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Introduction

To the Reader

These are the notes for 36-402, Advanced Data Analysis, at Carnegie Mellon. If you
are not enrolled in the class, you should know that it’s the methodological capstone of
the core statistics sequence taken by our undergraduate majors (usually in their third
year), and by students from a range of other departments. By this point, they have
taken classes in introductory statistics and data analysis, probability theory, mathe-
matical statistics, and modern linear regression (“401”). This class does not presume
that you once learned but have forgotten the material from the pre-requisites; it pre-
sumes that you know that material and can go beyond it. The class also presumes
a firm grasp on linear algebra and multivariable calculus, and that you can read and
write simple functions in R. If you are lacking in any of these areas, now would be an
excellent time to leave.

36-402 is a class in statistical methodology: its aim is to get students to understand
something of the range of modern1 methods of data analysis, and of the consider-
ations which go into choosing the right method for the job at hand (rather than
distorting the problem to fit the methods the student happens to know). Statistical
theory is kept to a minimum, and largely introduced as needed.

Since 36-402 is also a class in data analysis, there are assignments in which, nearly
every week, a new, often large, data set is analyzed with new methods. (I reserve the
right to re-use data sets, and even to fake data, but will do so sparingly.) Assignments
and data will be on the class web-page.

There is no way to cover every important topic for data analysis in just a semester.
Much of what’s not here — sampling, experimental design, advanced multivariate
methods, hierarchical models, the intricacies of categorical data, graphics, data min-
ing — gets covered by our other undergraduate classes. Other important areas, like
dependent data, inverse problems, model selection or robust estimation, have to wait
for graduate school.

The mathematical level of these notes is deliberately low; nothing should be be-
yond a competent second-year student. But every subject covered here can be prof-
itably studied using vastly more sophisticated techniques; that’s why this is advanced
data analysis from an elementary point of view. If reading these pages inspires any-

1Just as an undergraduate “modern physics” course aims to bring the student up to about 1930 (more
specifically, to 1926), this class aims to bring the student up to about 1990.
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one to study the same material from an advanced point of view, I will consider my
troubles to have been amply repaid.

A final word. At this stage in your statistical education, you have gained two
kinds of knowledge — a few general statistical principles, and many more specific
procedures, tests, recipes, etc. If you are a typical ADA student, you are much more
comfortable with the specifics than the generalities. But the truth is that while none
of your recipes are wrong, they are tied to assumptions which hardly ever hold.
Learning more flexible and powerful methods, which have a much better hope of
being reliable, will demand a lot of hard thinking and hard work. Those of you who
succeed, however, will have done something you can be proud of.

Exercises and Problem Sets
There are two kinds of assignments included here. Mathematical and computational
exercises go at the end of chapters, since they are mostly connected to those pieces of
content. (Many of them are complements to, or filling in details of, material in the
chapters.) There are also data-centric problem sets, in Part V; most of these draw on
material from multiple chapters, and also many of them are based on specific papers.
If you are teaching a course based on the book, feel free to write for solutions; unfor-
tunately, providing solutions to those using the book for self-study is not feasible.

Concepts You Should Know
If more than a handful of these are unfamiliar, it is very unlikely that you are ready
for this course.

Random variable; population, sample. Cumulative distribution function, proba-
bility mass function, probability density function. Specific distributions: Bernoulli,
binomial, Poisson, geometric, Gaussian, exponential, t , Gamma. Expectation value.
Variance, standard deviation. Sample mean, sample variance. Median, mode. Quar-
tile, percentile, quantile. Inter-quartile range. Histograms.

Joint distribution functions. Conditional distributions; conditional expectations
and variances. Statistical independence and dependence. Covariance and correlation;
why dependence is not the same thing as correlation. Rules for arithmetic with ex-
pectations, variances and covariances. Laws of total probability, total expectation,
total variation. Contingency tables; odds ratio, log odds ratio.

Sequences of random variables. Stochastic process. Law of large numbers. Cen-
tral limit theorem.

Parameters; estimator functions and point estimates. Sampling distribution. Bias
of an estimator. Standard error of an estimate; standard error of the mean; how and
why the standard error of the mean differs from the standard deviation. Confidence
intervals and interval estimates.

Hypothesis tests. Tests for differences in means and in proportions; Z and t tests;
degrees of freedom. Size, significance, power. Relation between hypothesis tests
and confidence intervals. χ 2 test of independence for contingency tables; degrees of
freedom. KS test for goodness-of-fit to distributions.
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Linear regression. Meaning of the linear regression function. Fitted values and
residuals of a regression. Interpretation of regression coefficients. Least-squares esti-
mate of coefficients. Matrix formula for estimating the coefficients; the hat matrix.
R2; why adding more predictor variables never reduces R2. The t -test for the signifi-
cance of individual coefficients given other coefficients. The F -test and partial F -test
for the significance of regression models. Degrees of freedom for residuals. Examina-
tion of residuals. Confidence intervals for parameters. Confidence intervals for fitted
values. Prediction intervals.

Likelihood. Likelihood functions. Maximum likelihood estimates. Relation be-
tween maximum likelihood, least squares, and Gaussian distributions. Relation be-
tween confidence intervals and the likelihood function. Likelihood ratio test.

Drafts and Updates The page for this book is http://www.stat.cmu.edu/~cshalizi/
ADAfaEPoV/. The latest version will live there. The book will eventually be pub-
lished by Cambridge University Press, at which point there will still be a free next-
to-final draft at that URL, and errata. While the book is still in a draft, the PDF
contains a lot of notes to myself for revisions, [[like so]]; you can ignore them.

11:36 Saturday 22nd November, 2014

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/


11:36 Saturday 22nd November, 2014
Copyright c©Cosma Rohilla Shalizi; do not distribution without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Part I

Regression and Its
Generalizations
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Chapter 1

Regression: Predicting and
Relating Quantitative Features

[[TODO: add something
about predicting to answer
what-if questions ]]

1.1 Statistics, Data Analysis, Regression

Statistics is the branch of mathematical engineering which designs and analyses meth-
ods for drawing reliable inferences from imperfect data.

The subject of most sciences is some aspect of the world around us, or within
us. Psychology studies minds; geology studies the Earth’s composition and form;
economics studies production, distribution and exchange; mycology studies mush-
rooms. Statistics does not study the world, but some of the ways we try to under-
stand the world — some of the intellectual tools of the other sciences. Its utility comes
indirectly, through helping those other sciences.

This utility is very great, because all the sciences have to deal with imperfect
data. Data may be imperfect because we can only observe and record a small fraction
of what is relevant; or because we can only observe indirect signs of what is truly
relevant; or because, no matter how carefully we try, our data always contain an
element of noise. Over the last two centuries, statistics has come to handle all such
imperfections by modeling them as random processes, and probability has become
so central to statistics that we introduce random events deliberately (as in sample
surveys).1

Statistics, then, uses probability to model inference from data. We try to math-
ematically understand the properties of different procedures for drawing inferences:
Under what conditions are they reliable? What sorts of errors do they make, and
how often? What can they tell us when they work? What are signs that something
has gone wrong? Like other branches of engineering, statistics aims not just at un-
derstanding but also at improvement: we want to analyze data better, more reliably,
with fewer and smaller errors, under broader conditions, faster, and with less mental

1Two excellent, but very different, histories of how statistics came to this understanding are Hacking
(1990) and Porter (1986).
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effort. Sometimes some of these goals conflict — a fast, simple method might be very
error-prone, or only reliable under a narrow range of circumstances.

One of the things that people most often want to know about the world is how
different variables are related to each other, and one of the central tools statistics has
for learning about relationships is regression.2 In your linear regression class, you
learned about how it could be used in data analysis, and learned about its properties.
In this class, we will build on that foundation, extending beyond basic linear regres-
sion in many directions, to answer many questions about how variables are related to
each other.

This is intimately related to prediction. Being able to make predictions isn’t the
only reason we want to understand relations between variables, but prediction tests
our knowledge of relations. (If we misunderstand, we might still be able to predict,
but it’s hard to see how we could understand and not be able to predict.) So before
we go beyond linear regression, we will first look at prediction, and how to predict
one variable from nothing at all. Then we will look at predictive relationships be-
tween variables, and see how linear regression is just one member of a big family of
smoothing methods, all of which are available to us.

1.2 Guessing the Value of a Random Variable

We have a quantitative, numerical variable, which we’ll imaginatively call Y . We’ll
suppose that it’s a random variable, and try to predict it by guessing a single value
for it. (Other kinds of predictions are possible — we might guess whether Y will fall
within certain limits, or the probability that it does so, or even the whole probability
distribution of Y . But some lessons we’ll learn here will apply to these other kinds
of predictions as well.) What is the best value to guess? More formally, what is the
optimal point forecast for Y ?

To answer this question, we need to pick a function to be optimized, which
should measure how good our guesses are — or equivalently how bad they are, how
big an error we’re making. A reasonable start point is the mean squared error:

MSE(a)≡ E
�

(Y − a)2
�

(1.1)

2The origin of the name is instructive. It comes from 19th century investigations into the relationship
between the attributes of parents and their children. People who are taller (heavier, faster, . . . ) than
average tend to have children who are also taller than average, but not quite as tall. Likewise, the children
of unusually short parents also tend to be closer to the average, and similarly for other traits. This came to
be called “regression towards the mean”, or even “regression towards mediocrity”; hence the line relating
the average height (or whatever) of children to that of their parents was “the regression line”, and the word
stuck. [[TODO: Citations.]]
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So we’d like to find the value r where MSE(a) is smallest.

MSE(a) = E
�

(Y − a)2
�

(1.2)

= (E[Y − a])2+Var[Y − a] (1.3)
= (E[Y − a])2+Var[Y ] (1.4)
= (E[Y ]− a)2+Var[Y ] (1.5)

dMSE

da
= −2 (E[Y ]− a)+ 0 (1.6)

2(E[Y ]− r ) = 0 (1.7)
r = E[Y ] (1.8)

So, if we gauge the quality of our prediction by mean-squared error, the best predic-
tion to make is the expected value.

1.2.1 Estimating the Expected Value
Of course, to make the prediction E[Y ] we would have to know the expected value
of Y . Typically, we do not. However, if we have sampled values, y1, y2, . . . yn , we can
estimate the expectation from the sample mean:

br ≡
1

n

n
∑

i=1

yi (1.9)

If the samples are independent and identically distributed (IID), then the law of large
numbers tells us that

br → E[Y ] = r (1.10)

and the central limit theorem tells us something about how fast the convergence is
(namely the squared error will typically be about Var[Y ]/n).

Of course the assumption that the yi come from IID samples is a strong one, but
we can assert pretty much the same thing if they’re just uncorrelated with a common
expected value. Even if they are correlated, but the correlations decay fast enough, all
that changes is the rate of convergence. So “sit, wait, and average” is a pretty reliable
way of estimating the expectation value.

1.3 The Regression Function
Of course, it’s not very useful to predict just one number for a variable. Typically,
we have lots of variables in our data, and we believe they are related somehow. For
example, suppose that we have data on two variables, X and Y , which might look
like Figure 1.1. The feature Y is what we are trying to predict, a.k.a. the dependent
variable or output or response, and X is the predictor or independent variable
or covariate or input. Y might be something like the profitability of a customer
and X their credit rating, or, if you want a less mercenary example, Y could be
some measure of improvement in blood cholesterol and X the dose taken of a drug.
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Typically we won’t have just one input feature X but rather many of them, but that
gets harder to draw and doesn’t change the points of principle.[[TODO: Replace this with

real data?]] Figure 1.2 shows the same data as Figure 1.1, only with the sample mean added
on. This clearly tells us something about the data, but also it seems like we should be
able to do better — to reduce the average error — by using X , rather than by ignoring
it.

Let’s say that the we want our prediction to be a function of X , namely f (X ).
What should that function be, if we still use mean squared error? We can work this
out by using the law of total expectation, i.e., the fact that E[U ] = E[E[U |V ]] for
any random variables U and V .

MSE( f ) = E
�

(Y − f (X ))2
�

(1.11)

= E
�

E
�

(Y − f (X ))2|X
��

(1.12)

= E
�

Var[Y |X ]+ (E[Y − f (X )|X ])2
�

(1.13)

When we want to minimize this, the first term inside the expectation doesn’t depend
on our prediction, and the second term looks just like our previous optimization
only with all expectations conditional on X , so for our optimal function r (x) we get

r (x) = E[Y |X = x] (1.14)

In other words, the (mean-squared) optimal conditional prediction is just the condi-
tional expected value. The function r (x) is called the regression function. This is
what we would like to know when we want to predict Y .

1.3.1 Some Disclaimers
It’s important to be clear on what is and is not being assumed here. Talking about X
as the “independent variable” and Y as the “dependent” one suggests a causal model,
which we might write

Y ← r (X )+ ε (1.15)

where the direction of the arrow, ←, indicates the flow from causes to effects, and
ε is some noise variable. If the gods of inference are very, very kind, then ε would
have a fixed distribution, independent of X , and we could without loss of generality
take it to have mean zero. (“Without loss of generality” because if it has a non-zero
mean, we can incorporate that into r (X ) as an additive constant.) However, no such
assumption is required to get Eq. 1.14. It works when predicting effects from causes,
or the other way around when predicting (or “retrodicting”) causes from effects, or
indeed when there is no causal relationship whatsoever between X and Y 3. It is
always true that

Y |X = r (X )+η(X ) (1.16)

where η(X ) is a noise variable with mean zero, but as the notation indicates the
distribution of the noise generally depends on X .

3We will cover causal inference in considerable detail in Part III.
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plot(all.x,all.y,xlab="x",ylab="y")
rug(all.x,side=1,col="grey")
rug(all.y,side=2,col="grey")

Figure 1.1: Scatterplot of the example data. (These are made up.) The rug commands
add horizontal and vertical ticks to the axes to mark the location of the data (in grey
so they’re less strong than the main tick-marks). This isn’t necessary but is often
helpful. The data are in the example.dat file.

11:36 Saturday 22nd November, 2014



1.3. THE REGRESSION FUNCTION 24

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

abline(h=mean(all.y),lty=3)

Figure 1.2: Data from Figure 1.1, with a horizontal line showing the sample mean of
Y .
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It’s also important to be clear that when we find the regression function is a con-
stant, r (x) = r0 for all x, that this does not mean that X and Y are statistically
independent. If they are independent, then the regression function is a constant, but
turning this around is the logical fallacy of “affirming the consequent”4.

1.4 Estimating the Regression Function

We want to find the regression function r (x) = E[Y |X = x], and what we’ve got
is a big set of training examples, of pairs (x1, y1), (x2, y2), . . . (xn , yn). How should we
proceed?

If X takes on only a finite set of values, then a simple strategy is to use the condi-
tional sample means:

br (x) =
1

#{i : xi = x}

∑

i :xi=x

yi (1.17)

By the same kind of law-of-large-numbers reasoning as before, we can be confident
that br (x)→ E[Y |X = x].

Unfortunately, this only works if X has only a finite set of values. If X is contin-
uous, then in general the probability of our getting a sample at any particular value
is zero, is the probability of getting multiple samples at exactly the same value of x.
This is a basic issue with estimating any kind of function from data — the function
will always be undersampled, and we need to fill in between the values we see. We
also need to somehow take into account the fact that each yi is a sample from the
conditional distribution of Y |X = xi , and so is not generally equal to E

�

Y |X = xi
�

.
So any kind of function estimation is going to involve interpolation, extrapolation,
and smoothing.

Different methods of estimating the regression function — different regression
methods, for short — involve different choices about how we interpolate, extrapolate
and smooth. This involves our making a choice about how to approximate r (x) by
a limited class of functions which we know (or at least hope) we can estimate. There
is no guarantee that our choice leads to a good approximation in the case at hand,
though it is sometimes possible to say that the approximation error will shrink as
we get more and more data. This is an extremely important topic and deserves an
extended discussion, coming next.

1.4.1 The Bias-Variance Tradeoff

Suppose that the true regression function is r (x), but we use the function br to make
our predictions. Let’s look at the mean squared error at X = x in a slightly different
way than before, which will make it clearer what happens when we can’t use r to

4As in combining the fact that all human beings are featherless bipeds, and the observation that a
cooked turkey is a featherless biped, to conclude that cooked turkeys are human beings. An econome-
trician stops there; an econometrician who wants to be famous writes a best-selling book about how this
proves that Thanksgiving is really about cannibalism.
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make predictions. We’ll begin by expanding (Y − br (x))2, since the MSE at x is just
the expectation of this.

(Y − br (x))2 (1.18)
= (Y − r (x)+ r (x)− br (x))2

= (Y − r (x))2+ 2(Y − r (x))(r (x)− br (x))+ (r (x)− br (x))2 (1.19)

We saw above (Eq. 1.16) that Y − r (x) = η, a random variable which has expectation
zero (and is uncorrelated with x). When we take the expectation of Eq. 1.19, nothing
happens to the last term (since it doesn’t involve any random quantities); the middle
term goes to zero (because E[Y − r (x)] = E[η] = 0), and the first term becomes the
variance of η. This depends on x, in general, so let’s call it σ2

x . We have

MSE(br (x)) = σ2
x +((r (x)− br (x))

2 (1.20)

The σ2
x term doesn’t depend on our prediction function, just on how hard it is, in-

trinsically, to predict Y at X = x. The second term, though, is the extra error we
get from not knowing r . (Unsurprisingly, ignorance of r cannot improve our pre-
dictions.) This is our first bias-variance decomposition: the total MSE at x is de-
composed into a (squared) bias r (x)− br (x), the amount by which our predictions
are systematically off, and a variance σ2

x , the unpredictable, “statistical” fluctuation
around even the best prediction.

All of the above assumes that br is a single fixed function. In practice, of course,
br is something we estimate from earlier data. But if those data are random, the exact
regression function we get is random too; let’s call this random function cRn , where
the subscript reminds us of the finite amount of data we used to estimate it. What we
have analyzed is really MSE(cRn(x)|cRn = br ), the mean squared error conditional on a
particular estimated regression function. What can we say about the prediction error
of the method, averaging over all the possible training data sets?

MSE(cRn(x)) = E
h

(Y −cRn(X ))
2|X = x

i

(1.21)

= E
h

E
h

(Y −cRn(X ))
2|X = x,cRn = br

i

|X = x
i

(1.22)

= E
h

σ2
x +(r (x)−cRn(x))

2|X = x
i

(1.23)

= σ2
x +E

h

(r (x)−cRn(x))
2|X = x

i

(1.24)

= σ2
x +E

h

(r (x)−E
h

cRn(x)
i

+E
h

cRn(x)
i

−cRn(x))
2
i

(1.25)

= σ2
x +
�

r (x)−E
h

cRn(x)
i�2
+Var

h

cRn(x)
i

(1.26)

This is our second bias-variance decomposition — I pulled the same trick as before,
adding and subtract a mean inside the square. The first term is just the variance
of the process; we’ve seen that before and isn’t, for the moment, of any concern.
The second term is the bias in using cRn to estimate r — the approximation bias or
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approximation error. The third term, though, is the variance in our estimate of the
regression function. Even if we have an unbiased method (r (x) = E

h

cRn(x)
i

), if there

is a lot of variance in our estimates, we can expect to make large errors.
The approximation bias has to depend on the true regression function. For ex-

ample, if E
h

cRn(x)
i

= 42+ 37x, the error of approximation will be zero if r (x) =
42+ 37x, but it will be larger and x-dependent if r (x) = 0. However, there are flexi-
ble methods of estimation which will have small approximation biases for all r in a
broad range of regression functions. The catch is that, at least past a certain point,
decreasing the approximation bias can only come through increasing the estimation
variance. This is the bias-variance trade-off. However, nothing says that the trade-
off has to be one-for-one. Sometimes we can lower the total error by introducing
some bias, since it gets rid of more variance than it adds approximation error. The
next section gives an example.

In general, both the approximation bias and the estimation variance depend on n.
A method is consistent5 when both of these go to zero as n→ 0 — that is, if we re-
cover the true regression function as we get more and more data.6 Again, consistency
depends on how well the method matches the actual data-generating process, not just
on the method, and again, there is a bias-variance trade-off. There can be multiple
consistent methods for the same problem, and their biases and variances don’t have
to go to zero at the same rates.

1.4.2 The Bias-Variance Trade-Off in Action

Let’s take an extreme example: we could decide to approximate r (x) by a constant r0.
The implicit smoothing here is very strong, but sometimes appropriate. For instance,
it’s appropriate when r (x) really is a constant! Then trying to estimate any additional
structure in the regression function is just so much wasted effort. Alternately, if r (x)
is nearly constant, we may still be better off approximating it as one. For instance,
suppose the true r (x) = r0+ a sin (νx), where a� 1 and ν � 1 (Figure 1.3 shows an
example). With limited data, we can actually get better predictions by estimating a
constant regression function than one with the correct functional form.

1.4.3 Ordinary Least Squares Linear Regression as Smoothing

Let’s revisit ordinary least-squares linear regression from this point of view. Let’s
assume that the independent variable X is one-dimensional, and that both X and Y

5To be precise, consistent for r , or consistent for conditional expectations. More generally, an
estimator of any property of the data, or of the whole distribution, is consistent if it converges on the
truth.

6You might worry about this claim, especially if you’ve taken more probability theory — aren’t we
just saying something about average performance of the bR, rather than any particular estimated regres-
sion function? But notice that if the estimation variance goes to zero, then by Chebyshev’s inequality,

Pr (|X −E[X ] | ≥ η)≤Var[X ]/η2, eachÓRn(x) comes arbitrarily close to E
h

ÓRn(x)
i

with arbitrarily high

probability. If the approximation bias goes to zero, therefore, the estimated regression functions converge
in probability on the true regression function, not just in mean.
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ugly.func = function(x) {1 + 0.01*sin(100*x)}
r = runif(100); y = ugly.func(r) + rnorm(length(r),0,0.5)
plot(r,y,xlab="x",ylab="y"); curve(ugly.func,add=TRUE)
abline(h=mean(y),col="red")
sine.fit = lm(y ~ 1+ sin(100*r))
curve(sine.fit$coefficients[1]+sine.fit$coefficients[2]*sin(100*x),

col="blue",add=TRUE)

Figure 1.3: A rapidly-varying but nearly-constant regression function; Y = 1 +
0.01 sin100x + ε, with ε ∼ N (0,0.1). (The x values are uniformly distributed be-
tween 0 and 1.) Red: constant line at the sample mean. Blue: estimated function of
the same form as the true regression function, i.e., r0 + a sin100x. If the data set is
small enough, the constant actually generalizes better — the bias of using the wrong
functional form is smaller than the additional variance from the extra degrees of free-
dom. Here, the root-mean-square (RMS) error of the constant on new data is 0.50,
while that of the estimated sine function is 0.51 — using the right function actually
hurts us!
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are centered (i.e. have mean zero) — neither of these assumptions is really necessary,
but they reduce the book-keeping.

We choose to approximate r (x) by α+βx, and ask for the best values a, b of those
constants. These will be the ones which minimize the mean-squared error.

M SE(α,β) = E
�

(Y −α−βX )2
�

(1.27)

= E
�

E
�

(Y −α−βX )2|X
��

(1.28)

= E
�

Var[Y |X ]+ (E[Y −α−βX |X ])2
�

(1.29)

= E[Var[Y |X ]]+E
�

(E[Y −α−βX |X ])2
�

(1.30)

The first term doesn’t depend on α or β, so we can drop it for purposes of optimiza-
tion. Taking derivatives, and then bringing them inside the expectations,

∂ M SE

∂ α
= E[2(Y −α−βX )(−1)] (1.31)

E[Y − a− bX ] = 0 (1.32)
a = E[Y ]− bE[X ] = 0 (1.33)

using the fact that X and Y are centered; and,

∂ M SE

∂ β
= E[2(Y −α−βX )(−X )] (1.34)

E[X Y ]− bE
�

X 2
�

= 0 (1.35)

b =
Cov[X ,Y ]

Var[X ]
(1.36)

again using the centering of X and Y . That is, the mean-squared optimal linear pre-
diction is

r (x) = x
Cov[X ,Y ]

Var[X ]
(1.37)

Now, if we try to estimate this from data, there are (at least) two approaches. One
is to replace the true population values of the covariance and the variance with their
sample values, respectively

1

n

∑

i

yi xi (1.38)

and
1

n

∑

i

x2
i (1.39)

(again, assuming centering). The other is to minimize the residual sum of squares,

RSS(α,β)≡
∑

i

�

yi −α−βxi
�2 (1.40)
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You may or may not find it surprising that both approaches lead to the same answer:

ba = 0 (1.41)

bb =
∑

i yi xi
∑

i x2
i

(1.42)

Provided that Var[X ] > 0, this will converge with IID samples, so we have a consis-
tent estimator.7

We are now in a position to see how the least-squares linear regression model is
really a smoothing of the data. Let’s write the estimated regression function explicitly
in terms of the training data points.

br (x) = bb x (1.43)

= x

∑

i yi xi
∑

i x2
i

(1.44)

=
∑

i

yi

xi
∑

j x2
j

x (1.45)

=
∑

i

yi

xi

ns2
X

x (1.46)

where s2
X is the sample variance of X . In words, our prediction is a weighted average

of the observed values yi of the dependent variable, where the weights are propor-
tional to how far xi is from the center (relative to the variance), and proportional
to the magnitude of x. If xi is on the same side of the center as x, it gets a positive
weight, and if it’s on the opposite side it gets a negative weight.

Figure 1.4 shows the data from Figure 1.1 with the least-squares regression line
added. It will not escape your notice that this is very, very slightly different from the
constant regression function; the coefficient on X is 6.3×10−3. Visually, the problem
is that there should be a positive slope in the left-hand half of the data, and a negative
slope in the right, but the slopes and the densities are balanced so that the best single
slope is zero.8

Mathematically, the problem arises from the peculiar way in which least-squares
linear regression smoothes the data. As I said, the weight of a data point depends on
how far it is from the center of the data, not how far it is from the point at which we are
trying to predict. This works when r (x) really is a straight line, but otherwise — e.g.,
here — it’s a recipe for trouble. However, it does suggest that if we could somehow
just tweak the way we smooth the data, we could do better than linear regression.

7Eq. 1.41 may look funny, but remember that we’re assuming X and Y have been centered. Centering
doesn’t change the slope of the least-squares line but does change the intercept; if we go back to the un-
centered variables the intercept becomes Y − bbX , where the bar denotes the sample mean.

8The standard test of whether this coefficient is zero is about as far from rejecting the null hypothesis
as you will ever see, p = 0.95. Remember this the next time you look at regression output.
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fit.all = lm(all.y~all.x)
abline(fit.all)

Figure 1.4: Data from Figure 1.1, with a horizontal line at the mean (dotted) and
the ordinary least squares regression line (solid). If you zoom in online you will see
that there really are two lines there. (The abline adds a line to the current plot with
intercept a and slope b; it’s set up to take the appropriate coefficients from the output
of lm.
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1.5 Linear Smoothers
The sample mean and the linear regression line are both special cases of linear smoothers,
which are estimates of the regression function with the following form:

br (x) =
∑

i

yi bw(xi , x) (1.47)

The sample mean is the special case where bw(xi , x) = 1/n, regardless of what xi
and x are.

Ordinary linear regression is the special case where bw(xi , x) = (xi/ns2
X )x (from

Eq. 1.46).
Both of these, as remarked, ignore how far xi is from x.

1.5.1 k-Nearest-Neighbor Regression
At the other extreme, we could do nearest-neighbor regression:

bw(xi , x) =
�

1 xi nearest neighbor of x
0 otherwise (1.48)

This is very sensitive to the distance between xi and x. If r (x) does not change too
rapidly, and X is pretty thoroughly sampled, then the nearest neighbor of x among
the xi is probably close to x, so that r (xi ) is probably close to r (x). However, yi =
r (xi )+noise, so nearest-neighbor regression will include the noise into its prediction.
We might instead do k-nearest neighbor regression,

bw(xi , x) =
�

1/k xi one of the k nearest neighbors of x
0 otherwise (1.49)

Again, with enough samples all the k nearest neighbors of x are probably close to x,
so their regression functions there are going to be close to the regression function at
x. But because we average their values of yi , the noise terms should tend to cancel
each other out. As we increase k, we get smoother functions — in the limit k = n
and we just get back the constant. Figure 1.5 illustrates this for our running example
data.9

To use k-nearest-neighbors regression, we need to pick k somehow. This means
we need to decide how much smoothing to do, and this is not trivial. We will return
to this point.

Because k-nearest-neighbors averages over only a fixed number of neighbors, each
of which is a noisy sample, it always has some noise in its prediction, and is generally
not consistent. This may not matter very much with moderately-large data (espe-
cially once we have a good way of picking k). However, it is sometimes useful to
let k systematically grow with n, but not too fast, so as to avoid just doing a global
average; say k ∝

p
n. Such schemes can be consistent.

9The code uses the k-nearest neighbor function provided by the package knnflex (available from
CRAN). This requires one to pre-compute a matrix of the distances between all the points of interest, i.e.,
training data and testing data (using knn.dist); the knn.predict function then needs to be told which
rows of that matrix come from training data and which from testing data. See help(knnflex.predict)
for more, including examples.
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library(knnflex); plotting.x <- seq(from=0,to=1,length.out=100)
all.dist = knn.dist(c(all.x,plotting.x))
all.nn1.predict = knn.predict(1:110,111:210,all.y,all.dist,k=1)
abline(h=mean(all.y),lty=2)
lines(plotting.x,all.nn1.predict,col="blue")
all.nn3.predict = knn.predict(1:110,111:210,all.y,all.dist,k=3)
lines(plotting.x,all.nn3.predict,col="red")
all.nn5.predict = knn.predict(1:110,111:210,all.y,all.dist,k=5)
lines(plotting.x,all.nn5.predict,col="green")
all.nn20.predict = knn.predict(1:110,111:210,all.y,all.dist,k=20)
lines(plotting.x,all.nn20.predict,col="purple")

Figure 1.5: Data points from Figure 1.1 with horizontal dashed line at the mean and
the k-nearest-neighbor regression curves for k = 1 (blue), k = 3 (red), k = 5 (green)
and k = 20 (purple). Note how increasing k smoothes out the regression line, and
pulls it back towards the mean. (k = 100 would give us back the dashed horizontal
line.)
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1.5.2 Kernel Smoothers
Changing k in a k-nearest-neighbors regression lets us change how much smoothing
we’re doing on our data, but it’s a bit awkward to express this in terms of a number
of data points. It feels like it would be more natural to talk about a range in the
independent variable over which we smooth or average. Another problem with k-
NN regression is that each testing point is predicted using information from only a
few of the training data points, unlike linear regression or the sample mean, which
always uses all the training data. If we could somehow use all the training data, but
in a location-sensitive way, that would be nice.

There are several ways to do this, as we’ll see, but a particularly useful one is to use
a kernel smoother, a.k.a. kernel regression or Nadaraya-Watson regression. To
begin with, we need to pick a kernel function10 K(xi , x)which satisfies the following
properties:

1. K(xi , x)≥ 0

2. K(xi , x) depends only on the distance xi − x, not the individual arguments

3.
∫

xK(0, x)d x = 0

4. 0<
∫

x2K(0, x)d x <∞

These conditions together (especially the last one) imply that K(xi , x)→ 0 as |xi −
x| → ∞. Two examples of such functions are the density of the Unif(−h/2, h/2)
distribution, and the density of the standard Gaussian N (0,

p
h) distribution. Here

h can be any positive number, and is called the bandwidth.
The Nadaraya-Watson estimate of the regression function is

br (x) =
∑

i

yi

K(xi , x)
∑

j K(x j , x)
(1.50)

i.e., in terms of Eq. 1.47,

bw(xi , x) =
K(xi , x)
∑

j K(x j , x)
(1.51)

(Notice that here, as in k-NN regression, the sum of the weights is always 1. Why?)11

What does this achieve? Well, K(xi , x) is large if xi is close to x, so this will place
a lot of weight on the training data points close to the point where we are trying to
predict. More distant training points will have smaller weights, falling off towards
zero. If we try to predict at a point x which is very far from any of the training
data points, the value of K(xi , x)will be small for all xi , but it will typically be much,

10There are many other mathematical objects which are also called “kernels”. Some of these meanings
are related, but not all of them. (Cf. “normal”.)

11What do we do if K(xi , x) is zero for some xi ? Nothing; they just get zero weight in the average.
What do we do if all the K(xi , x) are zero? Different people adopt different conventions; popular ones
are to return the global, unweighted mean of the yi , to do some sort of interpolation from regions where
the weights are defined, and to throw up our hands and refuse to make any predictions (computationally,
return NA).
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much smaller for all the xi which are not the nearest neighbor of x, so bw(xi , x)≈ 1 for
the nearest neighbor and ≈ 0 for all the others.12 That is, far from the training data,
our predictions will tend towards nearest neighbors, rather than going off to ±∞, as
linear regression’s predictions do. Whether this is good or bad of course depends on
the true r (x)— and how often we have to predict what will happen very far from the
training data.

Figure 1.6 shows our running example data, together with kernel regression esti-
mates formed by combining the uniform-density, or box, and Gaussian kernels with
different bandwidths. The box kernel simply takes a region of width h around the
point x and averages the training data points it finds there. The Gaussian kernel gives
reasonably large weights to points within h of x, smaller ones to points within 2h,
tiny ones to points within 3h, and so on, shrinking like e−(x−xi )

2/2h . As promised, the
bandwidth h controls the degree of smoothing. As h →∞, we revert to taking the
global mean. As h→ 0, we tend to get spikier functions — with the Gaussian kernel
at least it tends towards the nearest-neighbor regression.

If we want to use kernel regression, we need to choose both which kernel to
use, and the bandwidth to use with it. Experience, like Figure 1.6, suggests that the
bandwidth usually matters a lot more than the kernel. This puts us back to roughly
where we were with k-NN regression, needing to control the degree of smoothing,
without knowing how smooth r (x) really is. Similarly again, with a fixed bandwidth
h, kernel regression is generally not consistent. However, if h → 0 as n →∞, but
doesn’t shrink too fast, then we can get consistency.

In Chapter 2, we’ll look more at the limits of linear regression and some exten-
sions; Chapter 3 will cover some key aspects of evaluating statistical models, includ-
ing regression models; and then Chapter 4 will come back to kernel regression.

1.6 Exercises

1. Suppose we use the mean absolute error instead of the mean squared error:

MAE(a) = E[|Y − a|] (1.52)

Is this also minimized by taking a = E[Y ]? If not, what value r̃ minimizes the
MAE? Should we use MSE or MAE to measure error?

2. Derive Eqs. 1.41 and 1.42 by minimizing Eq. 1.40.

3. What does it mean for Gaussian kernel regression to approach nearest-neighbor
regression as h → 0? Why does it do so? Is this true for all kinds of kernel
regression?

12Take a Gaussian kernel in one dimension, for instance, so K(xi , x) ∝ e−(xi−x)2/2h2
. Say xi is the

nearest neighbor, and |xi − x|= L, with L� h. So K(xi , x)∝ e−L2/2h2
, a small number. But now for any

other x j , K(xi , x) ∝ e−L2/2h2
e−(x j−xi )L/2h2

e−(x j−xi )
2/2h2

� e−L2/2h2
. — This assumes that we’re using a

kernel like the Gaussian, which never quite goes to zero, unlike the box kernel.
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plot(all.x,all.y,xlab="x",ylab="y")
lines(ksmooth(all.x, all.y, "box", bandwidth=2),col="blue")
lines(ksmooth(all.x, all.y, "box", bandwidth=1),col="red")
lines(ksmooth(all.x, all.y, "box", bandwidth=0.1),col="green")
lines(ksmooth(all.x, all.y, "normal", bandwidth=2),col="blue",lty=2)
lines(ksmooth(all.x, all.y, "normal", bandwidth=1),col="red",lty=2)
lines(ksmooth(all.x, all.y, "normal", bandwidth=0.1),col="green",lty=2)

Figure 1.6: Data from Figure 1.1 together with kernel regression lines. Solid colored
lines are box-kernel estimates, dashed colored lines Gaussian-kernel estimates. Blue,
h = 2; red, h = 1; green, h = 0.1 (per the definition of bandwidth in the ksmooth
function). Note the abrupt jump around x = 0.75 in the box-kernel/h = 0.1 (solid
green) line — with a small bandwidth the box kernel is unable to interpolate smoothly
across the break in the training data, while the Gaussian kernel can.
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4. COMPUTING The file ckm.csv on the class website13 contains data from a fa-
mous study on the “diffusion of innovations”, in this case, the adoption of tetra-
cycline, a then-new antibiotic, among doctors in four cities in Illinois in the
1950s. In particular, the column adoption_date records how many months
after the beginning of the study each doctor surveyed began prescribing tetra-
cycline. Note that some doctors did not do so before the study ended (these
have an adoption date of Inf, infinity), and this information is not available
for others (NA).

(a) Load the data as a data-frame called ckm.

(b) What does

adopters <- sapply(1:17, function(y) { sum(na.omit(ckm$adoption_date) <= y) } )

do? Why 17?

(c) Plot the number of doctors who have already adopted tetracycline at the
start of each month against the number of new adopters that month. This
should look somewhat like a sparser version of the scatter-plot used as a
running example in this chapter. Hints: diff, plot.

(d) Linearly regress the number of new adopters against the number of adopters.
Add the regression line to your scatterplot. It should suggest that increas-
ing the number of doctors who have adopted the drug strictly decreases
the number who will adopt.

(e) Add Gaussian kernel smoothing lines to your scatterplot, as in Figure 1.6.
Do these suggest that the relationship is monotonic?

(f) Plot the residuals of the linear regression against the predictor variable.
(Hint: residuals.) Do the residuals look independent of the predictor?
What happens if you kernel smooth the residuals?

13Slightly modified from http://moreno.ss.uci.edu/data.html to fit R conventions.
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Chapter 2

The Truth about Linear
Regression

[[TODO: Examples of mak-
ing "what if" predictions]]
[[TODO: Prediction inter-
vals]]

We need to say some more about how linear regression, and especially about how it
really works and how it can fail. Linear regression is important because

1. it’s a fairly straightforward technique which often works reasonably well for
prediction;

2. it’s a simple foundation for some more sophisticated techniques;

3. it’s a standard method so people use it to communicate; and

4. it’s a standard method so people have come to confuse it with prediction and
even with causal inference as such.

We need to go over (1)–(3), and provide prophylaxis against (4).[[TODO: Further reading sec-
tion!]] A very good resource on regression is Berk (2004). It omits technical details, but

is superb on the high-level picture, and especially on what must be assumed in order
to do certain things with regression, and what cannot be done under any assumption.

2.1 Optimal Linear Prediction: Multiple Variables
We have a response variable Y and a p-dimensional vector of predictor variables or
features ~X . To simplify the book-keeping, we’ll take these to be centered — we can al-
ways un-center them later. We would like to predict Y using ~X . We saw last time that
the best predictor we could use, at least in a mean-squared sense, is the conditional
expectation,

r (~x) = E
�

Y |~X = ~x
�

(2.1)

Instead of using the optimal predictor r (~x), let’s try to predict as well as possible
while using only a linear function of ~x, say ~x ·β. This is not an assumption about the
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39 2.1. OPTIMAL LINEAR PREDICTION: MULTIPLE VARIABLES

world, but rather a decision on our part; a choice, not a hypothesis. This decision can
be good — ~x ·β could be a close approximation to r (~x)— even if the linear hypothesis
is wrong.

One reason to think it’s not a crazy decision is that we may hope r is a smooth
function. If it is, then we can Taylor expand it about our favorite point, say ~u:

r (~x) = r (~u)+
p
∑

i=1

 

∂ r

∂ xi

�

�

�

�

�

~u

!

(xi − ui )+O(‖~x − ~u‖2) (2.2)

or, in the more compact vector-calculus notation,

r (~x) = r (~u)+ (~x − ~u) · ∇r (~u)+O(‖~x − ~u‖2) (2.3)

If we only look at points~x which are close to ~u, then the remainder terms O(‖~x − ~u‖2)
are small, and a linear approximation is a good one1.

Of course there are lots of linear functions so we need to pick one, and we may
as well do that by minimizing mean-squared error again:

M SE(β) = E
�

�

Y − ~X ·β
�2
�

(2.4)

Going through the optimization is parallel to the one-dimensional case (see last chap-
ter), with the conclusion that the optimal β is

β= v−1Cov
�

~X ,Y
�

(2.5)

where v is the covariance matrix of ~X , i.e., vi j = Cov
�

Xi ,X j

�

, and Cov
�

~X ,Y
�

is

the vector of covariances between the predictor variables and Y , i.e. Cov
�

~X ,Y
�

i
=

Cov
�

Xi ,Y
�

.
Multiple regression would be a lot simpler if we could just do a simple regression

for each predictor variable, and add them up; but really, this is what multiple regres-
sion does, just in a disguised form. If the input variables are uncorrelated, v is diagonal
(vi j = 0 unless i = j ), and so is v−1. Then doing multiple regression breaks up into
a sum of separate simple regressions across each input variable. When the input vari-
ables are correlated and v is not diagonal, we can think of the multiplication by v−1

as de-correlating ~X — applying a linear transformation to come up with a new set of
inputs which are uncorrelated with each other.2

Notice: β depends on the marginal distribution of ~X (through the covariance
matrix v). If that shifts, the optimal coefficientsβwill shift, unless the real regression
function is linear.

1If you are not familiar with the big-O notation like O(‖~x − ~u‖2), now would be a good time to read
Appendix B.

2If ~Z is a random vector with covariance matrix I , then w~Z is a random vector with covariance matrix
wT w. Conversely, if we start with a random vector ~X with covariance matrix v, the latter has a “square
root” v1/2 (i.e., v1/2v1/2 = v), and v−1/2 ~X will be a random vector with covariance matrix I. When we
write our predictions as ~X v−1Cov

�

~X ,Y
�

, we should think of this as
�

~X v−1/2
��

v−1/2Cov
�

~X ,Y
��

. We

use one power of v−1/2 to transform the input features into uncorrelated variables before taking their
correlations with the response, and the other power to decorrelate ~X .
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2.1.1 Collinearity

The formula β = v−1Cov
�

~X ,Y
�

makes no sense if v has no inverse. This will
happen if, and only if, the predictor variables are linearly dependent on each other
— if one of the predictors is really a linear combination of the others. Then (as we
learned in linear algebra) the covariance matrix is of less than “full rank” (i.e., “rank
deficient”) and it doesn’t have an inverse.

So much for the algebra; what does that mean statistically? Let’s take an easy case
where one of the predictors is just a multiple of the others — say you’ve included
people’s weight in pounds (X1) and mass in kilograms (X2), so X1 = 2.2X2. Then if
we try to predict Y , we’d have

Ŷ = β1X1+β2X2+β3X3+ . . .+βp Xp (2.6)

= 0X1+(2.2β1+β2)X2+
p
∑

i=3

βi Xi (2.7)

= (β1+β2/2.2)X1+ 0X2+
p
∑

i=3

βi Xi (2.8)

= −2200X1+(1000+β1+β2)X2+
p
∑

i=3

βi Xi (2.9)

In other words, because there’s a linear relationship between X1 and X2, we make the
coefficient for X1 whatever we like, provided we make a corresponding adjustment
to the coefficient for X2, and it has no effect at all on our prediction. So rather than
having one optimal linear predictor, we have infinitely many of them.[[TOOD: More emphasis on

regularization]] There are three ways of dealing with collinearity. One is to get a different data set
where the predictor variables are no longer collinear. A second is to identify one of
the collinear variables (it doesn’t matter which) and drop it from the data set. This can
get complicated; principal components analysis (Chapter 18) can help here. Thirdly,
since the issue is that there are infinitely many different coefficient vectors which
all minimize the MSE, we could appeal to some extra principle, beyond prediction
accuracy, to select just one of them, e.g., try to set as many of the coefficients to zero
as possible (see Appendix D.6.1, and exercise 2 in Chapter 8.).

2.1.2 The Prediction and Its Error
Once we have coefficients β, we can use them to make predictions for the expected
value of Y at arbitrary values of ~X , whether we’ve an observation there before or not.
How good are these?

If we have the optimal coefficients, then the prediction error will be uncorrelated
with the predictor variables:

Cov
�

Y − ~X ·β, ~X
�

= Cov
�

Y, ~X
�

−Cov
�

~X · (v−1Cov
�

~X ,Y
�

), ~X
�

(2.10)

= Cov
�

Y, ~X
�

− vv−1Cov
�

Y, ~X
�

(2.11)

= 0 (2.12)
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Moreover, the expected prediction error, averaged over all ~X , will be zero (exercise).
In general, however, the conditional expectation of the error is not zero,

E
�

Y − ~X ·β | ~X = ~x
�

6= 0 (2.13)

and the conditional variance is not constant in ~x,

Var
�

Y − ~X ·β | ~X = ~x1

�

6=Var
�

Y − ~X ·β | ~X = ~x2

�

(2.14)

2.1.3 Estimating the Optimal Linear Predictor

To actually estimate β from data, we need to make some probabilistic assumptions
about where the data comes from. A quite weak but sufficient assumption is that
observations (~Xi ,Yi ) are independent for different values of i , with unchanging co-
variances. Then if we look at the sample covariances, they will, by the law of large
numbers, converge on the true covariances:

1

n
XT Y → Cov

�

~X ,Y
�

(2.15)

1

n
XT X → v (2.16)

where as before X is the data-frame matrix with one row for each data point and one
column for each feature, and similarly for Y.

So, by continuity,

bβ= (XT X)−1
XT Y→β (2.17)

and we have a consistent estimator.
On the other hand, we could start with the residual sum of squares

RSS(β)≡
n
∑

i=1

�

yi −~xi ·β
�2 (2.18)

and try to minimize it. The minimizer is the same bβ we got by plugging in the
sample covariances. No probabilistic assumption is needed to minimize the RSS, but
it doesn’t let us say anything about the convergence of bβ. For that, we do need some
assumptions about ~X and Y coming from distributions with unchanging covariances.

(One can also show that the least-squares estimate is the linear prediction with
the minimax prediction risk. That is, its worst-case performance, when everything
goes wrong and the data are horrible, will be better than any other linear method.
This is some comfort, especially if you have a gloomy and pessimistic view of data,
but other methods of estimation may work better in less-than-worst-case scenarios.)
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2.1.3.1 Unbiasedness and Variance of Ordinary Least Squares Estimates

The very weak assumptions we have made are still strong enough to let us say a little
bit more about the properties of the ordinary least squares estimate bβ. To do so, we
need to think

To get at the variance of bβ, we need to think a little bit about why it fluctuates.
For the moment, let’s fix X at a particular value x, but allow Y to vary randomly
(what’s called “fixed design” regression).

The key fact is that bβ is linear in the observed responses Y. We can use this by
writing, as you’re used to from your linear regression class,

Y = ~X ·β+ ε (2.19)

Here ε is the residual from the optimal linear predictor; we have to remember that
while E[ε] = 0 and Cov

�

ε, ~X
�

= 0, it is not generally true that E
�

ε|~X = ~x
�

= 0 or

that Var
�

ε|~X = ~x
�

is constant. Even with these limitations, we can still say that

bβ = (xT x)−1
xT Y (2.20)

= (xT x)−1
xT (xβ+ ε) (2.21)

= β+(xT x)−1
xT ε (2.22)

This directly tells us that bβ is unbiased:

E
h

bβ|X= x
i

= β+(xT x)−1
xT E[ε] (2.23)

= β+ 0=β (2.24)

We can also get the variance matrix of bβ:

Var
h

bβ|X= x
i

= Var
h

β+(xT x)−1
xT ε | x

i

(2.25)

= Var
h

(xT x)−1
xT ε |X= x

i

(2.26)

= (xT x)−1
xT Var[ε |X= x]x(xT x)−1

(2.27)

Let’s write Var[ε|X= x] as a single matrixΣ(x). If the linear-prediction errors are un-
correlated with each other, then Σ will be diagonal. If they’re also of equal variance,
then Σ= σ2I, and we have

Var
h

bβ|X= x
i

= σ2(xT x)−1 =
σ2

n

� 1

n
xT x

�−1

(2.28)

Said in words, this means that the variance of our estimates of the linear-regression
coefficient will (i) go down with the sample size n, (ii) go up as the linear regression
gets worse (σ2 grows), and (iii) go down as the predictor variables, the components
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of ~X , have more sample variance themselves, and are more nearly uncorrelated with
each other.

If we allow X to vary, then by the law of total variance,

Var
h

bβ
i

= E
h

Var
h

bβ|X
ii

+Var
h

E
h

bβ|X
ii

=
σ2

n
E
�
� 1

n
XT X

�−1�

(2.29)

As n →∞, the sample variance matrix n−1XT X→ v, and matrix inversion is con-
tinuous, so for large n, Var

h

bβ
i

→ n−1σ2v, and points (i)–(iii) still hold.

2.2 Shifting Distributions, Omitted Variables, and Trans-
formations

2.2.1 Changing Slopes

I said earlier that the best β in linear regression will depend on the distribution of
the predictor variable, unless the conditional mean is exactly linear. Here is an illus-
tration. For simplicity, let’s say that p = 1, so there’s only one predictor variable. I
generated data from Y =

p
X + ε, with ε ∼ N (0,0.052) (i.e. the standard deviation

of the noise was 0.05).
Figure 2.1 shows the regression lines inferred from samples with three different

distributions of X : the black points are X ∼Unif(0,1), the blue are X ∼N (0.5,0.01)
and the red X ∼ Unif(2,3). The regression lines are shown as colored solid lines;
those from the blue and the black data are quite similar — and similarly wrong. The
dashed black line is the regression line fitted to the complete data set. Finally, the
light grey curve is the true regression function, r (x) =

p
x.

2.2.1.1 R2: Distraction or Nuisance?

This little set-up, by the way, illustrates that R2 is not a stable property of the distri-
bution either. For the black points, R2 = 0.92; for the blue, R2 = 0.70; and for the red,
R2 = 0.77; and for the complete data, 0.96. Other sets of xi values would give other
values for R2. Note that while the global linear fit isn’t even a good approximation
anywhere in particular, it has the highest R2.

This kind of perversity can happen even in a completely linear set-up. Suppose
now that Y = aX + ε, and we happen to know a exactly. The variance of Y will be
a2Var[X ]+Var[ε]. The amount of variance our regression “explains” — really, the
variance of our predictions —- will be a2Var[X ]. So R2 = a2Var[X ]

a2Var[X ]+Var[ε]
. This goes

to zero as Var[X ]→ 0 and it goes to 1 as Var[X ]→∞. It thus has little to do with
the quality of the fit, and a lot to do with how spread out the independent variable is.

Notice also how easy it is to get a very high R2 even when the true model is not
linear!
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Figure 2.1: Behavior of the conditioning distribution Y |X ∼ N (
p

X , 0.052) with
different distributions of X . Black circles: X is uniformly distributed in the unit
interval. Blue triangles: Gaussian with mean 0.5 and standard deviation 0.1. Red
squares: uniform between 2 and 3. Axis tick-marks show the location of the actual
sample points. Solid colored lines show the three regression lines obtained by fitting
to the three different data sets; the dashed line is from fitting to all three. The grey
curve is the true regression function. (See accompanying R file for commands used
to make this figure.)

11:36 Saturday 22nd November, 2014



45
2.2. SHIFTING DISTRIBUTIONS, OMITTED VARIABLES, AND

TRANSFORMATIONS

2.2.2 Omitted Variables and Shifting Distributions
That the optimal regression coefficients can change with the distribution of the pre-
dictor features is annoying, but one could after all notice that the distribution has
shifted, and so be cautious about relying on the old regression. More subtle is that
the regression coefficients can depend on variables which you do not measure, and
those can shift without your noticing anything.

Mathematically, the issue is that

E
�

Y |~X
�

= E
�

E
�

Y |Z , ~X
�

|~X
�

(2.30)

Now, if Y is independent of Z given ~X , then the extra conditioning in the inner
expectation does nothing and changing Z doesn’t alter our predictions. But in general
there will be plenty of variables Z which we don’t measure (so they’re not included
in ~X ) but which have some non-redundant information about the response (so that
Y depends on Z even conditional on ~X ). If the distribution of Z given ~X changes,
then the optimal regression of Y on ~X should change too.

Here’s an example. X and Z are both N (0,1), but with a positive correlation
of 0.1. In reality, Y ∼ N (X + Z , 0.01). Figure 2.2 shows a scatterplot of all three
variables together (n = 100).

Now I change the correlation between X and Z to−0.1. This leaves both marginal
distributions alone, and is barely detectable by eye (Figure 2.3).

Figure 2.4 shows just the X and Y values from the two data sets, in black for the
points with a positive correlation between X and Z , and in blue when the correlation
is negative. Looking by eye at the points and at the axis tick-marks, one sees that, as
promised, there is very little change in the marginal distribution of either variable.
Furthermore, the correlation between X and Y doesn’t change much, going only
from 0.75 to 0.74. On the other hand, the regression lines are noticeably different.
When Cov[X ,Z] = 0.1, the slope of the regression line is 1.2 — high values for X
tend to indicate high values for Z , which also increases Y . When Cov[X ,Z] =−0.1,
the slope of the regression line is 0.80, because now extreme values of X are signs that
Z is at the opposite extreme, bringing Y closer back to its mean. But, to repeat, the
difference here is due to a change in the correlation between X and Z , not how those
variables themselves relate to Y . If I regress Y on X and Z , I get bβ = (0.99,0.99) in
the first case and bβ= (0.99,0.99) in the second.

We’ll return to this issue of omitted variables when we look at causal inference in
Part III.

2.2.3 Errors in Variables
It is often the case that the input features we can actually measure, ~X , are distorted
versions of some other variables ~U we wish we could measure, but can’t:

~X = ~U +~η (2.31)

with ~η being some sort of noise. Regressing Y on ~X then gives us what’s called an
errors-in-variables problem.
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X
Z

Y

Figure 2.2: Scatter-plot of response variable Y (vertical axis) and two variables which
influence it (horizontal axes): X , which is included in the regression, and Z , which
is omitted. X and Z have a correlation of +0.1. (Figure created using the cloud
command in the package lattice; see accompanying R file.)
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X
Z

Y

Figure 2.3: As in Figure 2.2, but shifting so that the correlation between X and Z is
now −0.1, though the marginal distributions, and the distribution of Y given X and
Z , are unchanged. (See accompanying R file for commands used to make this figure.)
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Figure 2.4: Joint distribution of X and Y from Figure 2.2 (black, with a positive
correlation between X and Z) and from Figure 2.3 (blue, with a negative correlation
between X and Z). Tick-marks on the axes show the marginal distributions, which
are manifestly little-changed. (See accompanying R file for commands.)
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In one sense, the errors-in-variables problem is huge. We are often much more
interested in the connections between actual variables in the real world, than with our
imperfect, noisy measurements of them. Endless ink has been spilled, for instance,
on what determines students’ examination scores. One thing commonly thrown
into the regression — a feature included in ~X — is the income of children’s families.
But this is typically not measured with absolute precision3, so what we are really
interested in — the relationship between actual income and school performance — is
not what we are estimating in our regression. Typically, adding noise to the input
features makes them less predictive of the response — in linear regression, it tends to
push bβ closer to zero than it would be if we could regress Y on ~U .

