))->size <= 1

• There are no cycles in the dependency structure:10

not self.allSuppliers->includes(self)
� Tagged values: None

� Name: DimensionPackage
� Base class: Package
� Description: Packages of this stereotype represent MD dimensions
� Icon: Fig. 11 (b)
� Constraints:

• It is not possible to create a dependency from a DimensionPackage to a Fact-
Package (only to a DimensionPackage):
self.clientDependency->forAll(supplier->forAll(oclIsTypeOf(DimensionPackage)))

• There are no cycles in the dependency structure:
not self.allSuppliers->includes(self)

� Tagged values: None

9 contents is an additional operation de�ned in the UML Speci�cation [6]: �The oper-
ation contents results in a Set containing the ModelElements owned by or imported
by the Package�.

10 allSuppliers is an additional operation de�ned in the UML Speci�cation [6]: �The
operation allSuppliers results in a Set containing all the ModelElements that are
suppliers of this ModelElement, including the suppliers of these ModelElements.
This is the transitive closure�.



� Name: FactPackage
� Base class: Package
� Description: Packages of this stereotype represent MD facts
� Icon: Fig. 11 (c)
� Constraints:

• There are no cycles in the dependency structure:
not self.allSuppliers->includes(self)

� Tagged values: None

StarPackage DimensionPackage FactPackage
(a) (b) (c)

Fig. 11. Stereotype icons of the MD extension

7 Using Multidimensional Modeling in Rational Rose

Rational Rose (RR) is one of the most well-known visual modeling tools. As
RR supports the UML, it is becoming the common modeling tool for OO mod-
eling. RR is extensible by means of add-ins, that allows us to group together
customizations and automation of several RR features through the Rose Exten-
sibility Interface (REI) [16] into one component. An add-in allows us to customize
main menu items, data types, stereotypes, etc. In this section, we present an add-
in we have developed, that allows us to use the stereotypes we have previously
presented in RR. Our add-in customizes the following elements:

� Menu item: We have added the new menu item MD Validate in the menu
Tools. This menu item runs a Rose script that validates a MD model: our
script checks all the constraints we have presented in Section 6.

� Stereotypes: We have de�ned the stereotypes we have previously presented
in Section 6.

We use our stereotypes in RR by means of a stereotype con�guration �le. To
graphically distinguish model elements from di�erent stereotypes, each stereo-
type can have a graphical representation. Thus, for each stereotype, there may
be four di�erent icons: a diagram icon, a small diagram toolbar icon, a large
diagram toolbar icon, and a list view icon.

The best way to understand our extension is to show a tangible example.
Fig. 12 shows the level 1 of the supply value chain example (the same level is



displayed in Fig. 4 without stereotypes). We can notice the list view icons of
our stereotypes in the list of the browser (left hand panel in Fig. 12). Besides,
the vertical toolbar in the middle of Fig. 12 contains three new buttons that
correspond to our stereotypes.

Furthermore, we also show how the level 2 of a MD model is displayed in
RR. In Fig. 13, the content of Purchase Orders Star is shown (the same level
is displayed in Fig. 5 without stereotypes). The icons for the FactPackage and
DimensionPackage can be observed.

Fig. 12. Multidimensional modeling using
Rational Rose (level 1)

Fig. 13. Multidimensional modeling using
Rational Rose (level 2)

8 Conclusions and Future Work

Existing multidimensional (MD) modeling approaches use ��at design� in that
all the modeling elements are represented in the same diagram. These approaches
are not often suitable for huge and complex MD models. Therefore, in this pa-
per, we have presented how UML package mechanisms can be successfully used
for MD modeling at three levels of complexity. We have also provided design
guidelines, based on our experience in designing real cases, that allow the cor-
rect use of the UML packages for simplifying a conceptual design when modeling
large and complex data warehouses. We have also illustrated the bene�ts of these
guidelines by applying them to a case study. These guidelines are extremely use-
ful as they allow us to obtain conceptual MD models that can be understood
by both designers and analyzers, facilitating the communication between them.
Furthermore, we have also provided a UML extension by means of stereotypes
of the di�erent package items we use. Finally, to show the applicability of our
proposal, this UML extension has been de�ned for a well-known modeling tool
such as Rational Rose 2000, which allows us to put in practice all ideas developed
throughout the paper.