On account of the error-in-variables problem, some people get very upset when
they see imprecisely-measured features as inputs to a regression. Some of them, in
fact, demand that the input variables be measured exactly, with no noise whatsoever.

This position, however, is crazy, and indeed there’s a sense where it isn’t actually
a problem at all. Our earlier reasoning about how to find the optimal linear predictor
of Y from ~X remains valid whether something like Eq. 2.31 is true or not. Similarly,
the reasoning last time about the actual regression function being the over-all optimal
predictor, etc., is unaffected. If in the future we will continue to have ~X rather than
~U available to us for prediction, then Eq. 2.31 is irrelevant for prediction. Without
better data, the relationship of Y to ~U is just one of the unanswerable questions the
world is full of, as much as “what song the sirens sang, or what name Achilles took
when he hid among the women”.

Now, if you are willing to assume that ~η is a very nicely behaved Gaussian and you
know its variance, then there are standard solutions to the error-in-variables problem
for linear regression — ways of estimating the coefficients you’d get if you could
regress Y on ~U . I’m not going to go over them, partly because they’re in standard
textbooks, but mostly because the assumptions are hopelessly demanding.4

2.2.4 Transformation
Let’s look at a simple non-linear example, Y |X ∼ N (logX , 1). The problem with
smoothing data from this source on to a straight line is that the true regression curve
isn’t very straight, E[Y |X = x] = log x. (Figure 2.5.) This suggests replacing the
variables we have with ones where the relationship is linear, and then undoing the
transformation to get back to what we actually measure and care about.

We have two choices: we can transform the response Y , or the predictor X . Here
transforming the response would mean regressing expY on X , and transforming the
predictor would mean regressing Y on logX . Both kinds of transformations can be
worth trying, but transforming the predictors is, in my experience, often a better bet,
for three reasons.

1. Mathematically, E[ f (Y )] 6= f (E[Y ]). A mean-squared optimal prediction of

3One common proxy is to ask the child what they think their family income is. (I didn’t believe that
either when I first heard about it.)

4Non-parametric error-in-variable methods are an active topic of research (Carroll et al., 2009).
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x <- runif(100)
y <- rnorm(100,mean=log(x),sd=1)
plot(y~x)
curve(log(x),add=TRUE,col="grey")
abline(lm(y~x))

Figure 2.5: Sample of data for Y |X ∼N (logX , 1). (Here X ∼Unif(0,1), and all logs
are natural logs.) The true, logarithmic regression curve is shown in grey (because
it’s not really observable), and the linear regression fit is shown in black.
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f (Y ) is not necessarily close to the transformation of an optimal prediction of
Y . And Y is, presumably, what we really want to predict. (Here, however, it
works out.)

2. Imagine that Y =
p

X + logZ . There’s not going to be any particularly nice
transformation of Y that makes everything linear; though there will be trans-
formations of the features.

3. This generalizes to more complicated models with features built from multiple
covariates.

[[TODO: Explain why trans-
forming Y totally messes up
the noise model]]

Figure 2.6 shows the effect of these transformations. Here transforming the pre-
dictor does, indeed, work out more nicely; but of course I chose the example so that
it does so.

To expand on that last point, imagine a model like so:

r (~x) =
q
∑

j=1

c j f j (~x) (2.32)

If we know the functions f j , we can estimate the optimal values of the coefficients c j
by least squares — this is a regression of the response on new features, which happen
to be defined in terms of the old ones. Because the parameters are outside the func-
tions, that part of the estimation works just like linear regression. Models embraced
under the heading of Eq. 2.32 include linear regressions with interactions between
the independent variables (set f j = xi xk , for various combinations of i and k), and
polynomial regression. There is however nothing magical about using products and
powers of the independent variables; we could regress Y on sin x, sin2x, sin3x, etc.

To apply models like Eq. 2.32, we can either (a) fix the functions f j in advance,
based on guesses about what should be good features for this problem; (b) fix the
functions in advance by always using some “library” of mathematically convenient
functions, like polynomials or trigonometric functions; or (c) try to find good func-
tions from the data. Option (c) takes us beyond the realm of linear regression as such,
into things like splines (Chapter 8) and additive models (Chapter 9). Later, after we
have seen how additive models work, we’ll examine how to automatically search for
transformations of both sides of a regression model. [[TODO: Either add a sec-

tion+ later on alternating con-
ditional expectations, or cut
that last promise]]2.3 Adding Probabilistic Assumptions

The usual treatment of linear regression adds many more probabilistic assumptions.
Specifically, the assumption is that

Y |~X ∼N (~X ·β,σ2) (2.33)

with all Y values being independent conditional on their ~X values. So now we are
assuming that the regression function is exactly linear; we are assuming that at each ~X
the scatter of Y around the regression function is Gaussian; we are assuming that the
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Figure 2.6: Transforming the predictor (left column) and the response (right) in the
data from Figure 2.5, shown in both the transformed coordinates (top) and the origi-
nal coordinates (middle). The bottom figure super-imposes the two estimated curves
(transformed X in black, transformed Y in blue). The true regression curve is always
in grey. (R code deliberately omitted; can you reproduce this?)
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variance of this scatter is constant; and we are assuming that there is no dependence
between this scatter and anything else.

None of these assumptions was needed in deriving the optimal linear predictor.
None of them is so mild that it should go without comment or without at least some
attempt at testing.

Leaving that aside just for the moment, why make those assumptions? As you
know from your earlier classes, they let us write down the likelihood of the observed
responses y1, y2, . . . yn (conditional on the covariates ~x1, . . .~xn), and then estimate β
and σ2 by maximizing this likelihood. As you also know, the maximum likelihood
estimate ofβ is exactly the same as theβ obtained by minimizing the residual sum of
squares. This coincidence would not hold in other models, with non-Gaussian noise.

We saw earlier that bβ is consistent under comparatively weak assumptions —
that it converges to the optimal coefficients. But then there might, possibly, still be
other estimators are also consistent, but which converge faster. If we make the extra
statistical assumptions, so that bβ is also the maximum likelihood estimate, we can
lay that worry to rest. The MLE is generically (and certainly here!) asymptotically
efficient, meaning that it converges as fast as any other consistent estimator, at least
in the long run. So we are not, so to speak, wasting any of our data by using the
MLE.

A further advantage of the MLE is that, as n →∞, its sampling distribution is
itself a Gaussian, centered around the true parameter values. This lets us calculate
standard errors and confidence intervals quite easily. Here, with the Gaussian as-
sumptions, much more exact statements can be made about the distribution of bβ
around β. You can find the formulas in any textbook on regression, so I won’t get
into that.

We can also use a general property of MLEs for model testing. Suppose we have
two classes of models, Ω and ω. Ω is the general case, with p parameters, and ω is a
special case, where some of those parameters are constrained, but q < p of them are
left free to be estimated from the data. The constrained model classω is then nested
within Ω. Say that the MLEs with and without the constraints are, respectively, bΘ
and bθ, so the maximum log-likelihoods are L(bΘ) and L(bθ). Because it’s a maximum
over a larger parameter space, L(bΘ) ≥ L(bθ). On the other hand, if the true model
really is in ω, we’d expect the unconstrained estimate and the constrained estimate
to be coming closer and closer. It turns out that the difference in log-likelihoods has
an asymptotic distribution which doesn’t depend on any of the model details, namely

2
h

L(bΘ)− L(bθ)
i

  χ 2
p−q (2.34)

That is, a χ 2 distribution with one degree of freedom for each extra parameter in Ω
(that’s why they’re called “degrees of freedom”).5

This approach can be used to test particular restrictions on the model, and so it

5If you assume the noise is Gaussian, the left-hand side of Eq. 2.34 can be written in terms of various
residual sums of squares. However, the equation itself remains valid under other noise distributions, which
just change the form of the likelihood function. See Appendix F.
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is sometimes used to assess whether certain variables influence the response. This,
however, gets us into the concerns of the next section.

2.3.1 Examine the Residuals
By construction, the residuals of a fitted linear regression have mean zero and are
uncorrelated with the independent variables. If the usual probabilistic assumptions
hold, however, they have many other properties as well.

1. The residuals have a Gaussian distribution at each ~x.

2. The residuals have the same Gaussian distribution at each ~x, i.e., they are in-
dependent of the predictor variables. In particular, they must have the same
variance (i.e., they must be homoskedastic).

3. The residuals are independent of each other. In particular, they must be uncorre-
lated with each other.

These properties — Gaussianity, homoskedasticity, lack of correlation — are all testable
properties. When they all hold, we say that the residuals are white noise. One would
never expect them to hold exactly in any finite sample, but if you do test for them
and find them strongly violated, you should be extremely suspicious of your model.
These tests are much more important than checking whether the coefficients are sig-
nificantly different from zero.

Every time someone uses linear regression with the standard assumptions for in-
ference and does not test whether the residuals are white noise, an angel loses its
wings.

2.3.2 On Significant Coefficients
If all the usual distributional assumptions hold, then t -tests can be used to decide
whether particular coefficients are statistically-significantly different from zero. Pretty
much any piece of statistical software, R very much included, reports the results of
these tests automatically. It is far too common to seriously over-interpret those re-
sults, for a variety of reasons.

Begin with what hypothesis, exactly, is being tested when R (or whatever) runs
those t-tests. Say, without loss of generality, that there are p predictor variables, ~X =
(X1, . . .Xp ), and that we are testing the coefficient on Xp . Then the null hypothesis
is not just “βp = 0”, but “βp = 0 in a linear model which also includes X1, . . .Xp−1”.
The alternative hypothesis is not “βp 6= 0”, but “βp 6= 0 in a model which also
includes X1, . . .Xp−1”. The optimal linear coefficient on Xp will depend on not just
on the relationship between Xp and the response Y , but also on what other variables
are included in the model. The t -test checks whether adding Xp really improves
predictions if one is already using all the other variables — whether it helps prediction
“at the margin”, not whether Xp is important in any absolute sense.

Even if you are willing to say “Yes, all I really want to know about this variable
is whether adding it to the model really helps me predict”, bear in mind that the
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question being addressed by the t -test is whether adding that variable will help at all.
Of course, as you know from your regression class, and as we’ll see in more detail
in Chapter 3, expanding the model never hurts its performance on the training data.
The point of the t -test is to gauge whether the improvement in prediction is small
enough to be due to chance, or so large, compared to what noise could produce, that
one could confidently say the variable adds some predictive ability. This has several
implications which are insufficiently appreciated among users.

In the first place, tests on individual coefficients can seem to contradict tests on
groups of coefficients. Adding a set of variables together to the model could sig-
nificantly improve the fit (as checked by, say, a partial F test), even if none of the
coefficients is itself significant. In fact, every single coefficient in the model could be
insignificant, while the model as a whole is highly significant.

In the second place, it’s worth thinking about which variables will show up as
statistically significant. Remember that the t -statistic is bβi/se( bβi ), the ratio of the

estimated coefficient to its standard error. We saw above that Var
h

bβ|X= x
i

=
σ2

n

�

n−1xT x
�−1
→ n−1σ2v. This means that the standard errors will be shrink as the

sample size grows, so more and more variables will become significant as we get more
data — but how much data we collect is irrelevant to how the process we’re studying
actually works. Moreover, at a fixed sample size, the coefficients with smaller stan-
dard errors will tend to be the ones whose variables have more variance, and whose
variables are less correlated with the other predictors. High input variance and low
correlation help us estimate the coefficient precisely, but, again, they have nothing to
do with whether the input variable is actually very closely related to the response.

To sum up, it is never the case that statistical significance is the same as scientific,
real-world significance. Statistical significance is always about what “signals” can be
picked out clearly from background noise. In the case of linear regression coeffi-
cients, statistical significance runs together the size of the coefficients, how bad the
linear regression model is, the sample size, the variance in the input variable, and the
correlation of that variable with all the others.

Of course, even the limited “does it help predictions enough to bother with?”
utility of the usual t -test (and F -test) calculations goes away if the standard distribu-
tional assumptions do not hold, so that the calculated p-values are just wrong. One
can sometimes get away with using bootstrapping (Chapter 6) to get accurate p-values
for standard tests under non-standard conditions.

2.4 Linear Regression Is Not the Philosopher’s Stone

The philosopher’s stone, remember, was supposed to be able to transmute base met-
als (e.g., lead) into the perfect metal, gold (Eliade, 1971). Many people treat linear
regression as though it had a similar ability to transmute a correlation matrix into a
scientific theory. In particular, people often argue that:

1. because a variable has a non-zero regression coefficient, it must influence the
response;
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2. because a variable has a zero regression coefficient, it must not influence the
response;

3. if the independent variables change, we can predict how much the response
will change by plugging in to the regression.

All of this is wrong, or at best right only under very particular circumstances.
We have already seen examples where influential variables have regression coef-

ficients of zero. We have also seen examples of situations where a variable with no
influence has a non-zero coefficient (e.g., because it is correlated with an omitted
variable which does have influence). If there are no nonlinearities and if there are
no omitted influential variables and if the noise terms are always independent of the
predictor variables, are we good?

No. Remember from Equation 2.5 that the optimal regression coefficients de-
pend on both the marginal distribution of the predictors and the joint distribution
(covariances) of the response and the predictors. There is no reason whatsoever to
suppose that if we change the system, this will leave the conditional distribution of
the response alone.

A simple example may drive the point home. Suppose we surveyed all the cars
in Pittsburgh, recording the maximum speed they reach over a week, and how of-
ten they are waxed and polished. I don’t think anyone doubts that there will be a
positive correlation here, and in fact that there will be a positive regression coeffi-
cient, even if we add in many other variables as predictors. Let us even postulate
that the relationship is linear (perhaps after a suitable transformation). Would any-
one believe that polishing cars will make them go faster? Manifestly not. But this
is exactly how people interpret regressions in all kinds of applied fields — instead of
saying polishing makes cars go faster, it might be saying that receiving targeted ads
makes customers buy more, or that consuming dairy foods makes diabetes progress
faster, or . . . . Those claims might be true, but the regressions could easily come out
the same way if the claims were false. Hence, the regression results provide little or
no evidence for the claims.

Similar remarks apply to the idea of using regression to “control for” extra vari-
ables. If we are interested in the relationship between one predictor, or a few pre-
dictors, and the response, it is common to add a bunch of other variables to the
regression, to check both whether the apparent relationship might be due to correla-
tions with something else, and to “control for” those other variables. The regression
coefficient this is interpreted as how much the response would change, on average, if
the independent variable were increased by one unit, “holding everything else con-
stant”. There is a very particular sense in which this is true: it’s a prediction about
the changes in the conditional of the response (conditional on the given values for
the other predictors), assuming that observations are randomly drawn from the same
population we used to fit the regression.

In a word, what regression does is probabilistic prediction. It says what will hap-
pen if we keep drawing from the same population, but select a sub-set of the obser-
vations, namely those with given values of the independent variables. A causal or
counter-factual prediction would say what would happen if we (or Someone) made
those variables take on those values. There may be no difference between selection
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and intervention, in which case regression can work as a tool for causal inference6;
but in general there is. Probabilistic prediction is a worthwhile endeavor, but it’s im-
portant to be clear that this is what regression does. There are techniques for doing
actually causal prediction, which we will explore in Part III.

Every time someone thoughtlessly uses regression for causal inference, an angel
not only loses its wings, but is cast out of Heaven and falls in most extreme agony
into the everlasting fire.

2.5 Exercises
1. Convince yourself that if the real regression function is linear, β does not de-

pend on the marginal distribution of X . You may want to start with the case
of one independent variable.

2. Run the code from Figure 2.5. Then replicate the plots in Figure 2.6.

3. Which kind of transformation is superior for the model where Y |X ∼N (
p

X , 1)?

6In particular, if we assign values of the independent variables in a way which breaks possible depen-
dencies with omitted variables and noise — either by randomization or by experimental control — then
regression can, in fact, work for causal inference.
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Chapter 3

Evaluating Statistical Models:
Error and Inference

3.1 What Are Statistical Models For? Summaries, Fore-
casts, Simulators

There are (at least) three levels at which we can use statistical models in data analysis:
as summaries of the data, as predictors, and as simulators.

The lowest and least demanding level is just to use the model as a summary of the
data — to use it for data reduction, or compression. Just as one can use the sample
mean or sample quantiles as descriptive statistics, recording some features of the data
and saying nothing about a population or a generative process, we could use estimates
of a model’s parameters as descriptive summaries. Rather than remembering all the
points on a scatter-plot, say, we’d just remember what the OLS regression surface
was.

It’s hard to be wrong about a summary, unless we just make a mistake. (It may or
may not be helpful for us later, but that’s different.) When we say “the slope which
minimized the sum of squares was 4.02”, we make no claims about anything but the
training data. It relies on no assumptions, beyond our doing the calculations right.
But it also asserts nothing about the rest of the world. As soon as we try to connect
our training data to the rest of the world, we start relying on assumptions, and we
run the risk of being wrong.

Probably the most common connection to want to make is to say what other
data will look like — to make predictions. In a statistical model, with random noise
terms, we do not anticipate that our predictions will ever be exactly right, but we also
anticipate that our mistakes will show stable probabilistic patterns. We can evaluate
predictions based on those patterns of error — how big is our typical mistake? are we
biased in a particular direction? do we make a lot of little errors or a few huge ones?

Statistical inference about model parameters — estimation and hypothesis testing
— can be seen as a kind of prediction, extrapolating from what we saw in a small
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piece of data to what we would see in the whole population, or whole process. When
we estimate the regression coefficient b̂ = 4.02, that involves predicting new values
of the dependent variable, but also predicting that if we repeated the experiment and
re-estimated b̂ , we’d get a value close to 4.02.

Using a model to summarize old data, or to predict new data, doesn’t commit us
to assuming that the model describes the process which generates the data. But we
often want to do that, because we want to interpret parts of the model as aspects of
the real world. We think that in neighborhoods where people have more money, they
spend more on houses — perhaps each extra $1000 in income translates into an extra
$4020 in house prices. Used this way, statistical models become stories about how the
data were generated. If they are accurate, we should be able to use them to simulate
that process, to step through it and produce something that looks, probabilistically,
just like the actual data. This is often what people have in mind when they talk about
scientific models, rather than just statistical ones.

An example: if you want to predict where in the night sky the planets will be,
you can actually do very well with a model where the Earth is at the center of the
universe, and the Sun and everything else revolve around it. You can even estimate,
from data, how fast Mars (for example) goes around the Earth, or where, in this
model, it should be tonight. But, since the Earth is not at the center of the solar
system, those parameters don’t actually refer to anything in reality. They are just
mathematical fictions. On the other hand, we can also predict where the planets will
appear in the sky using models where all the planets orbit the Sun, and the parameters
of the orbit of Mars in that model do refer to reality.1

This chapter focuses on evaluating predictions, for three reasons. First, often we
just want prediction. Second, if a model can’t even predict well, it’s hard to see how it
could be right scientifically. Third, often the best way of checking a scientific model
is to turn some of its implications into statistical predictions.

3.2 Errors, In and Out of Sample

With any predictive model, we can gauge how well it works by looking at its errors.
We want these to be small; if they can’t be small all the time we’d like them to be
small on average. We may also want them to be patternless or unsystematic (because
if there was a pattern to them, why not adjust for that, and make smaller mistakes).
We’ll come back to patterns in errors later, when we look at specification testing
(Chapter 10). For now, we’ll concentrate on the size of the errors.

To be a little more mathematical, we have a data set with points zn = z1, z2, . . . zn .
(For regression problems, think of each data point as the pair of input and output
values, so zi = (xi , yi ), with xi possibly a vector.) We also have various possible mod-
els, each with different parameter settings, conventionally written θ. For regression,
θ tells us which regression function to use, so mθ(x) or m(x;θ) is the prediction we
make at point x with parameters set to θ. Finally, we have a loss function L which

1We can be pretty confident of this, because we use our parameter estimates to send our robots to Mars,
and they get there.
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tells us how big the error is when we use a certain θ on a certain data point, L(z,θ).
For mean-squared error, this would just be

L(z,θ) = (y −mθ(x))
2 (3.1)

But we could also use the mean absolute error

L(z,θ) = |y −mθ(x)| (3.2)

or many other loss functions. Sometimes we will actually be able to measure how
costly our mistakes are, in dollars or harm to patients. If we had a model which
gave us a distribution for the data, then pθ(z) would a probability density at z, and
a typical loss function would be the negative log-likelihood, − log mθ(z). No matter
what the loss function is, I’ll abbreviate the sample average of the loss over the whole
data set by L(zn ,θ).

What we would like, ideally, is a predictive model which has zero error on future
data. We basically never achieve this:

• The world just really is a noisy and stochastic place, and this means even the
true, ideal model has non-zero error.2 This corresponds to the first, σ2

x , term
in the bias-variance decomposition, Eq. 1.26 from Chapter 1.

• Our models are usually more or less mis-specified, or, in plain words, wrong.
We hardly ever get the functional form of the regression, the distribution of
the noise, the form of the causal dependence between two factors, etc., exactly
right.3 This is the origin of the bias term in the bias-variance decomposition.
Of course we can get any of the details in the model specification more or less
wrong, and we’d prefer to be less wrong.

• Our models are never perfectly estimated. Even if our data come from a perfect
IID source, we only ever have a finite sample, and so our parameter estimates
are (almost!) never quite the true, infinite-limit values. This is the origin of
the variance term in the bias-variance decomposition. But as we get more and
more data, the sample should become more and more representative of the
whole process, and estimates should converge too.

So, because our models are flawed, we have limited data and the world is stochastic,
we cannot expect even the best model to have zero error. Instead, we would like to
minimize the expected error, or risk, or generalization error, on new data.

What we would like to do is to minimize the risk or expected loss

E[L(Z ,θ)] =
∫

d z p(z)L(z,θ) (3.3)

2This is so even if you believe in some kind of ultimate determinism, because the variables we plug
in to our predictive models are not complete descriptions of the physical state of the universe, but rather
immensely coarser, and this coarseness shows up as randomness.

3Except maybe in fundamental physics, and even there our predictions are about our fundamental
theories in the context of experimental set-ups, which we never model in complete detail.
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To do this, however, we’d have to be able to calculate that expectation. Doing that
would mean knowing the distribution of Z — the joint distribution of X and Y , for
the regression problem. Since we don’t know the true joint distribution, we need to
approximate it somehow.

A natural approximation is to use our training data zn . For each possible model
θ, we can could calculate the sample mean of the error on the data, L(zn ,θ), called
the in-sample loss or the empirical risk. The simplest strategy for estimation is then
to pick the model, the value of θ, which minimizes the in-sample loss. This strategy
is imaginatively called empirical risk minimization. Formally,

cθn ≡ argmin
θ∈Θ

L(zn ,θ) (3.4)

This means picking the regression which minimizes the sum of squared errors, or
the density with the highest likelihood4. This what you’ve usually done in statistics
courses so far, and it’s very natural, but it does have some issues, notably optimism
and over-fitting.

The problem of optimism comes from the fact that our training data isn’t per-
fectly representative. The in-sample loss is a sample average. By the law of large
numbers, then, we anticipate that, for each θ,

L(zn ,θ)→ E[L(Z ,θ)] (3.5)

as n→∞. This means that, with enough data, the in-sample error is a good approx-
imation to the generalization error of any given model θ. (Big samples are repre-
sentative of the underlying population or process.) But this does not mean that the
in-sample performance of θ̂ tells us how well it will generalize, because we purposely
picked it to match the training data zn . To see this, notice that the in-sample loss
equals the risk plus sampling noise:

L(zn ,θ) = E[L(Z,θ)]+ηn(θ) (3.6)

Here η(θ) is a random term which has mean zero, and represents the effects of having
only a finite quantity of data, of size n, rather than the complete probability distribu-
tion. (I write it ηn(θ) as a reminder that different values of θ are going to be affected
differently by the same sampling fluctuations.) The problem, then, is that the model
which minimizes the in-sample loss could be one with good generalization perfor-
mance (E[L(Z,θ)] is small), or it could be one which got very lucky (ηn(θ)was large
and negative):

cθn = argmin
θ∈Θ

�

E[L(Z ,θ)]+ηn(θ)
�

(3.7)

We only want to minimize E[L(Z ,θ)], but we can’t separate it from ηn(θ), so we’re
almost surely going to end up picking a cθn which was more or less lucky (ηn < 0)
as well as good (E[L(Z ,θ)] small). This is the reason why picking the model which
best fits the data tends to exaggerate how well it will do in the future (Figure 3.1).

4Remember, maximizing the likelihood is the same as maximizing the log-likelihood, because log is
an increasing function. Therefore maximizing the likelihood is the same as minimizing the negative log-
likelihood.
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n<-20; theta<-5
x<-runif(n); y<-x*theta+rnorm(n)
empirical.risk <- function(b) { mean((y-b*x)^2) }
true.risk <- function(b) { 1 + (theta-b)^2*(0.5^2+1/12) }
curve(Vectorize(empirical.risk)(x),from=0,to=2*theta,

xlab="regression slope",ylab="MSE risk")
curve(true.risk,add=TRUE,col="grey")

Figure 3.1: Plots of empirical and generalization risk for a simple case of regression
through the origin, Y = θX + ε, ε ∼ N (0,1), with the true θ = 5. X is uniformly
distributed on the unit interval [0,1]. The black curve is the mean squared error
on one particular training sample (of size n = 20) as we vary the guessed slope; here
the minimum is at θ̂ = 5.53. The grey curve is the true or generalization risk. (See
EXERCISE 2.) The gap between the grey and the black curves is what the text calls
ηn(θ).
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63 3.3. OVER-FITTING AND MODEL SELECTION

Again, by the law of large numbers ηn(θ) → 0 for each θ, but now we need to
worry about how fast it’s going to zero, and whether that rate depends on θ. Suppose
we knew that minθ ηn(θ) → 0, or maxθ |ηn(θ)| → 0. Then it would follow that
ηn(cθn)→ 0, and the over-optimism in using the in-sample error to approximate the
generalization error would at least be shrinking. If we knew how fast maxθ |ηn(θ)|
was going to zero, we could even say something about how much bigger the true risk
was likely to be. A lot of more advanced statistics and machine learning theory is
thus about uniform laws of large numbers (showing maxθ |ηn(θ)| → 0) and rates of
convergence.

Learning theory is a beautiful, deep, and practically important subject, but also
subtle and involved one.5 To stick closer to analyzing real data, and to not turn this
into an advanced probability class, I will only talk about some more-or-less heuristic
methods, which are good enough for many purposes.

3.3 Over-Fitting and Model Selection
The big problem with using the in-sample error is related to over-optimism, but at
once trickier to grasp and more important. This is the problem of over-fitting. To
illustrate it, let’s start with Figure 3.2. This has the twenty X values from a Gaussian
distribution, and Y = 7X 2 − 0.5X + ε, ε ∼ N (0,1). That is, the true regression
curve is a parabola, with additive and independent Gaussian noise. Let’s try fitting
this — but pretend that we didn’t know that the curve was a parabola. We’ll try
fitting polynomials of different orders in x — order 0 (a flat line), order 1 (a linear
regression), order 2 (quadratic regression), up through order 9. Figure 3.3 shows the
data with the polynomial curves, and Figure 3.4 shows the in-sample mean squared
error as a function of the order of the polynomial.

Notice that the in-sample error goes down as the order of the polynomial in-
creases; it has to. Every polynomial of order p is also a polynomial of order p+1, so
going to a higher-order model can only reduce the in-sample error. Quite generally,
in fact, as one uses more and more complex and flexible models, the in-sample error
will get smaller and smaller.6

Things are quite different if we turn to the generalization error. In principle, I
could calculate that for any of the models, since I know the true distribution, but
it would involve calculating things like E

�

X 18�, which won’t be very illuminating.
Instead, I will just draw a lot more data from the same source, twenty thousand
data points in fact, and use the error of the old models on the new data as their
generalization error7. The results are in Figure 3.5.

5Some comparatively easy starting points are Kearns and Vazirani (1994), Cristianini and Shawe-Taylor
(2000) and Mohri et al. (2012). At a more advanced level, look at the tutorial papers by Bousquet et al.
(2004); von Luxburg and Schölkopf (2008), or the textbooks by Vidyasagar (2003), or read the book by
Vapnik (2000) (one of the founders).

6In fact, since there are only 20 data points, they could all be fit exactly if the order of the polynomials
went up to 19. (Remember that any two points define a line, any three points a parabola, etc. — p + 1
points define a polynomial of order p which passes through them.)

7This works, yet again, because of the law of large numbers. In Chapters 5 and especially 6, we will see
much more about replacing complicated probabilistic calculations with simple simulations.
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plot(x,y2)
curve(7*x^2-0.5*x,add=TRUE,col="grey")

Figure 3.2: Scatter-plot showing sample data and the true, quadratic regression curve
(grey parabola).
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y2.0 = lm(y2 ~ 1)
abline(h=y2.0$coefficients[1])
d = seq(-2,2,length.out=200)
for (degree in 1:9) {
fm = lm(y2 ~ poly(x,degree))
assign(paste("y2",degree,sep="."), fm)
lines(d, predict(fm,data.frame(x=d)),lty=(degree+1))

}

Figure 3.3: Twenty training data points (dots), and ten different fitted regression lines
(polynomials of order 0 to 9, indicated by different line types). R NOTES: The poly
command constructs orthogonal (uncorrelated) polynomials of the specified degree from its
first argument; regressing on them is conceptually equivalent to regressing on 1, x, x2, . . . xdegree,
but more numerically stable. (See help(poly).) This use of the assign and paste functions
together is helpful for storing results which don’t fit well into arrays.
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mse.q = vector(length=10)
for (degree in 0:9) {

# The get() function is the inverse to assign()
fm = get(paste("y",degree,sep="."))
mse.q[degree+1] = mean(residuals(fm)^2)

}
plot(0:9,mse.q,type="b",xlab="polynomial degree",ylab="mean squared error",

log="y")

Figure 3.4: Degree of polynomial vs. its in-sample mean-squared error on the data
from the previous figure. Note the logarithmic scale for the vertical axis.
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gmse.q = vector(length=10)
for (degree in 0:9) {
fm = get(paste("y",degree,sep="."))
predictions = predict(fm,data.frame(x=x.new))
resids = y.new - predictions
gmse.q[degree+1] = mean(resids^2)

}
plot(0:9,mse.q,type="b",xlab="polynomial degree",

ylab="mean squared error",log="y",ylim=c(min(mse.q),max(gmse.q)))
lines(0:9,gmse.q,lty=2,col="blue")
points(0:9,gmse.q,pch=24,col="blue")

Figure 3.5: In-sample error (black dots) compared to generalization error (blue trian-
gles). Note the logarithmic scale for the vertical axis.
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What is happening here is that the higher-order polynomials — beyond order 2 —
are not just a little optimistic about how well they fit, they are wildly over-optimistic.
The models which seemed to do notably better than a quadratic actually do much,
much worse. If we picked a polynomial regression model based on in-sample fit, we’d
chose the highest-order polynomial available, and suffer for it.

What’s going on here is that the more complicated models — the higher-order
polynomials, with more terms and parameters — were not actually fitting the general-
izable features of the data. Instead, they were fitting the sampling noise, the accidents
which don’t repeat. That is, the more complicated models over-fit the data. In terms
of our earlier notation, η is bigger for the more flexible models. The model which
does best here is the quadratic, because the true regression function happens to be of
that form. The more powerful, more flexible, higher-order polynomials were able to
get closer to the training data, but that just meant matching the noise better. In terms
of the bias-variance decomposition, the bias shrinks with the model order, but the
variance of estimation grows.

Notice that the models of order 0 and order 1 also do worse than the quadratic
model — their problem is not over-fitting but under-fitting; they would do better if
they were more flexible. Plots of generalization error like this usually have a mini-
mum. If we have a choice of models — if we need to do model selection — we would
like to find the minimum. Even if we do not have a choice of models, we might like
to know how big the gap between our in-sample error and our generalization error
is likely to be.

There is nothing special about polynomials here. All of the same lessons apply
to variable selection in linear regression, to k-nearest neighbors (where we need to
choose k), to kernel regression (where we need to choose the bandwidth), and to
other methods we’ll see later. In every case, there is going to be a minimum for the
generalization error curve, which we’d like to find.

(A minimum with respect to what, though? In Figure 3.5, the horizontal axis is
the model order, which here is the number of parameters (minus one). More gener-
ally, however, what we care about is some measure of how complex the model space
is, which is not necessarily the same thing as the number of parameters. What’s more
relevant is how flexible the class of models is, how many different functions it can
approximate. Linear polynomials can approximate a smaller set of functions than
quadratics can, so the latter are more complex, or have higher capacity. More ad-
vanced learning theory has a number of ways of quantifying this, but the details get
pretty arcane, and we will just use the concept of complexity or capacity informally.)

3.4 Cross-Validation
The most straightforward way to find the generalization error would be to do what
I did above, and to use fresh, independent data from the same source — a testing or
validation data-set. Call this z′m , as opposed to our training data zn . We fit our model

to zn , and get cθn . The loss of this on the validation data is

E
h

L(Z ,cθn)
i

+η′m(
cθn) (3.8)
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where now the sampling noise on the validation set, η′m , is independent ofÓθm . So this
gives us an unbiased estimate of the generalization error, and, if m is large, a precise
one. If we need to select one model from among many, we can pick the one which
does best on the validation data, with confidence that we are not just over-fitting.

The problem with this approach is that we absolutely, positively, cannot use any
of the validation data in estimating the model. Since collecting data is expensive —
it takes time, effort, and usually money, organization, effort and skill — this means
getting a validation data set is expensive, and we often won’t have that luxury.

3.4.1 Data-set Splitting

The next logical step, however, is to realize that we don’t strictly need a separate
validation set. We can just take our data and split it ourselves into training and testing
sets. If we divide the data into two parts at random, we ensure that they have (as
much as possible) the same distribution, and that they are independent of each other.
Then we can act just as though we had a real validation set. Fitting to one part of
the data, and evaluating on the other, gives us an unbiased estimate of generalization
error. Of course it doesn’t matter which half of the data is used to train and which
half is used to test, so we can do it both ways and average.

Figure 3.6 illustrates the idea with a bit of the data and linear models from the
first homework set, and Code Example 1 shows the code used to make Figure 3.6. [[TODO: Turn figure to por-

trait mode, make everything
bigger, space out, add arrows
to guide eye through data
flow]]

3.4.2 k-Fold Cross-Validation (CV)

The problem with data-set splitting is that, while it’s an unbiased estimate of the risk,
it is often a very noisy one. If we split the data evenly, then the test set has n/2
data points — we’ve cut in half the number of sample points we’re averaging over. It
would be nice if we could reduce that noise somewhat, especially if we are going to
use this for model selection.

One solution to this, which is pretty much the industry standard, is what’s called
k-fold cross-validation. Pick a small integer k, usually 5 or 10, and divide the data
at random into k equally-sized subsets. (The subsets are sometimes called “folds”.)
Take the first subset and make it the test set; fit the models to the rest of the data, and
evaluate their predictions on the test set. Now make the second subset the test set
and the rest of the training sets. Repeat until each subset has been the test set. At the
end, average the performance across test sets. This is the cross-validated estimate of
generalization error for each model. Model selection then picks the model with the
smallest estimated risk.8

The reason cross-validation works is that it uses the existing data to simulate the
process of generalizing to new data. If the full sample is large, then even the smaller
portion of it in the training data is, with high probability, fairly representative of the
data-generating process. Randomly dividing the data into training and test sets makes

8A closely related procedure, sometimes also called “k-fold CV”, is to pick 1/k of the data points at
random to be the test set (using the rest as a training set), and then pick an independent 1/k of the data
points as the test set, etc., repeating k times and averaging. The differences are subtle, but what’s described
in the main text makes sure that each point is used in the test set just once.
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Median_house_value Median_household_income Median_rooms
1 909600 111667 6.0
2 748700 66094 4.6
3 773600 87306 5.0
4 579200 62386 4.5
5 480800 55658 4.8
6 460800 38646 4.3

. . . . . . . . . . . .
10605 253400 71638 6.6

(A)

Median_house_value Median_household_income Median_rooms
2 748700 66094 4.6
3 773600 87306 5.0
5 480800 55658 4.8
6 460800 38646 4.3
8 439300 59091 4.4

. . . . . . . . . . . .
10605 253400 71638 6.6

(B)

Median_house_value Median_household_income Median_rooms
1 909600 111667 6.0
4 579200 62386 4.5
7 473500 52837 4.3
9 369800 40402 4.6
10 467200 44140 3.5
14 353700 27138 3.9
. . . . . . . . . . . .

10604 209500 56667 6.0

(A)
Ûβintercept

Ùβincome
Øβrooms MSE

Income only (2.74± 0.56)× 104 5.252± 0.085 NA 2.62× 1010

Income + Rooms (4.772± 0.093)× 105 7.748± 0.081 (−1.125± 0.020)× 105 1.66× 1010

(B)
Ûβintercept

Ùβincome
Øβrooms MSE

Income only (3.99± .55)× 104 4.99± 0.8 NA 2.59× 1010

Income + Rooms (5.040± 0.089)× 105 7.609± 0.079 (−1.162± 0.020)× 105 1.56× 1010

MSE(A→ B) MSE(B→A) average
Income only 2.60× 1010 2.62× 1010 2.61× 1010

Income + Rooms 1.56× 1010 1.67× 1010 1.61× 1010

Figure 3.6: Example of data-set splitting. The top table shows three columns and
seven rows of the housing-price data used in homework 1. This is then randomly
split into two equally sized parts (tables in the second row). I estimate a linear model
which predicts house value from income alone, and another model which predicts
from income and the median number of rooms, on each half (parameter estimates
and in-sample MSEs in the third row). The fourth row shows the performance of
each estimate on the other half of the data, and the average for each of the two models.
Note that the larger model always has a lower in-sample error, whether or not it is
really better, so the in-sample MSEs provide no evidence that we should use the larger
model. Having a lower score under data-set splitting, however, is evidence that the
larger model generalizes better. (For R commands used to get these numbers, see
Code Example 1.) — Can you explain why the coefficient on the number of rooms
is negative?
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half_A <- sample(1:nrow(housing),size=nrow(housing)/2,replace=FALSE)
half_B <- setdiff(1:nrow(housing),half_A)
small_formula = "Median_house_value ~ Median_household_income"
large_formula = "Median_house_value ~ Median_household_income + Median_rooms"
small_formula <- as.formula(small_formula)
large_formula <- as.formula(large_formula)
mAsmall <- lm(small_formula,data=housing,subset=half_A)
mBsmall <- lm(small_formula,data=housing,subset=half_B)
mAlarge <- lm(large_formula,data=housing,subset=half_A)
mBlarge <- lm(large_formula,data=housing,subset=half_B)
in.sample.mse <- function(model) { mean(residuals(model)^2) }
in.sample.mse(mAsmall); in.sample.mse(mAlarge)
in.sample.mse(mBsmall); in.sample.mse(mBlarge)
new.sample.mse <- function(model,half) {

test <- housing[half,]
predictions <- predict(model,newdata=test)
return(mean((test$Median_house_value - predictions)^2))

}
new.sample.mse(mAsmall,half_B); new.sample.mse(mBsmall,half_A)
new.sample.mse(mBlarge,half_A); new.sample.mse(mAlarge,half_B)

Code Example 1: Code used to generate the numbers in Figure 3.6. (Code used to
display values from the data frames omitted.)
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it very unlikely that the division is rigged to favor any one model class, over and above
what it would do on real new data. Of course the original data set is never perfectly
representative of the full data, and a smaller testing set is even less representative,
so this isn’t ideal, but the approximation is often quite good. It is especially good at
getting the relative order of different models right, that is, at controlling over-fitting.9

Cross-validation is probably the most widely-used method for model selection,
and for picking control settings, in modern statistics. There are circumstances where
it can fail — especially if you give it too many models to pick among — but it’s the
first thought of seasoned practitioners, and it should be your first thought, too. The
assignments to come will make you very familiar with it.

3.4.3 Leave-one-out Cross-Validation

Suppose we did k-fold cross-validation, but with k = n. Our testing sets would
then consist of single points, and each point would be used in testing once. This is
called leave-one-out cross-validation. It actually came before k-fold cross-validation,
and has two advantages. First, it doesn’t require any random number generation, or
keeping track of which data point is in which subset. Second, and more importantly,
because we are only testing on one data point, it’s often possible to find what the
prediction on the left-out point would be by doing calculations on a model fit to the
whole data. This means that we only have to fit each model once, rather than k times,
which can be a big savings of computing time.

The drawback to leave-one-out CV is subtle but often decisive. Since each training
set has n − 1 points, any two training sets must share n − 2 points. The models fit
to those training sets tend to be strongly correlated with each other. Even though
we are averaging n out-of-sample forecasts, those are correlated forecasts, so we are
not really averaging away all that much noise. With k-fold CV, on the other hand,
the fraction of data shared between any two training sets is just k−2

k−1 , not n−2
n−1 , so even

though the number of terms being averaged is smaller, they are less correlated.
There are situations where this issue doesn’t really matter, or where it’s over-

whelmed by leave-one-out’s advantages in speed and simplicity, so there is certainly
still a place for it, but one subordinate to k-fold CV.10

3.5 Warnings

Some caveats are in order.

9The cross-validation score for the selected model still tends to be somewhat over-optimistic, because
it’s still picking the luckiest model — though the influence of luck is much attenuated. Tibshirani and
Tibshirani (2009) provides a simple correction.

10At this point, it may be appropriate to say a few words about the Akaike information criterion, or
AIC. AIC also tries to estimate how well a model will generalize to new data. One can show that, under
standard assumptions, as the sample size gets large, leave-one-out CV actually gives the same estimate as
AIC (Claeskens and Hjort, 2008, §2.9). However, there do not seem to be any situations where AIC works
where leave-one-out CV does not work at least as well. So AIC should really be understood as a very fast,
but often very crude, approximation to the more accurate cross-validation.

11:36 Saturday 22nd November, 2014



73 3.5. WARNINGS

1. All of these model selection methods aim at getting models which will gen-
eralize well to new data, if it follows the same distribution as old data. Gener-
alizing well even when distributions change is a much harder and much less
well-understood problem (Quiñonero-Candela et al., 2009). It is particularly
troublesome for a lot of applications involving large numbers of human be-
ings, because society keeps changing all the time — it’s natural for the variables
to vary, but the relationships between variables also change. (That’s history.)

2. All the model selection methods we have discussed aim at getting models which
predict well. This is not necessarily the same as getting the true theory of the
world. Presumably the true theory will also predict well, but the converse does
not necessarily follow. We will see examples later where false but low-capacity
models, because they have such low variance of estimation, actually out-predict
correctly specified models.

3.5.1 Parameter Interpretation
The last item is worth elaborating on. In many situations, it is very natural to want
to attach some substantive, real-world meaning to the parameters of our statistical
model, or at least to some of them. I have mentioned examples above like astronomy,
and it is easy to come up with many others from the natural sciences. This is also ex-
tremely common in the social sciences. It is fair to say that this is much less carefully
attended to than it should be.

To take just one example, consider the paper “Luther and Suleyman” by Prof.
Murat Iyigun (Iyigun, 2008). The major idea of the paper is to try to help explain
why the Protestant Reformation was not wiped out during the European wars of
religion (or alternately, why the Protestants did not crush all the Catholic powers),
leading western Europe to have a mixture of religions, with profound consequences.
Iyigun’s contention is that all of the Christians were so busy fighting the Ottoman
Turks, or perhaps so afraid of what might happen if they did not, that conflicts among
the European Christians were suppressed. To quote his abstract:

at the turn of the sixteenth century, Ottoman conquests lowered the
number of all newly initiated conflicts among the Europeans roughly
by 25 percent, while they dampened all longer-running feuds by more
than 15 percent. The Ottomans’ military activities influenced the length
of intra-European feuds too, with each Ottoman-European military en-
gagement shortening the duration of intra-European conflicts by more
than 50 percent.

To back this up, and provide those quantitative figures, Prof. Iyigun estimates linear
regression models, of the form11

Yt =β0+β1Xt +β2Zt +β3Ut + εt (3.9)

where Yt is “the number of violent conflicts initiated among or within continental
European countries at time t”12, Xt is “the number of conflicts in which the Ottoman

11His Eq. 1 on pp. 1473; I have modified the notation to match mine.
12In one part of the paper; he uses other dependent variables elsewhere.
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Empire confronted European powers at time t”, Zt is “the count at time t of the
newly initiated number of Ottoman conflicts with others and its own domestic civil
discords”, Ut is control variables reflecting things like the availability of harvests to
feed armies, and εt is Gaussian noise.

The qualitative idea here, about the influence of the Ottoman Empire on the
European wars of religion, has been suggested by quite a few historians before13. The
point of this paper is to support this rigorously, and make it precise. That support
and precision requires Eq. 3.9 to be an accurate depiction of at least part of the process
which lead European powers to fight wars of religion. Prof. Iyigun, after all, wants to
be able to interpret a negative estimate ofβ1 as saying that fighting off the Ottomans
kept Christians from fighting each other. If Eq. 3.9 is inaccurate, if the model is badly
mis-specified, however, β1 becomes the best approximation to the truth within a
systematically wrong model, and the support for claims like “Ottoman conquests
lowered the number of all newly initiated conflicts among the Europeans roughly by
25 percent” drains away.

To back up the use of Eq. 3.9, Prof. Iyigun looks at a range of slightly different
linear-model specifications (e.g., regress the number of intra-Christian conflicts this
year on the number of Ottoman attacks last year), and slightly different methods of
estimating the parameters. What he does not do is look at the other implications
of the model: that residuals should be (at least approximately) Gaussian, that they
should be unpredictable from the regressor variables. He does not look at whether
the relationships he thinks are linear really are linear (see Chapters 4, 9, and 10). He
does not try to simulate his model and look at whether the patterns of European
wars it produces resemble actual history (see Chapter 5). He does not try to check
whether he has a model which really supports causal inference, though he has a causal
question (see Part III).

I do not say any of this to denigrate Prof. Iyigun. His paper is actually much better
than most quantitative work in the social sciences. This is reflected by the fact that it
was published in the Quarterly Journal of Economics, one of the most prestigious, and
rigorously-reviewed, journals in the field. The point is that by the end of this course,
you will have the tools to do better.

3.6 Exercises
1. Suppose that one of our model classes contains the true and correct model, but

we also consider more complicated and flexible model classes. Does the bias-
variance trade-off mean that we will over-shoot the true model, and always go
for something more flexible, when we have enough data? (This would mean
there was such a thing as too much data to be reliable.)

2. Derive the formula for the generalization risk in the situation depicted in Fig-
ure 3.1, as given by the true.risk function in the code for that figure. In
particular, explain to yourself where the constants 0.52 and 1/12 come from.

13See §1–2 of Iyigun (2008), and MacCulloch (2004, passim).
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Chapter 4

Using Nonparametric
Smoothing in Regression

Having spent long enough running down linear regression, and thought through
evaluating predictive models, it is time to turn to constructive alternatives, which are
(also) based on smoothing.

Recall the basic kind of smoothing we are interested in: we have a response vari-
able Y , some input variables which we bind up into a vector X , and a collection of
data values, (x1, y1), (x2, y2), . . . xn , yn). By “smoothing”, I mean that predictions are
going to be weighted averages of the observed responses in the training data:

br (x) =
n
∑

i=1

yi w(x, xi , h) (4.1)

Most smoothing methods have a control setting, which here I write h, that de-
termines how much smoothing we do. With k nearest neighbors, for instance, the
weights are 1/k if xi is one of the k-nearest points to x, and w = 0 otherwise, so large
k means that each prediction is an average over many training points. Similarly with
kernel regression, where the degree of smoothing is controlled by the bandwidth h.

Why do we want to do this? How do we pick how much smoothing to do?

4.1 How Much Should We Smooth?

When we smooth very little (h → 0), then we can match very small, fine-grained or
sharp aspects of the true regression function, if there are such. That is, less smoothing
leads to less bias. At the same time, less smoothing means that each of our predictions
is going to be an average over (in effect) fewer observations, making the prediction
noisier. Smoothing less increases the variance of our estimate. Since

(total error) = (noise)+ (bias)2+(variance) (4.2)
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(Eq. 1.26), if we plot the different components of error as a function of h, we typically
get something that looks like Figure 4.1. Because changing the amount of smooth-
ing has opposite effects on the bias and the variance, there is an optimal amount of
smoothing, where we can’t reduce one source of error without increasing the other.
We therefore want to find that optimal amount of smoothing, which is where cross-
validation comes in.

You should note, at this point, that the optimal amount of smoothing depends
on the real regression curve, our smoothing method, and how much data we have.
This is because the variance contribution generally shrinks as we get more data.1 If
we get more data, we go from Figure 4.1 to Figure 4.2. The minimum of the over-all
error curve has shifted to the left, and we should smooth less.

Strictly speaking, parameters are properties of the data-generating process alone,
so the optimal amount of smoothing is not really a parameter. If you do think of it as
a parameter, you have the problem of why the “true” value changes as you get more
data. It’s better thought of as a setting or control variable in the smoothing method,
to be adjusted as convenient.

4.2 Adapting to Unknown Roughness

Consider Figure 4.3, which graphs two functions, f and g . Both are “smooth” func-
tions in the qualitative, mathematical sense2. We could Taylor-expand both functions
to approximate their values anywhere, just from knowing enough derivatives at one
point x0.3 Alternately, if instead of knowing the derivatives at x0, we have the values
of the functions at a sequence of points x1, x2, . . . xn , we could use interpolation to fill
out the rest of the curve. Quantitatively, however, f (x) is less smooth than g (x) —
it changes much more rapidly, with many reversals of direction. For the same degree
of inaccuracy in the interpolation f (·) needs more, and more closely spaced, training
points xi than goes g (·).

Now suppose that we don’t get to actually get to see f (x) and g (x), but rather
just f (x) + ε and g (x) + η, where ε and η are noise. (To keep things simple I’ll
assume they’re the usual mean-zero, constant-variance, IID Gaussian noises, say with
σ = 0.15.) The data now look something like Figure 4.4. Can we now recover the
curves?

As remarked in Chapter 1, if we had multiple measurements at the same x, then
we could recover the expectation value by averaging: since the regression function
r (x) = E[Y |X = x], if we had many observations all with xi = x, the average of the
corresponding yi would (by the law of large numbers) converge on r (x). Generally,
however, we have at most one measurement per value of x, so simple averaging won’t
work. Even if we just confine ourselves to the xi where we have observations, the
mean-squared error will always be σ2, the noise variance. However, our estimate
would be unbiased.

1Sometimes bias changes as well. Noise does not (why?).
2They are “C∞”: they’re not only continuous, but their derivatives exist and are continuous to all

orders.
3See App. C for a refresh on Taylor expansions and Taylor series.
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curve(2*x^4,from=0,to=1,lty=2,xlab="Smoothing",ylab="Generalization error")
curve(0.12+x-x,lty=3,add=TRUE)
curve(1/(10*x),lty=4,add=TRUE)
curve(0.12+2*x^4+1/(10*x),add=TRUE)

Figure 4.1: Over-all generalization error for different amounts of smoothing (solid
curve) decomposed into process noise (dotted line), approximation error introduced
by smoothing (=squared bias; dashed curve), and estimation variance (dot-and-dash
curve). The numerical values here are arbitrary, but the functional forms (squared
bias∝ h4, variance∝ n−1h−1) are representative of typical results for non-parametric
smoothing.
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curve(2*x^4,from=0,to=1,lty=2,xlab="Smoothing",ylab="Generalization error")
curve(0.12+x-x,lty=3,add=TRUE)
curve(1/(10*x),lty=4,add=TRUE,col="grey")
curve(0.12+2*x^2+1/(10*x),add=TRUE,col="grey")
curve(1/(30*x),lty=4,add=TRUE)
curve(0.12+2*x^4+1/(30*x),add=TRUE)

Figure 4.2: Consequences of adding more data to the components of error: noise
(dotted) and bias (dashed) are unchanged, but the new variance curve (dotted and
dashed, black) is to the left of the old (greyed), so the new over-all error curve (solid
black) is lower, and has its minimum at a smaller amount of smoothing than the old
(solid grey).
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par(mfcol=c(2,1))
curve(sin(x)*cos(20*x),from=0,to=3,xlab="x",ylab=expression(f(x)))
curve(log(x+1),from=0,to=3,xlab="x",ylab=expression(g(x)))

Figure 4.3: Two curves for the running example. Above, f (x); below, g (x). (As it
happens, f (x) = sin x cos20x, and g (x) = log x + 1, but that doesn’t really matter.)
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x = runif(300,0,3)
yf = sin(x)*cos(20*x)+rnorm(length(x),0,0.15)
yg = log(x+1)+rnorm(length(x),0,0.15)
par(mfcol=c(2,1))
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))
curve(sin(x)*cos(20*x),col="grey",add=TRUE)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta))
curve(log(x+1),col="grey",add=TRUE)

Figure 4.4: The same two curves as before, but corrupted by IID Gaussian noise
with mean zero and standard deviation 0.15. (The x values are the same, but there
are different noise realizations for the two curves.) The light grey line shows the
noiseless curves.
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What smoothing methods try to use is that we may have multiple measurements
at points xi which are near the point of interest x. If the regression function is
smooth, as we’re assuming it is, r (xi )will be close to r (x). Remember that the mean-
squared error is the sum of bias (squared) and variance. Averaging values at xi 6= x is
going to introduce bias, but averaging many independent terms together also reduces
variance. If by smoothing we get rid of more variance than we gain bias, we come
out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order Taylor
expansion (Figure C.1), so

r (xi )≈ r (x)+ (xi − x)r ′(x) (4.3)

and
yi ≈ r (x)+ (xi − x)r ′(x)+ εi (4.4)

Now we average: to keep the notation simple, abbreviate the weight w(xi , x, h) by
just wi .

br (x) =
n
∑

i=1

yi wi (4.5)

=
n
∑

i=1

(r (x)+ (xi − x)r ′(x)+ εi )wi (4.6)

= r (x)+
n
∑

i=1

wiεi + r ′(x)
n
∑

i=1

wi (xi − x) (4.7)

br (x)− r (x) =
n
∑

i=1

wiεi + r ′(x)
n
∑

i=1

wi (xi − x) (4.8)

E
�

(br (x)− r (x))2
�

= σ2
n
∑

i=1

w2
i +E







 

r ′(x)
n
∑

i=1

wi (xi − x)

!2





(4.9)

(Remember that:
∑

wi = 1; E
�

εi
�

= 0; the noise is uncorrelated with everything;
and E

�

εi
�

= σ2.)
The first term on the final right-hand side is an estimation variance, which will

tend to shrink as n grows. (If we just do a simple global mean, wi = 1/n for all i ,
so we get σ2/n, just like in baby stats.) The second term, an expectation, on the
other hand, is bias, which grows as xi gets further from x, and as the magnitudes of
the derivatives grow, i.e., its growth varies with how smooth or wiggly the regression
function is. For smoothing to work, wi had better shrink as xi − x and r ′(x) grow.4

Finally, all else being equal, wi should also shrink with n, so that the over-all size of
the sum shrinks as we get more data.

To illustrate, let’s try to estimate f (1.6) and g (1.6) from the noisy observations.
We’ll try a simple approach, just averaging all values of f (xi ) + εi and g (xi ) + ηi

4The higher derivatives of r also matter, since we should really be keeping more than just the first term
in the Taylor expansion. The details get messy, but Eq. 4.12 below gives the upshot for kernel smoothing
in particular.
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for 1.5 < xi < 1.7 with equal weights. For f , this gives 0.46, while f (1.6) = 0.89.
For g , this gives 0.98, with g (1.6) = 0.95. (See figure 4.5). The same size window
introduces a much larger bias with the rougher, more rapidly changing f than with
the smoother, more slowly changing g . Varying the size of the averaging window
will change the amount of error, and it will change it in different ways for the two
functions.

If one does a more careful second-order Taylor expansion like that leading to Eq.
4.9, specifically for kernel regression, one can show that the bias at x is

E
�

r̂ (x)− r (x)|X1 = x1, . . .Xn = xn
�

= h2

�

1

2
r ′′(x)+

r ′(x) f ′(x)

f (x)

�

σ2
K+o(h2) (4.10)

where f is the density of x, and σ2
K =

∫

u2K(u)d u, the variance of the probability
density corresponding to the kernel5. The r ′′ term just comes from the second-order
part of the Taylor expansion. To see where the r ′ f ′ term comes from, imagine first
that x is a mode of the distribution, so f ′(x) = 0. As h shrinks, only training points
where Xi is very close to x will have any weight in r̂ (x), and their distribution will
be roughly symmetric around x (at least once h is sufficiently small). So, at mode,
E
�

w(Xi , x, h)(Xi − x) r̂ (x)
�

≈ 0. Away from a mode, there will tend to be more
training points on one side or the other of x, depending on the sign of f ′(x), and this
induces a bias. The tricky part of the analysis is concluding that the bias has exactly
the form given above.6

One can also work out the variance of the kernel regression estimate,

Var
�

r̂ (x)|X1 = x1, . . .Xn = xn
�

=
σ2(x)R(K)

nh f (x)
+ o((nh)−1) (4.11)

where R(K) =
∫

K2(u)d u. Roughly speaking, the width of the region where the
kernel puts non-trivial weight is about h, so there will be about nh f (x) training
points available to estimate r̂ (x). Each of these has a yi value, equal to r (x) plus
noise of variance σ2(x). The final factor of R(K) accounts for the average weight.

Putting the bias together with the variance, we get an expression for the mean
squared error of the kernel regression at x:

M SE(x) = σ2(x)+h4

�

1

2
r ′′(x)+

r ′(x) f ′(x)

f (x)

�2

(σ2
K )

2+
σ2(x)R(K)

nh f (x)
+o(h4)+o(1/nh)

(4.12)
Eq. 4.12 tells us that, in principle, there is a single optimal choice of bandwidth h, an
optimal degree of smoothing. We could find it by taking Eq. 4.12, differentiating with

5If you are not familiar with the “order” symbols O and o, now would be a good time to read Appendix
B.

6Exercise 1 shows how to do a bit of the demonstration for the special case of the uniform (boxcar)
kernel.
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par(mfcol=c(2,1))
colors=ifelse((x<1.7)&(x>1.5),"black","grey")
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon),col=colors)
curve(sin(x)*cos(20*x),col="grey",add=TRUE)
points(1.6,mean(yf[(x<1.7)&(x>1.5)]),pch="*",cex=2)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta),col=colors)
curve(log(x+1),col="grey",add=TRUE)
points(1.6,mean(yg[(x<1.7)&(x>1.5)]),pch="*",cex=2)

Figure 4.5: Relationship between smoothing and function roughness. In both the
upper and lower panel we are trying to estimate the value of the regression function
at x = 1.6 from averaging observations taken with 1.5< xi < 1.7 (black points, others
are “ghosted” in grey). The location of the average in shown by the large black X .
Averaging over this window works poorly for the rough function f (x) in the upper
panel (the bias is large), but much better for the smoother function in the lower panel
(the bias is small).
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loc_ave_err <- function(h,y,y0) {abs(y0-mean(y[(1.6-h < x) & (1.6+h>x)]))}
yf0=sin(1.6)*cos(20*1.6)
yg0=log(1+1.6)
f.LAE = sapply(0:100/100,loc_ave_err,y=yf,y0=yf0)
g.LAE = sapply(0:100/100,loc_ave_err,y=yg,y0=yg0)
plot(0:100/100,f.LAE,xlab="Radius of averaging window",

ylab="Absolute value of error",type="l")
lines(0:100/100,g.LAE,lty=2)
abline(h=0.15,col="grey")

Figure 4.6: Estimating f (1.6) and g (1.6) from averaging observed values at 1.6− h <
x < 1.6+ h, for different radii h. Solid line: error of estimates of f (1.6); dashed line:
error of estimates of g (1.6); grey line: σ , the standard deviation of the noise.
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respect to the bandwidth, and setting everything to zero (neglecting the o terms):

0 = 4h3
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(4.14)

Of course, this expression for the optimal h involves the unknown derivatives r ′(x)
and r ′′(x), plus the unknown density f (x) and its unknown derivative f ′(x). But
if we knew the derivative of the regression function, we would basically know the
function itself (just integrate), so we seem to be in a vicious circle, where we need to
know the function before we can learn it.7

One way of expressing this is to talk about how well a smoothing procedure
would work, if an Oracle were to tell us the derivatives, or (to cut to the chase) the
optimal bandwidth hopt. Since most of us do not have access to such oracles, we

need to estimate hopt. Once we have this estimate, bh, then we get out weights and
our predictions, and so a certain mean-squared error. Basically, our MSE will be the
Oracle’s MSE, plus an extra term which depends on how far bh is to hopt, and how
sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our actual
MSE, using bh, approaches the Oracle’s MSE, which it gets from hopt. This would
mean that, in effect, we are figuring out how rough the underlying regression function
is, and so how much smoothing to do, rather than having to guess or be told. An
adaptive procedure, if we can find one, is a partial8 substitute for prior knowledge.

4.2.1 Bandwidth Selection by Cross-Validation
The most straight-forward way to pick a bandwidth, and one which generally man-
ages to be adaptive, is in fact cross-validation; k-fold CV is usually somewhat better
than leave-one-out, but the latter often works acceptably too. The usual procedure is
to come up with an initial grid of candidate bandwidths, and then use cross-validation
to estimate how well each one of them would generalize. The one with the lowest
error under cross-validation is then used to fit the regression curve to the whole data9.

Code Example 2 shows how it would work in R, with the values of the input
variable being in the vector x (one dimensional) and the response in the vector y

7You may be wondering, at this point, why I keep talking about the optimal bandwidth, when it would
seem, from Eq. 4.14, that the bandwidth should vary with x. One can actually go through pretty much the
same sort of analysis in terms of the expected values of the derivatives, and the qualitative conclusions will
be the same, but the notational overhead is even worse. Alternatively, there are techniques for variable-
bandwidth smoothing.

8Only partial, because we’d always do better if the Oracle would just tell us hopt.
9Since the optimal bandwidth is ∝ n−1/5, and the training sets in cross-validation are smaller than the

whole data set, one might adjust the bandwidth proportionally. However, if n is small enough that this
makes a big difference, the sheer noise in bandwidth estimation usually overwhelms this.
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(also one dimensional), using the npreg function from the np library (Hayfield and
Racine, 2008).10

The return value has three parts. The first is the actual best bandwidth. The
second is a vector which gives the cross-validated mean-squared mean-squared errors
of all the different bandwidths in the vector bandwidths. The third component is an
array which gives the MSE for each bandwidth on each fold. It can be useful to know
things like whether the difference between the CV score of the best bandwidth and
the runner-up is bigger than their fold-to-fold variability.

Figure 4.7 plots the CV estimate of the (root) mean-squared error versus band-
width for our two curves. Figure 4.8 shows the data, the actual regression functions
and the estimated curves with the CV-selected bandwidths. This illustrates why pick-
ing the bandwidth by cross-validation works: the curve of CV error against band-
width is actually a pretty good approximation to the true curve of generalization
error against bandwidth (which would look like Figure 4.1), and so optimizing over
the CV curve is close to optimizing over the generalization error curve. If we had
a problem where cross-validation didn’t give good estimates of generalization error,
this wouldn’t work.

Notice, by the way, in Figure 4.7, that the rougher curve is more sensitive to the
choice of bandwidth, and that the smoother curve always has a lower mean-squared
error. Also notice that, at the minimum, one of the cross-validation estimates of
generalization error is smaller than the true system noise level; this shows that cross-
validation doesn’t completely correct for optimism11.[[TODO: Put bandwidths on

a log scale, per suggestion of
Ryan Tibs.]]

We still need to come up with an initial set of candidate bandwidths. For reasons
which will drop out of the math in Chapter 16, it’s often reasonable to start around
1.06sX /n1/5, where sX is the sample standard deviation of X . However, it is hard to
be very precise about this, and good results often require some honest trial and error.

4.2.2 Convergence of Kernel Smoothing and Bandwidth Scaling
Go back to Eq. 4.12 for the mean squared error of kernel regression. As we said, it in-
volves some unknown constants, but we can bury them inside big-O order symbols,
which also absorb the little-o remainder terms:

M SE(h) = σ2(x)+O(h4)+O(1/nh) (4.15)

The σ2(x) term is going to be there no matter what, so let’s look at the excess risk
over and above the intrinsic noise:

M SE(h)−σ2(x) =O(h4)+O(1/nh) (4.16)

That is, the (squared) bias from the kernel’s only approximately getting the curve
is proportional to the fourth power of the bandwidth, but the variance is inversely

10The np package actually has a function, npregbw, which automatically selects bandwidths through a
sophisticated combination of cross-validation and optimization techniques. The default settings for this
function make it very slow, by trying very, very hard to optimize the bandwidth.

11Tibshirani and Tibshirani (2009) gives a fairly straightforward way to adjust the estimate of the gen-
eralization error for the selected model or bandwidth, but that doesn’t influence the choice of the best
bandwidth.
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# Cross-validation for univariate kernel regression
cv_bws_npreg <- function(x,y,bandwidths=(1:50)/50,
num.folds=10) {
require(np)
n <- length(x)
stopifnot(n> 1, length(y) == n)
stopifnot(length(bandwidths) > 1)
stopifnot(num.folds > 0, num.folds==trunc(num.folds))

fold_MSEs <- matrix(0,nrow=num.folds,
ncol=length(bandwidths))

colnames(fold_MSEs) = bandwidths

case.folds <- rep(1:num.folds,length.out=n)
case.folds <- sample(case.folds)
for (fold in 1:num.folds) {
train.rows = which(case.folds!=fold)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
for (bw in bandwidths) {

fit <- npreg(txdat=x.train,tydat=y.train,
exdat=x.test,eydat=y.test,bws=bw)

fold_MSEs[fold,paste(bw)] <- fit$MSE
}

}
CV_MSEs = colMeans(fold_MSEs)
best.bw = bandwidths[which.min(CV_MSEs)]
return(list(best.bw=best.bw,
CV_MSEs=CV_MSEs,
fold_MSEs=fold_MSEs))

}

Code Example 2: Comments omitted here to save space; see the accompanying R
file on the class website. The colnames trick: component names have to be character
strings; other data types will be coerced into characters when we assign them to be
names. Later, when we want to refer to a bandwidth column by its name, we wrap
the name in another coercing function, such as paste. — The vector of default band-
widths is arbitrary and only provided for illustration; it should not be blindly copied
and used on data (or on homework problems).
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fbws <- cv_bws_npreg(x,yf,bandwidths=(1:100)/200)
gbws <- cv_bws_npreg(x,yg,bandwidths=(1:100)/200)
plot(1:100/200,sqrt(fbws$CV_MSEs),xlab="Bandwidth",

ylab="Root CV MSE",type="l",ylim=c(0,0.6))
lines(1:100/200,sqrt(gbws$CV_MSEs),lty=2)
abline(h=0.15,col="grey")

Figure 4.7: Cross-validated estimate of the (root) mean-squard error as a function of
the bandwidth. Solid curve: data from f (x); dashed curve: data from g (x); grey line:
true σ . Notice that the rougher curve is more sensitive to the choice of bandwidth,
and that the smoother curve is more predictable at every choice of bandwidth. Also
notice that CV does not completely compensate for the optimism of in-sample fitting
(see where the dashed curve falls below the grey line). CV selects bandwidths of 0.015
for f and 0.165 for g .
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x.ord=order(x)
par(mfcol=c(2,1))
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))
fhat <- npreg(bws=fbws$best.bw,txdat=x,tydat=yf)
lines(x[x.ord],fitted(fhat)[x.ord],lwd=4)
curve(sin(x)*cos(20*x),col="grey",add=TRUE,lwd=2)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta))
ghat <- npreg(bws=fbws$best.bw,txdat=x,tydat=yg)
lines(x[x.ord],fitted(ghat)[x.ord],lwd=4)
curve(log(x+1),col="grey",add=TRUE,lwd=2)

Figure 4.8: Data from the running examples (circles), true regression functions (grey)
and kernel estimates of regression functions with CV-selected bandwidths (black).
The widths of the regression functions are exaggerated. Since the x values aren’t
sorted, we need to put them in order if we want to draw lines connecting the fitted
values; then we need to put the fitted values in the same order. An alternative would
be to use predict on the sorted values, as in the next section.
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proportional to the product of sample size and bandwidth. If we kept h constant and
just let n →∞, we’d get rid of the variance, but we’d be left with the bias. To get
the MSE to go to zero, we need to let the bandwidth h change with n — call it hn .
Specifically, suppose hn → 0 as n →∞, but nhn →∞. Then, by Eq. 4.16, the risk
(generalization error) of kernel smoothing is approaching that of the ideal predictor
or regression function.

What is the best bandwidth? We saw in Eq. 4.14 that it is (up to constants)

hopt =O(n−1/5) (4.17)

If we put this bandwidth into Eq. 4.16, we get

M SE(h)−σ2(x) =O
�
�

n−1/5
�4�

+O
�

n−1
�

n−1/5
�−1�

=O
�

n−4/5
�

+O
�

n−4/5
�

=O
�

n−4/5
�

(4.18)
That is, the excess prediction error of kernel smoothing over and above the system
noise goes to zero as 1/n0.8. Notice, by the way, that the contributions of bias and
variance to the generalization error are both of the same order, n−0.8.

Is this fast or small? We can compare it to what would happen with a parametric
model, say with parameter θ. (Think, for instance, of linear regression, but not
only linear regression.) There is an optimal value of the parameter, θ0, which would
minimize the mean-squared error. At θ0, the parametric model has MSE

M SE(θ0) = σ
2(x)+ b (x,θ0) (4.19)

where b is the bias of the parametric model; this is zero when the parametric model
is true12. Since θ0 is unknown and must be estimated, one typically has bθ− θ0 =
O(1/

p
n). A first-order Taylor expansion of the parametric model contributes an

error O(bθ−θ0), so altogether

M SE(bθ)−σ2(x) = b (x,θ0)+O(1/n) (4.20)

So parametric models converge more quickly (n−1 goes to zero faster than n−0.8),
but they will typically converge to the wrong answer (b 2 > 0). Kernel smoothing
converges a bit more slowly, but always converges to the right answer13.

How does all this change if h must be found by cross-validation? If we write ÔhCV
for the bandwidth picked by cross-validation, the one can show (Simonoff, 1996, ch.
5) that

ÔhCV − hopt

hopt
− 1=O(n−1/10) (4.21)

12When the parametric model is not true, the optimal parameter value θ0 is often called the pseudo-
truth.

13It is natural to wonder if one couldn’t do better than kernel smoothing’s O(n−4/5)while still having no
asymptotic bias. Resolving this is very difficult, but the answer turns out to be “no” in the following sense
(Wasserman, 2006). Any curve-fitting method which can learn arbitrary smooth regression functions will
have some curves where it cannot converge any faster than O(n−4/5). (In the jargon, that is the minimax
rate.) Methods which converge faster than this for some kinds of curves have to converge more slowly for
others. So this is the best rate we can hope for on truly unknown curves.
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Given this, one concludes (EXERCISE 2) that the MSE of using ÔhCV is also O(n−4/5).

4.2.3 Summary on Kernel Smoothing
Suppose that X and Y are both one-dimensional, and the true regression function
r (x) = E[Y |X = x] is continuous and has first and second derivatives14. Suppose
that the noise around the true regression function is uncorrelated between different
observations. Then the bias of kernel smoothing, when the kernel has bandwidth h,
is O(h2), and the variance, after n samples, is O(1/nh). The optimal bandwidth is
O(n−1/5), and the excess mean squared error of using this bandwidth is O(n−4/5). If
the bandwidth is selected by cross-validation, the excess risk is still O(n−4/5).

4.3 Kernel Regression with Multiple Inputs
For the most part, when I’ve been writing out kernel regression I have been treating
the input variable x as a scalar. There’s no reason to insist on this, however; it could
equally well be a vector. If we want to enforce that in the notation, say by writing
~x = (x1, x2, . . . xd ), then the kernel regression of y on ~x would just be

r̂ (~x) =
n
∑

i=1

yi

K(~x − ~xi )
∑n

j=1 K(~x − ~x j )
(4.22)

In fact, if we want to predict a vector, we’d just substitute ~yi for yi above.
To make this work, we need kernel functions for vectors. For scalars, I said that

any probability density function would work so long as it had mean zero, and a finite,
strictly positive (not 0 or∞) variance. The same conditions carry over: any distribu-
tion over vectors can be used as a multivariate kernel, provided it has mean zero, and
the variance matrix is finite and strictly positive15. In practice, the overwhelmingly
most common and practical choice is to use product kernels16.

A product kernel simply uses a different kernel for each component, and then
multiplies them together:

K(~x − ~xi ) =K1(x
1− x1

i )K2(x
2− x2

i ) . . .Kd (x
d − xd

i ) (4.23)

Now we just need to pick a bandwidth for each kernel, which in general should not
be equal — say ~h = (h1, h2, . . . hd ). Instead of having a one-dimensional error curve,
as in Figure 4.1 or 4.2, we will have a d -dimensional error surface, but we can still use
cross-validation to find the vector of bandwidths that generalizes best. We generally
can’t, unfortunately, break the problem up into somehow picking the best bandwidth
for each variable without considering the others. This makes it slower to select good
bandwidths in multivariate problems, but still often feasible.

14Or can be approximated to arbitrarily closely by such functions.
15Remember that for a matrix v to be “strictly positive”, it must be the case that for any vector ~a,

~a · v~a > 0. Covariance matrices are automatically non-negative, so we’re just ruling out the case of some
weird direction along which the distribution has zero variance.

16People do sometimes use multivariate Gaussians; we’ll glance at this in Chapter 15.
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(We can actually turn the need to select bandwidths together to our advantage. If
one or more of the variables are irrelevant to our prediction given the others, cross-
validation will tend to give them the maximum possible bandwidth, and smooth
away their influence. In Chapter 16, we’ll look at formal tests based on this idea.)

Kernel regression will recover almost any regression function. This is true even
when the true regression function involves lots of interactions among the input vari-
ables, perhaps in complicated forms that would be very hard to express in linear re-
gression. For instance, Figure 4.9 shows a contour plot of a reasonably complicated
regression surface, at least if one were to write it as polynomials in x1 and x2, which
would be the usual approach. Figure 4.11 shows the estimate we get with a product of
Gaussian kernels and only 1000 noisy data points. It’s not perfect, of course (in par-
ticular the estimated contours aren’t as perfectly smooth and round as the true ones),
but the important thing is that we got this without having to know, and describe
in Cartesian coordinates, the type of shape we were looking for. Kernel smoothing
discovered the right general form.

There are limits to these abilities of kernel smoothers; the biggest one is that
they require more and more data as the number of predictor variables increases. We
will see later (Chapter 9) exactly how much data is required, generalizing the kind of
analysis done §4.2.2, and some of the compromises this can force us into.

4.4 Interpreting Smoothers: Plots

In a linear regression without interactions, it is fairly easy to interpret the coefficients.
The expected response changes by βi for a one-unit change in the i th input variable.
The coefficients are also the derivatives of the expected response with respect to the
inputs. And it is easy to draw pictures of how the output changes as the inputs are
varied, though the pictures are somewhat boring (straight lines or planes).

As soon as we introduce interactions, all this becomes harder, even for parametric
regression. If there is an interaction between two components of the input, say x1 and
x2, then we can’t talk about the change in the expected response for a one-unit change
in x1 without saying what x2 is. We might average over x2 values, and we’ll see next
time a reasonable way of doing this, but the flat statement “increasing x1 by one unit
increases the response by β1” is just false, no matter what number we fill in for β1.
Likewise for derivatives; we’ll come back to them next time as well.

What about pictures? If there are only two input variables, then we can make
plots like the wireframes in the previous section, or contour- or level- plots, which
will show the predictions for different combinations of the two variables. But sup-
pose we want to look at one variable at a time? Suppose there are more than two
input variables?

A reasonable way of producing a curve for each input variable is to set all the
others to some “typical” value, such as the mean or the median, and to then plot
the predicted response as a function of the one remaining variable of interest. See
Figure 4.12 for an example of this. Of course, when there are interactions, changing
the values of the other inputs will change the response to the input of interest, so it
may be a good idea to produce a couple of curves, possibly super-imposed (again, see
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x1.points <- seq(-3,3,length.out=100)
x2.points <- x1.points
x12grid <- expand.grid(x1=x1.points,x2=x2.points)
y <- matrix(0,nrow=100,ncol=100)
y <- outer(x1.points,x2.points,f)
library(lattice)
wireframe(y~x12grid$x1*x12grid$x2,scales=list(arrows=FALSE),
xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.9: An example of a regression surface that would be very hard to learn by
piling together interaction terms in a linear regression framework. (Can you guess
what the mystery function f is?) — wireframe is from the graphics library lattice.
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x1.noise <- runif(1000,min=-3,max=3)
x2.noise <- runif(1000,min=-3,max=3)
y.noise <- f(x1.noise,x2.noise)+rnorm(1000,0,0.05)
noise <- data.frame(y=y.noise,x1=x1.noise,x2=x2.noise)
cloud(z~x*y,data=noise,col="black",scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.10: 1000 data points, randomly sampled from the surface in Figure 4.9, plus
independent Gaussian noise (s.d. = 0.05).
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noise.np <- npreg(y~x1+x2,data=noise)
y.out <- matrix(0,100,100)
y.out <- predict(noise.np,newdata=x12grid)
wireframe(y.out~x12grid$x1*x12grid$x2,scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.11: Gaussian kernel regression of the points in Figure 4.10. Notice that
the estimated function will make predictions at arbitrary points, not just the places
where there was training data.
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Figure 4.12).
If there are three or more input variables, we can look at the interactions of any

two of them, taken together, by fixing the others and making three-dimensional or
contour plots, along the same principles.

The fact that smoothers don’t give us a simple story about how each input is
associated with the response may seem like a disadvantage compared to using linear
regression. Whether it really is a disadvantage depends on whether there really is a
simple story to be told — and, if there isn’t, how big a lie you are prepared to tell in
order to keep your story simple.

4.5 Average Predictive Comparisons
Suppose we have a linear regression model

Y =β1X 1+β2X 2+ ε (4.24)

and we want to know how much Y changes, on average, for a one-unit increase in
X 1. The answer, as you know very well, is just β1:

[β1(X
1+ 1)+β2X 2]− [β1X 1+β2X 2] =β1 (4.25)

This is an interpretation of the regression coefficients which you are very used to
giving. But it fails as soon as we have interactions:

Y =β1X 1+β2X 2+β3X 1X 2+ ε (4.26)

Now the effect of increasing X 1 by 1 is

[β1(X
1+ 1)+β2X 2+β3(X

1+ 1)X 2]− [β1X 1+β2X 2+β3X 1X 2] =β1+β3X 2

(4.27)
There just isn’t one answer “how much does the response change when X 1 is in-
creased by one unit?”, it depends on the value of X 2. We certainly can’t just answer
“β1”.

We also can’t give just a single answer if there are nonlinearities. Suppose that the
true regression function is this:

Y =
eβX

1+ eβX
+ ε (4.28)

which looks like Figure 4.13, setting β = 7 (for luck). Moving x from −4 to −3
increases the response by 7.57× 10−10, but the increase in the response from x =−1
to x = 0 is 0.499. Functions like this are very common in psychology, medicine
(dose-response curves for drugs), biology, etc., and yet we cannot sensibly talk about
the response to a one-unit increase in x. (We will come back to curves which look
like this in Chapter 12.)

More generally, let’s say we are regressing Y on a vector ~X , and want to assess
the impact of one component of the input on Y . To keep the use of subscripts and
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new.frame <- data.frame(x=seq(-3,3,length.out=300),y=median(y.noise))
plot(new.frame$x,predict(noise.np,newdata=new.frame),
type="l",xlab=expression(x^1),ylab="y",ylim=c(0,1.0))

new.frame$y <- quantile(y.noise,0.25)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=2)
new.frame$y <- quantile(y.noise,0.75)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=3)

Figure 4.12: Predicted mean response as function of the first input coordinate x1 for
the example data, evaluated with the second coordinate x2 set to the median (solid), its
25th percentile (dashed) and its 75th percentile (dotted). Note that the changing shape
of the partial response curve indicates an interaction between the two inputs. Also,
note that the model is able to make predictions at arbitrary coordinates, whether
or not there were any training points there. (It happened that no observation was
exactly at the median, the 25th or the 75th percentile for the second input.)
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curve(exp(7*x)/(1+exp(7*x)),from=-5,to=5,ylab="y")

Figure 4.13: The function of Eq. 4.28, with β= 7.

superscripts to a minimum, we’ll write ~X = (u, ~V ), where u is the coordinate we’re
really interested in. (It doesn’t have to come first, of course.) We would like to know
how much the prediction changes as we change u,

EY |~X = (u (2), ~v)− EY |~X = (u (1), ~v) (4.29)

and the change in the response per unit change in u,

EY |~X = (u (2), ~v)− EY |~X = (u (1), ~v)
u (2)− u (1)

(4.30)

Both of these, but especially the latter, are called the predictive comparison. Note
that both of them, as written, depend on u (1) (the starting value for the variable of
interest), on u (2) (the ending value), and on ~v (the other variables, held fixed during
this comparison). We have just seen that in a linear model without interactions, u (1),
u (2) and ~v all go away and leave us with the regression coefficient on u. In nonlinear
or interacting models, we can’t simplify so much.

Once we have estimated a regression model, we can chose our starting point,
ending point and context, and just plug in to Eq. 4.29 or Eq. 4.30. (Or problem 9 in
problem set 31.) But suppose we do want to boil this down into a single number for
each input variable — how might we go about this?

One good answer, which comes from Gelman and Pardoe (2007), is just to average
4.30 over the data17 More specifically, we have as our average predictive comparison

17Actually, they propose something very slightly more complicated, which takes into account the un-
certainty in our estimate of the regression function. We’ll come back to this in a few lectures when we see
how to quantify uncertainty in complex models.
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for u
∑n

i=1

∑n
j=1 r̂ (u j , ~vi )− r̂ (ui , ~v j )sign(u j − ui )

(u j − ui )sign(u j − ui )
(4.31)

where i and j run over data points, r̂ is our estimated regression function, and the
sign function is defined by sign(x) = +1 if x > 0, = 0 if x = 0, and =−1 if x < 0. We
use the sign function this way to make sure we are always looking at the consequences
of increasing u.

The average predictive comparison provides a reasonable summary measure of
how one should expect the response to vary as u changes slightly. But, once the
model is nonlinear or allows interactions, it’s just not possible to summarize the
predictive relationship between u and y with a single number, and so the value of Eq.
4.31 is going to depend on the distribution of u (and possible of v), even when the
regression function is unchanged. (See Exercise 3.)

4.6 Exercises
1. Suppose we use a uniform (“boxcar”) kernel extending over the region (−h/2, h/2).

Show that

E[ r̂ (0)] = E
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Show that E
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=O(r ′(0) f ′(0)h2), and that E
h

X 2
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�− h
2 <X < h

2

i

=
O(h2). Conclude that the over-all bias is O(h2).

2. Use Eqs. 4.21, 4.17 and 4.16 to show that the excess risk of the kernel smooth-
ing, when the bandwidth is selected by cross-validation, is also O(n−4/5).

3. Generate 1000 data points where X is uniformly distributed between −4 and
4, and Y = e7x/(1+ e7x ) + ε, with ε Gaussian and with variance 0.01. Use
non-parametric regression to estimate r̂ (x), and then use Eq. 4.31 to find the
average predictive comparison. Now re-run the simulation with X uniform on
the interval [0,0.5] and re-calculate the average predictive comparison. What
happened?
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Chapter 5

Simulation

[[TODO: Insert forward ref-
erences to detailed simulation
examples in other chapters ]]
[[TODO: Break out
simulation-based inference
as a new chapter? ]]

You will recall from your previous statistics courses that quantifying uncertainty in
statistical inference requires us to get at the sampling distributions of things like es-
timators. When the very strong simplifying assumptions of basic statistics courses do
not apply1, or when estimators are themselves complex objects, like kernel regression
curves or even histograms, there is little hope of being able to write down sampling
distributions in closed form. We get around this by using simulation to approximate
the sampling distributions we can’t calculate.

5.1 What Do We Mean by “Simulation”?
A stochastic model is a mathematical story about how the data could have been gen-
erated. Simulating the model means implementing it, step by step, in order to pro-
duce something which should look like the data — what’s sometimes called synthetic
data, or surrogate data, or a realization of the model. In a stochastic model, some
of the steps we need to follow involve a random component, and so multiple simula-
tions starting from exactly the same initial conditions will not give exactly the same
outputs or realizations. Rather, will be a distribution over the realizations. Doing
large numbers of simulations gives us a good estimate of this distribution.

For a trivial example, consider a model with three random variables, X1 ∼N (µ1,σ2
1 ),

X2 ∼N (µ2,σ2
2 ), with X1 |= X2, and X3 =X1+X2. Simulating from this model means

drawing a random value from the first normal distribution for X1, drawing a second
random value for X2, and adding them together to get X3. The marginal distribution
of X3, and the joint distribution of (X1,X2,X3), are implicit in this specification of
the model, and we can find them by running the simulation.

In this particular case, we could also find the distribution of X3, and the joint
distribution, by probability calculations of the kind you learned how to do in your
basic probability courses. For instance, X3 isN (µ1+µ2,σ2

1 +σ
2
2 ). These analytical

1In 36-401, you will have seen results about the sampling distribution of linear regression coefficients
when the linear model is true, and the noise is Gaussian with constant variance. As an exercise, try to get
parallel results when the noise has a t distribution with 10 degrees of freedom.
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probability calculations can usually be thought of as just short-cuts for exhaustive
simulations.

5.2 How Do We Simulate Stochastic Models?

5.2.1 Chaining Together Random Variables

Stochastic models are usually specified by sets of conditional distributions for one
random variable, given some other variable or variables. For instance, a simple linear
regression model might have the specification

X ∼ N (µx ,σ2
1 ) (5.1)

Y |X ∼ N (β0+β1X ,σ2
2 ) (5.2)

If we knew how to generate a random variable from the distributions given on the
right-hand sides, we could simulate the whole model by chaining together draws from
those conditional distributions. This is in fact the general strategy for simulating any
sort of stochastic model, by chaining together random variables.2

What this means is that we can reduce the problem of simulating to that of gen-
erating random variables.

5.2.2 Random Variable Generation

5.2.2.1 Built-in Random Number Generators

R provides random number generators for most of the most common distributions.
By convention, the names of these functions all begin with the letter “r”, followed
by the abbreviation of the functions, and the first argument is always the number of
draws to make, followed by the parameters of the distribution:

rnorm(n,mean=0,sd=1) # Gaussian
runif(n,min=0,max=1) # Uniform
rexp(n,rate=1) # Exponential, rate is 1/mean
rpois(n,lambda) # Poisson, lambda is mean
rbinom(n,size,prob) # Binomial

etc., etc. A further convention is that these parameters can be vectorized. Rather
than giving a single mean and standard deviation (say) for multiple draws from the
Gaussian distribution, each draw can have its own:

rnorm(10,mean=1:10,sd=1/sqrt(1:10))

That instance is rather trivial, but the exact same principle would be at work here:

2In this case, we could in principle first generate Y , and then draw from Y |X , but have fun finding
those distributions. Especially have fun if, say, X has a t distribution with 5 degrees of freedom — a very
small change to the specification.
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rnorm(nrow(x),mean=predict(regression.model,newdata=x),
sd=predict(volatility.model,newdata=x)

where regression.model and volatility.model are previously-defined parts of
the model which tell us about conditional expectations and conditional variances.

Of course, none of this explains how R actually draws from any of these dis-
tributions; it’s all at the level of a black box, which is to say black magic. Because
ignorance is evil, and, even worse, unhelpful when we need to go beyond the standard
distributions, it’s worth open the black box at least a little.

5.2.2.2 Transformations

If we can generate a random variable Z with some distribution, and V = g (Z), then
we can generate V . So one thing which gets a lot of attention is writing random
variables as transformations of one another — ideally as transformations of easy-to-
generate variables.

Example. Suppose we can generate random numbers from the standard Gaussian
distribution Z ∼N (0,1). Then we can generate fromN (µ,σ2) as σZ +µ. We can
generate χ 2 random variables with 1 degree of freedom as Z2. We can generate χ 2

random variables with d degrees of freedom by summing d independent copies of
Z2.

In particular, if we can generate random numbers uniformly distributed between
0 and 1, we can use this to generate anything which is a transformation of a uniform
distribution. How far does that extend?

5.2.2.3 Quantile Method

Suppose that we know the quantile function QZ for the random variable X we want,
so that QZ (0.5) is the median of X , QZ (0.9) is the 90th percentile, and in general
QZ (p) is bigger than or equal to X with probability p. QZ comes as a pair with the
cumulative distribution function FZ , since

QZ (FZ (a)) = a, FZ (QZ (p)) = p (5.3)

In the quantile method (or inverse distribution transform method), we generate a
uniform random number U and feed it as the argument to QZ . Now QZ (U ) has the
distribution function FZ :

Pr (QZ (U )≤ a) = Pr (FZ (QZ (U ))≤ FZ (a)) (5.4)
= Pr (U ≤ FZ (a)) (5.5)
= FZ (a) (5.6)

where the last line uses the fact that U is uniform on [0,1], and the first line uses the
fact that FZ is a non-decreasing function, so b ≤ a is true if and only if FZ (b )≤ FZ (a).

Example. The CDF of the exponential distribution with rate λ is 1− e−λx . The
quantile function Q(p) is thus− log (1−p)

λ
. (Notice that this is positive, because 1− p <

1 and so log (1− p) < 0, and that it has units of 1/λ, which are the units of x, as it

11:36 Saturday 22nd November, 2014



103 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

should.) Therefore, if U Unif(0,1), then − log (1−U )
λ

∼ Exp(λ). This is the method
used by rexp().

Example. The Pareto distribution or power law is a two-parameter family,

f (x;α, x0) =
α−1

x0

�

x
x0

�−α
if x ≥ x0, with density 0 otherwise. Integration shows

that the cumulative distribution function is F (x;α, x0) = 1−
�

x
x0

�−α+1
. The quantile

function therefore is Q(p;α, x0) = x0(1− p)−
1
α−1 . (Notice that this has the same units

as x, as it should.)
Example. The standard GaussianN (0,1) does not have a closed form for its quan-

tile function, but there are fast and accurate ways of calculating it numerically (they’re
what stand behind qnorm), so the quantile method can be used. In practice, there are
other transformation methods which are even faster, but rely on special tricks.

Since QZ (U ) has the same distribution function as X , we can use the quantile
method, as long as we can calculate QZ . Since QZ always exists, in principle this
solves the problem. In practice, we need to calculate QZ before we can use it, and this
may not have a closed form, and numerical approximations may be in tractable.3

5.2.2.4 Rejection Method

Another general approach, which avoids needing the quantile function, is the rejec-
tion method. Suppose that we want to generate Z , with probability density function
fZ , and we have a method to generate R, with p.d.f. ρ, called the proposal distribu-
tion. Also suppose that fZ (x)≤ ρ(x)M , for some constant M > 1. For instance, if fZ
has a limited range [a, b], we could take ρ to be the uniform distribution on [a, b],
and M the maximum density of fZ .

The rejection method algorithm then goes as follows.

1. Generate a proposal R from ρ.

2. Generate a uniform U , independently of R.

3. Is M Uρ(R)< fZ (R)?

• If yes, “accept the proposal” by returning R and stopping.

• If no, “reject the proposal”, discard R and U , and go back to (1)

If ρ is uniform, this just amounts to checking whether M U < fZ (R), with M the
maximum density of Z .

Computationally, the idea looks like Example 3.
One way to understand the rejection method is as follows. Imagine drawing the

curve of fZ (x). The total area under this curve is 1, because
∫

d x fZ (x) = 1. The

area between any two points a and b on the horizontal axis is
∫ b

a d x fZ (x) = FZ (b )−
FZ (a). It follows that if we could uniformly sample points from the area between the
curve and the horizontal axis, their x coordinates would have exactly the distribution

3In essence, we have to solve the nonlinear equation FZ (x) = p for x over and over — and that assumes
we can easily calculate FZ .
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rrejection.1 <- function(dtarget,dproposal,rproposal,M) {
rejected <- TRUE
while(rejected) {

R <- rproposal(1)
U <- runif(1)
rejected <- (M*U*dproposal(R) < dtarget(R))

}
return(R)

}

rrejection <- function(n,dtarget,dproposal,rproposal,M) {
replicate(n,rrejection.1(dtarget,dproposal,rproposal,M))

}

Code Example 3: An example of how the rejection method would be used. The argu-
ments dtarget, dproposal and rproposal would all be functions. This is not quite
industrial-strength code, because it does not let us pass arguments to those functions
flexibly. See online code for comments.

function we are looking for. If ρ is a uniform distribution, then we are drawing a
rectangle which just encloses the curve of fZ , sampling points uniformly from the
rectangle (with x coordinates R and y coordinates M U ), and only keeping the ones
which fall under the curve. When ρ is not uniform, but we can sample from it
nonetheless, then we are uniformly sampling from the area under Mρ, and keeping
only the points which are also below fZ .

Example. The beta distribution, f (x;a, b ) = Γ(a+b )
Γ(a)Γ(b ) x

a−1(1− x)b−1, is defined on
the unit interval4. While its quantile function can be calculated and so we could
use the quantile method, we could also use the reject method, taking the uniform
distribution for the proposals. Figure 5.1 illustrates how it would go for the Beta(5,10)
distribution

The rejection method’s main drawback is speed. The probability of accepting on
any given pass through the algorithm is 1/M . (EXERCISE: Why?) Thus produce n
random variables from it takes, on average, nM cycles. (EXERCISE: Why?) Clearly,
we want M to be as small, which means that we want the proposal distribution ρ to
be close to the target distribution fZ . Of course if we’re using the rejection method
because it’s hard to draw from the target distribution, and the proposal distribution
is close to the target distribution, it may be hard to draw from the proposal.

4Here Γ(a) =
∫∞

0 d xe−x xa−1. It is not obvious, but for integer a, Γ(a) = (a−1)!. The distribution gets

its name because Γ(a+b )
Γ(a)Γ(b ) is called the beta function of a and b , a kind of continuous generalization of

�a+b
a

�

. The beta distribution arises in connection with problems about minima and maxima, and inference
for binomial distributions.
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M <- 3.3
curve(dbeta(x,5,10),from=0,to=1,ylim=c(0,M))
r <- runif(300,min=0,max=1)
u <- runif(300,min=0,max=1)
below <- which(M*u*dunif(r,min=0,max=1) <= dbeta(r,5,10))
points(r[below],M*u[below],pch="+")
points(r[-below],M*u[-below],pch="-")

Figure 5.1: Illustration of the rejection method for generating random numbera from
a Beta(5,10) distribution. The proposal distribution is uniform on the range of the
beta, which is [0,1]. Points are thus sampled uniformly from the rectangle which
runs over [0,1] on the horizontal axis and [0,3.3] on the vertical axis, i.e., M = 3.3,
because the density of the Beta is < 3.3 everywhere. (This is not the lowest possible
M but it is close.) Proposed points which fall below the Beta’s pdf are marked + and
are accepted; those above the pdf curve are marked − and are rejected. In this case,
exactly 70% of proposals are rejected.
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5.2.2.5 The Metropolis Algorithm and Markov Chain Monte Carlo

One very important, but tricky, way of getting past the limitations of the rejection
method is what’s called the Metropolis algorithm. Once again, we have a density
fZ from which we wish to sample. Once again, we introduce a distribution for “pro-
posals”, and accept or reject proposals depending on the density fZ . The twist now is
that instead of making independent proposals each time, the next proposal depends
on the last accepted value — the proposal distribution is a conditional pdf ρ(r |z).

Assume for simplicity that ρ(r |z) = r ho(z |r ). (For instance, we could have a
Gaussian proposal distribution centered on z.) Then the Metropolis algorithm goes
as follows.

1. Start with value Z0 (fixed or random).

2. Generate R from the conditional distribution ρ(·|Zt ).

3. Generate a uniform U , independent of R.

4. Is U ≤ fZ (R)/ fZ (Zt )?

• If yes, set Zt+1 = R and go to (2)

• If not, set Zt+1 = Zt and go to (2)

Mostly simply, the algorithm is run until t = n, at which point it returns Z1,Z2, . . .Zn .
In practice, better results are obtained if it’s run for n+n0 steps, and the first n0 values
of Z are discarded — this is called “burn-in”.

Notice that if fZ (R)> fZ (Zt ), then R is always accepted. The algorithm always ac-
cepts proposals which move it towards places where the density is higher than where
it currently is. If fZ (R) < fZ (Zt ), then the algorithm accepts the move with some
probability, which shrinks as the density at R gets lower. It should not be hard to
persuade yourself that the algorithm will spend more time in places where fZ is high.

It’s possible to say a bit more. Successive values of Zt are dependent on each
other, but Zt+1 |= Zt−1|Zt — this is a Markov process. The target distribution fZ is
in fact exactly the stationary distribution of the Markov process. If the proposal
distributions have broad enough support that the algorithm can get from any z to
any z ′ in a finite number of steps, then the process will “mix”. (In fact we only need
to be able to visit points where fZ > 0.) This means that if we start with an arbitrary
distribution for Z0, the distribution of Zt approaches fZ and stays there — the point
of burn-in is to give this convergence time to happen. The fraction of time Zt is close
to x is in fact proportional to fZ (x), so we can use the output of the algorithm as,
approximately, so many draws from that distribution.5

It would seem that the Metropolis algorithm should be superior to the rejection
method, since to produce n random values we need only n steps, or n+n0 to handle
burn-in, not nM steps. However, this is deceptive, because if the proposal distribu-
tion is not well-chosen, the algorithm ends up staying stuck in the same spot for,
perhaps, a very long time. Suppose, for instance, that the distribution is bimodal. If

5And if the dependence between Zt and Zt+1 bothers us, we can always randomly permute them, once
we have them.
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Z0 starts out in between the modes, it’s easy for it to move rapidly to one peak or
the other, and spend a lot of time there. But to go from one mode to the other, the
algorithm has to make a series of moves, all in the same direction, which all reduce
fZ , which happens but is unlikely. It thus takes a very long time to explore the whole
distribution. The “best” optimal proposal distribution is make ρ(r |z) = fZ (r ), i.e., to
just sample from the target distribution. If we could do that, of course, we wouldn’t
need the Metropolis algorithm, but trying to make ρ close to fZ is generally a good
idea.

The original Metropolis algorithm was invented in the 1950s to facilitate design-
ing the hydrogen bomb. It relies on the assumption that the proposal distribution
is symmetric, ρ(r |z) = ρ(z |r ). It is sometimes convenient to allow an asymmetric
proposal distribution, in which case one accepts R if U ρ(R|Zt )

ρ(Zt |R)
≤ fZ (R)

fZ (Zt )
. This is called

Metropolis-Hastings. Both are examples of the broader class of Markov Chain
Monte Carlo algorithms, where we give up on getting independent samples from
the target distribution, and instead make the target the invariant distribution of a
Markov process.

5.2.2.6 Generating Uniform Random Numbers

Everything previously to this rested on being able to generate uniform random num-
bers, so how do we do that? Well, really that’s a problem for computer scientists. . . But
it’s good to understand a little bit about the basic ideas.6

First of all, the numbers we get will be produced by some deterministic algo-
rithm, and so will be merely pseudorandom rather than truly random. But we
would like the deterministic algorithm to produce extremely convoluted results, so
that its output looks random in as many ways that we can test as possible. Depen-
dencies should be complicated, and correlations between easily-calculated functions
of successive pseudorandom numbers should be small and decay quickly. (In fact,
“truly random” can be defined, more or less, as the limit of the algorithm becoming
infinitely complicated.) Typically, pseudorandom number generators are constructed
to produce a sequence of uniform values, starting with an initial value, called the seed.
In normal operation, the seed is set from the computer’s clock; when debugging, the
seed can be held fixed, to ensure that results can be reproduced exactly.

Probably the simplest example is incommensurable rotations. Imagine a watch
which fails very slightly, but deterministically, to keep proper time, so that its second
hand advances φ 6= 1 seconds in every real second of time. The position of the watch
after t seconds is

θt = θ0+ tαmod 60 (5.7)

If φ is commensurable with 60, meaning α/60 = k/m for some integers k , m, then
the positions would just repeat every 60k seconds. If α is incommensurable, because
it is an irrational number, then θt never repeats. In this case, not only does θt never
repeat, but it is uniformly distributed between 0 and 60, in the sense that the fraction
of time it spends in any sub-interval is just proportional to the length of the interval.
(EXERCISE: Why?)

6This section is optional for Spring 2013.
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You could use this as a pseudo-random number generator, with θ0 as the seed,
but it would not be a very good one, for two reasons. First, exactly representing an
irrational number α on a digital computer is impossible, so at best you could use a
rational number such that the period 60k is large. Second, and more pointedly, the
successive θt are really too close to each other, and too similar. Even if we only took,
say, every 50th value, they’d still be quite correlated with each other.

One way this has been improved is to use multiple incommensurable rotations.
Say we have a second inaccurate watch, φt = φ0 +βt mod 60, where β is incom-
mensurable with both 60 and with α. We record θt when φt is within some small
window of 0.7

Another approach is to use more aggressively complicated deterministic map-
pings. Take the system

θt+1 = θt +φt mod 1 (5.8)
φt+1 = θt + 2φt mod 1

This is known as “Arnold’s cat map”, after the great Soviet mathematician V. I.
Arnold, and Figure 5.2. We can think of this as the second-hand θt advancing not
by a fixed amount α every second, but by a varying amount φt . The variable φt ,
meanwhile, advances by the amount φt + θt . The effect of this is that if we look at
only one of the two coordinates, say θt , we get a sequence of numbers which, while
deterministic, is uniformly distributed, and very hard to predict (Figure 5.3).

5.2.3 Sampling
A complement to drawing from given distributions is to sample from a given collec-
tion of objects. This is such a common task that R has a handy built-in function to
do it:

sample(x,size,replace=FALSE,prob=NULL)

Here x is a vector which defines the set of objects we’re going to sample from. size is
the number of samples we want to draw from x. replace says whether the samples
are drawn with or without replacement. (If replace=TRUE, then size can be arbi-
trarily larger than the length of x. If replace=FALSE, having a larger size doesn’t
make sense.) Finally, the optional argument prob allows for weighted sampling; ide-
ally, prob is a vector of probabilities as long as x, giving the probability of drawing
each element of x8.

As a convenience for a common situation, running sample with one argument
produces a random permutation of the input, i.e.,

sample(x)

is equivalent to
7The core idea here actually dates back to a medieval astronomer named Nicholas Oresme in the 1300s,

as part of an argument that the universe would not repeat exactly (von Plato, 1994, pp. 279–284).
8If the elements of prob do not add up to 1, but are positive, they will be normalized by their sum,

e.g., setting prob=c(9,9,1) will assign probabilities ( 9
19 , 9

19 , 1
19 ) to the three elements of x.
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Figure 5.2: Effect of the Arnold cat map. The original image is 300 × 300, and
mapped into the unit square. The cat map is then applied to the coordinates of
each pixel separately, giving a new pixel which inherits the old color. (This can
most easily seen in the transition from the original to time 1.) The original im-
age re-assembles itself at time 300 because all the original coordinates we multi-
ples of 1/300. If we had sampled every, say, 32 time-steps, it would have taken
much longer to see a repetition. In the meanwhile, following the x coordinate of
a single pixel from the original image would provide a very creditable sequence of
pseudo-random values. (Figure from Wikipedia, s.v. “Arnold’s cat map”. See also
http://math.gmu.edu/~sander/movies/arnold.html.)
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arnold.map <- function(v) {
theta <- v[1]
phi <- v[2]
theta.new <- (theta+phi)%%1
phi.new <- (theta+2*phi)%%1
return(c(theta.new,phi.new))

}

rarnold <- function(n,seed) {
z <- vector(length=n)
for (i in 1:n) {

seed <- arnold.map(seed)
z[i] <- seed[1]

}
return(z)

}

Code Example 4: A function implementing the Arnold cat map (Eq. 5.9), and a
second function which uses it as a pseudo-random number generator. See online
version for comments.

par(mfrow=c(2,1))
z <- rarnold(1000,c(0.11124,0.42111))
hist(z,probability=TRUE)
plot(z[-1000],z[-1],xlab=expression(Z[t]),ylab=expression(Z[t+1]))

Figure 5.3: Left: histogram from 1000 samples of the θ coordinate of the Arnold cat
map, started from (0.11124,0.42111). Right: scatter-plot of successive values from
the sample, showing that the dependence is very subtle.
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sample(x,size=length(x),replace=FALSE)

For example, if we’re doing five-fold cross-validation, then

sample(rep(1:5,length.out=nrow(df))

will first repeat the numbers 1,2,3,4,5 until we have one number for each row of
df, and then shuffle the order of those numbers randomly. This then would give an
assignment of each row of df to one (and only one) of five folds.

5.2.3.1 Sampling Rows from Data Frames

When we have multivariate data (which is the usual situation), we typically arrange
it into a data-frame, where each row records one unit of observation, with multiple
interdependent columns. The natural notion of sampling is then to draw a random
sample of the data points, which in that representation amounts to a random sample
of the rows. We can implement this simply by sampling row numbers. For instance,
this command,

df[sample(1:nrow(df),size=b),]

will create a new data frame from b, by selecting b rows from dfwithout replacement.
It is an easy exercise to figure out how to sample from a data frame with replacement,
and with unequal probabilities per row.

5.2.3.2 Multinomials and Multinoullis

If we want to draw one value from a multinomial distribution with probabilities
p = (p1, p2, . . . pk ), then we can use sample:

sample(1:k,size=1,prob=p)

If we want to simulate a “multinoulli” process9, i.e., a sequence of independent and
identically distributed multinomial random variables, then we can easily do so:

rmultinoulli <- function(n,prob) {
k <- length(prob)
return(sample(1:k,size=n,replace=TRUE,prob=prob))

}

5.2.3.3 Probabilities of Observation

Often, our models of how the data are generated will break up into two parts. One
part is a model of how actual variables are related to each other out in the world.
(E.g., we might model how education and racial categories are related to occupation,
and occupation is related to income.) The other part is a model of how variables come
to be recorded in our data, and the distortions they might undergo in the course of
doing so. (E.g., we might model the probability that someone appears in a survey

9A handy term I learned from Gustavo Lacerda.
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as a function of race and income.) Plausible sampling mechanisms often make the
probability of appearing in the data a function of some of the variables. This can
then have important consequences for our inferences from the data we happen to see
to the whole population or process.

income <- rnorm(n,mean=predict(income.model,x),sd=sigma)
capture.probabilities <- predict(observation.model,x)
observed.income <- sample(income,size=b,prob=capture.probabilities)

5.2.4 Repeating Simulations

Because simulations are often most useful when they are repeated many times, R has
a command to repeat a whole block of code:

replicate(n,expr)

Here expr is some executable “expression” in R, basically something you could type
in the terminal without trouble, and n is the number of times to repeat it.

For instance,

output <- replicate(1000,rnorm(length(x),beta0+beta1*x,sigma))

will replicate, 1000 times, sampling from the predictive distribution of a Gaussian
linear regression model. Conceptually, this is equivalent to doing something like

output <- matrix(0,nrow=1000,ncol=length(x))
for (i in 1:1000) {

output[i,] <- rnorm(length(x),beta0+beta1*x,sigma)
}

but the replicate version has two great advantages. First, it is faster, because R
processes it with specially-optimized code. (Loops are especially slow in R.) Second,
and far more importantly, it is clearer: it makes it obvious what is being done, in one
line, and leaves the computer to figure out the boring and mundane details of how
best to implement it.

5.3 Why Simulate?
There are three major uses for simulation: to understand a model, to check it, and to
fit it.

5.3.1 Understanding the Model; Monte Carlo

We understand a model by seeing what it predicts about the variables we care about,
and the relationships between them. Sometimes those predictions are easy to ex-
tract from a mathematical representation of the model, but often they aren’t. With a
model we can simulate, however, we can just run the model and see what happens.
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Our stochastic model gives a distribution for some random variable Z , which in
general is a complicated, multivariate object with lots of interdependent components.
We may also be interested in some complicated function g of Z , such as, say, the
ratio of two components of Z , or even some nonparametric curve fit through the
data points. How do we know what the model says about g ?