Future works are concerned with providing a UML extension including stereo-
types for main structural properties of MD modeling (fact class, dimension class,
etc.). Further future work refers to extending our approach to allow us to cover
all life cycle of MD systems, which involves implementation of MD models into
OO and object-relational databases.

References

1. Golfarelli, M., Rizzi, S.: A methodological Framework for Data Warehouse De-
sign. In: Proc. of the ACM 1st Intl. Workshop on Data warehousing and OLAP
(DOLAP'98), Washington D.C., USA (1998) 3�9

2. Sapia, C., Blaschka, M., Hö�ing, G., Dinter, B.: Extending the E/R Model for
the Multidimensional Paradigm. In: Proc. of the 1st Intl. Workshop on Data
Warehouse and Data Mining (DWDM'98). Volume 1552 of LNCS., Springer-Verlag
(1998) 105�116

3. Tryfona, N., Busborg, F., Christiansen, J.: starER: A Conceptual Model for Data
Warehouse Design. In: Proc. of the ACM 2nd Intl. Workshop on Data warehousing
and OLAP (DOLAP'99), Kansas City, Missouri, USA (1999)

4. Husemann, B., Lechtenborger, J., Vossen, G.: Conceptual Data Warehouse De-
sign. In: Proc. of the 2nd. Intl. Workshop on Design and Management of Data
Warehouses (DMDW'2000), Stockholm, Sweden (2000) 3�9

5. Abelló, A., Samos, J., Saltor, F.: A Framework for the Classi�cation and Descrip-
tion of Multidimensional Data Models. In: Proc. of the 12th Intl. Conference on
Database and Expert Systems Applications (DEXA'01), Munich, Germany (2001)
668�677

6. Object Management Group (OMG): Uni�ed Modeling Language Speci�cation 1.4.
Internet: http://www.omg.org/cgi-bin/doc?formal/01-09-67 (2001)

7. Trujillo, J., Palomar, M., Gómez, J., Song, I.: Designing Data Warehouses with
OO Conceptual Models. IEEE Computer, special issue on Data Warehouses 34
(2001) 66�75

8. Feldman, P., Miller, D.: Entity Model Clustering: Structuring a Data Model by
Abstraction. The Computer Journal 29 (1986) 348�360

9. Teorey, T., Wei, G., Bolton, D., Koenig, J.: ER Model Clustering as an Aid for
User Communication and Documentation in Database Design. Communications
of ACM 32 (1989) 975�987

10. Gandhi, M., Robertson, E., Gucht, D.V.: Leveled Entity Relationship Model.
In: Proc. of the 13th Intl. Conference on Entity-Relationship Approach (ER'94).
Volume 881 of LNCS., Springer-Verlag (1994) 420�436

11. Siau, K., Cao, Q.: Uni�ed Modeling Language (UML) - A Complexity Analysis.
Journal of Database Management 12 (2001) 26�34

12. Fowler, M.: UML Distilled. Applying the Standard Object Modeling Language.
Object Technology Series. Addison-Wesley (1998)

13. Conallen, J.: Building Web Applications with UML. Object Technology Series.
Addison-Wesley (2000)

14. Giovinazzo, W.: Object-Oriented Data Warehouse Design. Building a star schema.
Prentice-Hall, New Jersey, USA (2000)

15. Kimball, R.: The Data Warehouse Toolkit. 2 edn. John Wiley & Sons (1996)
16. Rational Software Corporation: Using the Rose Extensibility Interface. Rational

Software Corporation (2001)