Assuming we can make draws from the distribution of Z , we can find the distri-
bution of any function of it we like, to as much precision as we want. Suppose that
Z̃1, Z̃2, . . . Z̃b are the outputs of b independent runs of the model — b different repli-
cates of the model. (I am using the tilde to remind us that these are just simulations.)
We can calculate g on each of them, getting g (Z̃1), g (Z̃2), . . . g (Z̃b ). If averaging makes
sense for these values, then

1

b

b
∑

i=1

g (Z̃i )
→

b →∞ E[g (Z)] (5.9)

by the law of large numbers. So simulation and averaging lets us get expectation
values. This basic observation is the seed of the Monte Carlo method.10 If our sim-
ulations are independent, we can even say that 1

b

∑b
i=1 g (Z̃i ) has approximately the

distributionN (E[g (Z)] ,Var[g (Z)]/b ) by the central limit theorem. Of course, if
you can get expectation values, you can also get variances. (This is handy if trying to
apply the central limit theorem!) You can also get any higher moments — if you need
the kurtosis for whatever reason, you just have to simulate enough.

You can also pick any set s and get the probability that g (Z) falls into that set:

1

b

b
∑

i=1

1s (g (Zi ))
→

b →∞ Pr (g (Z) ∈ s) (5.10)

The reason this works is of course that Pr (g (Z) ∈ s) = E
�

1s (g (Z))
�

, so it’s just
the central limit theorem. So we can get the whole distribution of any complicated
function of the model that we want, as soon as we can simulate the model. It is really
only a little harder to get the complete sampling distribution than it is to get the
expectation value, and the exact same ideas apply.

5.3.2 Checking the Model

An important but under-appreciated use for simulation is to check models after they
have been fit. If the model is right, after all, it represents the mechanism which gen-
erates the data. This means that when we simulate, we run that mechanism, and the
surrogate data which comes out of the machine should look like the real data. More
exactly, the real data should look like a typical realization of the model. If it does not,
then the model’s account of the data-generating mechanism is systematically wrong

10The name comes from the physicists who used the method to do calculations relating to designing the
hydrogen bomb; see Metropolis et al. (1953). Folklore among physicists says that the method goes back at
least to Enrico Fermi in the 1930s, without the cutesy name.
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rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n,mean=fitted(fit.ols),sd=sigma)
new.geyser <- data.frame(duration=geyser$duration,

waiting=new.waiting)
return(new.geyser)

}

Code Example 5: Function for generating surrogate data sets from the linear model
fit to geyser.

in some way. By carefully choosing the simulations we perform, we can learn a lot
about how the model breaks down and how it might need to be improved.11

Often the comparison between simulations and data can be done qualitatively
and visually. For example, a classic data set concerns the time between eruptions of
the Old Faithful geyser in Yellowstone, and how they relate to the duration of the
latest eruption. A common exercise is to fit a regression line to the data by ordinary
least squares:

library(MASS)
data(geyser)
fit.ols <- lm(waiting~duration,data=geyser)

Figure 5.4 shows the data, together with the OLS regression line. It doesn’t look
that great, but if someone insisted it was a triumph of quantitative vulcanology, how
could you show they were wrong?

Well, OLS is usually presented as part of a probability model for the response
conditional on the input, with Gaussian and homoskedastic noise. In this case, the
probability model is waiting = β0 +β1duration+ ε, with ε ∼ N (0,σ2). If we
simulate from this probability model, we’ll get something we can compare to the
actual data, to help us assess whether the scatter around that regression line is really
bothersome. Since OLS doesn’t require us to assume a distribution for the input
variable (here, duration), the simulation function in Code Example 5 leaves those
values alone, but regenerates values of the response (waiting) according the model
assumptions.

A useful principle for model checking is that if we do some exploratory data
analyses of the real data, doing the same analyses to realizations of the model should
give roughly the same results. This isn’t really the case here. Figure 5.5 shows the
actual density of waiting, plus the density produced by simulating — reality is clearly
bimodal, but the model is unimodal. Similarly, Figure 5.6 shows the real data, the
OLS line, and a simulation from the OLS model. It’s visually clear that the deviations
of the real data from the regression line are both bigger and more patterned than those
we get from simulating the model, so something is wrong with the latter.

11“Might”, because sometimes we’re better off with a model that makes systematic mistakes, if they’re
small and getting it right would be a hassle.
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plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")
abline(fit.ols)

Figure 5.4: Data for the geyser data set, plus the OLS regression line.
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plot(density(geyser$waiting),xlab="waiting",main="",sub="")
lines(density(rgeyser()$waiting),lty=2)

Figure 5.5: Actual density of the waiting time between eruptions (solid curve) an that
produced by simulating the OLS model (dashed).

By itself, just seeing that data doesn’t look like a realization of the model isn’t
super informative, since we’d really like to know how the model’s broken, and how
to fix it. Further simulations, comparing analyses of the data to analyses of the sim-
ulation output, are often very helpful here. Looking at Figure 5.6, we might suspect
that one problem is heteroskedasticity — the variance isn’t constant. This suspicion
is entirely correct, and will be explored in §7.3.2.

5.3.3 Sensitivity Analysis
[[TODO: Expand on this]]

Often, the statistical inference we do on the data is predicated on certain assump-
tions about how the data is generated. For instance, if we have missing values for
some variables and just ignore incomplete rows, we are implicitly assuming that data
are “missing at random”, rather than in some systematic way. If we are not totally
confident in such assumptions, we might wish to see what happens they break down.
That is, we set up a model where the assumptions are more or less violated, and then
run our original analysis on the simulation output. Because it’s a simulation, we
know the complete truth about the data-generating process, and can assess how far
off our inferences are. In favorable circumstances, our inferences don’t mess up too
much even when the assumptions we used to motivate the analysis are badly wrong.
Sometimes, however, we discover that even tiny violations of our initial assumptions
lead to large errors in our inferences. Then we either need to make some compelling
case for those assumptions, or be very cautious in our inferences.
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plot(geyser$duration,geyser$waiting,xlab="duration",ylab="waiting")
abline(fit.ols)
points(rgeyser(),pch=20,cex=0.5)

Figure 5.6: As in Figure 5.4, plus one realization of simulating the OLS model (small
black dots).
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5.4 The Method of Simulated Moments
Checking whether the model’s simulation output looks like the data naturally sug-
gests the idea of adjusting the model until it does. This becomes a way of estimat-
ing the model — in the jargon, simulation-based inference. All forms of this in-
volve adjusting parameters of the model until the simulations do look like the data.
They differ in what “look like” means, concretely. The most straightforward form
of simulation-based inference is the method of simulated moments.12

5.4.1 The Method of Moments

You will have seen the ordinary method of moments in earlier statistics classes.
Let’s recall the general setting. We have a model with a parameter vector θ, and
pick a vector m of moments to calculate. The moments, like the expectation of any
variables, are functions of the parameters,

m = g (θ) (5.11)

for some function g . If that g is invertible, then we can recover the parameters from
the moments,

θ= g−1(m) (5.12)

The method of moments estimator takes the observed, sample moments m̂, and plugs
them into Eq. 5.12:

ÕθM M = g−1(m̂) (5.13)

What if g−1 is hard to calculate — if it’s hard to explicitly solve for parameters from
moments? In that case, we can use minimization:

ÕθM M = argmin
θ
‖g (θ)− m̂‖2 (5.14)

For the minimization version, we just have to calculate moments from parameters
g (θ), not vice versa. To see that Eqs. 5.13 and 5.14 do the same thing, notice that
(i) the squared13 distance ‖g (θ)− m̂‖2 ≥ 0, (ii) the distance is only zero when the
moments are matched exactly, and (iii) there is only θwhich will match the moments.

In either version, the method of moments works statistically because the sample
moments m̂ converge on their expectations g (θ) as we get more and more data. This
is, to repeat, a consequence of the law of large numbers.

It’s worth noting that nothing in this argument says that m has to be a vector of
moments in the strict sense. They could be expectations of any functions of the ran-
dom variables, so long as g (θ) is invertible, we can calculate the sample expectations
of these functions from the data, and the sample expectations converge. When m
isn’t just a vector of moments, then, we have the generalized method of moments.

12This section is optional for spring 2013.
13Why squared? Basically because it makes the function we’re minimizing smoother, and the optimiza-

tion nicer.
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It is also worth noting that there’s a somewhat more general version of the same
method, where we minimize

(g (θ)− m̂) ·w (g (θ)− m̂) (5.15)

with some positive-definite weight matrix w. This can help if some of the moments
are much more sensitive to the parameters than others. But this goes beyond what
we really need here.

5.4.2 Adding in the Simulation
All of this supposes that we know how to calculate g (θ) — that we can find the
moments exactly. Even if this is too hard, however, we could always simulate to
approximate these expectations, and try to match the simulated moments to the real
ones. Rather than Eq. 5.14, the estimator would be

ÖθSM M = argmin
θ





 g̃s ,T (θ)− m̂






2
(5.16)

with s being the number of simulation paths and T being their size. Now consistency
requires that g̃ → g , either as T grows or s or both, but this is generally assured by
the law of large numbers, as we talked about earlier. Simulated method of moments
estimates like this are generally more uncertain than ones which don’t rely on simu-
lation, since it introduces an extra layer of approximation, but this can be reduced by
increasing s .14

5.4.3 An Example: Moving Average Models and the Stock Mar-
ket

To give a concrete example, we will try fitting a time series model to the stock market:
it’s a familiar subject which interests most students, and we can check the method of
simulated moments here against other estimation techniques.15

Our data will consist of about ten year’s worth of daily values for the S& P 500
stock index, available on the class website:

sp <- read.csv("SPhistory.short.csv")
# We only want closing prices
sp <- sp[,7]
# The data are in reverse chronological order, which is weird for us
sp <- rev(sp)
# And in fact we only want log returns, i.e., difference in logged prices
sp <- diff(log(sp))

14A common trick is to fix T at the actual sample size n, and then to increase s as much as computa-
tionally feasible. By looking at the variance of g̃ across different runs of the model with the same θ, one
gets an idea of how much uncertainty there is in m̂ itself, and so of how precisely one should expect to be
able to match it. If the optimizer has gotten | g̃ (θ)− m̂| down to 0.02, and the standard deviation of g̃ at
constant θ is 0.1, further effort at optimization is probably wasted.

15Nothing in what follows, or in the homework, could actually be used to make money, however.
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Professionals in finance do not care so much about the sequence of prices Pt , as the
sequence of returns, Pt−Pt−1

Pt−1
. This is because making $1000 is a lot better when you

invested $1000 than when you invested $1,000,000, but 10% is 10%. In fact, it’s often
easier to deal with the log returns, Xt = log Pt

Pt−1
, as we do here.

The model we will fit is a first-order moving average, or MA(1), model:

Xt = Zt +θZt−1 (5.17)

Zt ∼ N (0,σ2) i.i.d. (5.18)

The Xt sequence of variables are the returns we see; the Zt variables are invisible to
us. The interpretation of the model is as follows. Prices in the stock market change
in response to news that affects the prospects of the companies listed, as well as news
about changes in over-all economic conditions. Zt represents this flow of news, good
and bad. It makes sense that Zt is uncorrelated, because the relevant part of the
news is only what everyone hadn’t already worked out from older information16.
However, it does take some time for the news to be assimilated, and this is why
Zt−1 contributes to Xt . A negative contribution, θ < 0, would seem to indicate a
“correction” to the reaction to the previous day’s news.

Mathematically, notice that since Zt and θZt−1 are independent Gaussians, Xt is
a Gaussian with mean 0 and variance σ2+ θ2σ2. The marginal distribution of Xt is
therefore the same for all t . For technical reasons17, we can really only get sensible
behavior from the model when −1≤ θ≤ 1.

There are two parameters, θ and σ2, so we need two moments for estimation.
Let’s try Var

�

Xt
�

and Cov
�

Xt ,Xt−1
�

.

Var
�

Xt
�

= Var
�

Zt
�

+θ2Var
�

Zt−1
�

(5.19)

= σ2+θ2σ2 (5.20)
= σ2(1+θ2)≡ v(θ,σ) (5.21)

(This agrees with our earlier reasoning about Gaussians, but doesn’t need it.)

Cov
�

Xt ,Xt−1
�

= E
�

(Zt +θZt−1)(Zt−1+θZt−2)
�

(5.22)

= θE
�

Z2
t−1

�

(5.23)

= θσ2 ≡ c(θ,σ) (5.24)

We can solve the system of equations for the parameters, starting with eliminating

16Nobody will ever say “What? It’s snowing in Pittsburgh in February? I must call my broker!”
17Think about trying to recover Zt , if we knew θ. One might try Xt − θXt−1, which is almost right,

it’s Zt +θZt−1−θZt−1−θ2Zt−2 = Zt −θ2Zt−2. Similarly, Xt −θXt−1+θ
2Xt−2 = Zt +θ

3Zt−2, and so
forth. If |θ| < 1, then this sequence of approximations will converge on Zt ; if not, then not. It turns out
that models which are not “invertible” in this way are very strange — see Shumway and Stoffer (2000).
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σ2:

c(θ,σ)

v(θ,σ)
=

σ2θ

σ2(1+θ2)
(5.25)

=
θ

1+θ2
(5.26)

0 = θ2 c

v
−θ+

c

v
(5.27)

This is a quadratic in θ,

θ=
1±
q

1− 4 c2

v2

2c/v
(5.28)

and it’s easy to confirm18 that this has only one solution in the meaningful range,
−1≤ θ≤ 1. Having found θ, we solve for σ2,

σ2 = c/θ (5.29)

The method of moments estimator takes the sample values of these moments, v̂
and ĉ , and plugs them in to Eqs. 5.28 and 5.29. With the S& P returns, the sample
covariance is−1.61×10−5, and the sample variance 1.96×10−4. This leads to θ̂M M =

−8.28× 10−2, andcσ2
M M = 1.95× 10−4. In terms of the model, then, each day’s news

has a follow-on impact on prices which is about 8% as large as its impact the first day,
but with the opposite sign.19

If we did not know how to solve a quadratic equation, we could use the minimiza-
tion version of the method of moments estimator:







bθM M
Õσ2

M M






= argmin

θ,σ2









σ2θ− ĉ
σ2(1+θ2)− v̂









2

(5.30)

Computationally, it would go something like Code Example 6.
The parameters estimated by minimization agree with those from direct algebra

to four significant figures, which I hope is good enough to reassure you that this
works.

Before we can try out the method of simulated moments, we have to figure out
how to simulate our model. Xt is a deterministic function of Zt and Zt−1, so our
general strategy says to first generate the Zt , and then compute Xt from that. But
here the Zt are just a sequence of independent Gaussians, which is a solved problem
for us. The one wrinkle is that to get our first value X1, we need a previous value Z0.
Code Example 7 shows the solution.

18For example, plot c/v as a function of θ, and observe that any horizontal line cuts the graph at only
one point.

19It would be natural to wonder whether ÕθM M is really significantly different from zero. Assuming
Gaussian noise, one could, in principle, calculate the probability that even though θ = 0, by chance ĉ/v̂
was so far from zero as to give us our estimate. As you will see in the homework, however, Gaussian
assumptions are very bad for this data. This sort of thing is why we have bootstrapping.
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ma.mm.est <- function(c,v) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0), fn=ma.mm.objective,

c=c, v=v)
return(fit)

}

ma.mm.objective <- function(params,c,v) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- theta*sigma2
v.pred <- sigma2*(1+theta^2)
return((c-c.pred)^2 + (v-v.pred)^2)

}

Code Example 6: Code for implementing method of moments estimation of a first-
order moving average model, as in Eq. 5.30. See Appendix 5.6 for “design notes”, and
the online code for comments.

rma <- function(n,theta,sigma2,s=1) {
z <- replicate(s,rnorm(n=n+1,mean=0,sd=sqrt(sigma2)))
x <- z[-1,] + theta*z[-(n+1),]
return(x)

}

Code Example 7: Function which simulates s independent runs of a first-order mov-
ing average model, each of length n, with given noise variance sigma2 and after-effect
theta. See online for the version with comments on the code details.
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sim.var <- function(n,theta,sigma2,s=1) {
vars <- apply(rma(n,theta,sigma2,s),2,var)
return(mean(vars))

}

sim.cov <- function(n,theta,sigma2,s=1) {
x <- rma(n,theta,sigma2,s)
covs <- colMeans(x[-1,]*x[-n,])
return(mean(covs))

}

Code Example 8: Functions for calculating the variance and covariance for specified
parameter values from simulations.

What we need to extract from the simulation are the variance and the covariance.
It will be more convenient to have functions which calculate these call rma() them-
selves (Code Example 8).

Figure 5.7 plots the covariance, the variance, and their ratio as functions of θwith
σ2 = 1, showing both the values obtained from simulation and the theoretical ones.20

The agreement is quite good, though of course not quite perfect.21

Conceptually, we could estimate θ by jut taking the observed value ĉ/v̂, running
a horizontal line across Figure 5.7c, and seeing at what θ it hit one of the simulation
dots. Of course, there might not be one it hits exactly...

The more practical approach is Code Example 9. The code is practically identical
to that in Code Example 6, except that the variance and covariance predicted by given
parameter settings now come from simulating those settings, not an exact calculation.
Also, we have to say how long a simulation to run, and how many simulations to
average over per parameter value.

When I run this, with s=100, I get bθM SM =−8.36×10−2 and bσ2
M SM = 1.94×10−4,

which is quite close to the non-simulated method of moments estimate. In fact, in
this case there is actually a maximum likelihood estimator (arima(), after the more
general class of models including MA models), which claims bθM L = −9.75× 10−2

and bσ2
M L = 1.94× 10−4. Since the standard error of the MLE on θ is ±0.02, this

is working essentially as well as the method of moments, or even the method of
simulated moments.

In this case, because there is a very tractable maximum likelihood estimator, one
generally wouldn’t use the method of simulated moments. But we can in this case
check whether it works (it does), and so we can use the same technique for other
models, where an MLE is unavailable.

20I could also have varied σ2 and made 3D plots, but that would have been more work. Also, the
variance and covariance are both proportional to σ2, so the shapes of the figures would all be the same.

21If you look at those figures and think “Why not do a nonparametric regression of the simulated
moments against the parameters and use the fitted values as g̃ , it’ll get rid of some of the simulation
noise?”, congratulations, you’ve just discovered the smoothed method of simulated moments.
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theta.grid <- seq(from=-1,to=1,length.out=300)
cov.grid <- sapply(theta.grid,sim.cov,sigma2=1,n=length(sp),s=10)
plot(theta.grid,cov.grid,xlab=expression(theta),ylab="Covariance")
abline(0,1,col="grey",lwd=3)
var.grid <- sapply(theta.grid,sim.var,sigma2=1,n=length(sp),s=10)
plot(theta.grid,var.grid,xlab=expression(theta),ylab="Variance")
curve((1+x^2),col="grey",lwd=3,add=TRUE)
plot(theta.grid,cov.grid/var.grid,xlab=expression(theta),

ylab="Ratio of covariance to variance")
curve(x/(1+x^2),col="grey",lwd=3,add=TRUE)

Figure 5.7: Plots of the covariance, the variance, and their ratio as a function of θ,
with σ2 = 1. Dots show simulation values (averaging 10 realizations each as long as
the data), the grey curves the exact calculations.
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ma.msm.est <- function(c,v,n,s) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par=c(theta.0,sigma2.0),fn=ma.msm.objective,c=c,v=v,n=n,s=s)
return(fit)

}

ma.msm.objective <- function(params,c,v,n,s) {
theta <- params[1]
sigma2 <- params[2]
c.pred <- sim.cov(n,theta,sigma2,s)
v.pred <- sim.var(n,theta,sigma2,s)
return((c-c.pred)^2 + (v-v.pred)^2)

}

Code Example 9: Code for implementing the method of simulated moments esti-
mation of a first-order moving average model.
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5.5 Exercises
Section 5.4 explained the method of simulated moments, where we try to match ex-
pectations of various functions of the data. Expectations of functions are summary
statistics, but they’re not the only kind of summary statistics. We could try to es-
timate our model by matching any set of summary statistics, so long as (i) there’s a
unique way of mapping back from summaries to parameters, and (ii) estimates of the
summary statistics converge as we get more data.

A powerful but somewhat paradoxical version of this is what’s called indirect
inference, where the summary statistics are the parameters of a different model. This
second or auxiliary model does not have to be correctly specified, it just has to be
easily fit to the data, and satisfy (i) and (ii) above. Say the parameters of the auxiliary
model are β, as opposed to the θ of our real model. We calculate bβ on the real
data. Then we simulate from different values of θ, fit the auxiliary to the simulation
outputs, and try to match the auxiliary estimates. Specifically, the indirect inference
estimator is

bθI I = argmin
θ
‖β̃(θ)− bβ‖2 (5.31)

where β̃(θ) is the value of β we estimate from a simulation of θ, of the same size as
the original data. (We might average together a couple of simulation runs for each θ.)
If we have a consistent estimator of β, then

bβ → β (5.32)

β̃(θ) → b (θ) (5.33)

If in addition b (θ) is invertible, then

bθI I → θ (5.34)

For this to work, the auxiliary model needs to have at least as many parameters
as the real model, but we can often arrange this by, say, making the auxiliary model a
linear regression with a lot of coefficients.

A specific case, often useful for time series, is to make the auxiliary model an
autoregressive model, where each observation is linearly regressed on the previous
ones. A first-order autoregressive model (or “AR(1)”) is

Xt =β0+β1Xt−1+ εt (5.35)

where εt ∼N (0,β3). (So an AR(1) has three parameters.)

1. Convince yourself that if Xt comes from an MA(1) process, it can’t also be
written as an AR(1) model.

2. Write a function, ar1.fit, to fit an AR(1) model to a time series, using lm, and
to return the three parameters (intercept, slope, noise variance).

3. Apply ar1.fit to the S&P 500 data; what are the auxiliary parameter esti-
mates?

11:36 Saturday 22nd November, 2014



127 5.5. EXERCISES

4. Combine ar1.fit with the simulator rma, and plot the three auxiliary param-
eters as functions of θ, holding σ2 fixed at 1. (This is analogous to Figure 5.7.)

5. Write functions, analogous to ma.msm.est and ma.msm.objective, for esti-
mating an MA(1) model, using an AR(1) model as the auxiliary function. Does
this recover the right parameter values when given data simulated from an
MA(1) model?

6. What values does your estimator give for θ and σ2 on the S& P 500 data? How
do they compare to the other estimates?
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5.6 Appendix: Some Design Notes on the Method of
Moments Code

Go back to Section 5.4.3 and look at the code for the method of moments. There’ve
been a fair amount of questions about writing code, and this is a useful example.

The first function, ma.mm.est, estimates the parameters taking as inputs two
numbers, representing the covariance and the variance. The real work is done by
the built-in optim function, which itself takes two major arguments. One, fn, is the
function to optimize. Another, par, is an initial guess about the parameters at which
to begin the search for the optimum.22

The fn argument to optim must be a function, here ma.mm.objective. The
first argument to that function has to be a vector, containing all the parameters to
be optimized over. (Otherwise, optim will quit and complain.) There can be other
arguments, not being optimized over, to that function, which optim will pass along,
as you see here. optim will also accept a lot of optional arguments to control the
search for the optimum — see help(optim).

All ma.mm.objective has to do is calculate the objective function. The first two
lines peel out θ and σ2 from the parameter vector, just to make it more readable.
The next two lines calculate what the moments should be. The last line calculates the
distance between the model predicted moments and the actual ones, and returns it.
The whole thing could be turned into a one-line, like

return(t(params-c(c,v)) %*% (params-c(c,v)))

or perhaps even more obscure, but that is usually a bad idea.
Notice that I could write these two functions independently of one another, at

least to some degree. When writing ma.mm.est, I knew I would need the objec-
tive function, but all I needed to know about it was its name, and the promise
that it would take a parameter vector and give back a real number. When writing
ma.mm.objective, all I had to remember about the other function was the promise
this one needed to fulfill. In my experience, it is usually easiest to do any substantial
coding in this “top-down” fashion23. Start with the high-level goal you are trying to
achieve, break it down into a few steps, write something which will put those steps
together, presuming other functions or programs can do them. Now go and write
the functions to do each of those steps.

The code for the method of simulated moments is entirely parallel to these. Writ-
ing it as two separate pairs of functions is therefore somewhat wasteful. If I find a
mistake in one pair, or thing of a way to improve it, I need to remember to make cor-
responding changes in the other pair (and not introduce a new mistake). In the long
run, when you find yourself writing parallel pieces of code over and over, it is better
to try to pull together the common parts and write them once. Here, that would
mean something like one pair of functions, with the inner one having an argument

22Here par is a very rough guess based on c and v — it’ll actually be right when c=0, but otherwise it’s
not much good. Fortunately, it doesn’t have to be! Anyway, let’s return to designing the code

23What qualifies as “substantial coding” depends on how much experience you have
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which controlled whether to calculate the predicted moments by simulation or by a
formula. You may try your hand at writing this.
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Chapter 6

The Bootstrap

We are now several chapters into a statistics class and have said basically nothing
about uncertainty. This should seem odd, and may even be disturbing if you are very
attached to your p-values and saying variables have “significant effects”. It is time to
remedy this, and talk about how we can quantify uncertainty for complex models.
The key technique here is what’s called bootstrapping, or the bootstrap.

6.1 Stochastic Models, Uncertainty, Sampling Distri-
butions

Statistics is the branch of mathematical engineering which studies ways of drawing
inferences from limited and imperfect data. We want to know how a neuron in a
rat’s brain responds when one of its whiskers gets tweaked, or how many rats live
in Pittsburgh, or how high the water will get under the 16mat h r mt h Street bridge
during May, or the typical course of daily temperatures in the city over the year, or
the relationship between the number of birds of prey in Schenley Park in the spring
and the number of rats the previous fall. We have some data on all of these things.
But we know that our data is incomplete, and experience tells us that repeating our
experiments or observations, even taking great care to replicate the conditions, gives
more or less different answers every time. It is foolish to treat any inference from the
data in hand as certain.

If all data sources were totally capricious, there’d be nothing to do beyond piously
qualifying every conclusion with “but we could be wrong about this”. A mathemat-
ical discipline of statistics is possible because while repeating an experiment gives
different results, some kinds of results are more common than others; their relative
frequencies are reasonably stable. We thus model the data-generating mechanism
through probability distributions and stochastic processes. When and why we can
use stochastic models are very deep questions, but ones for another time. If we can
use them in our problem, quantities like the ones I mentioned above are represented
as functions of the stochastic model, i.e., of the underlying probability distribution.
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Since a function of a function is a “functional”, and these quantities are functions of
the true probability distribution function, we’ll call these functionals or statistical
functionals1. Functionals could be single numbers (like the total rat population), or
vectors, or even whole curves (like the expected time-course of temperature over the
year, or the regression of hawks now on rats earlier). Statistical inference becomes
estimating those functionals, or testing hypotheses about them.

These estimates and other inferences are functions of the data values, which means
that they inherit variability from the underlying stochastic process. If we “re-ran the
tape” (as the late, great Stephen Jay Gould used to say), we would get different data,
with a certain characteristic distribution, and applying a fixed procedure would yield
different inferences, again with a certain distribution. Statisticians want to use this
distribution to quantify the uncertainty of the inferences. For instance, the stan-
dard error is an answer to the question “By how much would our estimate of this
functional vary, typically, from one replication of the experiment to another?” (It
presumes a particular meaning for “typically vary”, as root mean square deviation
around the mean.) A confidence region on a parameter, likewise, is the answer to
“What are all the values of the parameter which could have produced this data with
at least some specified probability?”, i.e., all the parameter values under which our
data are not low-probability outliers. The confidence region is a promise that either
the true parameter point lies in that region, or something very unlikely under any
circumstances happened — or that our stochastic model is wrong.

To get things like standard errors or confidence intervals, we need to know the
distribution of our estimates around the true values of our functionals. These sam-
pling distributions follow, remember, from the distribution of the data, since our
estimates are functions of the data. Mathematically the problem is well-defined, but
actually computing anything is another story. Estimates are typically complicated
functions of the data, and mathematically-convenient distributions may all be poor
approximations to the data source. Saying anything in closed form about the distribu-
tion of estimates can be simply hopeless. The two classical responses of statisticians
were to focus on tractable special cases, and to appeal to asymptotics.

Your introductory statistics courses mostly drilled you in the special cases. From
one side, limit the kind of estimator we use to those with a simple mathematical form
— say, means and other linear functions of the data. From the other, assume that the
probability distributions featured in the stochastic model take one of a few forms
for which exact calculation is possible, analytically or via tabulated special functions.
Most such distributions have origin myths: the Gaussian arises from averaging many
independent variables of equal size (say, the many genes which contribute to height
in humans); the Poisson distribution comes from counting how many of a large num-
ber of independent and individually-improbable events have occurred (say, radioac-
tive nuclei decaying in a given second), etc. Squeezed from both ends, the sampling
distribution of estimators and other functions of the data becomes exactly calculable
in terms of the aforementioned special functions.

That these origin myths invoke various limits is no accident. The great results
1Most writers in theoretical statistics just call them “parameters” in a generalized sense, but I will try

to restrict that word to actual parameters specifying statistical models, to minimize confusion. I may slip
up.
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of probability theory — the laws of large numbers, the ergodic theorem, the central
limit theorem, etc. — describe limits in which all stochastic processes in broad classes
of models display the same asymptotic behavior. The central limit theorem, for in-
stance, says that if we average more and more independent random quantities with a
common distribution, and that common distribution isn’t too pathological, then the
average becomes closer and closer to a Gaussian2 Typically, as in the CLT, the limits
involve taking more and more data from the source, so statisticians use the theorems
to find the asymptotic, large-sample distributions of their estimates. We have been
especially devoted to re-writing our estimates as averages of independent quantities,
so that we can use the CLT to get Gaussian asymptotics.

Up through about the 1960s, statistics was split between developing general ideas
about how to draw and evaluate inferences with stochastic models, and working out
the properties of inferential procedures in tractable special cases (especially the linear-
and-Gaussian case), or under asymptotic approximations. This yoked a very broad
and abstract theory of inference to very narrow and concrete practical formulas, an
uneasy combination often preserved in basic statistics classes.

The arrival of (comparatively) cheap and fast computers made it feasible for sci-
entists and statisticians to record lots of data and to fit models to it, so they did.
Sometimes the models were conventional ones, including the special-case assump-
tions, which often enough turned out to be detectably, and consequentially, wrong.
At other times, scientists wanted more complicated or flexible models, some of which
had been proposed long before, but now moved from being theoretical curiosities to
stuff that could run overnight3. In principle, asymptotics might handle either kind
of problem, but convergence to the limit could be unacceptably slow, especially for
more complex models.

By the 1970s, then, statistics faced the problem of quantifying the uncertainty of
inferences without using either implausibly-helpful assumptions or asymptotics; all
of the solutions turned out to demand even more computation. Here we will exam-
ine what may be the most successful solution, Bradley Efron’s proposal to combine
estimation with simulation, which he gave the less-that-clear but persistent name of
“the bootstrap” (Efron, 1979).

6.2 The Bootstrap Principle

Remember (from baby stats.) that the key to dealing with uncertainty in parameters
and functionals is the sampling distribution of estimators. Knowing what distribu-
tion we’d get for our estimates on repeating the experiment would give us things like
standard errors. Efron’s insight was that we can simulate replication. After all, we
have already fitted a model to the data, which is a guess at the mechanism which gen-
erated the data. Running that mechanism generates simulated data which, by hypoth-
esis, has the same distribution as the real data. Feeding the simulated data through

2The reason is that the non-Gaussian parts of the distribution wash away under averaging, but the
average of two Gaussians is another Gaussian.

3Kernel regression, kernel density estimation, and nearest neighbors prediction were all proposed in
the 1950s, but didn’t begin to be widely used until the 1970s, or even the 1980s.
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Figure 6.1: Schematic for model-based bootstrapping: simulated values are generated
from the fitted model, then treated like the original data, yielding a new estimate of
the functional of interest, here called q0.01.

our estimator gives us one draw from the sampling distribution; repeating this many
times yields the sampling distribution. Since we are using the model to give us its own
uncertainty, Efron called this “bootstrapping”; unlike the Baron Munchhausen’s plan
for getting himself out of a swamp by pulling himself out by his bootstraps, it works.

Figure 6.1 sketches the over-all process: fit a model to data, use the model to cal-
culate the functional, then get the sampling distribution by generating new, synthetic
data from the model and repeating the estimation on the simulation output.

To fix notation, we’ll say that the original data is x. (In general this is a whole data
frame, not a single number.) Our parameter estimate from the data is θ̂. Surrogate
data sets simulated from the fitted model will be X̃1, X̃2, . . . X̃B . The corresponding
re-estimates of the parameters on the surrogate data are θ̃1, θ̃2, . . . θ̃B . The functional
of interest is estimated by the statistic T , with sample value t̂ = T (x), and values
of the surrogates of t̃1 = T (X̃1), t̃2 = T (X̃2), . . . t̃B = T (X̃B ). (The statistic T may
be a direct function of the estimated parameters, and only indirectly a function of
x.) Everything which follows applies without modification when the functional of
interest is the parameter, or some component of the parameter.

In this section, we will assume that the model is correct for some value of θ, which
we will call θ0. The true (population or ensemble) values of the functional is likewise
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rboot <- function(B, statistic, simulator) {
tboots <- replicate(B, statistic(simulator()))
return(tboots)

}

bootstrap.se <- function(simulator, statistic, B) {
tboots <- rboot(B, statistic, simulator)
se <- sd(tboots)
return(se)

}

Code Example 10: Sketch of code for calculating bootstrap standard errors. The
function rboot generates B bootstrap samples (using the simulator function) and
calculates the statistic g on them (using statistic). simulator needs to be a func-
tion which returns a surrogate data set in a form suitable for statistic. (How would
you modify the code to pass arguments to simulator and/or statistic?) Because
every use of bootstrapping is going to need to do this, it makes sense to break it out
as a separate function, rather than writing the same code many times (with many
chances of getting it wrong). bootstrap.se just calls rboot and takes a standard
deviation.

t0.

6.2.1 Variances and Standard Errors
The simplest thing to do is to get the variance or standard error:

ÓVar
�

t̂
�

= Var
�

t̃
�

(6.1)
bse( t̂ ) = sd( t̃ ) (6.2)

That is, we approximate the variance of our estimate of t0 under the true but un-
known distribution θ0 by the variance of re-estimates t̃ on surrogate data from the
fitted model bθ. Similarly we approximate the true standard error by the standard de-
viation of the re-estimates. The logic here is that the simulated X̃ has about the same
distribution as the real X that our data, x, was drawn from, so applying the same
estimation procedure to the surrogate data gives us the sampling distribution. This
assumes, of course, that our model is right, and that θ̂ is not too far from θ0.

Pseudo-code is provided in Code Example 10.

6.2.2 Bias Correction
We can use bootstrapping to correct for a biased estimator. Since the sampling distri-
bution of t̃ is close to that of bt , and bt itself is close to t0,

E
�

bt
�

− t0 ≈ E
�

t̃
�

− bt (6.3)
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bootstrap.bias <- function(simulator, statistic, B,
t.hat) {
tboots <- rboot(B, statistic, simulator)
bias <- mean(tboots) - t.hat
return(bias)

}

Code Example 11: Sketch of code for bootstrap bias correction. Arguments are as
in Code Example 10, except that t.hat is the estimate on the original data.

The left hand side is the bias that we want to know, and the right-hand side the was
what we can calculate with the bootstrap.

Note, in fact, that Eq. 6.3 remains valid so long as the sampling distribution of
bt − t0 is close to that of t̃ − bt . This is a weaker requirement than asking for bt and t̃
themselves to have similar distributions, or asking for bt to be close to t0. In statistical
theory, a random variable whose distribution does not depend on the parameters is
called a pivot. (The metaphor is that it stays in one place while the parameters turn
around it.) A sufficient (but not necessary) condition for Eq. 6.3 to hold is that bt − t0
be a pivot, or approximately pivotal.

6.2.3 Confidence Intervals

A confidence interval is a random interval which contains the truth with high proba-
bility (the confidence level). If the confidence interval for g is C , and the confidence
level is 1−α, then we want

Pr (t0 ∈C ) = 1−α (6.4)

no matter what the true value of t0. When we calculate a confidence interval, our
inability to deal with distributions exactly means that the true confidence level, or
coverage of the interval, is not quite the desired confidence level 1− α; the closer it
is, the better the approximation, and the more accurate the confidence interval.

When we simulate, we get samples of t̃ , but what we really care about is the
distribution of t̂ . When we have enough data to start with, those two distributions
will be approximately the same. But with equal amounts of data, the distribution of
t̃ − t̂ will usually be closer to that of t̂ − t0 than the distribution of t̃ is to that of
t̂ . That is, the distribution of fluctuations around the true value usually converges
quickly. (Think of the central limit theorem.) We can use this to turn information
about the distribution of t̃ into accurate confidence intervals for t0, essentially by
re-centering t̃ around t̂ .

11:36 Saturday 22nd November, 2014



6.2. THE BOOTSTRAP PRINCIPLE 136

bootstrap.ci.basic <- function(simulator, statistic, B,
t.hat, alpha) {
tboots <- rboot(B,statistic, simulator)
ci.lower <- 2*t.hat - quantile(tboots,1-alpha/2)
ci.upper <- 2*t.hat - quantile(tboots,alpha/2)
return(list(ci.lower=ci.lower,ci.upper=ci.upper))

}

Code Example 12: Sketch of code for calculating the basic bootstrap confidence
interval. See Code Examples 11 and 10.

Specifically, let qα/2 and q1−α/2 be the α/2 and 1−α/2 quantiles of t̃ . Then

1−α = Pr
�

qα/2 ≤ T̃ ≤ q1−α/2

�

(6.5)

= Pr
�

qα/2− T̂ ≤ T̃ − T̂ ≤ q1−α/2− T̂
�

(6.6)

≈ Pr
�

qα/2− T̂ ≤ T̂ − t0 ≤ q1−α/2− T̂
�

(6.7)

= Pr
�

qα/2− 2T̂ ≤−t0 ≤ q1−α/2− 2T̂
�

(6.8)

= Pr
�

2T̂ − q1−α/2 ≤ t0 ≤ 2T̂ − qα/2
�

(6.9)

The interval C = [2T̂ − qα/2, 2T̂ − q1−α/2] is random, because T̂ is a random quan-
tity, so it makes sense to talk about the probability that it contains the true value
t0. Also, notice that the upper and lower quantiles of T̃ have, as it were, swapped
roles in determining the upper and lower confidence limits. Finally, notice that we
do not actually know those quantiles exactly, but they’re what we approximate by
bootstrapping.

This is the basic bootstrap confidence interval, or the pivotal CI. It is simple
and reasonably accurate, and makes a very good default choice for finding confidence
intervals.

6.2.3.1 Other Bootstrap Confidence Intervals

The basic bootstrap CI relies on the distribution of t̃ − t̂ being approximately the
same as that of t̂ − t0. Even when this is false, however, it can be that the distribution
of

τ =
t̂ − t0

bse( t̂ )
(6.10)

is close to that of

τ̃ =
t̃ − t̂

se( t̃ )
(6.11)

This is like what we calculate in a t -test, and since the t -test was invented by “Stu-
dent”, these are called studentized quantities. If τ and τ̃ have the same distribution,
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then we can reason as above and get a confidence interval
�

t̂ − bse( t̂ )Qτ̃(1−α/2), t̂ − bse( t̂ )Qτ̃(α/2)
�

(6.12)

This is the same as the basic interval when bse( t̂ ) = se( t̃ ), but different otherwise. To
find se( t̃ ), we need to actually do a second level of bootstrapping, as follows.

1. Fit the model with θ̂, find t̂ .

2. For i ∈ 1 : B1

(a) Generate X̃i from θ̂

(b) Estimate θ̃i , t̃i

(c) For j ∈ 1 : B2

i. Generate X †
i j from θ̃i

ii. Calculate t †
i j

(d) Set σ̃i = standard deviation of the t †
i j

(e) Set τ̃i j =
t †
i j− t̃i

σ̃i
for all j

3. Set bse( t̂ ) = standard deviation of the t̃i

4. Find the α/2 and 1−α/2 quantiles of the distribution of the τ̃

5. Plug into Eq. 6.12.

The advantage of the studentized intervals is that they are more accurate than the
basic ones; the disadvantage is that they are more work! At the other extreme, the
percentile method simply sets the confidence interval to

�

Q t̃ (α/2),Q t̃ (1−α/2)
�

(6.13)

This is definitely easier to calculate, but not as accurate as the basic, pivotal CI.
All of these methods have many variations, described in the monographs referred

to at the end of this chapter.

6.2.4 Hypothesis Testing
For hypothesis tests, we may want to calculate two sets of sampling distributions: the
distribution of the test statistic under the null tells us about the size of the test and
significance levels, and the distribution under the alternative tells about power and
realized power. We can find either with bootstrapping, by simulating from either
the null or the alternative. In such cases, the statistic of interest, which I’ve been
calling T , is the test statistic. Code Example 13 illustrates how to find a p-value by
simulating under the null hypothesis. The same procedure would work to calculate
power, only we’d need to simulate from the alternative hypothesis, and testhat
would be set to the critical value of T separating acceptance from rejection, not the
observed value.
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boot.pvalue <- function(test,simulator,B,testhat) {
testboot <- rboot(B=B, statistic=test, simulator=simulator)
p <- (sum(test >= testhat)+1)/(B+1)
return(p)

}

Code Example 13: Bootstrap p-value calculation. testhat should be the value of
the test statistic on the actual data. test is a function which takes in a data set and
calculates the test statistic, under the presumption that large values indicate departure
from the null hypothesis. Note the +1 in the numerator and denominator of the p-
value — it would be more straightforward to leave them off, but this is a little more
stable when B is comparatively small. (Also, it keeps us from ever reporting a p-value
of exactly 0.)

6.2.4.1 Double bootstrap hypothesis testing

When the hypothesis we are testing involves estimated parameters, we may need to
correct for this. Suppose, for instance, that we are doing a goodness-of-fit test. If we
estimate our parameters on the data set, we adjust our distribution so that it matches
the data. It is thus not surprising if it seems to fit the data well! (Essentially, it’s the
problem of evaluating performance by looking at in-sample fit, which is more or less
where we began the course.)

Some test statistics have distributions which are not affected by estimating pa-
rameters, at least not asymptotically. In other cases, one can analytically come up
with correction terms. When these routes are blocked, one uses a double bootstrap,
where a second level of bootstrapping checks how much estimation improves the ap-
parent fit of the model. This is perhaps most easily explained in pseudo-code (Code
Example 14).

6.2.5 Parametric Bootstrapping Example: Pareto’s Law of Wealth
Inequality

The Pareto distribution4, or power-law distribution, is a popular model for data with
“heavy tails”, i.e. where the probability density f (x) goes to zero only very slowly as
x→∞. The probability density is

f (x) =
θ− 1

x0

�

x

x0

�−θ

(6.14)

where x0 is the minimum scale of the distribution, and θ is the scaling exponent.
(EXERCISE: show that x0 is the mode of the distribution.) The Pareto is highly right-
skewed, with the mean being much larger than the median.

4Named after Vilfredo Pareto, the highly influential late-19th/early-20th century economist, political
scientist, and proto-Fascist.
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doubleboot.pvalue <- function(test,simulator,B1,B2,
estimator, thetahat, testhat) {
for (i in 1:B1) {
xboot <- simulator(theta=thetahat, ...)
thetaboot <- estimator(xboot)
testboot[i] <- test(xboot)
pboot[i] <- boot.pvalue(test,simulator,B2,

testhat=testboot[i],theta=thetaboot)
}
p <- (sum(testboot >= testhat)+1)/(B1+1)
p.adj <- (sum(pboot <= p)+1)/(B1+1)

}

Code Example 14: Code sketch for “double bootstrap” significance testing. The
inner or second bootstrap is used to calculate the distribution of nominal bootstrap
p-values. For this to work, we need to draw our second-level bootstrap samples from
θ̃, the bootstrap re-estimate, not from θ̂, the data estimate. The code presumes the
simulator function takes a theta argument allowing this.

If we know x0, one can show that the maximum likelihood estimator of the ex-
ponent θ is

θ̂= 1+
n

∑n
i=1 log xi

x0

(6.15)

and that this is consistent5, and efficient. Picking x0 is a harder problem (see Clauset
et al. 2009) — for the present purposes, pretend that the Oracle tells us. The file
pareto.R, on the class website, contains a number of functions related to the Pareto
distribution, including a function pareto.fit for estimating it. (There’s an example
of its use below.)

Pareto came up with this density when he attempted to model the distribution
of wealth. Approximately, but quite robustly across countries and time-periods, the
upper tail of the distribution of income and wealth follows a power law, with the
exponent varying as money is more or less concentrated among the very richest6.
Figure 6.2 shows the distribution of net worth for the 400 richest Americans in 2003.
Taking x0 = 9× 108 (again, see Clauset et al. 2009), the number of individuals in the
tail is 302, and the estimated exponent is θ̂= 2.34.

> source("pareto.R")
> wealth <- scan("wealth.dat")
> wealth.pareto <- pareto.fit(wealth,threshold=9e8)
> signif(wealth.pareto$exponent,3)
[1] 2.34

5Because the sample mean of logX converges, under the law of large numbers
6Most of the distribution conforms to a log-normal, at least roughly.
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plot.survival.loglog(wealth,xlab="Net worth (dollars)",
ylab="Fraction of individuals at or above that net worth")

rug(wealth,side=1,col="grey")
curve((302/400)*ppareto(x,threshold=9e8,exponent=2.34,lower.tail=FALSE),

add=TRUE,lty=2,from=9e8,to=2*max(wealth))

Figure 6.2: Upper cumulative distribution function (or “survival function”) of net
worth for the 400 richest individuals in the US (2000 data). The solid line shows
the fraction of the 400 individuals whose net worth W equaled or exceeded a given
value w, Pr (W ≥ w). (Note the logarithmic scale for both axes.) The dashed line
is a maximum-likelihood estimate of the Pareto distribution, taking x0 = $9× 108.
(This threshold was picked using the method of Clauset et al. 2009.) Since there are
302 individuals at or above the threshold, the cumulative distribution function of the
Pareto has to be reduced by a factor of (302/400).
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rboot.pareto <- function(B,exponent,x0,n) {
replicate(B,pareto.fit(rpareto(n,x0,exponent),x0)$exponent)

}

pareto.se <- function(B,exponent,x0,n) {
return(sd(rboot.pareto(B,exponent,x0,n)))

}

pareto.bias <- function(B,exponent,x0,n) {
return(mean(rboot.pareto(B,exponent,x0,n)) - exponent)

}

Code Example 15: Standard error and bias calculation for the Pareto distribution,
using parametric bootstrapping.

How much uncertainty is there in this estimate of the exponent? Naturally, we’ll
bootstrap. We need a function to generate Pareto-distributed random variables; this,
along with some related functions, is part of the file pareto.R on the course website.
With that tool, parametric bootstrapping proceeds as in Code Example 15.

With θ̂ = 2.34, x0 = 9× 108, n = 302 and B = 104, this gives a standard error of
±0.077. This matches some asymptotic theory reasonably well7, but didn’t require
asymptotic assumptions.

Asymptotically, the bias is known to go to zero; at this size, bootstrapping gives
a bias of 3× 10−3, which is effectively negligible.

We can also get the confidence interval (Code Example 16). Using, again, 104

bootstrap replications, the 95% CI is (2.16,2.47). In theory, the confidence interval
could be calculated exactly, but it involves the inverse gamma distribution (Arnold,
1983), and it is quite literally faster to write and do the bootstrap than go to look it
up.

A more challenging problem is goodness-of-fit; we’ll use the Kolmogorov-Smirnov
statistic.8 Code Example 17 calculates the p-value. With ten thousand bootstrap
replications,

> ks.pvalue.pareto(1e4,wealth,2.34,9e8)

7“In Asympotpia”, the variance of the MLE should be (θ̂−1)2

n , in this case 0.076. The intuition is
that this variance depends on how sharp the maximum of the likelihood function is — if it’s sharply
peaked, we can find the maximum very precisely, but a broad maximum is hard to pin down. Variance
is thus inversely proportional to the second derivative of the negative log-likelihood. (The minus sign is
because the second derivative has to be negative at a maximum, while variance has to be positive.) For one
sample, the expected second derivative of the negative log-likelihood is (θ−1)−2. (This is called the Fisher
information of the model.) Log-likelihood adds across independent samples, giving us an over-all factor
of n. In the large-sample limit, the actual log-likelihood will converge on the expected log-likelihood, so
this gives us the asymptotic variance.

8The pareto.R file contains a function, pareto.tail.ks.test, which does a goodness-of-fit test for
fitting a power-law to the tail of the distribution. That differs somewhat from what follows, because it
takes into account the extra uncertainty which comes from having to estimate x0. Here, I am pretending
that an Oracle told us x0 = 9× 108.
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pareto.ci <- function(B,exponent,x0,n,alpha) {
tboot <- rboot.pareto(B,exponent,x0,n)
ci.lower <- 2*exponent - quantile(tboot,1-alpha/2)
ci.upper <- 2*exponent - quantile(tboot,alpha/2)
return(list(ci.lower=ci.lower, ci.upper=ci.upper))

}

Code Example 16: Parametric bootstrap confidence interval for the Pareto scaling
exponent.

[1] 0.0119988

Ten thousand replicates is enough that we should be able to accurately estimate
probabilities of around 0.01 (since the binomial standard error will be

Æ

0.01
0.99 104 ≈

9.9× 10−4; if it weren’t, we might want to increase B .
Simply plugging in to the standard formulas, and thereby ignoring the effects of

estimating the scaling exponent, gives a p-value of 0.16, which is not outstanding but
not awful either. Properly accounting for the flexibility of the model, however, the
discrepancy between what it predicts and what the data shows is so large that it would
take an awfully big (one-a-hundred) coincidence to produce it.

We have, therefore, detected that the Pareto distribution makes systematic errors
for this data, but we don’t know much about what they are. In Chapter 17, we’ll
look at techniques which can begin to tell us something about how it fails.

6.3 Non-parametric Bootstrapping

The bootstrap approximates the sampling distribution, with three sources of approx-
imation error. First, simulation error: using finitely many replications to stand for
the full sampling distribution. Clever simulation design can shrink this, but brute
force — just using enough replicates — can also make it arbitrarily small. Second, sta-
tistical error: the sampling distribution of the bootstrap re-estimates under our esti-
mated model is not exactly the same as the sampling distribution of estimates under
the true data-generating process. The sampling distribution changes with the param-
eters, and our initial estimate is not completely accurate. But it often turns out that
distribution of estimates around the truth is more nearly invariant than the distribu-
tion of estimates themselves, so subtracting the initial estimate from the bootstrapped
values helps reduce the statistical error; there are many subtler tricks to the same end.
Third, specification error: the data source doesn’t exactly follow our model at all.
Simulating the model then never quite matches the actual sampling distribution.

Efron had a second brilliant idea, which is to address specification error by re-
placing simulation from the model with re-sampling from the data. After all, our
initial collection of data gives us a lot of information about the relative probabili-
ties of different values. In a sense the empirical distribution is the least prejudiced
estimate possible of the underlying distribution — anything else imposes biases or
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ks.stat.pareto <- function(data, exponent, x0) {
data <- data[data>=x0]
ks <- ks.test(data, ppareto, exponent=exponent,
threshold=x0)

return(ks$statistic)
}

ks.pvalue.pareto <- function(B, data, exponent, x0) {
testhat <- ks.stat.pareto(data, exponent, x0)
testboot <- vector(length=B)
for (i in 1:B) {
xboot <- rpareto(length(data),exponent=exponent,
threshold=x0)
exp.boot <- pareto.fit(xboot,threshold=x0)$exponent
testboot[i] <- ks.stat.pareto(xboot,exp.boot,x0)

}
p <- (sum(testboot >= testhat)+1)/(B+1)
return(p)

}

Code Example 17: Calculating a p-value for the Pareto distribution, using the
Kolmogorov-Smirnov test and adjusting for the way estimating the scaling exponent
moves the fitted distribution closer to the data.

pre-conceptions, possibly accurate but also potentially misleading9. Lots of quanti-
ties can be estimated directly from the empirical distribution, without the mediation
of a parametric model. Efron’s non-parametric bootstrap treats the original data set
as a complete population and draws a new, simulated sample from it, picking each
observation with equal probability (allowing repeated values) and then re-running
the estimation (Figure 6.3). In fact, this is usually what people mean when they talk
about “the bootstrap” without any modifier.

Everything we did with parametric bootstrapping can also be done with non-
parametric bootstrapping — the only thing that’s changing is the distribution the
surrogate data is coming from.

The non-parametric bootstrap should remind you of k-fold cross-validation. The
analog of leave-one-out CV is a procedure called the jack-knife, where we repeat the
estimate n times on n − 1 of the data points, holding each one out in turn. It’s
historically important (it dates back to the 1940s), but generally doesn’t work as well
as the non-parametric bootstrap.

An important variant is the smoothed bootstrap, where we re-sample the data
points and then perturb each by a small amount of noise, generally Gaussian10.

Code Example 18 shows how to use re-sampling to get a 95% confidence interval

9See §16.6 in Chapter 16.
10We will see in Chapter 16 that this corresponds to sampling from a kernel density estimate
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Figure 6.3: Schematic for non-parametric bootstrapping. New data is simulated by
re-sampling from the original data (with replacement), and parameters are calculated
either directly from the empirical distribution, or by applying a model to this surro-
gate data.
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resample <- function(x) {
sample(x,size=length(x),replace=TRUE)

}

resamp.pareto <- function(B,data,x0) {
replicate(B,
pareto.fit(resample(data),threshold=x0)$exponent)

}

resamp.pareto.CI <- function(B,data,alpha,x0) {
thetahat <- pareto.fit(data,threshold=x0)$exponent
thetaboot <- resamp.pareto(B,data,x0)
ci.lower <- 2*thetahat - quantile(thetaboot,1-alpha/2)
ci.upper <- 2*thetahat - quantile(thetaboot,alpha/2)
return(list(ci.lower=ci.lower,ci.upper=ci.upper))

}

Code Example 18: Non-parametric bootstrap confidence intervals for the Pareto
scaling exponent.

for the Pareto exponent11. With B = 104, it gives the 95% confidence interval for the
scaling exponent as (2.18,2.48). The fact that this is very close to the interval we got
from parametric bootstrapping should actually reassure us about its validity.

6.3.1 Parametric vs. Nonparametric Bootstrapping

When we have a properly specified model, simulating from the model gives more
accurate results (at the same n) than does re-sampling the empirical distribution —
parametric estimates of the distribution converge faster than the empirical distribu-
tion does. If on the other hand the parametric model is mis-specified, then it is rapidly
converging to the wrong distribution. This is of course just another bias-variance
trade-off, like those we’ve seen in regression.

Since I am suspicious of most parametric modeling assumptions, I prefer re-sampling,
when I can figure out how to do it, or at least until I have convinced myself that a
parametric model is good approximation to reality.

6.4 Bootstrapping Regression Models
With a regression model, which is fit to a set of input-output pairs, (x1, y1), (x2, y2), . . . (xn , yn),
resulting in a regression curve (or surface) r̂ (x), fitted values ŷi = r̂ (xi ), and residuals,

11Even if the Pareto model is wrong, the estimator of the exponent will converge on the value which
gives, in a certain sense, the best approximation to the true distribution from among all power laws.
Econometricians call such parameter values thepseudo-true; we are getting a confidence interval for the
pseudo-truth. In this case, the pseudo-true scaling exponent can still be a useful way of summarizing how
heavy tailed the income distribution is, despite the fact that the power law makes systematic errors.
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εi = yi − ŷi = r̂ (xi ), we have a choice of several ways of bootstrapping, in decreasing
order of relying on the model.

• Simulate new X values from the model’s distribution of X , and then draw Y
from the specified conditional distribution Y |X .

• Hold the x fixed, but draw Y |X from the specified distribution.

• Hold the x fixed, but make Y equal to r̂ (x) plus a randomly re-sampled ε j .

• Re-sample (x, y) pairs.

The first case is pure parametric bootstrapping. (So is the second, sometimes, when
the regression model is agnostic about X .) The last case is just re-sampling from the
joint distribution of (X ,Y ). The next-to-last case is called re-sampling the residuals
or re-sampling the errors. When we do that, we rely on the regression model to
get the conditional expectation function right, but we don’t count on it getting the
distribution of the noise around the expectations.

The specific procedure of re-sampling the residuals is to re-sample the εi , with
replacement, to get ε̃1, ε̃2, . . . ε̃n , and then set x̃i = xi , ỹi = r̂ (x̃i ) + ε̃i . This surrogate
data set is then re-analyzed like new data.

6.4.1 Re-sampling Points: Parametric Example
[[ TODO: cross-references to
the geyser stuff in chapters
on simulation and on het-
eroskedasticity ]]

A classic data set contains the time between 299 eruptions of the Old Faithful geyser
in Yellowstone, and the length of the subsequent eruptions; these variables are called
waiting and duration. We’ll look at the linear regression of waiting on duration.
We’ll re-sample (duration, waiting) pairs, and would like confidence intervals for
the regression coefficients. This is a confidence interval for the coefficients of best
liner predictor, a functional of the distribution, which, as we saw in Chapters 1 and
2, exists no matter how nonlinear the process really is. It’s only a confidence interval
for the true regression parameters if the real regression function is linear.

Before anything else, look at the model:

library(MASS)
data(geyser)
geyser.lm <- lm(waiting~duration,data=geyser)
summary(geyser.lm)

The first step in bootstrapping this is to build our simulator, which just means sam-
pling rows from the data frame:

resample.geyser <- function() {
sample.rows <- resample(1:nrow(geyser))
return(sample.rows)

}

11:36 Saturday 22nd November, 2014



147 6.4. BOOTSTRAPPING REGRESSION MODELS

geyser.lm.cis <- function(B,alpha) {
tboot <- replicate(B,
est.waiting.on.duration(resample.geyser()))

low.quantiles <- apply(tboot,1,quantile,probs=alpha/2)
high.quantiles <- apply(tboot,1,quantile,probs=1-alpha/2)
low.cis <- 2*coefficients(geyser.lm) - high.quantiles
high.cis <- 2*coefficients(geyser.lm) - low.quantiles
cis <- rbind(low.cis,high.cis)
rownames(cis) <- as.character(c(alpha/2,1-alpha/2))
return(cis)

}

Code Example 19: Bootstrapped confidence intervals for the linear model of Old
Faithful, based on re-sampling data points. Relies on functions defined in the text.

We can check this by running summary(geyser[resample.geyser(),], and seeing
that it gives about the same quartiles and mean for both variables as summary(geyser)12.

Next, we define the estimator:

est.waiting.on.duration <- function(subset,data=geyser) {
fit <- lm(waiting ~ duration, data=data,subset=subset)
return(coefficients(fit))

}

This exploits the fact that lm(), like many model-estimation functions, can take as an
optional argument a vector of row numbers (subset), and look only at those rows of
the data. We can check that this function works by seeing that est.waiting.on.duration(1:nrow(geyser))
gives the same results as coefficients(geyser.lm).

Putting the pieces together according to the basic confidence interval recipe (Code
Example 19), we get

> signif(geyser.lm.cis(B=1e4,alpha=0.05),3)
(Intercept) duration

0.025 96.5 -8.70
0.975 102.0 -6.92

Notice that we do not have to assume homoskedastic Gaussian noise — fortunately,
because that’s a very bad assumption here13.

12The minimum and maximum won’t match up well — why not?
13We have calculated 95% confidence intervals for the intercept β0 and the slope β1 separately. These

intervals cover their coefficients all but 5% of the time. Taken together, they give us a rectangle in (β0,β1)
space, but the coverage probability of this rectangle could be anywhere from 95% all the way down to 90%.
To get a confidence region which simultaneously covers both coefficients 95% of the time, we have two big
options. One is to stick to a box-shaped region and just increase the confidence level on each coordinate (to
97.5%). The other is to define some suitable metric of how far apart coefficient vectors are (e.g., ordinary
Euclidean distance), find the 95% percentile of the distribution of this metric, and trace the appropriate
contour around β̂0, β̂1.
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6.4.2 Re-sampling Points: Non-parametric Example
Nothing in the logic of re-sampling data points for regression requires us to use a para-
metric model. Here we’ll provide 95% confidence bounds for the kernel smoothing
of the geyser data. Since the functional is a whole curve, the confidence set is often
called a confidence band.

We use the same simulator, but start with a different regression curve, and need a
different estimator.

library(np)
npr.waiting.on.duration <- function(subset,data=geyser,tol=0.1,ftol=0.1) {

bw <- npregbw(waiting ~ duration, data=data, subset=subset,
tol=tol, ftol=ftol)

fit <- npreg(bw)
return(fit)

}
geyser.npr <- npr.waiting.on.duration(1:nrow(geyser))

Now we construct pointwise 95% confidence bands for the regression curve. For
this end, we don’t really need to keep around the whole kernel regression object
— we’ll just use its predicted values on a uniform grid of points, extending slightly
beyond the range of the data (Code Example 20). Observe that this will go through
bandwidth selection again for each bootstrap sample. This is slow, but it is the most
secure way of getting good confidence bands. Applying the bandwidth we found
on the data to each re-sample would be faster, but would introduce an extra level of
approximation, since we wouldn’t be treating each simulation run the same as the
original data.

Figure 6.4 shows the curve fit to the data, the 95% confidence limits, and (faintly)
all of the bootstrapped curves. Doing the 800 bootstrap replicates took 4 minutes on
my laptop14.

14Specifically, I ran system.time(geyser.npr.cis <- npr.cis(B=800,alpha=0.05)), which not
only did the calculations and stored them in geyser.npr.cis, but told me how much time it took R to
do them.
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evaluation.points <- seq(from=0.8,to=5.5,length.out=200)
evaluation.points <- data.frame(duration=evaluation.points)

eval.npr <- function(npr) {
return(predict(npr,newdata=evaluation.points))

}

main.curve <- eval.npr(geyser.npr)

npr.cis <- function(B,alpha) {
tboot <- replicate(B,
eval.npr(npr.waiting.on.duration(resample.geyser())))

low.quantiles <- apply(tboot,1,quantile,probs=alpha/2)
high.quantiles <- apply(tboot,1,quantile,probs=1-alpha/2)
low.cis <- 2*main.curve - high.quantiles
high.cis <- 2*main.curve - low.quantiles
cis <- rbind(low.cis,high.cis)
return(list(cis=cis,tboot=t(tboot)))

}

Code Example 20: Finding confidence bands around the kernel regression model of
Old Faithful by re-sampling data points. Notice that much of npr.cis is the same
as geyser.lm.cis, and the other functions for calculating confidence intervals. It
would be better programming practice to extract the common find-the-confidence-
limits part as a separate function, which could be called as needed. (Taking the trans-
pose of the tboot matrix at the end is just so that it has the same orientation as the
matrix of confidence limits.)
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geyser.npr.cis <- npr.cis(B=800,alpha=0.05)
plot(0,type="n",xlim=c(0.8,5.5),ylim=c(0,100),

xlab="Duration (min)", ylab="Waiting (min)")
for (i in 1:800) {

lines(evaluation.points$duration,geyser.npr.cis$tboot[i,],
lwd=0.1,col="grey")

}
lines(evaluation.points$duration,geyser.npr.cis$cis[1,])
lines(evaluation.points$duration,geyser.npr.cis$cis[2,])
lines(evaluation.points$duration,main.curve)
rug(geyser$duration,side=1)
points(geyser$duration,geyser$waiting)

Figure 6.4: Kernel regression curve for Old Faithful (central black line), with 95%
confidence bands (other black lines), the 800 bootstrapped curves (thin, grey lines),
and the data points. Notice that the confidence bands get wider where there is less
data. Caution: doing the bootstrap took 4 minutes to run on my computer.
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6.4.3 Re-sampling Residuals: Example
As an example of re-sampling the residuals, rather than data points, let’s take a linear
regression, from the homework using the Penn World Tables, of gdp.growth on
log(gdp), pop.growth, invest and trade:

penn <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/02/penn-select.csv")
penn.formula <- "gdp.growth ~ log(gdp) + pop.growth + invest + trade"
penn.lm <- lm(penn.formula, data=penn)

(Why make the formula a separate object here?) The estimated parameters are

> signif(coefficients(penn.lm),3)
(Intercept) log(gdp) pop.growth invest trade

5.71e-04 5.07e-04 -1.87e-01 7.15e-04 3.11e-05

Code Example 21 shows the new simulator for this set-up (resample.residuals.penn)15,
the new estimation function (penn.estimator)16, and the confidence interval calcu-
lation (penn.lm.cis).

Which delivers our confidence intervals:

> signif(penn.lm.cis(1e4,0.05),3)
(Intercept) log(gdp) pop.growth invest trade

low.cis -0.0153 -0.00151 -0.358 0.000499 -2.00e-05
high.cis 0.0175 0.00240 -0.021 0.000937 8.19e-05

Doing ten thousand linear regressions took 45 seconds on my computer, as op-
posed to 4 minutes for eight hundred kernel regressions.

15How would you check that this was working right?
16How would you check that this was working right?
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resample.residuals.penn <- function() {
new.frame <- penn
new.growths <- fitted(penn.lm) +

resample(residuals(penn.lm))
new.frame$gdp.growth <- new.growths
return(new.frame)

}

penn.estimator <- function(data) {
fit <- lm(penn.formula, data=data)
return(coefficients(fit))

}

penn.lm.cis <- function(B,alpha) {
tboot <- replicate(B,

penn.estimator(resample.residuals.penn()))
low.quantiles <- apply(tboot,1,quantile,probs=alpha/2)
high.quantiles <- apply(tboot,1,quantile,probs=1-alpha/2)
low.cis <- 2*coefficients(penn.lm) - high.quantiles
high.cis <- 2*coefficients(penn.lm) - low.quantiles
cis <- rbind(low.cis,high.cis)
return(cis)

}

Code Example 21: Re-sampling the residuals to get confidence intervals in a linear
model.
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6.5 Bootstrap with Dependent Data

If the data point we are looking are vectors (or more complicated structures) with de-
pendence between components, but each data point is independently generated from
the same distribution, then dependence isn’t really an issue. We re-sample vectors,
or generate vectors from our model, and proceed as usual. In fact, that’s what we’ve
done so far in several cases.

If there is dependence across data points, things are more tricky. If our model
incorporates this dependence, then we can just simulate whole data sets from it. An
appropriate re-sampling method is trickier — just re-sampling individual data points
destroys the dependence, so it won’t do. We will revisit this question when we look
at time series and spatial data in Chapters 27–29.

6.6 Things Bootstrapping Does Poorly

The principle behind bootstrapping is that sampling distributions under the true pro-
cess should be close to sampling distributions under good estimates of the truth. If
small perturbations to the data-generating process produce huge swings in the sam-
pling distribution, bootstrapping will not work well, and may fail spectacularly. For
parametric bootstrapping, this means that small changes to the underlying parame-
ters must produced small changes to the functionals of interest. Similarly, for non-
parametric bootstrapping, it means that adding or removing a few data points must
change the functionals only a little17.

Re-sampling in particular has trouble with extreme values. Here is a simple ex-
ample: Our data points Xi are IID, with Xi ∼ U ni f (0,θ0), and we want to estimate
θ0. The maximum likelihood estimate θ̂ is just the sample maximum of the xi . We’ll
use the non-parametric bootstrap to get a confidence interval for this, as above — but
I will fix the true θ0 = 1, and see how often the 95% confidence interval covers the
truth.

x <- runif(100)
is.covered <- function() {
max.boot <- replicate(1e3,max(resample(x)))
all(1 >= 2*max(x) - quantile(max.boot,0.975),

1 <= 2*max(x) - quantile(max.boot,0.025))
}
sum(replicate(1000,is.covered()))

When I run the last line, I get 19, so the true coverage probability is not 95% but
1.9%.

If you suspect that your use of the bootstrap may be setting yourself up for a
similar epic fail, your two options are (1) learn some of the theory of the bootstrap

17More generally, moving from one distribution function f to another (1− ε) f + εg mustn’t change
the functional very much when ε is small, no matter in what “direction” g we perturb it. Making this idea
precise calls for some fairly deep mathematics, about differential calculus on spaces of functions.
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from the references in the “Further Reading” section below, or (2) set up a simulation
experiment like this one.

6.7 Further Reading
The original paper on the bootstrap, Efron (1979), is extremely clear, and for the
most part presented in the simplest possible terms; it’s worth reading. His later small
book (Efron, 1982), while often cited, is not in my opinion so useful nowadays18.
Davison and Hinkley (1997) is both a good textbook, and the reference I consult
most often; the CRAN package boot is based on the code written for this book.
Efron and Tibshirani (1993), while also very good, is more theoretical. Canty et al.
(2006) has useful advice for serious applications.

6.8 Exercises
1. Derive the maximum likelihood estimator for the Pareto distribution (Eq. 6.15)

from the density (Eq. 6.14).

2. Find confidence bands for the linear regression model of using

(a) The usual Gaussian assumptions (hint: try the intervals="confidence"
option to predict)

(b) Resampling of residuals

(c) Resampling of cases

18It seems to have done a good job of explaining things to people who were already professional statis-
ticians in 1982.
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Chapter 7

Moving Beyond Conditional
Expectations: Weighted Least
Squares, Heteroskedasticity,
Local Polynomial Regression

[[TODO: Add stuff about
simulating from heteroskedas-
tic Old Faithful model]]

So far, all our estimates have been based on the mean squared error, giving equal im-
portance to all observations. This is appropriate for looking at conditional expecta-
tions. In this chapter, we’ll start to work with giving more or less weight to different
observations. On the one hand, this will let us deal with other aspects of the distri-
bution beyond the conditional expectation, especially the conditional variance. First
we look at weighted least squares, and the effects that ignoring heteroskedasticity can
have. This leads naturally to trying to estimate variance functions, on the one hand,
and generalizing kernel regression to local polynomial regression, on the other.

7.1 Weighted Least Squares
When we use ordinary least squares to estimate linear regression, we (naturally) min-
imize the mean squared error:

M SE(β) =
1

n

n
∑

i=1

(yi −~xi ·β)
2 (7.1)

The solution is of course
bβOLS = (x

T x)−1xT y (7.2)

We could instead minimize the weighted mean squared error,

W M SE(β, ~w) =
1

n

n
∑

i=1

wi (yi −~xi ·β)
2 (7.3)
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This includes ordinary least squares as the special case where all the weights wi = 1.
We can solve it by the same kind of linear algebra we used to solve the ordinary linear
least squares problem. If we write w for the matrix with the wi on the diagonal and
zeroes everywhere else, the solution is

bβW LS = (x
T wx)−1xT wy (7.4)

But why would we want to minimize Eq. 7.3?

1. Focusing accuracy. We may care very strongly about predicting the response
for certain values of the input — ones we expect to see often again, ones where
mistakes are especially costly or embarrassing or painful, etc. — than others.
If we give the points ~xi near that region big weights wi , and points elsewhere
smaller weights, the regression will be pulled towards matching the data in that
region.

2. Discounting imprecision. Ordinary least squares is the maximum likelihood
estimate when the ε in Y = ~X ·β+ ε is IID Gaussian white noise. This means
that the variance of ε has to be constant, and we measure the regression curve
with the same precision elsewhere. This situation, of constant noise variance,
is called homoskedasticity. Often however the magnitude of the noise is not
constant, and the data are heteroskedastic.

When we have heteroskedasticity, even if each noise term is still Gaussian, or-
dinary least squares is no longer the maximum likelihood estimate, and so no
longer efficient. If however we know the noise variance σ2

i at each measure-
ment i , and set wi = 1/σ2

i , we get the heteroskedastic MLE, and recover effi-
ciency. (See below.)

To say the same thing slightly differently, there’s just no way that we can es-
timate the regression function as accurately where the noise is large as we can
where the noise is small. Trying to give equal attention to all parts of the input
space is a waste of time; we should be more concerned about fitting well where
the noise is small, and expect to fit poorly where the noise is big.

3. Doing something else. There are a number of other optimization problems
which can be transformed into, or approximated by, weighted least squares.
The most important of these arises from generalized linear models, where the
mean response is some nonlinear function of a linear predictor; we will look at
them in Chapters 12 and 13.

In the first case, we decide on the weights to reflect our priorities. In the third
case, the weights come from the optimization problem we’d really rather be solving.
What about the second case, of heteroskedasticity?

7.2 Heteroskedasticity
Suppose the noise variance is itself variable. For example, the figure shows a simple
linear relationship between the input X and the response Y , but also a nonlinear
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Figure 7.1: Black line: Linear response function (y = 3− 2x). Grey curve: standard
deviation as a function of x (σ(x) = 1+ x2/2).

relationship between X and Var[Y ].
In this particular case, the ordinary least squares estimate of the regression line

is 2.56− 1.65x, with R reporting standard errors in the coefficients of ±0.52 and
0.20, respectively. Those are however calculated under the assumption that the noise
is homoskedastic, which it isn’t. And in fact we can see, pretty much, that there is
heteroskedasticity — if looking at the scatter-plot didn’t convince us, we could always
plot the residuals against x, which we should do anyway.

To see whether that makes a difference, let’s re-do this many times with different
draws from the same model (Example 22).

Running ols.heterosked.error.stats(100) produces 104 random samples
which all have the same x values as the first one, but different values of y, gener-
ated however from the same model. It then uses those samples to get the standard
error of the ordinary least squares estimates. (Bias remains a non-issue.) What we
find is the standard error of the intercept is only a little inflated (simulation value of
0.64 versus official value of 0.52), but the standard error of the slope is much larger
than what R reports, 0.46 versus 0.20. Since the intercept is fixed by the need to make
the regression line go through the center of the data, the real issue here is that our
estimate of the slope is much less precise than ordinary least squares makes it out
to be. Our estimate is still consistent, but not as good as it was when things were
homoskedastic. Can we get back some of that efficiency?

7.2.1 Weighted Least Squares as a Solution to Heteroskedasticity

Suppose we visit the Oracle of Regression (Figure 7.4), who tells us that the noise
has a standard deviation that goes as 1+ x2/2. We can then use this to improve our
regression, by solving the weighted least squares problem rather than ordinary least
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x = rnorm(100,0,3)
y = 3-2*x + rnorm(100,0,sapply(x,function(x){1+0.5*x^2}))
plot(x,y)
abline(a=3,b=-2,col="grey")
fit.ols = lm(y~x)
abline(fit.ols,lty=2)

Figure 7.2: Scatter-plot of n = 100 data points from the above model. (Here
X ∼ N (0,9).) Grey line: True regression line. Dashed line: ordinary least squares
regression line.

ols.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.ols = lm(y~x)
# Return the errors
return(fit.ols$coefficients - c(3,-2))

}

ols.heterosked.error.stats = function(n,m=10000) {
ols.errors.raw = t(replicate(m,ols.heterosked.example(n)))
# transpose gives us a matrix with named columns
intercept.sd = sd(ols.errors.raw[,"(Intercept)"])
slope.sd = sd(ols.errors.raw[,"x"])
return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Code Example 22: Functions to generate heteroskedastic data and fit OLS regression
to it, and to collect error statistics on the results.

11:36 Saturday 22nd November, 2014



159 7.2. HETEROSKEDASTICITY

-5 0 5

-2
0

0
20

40
60

80

x

re
si
du
al
s(
fit
.o
ls
)

-5 0 5
0

20
00

40
00

60
00

80
00

x

(r
es
id
ua
ls
(fi
t.o
ls
))
^2

plot(x,residuals(fit.ols))
plot(x,(residuals(fit.ols))^2)

Figure 7.3: Residuals (left) and squared residuals (right) of the ordinary least squares
regression as a function of x. Note the much greater range of the residuals at large
absolute values of x than towards the center; this changing dispersion is a sign of
heteroskedasticity.

squares (Figure 7.5).
This not only looks better, it is better: the estimated line is now 2.67− 1.91x,

with reported standard errors of 0.29 and 0.18. Does this check out with simulation?
(Example 23.)

The standard errors from the simulation are 0.22 for the intercept and 0.23 for
the slope, so R’s internal calculations are working very well.

Why does putting these weights into WLS improve things?

7.2.2 Some Explanations for Weighted Least Squares

Qualitatively, the reason WLS with inverse variance weights works is the following.
OLS tries equally hard to match observations at each data point.1 Weighted least
squares, naturally enough, tries harder to match observations where the weights are
big, and less hard to match them where the weights are small. But each yi contains
not only the true regression function r (xi ) but also some noise εi . The noise terms
have large magnitudes where the variance is large. So we should want to have small
weights where the noise variance is large, because there the data tends to be far from
the true regression. Conversely, we should put big weights where the noise variance
is small, and the data points are close to the true regression.

1Less anthropomorphically, the objective function in Eq. 7.1 has the same derivative with respect to
the squared error at each point, ∂ M SE

∂ (yi−~xi ·β)2
= 1

n .
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Figure 7.4: Statistician (right) consulting the Oracle of Regression (left) about the
proper weights to use to overcome heteroskedasticity. (Image from http://en.wikipedia.org/wiki/Image:
Pythia1.jpg.)
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fit.wls = lm(y~x, weights=1/(1+0.5*x^2))
abline(fit.wls,lty=3)

Figure 7.5: Figure 7.2, with addition of weighted least squares regression line (dotted).
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wls.heterosked.example = function(n) {
y = 3-2*x + rnorm(n,0,sapply(x,function(x){1+0.5*x^2}))
fit.wls = lm(y~x,weights=1/(1+0.5*x^2))
# Return the errors
return(fit.wls$coefficients - c(3,-2))

}

wls.heterosked.error.stats = function(n,m=10000) {
wls.errors.raw = t(replicate(m,wls.heterosked.example(n)))
# transpose gives us a matrix with named columns
intercept.sd = sd(wls.errors.raw[,"(Intercept)"])
slope.sd = sd(wls.errors.raw[,"x"])
return(list(intercept.sd=intercept.sd,slope.sd=slope.sd))

}

Code Example 23: Linear regression of heteroskedastic data, using weighted least-
squared regression.

The qualitative reasoning in the last paragraph doesn’t explain why the weights
should be inversely proportional to the variances, wi ∝ 1/σ2

xi
— why not wi ∝ 1/σxi

,
for instance? Look at the equation for the WLS estimates again:

bβW LS = (x
T wx)−1xT wy (7.5)

Imagine holding x constant, but repeating the experiment multiple times, so that we
get noisy values of y. In each experiment, Yi = ~xi ·β+ εi , where E

�

εi
�

= 0 and
Var
�

εi
�

= σ2
xi

. So

bβW LS = (xT wx)−1xT wxβ+(xT wx)−1xT wε (7.6)

= β+(xT wx)−1xT wε (7.7)

Since E[ε] = 0, the WLS estimator is unbiased:

E
h

bβW LS

i

=β (7.8)

In fact, for the j th coefficient,

bβ j = β j +[(x
T wx)−1xT wε] j (7.9)

= β j +
n
∑

i=1

H j i (w)εi (7.10)

where in the last line I have bundled up (xT wx)−1xT w as a matrix H(w), with the
argument to remind us that it depends on the weights. Since the WLS estimate is
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unbiased, it’s natural to want it to also have a small variance, and

Var
h

bβ j

i

=
n
∑

i=1

H j i (w)σ
2
xi

(7.11)

It can be shown — the result is called the generalized Gauss-Markov theorem —
that picking weights to minimize the variance in the WLS estimate has the unique
solution wi = 1/σ2

xi
. It does not require us to assume the noise is Gaussian, but the

proof is a bit tricky (see Appendix G).
A less general but easier-to-grasp result comes from adding the assumption that

the noise around the regression line is Gaussian — that

Y = ~x ·β+ ε, ε∼N (0,σ2
x ) (7.12)

The log-likelihood is then (EXERCISE 1)

−
n

2
ln2π−

1

2

n
∑

i=1

logσ2
xi
−

1

2

n
∑

i=1

(yi −~xi ·β)2

σ2
xi

(7.13)

If we maximize this with respect to β, everything except the final sum is irrelevant,
and so we minimize

n
∑

i=1

(yi −~xi ·β)2

σ2
xi

(7.14)

which is just weighted least squares with wi = 1/σ2
xi

. So, if the probabilistic assump-
tion holds, WLS is the efficient maximum likelihood estimator.

7.2.3 Finding the Variance and Weights
All of this was possible because the Oracle told us what the variance function was.
What do we do when the Oracle is not available (Figure 7.6)?

Under some situations we can work things out for ourselves, without needing an
oracle.

• We know, empirically, the precision of our measurement of the response vari-
able — we know how precise our instruments are, or each value of the response
is really an average of several measurements so we can use their standard devia-
tions, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions we
find should be inversely proportional to the sample size. So we can make the
weights proportional to the sample size.

Both of these outs rely on kinds of background knowledge which are easier to
get in the natural or even the social sciences than in many industrial applications.
However, there are approaches for other situations which try to use the observed
residuals to get estimates of the heteroskedasticity; this is the topic of the next section.
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Figure 7.6: The Oracle may be out (left), or too creepy to go visit (right). What then?
(Left, the sacred oak of the Oracle of Dodona, copyright 2006 by Flickr user “essayen”, http://flickr.com/photos/essayen/245236125/; right, the entrace to
the cave of the Sibyl of Cumæ, copyright 2005 by Flickr user “pverdicchio”, http://flickr.com/photos/occhio/17923096/. Both used under Creative Commons
license.)

7.3 Conditional Variance Function Estimation
Remember that there are two equivalent ways of defining the variance:

Var[X ] = E
�

X 2
�

− (E[X ])2 = E
�

(X −E[X ])2
�

(7.15)

The latter is more useful for us when it comes to estimating variance functions. We
have already figured out how to estimate means — that’s what all this previous work
on smoothing and regression is for — and the deviation of a random variable from its
mean shows up as a residual.

There are two generic ways to estimate conditional variances, which differ slightly
in how they use non-parametric smoothing. We can call these the squared residuals
method and the log squared residuals method. Here is how the first one goes.

1. Estimate r (x) with your favorite regression method, getting r̂ (x).

2. Construct the squared residuals, ui = (yi − r̂ (xi ))
2.

3. Use your favorite non-parametric method to estimate the conditional mean of
the ui , call it bq(x).

4. Predict the variance using bσ2
x = bq(x).

The log-squared residuals method goes very similarly.2

1. Estimate r (x) with your favorite regression method, getting r̂ (x).

2. Construct the log squared residuals, zi = log (yi − r̂ (xi ))
2.

3. Use your favorite non-parametric method to estimate the conditional mean of
the zi , call it ŝ(x).

2I learned it from Wasserman (2006, pp. 87–88).
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4. Predict the variance using bσ2
x = expbs(x).

The quantity yi − r̂ (xi ) is the i th residual. If br ≈ r , then the residuals should
have mean zero. Consequently the variance of the residuals (which is what we want)
should equal the expected squared residual. So squaring the residuals makes sense,
and the first method just smoothes these values to get at their expectations.

What about the second method — why the log? Basically, this is a convenience —
squares are necessarily non-negative numbers, but lots of regression methods don’t
easily include constraints like that, and we really don’t want to predict negative vari-
ances.3 Taking the log gives us an unbounded range for the regression.

Strictly speaking, we don’t need to use non-parametric smoothing for either method.
If we had a parametric model for σ2

x , we could just fit the parametric model to the
squared residuals (or their logs). But even if you think you know what the variance
function should look like it, why not check it?

We came to estimating the variance function because of wanting to do weighted
least squares, but these methods can be used more generally. It’s often important to
understand variance in its own right, and this is a general method for estimating it.
Our estimate of the variance function depends on first having a good estimate of the
regression function

7.3.1 Iterative Refinement of Mean and Variance: An Example
The estimate bσ2

x depends on the initial estimate of the regression function r̂ (x). But,
as we saw when we looked at weighted least squares, taking heteroskedasticity into
account can change our estimates of the regression function. This suggests an iterative
approach, where we alternate between estimating the regression function and the
variance function, using each to improve the other. That is, we take either method
above, and then, once we have estimated the variance function bσ2

x , we re-estimate r̂
using weighted least squares, with weights inversely proportional to our estimated
variance. Since this will generally change our estimated regression, it will change the
residuals as well. Once the residuals have changed, we should re-estimate the variance
function. We keep going around this cycle until the change in the regression function
becomes so small that we don’t care about further modifications. It’s hard to give a
strict guarantee, but usually this sort of iterative improvement will converge.

Let’s apply this idea to our example. Figure 7.3b already plotted the residuals
from OLS. Figure 7.7 shows those squared residuals again, along with the true vari-
ance function and the estimated variance function.

The OLS estimate of the regression line is not especially good ( bβ0 = 2.56 versus
β0 = 3, bβ1 = −1.65 versus β1 = −2), so the residuals are systematically off, but
it’s clear from the figure that kernel smoothing of the squared residuals is picking
up on the heteroskedasticity, and getting a pretty reasonable picture of the variance
function.

3Occasionally you do see people doing things like claiming that genetics explains more than 100% of
the variance in some psychological trait, and so the contributions of environment and up-bringing have
negative variance. Some of them — for instance, Alford et al. (2005) — manage to say this with a straight
face.
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plot(x,residuals(fit.ols)^2,ylab="squared residuals")
curve((1+x^2/2)^2,col="grey",add=TRUE)
require(np)
var1 <- npreg(residuals(fit.ols)^2 ~ x)
grid.x <- seq(from=min(x),to=max(x),length.out=300)
lines(grid.x,predict(var1,exdat=grid.x))

Figure 7.7: Points: actual squared residuals from the OLS line. Grey curve: true
variance function, σ2

x = (1+ x2/2)2. Black curve: kernel smoothing of the squared
residuals, using npreg.
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fit.wls1 <- lm(y~x,weights=1/fitted(var1))
plot(x,y)
abline(a=3,b=-2,col="grey")
abline(fit.ols,lty=2)
abline(fit.wls1,lty=3)
plot(x,(residuals(fit.ols))^2,ylab="squared residuals")
points(x,(residuals(fit.wls1))^2,pch=15)
lines(grid.x,predict(var1,exdat=grid.x))
var2 <- npreg(residuals(fit.wls1)^2 ~ x)
curve((1+x^2/2)^2,col="grey",add=TRUE)
lines(grid.x,predict(var2,exdat=grid.x),lty=3)

Figure 7.8: Left: As in Figure 7.2, but with the addition of the weighted least squares
regression line (dotted), using the estimated variance from Figure 7.7 for weights.
Right: As in Figure 7.7, but with the addition of the residuals from the WLS regres-
sion (black squares), and the new estimated variance function (dotted curve).

Now we use the estimated variance function to re-estimate the regression line,
with weighted least squares.

> fit.wls1 <- lm(y~x,weights=1/fitted(var1))
> coefficients(fit.wls1)
(Intercept) x

2.595860 -1.876042
> var2 <- npreg(residuals(fit.wls1)^2 ~ x)

The slope has changed substantially, and in the right direction (Figure 7.8a). The
residuals have also changed (Figure 7.8b), and the new variance function is closer to
the truth than the old one.

Since we have a new variance function, we can re-weight the data points and re-
estimate the regression:
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> fit.wls2 <- lm(y~x,weights=1/fitted(var2))
> coefficients(fit.wls2)
(Intercept) x

2.625295 -1.914075
> var3 <- npreg(residuals(fit.wls2)^2 ~ x)

Since we know that the true coefficients are 3 and−2, we know that this is moving in
the right direction. If I hadn’t told you what they were, you could still observe that
the difference in coefficients between fit.wls1 and fit.wls2 is smaller than that
between fit.ols and fit.wls1, which is a sign that this is converging.

I will spare you the plot of the new regression and of the new residuals. When we
update a few more times:

> fit.wls3 <- lm(y~x,weights=1/fitted(var3))
> coefficients(fit.wls3)
(Intercept) x

2.630249 -1.920476
> var4 <- npreg(residuals(fit.wls3)^2 ~ x)
> fit.wls4 <- lm(y~x,weights=1/fitted(var4))
> coefficients(fit.wls4)
(Intercept) x

2.631063 -1.921540

By now, the coefficients of the regression are changing in the fourth significant digit,
and we only have 100 data points, so the imprecision from a limited sample surely
swamps the changes we’re making, and we might as well stop.

Manually going back and forth between estimating the regression function and
estimating the variance function is tedious. We could automate it with a function,
which would look something like this:

iterative.wls <- function(x,y,tol=0.01,max.iter=100) {
iteration <- 1
old.coefs <- NA
regression <- lm(y~x)
coefs <- coefficients(regression)
while (is.na(old.coefs) ||

((max(coefs - old.coefs) > tol) && (iteration < max.iter))) {
variance <- npreg(residuals(regression)^2 ~ x)
old.coefs <- coefs
iteration <- iteration+1
regression <- lm(y~x,weights=1/fitted(variance))
coefs <- coefficients(regression)

}
return(list(regression=regression,variance=variance,iterations=iteration))

}

This starts by doing an unweighted linear regression, and then alternates between
WLS for the getting the regression and kernel smoothing for getting the variance. It
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stops when no parameter of the regression changes by more than tol, or when it’s
gone around the cycle max.iter times.4 This code is a bit too inflexible to be really
“industrial strength” (what if we wanted to use a data frame, or a more complex
regression formula?), but shows the core idea.

7.3.2 Real Data Example: Old Heteroskedastic
§5.3.2 introduced the geyser data set, which is about predicting the waiting time
between consecutive eruptions of the “Old Faithful” geyser at Yellowstone National
Park from the duration of the latest eruption. Our exploration there showed that a
simple linear model (of the kind often fit to this data in textbooks and elementary
classes) is not very good, and raised the suspicion that one important problem was
heteroskedasticity. Let’s follow up on that, building on the computational work done
in that section.

The estimated variance function geyser.var does not look particularly flat, but
it comes from applying a fairly complicated procedure (kernel smoothing with data-
driven bandwidth selection) to a fairly limited amount of data (299 observations).
Maybe that’s the amount of wiggliness we should expect to see due to finite-sample
fluctuations? To rule this out, we can make surrogate data from the homoskedastic
model, treat it the same way as the real data, and plot the resulting variance functions
(Figure 7.10). The conditional variance functions estimated from the homoskedastic
model are flat or gently varying, with much less range than what’s seen in the data.

While that sort of qualitative comparison is genuinely informative, one can also
be more quantitative. One might measure heteroskedasticity by, say, evaluating the
conditional variance at all the data points, and looking at the ratio of the interquartile
range to the median. This would be zero for perfect homoskedasticity, and grow as
the dispersion of actual variances around the “typical” variance increased. For the
data, this is IQR(fitted(geyser.var))/median(fitted(geyser.var)) = 0.86.
Simulations from the OLS model give values around 10−15.

There is nothing particularly special about this measure of heteroskedasticity —
after all, I just made it up. The broad point it illustrates is that whenever we have
some sort of quantittive summary statistic we can calculate on our real data, we can
also calculate the same statistic on realizations of the model, and the difference will
then tell us something about how close the simulations, and so the model, come to the
data. In this case, we learn that the linear, homoskedastic model seriously understates
the variability of this data. That leaves open the question of whether the problem is
the linearity or the homoskedasticity; I will leave that question to EXERCISE 5.

4The condition in the while loop is a bit complicated, to ensure that the loop is executed at least once.
Some languages have an until control structure which would simplify this.
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plot(geyser$duration, residuals(fit.ols)^2, cex=0.5, pch=16,
main="Squared residuals and variance estimates versus geyser duration",
xlab="Duration (minutes)",
ylab=expression("Squared residuals of linear model "(minutes^2)))

library(np)
geyser.var <- npreg(residuals(fit.ols)^2~geyser$duration)
duration.order <- order(geyser$duration)
lines(geyser$duration[duration.order],fitted(geyser.var)[duration.order])
abline(h=summary(fit.ols)$sigma^2,lty="dashed")
legend("topleft",

legend=c("data","kernel variance","homoskedastic (OLS)"),
lty=c(-1,1,2),pch=c(16,-1,-1))

Figure 7.9: Squared residuals from the linear model of Figure 5.4, plotted against dura-
tion, along with the unconditional, homoskedastic variance implicit in OLS (dashed),
and a kernel-regression estimate of the conditional variance (solid).
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plot(geyser.var)
abline(h=summary(fit.ols)$sigma^2,lty=2)
duration.grid <- seq(from=min(geyser$duration),to=max(geyser$duration),
length.out=300)

one.var.func <- function() {
fit <- lm(waiting ~ duration, data=rgeyser())
var.func <- npreg(residuals(fit)^2 ~ geyser$duration)
lines(duration.grid,predict(var.func,exdat=duration.grid),col="grey")

}
invisible(replicate(10,one.var.func()))

Figure 7.10: The actual conditional variance function estimated from the Old Faith-
ful data (and the linear regression), in black, plus the results of applying the same pro-
cedure to simulations from the homoskedastic linear regression model (grey lines; see
§5.3.2 for the rgeyser() function). The fact that the estimates from the simulations
are all flat or gently sloped suggests that the changes in variance found in the data are
too large to just be sampling noise.

11:36 Saturday 22nd November, 2014



7.4. RE-SAMPLING RESIDUALS WITH HETEROSKEDASTICITY 172

7.4 Re-sampling Residuals with Heteroskedasticity
Re-sampling the residuals of a regression, as described in §6.4, assumes that the dis-
tribution of fluctuations around the regression curve is the same for all values of the
input x. Under heteroskedasticity, this is of course not the case. Nonetheless, we can
still re-sample residuals to get bootstrap confidence intervals, standard errors, and so
forth, provided we define and scale them properly. If we have a conditional variance
function σ̂2(x), or a conditional standard deviation function ˆs i g ma(x), as well as the
estimated regression function r̂ (x), we can combine them to re-sample heteroskedas-
tic residuals.

1. Construct the standardized residuals, by dividing the actual residuals by the
conditional standard deviation:

ηi = εi/σ̂(xi ) (7.16)

The ηi should now be all the same size (in distribution!), no matter where xi is
in the space of predictors.

2. Re-sample the ηi with replacement, to get η̃1, . . . η̃n .

3. Set x̃i = xi .

4. Set ỹi = r̂ (x̃i )+ σ̂(x̃i )η̃i .

5. Analyze the surrogate data (x̃1, ỹ1), . . . (x̃n , ỹn) like it was real data.

Of course, this still assumes that the only difference in distribution for the noise
at different values of x is its scale.

7.5 Local Linear Regression
Switching gears, recall from Chapter 2 that one reason it can be sensible to use a linear
approximation to the true regression function r (x) is that we can always5 Taylor-
expand the latter around any point x0,

r (x) = r (x0)+
∞
∑

k=1

(x − x0)
k

k!

d k r

d r k

�

�

�

�

�

x=x0

(7.17)

and similarly with all the partial derivatives in higher dimensions. If we truncate the
series at first order, r (x)≈ r (x0)+(x−x0)r

′(x0), we see that the first-order coefficient
r ′(x0) is the best linear prediction coefficient, at least when x is sufficiently close to
x0. The snag in this line of argument is that if r (x) isn’t really linear, then r ′ isn’t a
constant, and the optimal linear predictor to use depends on where we want to make
predictions.

5At least if r (x) is differentiable.
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However, statisticians are thrifty people, and having assembled all the machinery
for linear regression, they are loathe to throw it away just because the fundamental
model is wrong. If we can’t fit one line, why not fit many? If each point has a dif-
ferent best linear regression, why not estimate them all? Thus the idea of local linear
regression: fit a different linear regression everywhere, weighting the data points by
how close they are to the point of interest6.

The very simplest approach we could take would be to divide up the range of x
into so many bins, and fit a separate linear regression for each bin. This is unsatisfying
for at least three reasons. First, it gives us weird discontinuities at the boundaries
between bins. Second, it introduces an odd sort of bias, where our predictions near
the boundaries of a bin depend strongly on data from the other side of the bin, and
not at all on nearby data points just across the border, which is weird. Third, we need
to pick the bins.

The next simplest approach would be to first figure out where we want to make
a prediction (say x), and do a linear regression with all the data points which were
sufficiently close, |xi − x| ≤ h for some h. Now we are basically using a uniform-
density kernel to weight the data points. This eliminates two problems from the
binning idea — the examples we include are always centered on the x we’re trying to
get a prediction for, and we just need to pick one bandwidth h rather than placing
all the bin boundaries. But still, each example point always has either weight 0 or
weight 1, so our predictions change jerkily as training points fall into or out of the
window. It generally works nicer to have the weights change more smoothly with
the distance, starting off large and then gradually trailing to zero.

By now bells may be going off in your head, as this sounds very similar to the
kernel regression. In fact, kernel regression is what happens when we truncate Eq.
7.17 at zeroth order, getting locally constant regression. Here’s the problem we’re
setting up:

argmin
m(x)

1

n

n
∑

i=1

wi (x)
�

yi −m(x)
�2 (7.18)

which has the solution

bm(x) =

∑n
i=1 wi (x)yi
∑n

j=1 w j (x)
(7.19)

which just is our kernel regression, with the weights being proportional to the ker-
nels, wi (x) ∝ K(xi , x). (Without loss of generality, we can take the constant of pro-
portionality to be 1.)

What about locally linear regression? The optimization problem is

argmin
m,β

1

n

n
∑

i=1

wi (x)
�

yi −m(x)−
�

xi − x
�

·β(x)
�2 (7.20)

where again we can write wi (x) as proportional to some kernel function, wi (x) ∝
K(xi , x). To solve this, abuse notation slightly to define zi = (1, xi − x), i.e., the

6Some people say “local linear” and some “locally linear”.
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Figure 7.11: The tricubic kernel, with broad plateau where |x| ≈ 0, and the smooth
fall-off to zero at |x|= 1.

displacement from x, with a 1 stuck at the beginning to (as usual) handle the intercept.
Now, by the machinery above,

Û(m,β(x)) = (zT w(x)z)−1zT w(x)y (7.21)

and the prediction is just the intercept, m̂. If you need an estimate of the first deriva-
tives, those are the bβ. Notice, from Eq. 7.21, that if the weights given to each training
point change smoothly with x, then the predictions will also change smoothly.7

Using a smooth kernel whose density is positive everywhere, like the Gaussian,
ensures that the weights will change smoothly. But we could also use a kernel which
goes to zero outside some finite range, so long as the kernel rises gradually from zero
inside the range. For locally linear regression, a common choice of kernel is therefore
the tri-cubic,

K(xi , x) =

 

1−
�

|xi − x0|
h

�3!3

(7.22)

if |x − xi |< h, and = 0 otherwise (Figure 7.11).

7.5.1 Advantages and Disadvantages of Locally Linear Regres-
sion

Why would we use locally linear regression, if we already have kernel regression?
7Notice that local linear predictors are still linear smoothers as defined in Chapter 1, (i.e., the predic-

tions are linear in the yi ), but they are not, strictly speaking, kernel smoothers, since you can’t re-write the
last equation in the form of a kernel average.
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1. You may recall that when we worked out the bias of kernel smoothers (Eq.
4.10 in Chapter 4), we got a contribution that was proportional to r ′(x). If
we do an analogous analysis for locally linear regression, the bias is the same,
except that this derivative term goes away.

2. Relatedly, that analysis we did of kernel regression tacitly assumed the point
we were looking at was in the middle of the training data (or at least less than
h from the border). The bias gets worse near the edges of the training data.
Suppose that the true r (x) is decreasing in the vicinity of the largest xi . (See
the grey curve in Figure 7.12.) When we make our predictions there, in ker-
nel regression we can only average values of yi which tend to be systematically
larger than the value we want to predict. This means that our kernel predic-
tions are systematically biased upwards, and the size of the bias grows with
r ′(x). (See the black line in Figure 7.12 at the lower right.) If we use a locally
linear model, however, it can pick up that there is a trend, and reduce the edge
bias by extrapolating it (dashed line in the figure).

3. The predictions of locally linear regression tend to be smoother than those
of kernel regression, simply because we are locally fitting a smooth line rather
than a flat constant. As a consequence, estimates of the derivative d r̂

d x tend to be
less noisy when r̂ comes from a locally linear model than a kernel regression.

Of course, total prediction error depends not only on the bias but also on the
variance. Remarkably enough, the variance for kernel regression and locally linear
regression is the same. Since locally linear regression has smaller bias, the former is
often predictively superior.

There are several packages which implement locally linear regression. Since we
are already using np, one of the simplest is to set the regtype="ll" in npreg.8 There
are several other packages which support it, notably KernSmooth and locpoly.

As the name of the latter suggests, there is no reason we have to stop at locally
linear models, and we could use local polynomials of any order. The main reason to
use a higher-order local polynomial, rather than a locally-linear or locally-constant
model, is to estimate higher derivatives. Since this is a somewhat specialized topic, I
will not say more about it.

7.5.2 Lowess

There is however one additional topic in locally linear models which is worth men-
tioning. This is the variant called lowess or loess.9 The basic idea is to fit a locally
linear model, with a kernel which goes to zero outside a finite window and rises
gradually inside it, typically the tri-cubic I plotted earlier. The wrinkle, however, is
that rather than solving a least squares problem, it minimizes a different and more

8"ll" stands for “locally linear”, of course; the default is regtype="lc", for “locally constant”.
9I have heard this name explained as an acronym for both “locally weighted scatterplot smoothing” and

“locally weight sum of squares”.
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x <- runif(30,max=3)
y <- 9-x^2 + rnorm(30,sd=0.1)
plot(x,y); rug(x,side=1, col="grey"); rug(y,side=2, col="grey")
curve(9-x^2,col="grey",add=TRUE,lwd=3)
grid.x <- seq(from=0,to=3,length.out=300)
np0 <- npreg(y~x); lines(grid.x,predict(np0, exdat=grid.x))
np1 <- npreg(y~x,regtype="ll"); lines(grid.x,predict(np1, exdat=grid.x),lty=2)

Figure 7.12: Points are samples from the true, nonlinear regression function shown in
grey. The solid black line is a kernel regression, and the dashed line is a locally linear
regression. Note that the locally linear model is smoother than the kernel regression,
and less biased when the true curve has a non-zero bias at a boundary of the data (far
right).
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“robust” loss function,

argmin
β(x)

1

n

n
∑

i=1

wi (x)`(y −~xi ·β(x)) (7.23)

where `(a) doesn’t grow as rapidly for large a as a2. The idea is to make the fitting
less vulnerable to occasional large outliers, which would have very large squared er-
rors, unless the regression curve went far out of its way to accommodate them. For
instance, we might have `(a) = a2 if |a| < 1, and `(a) = 2|a| − 1 otherwise10. We
will come back to robust estimation later, but I bring it up now because it’s a very
common smoothing technique, especially for visualization.

Lowess smoothing is implemented in the default R packages through the func-
tion lowess (rather basic), and through the function loess (more sophisticated), as
well as in the CRAN package locfit (more sophisticated still). The lowess idea can
be combined with local fitting of higher-order polynomials; the loess and locfit
commands both support this.

7.6 Exercises
1. Show that the model of Eq. 7.12 has the log-likelihood given by Eq. 7.13

2. Do the calculus to verify Eq. 7.4.

3. Is wi = 1 a necessary as well as a sufficient condition for Eq. 7.3 and Eq. 7.1 to
have the same minimum?

4. The text above looked at whether WLS gives better parameter estimates than
OLS when there is heteroskedasticity, and we know and use the variance. Mod-
ify the code for to see which one has better generalization error.

5. COMPUTING §7.3.2 looked at the residuals of the linear regression model for
the Old Faithful geyser data, and showed that they would imply lots of het-
eroskedasticity. This might, however, be an artifact of inappropriately using a
linear model. Use either kernel regression (cf. §6.4.2) or local linear regression
to estimate the conditional mean of waiting given duration, and see whether
the apparent heteroskedasticity goes away.

6. Should local linear regression do better or worse than ordinary least squares
under heteroskedasticity? What exactly would this mean, and how might you
test your ideas?

10This is called the Huber loss; it continuously interpolates between looking like squared error and
looking like absolute error. This means that when errors are small, it gives results very like least-squares,
but it is resistant to outliers.

11:36 Saturday 22nd November, 2014



11:36 Saturday 22nd November, 2014
Copyright c©Cosma Rohilla Shalizi; do not distribution without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 8

Splines

[[TODO: Add the calculation
of LOOCV and GCV in terms
of influence matrix? ]]

8.1 Smoothing by Directly Penalizing Curve Flexibil-
ity

Let’s go back to the problem of smoothing one-dimensional data. We have data points
(x1, y1), (x2, y2), . . . (xn , yn), and we want to find a good approximation r̂ (x) to the true
conditional expectation or regression function r (x). Previously, we controlled how
smooth we made r̂ indirectly, through the bandwidth of our kernels. But why not
be more direct, and directly control smoothness?

A natural way to do this, in one dimension, is to minimize the spline objective
function

L (m,λ)≡
1

n

n
∑

i=1

(yi −m(xi ))
2+λ

∫

(m′′(x))2d x (8.1)

The first term here is just the mean squared error of using the curve m(x) to predict
y. We know and like this; it is an old friend.

The second term, however, is something new for us. m′′ is the second derivative
of m with respect to x — it would be zero if m were linear, so this measures the
curvature of m at x. The sign of m′′ says whether the curvature is concave or convex,
but we don’t care about that so we square it. We then integrate this over all x to say
how curved m is, on average. Finally, we multiply by λ and add that to the MSE.
This is adding a penalty to the MSE criterion — given two functions with the same
MSE, we prefer the one with less average curvature. In fact, we are willing to accept
changes in m that increase the MSE by 1 unit if they also reduce the average curvature
by at least λ.

The solution to this minimization problem,

r̂λ = argmin
m
L (m,λ) (8.2)

is a function of x, or curve, called a smoothing spline, or smoothing spline func-
tion1.

1The name “spline” actually comes from a simple tool used by craftsmen to draw smooth curves, which
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Figure 8.1: A craftsman’s spline, from Wikipedia, s.v. “Flat spline”.

It is possible to show that all solutions, no matter what the initial data are, are
piecewise cubic polynomials which are continuous and have continuous first and
second derivatives — i.e., not only is r̂ continuous, so are r̂ ′ and r̂ ′′. The boundaries
between the pieces are located at the original data points. These are called, somewhat
obscure, the knots of the spline. The function continuous beyond the largest and
smallest data points, but it is always linear on those regions.2 I will not attempt to
prove this.

I will also assert, without proof, that such piecewise cubic polynomials can ap-
proximate any well-behaved function arbitrarily closely, given enough pieces. Finally,
smoothing splines are linear smoothers, in the sense given in Chapter 1: predicted val-
ues are always linear combinations of the original response values yi — see Eq. 8.21
below.

8.1.1 The Meaning of the Splines

Look back to the optimization problem. As λ→∞, having any curvature at all be-
comes infinitely penalized, and only linear functions are allowed. But we know how
to minimize mean squared error with linear functions, that’s OLS. So we understand

was a thin strip of a flexible material like a soft wood, as in Figure 8.1. (A few years ago, when the gas
company dug up my front yard, the contractors they hired to put the driveway back used a plywood
board to give a smooth, outward-curve edge to the new driveway. The “knots” were metal stakes which
the board was placed between, the curve of the board was a spline, and they poured concrete to one side of
the board, which they left standing until the concrete dried.) Bending such a material takes energy — the
stiffer the material, the more energy has to go into bending it through the same shape, and so the straighter
the curve it will make between given points. For smoothing splines, using a stiffer material corresponds
to increasing λ.

2Can you explain why it is linear outside the data range, in terms of the optimization problem?
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that limit.
On the other hand, as λ→ 0, we decide that we don’t care about curvature. In

that case, we can always come up with a function which just interpolates between
the data points, an interpolation spline passing exactly through each point. More
specifically, of the infinitely many functions which interpolate between those points,
we pick the one with the minimum average curvature.

At intermediate values of λ, r̂λ becomes a function which compromises between
having low curvature, and bending to approach all the data points closely (on aver-
age). The larger we make λ, the more curvature is penalized. There is a bias-variance
trade-off here. As λ grows, the spline becomes less sensitive to the data, with lower
variance to its predictions but more bias. As λ shrinks, so does bias, but variance
grows. For consistency, we want to let λ→ 0 as n→∞, just as, with kernel smooth-
ing, we let the bandwidth h→ 0 while n→∞.

We can also think of the smoothing spline as the function which minimizes the
mean squared error, subject to a constraint on the average curvature. This turns
on a general corresponds between penalized optimization and optimization under
constraints, which is explored in Appendix D. The short version is that each level
of λ corresponds to imposing a cap on how much curvature the function is allowed
to have, on average, and the spline we fit with that λ is the MSE-minimizing curve
subject to that constraint. As we get more data, we have more information about
the true regression function and can relax the constraint (let λ shrink) without losing
reliable estimation.

It will not surprise you to learn that we select λ by cross-validation. Ordinary
k-fold CV is entirely possible, but leave-one-out CV works quite well for splines. In
fact, the default in most spline software is either leave-one-out CV, or an even faster
approximation called “generalized cross-validation” or GCV. The details of how to
rapidly compute the LOOCV or GCV scores are not especially important for us,
but can be found, if you want them, in many books, such as Simonoff (1996, §5.6.3).
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8.2 Computational Example: Splines for Stock Returns
The default R function for fitting a smoothing spline is called smooth.spline. The
syntax is

smooth.spline(x, y, cv=FALSE)

where x should be a vector of values for input variable, y is a vector of values for
the response (in the same order), and the switch cv controls whether to pick λ by
generalized cross-validation (the default) or by leave-one-out cross-validation. The
object which smooth.spline returns has an $x component, re-arranged in increasing
order, a $y component of fitted values, a $yin component of original values, etc. See
help(smooth.spline) for more. [[TODO: Re-do example, like

homework, with dividend-
adjusted returns series]]

As a concrete illustration, Figure 8.2 looks at the same data on stock prices from
Problem Set 48. The vector sp contains the log-returns3 of the S & P 500 stock index
on 2528 consecutive trading days:

sp <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/03/SPhistory.short.csv")
# We only want closing prices
sp <- sp[,7]
# The data are in reverse chronological order, which is weird for us
sp <- rev(sp)
# And in fact we only want log returns, i.e., difference in logged prices
sp <- diff(log(sp))

We want to use the log-returns on one day to predict what they will be on the next.
The horizontal axis in the figure shows the log-returns for each of 2527 days t , and
the vertical axis shows the corresponding log-return for the succeeding day t + 1. A
linear model fitted to this data displays a slope of −0.0822 (grey line in the figure).
Fitting a smoothing spline with cross-validation selects λ = 0.0513, and the black
curve:

> sp.today <- sp[-length(sp)]
> sp.tomorrow <- sp[-1]
> sp.spline <- smooth.spline(x=sp.today,y=sp.tomorrow,cv=TRUE)
Warning message:
In smooth.spline(sp[-length(sp)], sp[-1], cv = TRUE) :
crossvalidation with non-unique ’x’ values seems doubtful

> sp.spline
Call:
smooth.spline(x = sp[-length(sp)], y = sp[-1], cv = TRUE)

Smoothing Parameter spar= 1.389486 lambda= 0.05129822 (14 iterations)

3For a financial asset whose price on day t is pt , the log-returns on t are log pt /pt−1. Financiers and
other professional gamblers care more about the log returns than about the price change, pt − pt−1. —
Actually, in this case it would be even closer to financial practice to add in dividends, log (pt + dt )/pt−1,
but we will sacrifice realism to simplifying calculations, or imagine that we are working for someone who
trades so quickly they never expect to receive dividends.
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Equivalent Degrees of Freedom (Df): 4.206137
Penalized Criterion: 0.4885528
PRESS: 0.0001949005
> sp.spline$lambda
[1] 0.05129822

(PRESS is the “prediction sum of squares”, i.e., the sum of the squared leave-one-out
prediction errors. Also, the warning about cross-validation, while well-intentioned,
is caused here by there being just two days with log-returns of zero.) This is the curve
shown in black in the figure. The curves shown in blue are for large values of λ, and
clearly approach the linear regression; the curves shown in red are for smaller values
of λ.[[TODO: Find better way to

fit everything on page than
just shrinking the code]]

The spline can also be used for prediction. For instance, if we want to know what
the return to expect following a day when the log return was +0.01,

> predict(sp.spline,x=0.01)
$x
[1] 0.01
$y
[1] -0.0007169499

i.e., a very slightly negative log-return. (Giving both an x and a y value like this
means that we can directly feed this output into many graphics routines, like points
or lines.)
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plot(sp.today,sp.tomorrow,xlab="Today’s log-return",
ylab="Tomorrow’s log-return")

abline(lm(sp.tomorrow ~ sp.today),col="grey")
sp.spline <- smooth.spline(x=sp.today,y=sp.tomorrow,cv=TRUE)
lines(sp.spline)
lines(smooth.spline(sp.today,sp.tomorrow,spar=1.5),col="blue")
lines(smooth.spline(sp.today,sp.tomorrow,spar=2),col="blue",lty=2)
lines(smooth.spline(sp.today,sp.tomorrow,spar=1.1),col="red")
lines(smooth.spline(sp.today,sp.tomorrow,spar=0.5),col="red",lty=2)

Figure 8.2: The S& P 500 log-returns data (circles), together with the OLS lin-
ear regression (grey line), the spline selected by cross-validation (solid black curve,
λ = 0.0513), some more smoothed splines (blue, λ = 0.322 and 1320) and some less
smooth splines (red, λ= 4.15×10−4 and 1.92×10−8). Incoveniently, smooth.spline
does not let us control λ directly, but rather a somewhat complicated but basi-
cally exponential transformation of it called spar. See help(smooth.spline) for
the gory details. The equivalent λ can be extracted from the return value, e.g.,
smooth.spline(sp.today,sp.tomorrow,spar=2)$lambda.
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8.2.1 Confidence Bands for Splines
Continuing the example, the smoothing spline selected by cross-validation has a neg-
ative slope everywhere, like the regression line, but it’s asymmetric — the slope is
more negative to the left, and then levels off towards the regression line. (See Figure
8.2 again.) Is this real, or might the asymmetry be a sampling artifact?

We’ll investigate by finding confidence bands for the spline, much as we did for
kernel regression in Chapter 6 and Problem Set 48, problem 5. Again, we need to
bootstrap, and we can do it either by resampling the residuals or resampling whole
data points. Let’s take the latter approach, which assumes less about the data. We’ll
need a simulator:

sp.frame <- data.frame(today=sp.today,tomorrow=sp.tomorrow)
sp.resampler <- function() {

n <- nrow(sp.frame)
resample.rows <- sample(1:n,size=n,replace=TRUE)
return(sp.frame[resample.rows,])

}

This treats the points in the scatterplot as a complete population, and then draws a
sample from them, with replacement, just as large as the original4. We’ll also need
an estimator. What we want to do is get a whole bunch of spline curves, one on
each simulated data set. But since the values of the input variable will change from
one simulation to another, to make everything comparable we’ll evaluate each spline
function on a fixed grid of points, that runs along the range of the data.

# Set up a grid of evenly-spaced points on which to evaluate the spline
grid.300 <- seq(from=min(sp.today),to=max(sp.today),length.out=300)

sp.spline.estimator <- function(data,eval.grid=grid.300) {
# Fit spline to data, with cross-validation to pick lambda
fit <- smooth.spline(x=data[,1],y=data[,2],cv=TRUE)
# Do the prediction on the grid and return the predicted values
return(predict(fit,x=eval.grid)$y) # We only want the predicted values

}

This sets the number of evaluation points to 300, which is large enough to give visu-
ally smooth curves, but not so large as to be computationally unwieldly.

Now put these together to get confidence bands:

sp.spline.cis <- function(B,alpha,eval.grid=grid.300) {
spline.main <- sp.spline.estimator(sp.frame,eval.grid=eval.grid)
# Draw B boottrap samples, fit the spline to each

# Result has length(eval.grid) rows and B columns
spline.boots <- replicate(B,

sp.spline.estimator(sp.resampler(),eval.grid=eval.grid))
cis.lower <- 2*spline.main - apply(spline.boots,1,quantile,probs=1-alpha/2)

4§27.5 covers more refined ideas about bootstrapping time series.
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cis.upper <- 2*spline.main - apply(spline.boots,1,quantile,probs=alpha/2)
return(list(main.curve=spline.main,lower.ci=cis.lower,upper.ci=cis.upper,
x=seq(from=min(sp.today),to=max(sp.today),length.out=m)))

}

The return value here is a list which includes the original fitted curve, the lower and
upper confidence limits, and the points at which all the functions were evaluated.

Figure 8.3 shows the resulting 95% confidence limits, based on B=1000 bootstrap
replications. (Doing all the bootstrapping took 45 seconds on my laptop.) These
are pretty clearly asymmetric in the same way as the curve fit to the whole data, but
notice how wide they are, and how they get wider the further we go from the center
of the distribution in either direction.
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sp.cis <- sp.spline.cis(B=1000,alpha=0.05)
plot(sp.today,sp.tomorrow,xlab="Today’s log-return",

ylab="Tomorrow’s log-return")
abline(lm(sp.tomorrow ~ sp.today),col="grey")
lines(x=sp.cis$x,y=sp.cis$main.curve)
lines(x=sp.cis$x,y=sp.cis$lower.ci)
lines(x=sp.cis$x,y=sp.cis$upper.ci)

Figure 8.3: Bootstrapped pointwise confidence band for the smoothing spline of the
S & P 500 data, as in Figure 8.2. The 95% confidence limits around the main spline
estimate are based on 1000 bootstrap re-samplings of the data points in the scatterplot.
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8.3 Basis Functions and Degrees of Freedom

8.3.1 Basis Functions
Splines, I said, are piecewise cubic polynomials. To see how to fit them, let’s think
about how to fit a global cubic polynomial. We would define four basis functions,

B1(x) = 1 (8.3)
B2(x) = x (8.4)
B3(x) = x2 (8.5)
B4(x) = x3 (8.6)

with the hypothesis being that the regression function is a weight sum of these,

r (x) =
4
∑

j=1

β j B j (x) (8.7)

That is, the regression would be linear in the transformed variable B1(x), . . .B4(x),
even though it is nonlinear in x.

To estimate the coefficients of the cubic polynomial, we would apply each basis
function to each data point xi and gather the results in an n× 4 matrix B,

Bi j = B j (xi ) (8.8)

Then we would do OLS using the B matrix in place of the usual data matrix x:

β̂= (BT B)−1BT y (8.9)

Since splines are piecewise cubics, things proceed similarly, but we need to be a
little more careful in defining the basis functions. Recall that we have n values of the
input variable x, x1, x2, . . . xn . For the rest of this section, I will assume that these are
in increasing order, because it simplifies the notation. These n “knots” define n + 1
pieces or segments n − 1 of them between the knots, one from −∞ to x1, and one
from xn to +∞. A third-order polynomial on each segment would seem to need a
constant, linear, quadratic and cubic term per segment. So the segment running from
xi to xi+1 would need the basis functions

1(xi ,xi+1)
(x), (x − xi )1(xi ,xi+1)

(x), (x − xi )
21(xi ,xi+1)

(x), (x − xi )
31(xi ,xi+1)

(x) (8.10)

where as usual the indicator function 1(xi ,xi+1)
(x) is 1 if x ∈ (xi , xi+1) and 0 otherwise.

This makes it seem like we need 4(n+ 1) = 4n+ 4 basis functions.
However, we know from linear algebra that the number of basis vectors we need

is equal to the number of dimensions of the vector space. The number of adjustable
coefficients for an arbitrary piecewise cubic with n + 1 segments is indeed 4n + 4,
but splines are constrained to be smooth. The spline must be continuous, which
means that at each xi , the value of the cubic from the left, defined on (xi−1, xi ), must
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match the value of the cubic from the right, defined on (xi , xi+1). This gives us one
constraint per data point, reducing the number of adjustable coefficients to at most
3n+4. Since the first and second derivatives are also continuous, we are down to just
n+4 coefficients. Finally, we know that the spline function is linear outside the range
of the data, i.e., on (−∞, x1) and on (xn ,∞), lowering the number of coefficients to
n. There are no more constraints, so we end up needing only n basis functions. And
in fact, from linear algebra, any set of n piecewise cubic functions which are linearly
independent5 can be used as a basis. One common choice is

B1(x) = 1 (8.11)
B2(x) = x (8.12)

Bi+2(x) =
(x − xi )

3
+− (x − xn)

3
+

xn − xi
−
(x − xn−1)

3
+− (x − xn)

3
+

xn − xn−1
(8.13)

where (a)+ = a if a > 0, and = 0 otherwise. This rather unintuitive-looking basis has
the nice property that the second and third derivatives of each B j are zero outside the
interval (x1, xn).

Now that we have our basis functions, we can once again write the spline as a
weighted sum of them,

m(x) =
m
∑

j=1

β j B j (x) (8.14)

and put together the matrix B where Bi j = B j (xi ). We can write the spline objective
function in terms of the basis functions,

nL = (y−Bβ)T (y−Bβ)+ nλβTΩβ (8.15)

where the matrix Ω encodes information about the curvature of the basis functions:

Ω j k =
∫

B ′′j (x)B
′′
k (x)d x (8.16)

Notice that only the quadratic and cubic basis functions will make non-zero contri-
butions to Ω. With the choice of basis above, the second derivatives are non-zero on,
at most, the interval (x1, xn), so each of the integrals in Ω is going to be finite. This
is something we (or, realistically, R) can calculate once, no matter what λ is. Now we
can find the smoothing spline by differentiating with respect to β:

0 = −2BT y+ 2BT Bβ̂+ 2nλΩβ̂ (8.17)

BT y =
�

BT B+ nλΩ
�

β̂ (8.18)

β̂ =
�

BT B+ nλΩ
�−1

BT y (8.19)

5Recall that vectors ~v1, ~v2, . . . ~vd are linearly independent when there is no way to write any one of the
vectors as a weighted sum of the others. The same definition applies to functions.

11:36 Saturday 22nd November, 2014



189 8.3. BASIS FUNCTIONS AND DEGREES OF FREEDOM

Notice, incidentally, that we can now show splines are linear smoothers:

ŷ = m̂(x) = Bβ̂ (8.20)

= B
�

BT B+ nλΩ
�−1

BT y (8.21)

Once again, if this were ordinary linear regression, the OLS estimate of the coef-
ficients would be (xT x)−1xT y. In comparison to that, we’ve made two changes. First,
we’ve substituted the basis function matrix B for the original matrix of independent
variables, x — a change we’d have made already for plain polynomial regression. Sec-
ond, the “denominator” is not xT x, but BT B+ nλΩ. Since xT x is n times the co-
variance matrix of the independent variables, we are taking the covariance matrix of
the spline basis functions and adding some extra covariance — how much depends
on the shapes of the functions (through Ω) and how much smoothing we want to do
(through λ). The larger we make λ, the less the actual data matters to the fit.

In addition to explaining how splines can be fit quickly (do some matrix arith-
metic), this illustrates two important tricks. One, which we won’t explore further
here, is to turn a nonlinear regression problem into one which is linear in another
set of basis functions. This is like using not just one transformation of the input vari-
ables, but a whole library of them, and letting the data decide which transformations
are important. There remains the issue of selecting the basis functions, which can be
quite tricky. In addition to the spline basis6, most choices are various sorts of waves —
sine and cosine waves of different frequencies, various wave-forms of limited spatial
extent (“wavelets”), etc. The ideal is to chose a function basis where only a few non-
zero coefficients would need to be estimated, but this requires some understanding
of the data. . .

The other trick is that of stabilizing an unstable estimation problem by adding a
penalty term. This reduces variance at the cost of introducing some bias. Exercise 2
explores this idea.

8.3.2 Degrees of Freedom

You may have noticed that we haven’t, so far, talked about the degrees of freedom of
our regression models. This is one of those concepts which is much more important
for linear regression than elsewhere, but it does still have its uses, and this is a good
place to explain how it’s calculated for more general models.

First, though, we need to recall how it works for linear regression. We’ll start
with an n× p data matrix of predictor variables x, and an n×1 column matrix of re-
sponse values y. The ordinary least squares estimate of the p-dimensional coefficient
vector β is

β̂=
�

xT x
�−1

xT y (8.22)

6Or, really, bases; there are multiple sets of basis functions for the splines, just like there are multiple
sets of basis vectors for the plane. If you see the phrase “B splines”, it refers to a particular choice of spline
basis functions.
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This implies, in turn, that we can write the fitted values in terms of x and y:

ŷ = xβ̂ (8.23)

=
�

x
�

xT x
�−1

xT
�

y (8.24)

= hy (8.25)

where h is the n×n matrix, where hi j says how much of each observed y j contributes
to each fitted ŷi . This is called the influence matrix, or less formally the hat matrix.

Notice that h depends only on the predictor variables in x; the observed response
values in y don’t matter. If we change around y, the fitted values ŷ will also change,
but only within the limits allowed by h. There are n independent coordinates along
which y can change, so we say the data have n degrees of freedom. Once x and so
h are fixed, however, ŷ has to lie in an (n − p)-dimensional hyper-plane in this n-
dimensional space. There are only n − p independent coordinates along which the
fitted values can move. Hence we say that the residual degrees of freedom are n− p,
and p degrees of freedom are captured by the linear regression.

The algebraic expression of this fact is that, for a linear regression, the trace of h
is always p:

trh = tr
�

x
�

xT x
�−1

xT
�

(8.26)

= tr
�

xT x
�

xT x
�−1�

(8.27)

= tr Ip = p (8.28)

since for any matrices a,b, tr (ab) = tr (ba), and xT x is a p × p matrix7.
For the general class of linear smoothers (Chapter 1), at an arbitrary point x the

predicted value of y is a weighted (linear) combination of the observed values,

r̂ (x) =
n
∑

j=1

ŵ(x, x j )y j (8.29)

In particular,

ŷi = r̂ (xi ) =
n
∑

j=1

ŵ(xi , x j )y j (8.30)

and so we can write
ŷ= hy (8.31)

where now, in the general case, hi j = ŵ(xi , x j ). We still call h the hat or influence
matrix. For a kernel smoother, this can be directly calculated from the kernels, but
for a spline we need to use Eq. 8.21.

By analogy with Eq. 8.28, we define the effective degrees of freedom of a linear
smoother to be trh. Many of the formulas you learned for linear regression, e.g.,
dividing the residual sum of squares by n− p to get an unbiased estimate of the noise
variance, continue to hold approximately for linear smoothers with the effective de-
grees of freedom in place of p.

7This assumes that xT x has an inverse. Can you work out what happens when it does not?
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8.4 Splines in Multiple Dimensions
Suppose we have two input variables, x and z, and a single response y. How could
we do a spline fit?

One approach is to generalize the spline optimization problem so that we penal-
ize the curvature of the spline surface (no longer a curve). The appropriate penalized
least-squares objective function to minimize is

L (m,λ) =
n
∑

i=1

(yi −m(xi , zi ))
2+λ

∫





�

∂ 2m

d x2

�2

+ 2

�

∂ 2m

d xd z

�2

+
�

∂ 2m

d z2

�2

d xd z

(8.32)
The solution is called a thin-plate spline. This is appropriate when the two input
variables x and z should be treated more or less symmetrically8.

An alternative is use the spline basis functions from section 8.3. We write

m(x) =
M1
∑

j=1

M2
∑

k=1

β j k B j (x)Bk (z) (8.33)

Doing all possible multiplications of one set of numbers or functions with another
is said to give their outer product or tensor product, so this is known as a tensor
product spline or tensor spline. We have to chose the number of terms to include
for each variable (M1 and M2), since using n for each would give n2 basis functions,
and fitting n2 coefficients to n data points is asking for trouble.

8.5 Smoothing Splines versus Kernel Regression
For one input variable and one output variable, smoothing splines can basically do
everything which kernel regression can do9. The advantages of splines are their com-
putational speed and (once we’ve calculated the basis functions) simplicity, as well as
the clarity of controlling curvature directly. Kernels however are easier to program
(if slower to run), easier to analyze mathematically10, and extend more straightfor-
wardly to multiple variables, and to combinations of discrete and continuous vari-
ables.

8.6 Further Reading
There are good discussions of splines in Simonoff (1996, §5), Hastie et al. (2009, ch.
5) and Wasserman (2006, §5.5). Wood (2006, ch. 4) includes a thorough practical

8Generalizations to more than two input variables are conceptually straightforward — just keep adding
up more partial derivatives — but the book-keeping gets annoying.

9In fact, as n→∞, smoothing splines approach the kernel regression curve estimated with a specific,
rather non-Gaussian kernel. See Simonoff (1996, §5.6.2).

10Most of the bias-variance analysis for kernel regression can be done with basic calculus, as we did in
Chapter 4. The corresponding analysis for splines requires working in infinite-dimensional function spaces
called “Hilbert spaces”. It’s a pretty theory, if you like that sort of thing.
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treatment of splines as a preparation for additive models (see Chapter 9 in these notes)
and generalized additive models (see Chapters 12–13).

The classic reference, by one of the people who developed splines as a useful
statistical tool, is Wahba (1990), which is great if you already know what a Hilbert
space is and how to navigate one.

The first introduction of spline smoothing in the statistical literature seems to
be Whittaker (1922). (“Graduation” was the term often used then for what we call
“smoothing”.) He begins with an “inverse probability” (we would now say “Bayesian”)
argument for minimizing Eq. 8.1 to find the most probable curve, based on the a
priori hypothesis of smooth Gaussian curves observed through Gaussian error, and
gives tricks for fitting splines more easily with the mathematical technology available
in 1922. He does not, however, use the word “spline”, and I am not sure when that
analogy was made.

In economics and econometrics, the use of spline smoothing on time series is
known as the “Hodrick-Prescott filter”, after two economists who re-discovered the
technique in 1981, along with a fallacious argument that λ should always take a partic-
ular value (1600), regardless of the data11. See Paige and Trindade (2010) for a (polite)
discussion, and demonstration of the advantages of cross-validation.

8.7 Exercises

1. The smooth.spline function lets you set the effective degrees of freedom ex-
plicitly. Write a function which chooses the number of degrees of freedom by
five-fold cross-validation.

2. When we can’t measure our predictor variables perfectly, it seems like a good
idea to try to include multiple measurements for each one of them. For in-
stance, if we were trying to predict grades in college from grades in high school,
we might include the student’s grade from each year separately, rather than sim-
ply averaging them. Multiple measurements of the same variable will however
tend to be strongly correlated, so this means that a linear regression will be
nearly multi-collinear. This in turn means that it will tend to have multiple,
mutually-canceling large coefficients. This makes it hard to interpret the re-
gression and hard to treat the predictions seriously. (See §2.1.1.)

One strategy for coping with this situation is to carefully select the variables
one uses in the regression. Another, however, is to add a penalty for large
coefficient values. For historical reasons, this second strategy is called ridge
regression, or Tikhonov regularization. Specifically, while the OLS estimate
is

bβOLS = argmin
β

1

n

n
∑

i=1

(yi − xiβ)
2 , (8.34)

11As it were: Hodrick and Prescott re-invented the wheel, and decided that it should be an octagon.
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the regularized or penalized estimate is

bβRR = argmin
β





1

n

n
∑

i=1

(yi − xiβ)
2



+
p
∑

j=1

β2
j (8.35)

(a) Show that the matrix form of the ridge-regression objective function is

n−1(y− xβ)T (y− xβ)+λβTβ (8.36)

(b) Show that the optimum is

bβRR = (x
T x+ nλI)−1xT y (8.37)

(c) What happens as λ→ 0? As λ→∞? (For the latter, it may help to think
about the case of a one-dimensional X first.)

(d) Let Y = Z + ε, with Z ∼ U (−1,1) and ε ∼ N (0,0.05). Generate 2000
draws from Z and Y . Now let Xi = 0.9Z + η, with η ∼ N (0,0.05), for
i ∈ 1 : 50. Generate corresponding Xi values. Using the first 1000 rows of
the data only, do ridge regression of Y on the Xi (not on Z), plotting the
50 coefficients as functions of λ. Explain why ridge regression is called a
shrinkage estimator.

(e) Use cross-validation with the first 1000 rows to pick the optimal value of
λ. Compare the out-of-sample performance you get with this penalty to
the out-of-sample performance of OLS.

For more on ridge regression, see Appendix D.6.1.
[[TODO: Improve connec-
tion of this exercise to ap-
pendix]]
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Chapter 9

Additive Models

[[TODO: proper opening]]

9.1 Partial Residuals and Back-fitting for Linear Mod-
els

The general form of a linear regression model is

E
�

Y |~X = ~x
�

=β0+ ~β ·~x =
p
∑

j=0

β j x j (9.1)

where for j ∈ 1 : p, the x j are the components of ~x, and x0 is always the constant
1. (Adding this fictitious constant variable lets us handle the intercept just like any
other regression coefficient.)

Suppose we don’t condition on all of ~X but just one component of it, say Xk .
What is the conditional expectation of Y ?

E
�

Y |Xk = xk
�

= E
�

E
�

Y |X1,X2, . . .Xk , . . .Xp

�

|Xk = xk

�

(9.2)

= E







p
∑

j=0

β j X j |Xk = xk






(9.3)

= βk xk +E







∑

j 6=k

β j X j |Xk = xk






(9.4)

where the first line uses the law of total expectation1, and the second line uses Eq.

1As you learned in baby prob., this is the fact that E[Y |X ] = E[E[Y |X ,Z] |X ] — that we can always
condition on another variable or variables (Z), provided we then average over those extra variables when
we’re done.
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9.1. Turned around,

βk xk = E
�

Y |Xk = xk
�

−E







∑

j 6=k

β j X j |Xk = xk






(9.5)

= E






Y −







∑

j 6=k

β j X j






|Xk = xk






(9.6)

The expression in the expectation is the k th partial residual — the (total) residual
is the difference between Y and its expectation, the partial residual is the difference
between Y and what we expect it to be ignoring the contribution from Xk . Let’s
introduce a symbol for this, say Y (k).

βk xk = E
�

Y (k)|Xk = xk

�

(9.7)

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that Xk is the only input feature appearing here — if we could somehow get
hold of the partial residuals, then we can findβk by doing a simple regression, rather
than a multiple regression. Of course to get the partial residual we need to know all
the other β j s. . .

This suggests the following estimation scheme for linear models, known as the
Gauss-Seidel algorithm, or more commonly and transparently as back-fitting; the
pseudo-code is in Example 24.

This is an iterative approximation algorithm. Initially, we look at how far each
point is from the global mean, and do a simple regression of those deviations on
the first input variable. This then gives us a better idea of what the regression surface
really is, and we use the deviations from that surface in a simple regression on the next
variable; this should catch relations between Y and X2 that weren’t already caught
by regressing on X1. We then go on to the next variable in turn. At each step,
each coefficient is adjusted to fit in with what we have already guessed about the
other coefficients — that’s why it’s called “back-fitting”. It is not obvious2 that this
converges, but it does, and the fixed point on which it converges is the usual least-
squares estimate of β.

Back-fitting is not usually how we fit linear models any more, because with mod-
ern numerical linear algebra it’s actually faster to just calculate (xT x)−1xT y. But the
cute thing about back-fitting is that it doesn’t actually rely on the model being linear.

9.2 Additive Models
The additive model for regression is

E
�

Y |~X = ~x
�

= α+
p
∑

j=1

f j (x j ) (9.8)

2Unless, I suppose, you’re Gauss.
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Given: n× (p + 1) inputs x (0th column all 1s)
n× 1 responses y
small tolerance δ > 0

center y and each column of x
bβ j ← 0 for j ∈ 1 : p

until (all | bβ j − γ j | ≤ δ) {
for k ∈ 1 : p {

y (k)i = yi −
∑

j 6=k
bβ j xi j

γk ← regression coefficient of y (k) on x·k
bβk ← γk

}
}
bβ0←

�

n−1∑n
i=1 yi

�

−
∑p

j=1
bβ j n

−1∑n
i=1 xi j

Return: ( bβ0, bβ1, . . . bβp )

Code Example 24: Pseudocode for back-fitting linear models. Assume we make at
least one pass through the until loop. Recall from Chapter 1 that centering the data
does not change theβ j ; this way the intercept only have to be calculated once, at the
end.

This includes the linear model as a special case, where f j (x j ) = β j x j , but it’s clearly
more general, because the f j s can be pretty arbitrary nonlinear functions. The idea
is still that each input feature makes a separate contribution to the response, and
these just add up, but these contributions don’t have to be strictly proportional to
the inputs. We do need to add a restriction to make it identifiable; without loss of
generality, say that E[Y ] = α and E

�

f j (X j )
�

= 0.3

Additive models keep a lot of the nice properties of linear models, but are more
flexible. One of the nice things about linear models is that they are fairly straightfor-
ward to interpret: if you want to know how the prediction changes as you change x j ,
you just need to know β j . The partial response function f j plays the same role in an
additive model: of course the change in prediction from changing x j will generally
depend on the level x j had before perturbation, but since that’s also true of reality
that’s really a feature rather than a bug. It’s true that a set of plots for f j s takes more
room than a table of β j s, but it’s also nicer to look at, conveys more information,
and imposes fewer systematic distortions on the data.

Now, one of the nice properties which additive models share with linear ones has

3To see why we need to do this, imagine the simple case where p = 2. If we add constants c1 to f1
and c2 to f2, but subtract c1 + c2 from α, then nothing observable has changed about the model. This
degeneracy or lack of identifiability is a little like the way collinearity keeps us from defining true slopes
in linear regression. But it’s less harmful than collinearity because we really can fix it by the convention
given above.
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Given: n× p inputs x
n× 1 responses y
small tolerance δ > 0
one-dimensional smoother S

bα← n−1∑n
i=1 yi

bf j ← 0 for j ∈ 1 : p

until (all | bf j − g j | ≤ δ) {
for k ∈ 1 : p {

y (k)i = yi −
∑

j 6=k
bf j (xi j )

gk ←S (y (k) ∼ x·k )
gk ← gk − n−1∑n

i=1 gk (xi k )
bfk ← gk

}
}
Return: (bα, bf1, . . . bfp )

Code Example 25: Pseudo-code for back-fitting additive models. Notice the extra
step, as compared to back-fitting linear models, which keeps each partial response
function centered.

to do with the partial residuals. Defining

Y (k) = Y −






α+

∑

j 6=k

f j (x j )






(9.9)

a little algebra along the lines of the last section shows that

E
�

Y (k)|Xk = xk

�

= fk (xk ) (9.10)

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use back-fitting to estimate additive models. But we have spent a lot of time talking
about how to use smoothers to fit one-dimensional regressions! We could use nearest
neighbors, or splines, or kernels, or local-linear regression, or anything else we feel
like substituting here.

Our new, improved back-fitting algorithm in Example 25. Once again, while it’s
not obvious that this converges, it does converge. Also, the back-fitting procedure
works well with some complications or refinements of the additive model. If we
know the function form of one or another of the f j , we can fit those parametrically
(rather than with the smoother) at the appropriate points in the loop. (This would
be a semiparametric model.) If we think that there is an interaction between x j and
xk , rather than their making separate additive contributions, we can smooth them
together; etc.
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There are actually two packages standard packages for fitting additive models in
R: gam and mgcv. Both have commands called gam, which fit generalized additive
models — the generalization is to use the additive model for things like the probabil-
ities of categorical responses, rather than the response variable itself. If that sounds
obscure right now, don’t worry — we’ll come back to this in Chapters 12–13 after
we’ve looked at generalized linear models. The last section of this chapter illustrates
using these packages to fit an additive model.

9.3 The Curse of Dimensionality

Before illustrating how additive models work in practice, let’s talk about why we’d
want to use them. So far, we have looked at two extremes for regression models;
additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method (with
p + 1) parameters. Its weakness is that the true regression function r is hardly ever
linear, so even with infinite data linear regression will always make systematic mis-
takes in its predictions — there’s always some approximation bias, bigger or smaller
depending on how non-linear r is. The strength of linear regression is that it con-
verges very quickly as we get more data. Generally speaking,

M SElinear = σ
2+ alinear+O(n−1) (9.11)

where the first term is the intrinsic noise around the true regression function, the
second term is the (squared) approximation bias, and the last term is the estimation
variance. Notice that the rate at which the estimation variance shrinks doesn’t de-
pend on p — factors like that are all absorbed into the big O.4 Other parametric
models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely non-parametric regres-
sion methods, such as kernel regression, local polynomials, k-nearest neighbors, etc.
Here the limiting approximation bias is actually zero, at least for any reasonable re-
gression function r . The problem is that they converge more slowly, because we need
to use the data not just to figure out the coefficients of a parametric model, but the
sheer shape of the regression function. We saw in Chapter 4 that the mean-squared
error of kernel regression in one dimension is σ2 +O(n−4/5). Splines, k-nearest-
neighbors (with growing k), etc., all attain the same rate. But in p dimensions, this
becomes (Wasserman, 2006, §5.12)

M SEnonpara−σ
2 =O(n−4/(p+4)) (9.12)

There’s no ultimate approximation bias term here. Why does the rate depend on p?
Well, to hand-wave a bit, think of the smoothing methods, where br (~x) is an average
over yi for ~xi near ~x. In a p dimensional space, the volume within ε of ~x is O(εp ), so
to get the same density (points per unit volume) around ~x takes exponentially more
data as p grows. The appearance of the 4s is a little more mysterious, but can be

4See Appendix B you are not familiar with “big O” notation.
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resolved from an error analysis of the kind we did for kernel density estimation in
Chapter 45.

For p = 1, the non-parametric rate is O(n−4/5), which is of course slower than
O(n−1), but not all that much, and the improved bias usually more than makes up
for it. But as p grows, the non-parametric rate gets slower and slower, and the fully
non-parametric estimate more and more imprecise, yielding the infamous curse of
dimensionality. For p = 100, say, we get a rate of O(n−1/26), which is not very good
at all. Said another way, to get the same precision with p inputs that n data points
gives us with one input takes n(4+p)/5 data points. For p = 100, this is n20.8, which
tells us that matching the error of n = 100 one-dimensional observations requires
O(4× 1041) hundred-dimensional observations.

So completely unstructured non-parametric regressions won’t work very well in
high dimensions, at least not with plausible amounts of data. The trouble is that
there are just too many possible high-dimensional functions, and seeing only a trillion
points from the function doesn’t pin down its shape very well at all.

This is where additive models come in. Not every regression function is additive,
so they have, even asymptotically, some approximation bias. But we can estimate
each f j by a simple one-dimensional smoothing, which converges at O(n−4/5), almost
as good as the parametric rate. So overall

M SEadditive−σ
2 = aadditive+O(n−4/5) (9.13)

Since linear models are a sub-class of additive models, aadditive ≤ alm. From a purely
predictive point of view, the only time to prefer linear models to additive models is
when n is so small that O(n−4/5)−O(n−1) exceeds this difference in approximation
biases; eventually the additive model will be more accurate.6

5More exactly, remember that in one dimension, the bias of a kernel smoother with bandwidth h is
O(h2), and the variance is O(1/nh), because only samples falling in an interval about h across contribute
to the prediction at any one point, and when h is small, the number of such samples is proportional to
nh. Adding bias squared to variance gives an error of O(h4) +O(1/nh), solving for the best bandwidth
gives hopt =O(n−1/5), and the total error is then O(n−4/5). Suppose for the moment that in p dimensions
we use the same bandwidth along each dimension. (We get the same end result with more work if we
let each dimension have its own bandwidth.) The bias is still O(h2), because the Taylor expansion still
goes through. But now only samples falling into a region of volume O(hd ) around x contribute to the
prediction at x, so the variance is O(1/nhd ). The best bandwidth is now hopt =O(n−1/(p+4)), yielding an

error of O(n−4/(p+4)) as promised.
6Unless the best additive approximation to r really is linear; then the linear model has no more bias

and better variance.
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9.4 Example: California House Prices Revisited
[[TODO: Incorporate Kevin
Gilbert’s little R tricks for s()
formulas, see e-mail of 28 and
29 July 2014]]

As an example, we’ll revisit the housing price data from the homework. This has
both California and Pennsylvania, but it’s hard to visually see patterns with both
states; I’ll do California, and let you replicate this all on Pennsylvania, and even on
the combined data.

Start with getting the data:

housing <- na.omit(read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv"))
calif <- housing[housing$STATEFP==6,]

(How do I know that the STATEFP code of 6 corresponds to California?)
We’ll fit a linear model for the log price, on the thought that it makes some sense

for the factors which raise or lower house values to multiply together, rather than
just adding.

calif.lm <- lm(log(Median_house_value) ~ Median_household_income
+ Mean_househould_income + POPULATION + Total_units + Vacant_units + Owners
+ Median_rooms + Mean_household_size_owners + Mean_household_size_renters
+ LATITUDE + LONGITUDE, data = calif)

This is very fast — about a fifth of a second on my laptop.
Here are the summary statistics7:

> print(summary(calif.lm),signif.stars=FALSE,digits=3)

Call:
lm(formula = log(Median_house_value) ~ Median_household_income +

+ Mean_househould_income + POPULATION + Total_units + Vacant_units +
Owners + Median_rooms + Mean_household_size_owners
+ Mean_household_size_renters + LATITUDE + LONGITUDE, data = calif)

Residuals:
Min 1Q Median 3Q Max

-3.855 -0.153 0.034 0.189 1.214

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.74e+00 5.28e-01 -10.86 < 2e-16
Median_household_income 1.34e-06 4.63e-07 2.90 0.0038
Mean_househould_income 1.07e-05 3.88e-07 27.71 < 2e-16
POPULATION -4.15e-05 5.03e-06 -8.27 < 2e-16
Total_units 8.37e-05 1.55e-05 5.41 6.4e-08
Vacant_units 8.37e-07 2.37e-05 0.04 0.9719
Owners -3.98e-03 3.21e-04 -12.41 < 2e-16

7I have suppressed the usual stars on “significant” regression coefficients, because, as discussed in Chap-
ter 2, those are not, in fact, the most important variables, and I have reined in R’s tendency to use far too
many decimal places.
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predlims <- function(preds,sigma) {
prediction.sd <- sqrt(preds$se.fit^2+sigma^2)
upper <- preds$fit+2*prediction.sd
lower <- preds$fit-2*prediction.sd
lims <- cbind(lower=lower,upper=upper)
return(lims)

}

Code Example 26: Function for calculating quick-and-dirty prediction limits from
a prediction object (preds) containing fitted values and their standard errors, and an
estimate of the over-all noise level. Because those are two (presumably uncorrelated)
sources of noise, we need to combine the standard deviations by “adding in quadra-
ture”.

Median_rooms -1.62e-02 8.37e-03 -1.94 0.0525
Mean_household_size_owners 5.60e-02 7.16e-03 7.83 5.8e-15
Mean_household_size_renters -7.47e-02 6.38e-03 -11.71 < 2e-16
LATITUDE -2.14e-01 5.66e-03 -37.76 < 2e-16
LONGITUDE -2.15e-01 5.94e-03 -36.15 < 2e-16

Residual standard error: 0.317 on 7469 degrees of freedom
Multiple R-squared: 0.639,Adjusted R-squared: 0.638
F-statistic: 1.2e+03 on 11 and 7469 DF, p-value: <2e-16

Figure 9.1 plots the predicted prices,±2 standard errors, against the actual prices.
The predictions are not all that accurate — the RMS residual is 0.317 on the log scale
(i.e., 37%), but they do have pretty reasonable coverage; about 96% of actual precise
fall within the prediction limits8

sqrt(mean(residuals(calif.lm)^2))
mean((log(calif$Median_house_value) <= predlims.lm[,"upper"])
& (log(calif$Median_house_value) >= predlims.lm[,"lower"])

On the other hand, the predictions are quite precise, with the median of the calculated
standard errors being 0.011 (i.e., 1.1%). This linear model thinks it knows what’s
going on.

Next, we’ll fit an additive model, using the gam function from the mgcv package;
this automatically sets the bandwidths using a fast approximation to leave-one-out

8Remember from your linear regression class that there are two kinds of confidence intervals we might
want to use for prediction. One is a confidence interval for the conditional mean at a given value of x; the
other is a confidence interval for the realized values of Y at a given x. Earlier examples (and homework)
have emphasized the former, but since we don’t know the true conditional means here, we need to use
the latter sort of intervals, prediction intervals proper, to evaluate coverage. The predlims function in
Figure 9.1 calculates a rough prediction interval by taking the standard error of the conditional mean,
combining it with the estimated standard deviation, and multiplying by 2. Strictly speaking, we ought to
worry about using a t -distribution rather than a Gaussian here, but with 7469 residual degrees of freedom,
this isn’t going to matter much. (Assuming Gaussian noise is likely to be more of a concern, but this is
only meant to be a rough cut anyway.)
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preds.lm <- predict(calif.lm,se.fit=TRUE)
predlims.lm <- predlims(preds.lm,sigma=summary(calif.lm)$sigma)
plot(calif$Median_house_value,exp(preds.lm$fit),type="n",

xlab="Actual price ($)",ylab="Predicted ($)", main="Linear model")
segments(calif$Median_house_value,exp(predlims.lm[,"lower"]),

calif$Median_house_value,exp(predlims.lm[,"upper"]), col="grey")
abline(a=0,b=1,lty="dashed")
points(calif$Median_house_value,exp(preds.lm$fit),pch=16,cex=0.1)

Figure 9.1: Actual median house values (horizontal axis) versus those predicted by
the linear model (black dots), plus or minus two predictive standard errors (grey
bars). The dashed line shows where actual and predicted prices would be equal. Here
predict gives both a fitted value for each point, and a standard error for that pre-
diction. (There is no newdata argument in this call to predict, so it defaults to
the training data used to learn calif.lm, which in this case is what we want.) I’ve
exponentiated the predictions so that they’re comparable to the original values (and
because it’s easier to grasp dollars than log-dollars).
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CV called generalized cross-validation, or GCV.

require(mgcv)
system.time(calif.gam <- gam(log(Median_house_value)
~ s(Median_household_income) + s(Mean_househould_income) + s(POPULATION)
+ s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms)
+ s(Mean_household_size_owners) + s(Mean_household_size_renters)
+ s(LATITUDE) + s(LONGITUDE), data=calif))
user system elapsed
5.481 0.441 17.700

(That is, it took almost eighteen seconds in total to run this.) The s() terms in
the gam formula indicate which terms are to be smoothed — if we wanted particular
parametric forms for some variables, we could do that as well. (Unfortunately we
can’t just write MedianHouseValue ∼ s(.), we have to list all the variables on the
right-hand side.) The smoothing here is done by splines, and there are lots of options
for controlling the splines, if you know what you’re doing.

Figure 9.2 compares the predicted to the actual responses. The RMS error has
improved (0.27 on the log scale, or 30%, with 96% of observations falling with ±2
standard errors of their fitted values), at only a fairly modest cost in the claimed
precision (the RMS standard error of prediction is 0.020, or 2.0%). Figure 9.3 shows
the partial response functions.

It makes little sense to have latitude and longitude make separate additive contri-
butions here; presumably they interact. We can just smooth them together9:

calif.gam2 <- gam(log(Median_house_value)
~ s(Median_household_income) + s(Mean_househould_income) + s(POPULATION)
+ s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms)
+ s(Mean_household_size_owners) + s(Mean_household_size_renters)
+ s(LONGITUDE,LATITUDE), data=calif)

This gives an RMS error of ±0.25 (log-scale) and 96% coverage, with a median stan-
dard error of 0.021, so accuracy is improving (at least in sample), with little loss of
precision.

preds.gam2 <- predict(calif.gam2,se.fit=TRUE)
predlims.gam2 <- predlims(preds.gam2,sigma=sqrt(calif.gam2$sig2))
mean((log(calif$Median_house_value) <= predlims.gam2[,"upper"]) &
(log(calif$Median_house_value) >= predlims.gam2[,"lower"]))

Figures 9.5 and 9.6 show two different views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specifically
towards the coast, and even more specifically towards the great coastal cities. In the
contour plot, one sees more clearly an inward bulge of a negative, but not too very
negative, contour line (between -122 and -120 longitude) which embraces Napa, Sacra-
mento, and some related areas, which are comparatively more developed and more

9If the two variables which interact have very different magnitudes, it’s better to smooth them with a
te() term than an s() term — see help(gam.models) — but here they are comparable.
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preds.gam <- predict(calif.gam,se.fit=TRUE)
predlims.gam <- predlims(preds.gam,sigma=sqrt(calif.gam$sig2))
plot(calif$Median_house_value,exp(preds.gam$fit),type="n",

xlab="Actual price ($)",ylab="Predicted ($)", main="First additive model")
segments(calif$Median_house_value,exp(predlims.gam[,"lower"]),

calif$Median_house_value,exp(predlims.gam[,"upper"]), col="grey")
abline(a=0,b=1,lty="dashed")
points(calif$Median_house_value,exp(preds.gam$fit),pch=16,cex=0.1)

Figure 9.2: Actual versus predicted prices for the additive model, as in Figure 9.1.
Note that the sig2 attribute of a model returned by gam() is the estimate of the
noise variance around the regression surface (σ2).
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plot(calif.gam,scale=0,se=2,shade=TRUE,pages=1)

Figure 9.3: The estimated partial response functions for the additive model, with a
shaded region showing ±2 standard errors. The tick marks along the horizontal axis
show the observed values of the input variables (a rug plot); note that the error bars
are wider where there are fewer observations. Setting pages=0 (the default) would
produce eight separate plots, with the user prompted to cycle through them. Setting
scale=0 gives each plot its own vertical scale; the default is to force them to share the
same one. Finally, note that here the vertical scales are logarithmic.
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graymapper <- function(z, x=calif$LONGITUDE,y=calif$LATITUDE, n.levels=10,
breaks=NULL,break.by="length",legend.loc="topright",digits=3,...) {
my.greys = grey(((n.levels-1):0)/n.levels)
if (!is.null(breaks)) {

stopifnot(length(breaks) == (n.levels+1))
}
else {

if(identical(break.by,"length")) {
breaks = seq(from=min(z),to=max(z),length.out=n.levels+1)

} else {
breaks = quantile(z,probs=seq(0,1,length.out=n.levels+1))

}
}
z = cut(z,breaks,include.lowest=TRUE)
colors = my.greys[z]
plot(x,y,col=colors,bg=colors,...)
if (!is.null(legend.loc)) {

breaks.printable <- signif(breaks[1:n.levels],digits)
legend(legend.loc,legend=breaks.printable,fill=my.greys)

}
invisible(breaks)

}

Code Example 27: Map-making code. In its basic use, this takes vectors for x and
y coordinates, and draws gray points whose color depends on a third vector for z,
with darker points indicating higher values of z. Options allow for the control of
the number of gray levels, setting the breaks between levels automatically, and using
a legend. Returning the break-points makes it easier to use the same scale in multiple
maps. See online for commented code.

expensive than the rest of central California, and so more expensive than one would
expect based on their distance from the coast and San Francisco.

As you will recall from the homework, one of the big things wrong with the
linear model was that its errors, i.e., the residuals, were highly structured and very
far from random. In essence, it totally missed the existence of cities, and the fact
that urban real estate is more expensive. It’s a good idea, therefore, to make some
maps, showing the actual values, and then, by way of contrast, the residuals of the
models. Rather than do the plotting by hand over and over, let’s write a function
(Code Example 27).

Figures 9.7 and 9.8 show that allowing for the interaction of latitude and longitude
(the smoothing term plotted in Figures 9.5–9.6) leads to a much more random and
less systematic clumping of residuals. This is desirable in itself, even if it does little to
improve the mean prediction error. Essentially, what that smoothing term is doing is
picking out the existence of California’s urban regions, and their distinction from the
rural background. Examining the plots of the interaction term should suggest to you
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plot(calif.gam2,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

Figure 9.4: Partial response functions and partial residuals for addfit2, as in Figure
9.3. See subsequent figures for the joint smoothing of longitude and latitude, which
here is an illegible mess. See help(plot.gam) for the plotting options used here.
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LONGITUDE

LA
TI
TU
DE

s(LONGITUDE,LATITUDE,28.48)

plot(calif.gam2,select=10,phi=60,pers=TRUE)

Figure 9.5: The result of the joint smoothing of longitude and latitude.
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s(LONGITUDE,LATITUDE,28.48)

LONGITUDE

LA
TI
TU
D
E

-124 -122 -120 -118 -116 -114

34
36

38
40

42

plot(calif.gam2,select=10,se=FALSE)

Figure 9.6: The result of the joint smoothing of longitude and latitude. Setting
se=TRUE, the default, adds standard errors for the contour lines in multiple colors.
Again, note that these are log units.
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how inadequate it would be to just put in a LONGITUDE×LATITUDE term in a linear
model.

Including an interaction between latitude and longitude in a spatial problem is
pretty obvious. There are other potential interactions which might be important
here — for instance, between the two measures of income, or between the total num-
ber of housing units available and the number of vacant units. We could, of course,
just use a completely unrestricted nonparametric regression — going to the opposite
extreme from the linear model. In addition to the possible curse-of-dimensionality
issues, however, getting something like npreg to run with 7000 data points and 11
predictor variables requires a lot of patience. Other techniques, like nearest neighbor
regression or regression trees, may run faster, though cross-validation can be demand-
ing even there.

9.5 Closing Modeling Advice

With modern computing power, there are very few situations in which it is actually
better to do linear regression than to fit an additive model. In fact, there seem to be
only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts linear
relationships among the variables we measure (not others, for which our observ-
ables serve as imperfect proxies).

2. Our data set is so massive that either the extra processing time, or the extra
computer memory, needed to fit and store an additive rather than a linear
model is prohibitive.

Even when the first reason applies, and we have good reasons to believe a linear the-
ory, the truly scientific thing to do would be to check linearity, by fitting a flexible
non-linear model and seeing if it looks close to linear. (We will see formal tests based
on this idea in Chapter 10.) Even when the second reason applies, we would like to
know how much bias we’re introducing by using linear predictors, which we could
do by randomly selecting a subset of the data which is small enough for us to manage,
and fitting an additive model.

In the vast majority of cases when users of statistical software fit linear models,
neither of these reasons applies: theory doesn’t tell us to expect linearity, and our
machines don’t compel us to use it. Linear regression is then employed for no better
reason than that users know how to type lm but not gam. You now know better, and
can spread the word.

9.6 Further Reading

Simon Wood, who wrote the mgcv package, has a very nice book about additive
models and their generalizations, Wood (2006); at this level it’s your best source for
further information. Buja et al. (1989) is a thorough theoretical treatment.
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calif.breaks <- graymapper(calif$Median_house_value, pch=16, xlab="Longitude",
ylab="Latitude",main="Data",break.by="quantiles")

graymapper(exp(preds.lm$fit), breaks=calif.breaks, pch=16, xlab="Longitude",
ylab="Latitude",legend.loc=NULL, main="Linear model")

graymapper(exp(preds.gam$fit), breaks=calif.breaks, legend.loc=NULL,
pch=16, xlab="Longitude", ylab="Latitude",main="First additive model")

graymapper(exp(preds.gam2$fit), breaks=calif.breaks, legend.loc=NULL,
pch=16, xlab="Longitude", ylab="Latitude",main="Second additive model")

Figure 9.7: Maps of real prices (top left), and those predicted by the linear model
(top right), the purely additive model (bottom left), and the additive model with
interaction between latitude and longitude (bottom right). Categories are deciles of
the actual prices.
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graymapper(calif$Median_house_value, pch=16, xlab="Longitude",
ylab="Latitude", main="Data", break.by="quantiles")

errors.in.dollars <- function(x) { calif$Median_house_value - exp(fitted(x)) }
lm.breaks <- graymapper(residuals(calif.lm), pch=16, xlab="Longitude",

ylab="Latitude", main="Residuals of linear model",break.by="quantile")
graymapper(residuals(calif.gam), pch=16, xlab="Longitude",

ylab="Latitude", main="Residuals errors of first additive model",
breaks=lm.breaks, legend.loc=NULL)

graymapper(residuals(calif.gam2), pch=16, xlab="Longitude",
ylab="Latitude", main="Residuals of second additive model",
breaks=lm.breaks, legend.loc=NULL)

Figure 9.8: Actual housing values (top left), and the residuals of the three models.
(The residuals are all plotted with the same color codes.) Notice that both the linear
model and the additive model without spatial interaction systematically mis-price ur-
ban areas. The model with spatial interaction does much better at having randomly-
scattered errors, though hardly perfect. — How would you make a map of the mag-
nitude of regression errors?
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Ezekiel (1924) seems to be the first publication advocating the use of additive
models as a general method, which he called “curvilinear multiple correlation”. His
paper was complete with worked examples on simulated data (with known answers)
and real data (from economics)10. He was explicit that any reasonable smoothing or
regression technique could be used to determine the partial response functions. He
also gave a successive-approximation algorithm for finding partial response functions:
start with an initial guess about all the partial responses; plot all the partial residuals;
refine the partial responses simultaneously; repeat. This differs from back-fitting in
that the partial response functions are updating in parallel within each cycle, not one
after the other. This is a subtle difference, and Ezekiel’s method will often work, but
can run into trouble with correlated predictor variables, when back-fitting will not.

9.7 Exercises
[[TODO: write some]]

10“Each of these curves illustrates and substantiates conclusions reached by theoretical economic analy-
sis. Equally important, they provide definite quantitative statements of the relationships. The method of
. . . curvilinear multiple correlation enable[s] us to use the favorite tool of the economist, caeteris paribus,
in the analysis of actual happenings equally as well as in the intricacies of theoretical reasoning” (p. 453).
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Chapter 10

Testing Parametric Regression
Specifications with
Nonparametric Regression

10.1 Testing Functional Forms
One important, but under-appreciated, use of nonparametric regression is in testing
whether parametric regressions are well-specified.

The typical parametric regression model is something like

Y = f (X ;θ)+ ε (10.1)

where f is some function which is completely specified except for the adjustable
parameters θ, and ε, as usual, is uncorrelated noise. Usually, but not necessarily,
people use a function f that is linear in the variables in X , or perhaps includes some
interactions between them.

How can we tell if the specification is right? If, for example, it’s a linear model,
how can we check whether there might not be some nonlinearity? One common ap-
proach is to modify the specification by adding in specific departures from the model-
ing assumptions — say, adding a quadratic term — and seeing whether the coefficients
that go with those terms are significantly non-zero, or whether the improvement in
fit is significant.1 For example, one might compare the model

Y = θ1x1+θ2x2+ ε (10.2)

to the model
Y = θ1x1+θ2x2+θ3x2

1 + ε (10.3)

by checking whether the estimated θ3 is significantly different from 0, or whether
the residuals from the second model are significantly smaller than the residuals from
the first.

1In my experience, this is second in popularity only to ignoring the issue.
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This can work, if you have chosen the right nonlinearity to test. It has the power
to detect certain mis-specifications, if they exist, but not others. (What if the depar-
ture from linearity is not quadratic but cubic?) If you have good reasons to think that
when the model is wrong, it can only be wrong in certain ways, fine; if not, though,
why only check for those errors?

Nonparametric regression effectively lets you check for all kinds of systematic
errors, rather than singling out a particular one. There are three basic approaches,
which I give in order of increasing sophistication.

• If the parametric model is right, it should predict as well as, or even better than,
the non-parametric one, and we can check whether M SEp (bθ)−M SEn p (br ) is
sufficiently small.

• If the parametric model is right, the non-parametric estimated regression curve
should be very close to the parametric one. So we can check whether f (x; bθ)−
br (x) is approximately zero everywhere.

• If the parametric model is right, then its residuals should be patternless and
independent of input features, because

E[Y − f (x;θ)|X ] = E[ f (x;θ)+ ε− f (x;θ)|X ] = E[ε|X ] = 0 (10.4)

So we can apply non-parametric smoothing to the parametric residuals, y −
f (x; bθ), and see if their expectation is approximately zero everywhere.

We’ll stick with the first procedure, because it’s simpler for us to implement compu-
tationally. However, it turns out to be easier to develop theory for the other two,
and especially for the third — see Li and Racine (2007, ch. 12), or Hart (1997).

Here is the basic procedure.

1. Get data (x1, y1), (x2, y2), . . . (xn , yn).

2. Fit the parametric model, getting an estimate bθ, and in-sample mean-squared
error M SEp (bθ).

3. Fit your favorite nonparametric regression (using cross-validation to pick con-
trol settings as necessary), getting curve br and in-sample mean-squared error
M SEn p (br ).

4. Calculate bt =M SEp (bθ)−M SEn p (br ).

5. Simulate from the parametric model bθ to get faked data (x ′1, y ′1), . . . (x
′
n , y ′n).

6. Fit the parametric model to the simulated data, getting estimate θ̃ and M SEp (θ̃).

7. Fit the nonparametric model to the simulated data, getting estimate r̃ and
M SEn p ( r̃ ).
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8. Calculate T̃ =M SEp (θ̃)−M SEn p ( r̃ ).

9. Repeat steps 5–8 many times to get an estimate of the distribution of T .

10. The p-value is
1+#{T̃>bt}

1+#T .

Let’s step through the logic. In general, the error of the non-parametric model
will be converging to the smallest level compatible with the intrinsic noise of the
process. What about the parametric model?

Suppose on the one hand that the parametric model is correctly specified. Then
its error will also be converging to the minimum — by assumption, it’s got the func-
tional form right so bias will go to zero, and as bθ→ θ0, the variance will also go to
zero. In fact, with enough data the correctly-specified parametric model will actually
generalize better than the non-parametric model2.

Suppose on the other hand that the parametric model is mis-specified. Then it is
predictions are systematically wrong, even with unlimited amounts of data — there’s
some bias which never goes away, no matter how big the sample. Since the non-
parametric smoother does eventually come arbitrarily close to the true regression
function, the smoother will end up predicting better than the parametric model.

Smaller errors for the smoother, then, suggest that the parametric model is wrong.
But since the smoother has higher capacity, it could easily get smaller errors on a
particular sample by chance and/or over-fitting, so only big differences in error count
as evidence. Simulating from the parametric model gives us surrogate data which
looks just like reality ought to, if the model is true. We then see how much better we
could expect the non-parametric smoother to fit under the parametric model. If the
non-parametric smoother fits the actual data much better than this, we can reject the
parametric model with high confidence: it’s really unlikely that we’d see that big an
improvement from using the nonparametric model just by luck.3

As usual, we simulate from the parametric model simply because we have no hope
of working out the distribution of the differences in MSEs from first principles. This
is an example of our general strategy of bootstrapping.

10.1.1 Examples of Testing a Parametric Model

Let’s see this in action. First, let’s detect a reasonably subtle nonlinearity. Take the
non-linear function g (x) = log1+ x, and say that Y = g (x) + ε, with ε being IID
Gaussian noise with mean 0 and standard deviation 0.15. (This is one of the two
examples from the notes to Lecture 4.) Figure 10.1 shows the regression function and[[TODO: Replace “Lecture 4”

with actual cross-ref.]] the data. The nonlinearity is clear with the curve to “guide the eye”, but fairly subtle.
A simple linear regression looks pretty good:

2Remember that the smoother must, so to speak, use up some of the degrees of freedom in the data to
figure out the shape of the regression function. The parametric model, on the other hand, takes the shape
of the basic shape regression function as given, and uses all the degrees of freedom to tune its parameters.

3As usual with p-values, this is not symmetric. A high p-value might mean that the true regression
function is very close to r (x;θ), or it might just mean that we don’t have enough data to draw conclusions.
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x <- runif(300,0,3)
yg <- log(x+1)+rnorm(length(x),0,0.15)
gframe <- data.frame(x=x,y=yg)
plot(x,yg,xlab="x",ylab="y")
curve(log(1+x),col="grey",add=TRUE)

Figure 10.1: True regression curve (grey) and data points (circles). The curve g (x) =
log1+ x.
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> glinfit = lm(y~x,data=gframe)
> print(summary(glinfit),signif.stars=FALSE,digits=2)

Call:
lm(formula = y ~ x, data = gframe)

Residuals:
Min 1Q Median 3Q Max

-0.416 -0.115 0.004 0.118 0.387

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.208 0.019 11 <2e-16
x 0.434 0.011 41 <2e-16

Residual standard error: 0.16 on 298 degrees of freedom
Multiple R-squared: 0.85,Adjusted R-squared: 0.85
F-statistic: 1.7e+03 on 1 and 298 DF, p-value: <2e-16

R2 is ridiculously high — the regression line preserves 85% of the variance in the data.
The p-value reported by R is also very, very low, which seems good, but remember
all this really means is “you’d have to be crazy to think a flat line fit better than one
with a slope” (Figure 10.2)

The in-sample MSE of the linear fit4

> mean(residuals(glinfit)^2)
[1] 0.02617729

The nonparametric regression has a somewhat smaller MSE5

> gnpr <- npreg(y~x,data=gframe)

> gnpr$MSE
[1] 0.02163506

So t̂ = 0.0045:

> t.hat = mean(glinfit$residual^2) - gnpr$MSE
> t.hat
[1] 0.004542232

Now we need to simulate from the fitted parametric model, using its estimated
coefficients and noise level. We have seen several times now how to do this. The
function sim.lm in Example 28 does this, along the same lines as the examples in

4If we ask R for the MSE, by doing summary(glinfit)$sigma2̂, we get 0.02635298. These differ by a
factor of n/(n− 2) = 300/298= 1.0067, because R is trying to estimate the out-of-sample error by scaling
up the in-sample error, the same way the estimated population variance scales up the sample variance. We
want to compare in-sample fits.

5npreg does not apply the kind of correction mentioned in the previous footnote.
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plot(x,yg,xlab="x",ylab="y")
curve(log(1+x),col="grey",add=TRUE,lwd=4)
abline(glinfit,lwd=4)

Figure 10.2: As previous figure, but adding the least-squares regression line (black).
Line widths exaggerated for clarity.
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# One surrogate data set for simple linear regression
# Inputs: linear model (linfit), x values at which to

# simulate (test.x)
# Outputs: Data frame with columns x and y
sim.lm <- function(linfit, test.x) {

n <- length(test.x)
sim.frame <- data.frame(x=test.x)

# Add the y column later
sigma <- summary(linfit)$sigma*(n-2)/n # MLE value
y.sim <- predict(linfit,newdata=sim.frame)
y.sim <- y.sim + rnorm(n,0,sigma) # Add noise
sim.frame <- data.frame(sim.frame,y=y.sim) # Adds column
return(sim.frame)

}

Code Example 28: Simulate a new data set from a linear model, assuming ho-
moskedastic Gaussian noise. It also assumes that there is one input variable, x, and
that the response variable is called y. Could you modify it to work with multiple
regression?

Chapter 6; it assumes homoskedastic Gaussian noise. Again, as before, we need a
function which will calculate the difference in MSEs between a linear model and a
kernel smoother fit to the same data set — which will do automatically what we did
by hand above. This is calc.T in Example 29. Note that the kernel bandwidth has
to be re-tuned to each new data set.

If we call calc.T on the output of sim.lm, we get one value of the test statistic
under the null distribution:

> calc.T(sim.lm(glinfit,x))
[1] 0.001513319

Now we just repeat this a lot to get a good approximation to the sampling distribution
of T under the null hypothesis:

null.samples.T <- replicate(200,calc.T(sim.lm(glinfit,x)))

This takes some time, because each replication involves not just generating a new sim-
ulation sample, but also cross-validation to pick a bandwidth. This adds up to about
a second per replicate on my laptop, and so a couple of minutes for 200 replicates.

(While the computer is thinking, look at the command a little more closely. It
leaves the x values alone, and only uses simulation to generate new y values. This is
appropriate here because our model doesn’t really say where the x values came from;
it’s just about the conditional distribution of Y given X . If the model we were testing
specified a distribution for x, we should generate x each time we invoke calc.T. If
the specification is vague, like “x is IID” but with no particular distribution, then use
the nonparametric bootstrap. The command would be something like
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# Calculate the difference-in-MSEs test statistic
# Inputs: A data frame (my.data)
# Presumes: data has columns "x" and "y", which are input
# and response

# Calls: np::npreg
# Output: Difference in MSEs between linear model and
# kernel smoother

calc.T <- function(data) {
# Fit the linear model, extract residuals, calculate MSE
MSE.p <- mean((lm(y~x, data=data)$residuals)^2)
# npreg gets unhappy when called with a "data" argument
# that is defined inside this function; npregbw does
# not complain
MSE.np.bw <- npregbw(y~x,data=data)
MSE.np <- npreg(MSE.np.bw)$MSE
return(MSE.p - MSE.np)

}

Code Example 29: Calculate the difference-in-MSEs test statistic.

replicate(200,calc.T(sim.lm(glinfit,resample(x)))

using the resample function from lecture 8, to draw a different bootstrap sample of
x each time.)

When it’s done, we can plot the distribution and see that the observed value t̂ is
pretty far out along the right tail (Figure 10.3). This tells us that it’s very unlikely
that npreg would improve so much on the linear model if the latter were true. In
fact, none of the bootstrap replicates were that big:

> sum(null.samples.T > t.hat)
[1] 0

so our estimated p-value is 1
201 . We can thus reject the linear model pretty confi-

dently.6

As a second example, let’s suppose that the linear model is right — then the test
should give us a high p-value. So let us stipulate that in reality

Y = 0.2+ 0.5x +η (10.5)

with η∼N (0,0.152). Figure 10.4 shows data from this, of the same size as before.
Repeating the same exercise as before, we get that t̂ = 6.8× 10−4, together with a

slightly different null distribution (Figure 10.5). Now the p-value is 32%, which one
would be quite rash to reject.

6If we wanted a more precise estimate of the p-value, we’d need to use more bootstrap samples.
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hist(null.samples.T,n=31,xlim=c(min(null.samples.T),1.1*t.hat),probability=TRUE)
abline(v=t.hat)

Figure 10.3: Histogram of the distribution of T =M SEp−M SEn p for data simulated
from the parametric model. The vertical line mark the observed value. Notice that
the mode is positive and the distribution is right-skewed; this is typical.
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y2 = 0.2+0.5*x + rnorm(length(x),0,0.15)
y2.frame <- data.frame(x=x,y=y2)
plot(x,y2,xlab="x",ylab="y")
abline(0.2,0.5,col="grey")

Figure 10.4: Data from the linear model (true regression line in grey).
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y2.fit <- lm(y~x,data=y2.frame)
null.samples.T.y2 <- replicate(200,calc.T(sim.lm(y2.fit,x)))
t.hat2 <- calc.T(y2.frame)
hist(null.samples.T.y2,n=31,probability=TRUE)
abline(v=t.hat2)

Figure 10.5: As in Figure 10.3, but using the data and fits from Figure 10.4.
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10.1.2 Remarks
Other Nonparametric Regressions There is nothing especially magical about us-
ing kernel regression here. Any consistent nonparametric estimator (say, your fa-
vorite spline) would work. They may differ somewhat in their answers on particular
cases.

Additive Alternatives For multivariate regressions, testing against a fully nonpara-
metric alternative can be very time-consuming, as well as running up against curse-
of-dimensionality issues7. A compromise is to test the parametric regression against
an additive model. Essentially nothing has to change.

Testing E[bε|X ] = 0 I mentioned at the beginning of the chapter that one way
to test whether the parametric model is correctly specified is to test whether the
residuals have expectation zero everywhere. This amounts to (i) finding the residuals
by fitting the parametric model, and (ii) comparing the MSE of the “model” that
they have expectation zero with a nonparametric smoothing of the residuals. We just
have to be careful that we simulate from the fitted parametric model, and not just by
resampling the residuals.

Stabilizing the Sampling Distribution of the Test Statistic I have just looked at
the difference in MSEs. The bootstrap principle being invoked is that the sampling
distribution of the test statistic, under the estimated parametric model, should be
close the distribution under the true parameter value. As discussed in Chapter 6,
sometimes some massaging of the test statistic helps bring these distributions closer.
Some modifications to consider:

• Divide the MSE difference by an estimate of the noise σ .

• Divide by an estimate of the noise σ times the difference in degrees of free-
dom, using the estimated, effective degrees of freedom of the nonparametric
regression.

• Use the log ratio of MSEs instead of the MSE difference.

Doing a double bootstrap can help you assess whether these are necessary.

7This curse manifests itself here as a loss of power in the test.
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10.2 Why Use Parametric Models At All?
It might seem by this point that there is little point to using parametric models at
all. Either our favorite parametric model is right, or it isn’t. If it is right, then a
consistent nonparametric estimate will eventually approximate it arbitrarily closely.
If the parametric model is wrong, it will not self-correct, but the non-parametric
estimate will eventually show us that the parametric model doesn’t work. Either
way, the parametric model seems superfluous.

There are two things wrong with this line of reasoning — two good reasons to use
parametric models.

1. One use of statistical models, like regression models, is to connect scientific
theories to data. The theories are about the mechanisms generating the data.
Sometimes these hypotheses are “tight” enough to tell us what the functional
form of the regression should be, or even what the distribution of noise terms
should be, but still contain unknown parameters. In this case, the parame-
ters themselves are substantively meaningful and interesting — we don’t just
care about prediction. It can be very hard to relate non-parametric smoothing
curves to aspects of scientific theories in the same way.8

2. Even if all we care about is prediction accuracy, there is still the bias-variance
trade-off to consider. Non-parametric smoothers will have larger variance in
their predictions, at the same sample size, than correctly-specified parametric
models, simply because the former are more flexible. Both models are converg-
ing on the true regression function, but the parametric model converges faster,
because it searches over a more confined space. In terms of total prediction
error, the parametric model’s low variance plus vanishing bias beats the non-
parametric smoother’s larger variance plus vanishing bias. (Remember that this
is part of the logic of testing parametric models in the previous section.) In the
next section, we will see that this argument can actually be pushed further, to
work with not-quite-correctly specified models.

Of course, both of these advantages of parametric models only obtain if they are
well-specified. If we want to claim those advantages, we need to check the specifica-
tion.

8On the other hand, it is not uncommon for scientists to write down theories positing linear relation-
ships between variables, not because they actually believe that, but because that’s the only thing they know
how to estimate statistically.
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10.3 Why We Sometimes Want Mis-Specified Paramet-
ric Models

Low-dimensional parametric models have potentially high bias (if the real regres-
sion curve is very different from what the model posits), but low variance (because
there isn’t that much to estimate). Non-parametric regression models have low bias
(they’re flexible) but high variance (they’re flexible). If the parametric model is true,
it can converge faster than the non-parametric one. Even if the parametric model isn’t
quite true, a small bias plus low variance can sometimes still beat a non-parametric
smoother’s smaller bias and substantial variance. With enough data the non-parametric
smoother will eventually over-take the mis-specified parametric model, but with small
samples we might be better off embracing bias.

To illustrate, suppose that the true regression function is

E[Y |X = x] = 0.2+
1

2

�

1+
sin x

10

�

x (10.6)

This is very nearly linear over small ranges — say x ∈ [0,3] (Figure 10.6).
I will use the fact that I know the true model here to calculate the actual expected

generalization error, by averaging over many samples (Example 30).
Figure 10.7 shows that, out to a fairly substantial sample size (≈ 500), the lower

bias of the non-parametric regression is systematically beaten by the lower variance
of the linear model — though admittedly not by much.
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h <- function(x) { 0.2 + 0.5*(1+sin(x)/10)*x }
curve(h(x),from=0,to=3)

Figure 10.6: Graph of h(x) = 0.2+ 1
2

�

1+ sin x
10

�

x over [0,3].
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nearly.linear.out.of.sample = function(n) {
# Combines simulating the true model with fitting
# parametric model and smoother, calculating MSEs
x=seq(from=0,to=3,length.out=n)
y = h(x) + rnorm(n,0,0.15)
data <- data.frame(x=x,y=y)
y.new = h(x) + rnorm(n,0,0.15)
sim.lm <- lm(y~x,data=data)
lm.mse = mean(( fitted(sim.lm) - y.new )^2)
sim.np.bw <- npregbw(y~x,data=data)
sim.np <- npreg(sim.np.bw)
np.mse = mean((sim.np$mean - y.new)^2)
mses <- c(lm.mse,np.mse)
return(mses)

}

nearly.linear.generalization = function(n,m=100) {
raw = replicate(m,nearly.linear.out.of.sample(n))
reduced = rowMeans(raw)
return(reduced)

}

Code Example 30: Evaluating the out-of-sample error for the nearly-linear problem
as a function of n, and evaluting the generalization error by averaging over many
samples.
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sizes = c(5,10,15,20,25,30,50,100,200,500)
generalizations = sapply(sizes,nearly.linear.generalization)
plot(sizes,sqrt(generalizations[1,]),ylim=c(0.12,0.22),type="l",

xlab="n",ylab="RMS generalization error")
lines(sizes,sqrt(generalizations[2,]),lty=2)
abline(h=0.15,col="grey")

Figure 10.7: Root-mean-square generalization error for linear model (solid line) and
kernel smoother (dashed line), fit to the same sample of the indicated size. The true
regression curve is as in 10.6, and observations are corrupted by IID Gaussian noise
with σ = 0.15 (grey horizontal line). The cross-over after which the nonparametric
regressor has better generalization performance happens shortly before n = 500.
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Chapter 11

More about Hypothesis Testing

[[To come]]
[[The logic of hypothesis testing: learning by eliminating alternatives. Error by

leaping to conclusions and error by refusing truths, or significance, power, and the
will to believe. Choice of test statistic as a filter on the data. P-values and their
calculation; the importance of sampling distributions. Exact formulas for sampling
distributions as short-cuts for exhaustive simulation. Gygax tests: properly sized,
correctly calculated p-values, utterly useless as evidence. The importance of power,
and of sensitivity of the sampling distribution to the truth. Size-power trade-off;
ROC curves. Ways of increasing power or easing the size-power trade-off. Role of
modeling assumptions in controlling power. Substantive vs. statistical significance
once more. Confidence sets: the confidence set as a bet; turning hypothesis tests into
confidence sets; turning confidence sets into hypothesis tests. Why it is generally
better to report confidence intervals than p-values. Some strategic advice: don’t use
statistical significance as a substitute for thought; avoid dead-salmon testing; test im-
portant null hypotheses against interesting alternatives; test background assumptions;
try sensitivity analyses; be careful of interpretations.]]
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Chapter 12

Logistic Regression

12.1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continuous
variables (as in regression), or at estimating distributions. There are many situations
where however we are interested in input-output relationships, as in regression, but
the output variable is discrete rather than continuous. In particular there are many
situations where we have binary outcomes (it snows in Pittsburgh on a given day, or
it doesn’t; this squirrel carries plague, or it doesn’t; this loan will be paid back, or
it won’t; this person will get heart disease in the next five years, or they won’t). In
addition to the binary outcome, we have some input variables, which may or may
not be continuous. How could we model and analyze such data?

We could try to come up with a rule which guesses the binary output from the
input variables. This is called classification, and is an important topic in statistics
and machine learning. However, simply guessing “yes” or “no” is pretty crude —
especially if there is no perfect rule. (Why should there be a perfect rule?) Something
which takes noise into account, and doesn’t just give a binary answer, will often be
useful. In short, we want probabilities — which means we need to fit a stochastic
model.

What would be nice, in fact, would be to have conditional distribution of the
response Y , given the input variables, Pr (Y |X ). This would tell us about how precise
our predictions are. If our model says that there’s a 51% chance of snow and it doesn’t
snow, that’s better than if it had said there was a 99% chance of snow (though even
a 99% chance is not a sure thing). We will see, in Chapter 16, general approaches
to estimating conditional probabilities non-parametrically, which can use the kernels
for discrete variables from Chapter 4. While there are a lot of merits to this approach,
it does involve coming up with a model for the joint distribution of outputs Y and
inputs X , which can be quite time-consuming.

Let’s pick one of the classes and call it “1” and the other “0”. (It doesn’t mat-
ter which is which.) Then Y becomes an indicator variable, and you can convince
yourself that Pr (Y = 1) = E[Y ]. Similarly, Pr (Y = 1|X = x) = E[Y |X = x]. (In
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a phrase, “conditional probability is the conditional expectation of the indicator”.)
This helps us because by this point we know all about estimating conditional ex-
pectations. The most straightforward thing for us to do at this point would be to
pick out our favorite smoother and estimate the regression function for the indicator
variable; this will be an estimate of the conditional probability function.

There are two reasons not to just plunge ahead with that idea. One is that proba-
bilities must be between 0 and 1, but our smoothers will not necessarily respect that,
even if all the observed yi they get are either 0 or 1. The other is that we might be
better off making more use of the fact that we are trying to estimate probabilities, by
more explicitly modeling the probability.

Assume that Pr (Y = 1|X = x) = p(x;θ), for some function p parameterized by
θ. parameterized function θ, and further assume that observations are independent
of each other. The the (conditional) likelihood function is

n
∏

i=1

Pr
�

Y = yi |X = xi
�

=
n
∏

i=1

p(xi ;θ)
yi (1− p(xi ;θ))

1−yi (12.1)

Recall that in a sequence of Bernoulli trials y1, . . . yn , where there is a constant
probability of success p, the likelihood is

n
∏

i=1

pyi (1− p)1−yi (12.2)

As you learned in basic statistics, this likelihood is maximized when p = p̂ = n−1∑n
i=1 yi .

If each trial had its own success probability pi , this likelihood becomes
n
∏

i=1

pyi
i (1− pi )

1−yi (12.3)

Without some constraints, estimating the “inhomogeneous Bernoulli” model by max-
imum likelihood doesn’t work; we’d get p̂i = 1 when yi = 1, p̂i = 0 when yi = 0,
and learn nothing. If on the other hand we assume that the pi aren’t just arbitrary
numbers but are linked together, if we model the probabilities, those constraints give
non-trivial parameter estimates, and let us generalize. In the kind of model we are
talking about, the constraint, pi = p(xi ;θ), tells us that pi must be the same when-
ever xi is the same, and if p is a continuous function, then similar values of xi must
lead to similar values of pi . Assuming p is known (up to parameters), the likelihood
is a function of θ, and we can estimate θ by maximizing the likelihood. This chapter
will be about this approach.

12.2 Logistic Regression
To sum up: we have a binary output variable Y , and we want to model the condi-
tional probability Pr (Y = 1|X = x) as a function of x; any unknown parameters in
the function are to be estimated by maximum likelihood. By now, it will not surprise
you to learn that statisticians have approach this problem by asking themselves “how
can we use linear regression to solve this?”
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1. The most obvious idea is to let p(x) be a linear function of x. Every increment
of a component of x would add or subtract so much to the probability. The
conceptual problem here is that p must be between 0 and 1, and linear func-
tions are unbounded. Moreover, in many situations we empirically see “dimin-
ishing returns” — changing p by the same amount requires a bigger change in
x when p is already large (or small) than when p is close to 1/2. Linear models
can’t do this.

2. The next most obvious idea is to let log p(x) be a linear function of x, so that
changing an input variable multiplies the probability by a fixed amount. The
problem is that logarithms are unbounded in only one direction, and linear
functions are not.

3. Finally, the easiest modification of log p which has an unbounded range is the
logistic (or logit) transformation, log p

1−p . We can make this a linear func-
tion of x without fear of nonsensical results. (Of course the results could still
happen to be wrong, but they’re not guaranteed to be wrong.)

This last alternative is logistic regression.
Formally, the logistic regression model is that

log
p(x)

1− p(x)
=β0+ x ·β (12.4)

Solving for p, this gives

p(x;β) =
eβ0+x·β

1+ eβ0+x·β
=

1

1+ e−(β0+x·β)
(12.5)

Notice that the over-all specification is a lot easier to grasp in terms of the transformed
probability that in terms of the untransformed probability.1

To minimize the mis-classification rate, we should predict Y = 1 when p ≥ 0.5
and Y = 0 when p < 0.5. This means guessing 1 wheneverβ0+ x ·β is non-negative,
and 0 otherwise. So logistic regression gives us a linear classifier. The decision
boundary separating the two predicted classes is the solution of β0 + x · β = 0,
which is a point if x is one dimensional, a line if it is two dimensional, etc. One can
show (exercise!) that the distance from the decision boundary isβ0/‖β‖+x ·β/‖β‖.
Logistic regression not only says where the boundary between the classes is, but also
says (via Eq. 12.5) that the class probabilities depend on distance from the boundary,
in a particular way, and that they go towards the extremes (0 and 1) more rapidly
when ‖β‖ is larger. It’s these statements about probabilities which make logistic
regression more than just a classifier. It makes stronger, more detailed predictions,
and can be fit in a different way; but those strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice, just
like it’s a modeling choice to predict quantitative variables with linear regression.

1Unless you’ve taken statistical mechanics, in which case you recognize that this is the Boltzmann
distribution for a system with two states, which differ in energy by β0+ x ·β.
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Figure 12.1: Effects of scaling logistic regression parameters. Values of x1 and x2 are
the same in all plots (∼ Unif(−1,1) for both coordinates), but labels were generated
randomly from logistic regressions with β0 = −0.1, β = (−0.2,0.2) (top left); from
β0 = −0.5, β = (−1,1) (top right); from β0 = −2.5, β = (−5,5) (bottom left); and
from a perfect linear classifier with the same boundary. The large black dot is the
origin.
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In neither case is the appropriateness of the model guaranteed by the gods, nature,
mathematical necessity, etc. We begin by positing the model, to get something to
work with, and we end (if we know what we’re doing) by checking whether it really
does match the data, or whether it has systematic flaws.

Logistic regression is one of the most commonly used tools for applied statistics
and discrete data analysis. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity log p/(1− p) plays
an important role in the analysis of contingency tables (the “log odds”). Classi-
fication is a bit like having a contingency table with two columns (classes) and
infinitely many rows (values of x). With a finite contingency table, we can es-
timate the log-odds for each row empirically, by just taking counts in the table.
With infinitely many rows, we need some sort of interpolation scheme; logistic
regression is linear interpolation for the log-odds.

3. It’s closely related to “exponential family” distributions, where the probabil-
ity of some vector v is proportional to expβ0+

∑m
j=1 f j (v)β j . If one of the

components of v is binary, and the functions f j are all the identity function,
then we get a logistic regression. Exponential families arise in many contexts
in statistical theory (and in physics!), so there are lots of problems which can
be turned into logistic regression.

4. It often works surprisingly well as a classifier. But, many simple techniques of-
ten work surprisingly well as classifiers, and this doesn’t really testify to logistic
regression getting the probabilities right.

12.2.1 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we can fit it
using likelihood. For each training data-point, we have a vector of features, xi , and
an observed class, yi . The probability of that class was either p, if yi = 1, or 1− p, if
yi = 0. The likelihood is then

L(β0,β) =
n
∏

i=1

p(xi )
yi (1− p(xi ))

1−yi (12.6)

11:36 Saturday 22nd November, 2014



237 12.2. LOGISTIC REGRESSION

(I could substitute in the actual equation for p, but things will be clearer in a moment
if I don’t.) The log-likelihood turns products into sums:

`(β0,β) =
n
∑

i=1

yi log p(xi )+ (1− yi ) log (1− p(xi )) (12.7)

=
n
∑

i=1

log
�

1− p(xi )
�

+
n
∑

i=1

yi log
p(xi )

1− p(xi )
(12.8)

=
n
∑

i=1

log
�

1− p(xi )
�

+
n
∑

i=1

yi (β0+ xi ·β) (12.9)

=
n
∑

i=1

− log
�

1+ eβ0+xi ·β
�

+
n
∑

i=1

yi (β0+ xi ·β) (12.10)

where in the next-to-last step we finally use equation 12.4.
Typically, to find the maximum likelihood estimates we’d differentiate the log

likelihood with respect to the parameters, set the derivatives equal to zero, and solve.
To start that, take the derivative with respect to one component of β, say β j .

∂ `

∂ β j
= −

n
∑

i=1

1

1+ eβ0+xi ·β
eβ0+xi ·βxi j +

n
∑

i=1

yi xi j (12.11)

=
n
∑

i=1

�

yi − p(xi ;β0,β)
�

xi j (12.12)

We are not going to be able to set this to zero and solve exactly. (That’s a transcenden-
tal equation, and there is no closed-form solution.) We can however approximately
solve it numerically.

12.2.2 Logistic Regression with More Than Two Classes
If Y can take on more than two values, say k of them, we can still use logistic regres-
sion. Instead of having one set of parametersβ0,β, each class c in 0 : (k−1)will have
its own offsetβ(c)0 and vectorβ(c), and the predicted conditional probabilities will be

Pr
�

Y = c |~X = x
�

=
eβ

(c)
0 +x·β(c)

∑

c eβ
(c)
0 +x·β(c)

(12.13)

You can check that when there are only two classes (say, 0 and 1), equation 12.13
reduces to equation 12.5, withβ0 =β

(1)
0 −β

(0)
0 andβ=β(1)−β(0). In fact, no matter

how many classes there are, we can always pick one of them, say c = 0, and fix its
parameters at exactly zero, without any loss of generality2.

2Since we can arbitrarily chose which class’s parameters to “zero out” without affecting the predicted
probabilities, strictly speaking the model in Eq. 12.13 is unidentified. That is, different parameter settings
lead to exactly the same outcome, so we can’t use the data to tell which one is right. The usual response
here is to deal with this by a convention: we decide to zero out the parameters of the first class, and then
estimate the contrasting parameters for the others.
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Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

12.3 Numerical Optimization of the Likelihood
[[TODO: Insert reference to Appendix E.1.2, smooth out following text accord-
ingly]]

12.3.1 Iteratively Re-Weighted Least Squares
This discussion of Newton’s method is quite general, and therefore abstract. In the
particular case of logistic regression, we can make everything look much more “sta-
tistical”.

Logistic regression, after all, is a linear model for a transformation of the proba-
bility. Let’s call this transformation g :

g (p)≡ log
p

1− p
(12.14)

So the model is
g (p) =β0+ x ·β (12.15)

and Y |X = x ∼ Binom(1, g−1(β0+x ·β)). It seems that what we should want to do is
take g (y) and regress it linearly on x. Of course, the variance of Y , according to the
model, is going to change depending on x — it will be (g−1(β0+ x ·β))(1− g−1(β0+
x ·β))— so we really ought to do a weighted linear regression, with weights inversely
proportional to that variance. Since writing g−1(β0+ x ·β) is getting annoying, let’s
abbreviate it by µ (for “mean”), and let’s abbreviate that variance as V (µ).

The problem is that y is either 0 or 1, so g (y) is either−∞ or+∞. We will evade
this by using Taylor expansion.

g (y)≈ g (µ)+ (y −µ)g ′(µ)≡ z (12.16)

The right hand side, z will be our effective response variable, which we will regress
on x. To see why this should give us the right coefficients, substitute for g (µ) in the
definition of z,

z = β0+ x ·β+(y −µ)g ′(µ) (12.17)

and notice that, if we’ve got the coefficients right, E[Y |X = x] =µ, so (y−µ) should
be mean-zero noise. In other words, when we have the right coefficients, z is a linear
function of x plus mean-zero noise. That noise doesn’t necessarily have constant
variance, but we can work it out by propagation of error, getting (g ′(µ))2V (µ), and
so use that in weighted least squares to recover β.

Notice that both the weights and z depend on the parameters of our logistic
regression, through µ. So having done this once, we should really use the new pa-
rameters to update z and the weights, and do it again. Eventually, we come to a fixed
point, where the parameter estimates no longer change.
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The treatment above is rather heuristic3, but it turns out to be equivalent to using
Newton’s method, only with the expected second derivative of the log likelihood,
instead of its actual value.4 Since, with a large number of observations, the observed
second derivative should be close to the expected second derivative, this is only a
small approximation.

12.4 Generalized Linear and Additive Models

Logistic regression is part of a broader family of generalized linear models (GLMs),
where the conditional distribution of the response falls in some parametric family,
and the parameters are set by the linear predictor. Ordinary, least-squares regression
is the case where response is Gaussian, with mean equal to the linear predictor, and
constant variance. Logistic regression is the case where the response is binomial, with
n equal to the number of data-points with the given x (usually but not always 1), and
p is given by Equation 12.5. Changing the relationship between the parameters and
the linear predictor is called changing the link function. For computational reasons,
the link function is actually the function you apply to the mean response to get back
the linear predictor, rather than the other way around — (12.4) rather than (12.5).
There are thus other forms of binomial regression besides logistic regression.5 There
is also Poisson regression (appropriate when the data are counts without any upper
limit), gamma regression, etc.; we will say more about these in Chapter 13.

In R, any standard GLM can be fit using the (base) glm function, whose syn-
tax is very similar to that of lm. The major wrinkle is that, of course, you need
to specify the family of probability distributions to use, by the family option —
family=binomial defaults to logistic regression. (See help(glm) for the gory de-
tails on how to do, say, probit regression.) All of these are fit by the same sort of
numerical likelihood maximization.

One caution about using maximum likelihood to fit logistic regression is that it
can seem to work badly when the training data can be linearly separated. The reason
is that, to make the likelihood large, p(xi ) should be large when yi = 1, and p should
be small when yi = 0. If β0,β0 is a set of parameters which perfectly classifies the
training data, then cβ0, cβ is too, for any c > 1, but in a logistic regression the second
set of parameters will have more extreme probabilities, and so a higher likelihood.
For linearly separable data, then, there is no parameter vector which maximizes the
likelihood, since ` can always be increased by making the vector larger but keeping
it pointed in the same direction.

You should, of course, be so lucky as to have this problem.

3That is, mathematically incorrect.
4This takes a reasonable amount of algebra to show, so we’ll skip it. The key point however is the

following. Take a single Bernoulli observation with success probability p. The log-likelihood is Y log p+
(1−Y ) log1− p. The first derivative with respect to p is Y /p− (1−Y )/(1− p), and the second derivative
is −Y /p2 − (1− Y )/(1− p)2. Taking expectations of the second derivative gives −1/p − 1/(1− p) =
−1/p(1− p). In other words, V (p) = −1/E

�

`′′
�

. Using weights inversely proportional to the variance
thus turns out to be equivalent to dividing by the expected second derivative.

5My experience is that these tend to give similar error rates as classifiers, but have rather different
guesses about the underlying probabilities.
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12.4.1 Generalized Additive Models

A natural step beyond generalized linear models is generalized additive models
(GAMs), where instead of making the transformed mean response a linear function
of the inputs, we make it an additive function of the inputs. This means combining
a function for fitting additive models with likelihood maximization. This is actually
done in R with the same gam function we used for additive models (hence the name).
We will look at how this works in some detail in Chapter 13.

GAMs can be used to check GLMs in much the same way that smoothers can be
used to check parametric regressions: fit a GAM and a GLM to the same data, then
simulate from the GLM, and re-fit both models to the simulated data. Repeated many
times, this gives a distribution for how much better the GAM will seem to fit than
the GLM does, even when the GLM is true. You can then read a p-value off of this
distribution.

12.4.2 An Example (Including Model Checking)

Here’s a worked R example, using the data from the upper right panel of Figure 12.1.
The 50×2 matrix x holds the input variables (the coordinates are independently and
uniformly distributed on [−1,1]), and y.1 the corresponding class labels, themselves
generated from a logistic regression with β0 =−0.5, β= (−1,1).

> logr = glm(y.1 ~ x[,1] + x[,2], family=binomial)
> logr

Call: glm(formula = y.1 ~ x[, 1] + x[, 2], family = binomial)

Coefficients:
(Intercept) x[, 1] x[, 2]

-0.410 -1.050 1.366

Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 68.59
Residual Deviance: 58.81 AIC: 64.81
> sum(ifelse(logr$fitted.values<0.5,0,1) != y.1)/length(y.1)
[1] 0.32

The deviance of a model fitted by maximum likelihood is (twice) the difference
between its log likelihood and the maximum log likelihood for a saturated model,
i.e., a model with one parameter per observation. Hopefully, the saturated model
can give a perfect fit.6 Here the saturated model would assign probability 1 to the
observed outcomes7, and the logarithm of 1 is zero, so D = 2`(cβ0, bβ). The null

6The factor of two is so that the deviance will have a χ 2 distribution. Specifically, if the model with p
parameters is right, the deviance will have a χ 2 distribution with n− p degrees of freedom.

7This is not possible when there are multiple observations with the same input features, but different
classes.
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deviance is what’s achievable by using just a constant bias β0 and setting the rest of
β to 0. The fitted model definitely improves on that.8

The fitted values of the logistic regression are the class probabilities; this shows
that the error rate of the logistic regression, if you force it to predict actual classes, is
32%. This sounds bad, but notice from the contour lines in the figure that lots of the
probabilities are near 0.5, meaning that the classes are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare this to
a GAM.9

> library(gam)
> gam.1 = gam(y.1~lo(x[,1])+lo(x[,2]),family="binomial")
> gam.1
Call:
gam(formula = y.1 ~ lo(x[, 1]) + lo(x[, 2]), family = "binomial")

Degrees of Freedom: 49 total; 41.39957 Residual
Residual Deviance: 49.17522

This fits a GAM to the same data, using lowess smoothing of both input variables.
Notice that the residual deviance is lower. That is, the GAM fits this data better. We
expect this; the question is whether the difference is significant, or within the range
of what we should expect when logistic regression is valid. To test this, we need to
simulate from the logistic regression model.

simulate.from.logr = function(x, coefs) {
require(faraway) # For accessible logit and inverse-logit functions
n = nrow(x)
linear.part = coefs[1] + x %*% coefs[-1]
probs = ilogit(linear.part) # Inverse logit
y = rbinom(n,size=1,prob=probs)
return(y)

}

Now we simulate from our fitted model, and re-fit both the logistic regression
and the GAM.

delta.deviance.sim = function (x,logistic.model) {
y.new = simulate.from.logr(x,logistic.model$coefficients)
GLM.dev = glm(y.new ~ x[,1] + x[,2], family="binomial")$deviance
GAM.dev = gam(y.new ~ lo(x[,1]) + lo(x[,2]), family="binomial")$deviance

8AIC is of course the Akaike information criterion,−2`+2 p, with p being the number of parameters
(here, p = 3). AIC has some truly devoted adherents, especially among non-statisticians, but I have been
deliberately ignoring it and will continue to do so. Basically, to the extent AIC succeeds, it works as
fast, large-sample approximation to doing leave-one-out cross-validation. Claeskens and Hjort (2008) is a
thorough, modern treatment of AIC and related model-selection criteria from a statistical viewpoint.

9Previous examples of using GAMs have mostly used the mgcv package and spline smoothing. There
is no particular reason to switch to the gam library and lowess smoothing here, but there’s also no real
reason not to.
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return(GLM.dev - GAM.dev)
}

Notice that in this simulation we are not generating new ~X values. The logistic re-
gression and the GAM are both models for the response conditional on the inputs,
and are agnostic about how the inputs are distributed, or even whether it’s meaning-
ful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the observed
difference in deviances falls in the sampling distribution.

> delta.dev = replicate(1000,delta.deviance.sim(x,logr))
> delta.dev.observed = logr$deviance - gam.1$deviance # 9.64
> sum(delta.dev.observed > delta.dev)/1000
[1] 0.685

In other words, the amount by which a GAM fits the data better than logistic regres-
sion is pretty near the middle of the null distribution. Since the example data really
did come from a logistic regression, this is a relief.
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Figure 12.2: Sampling distribution for the difference in deviance between a GAM
and a logistic regression, on data generated from a logistic regression. The observed
difference in deviances is shown by the dashed horizontal line.

11:36 Saturday 22nd November, 2014



12.5. EXERCISES 244

12.5 Exercises
1. A multiclass logistic regression, as in Eq. 12.13, has parameters β(c)0 and β(c)

for each class c . Show that we can always get the same predicted probabilities
by setting β(c)0 = 0, β(c) = 0 for any one class c , and adjusting the parameters
for the other classes appropriately.

2. Find the first and second derivatives of the log-likelihood for logistic regression
with one predictor variable. Explicitly write out the formula for doing one step
of Newton’s method. Explain how this relates to re-weighted least squares.

11:36 Saturday 22nd November, 2014



11:36 Saturday 22nd November, 2014
Copyright c©Cosma Rohilla Shalizi; do not distribution without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 13

Generalized Linear Models and
Generalized Additive Models

[[TODO: Merge GLM/GAM
and Logistic Regression chap-
ters]]

13.1 Generalized Linear Models and Iterative Least Squares
Logistic regression is a particular instance of a broader kind of model, called a gener-
alized linear model (GLM). You are familiar, of course, from your regression class
with the idea of transforming the response variable, what we’ve been calling Y , and
then predicting the transformed variable from X . This was not what we did in logis-
tic regression. Rather, we transformed the conditional expected value, and made that
a linear function of X . This seems odd, because it is odd, but it turns out to be useful.

Let’s be specific. Our usual focus in regression modeling has been the condi-
tional expectation function, r (x) = E[Y |X = x]. In plain linear regression, we try
to approximate r (x) by β0 + x ·β. In logistic regression, r (x) = E[Y |X = x] =
Pr (Y = 1|X = x), and it is a transformation of r (x) which is linear. The usual nota-
tion says

η(x) = β0+ xcβ̇ (13.1)

η(x) = log
r (x)

1− r (x)
(13.2)

= g (r (x)) (13.3)

defining the logistic link function by g (m) = log m/(1−m). The function η(x) is
called the linear predictor.

Now, the first impulse for estimating this model would be to apply the transfor-
mation g to the response. But Y is always zero or one, so g (Y ) =±∞, and regression
will not be helpful here. The standard strategy is instead to use (what else?) Taylor
expansion. Specifically, we try expanding g (Y ) around r (x), and stop at first order:

g (Y ) ≈ g (r (x))+ (Y − r (x))g ′(r (x)) (13.4)
= η(x)+ (Y − r (x))g ′(r (x))≡ z (13.5)
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We define this to be our effective response after transformation. Notice that if there
were no noise, so that y was always equal to its conditional mean r (x), then regressing
z on x would give us back the coefficients β0,β. What this suggests is that we can
estimate those parameters by regressing z on x.

The term Y − r (x) has expectation zero, so it acts like the noise, with the factor
of g ′ telling us about how the noise is scaled by the transformation. This lets us work
out the variance of z:

Var[Z |X = x] = Var[η(x)|X = x]+Var
�

(Y − r (x))g ′(r (x))|X = x
�

(13.6)

= 0+(g ′(r (x)))2Var[Y |X = x] (13.7)

For logistic regression, with Y binary, Var[Y |X = x] = r (x)(1 − r (x)). On the
other hand, with the logistic link function, g ′(r (x)) = 1

r (x)(1−r (x)) . Thus, for logistic

regression, Var[Z |X = x] = [r (x)(1− r (x))]−1.
Because the variance of Z changes with X , this is a heteroskedastic regression

problem. As we saw in chapter 7, the appropriate way of dealing with such a problem
is to use weighted least squares, with weights inversely proportional to the variances.
This means that the weight at x should be proportional to r (x)(1− r (x)). Notice
two things about this. First, the weights depend on the current guess about the pa-
rameters. Second, we give little weight to cases where r (x) ≈ 0 or where r (x) ≈ 1,
and the most weight when r (x) = 0.5. This focuses our attention on places where we
have a lot of potential information — the distinction between a probability of 0.499
and 0.501 is just a lot easier to discern than that between 0.000 and 0.002!

We can now put all this together into an estimation strategy for logistic regres-
sion.

1. Get the data (x1, y1), . . . (xn , yn), and some initial guesses β0,β.

2. until β0,β converge

(a) Calculate η(xi ) =β0+ xi ·β and the corresponding r (xi )

(b) Find the effective transformed responses zi = η(xi )+
yi−r (xi )

r (xi )(1−r (xi ))

(c) Calculate the weights wi = r (xi )(1− r (xi ))

(d) Do a weighted linear regression of zi on xi with weights wi , and setβ0,β
to the intercept and slopes of this regression

Our initial guess about the parameters tells us about the heteroskedasticity, which
we use to improve our guess about the parameters, which we use to improve our guess
about the variance, and so on, until the parameters stabilize. This is called iterative
reweighted least squares (or “iterative weighted least squares”, “iteratively weighted
least squares”, “iteratived reweighted least squares”, etc.), abbreviated IRLS, IRWLS,
IWLS, etc. As mentioned in the last chapter, this turns out to be almost equivalent to
Newton’s method, at least for this problem.
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13.1.1 GLMs in General

The set-up for an arbitrary GLM is a generalization of that for logistic regression. We
need

• A linear predictor, η(x) =β0+ xcβ̇

• A link function g , so that η(x) = g (r (x)). For logistic regression, we had
g (r ) = log r/(1− r ).

• A dispersion scale function V , so that Var[Y |X = x] = σ2V (r (x)). For lo-
gistic regression, we had V (r ) = r (1− r ), and σ2 = 1.

With these, we know the conditional mean and conditional variance of the response
for each value of the input variables x.

As for estimation, basically everything in the IRWLS set up carries over un-
changed. In fact, we can go through this algorithm:

1. Get the data (x1, y1), . . . (xn , yn), fix link function g (r ) and dispersion scale func-
tion V (r ), and make some initial guesses β0,β.

2. Until β0,β converge

(a) Calculate η(xi ) =β0+ xi ·β and the corresponding r (xi )

(b) Find the effective transformed responses zi = η(xi )+(yi− r (xi ))g
′(r (xi ))

(c) Calculate the weights wi = [(g
′(r (xi ))

2V (r (xi ))]
−1

(d) Do a weighted linear regression of zi on xi with weights wi , and setβ0,β
to the intercept and slopes of this regression

Notice that even if we don’t know the over-all variance scale σ2, that’s OK, because
the weights just have to be proportional to the inverse variance.

13.1.2 Examples of GLMs

13.1.2.1 Vanilla Linear Models

To re-assure ourselves that we are not doing anything crazy, let’s see what happens
when g (r ) = r (the “identity link”), and Var[Y |X = x] = σ2, so that V (r ) = 1.
Then g ′ = 1, all weights wi = 1, and the effective transformed response zi = yi . So
we just end up regressing yi on xi with no weighting at all — we do ordinary least
squares. Since neither the weights nor the transformed response will change, IRWLS
will converge exactly after one step. So if we get rid of all this nonlinearity and
heteroskedasticity and go all the way back to our very first days of doing regression,
we get the OLS answers we know and love.
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13.1.2.2 Binomial Regression

In many situations, our response variable yi will be an integer count running between
0 and some pre-determined upper limit ni . (Think: number of patients in a hospital
ward with some condition, number of children in a classroom passing a test, number
of widgets produced by a factory which are defective, number of people in a village
with some genetic mutation.) One way to model this would be as a binomial random
variable, with ni trials, and a success probability pi which was a logistic function
of predictors x. The logistic regression we have done so far is the special case where
ni = 1 always. I will leave it as an EXERCISE (1) for you to work out the link function
and the weights for general binomial regression, where the ni are treated as known.

One implication of this model is that each of the ni “trials” aggregated together
in yi is independent of all the others, at least once we condition on the predictors
x. (So, e.g., whether any student passes the test is independent of whether any of
their classmates pass, once we have conditioned on, say, teacher quality and average
previous knowledge.) This may or may not be a reasonable assumption. When the
successes or failures are dependent, even after conditioning on the predictors, the
binomial model will be mis-specified. We can either try to get more information,
and hope that conditioning on a richer set of predictors makes the dependence go
away, or we can just try to account for the dependence by modifying the variance
(“overdispersion” or “underdispersion”); we’ll return to both topics later.[[TODO: Add subsection on

modeling dispersion ]]

13.1.2.3 Poisson Regression

Recall that the Poisson distribution has probability mass function

p(y) =
e−µµy

y!
(13.8)

with E[Y ] = Var[Y ] = µ. As you remember from basic probability, a Poisson
distribution is what we get from a binomial if the probability of success per trial
shrinks towards zero but the number of trials grows to infinity, so that we keep the
mean number of successes the same:

Binom(n,µ/n)  Pois(µ) (13.9)

This makes the Poisson distribution suitable for modeling counts with no fixed upper
limit, but where the probability that any one of the many individual trials is a success
is fairly low. If µ is allowed to be depend on the predictor variables, we get Poisson
regression. Since the variance is equal to the mean, Poisson regression is always going
to be heteroskedastic.

Since µ has to be non-negative, a natural link function is g (µ) = logµ. This
produces g ′(µ) = 1/µ, and so weights w = µ. When the expected count is large,
so is the variance, which normally would reduce the weight put on an observation
in regression, but in this case large expected counts also provide more information
about the coefficients, so they end up getting increasing weight.
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13.1.3 Uncertainty
Standard errors for coefficients can be worked out as in the case of weighted least
squares for linear regression. Confidence intervals for the coefficients will be approx-
imately Gaussian in large samples, for the usual likelihood-theory reasons, when the
model is properly specified. One can, of course, also use either a parametric boot-
strap, or resampling of cases/data-points to assess uncertainty.

Resampling of residuals can be trickier, because it is not so clear what counts as
a residual. When the response variable is continuous, we can get “standardized” or

“Pearson” residuals, ε̂i =
yi−bµ(xi )
q

ÛV (µ(xi ))
, resample them to get ε̃i , and then add ε̃i

q

ÛV (µ(xi ))

to the fitted values. This does not really work when the response is discrete-valued,
however. [[TODO: Add subsection on

computing (glm)]]
[[TODO: Add subsection on
deviance]]

13.2 Generalized Additive Models
In the development of generalized linear models, we use the link function g to relate
the conditional mean µ(x) to the linear predictor η(x). But really nothing in what
we were doing required η to be linear in x. In particular, it all works perfectly well
if η is an additive function of x. We form the effective responses zi as before, and
the weights wi , but now instead of doing a linear regression on xi we do an additive
regression, using backfitting (or whatever). This gives us a generalized additive model
(GAM).

Essentially everything we know about the relationship between linear models
and additive models carries over. GAMs converge somewhat more slowly as n grows
than do GLMs, but the former have less bias, and strictly include GLMs as special
cases. The transformed (mean) response is related to the predictor variables not just
through coefficients, but through whole partial response functions. If we want to
test whether a GLM is well-specified, we can do so by comparing it to a GAM, and
so forth.

In fact, one could even make η(x) an arbitrary smooth function of x, to be es-
timated through (say) kernel smoothing of zi on xi . This is rarely done, however,
partly because of curse-of-dimensionality issues, but also because, if one is going to
go that far, one might as well just use kernels to estimate conditional distributions, as
we will see in Chapter 16. [[TODO: GLM practicals re-

ally goes after logistic regres-
sion]]
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13.3 Weather Forecasting in Snoqualmie Falls
To make the use of logistic regression and GLMs concrete, we are going to build a
simple weather forecaster. Our data consist of daily records, from the beginning of
1948 to the end of 1983, of precipitation at Snoqualmie Falls, Washington (Figure
13.1)1. Each row of the data file is a different year; each column records, for that day
of the year, the day’s precipitation (rain or snow), in units of 1

100 inch. Because of
leap-days, there are 366 columns, with the last column having an NA value for three
out of four years.

snoqualmie <- read.csv("snoqualmie.csv",header=FALSE)
# Turn into one big vector without year breaks
snoqualmie <- unlist(snoqualmie)
# Remove NAs from non-leap-years
snoqualmie <- na.omit(snoqualmie)

What we want to do is predict tomorrow’s weather from today’s. This would
be of interest if we lived in Snoqualmie Falls, or if we operated either one of the
local hydroelectric power plants, or the tourist attraction of the Falls themselves.
Examining the distribution of the data (Figures 13.2 and 13.3) shows that there is a
big spike in the distribution at zero precipitation, and that days of no precipitation
can follow days of any amount of precipitation but seem to be less common after
heavy precipitation.

These facts suggest that “no precipitation” is a special sort of event which would
be worth predicting in its own right (as opposed to just being when the precipitation
happens to be zero), so we will attempt to do so with logistic regression. Specifically,
the input variable Xi will be the amount of precipitation on the i th day, and the
response Yi will be the indicator variable for whether there was any precipitation on
day i + 1 — that is, Yi = 1 if Xi+1 > 0, an Yi = 0 if Xi+1 = 0. We expect from Figure
13.3, as well as common experience, that the coefficient on X should be positive.2

Before fitting the logistic regression, it’s convenient to re-shape the data:

vector.to.pairs <- function(v) {
v <- as.numeric(v)
n <- length(v)
return(cbind(v[-1],v[-n]))

}
snoq.pairs <- vector.to.pairs(snoqualmie)
colnames(snoq.pairs) <- c("tomorrow","today")
snoq <- as.data.frame(snoq.pairs)

This creates a two-column array, where the first column is the precipitation on day
i+1, and the second column is the precipitation on day i (hence the column names).
Finally, I turn the whole thing into a data frame.

1I learned of this data set from Guttorp (1995); the data file is available from http://www.stat.
washington.edu/peter/stoch.mod.data.html.

2This does not attempt to model how much precipitation there will be tomorrow, if there is any. We
could make that a separate model, if we can get this part right.
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Figure 13.1: Snoqualmie Falls, Washington, on a sunny day. Photo by
Jeannine Hall Gailey, from http://myblog.webbish6.com/2011/07/
17-years-and-hoping-for-another-17.html. [[TODO: Get permission
for photo use!]]

11:36 Saturday 22nd November, 2014

http://myblog.webbish6.com/2011/07/17-years-and-hoping-for-another-17.html
http://myblog.webbish6.com/2011/07/17-years-and-hoping-for-another-17.html


13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 252
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plot(hist(snoqualmie,n=50,probability=TRUE),xlab="Precipitation (1/100 inch)")
rug(snoqualmie,col="grey")

Figure 13.2: Histogram of the amount of daily precipitation at Snoqualmie Falls
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plot(snoqualmie[-length(snoqualmie)],snoqualmie[-1],
xlab="Precipitation today (1/100 inch)",
ylab="Precipitation tomorrow (1/100 inch)",cex=0.1)

rug(snoqualmie[-length(snoqualmie)],side=1,col="grey")
rug(snoqualmie[-1],side=2,col="grey")

Figure 13.3: Scatterplot showing relationship between amount of precipitation on
successive days. Notice that days of no precipitation can follow days of any amount
of precipitation, but seem to be more common when there is little or no precipitation
to start with.
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Now fitting is straightforward:

snoq.logistic <- glm((tomorrow > 0) ~ today, data=snoq, family=binomial)

To see what came from the fitting, run summary:

> summary(snoq.logistic)

Call:
glm(formula = (tomorrow > 0) ~ today, family = binomial, data = snoq)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3713 -1.1805 0.9536 1.1693 1.1744

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0071899 0.0198430 0.362 0.717
today 0.0059232 0.0005858 10.111 <2e-16 ***
---

(I have cut off some uninformative bits of the output.) The coefficient on X , the
amount of precipitation today, is indeed positive, and (if we can trust R’s calcula-
tions) highly significant. There is also an intercept term, which is slight positive,
but not very significant. We can see what the intercept term means by considering
what happens when X = 0, i.e., on days of no precipitation. The linear predictor is
then 0.0072+ 0 ∗ (0.0059) = 0.0072, and the predicted probability of precipitation is
e0.0072/(1+ e0.0072) = 0.502. That is, even when there is no precipitation today, we
predict that it is slightly more probable than not that there will be some precipitation
tomorrow.3

We can get a more global view of what the model is doing by plotting the data
and the predictions (Figure 13.4). This shows a steady increase in the probability of
precipitation tomorrow as the precipitation today increases, though with the leveling
off characteristic of logistic regression. The (approximate) 95% confidence limits for
the predicted probability are (on close inspection) asymmetric, and actually slightly
narrower at the far right than at intermediate values of X (Figure 13.3).

How well does this work? We can get a first sense of this by comparing it to
a simple nonparametric smoothing of the data. Remembering that when Y is bi-
nary, PrY = 1|X = x = E[Y |X = x], we can use a smoothing spline to estimate
E[Y |X = x] (Figure 13.6). This would not be so great as a model — it ignores the
fact that the response is a binary event and we’re trying to estimate a probability,
the fact that the variance of Y therefore depends on its mean, etc. — but it’s at least
indicative.

The result is in not-terribly-bad agreement with the logistic regression up to about
1.2 or 1.3 inches of precipitation, after which it runs significantly below the logistic

3For western Washington State, this is plausible — but see below.
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plot((tomorrow>0)~today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")

rug(snoq$today,side=1,col="grey")

data.plot <- data.frame(today=(0:500))
logistic.predictions <- predict(snoq.logistic,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(logistic.predictions$fit))
lines(0:500,ilogit(logistic.predictions$fit+1.96*logistic.predictions$se.fit),
lty=2)

lines(0:500,ilogit(logistic.predictions$fit-1.96*logistic.predictions$se.fit),
lty=2)

Figure 13.4: Data (dots), plus predicted probabilities (solid line) and approximate
95% confidence intervals from the logistic regression model (dashed lines). Note that
calculating standard errors for predictions on the logit scale, and then transforming,
is better practice than getting standard errors directly on the probability scale.
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plot(0:500,ilogit(logistic.predictions$fit)
-ilogit(logistic.predictions$fit-1.96*logistic.predictions$se.fit),
type="l",col="blue",xlab="Precipitation today (1/100 inch)",
main="Difference in probability between prediction\n

and confidence limit for prediction",
ylab = expression(paste(Delta,"probability")))

lines(0:500,ilogit(logistic.predictions$fit+1.96*logistic.predictions$se.fit)
-ilogit(logistic.predictions$fit))

Figure 13.5: Distance from the fitted probability to the upper (black) and lower (blue)
confidence limits. Notice that the two are not equal, and somewhat smaller at very
large values of X than at intermediate ones. (Why?)
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snoq.spline <- smooth.spline(x=snoq$today,y=(snoq$tomorrow>0))
lines(snoq.spline,col="red")

Figure 13.6: As Figure 13.4, plus a smoothing spline (red).
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regression, rejoins it around 3.5 inches of precipitation, and then (as it were) falls off
a cliff.

We can do better by fitting a generalized additive model. In this case, with only
one predictor variable, this means using non-parametric smoothing to estimate the
log odds — we’re still using the logistic transformation, but only requiring that the log
odds change smoothly with X , not that they be linear in X . The result (Figure 13.7)
is actually quite similar to the spline, but a bit better behaved, and has confidence
intervals. At the largest values of X , the latter span nearly the whole range from 0 to
1, which is not unreasonable considering the sheer lack of data there.

Visually, the logistic regression curve is usually but not always within the confi-
dence limits of the non-parametric predictor. What can we say about the difference
between the two models more quantiatively?

Numerically, the deviance is 18079.69 for the logistic regression, and 18036.77 for
the GAM. We can go through the testing procedure outlined in Chapter 12. We need
a simulator (which presumes that the logistic regression model is true), and we need
to calculate the difference in deviance on simulated data many times.

# Simulate from the fitted logistic regression model for Snoqualmie
# Presumes: fitted values of the model are probabilities.
snoq.sim <- function(model=snoq.logistic) {

fitted.probs <- fitted(model)
n <- length(fitted.probs)
new.binary <- rbinom(n,size=1,prob=fitted.probs)
return(new.binary)

}

A quick check of the simulator against the observed values:

> summary(ifelse(snoq[,1]>0,1,0))
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.5262 1.0000 1.0000
> summary(snoq.sim())

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5264 1.0000 1.0000

This suggests that the simulator is not acting crazily.
Now for the difference in deviances:

# Simulate from fitted logistic regression, re-fit logistic regression and
# GAM, calculate difference in deviances
diff.dev <- function(model=snoq.logistic,x=snoq[,2]) {

y.new <- snoq.sim(model)
GLM.dev <- glm(y.new ~ x,family=binomial)$deviance
GAM.dev <- gam(y.new ~ s(x),family=binomial)$deviance
return(GLM.dev-GAM.dev)

}
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library(mgcv)
snoq.gam <- gam((tomorrow>0)~s(today),data=snoq,family=binomial)
gam.predictions <- predict.gam(snoq.gam,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(gam.predictions$fit),col="blue")
lines(0:500,ilogit(gam.predictions$fit+1.96*gam.predictions$se.fit),
col="blue",lty=2)

lines(0:500,ilogit(gam.predictions$fit-1.96*gam.predictions$se.fit),
col="blue",lty=2)

Figure 13.7: As Figure 13.6, but with the addition of a generalized additive model
(blue line) and its confidence limits (dashed blue lines). Note: the predict function
in the gam package does not allow one to calculate standard errors for new data. You
may need to un-load the gam library first, with detach(package:gam).
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A single run of this takes about 1.5 seconds on my computer.
Finally, we calculate the distribution of difference in deviances under the null

(that the logistic regression is properly specified), and the corresponding p-value:

diff.dev.obs <- snoq.logistic$deviance - snoq.gam$deviance
null.dist.of.diff.dev <- replicate(1000,diff.dev())
p.value <- (1+sum(null.dist.of.diff.dev > diff.dev.obs))/(1+length(null.dist.of.diff.dev))

Using a thousand replicates takes about 1500 seconds, or roughly 25 minutes, which
is substantial, but not impossible; it gave a p-value of < 10−3, and the following
sampling distribution:

> summary(null.dist.of.diff.dev)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000097 0.002890 0.016770 2.267000 2.897000 29.750000

(A preliminary trial run of only 100 replicates, taking a few minutes, gave

> summary(null.dist.of.diff.dev)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000291 0.002681 0.013700 2.008000 2.121000 27.820000

which implies a p-value of < 0.01. This would be good enough for many practical
purposes.)

Having detected that there is a problem with the GLM, we can ask where it lies.
We could just use the GAM, but it’s more interesting to try to diagnose what’s going
on.

In this respect Figure 13.7 is actually a little misleading, because it leads the eye
to emphasize the disagreement between the models at large X , when actually there
are very few data points there, and so even large differences in predicted probabili-
ties there contribute little to the over-all likelihood difference. What is actually more
important is what happens at X = 0, which contains a very large number of observa-
tions (about 47% of all observations), and which we have reason to think is a special
value anyway.

Let’s try introducing a dummy variable for X = 0 into the logistic regression,
and see what happens. It will be convenient to augment the data frame with an extra
column, recording 1 whenever X = 0 and 0 otherwise.

snoq2 <- data.frame(snoq,dry=ifelse(snoq$today==0,1,0))
snoq2.logistic <- glm((tomorrow > 0) ~ today + dry,data=snoq2,family=binomial)
snoq2.gam <- gam((tomorrow > 0) ~ s(today) + dry,data=snoq2,family=binomial)

Notice that I allow the GAM to treat zero as a special value as well, by giving it access
to that dummy variable. In principle, with enough data it can decide whether or not
that is useful on its own, but since we have guessed that it is, we might as well include
it. Figure 13.8 shows the data and the two new models. These are extremely close to
each other. The new GLM has a deviance of 18015.65, lower than even the GAM
before, and the new GAM has a deviance of 18015.21. The p-value is essentially
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plot((tomorrow>0)~today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")

rug(snoq$today,side=1,col="grey")

data.plot=data.frame(data.plot,dry=ifelse(data.plot$today==0,1,0))
logistic.predictions2 <- predict(snoq2.logistic,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(logistic.predictions2$fit))
lines(0:500,ilogit(logistic.predictions2$fit+1.96*logistic.predictions2$se.fit),
lty=2)

lines(0:500,ilogit(logistic.predictions2$fit-1.96*logistic.predictions2$se.fit),
lty=2)

gam.predictions2 <- predict.gam(snoq2.gam,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(gam.predictions2$fit),col="blue")
lines(0:500,ilogit(gam.predictions2$fit+1.96*gam.predictions2$se.fit),
col="blue",lty=2)

lines(0:500,ilogit(gam.predictions2$fit-1.96*gam.predictions2$se.fit),
col="blue",lty=2)

Figure 13.8: As Figure 13.7, but allowing the two models to use a dummy variable
indicating when today is completely dry (X = 0).
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1 — and yet we know that this test does have power to detect departures from the
parametric model. This is very promising.

Let’s turn now to looking at calibration. The actual fraction of no-precipitation
days which are followed by precipitation is

> mean(snoq$tomorrow[snoq$today==0]>0)
[1] 0.4702199

What does the new logistic model predict?

> predict(snoq2.logistic,newdata=data.frame(today=0,dry=1),type="response")
1

0.4702199

This should not be surprising — we’ve given the model a special parameter dedi-
cated to getting this one probability exactly right! The hope however is that this will
change the predictions made on days with precipitation so that they are better.

Looking at a histogram of fitted values (hist(fitted(snoq2.logistic))) shows
a gap in the distribution of predicted probabilities between 0.47 and about 0.55, so
we’ll look first at days where the predicted probability is between 0.55 and 0.56.

> mean(snoq$tomorrow[(fitted(snoq2.logistic) >= 0.55)
& (fitted(snoq2.logistic) < 0.56)] > 0)

[1] 0.5474882

Not bad — but a bit painful to write out. Let’s write a function:

frequency.vs.probability <- function(p.lower,p.upper=p.lower+0.01,
model=snoq2.logistic,events=(snoq$tomorrow>0)) {
fitted.probs <- fitted(model)
indices <- (fitted.probs >= p.lower) & (fitted.probs < p.upper)
ave.prob <- mean(fitted.probs[indices])
frequency <- mean(events[indices])
se <- sqrt(ave.prob*(1-ave.prob)/sum(indices))
out <- list(frequency=frequency,ave.prob=ave.prob,se=se)
return(out)

}

I have added a calculation of the average predicted probability, and a crude estimate
of the standard error we should expect if the observations really are binomial with
the predicted probabilities4. Try the function out before doing anything rash:

> frequency.vs.probability(0.55)
$frequency
[1] 0.5474882

$ave.prob

4This could be improved by averaging predicted variances for each point, but using probability ranges
of 0.01 makes it hardly worth the effort.
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[1] 0.5548081

$se
[1] 0.00984567

This agrees with our previous calculation.
Now we can do this for a lot of probability brackets:

f.vs.p <- sapply((55:74)/100,frequency.vs.probability)

This comes with some unfortunate R cruft, removable thus

f.vs.p <- data.frame(frequency=unlist(f.vs.p["frequency",]),
ave.prob=unlist(f.vs.p["ave.prob",]),se=unlist(f.vs.p["se",]))

and we’re ready to plot (Figure 13.9). The observed frequencies are generally quite
near to the predicted probabilites, especially when the number of observations is
large and so the sample frequency should be close to the true probability. While I
wouldn’t want to say this was the last word in weather forecasting5, it’s surprisingly
good for such a simple model.

13.4 Exercises
1. In binomial regression, we have Y |X = x Binom(n, p(x)), where p(x) follows

a logistic model. Work out the link function g (µ), the variance function V (µ),
and the weights w, assuming that n is known and not random.

2. Homework 5, on predicting the death rate in Chicago, is a good candidate
for using Poisson regression. Repeat the exercises in that problem set with
Poisson-response GAMs. How do the estimated functions change? Why is
this any different from just taking the log of the death counts, as we did in the
homework?

5There is an extensive discussion of this data in chapter 2 of Guttorp’s book, including many significant
refinements, such as dependence across multiple days.
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plot(f.vs.p$ave.prob,f.vs.p$frequency,xlim=c(0,1),ylim=c(0,1),
xlab="Predicted probabilities",ylab="Observed frequencies")

rug(fitted(snoq2.logistic),col="grey")
abline(0,1,col="grey")
segments(x0=f.vs.p$ave.prob,y0=f.vs.p$ave.prob-1.96*f.vs.p$se,

y1=f.vs.p$ave.prob+1.96*f.vs.p$se)

Figure 13.9: Calibration plot for the modified logistic regression model
snoq2.logistic. Points show the actual frequency of precipitation for each level
of predicted probability. Vertical lines are (approximate) 95% sampling intervals for
the frequency, given the predicted probability and the number of observations.
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Chapter 14

Classification and Regression
Trees

[[TODO: Notes taken from
another course; integrate]]Having built up increasingly complicated models for regression, I’ll now switch gears

and introduce a class of nonlinear predictive model which at first seems too simple to
possible work, namely prediction trees. These have two varieties, regression trees
and classification trees.

14.1 Prediction Trees
The basic idea is very simple. We want to predict a response or class Y from inputs
X1,X2, . . .Xp . We do this by growing a binary tree. At each internal node in the tree,
we apply a test to one of the inputs, say Xi . Depending on the outcome of the test,
we go to either the left or the right sub-branch of the tree. Eventually we come to a
leaf node, where we make a prediction. This prediction aggregates or averages all the
training data points which reach that leaf. Figure 14.1 should help clarify this.

Why do this? Predictors like linear or polynomial regression are global mod-
els, where a single predictive formula is supposed to hold over the entire data space.
When the data has lots of features which interact in complicated, nonlinear ways, as-
sembling a single global model can be very difficult, and hopelessly confusing when
you do succeed. Some of the non-parametric smoothers try to fit models locally and
then paste them together, but again they can be hard to interpret. (Additive models
are at least pretty easy to grasp.)

An alternative approach to nonlinear regression is to sub-divide, or partition,
the space into smaller regions, where the interactions are more manageable. We then
partition the sub-divisions again — this is recursive partitioning, as in hierarchical
clustering — until finally we get to chunks of the space which are so tame that we
can fit simple models to them. The global model thus has two parts: one is just the
recursive partition, the other is a simple model for each cell of the partition.

Now look back at Figure 14.1 and the description which came before it. Pre-
diction trees use the tree to represent the recursive partition. Each of the terminal
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Figure 14.1: Classification tree for county-level outcomes in the 2008 Democratic Party pri-
mary (as of April 16), by Amanada Cox for the New York Times.
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nodes, or leaves, of the tree represents a cell of the partition, and has attached to it a
simple model which applies in that cell only. A point x belongs to a leaf if x falls in
the corresponding cell of the partition. To figure out which cell we are in, we start
at the root node of the tree, and ask a sequence of questions about the features. The
interior nodes are labeled with questions, and the edges or branches between them
labeled by the answers. Which question we ask next depends on the answers to pre-
vious questions. In the classic version, each question refers to only a single attribute,
and has a yes or no answer, e.g., “Is HSGrad > 0.78?” or “Is Region ==MIDWEST?”
The variables can be of any combination of types (continuous, discrete but ordered,
categorical, etc.). You could do more-than-binary questions, but that can always be
accommodated as a larger binary tree. Asking questions about multiple variables at
once is, again, equivalent to asking multiple questions about single variables.

That’s the recursive partition part; what about the simple local models? For
classic regression trees, the model in each cell is just a constant estimate of Y . That
is, suppose the points (xi , yi ), (x2, y2), . . . (xc , yc ) are all the samples belonging to the
leaf-node l . Then our model for l is just ŷ = 1

c

∑c
i=1 yi , the sample mean of the

response variable in that cell. This is a piecewise-constant model.1 There are several
advantages to this:

• Making predictions is fast (no complicated calculations, just looking up con-
stants in the tree)

• It’s easy to understand what variables are important in making the prediction
(look at the tree)

• If some data is missing, we might not be able to go all the way down the tree
to a leaf, but we can still make a prediction by averaging all the leaves in the
sub-tree we do reach

• The model gives a jagged response, so it can work when the true regression
surface is not smooth. If it is smooth, though, the piecewise-constant surface
can approximate it arbitrarily closely (with enough leaves)

• There are fast, reliable algorithms to learn these trees

A last analogy before we go into some of the mechanics. One of the most com-
prehensible non-parametric methods is k-nearest-neighbors: find the points which
are most similar to you, and do what, on average, they do. There are two big draw-
backs to it: first, you’re defining “similar” entirely in terms of the inputs, not the
response; second, k is constant everywhere, when some points just might have more
very-similar neighbors than others. Trees get around both problems: leaves corre-
spond to regions of the input space (a neighborhood), but one where the responses
are similar, as well as the inputs being nearby; and their size can vary arbitrarily.
Prediction trees are adaptive nearest-neighbor methods.

1We could instead fit, say, a different linear regression for the response in each leaf node, using only
the data points in that leaf (and using dummy variables for non-quantitative features). This would give a
piecewise-linear model, rather than a piecewise-constant one. If we’ve built the tree well, however, all the
points in each leaf are pretty similar, so the regression surface would be nearly constant anyway.
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14.2 Regression Trees
Let’s start with an example.[[TODO: Replace with the

more modern California
data]] 14.2.1 Example: California Real Estate Again

After the homework and the last few lectures, you should be more than familiar
with the California housing data; we’ll try growing a regression tree for it. There are
several R packages for regression trees; the easiest one is called, simply, tree.

calif = read.table("http://www.stat.cmu.edu/~cshalizi/350/hw/06/cadata.dat",header=TRUE)
require(tree) || install.packages("tree",dependencies=TRUE)
treefit = tree(log(MedianHouseValue) ~ Longitude+Latitude,data=calif)

This does a tree regression of the log price on longitude and latitude. What does this
look like? Figure 14.2 shows the tree itself; Figure 14.3 shows the partition, overlaid
on the actual prices in the state. (The ability to show the partition is why I picked
only two input variables.)

Qualitatively, this looks like it does a fair job of capturing the interaction between
longitude and latitude, and the way prices are higher around the coasts and the big
cities. Quantitatively, the error isn’t bad:

> summary(treefit)

Regression tree:
tree(formula = log(MedianHouseValue) ~ Longitude + Latitude,

data = calif)
Number of terminal nodes: 12
Residual mean deviance: 0.1662 = 3429 / 20630
Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.759e+00 -2.608e-01 -1.359e-02 -5.050e-15 2.631e-01 1.841e+00

Here “deviance” is just mean squared error; this gives us an RMS error of 0.41, which
is higher than the models in the last handout, but not shocking since we’re using only
two variables, and have only twelve nodes.

The flexibility of a tree is basically controlled by how many leaves they have,
since that’s how many cells they partition things into. The tree fitting function has
a number of controls settings which limit how much it will grow — each node has to
contain a certain number of points, and adding a node has to reduce the error by at
least a certain amount. The default for the latter, mindev, is 0.01; let’s turn it down
and see what happens.

treefit2 = tree(log(MedianHouseValue) ~ Longitude+Latitude,data=calif, mindev=0.001)

Figure 14.4 shows the tree itself; with 68 nodes, the plot is fairly hard to read, but
by zooming in on any part of it, you can check what it’s doing. Figure 14.5 shows
the corresponding partition. It’s obviously much finer-grained than that in Figure
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plot(treefit)
text(treefit,cex=0.75)

Figure 14.2: Regression tree for predicting California housing prices from geographic
coordinates. At each internal node, we ask the associated question, and go to the left
child if the answer is “yes”, to the right child if the answer is “no”. Note that leaves
are labeled with log prices; the plotting function isn’t flexible enough, unfortunately,
to apply transformations to the labels.
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price.deciles = quantile(calif$MedianHouseValue,0:10/10)
cut.prices = cut(calif$MedianHouseValue,price.deciles,include.lowest=TRUE)
plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.prices],pch=20,

xlab="Longitude",ylab="Latitude")
partition.tree(treefit,ordvars=c("Longitude","Latitude"),add=TRUE)

Figure 14.3: Map of actual median house prices (color-coded by decile, darker being
more expensive), and the partition of the treefit tree.
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Figure 14.4: As Figure 14.2, but allowing splits for smaller reductions in error
(mindev=0.001 rather than the default mindev=0.01).

14.3, and does a better job of matching the actual prices (RMS error 0.32). More
interestingly, it doesn’t just uniformly divide up the big cells from the first partition;
some of the new cells are very small, others quite large. The metropolitan areas get a
lot more detail than the Mojave.

Of course there’s nothing magic about the geographic coordinates, except that
they make for pretty plots. We can include all the input features in our model:

treefit3 <- tree(log(MedianHouseValue) ~., data=calif)

with the result shown in Figure 14.6. This model has fifteen leaves, as opposed to
sixty-eight for treefit2, but the RMS error is almost as good (0.36). This is highly
interactive: latitude and longitude are only used if the income level is sufficiently low.
(Unfortunately, this does mean that we don’t have a spatial partition to compare to
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plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.prices],pch=20,
xlab="Longitude",ylab="Latitude")

partition.tree(treefit2,ordvars=c("Longitude","Latitude"),add=TRUE,cex=0.3)

Figure 14.5: Partition for treefit2. Note the high level of detail around the cities,
as compared to the much coarser cells covering rural areas where variations in prices
are less extreme.
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the previous ones, but we can map the predictions; Figure 14.7.) Many of the features,
while they were available to the tree fit, aren’t used at all.

Now let’s turn to how we actually grow these trees.

14.2.2 Regression Tree Fitting
Once we fix the tree, the local models are completely determined, and easy to find
(we just average), so all the effort should go into finding a good tree, which is to say
into finding a good partitioning of the data. We saw some ways of doing this when
we did clustering, and will recycle those ideas here.

In clustering, remember, what we would ideally do was maximizing I [C ;X ], the
information the cluster gave us about the features X . With regression trees, what
we want to do is maximize I [C ;Y ], where Y is now the response variable, and C
the variable saying which leaf of the tree we end up at. Once again, we can’t do a
direct maximization, so we again do a greedy search. We start by finding the one
binary question which maximizes the information we get about Y ; this gives us our
root node and two daughter nodes.2 At each daughter node, we repeat our initial
procedure, asking which question would give us the maximum information about Y ,
given where we already are in the tree. We repeat this recursively.

Every recursive algorithm needs to know when it’s done, a stopping criterion.
Here this means when to stop trying to split nodes. Obviously nodes which contain
only one data point cannot be split, but giving each observations its own leaf is un-
likely to generalize well. A more typical criterion is something like: halt when each
child would contain less than five data points, or when splitting increases the infor-
mation by less than some threshold. Picking the criterion is important to get a good
tree, so we’ll come back to it presently.

We have only seen entropy and information defined for discrete variables.3 You
can define them for continuous variables, and sometimes the continuous information
is used for building regression trees, but it’s more common to do the same thing that
we did with clustering, and look not at the mutual information but at the sum of
squares. The sum of squared errors for a tree T is

S =
∑

c∈leaves(T )

∑

i∈c

�

yi −mc
�2

where mc =
1
nc

∑

i∈c yi , the prediction for leaf c . Just as with clustering, we can
re-write this as

S =
∑

c∈leaves(T )

ncVc

where Vc is the within-leave variance of leaf c . So we will make our splits so as to
minimize S.

The basic regression-tree-growing algorithm then is as follows:

1. Start with a single node containing all points. Calculate mc and S.

2Mixing botanical and genealogical metaphors for trees is ugly, but I can’t find a way around it.
3Unless you read the paper by David Feldman, that is.
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plot(treefit3)
text(treefit3,cex=0.5,digits=3)

Figure 14.6: Regression tree for log price when all other features are included as
(potential) inputs. Note that many of the features are not used by the tree.
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cut.predictions = cut(predict(treefit3),log(price.deciles),include.lowest=TRUE)
plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.predictions],pch=20,

xlab="Longitude",ylab="Latitude")

Figure 14.7: Predicted prices for the treefit3 model. Same color scale as in previous
plots (where dots indicated actual prices).
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2. If all the points in the node have the same value for all the input variables,
stop. Otherwise, search over all binary splits of all variables for the one which
will reduce S as much as possible. If the largest decrease in S would be less
than some threshold δ, or one of the resulting nodes would contain less than
q points, stop. Otherwise, take that split, creating two new nodes.

3. In each new node, go back to step 1.

Trees use only one feature (input variable) at each step. If multiple features are
equally good, which one is chosen is a matter of chance, or arbitrary programming
decisions.

One problem with the straight-forward algorithm I’ve just given is that it can stop
too early, in the following sense. There can be variables which are not very informa-
tive themselves, but which lead to very informative subsequent splits. (This was the
point of all our talk about interactions when we looked at information theory.) This
suggests a problem with stopping when the decrease in S becomes less than some δ.
Similar problems can arise from arbitrarily setting a minimum number of points q
per node.

A more successful approach to finding regression trees uses the idea of cross-
validation from last time. We randomly divide our data into a training set and a
testing set (say, 50% training and 50% testing). We then apply the basic tree-growing
algorithm to the training data only, with q = 1 and δ = 0 — that is, we grow the
largest tree we can. This is generally going to be too large and will over-fit the data.
We then use cross-validation to prune the tree. At each pair of leaf nodes with a com-
mon parent, we evaluate the error on the testing data, and see whether the testing sum
of squares would shrink if we removed those two nodes and made their parent a leaf.
If so, we prune; if not, not. This is repeated until pruning no longer improves the
error on the testing data. The reason this is superior to arbitrary stopping criteria, or
to rewarding parsimony as such, is that it directly checks whether the extra capacity
(nodes in the tree) pays for itself by improving generalization error. If it does, great;
if not, get rid of it. This is something we can do with regression trees that we couldn’t
really do with (say) hierarchical clustering, because trees make predictions we can test
on new data, and the clustering techniques we looked at before do not.

There are lots of other cross-validation tricks for trees. One cute one is to alter-
nate growing and pruning. We divide the data into two parts, as before, and first
grow and then prune the tree. We then exchange the role of the training and testing
sets, and try to grow our pruned tree to fit the second half. We then prune again,
on the first half. We keep alternating in this manner until the size of the tree doesn’t
change.

14.2.2.1 Cross-Validation and Pruning in R

The tree package contains functions prune.tree and cv.tree for pruning trees by
cross-validation.

The function prune.tree takes a tree you fit by tree (see R advice for last home-
work), and evaluates the error of the tree and various prunings of the tree, all the way
down to the stump. The evaluation can be done either on new data, if supplied, or
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on the training data (the default). If you ask it for a particular size of tree, it gives
you the best pruning of that size4. If you don’t ask it for the best tree, it gives an
object which shows the number of leaves in the pruned trees, and the error of each
one. This object can be plotted.

my.tree = tree(y ~ x1 + x2, data=my.data) # Fits tree
prune.tree(my.tree,best=5) # Returns best pruned tree with 5 leaves, evaluating

# error on training data
prune.tree(my.tree,best=5,newdata=test.set) # Ditto, but evaluates on test.set
my.tree.seq = prune.tree(my.tree) # Sequence of pruned tree sizes/errors
plot(my.tree.seq) # Plots size vs. error
my.tree.seq$dev # Vector of error rates for prunings, in order
opt.trees = which(my.tree.seq$dev == min(my.tree.seq$dev)) # Positions of
# optimal (with respect to error) trees

min(my.tree.seq$size[opt.trees]) # Size of smallest optimal tree

Finally, prune.tree has an optional method argument. The default is method="deviance",
which fits by minimizing the mean squared error (for continuous responses) or the
negative log likelihood (for discrete responses; see below).5

The function cv.tree does k-fold cross-validation (default is 10). It requires as
an argument a fitted tree, and a function which will take that tree and new data. By
default, this function is prune.tree.

my.tree.cv = cv.tree(my.tree)

The type of output of cv.tree is the same as the function it’s called on. If I do

cv.tree(my.tree,best=19)

I get the best tree (per cross-validation) of no more than 19 leaves. If I do

cv.tree(my.tree)

I get information about the cross-validated performance of the whole sequence of
pruned trees, e.g., plot(cv.tree(my.tree)). Optional arguments to cv.tree can
include K , and any additional arguments for the function it applies.

To illustrate, think back to treefit2, which predicted predicted California house
prices based on geographic coordinates, but had a very large number of nodes because
the tree-growing algorithm was told to split on almost any provocation. Figure 14.8
shows the size/performance trade-off. Figures 14.9 and 14.10 show the result of prun-
ing to the smallest size compatible with minimum cross-validated error.

14.2.3 Uncertainty in Regression Trees
Even when we are making point predictions, we have some uncertainty, because
we’ve only seen a finite amount of data, and this is not an entirely representative

4Or, if there is no tree with that many leaves, the smallest number of leaves ≥ the requested size.
5With discrete responses, you may get better results by saying method="misclass", which looks at

the misclassification rate.
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treefit2.cv <- cv.tree(treefit2)
plot(treefit2.cv)

Figure 14.8: Size (horizontal axis) versus cross-validated sum of squared errors (ver-
tical axis) for successive prunings of the treefit2 model. (The upper scale on the
horizontal axis refers to the “cost/complexity” penalty. The idea is that the prun-
ing minimizes (total error) + λ(complexity) for a certain value of λ, which is what’s
shown on that scale. Here complexity is a function of the number of leaves; see
Ripley (1996) for details. Or, just ignore the upper scale!)
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opt.trees = which(treefit2.cv$dev == min(treefit2.cv$dev))
best.leaves = min(treefit2.cv$size[opt.trees])
treefit2.pruned = prune.tree(treefit2,best=best.leaves)
plot(treefit2.pruned)

Figure 14.9: treefit2, after being pruned by ten-fold cross-validation.
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plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.prices],pch=20,
xlab="Longitude",ylab="Latitude")

partition.tree(treefit2.pruned,ordvars=c("Longitude","Latitude"),
add=TRUE,cex=0.3)

Figure 14.10: treefit2.pruned’s partition of California. Compare to Figure 14.5.
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sample of the underlying probability distribution. With a regression tree, we can
separate the uncertainty in our predictions into two parts. First, we have some un-
certainty in what our predictions should be, assuming the tree is correct. Second, we
may of course be wrong about the tree.

The first source of uncertainty — imprecise estimates of the conditional means
within a given partition — is fairly easily dealt with. We can consistently estimate
the standard error of the mean for leaf c as Vc/(nc − 1), just like we would for any
other mean of IID samples. The second source is more troublesome; as the response
values shift, the tree itself changes, and discontinuously so, tree shape being a discrete
variable. What we want is some estimate of how different the tree could have been,
had we just drawn a different sample from the same source distribution.

One way to estimate this, from the data at hand, is non-parametric bootstrap-
ping. Given data (x1, y1), (x2, y2), . . . (xn , yn), we draw a random set of integers J1, J2, . . . Jn ,
independently and uniformly from the numbers 1 : n, with replacement. Then we
set

(X ′i ,Y ′i ) = (xJi
, yJi
)

Each of the re-sample data points has the same distribution as the whole of the orig-
inal data sample, and they’re independent. This is thus an IID sample of size n from
the empirical distribution, and as close as we can get to another draw from the orig-
inal data source without imposing any assumptions about how that’s distributed. We
can now treat this bootstrap sample just like the original data and fit a tree to it.
Repeated many times, we get a bootstrap sampling distribution of trees, which ap-
proximates the actual sampling distribution of regression trees. The spread of the
predictions of our bootstrapped trees around that of our original gives us an indica-
tion of how our tree’s predictions are distributed around the truth.

We will see more uses for bootstrapped trees next time, when we look at how to
combine trees into forests.

14.3 Classification Trees

Classification trees work just like regression trees, only they try to predict a discrete
category (the class), rather than a numerical value. The variables which go into the
classification — the inputs — can be numerical or categorical themselves, the same
way they can with a regression tree. They are useful for the same reasons regression
trees are — they provide fairly comprehensible predictors in situations where there
are many variables which interact in complicated, nonlinear ways.

We find classification trees in almost the same way we found regression trees: we
start with a single node, and then look for the binary distinction which gives us the
most information about the class. We then take each of the resulting new nodes
and repeat the process there, continuing the recursion until we reach some stopping
criterion. The resulting tree will often be too large (i.e., over-fit), so we prune it back
using (say) cross-validation. The differences from regression-tree growing have to do
with (1) how we measure information, (2) what kind of predictions the tree makes,
and (3) how we measure predictive error.
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14.3.1 Measuring Information
The response variable Y is categorical, so we can use information theory to measure
how much we learn about it from knowing the value of another discrete variable A:

I [Y ;A] =
∑

a
Pr (A= a) I [Y ;A= a] (14.1)

where
I [Y ;A= a] =H[Y ]−H[Y |A= a] (14.2)

and you remember the definitions of entropy H[Y ] and conditional entropy H[Y |A=
a].

I [Y ;A= a] is how much our uncertainty about Y decreases from knowing that
A = a. (Less subjectively: how much less variable Y becomes when we go from
the full population to the sub-population where A = a.) I [Y ;A] is how much our
uncertainty about Y shrinks, on average, from knowing the value of A.

For classification trees, A isn’t (necessarily) one of the predictors, but rather the
answer to some question, generally binary, about one of the predictors X , i.e., A=
1A (X ) for some setA . This doesn’t change any of the math above, however. So we
chose the question in the first, root node of the tree so as to maximize I [Y ;A], which
we calculate from the formula above, using the relative frequencies in our data to get
the probabilities.

When we want to get good questions at subsequent nodes, we have to take into
account what we know already at each stage. Computationally, we do this by com-
puting the probabilities and informations using only the cases in that node, rather
than the complete data set. (Remember that we’re doing recursive partitioning, so at
each stage the sub-problem looks just like a smaller version of the original problem.)
Mathematically, what this means is that if we reach the node when A= a and B = b ,
we look for the question C which maximizes I [Y ;C |A= a,B = b], the information
conditional on A= a, B = b . Algebraically,

I [Y ;C |A= a,B = b] =H[Y |A= a,B = b]−H[Y |A= a,B = b ,C ] (14.3)

Computationally, rather than looking at all the cases in our data set, we just look
at the ones where A = a and B = b , and calculate as though that were all the data.
Also, notice that the first term on the right-hand side, H[Y |A= a,B = b], does not
depend on the next question C . So rather than maximizing I [Y ;C |A= a,B = b],
we can just minimize H[Y |A= a,B = b ,C ].

14.3.2 Making Predictions
There are two kinds of predictions which a classification tree can make. One is a
point prediction, a single guess as to the class or category: to say “this is a flower”
or “this is a tiger” and nothing more. The other, a distributional prediction, gives a
probability for each class. This is slightly more general, because if we need to extract
a point prediction from a probability forecast we can always do so, but we can’t go
in the other direction.
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For probability forecasts, each terminal node in the tree gives us a distribution
over the classes. If the terminal node corresponds to the sequence of answers A= a,
B = b , . . . Q = q , then ideally this would give us Pr (Y = y|A= a,B = b , . . .Q = q)
for each possible value y of the response. A simple way to get close to this is to
use the empirical relative frequencies of the classes in that node. E.g., if there are
33 cases at a certain leaf, 22 of which are tigers and 11 of which are flowers, the leaf
should predict “tiger with probability 2/3, flower with probability 1/3”. This is the
maximum likelihood estimate of the true probability distribution, and we’ll write
it bPr (·).

Incidentally, while the empirical relative frequencies are consistent estimates of
the true probabilities under many circumstances, nothing particularly compells us
to use them. When the number of classes is large relative to the sample size, we
may easily fail to see any samples at all of a particular class. The empirical relative
frequency of that class is then zero. This is good if the actual probability is zero, not
so good otherwise. (In fact, under the negative log-likelihood error discussed below,
it’s infinitely bad, because we will eventually see that class, but our model will say it’s
impossible.) The empirical relative frequency estimator is in a sense too reckless in
following the data, without allowing for the possibility that it the data are wrong; it
may under-smooth. Other probability estimators “shrink away” or “back off” from
the empirical relative frequencies; Exercise 1 involves one such estimator.

For point forecasts, the best strategy depends on the loss function. If it is just the
mis-classification rate, then the best prediction at each leaf is the class with the highest
conditional probability in that leaf. With other loss functions, we should make the
guess which minimizes the expected loss. But this leads us to the topic of measuring
error.

14.3.3 Measuring Error

There are three common ways of measuring error for classification trees, or indeed
other classification algorithms: misclassification rate, expected loss, and normalized
negative log-likelihood, a.k.a. cross-entropy.

14.3.3.1 Misclassification Rate

We’ve already seen this: it’s the fraction of cases assigned to the wrong class.

14.3.3.2 Average Loss

The idea of the average loss is that some errors are more costly than others. For ex-
ample, we might try classifying cells into “cancerous” or “not cancerous” based on
their gene expression profiles6. If we think a healthy cell from someone’s biopsy is
cancerous, we refer them for further tests, which are frightening and unpleasant, but
not, as the saying goes, the end of the world. If we think a cancer cell is healthy, th

6Think back to Homework 4, only there all the cells were cancerous, and the question was just “which
cancer?”
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consequences are much more serious! There will be a different cost for each combi-
nation of the real class and the guessed class; write Li j for the cost (“loss”) we incur
by saying that the class is j when it’s really i .

For an observation x, the classifier gives class probabilities Pr (Y = i |X = x).
Then the expected cost of predicting j is:

Loss(Y = j |X = x) =
∑

i

Li j Pr (Y = i |X = x)

A cost matrix might look as follows

prediction
truth “cancer” “healthy”

“cancer” 0 100
“healthy” 1 0

We run an observation through the tree and wind up with class probabilities
(0.4,0.6). The most likely class is “healthy”, but it is not the most cost-effective
decision. The expected cost of predicting “cancer” is 0.4 ∗ 0+ 0.6 ∗ 1= 0.6, while the
expected cost of predicting “healthy” is 0.4 ∗ 100+ 0.6 ∗ 0 = 40. The probability of
Y = “healthy” must be 100 times higher than that of Y = “cancer” before “cancer” is
a cost-effective prediction.

Notice that if our estimate of the class probabilities is very bad, we can go through
the math above correctly, but still come out with the wrong answer. If our estimates
were exact, however, we’d always be doing as well as we could, given the data.

You can show (and will, in the homework!) that if the costs are symmetric, we
get the mis-classification rate back as our error function, and should always predict
the most likely class.

14.3.3.3 Likelihood and Cross-Entropy

The normalized negative log-likelihood is a way of looking not just at whether the
model made the wrong call, but whether it made the wrong call with confidence or
tentatively. (“Often wrong, never in doubt” is not a good idea.) More precisely, this
loss function for a model Q is

L(data,Q) =−
1

n

n
∑

i=1

logQ(Y = yi |X = xi )

where Q(Y = y|X = x) is the conditional probability the model predicts. If perfect
classification were possible, i.e., if Y were a function of X , then the best classifier
would give the actual value of Y a probability of 1, and L = 0. If there is some
irreducible uncertainty in the classification, then the best possible classifier would
give L = H[Y |X ], the conditional entropy of Y given the inputs X . Less-than-ideal
predictors have L>H[Y |X ]. To see this, try re-write L so we sum over values rather
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than data-points:

L = −
1

n

∑

x,y
N (Y = y,X = x) logQ(Y = y|X = x)

= −
∑

x,y

bPr (Y = y,X = x) logQ(Y = y|X = x)

= −
∑

x,y

bPr (X = x) bPr (Y = y|X = x) logQ(Y = y|X = x)

= −
∑

x

bPr (X = x)
∑

y

bPr (Y = y|X = x) logQ(Y = y|X = x)

If the quantity in the log was Pr (Y = y|X = x), this would be H[Y |X ]. Since it’s the
model’s estimated probability, rather than the real probability, it turns out that this
is always larger than the conditional entropy. L is also called the cross-entropy for
this reason.

There is a slightly subtle issue here about the difference between the in-sample
loss, and the expected generalization error or risk. N (Y = y,X = x)/n = bPr (Y = y,X = x),
the empirical relative frequency or empirical probability. The law of large numbers
says that this converges to the true probability, N (Y = y,X = x)/n→ Pr (Y = y,X = x)
as n →∞. Consequently, the model which minimizes the cross-entropy in sample
may not be the one which minimizes it on future data, though the two ought to
converge. Generally, the in-sample cross-entropy is lower than its expected value.

Notice that to compare two models, or the same model on two different data
sets, etc., we do not need to know the true conditional entropy H[Y |X ]. All we
need to know is that L is smaller the closer we get to the true class probabilities. If
we could get L down to the cross-entropy, we would be exactly reproducing all the
class probabilities, and then we could use our model to minimize any loss function
we liked (as we saw above).7

14.3.3.4 Neyman-Pearson Approach

Using a loss function which assigns different weights to different error types has two
noticeable drawbacks. First of all, we have to pick the weights, and this is often quite
hard to do. Second, whether our classifier will do well in the future depends on
getting the same proportion of cases in the future. Suppose that we’re developing a
tree to classify cells as cancerous or not from their gene expression profiles8. We will
probably want to include lots of cancer cells in our training data, so that we can get
a good idea of what cancers look like, biochemically. But, fortunately, most cells are
not cancerous, so if doctors start applying our test to their patients, they’re going to

7Technically, if our model gets the class probabilities right, then the model’s predictions are just as
informative as the original data. We then say that the predictions are a sufficient statistic for forecasting
the class. In fact, if the model gets the exact probabilities wrong, but has the correct partition of the
feature space, then its prediction is still a sufficient statistic. Under any loss function, the optimal strategy
can be implemented using only a sufficient statistic, rather than needing the full, original data. This is an
interesting but much more advanced topic; see, e.g., Blackwell and Girshick (1954) for details.

8This is almost like homework 4, except there all the cells were from cancers of one sort or another.
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find that it massively over-diagnoses cancer — it’s been calibrated to a sample where
the proportion (cancer):(healthy) is, say, 1:1, rather than, say, 1:20.9

There is an alternative to weighting which deals with both of these issues, and
deserves to be better known and more widely-used than it is. This was introduced
by Scott and Nowak (2005), under the name of the “Neyman-Pearson approach” to
statistical learning. The reasoning goes as follows.

When we do a binary classification problem, we’re really doing a hypothesis test,
and the central issue in hypothesis testing, as first recognized by Neyman and Pear-
son, is to distinguish between the rates of different kinds of errors: false positives
and false negatives, false alarms and misses, type I and type II. The Neyman-Pearson
approach to designing a hypothesis test is to first fix a limit on the false positive prob-
ability, the size of the test, canonically α. Then, among all tests of size α, we want to
minimize the false negative rate, or equivalently maximize the power, β.

In the traditional theory of testing, we know the distribution of the data under
the null and alternative hypotheses, and so can (in principle) calculate α and β for
any given test. This is not the case in data mining, but we do generally have very
large samples generated under both distributions (depending on the class of the data
point). If we fix α, we can ask, for any classifier — say, a tree — whether its false alarm
rate is ≤ α. If so, we keep it for further consideration; if not, we discard it. Among
those with acceptable false alarm rates, then, we ask “which classifier has the lowest
false negative rate, the highest β?” This is the one we select.

Notice that this solves both problems with weighting. We don’t have to pick a
weight for the two errors; we just have to say what rate of false positives α we’re
willing to accept. There are many situations where this will be easier to do than to
fix on a relative cost. Second, the rates α and β are properties of the conditional
distributions of the features, Pr (X |Y ). If those conditional distributions stay they
same but the proportions of the classes change, then the error rates are unaffected.
Thus, training the classifier with a different mix of cases than we’ll encounter in the
future is not an issue.

Unfortunately, I don’t know of any R implementation of Neyman-Pearson learn-
ing; it wouldn’t be hard, I think, but goes beyond one problem set at this level.

14.4 Further Reading
The classic book on prediction trees, which basically introduced them into statistics
and data mining, is Breiman et al. (1984). Chapter three in Berk (2008) is clear, easy
to follow, and draws heavily on Breiman et al. Another very good chapter is the one
on trees in Ripley (1996), which is especially useful for us because Ripley wrote the
tree package. (The whole book is strongly recommended if you plan to go further
in data-mining.) There is another tradition of trying to learn tree-structured models
which comes out of artificial intelligence and inductive logic; see Mitchell (1997).

The clearest explanation of the Neyman-Pearson approach to hypothesis testing I
have ever read is that in Reid (1982), which is one of the books which made me decide

9Cancer is rarer than that, but realistically doctors aren’t going to run a test like this unless they have
some reason to suspect cancer might be present.
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to learn statistics.

14.5 Exercises
1. Repeat the analysis of the California house-price data with the Pennsylvania

data.

2. Suppose that we see each of k classes ni times, with
∑k

i=1 ni = n. The maxi-
mum likelihood estimate of the probability of the i th class is bpi = ni/n. Sup-
pose that instead we use the estimates

p̃i =
ni + 1

∑k
j=1 n j + 1

(14.4)

This estimator goes back to Laplace, who called it the “rule of succession”.

Show that the p̃i sum up to one. Show, using the law of large numbers, that
p̃→ p when bp→ p. Do these properties still hold if the+1s in the numerator
and denominator are replaced by +d for an arbitrary d > 0?

3. Fun with Laplace’s rule of succession: will the Sun rise tomorrow? One illustra-
tion Laplace gave of this probability estimator was the following. Suppose we
know, from written records, that the Sun has risen in the east every day for the
last 4000 years.10

(a) Calculate the probability of the event “the Sun will rise in the east to-
morrow”, using Eq. 14.4. You may take the year as containing 365.256
days.

(b) Calculate the probability that the Sun will rise in the east every day for the
next four thousand years, assuming this is an IID event. Is this a reasonable
assumption?

(c) Calculate the probability of the event “the Sun will rise in the east every
day for four thousand years” directly from Eq. 14.4. Does your answer
agree with part (b)? Should it?

Laplace did not, of course, base his belief that the Sun will rise in the morn-
ing on such calculations; besides everything else, he was the world’s expert in
celestial mechanics! But this shows the problem with the

4. Show that, when all the off-diagonal elements of Li j are equal (and positive!),
the best class to predict is always the most probable class.

10Laplace was thus ignoring people who live above the Artic circle, or below the Antarctic circle. The
latter seems particularly unfair, because so many of them are scientists.
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Chapter 15

Multivariate Distributions

TODO: a proper opening!

15.1 Review of Definitions
Let’s review some definitions from basic probability. When we have a random vector
~X with p different components, X1,X2, . . .Xp , the joint cumulative distribution
function is

F (~a) = F (a1,a2, . . .ap ) = Pr
�

X1 ≤ a1,X2 ≤ a2, . . .Xp ≤ ap

�

(15.1)

Thus

F (~b )− F (~a) = Pr
�

a1 <X1 ≤ b1,a2 <X2 ≤ b2, . . .ap <Xp ≤ bp

�

(15.2)

This is the probability that X is in a (hyper-)rectangle, rather than just in an interval.
The joint probability density function is

p(~x) = p(x1, x2, . . . xp ) =
∂ p F (a1, . . .ap )

∂ a1 . . .∂ ap

�

�

�

�

�

~a=~x

(15.3)

Of course,

F (~a) =
∫ a1

−∞

∫ a2

−∞
. . .
∫ ap

−∞
p(x1, x2, . . . xp )d xp . . . d x2d x1 (15.4)

(In this case, the order of integration doesn’t matter. Why?)
From these, and especially from the joint PDF, we can recover the marginal PDF

of any group of variables, say those numbered 1 through q ,

p(x1, x2, . . . xq ) =
∫

p(x1, x2, . . . xp )d xq+1d xq+2 . . . d xp (15.5)

(What are the limits of integration here?) Then the conditional pdf for some variables
given the others — say, use variables 1 through q to condition those numbered q + 1
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through p — just comes from division:

p(xq+1, xq+2, . . . xp |X1 = x1, . . .Xq = xq ) =
p(x1, x2, . . . xp )

p(x1, x2, . . . xq )
(15.6)

These two tricks can be iterated, so, for instance,

p(x3|x1) =
∫

p(x3, x2|x1)d x2 (15.7)

[[TODO: Some non-Gaussian
examples]]

15.2 Multivariate Gaussians
The multivariate Gaussian is just the generalization of the ordinary Gaussian to vec-
tors. Scalar Gaussians are parameterized by a mean µ and a variance σ2, so we write
X ∼N (µ,σ2). Multivariate Gaussians, likewise, are parameterized by a mean vector
~µ, and a variance-covariance matrixΣ, written ~X ∼MVN (~µ,Σ). The components
of ~µ are the means of the different components of ~X . The i , j th component ofΣ is the
covariance between Xi and X j (so the diagonal of Σ gives the component variances).

Just as the probability density of scalar Gaussian is

p(x) =
�

2πσ2
�−1/2

exp

¨

−
1

2

(x −µ)2

σ2

«

(15.8)

the probability density of the multivariate Gaussian is

p(~x) = (2πdetΣ)−p/2 exp
�

−
1

2
(~x − ~µ) ·Σ−1(~x − ~µ)

�

(15.9)

Finally, remember that the parameters of a Gaussian change along with linear trans-
formations

X ∼N (µ,σ2)⇔ aX + b ∼N (aµ+ b ,a2σ2) (15.10)

and we can use this to “standardize” any Gaussian to having mean 0 and variance 1
(by looking at X−µ

σ
). Likewise, if

~X ∼MVN (~µ,Σ) (15.11)

then
a~X +~b ∼MVN (a~µ+~b ,aΣaT ) (15.12)

In fact, the analogy between the ordinary and the multivariate Gaussian is so com-
plete that it is very common to not really distinguish the two, and writeN for both.

The multivariate Gaussian density is most easily visualized when p = 2, as in
Figure 15.1. The probability contours are ellipses. The density changes compara-
tively slowly along the major axis, and quickly along the minor axis. The two points
marked + in the figure have equal geometric distance from ~µ, but the one to its right
lies on a higher probability contour than the one above it, because of the directions
of their displacements from the mean.
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+

library(mvtnorm)
x.points <- seq(-3,3,length.out=100)
y.points <- x.points
z <- matrix(0,nrow=100,ncol=100)
mu <- c(1,1)
sigma <- matrix(c(2,1,1,1),nrow=2)
for (i in 1:100) {
for (j in 1:100) {

z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),mean=mu,sigma=sigma)
}

}
contour(x.points,y.points,z)

Figure 15.1: Probability density contours for a two-dimensional multivariate Gaus-

sian, with mean ~µ =
�

1
1

�

(solid dot), and variance matrix Σ =
�

2 1
1 1

�

. Using

expand.grid, as in Chapter 4, would be more elegant coding than this double for
loop. 11:36 Saturday 22nd November, 2014
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15.2.1 Linear Algebra and the Covariance Matrix

We can use some facts from linear algebra to understand the general pattern here, for
arbitrary multivariate Gaussians in an arbitrary number of dimensions. The covari-
ance matrix Σ is symmetric and positive-definite, so we know from matrix algebra
that it can be written in terms of its eigenvalues and eigenvectors:

Σ= vT dv (15.13)

where d is the diagonal matrix of the eigenvalues of Σ, and v is the matrix whose
columns are the eigenvectors of Σ. (Conventionally, we put the eigenvalues in d
in order of decreasing size, and the eigenvectors in v likewise, but it doesn’t matter
so long as we’re consistent about the ordering.) Because the eigenvectors are all of
length 1, and they are all perpendicular to each other, it is easy to check that vT v= I,
so v−1 = vT and v is an orthogonal matrix. What actually shows up in the equation
for the multivariate Gaussian density is Σ−1, which is

(vT dv)−1 = v−1d−1
�

vT
�−1
= vT d−1v (15.14)

Geometrically, orthogonal matrices represent rotations. Multiplying by v rotates
the coordinate axes so that they are parallel to the eigenvectors of Σ. Probabilisti-
cally, this tells us that the axes of the probability-contour ellipse are parallel to those
eigenvectors. The radii of those axes are proportional to the square roots of the eigen-
values. To see that, look carefully at the math. Fix a level for the probability density
whose contour we want, say f0. Then we have

f0 = (2πdetΣ)−p/2 exp
�

−
1

2
(~x − ~µ) ·Σ−1(~x − ~µ)

�

(15.15)

c = (~x − ~µ) ·Σ−1(~x − ~µ) (15.16)

= (~x − ~µ)T vT d−1v(~x − ~µ) (15.17)

= (~x − ~µ)T vT d−1/2d−1/2v(~x − ~µ) (15.18)

=
�

d−1/2v(~x − ~µ)
�T �

d−1/2v(~x − ~µ)
�

(15.19)

=




d−1/2v(~x − ~µ)






2
(15.20)

where c combines f0 and all the other constant factors, and d−1/2 is the diagonal
matrix whose entries are one over the square roots of the eigenvalues of Σ. The v(~x−
~µ) term takes the displacement of ~x from the mean, ~µ, and replaces the components
of that vector with its projection on to the eigenvectors. Multiplying by d−1/2 then
scales those projections, and so the radii have to be proportional to the square roots
of the eigenvalues.1

1If you know about principal components analysis and think that all this manipulation of eigenvectors
and eigenvalues of the covariance matrix seems familiar, you’re right; this was one of the ways in which
PCA was originally discovered. But PCA does not require any distributional assumptions. If you do not
know about PCA, wait for Chapter 18.
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15.2.2 Conditional Distributions and Least Squares

Suppose that ~X is bivariate, so p = 2, with mean vector ~mu = (µ1,µ2), and variance

matrix
�

Σ11 Σ12
Σ21 Σ22

�

. One can show (exercise!) that the conditional distribution of

X2 given X1 is Gaussian, and in fact

X2|X1 = x1 ∼N (µ2+Σ21Σ
−1
11 (x1−µ1),Σ22−Σ21Σ

−1
11 Σ12) (15.21)

To understand what is going on here, remember from Chapter 1 that the optimal
slope for linearly regressing X2 on X1 would be Cov[X2,X1]/Var[X1]. This is pre-
cisely the same as Σ21Σ

−1
11 . So in the bivariate Gaussian case, the best linear regression

and the optimal regression are exactly the same — there is no need to consider non-
linear regressions. Moreover, we get the same conditional variance for each value of
x1, so the regression of X2 on X1 is homoskedastic, with independent Gaussian noise.
This is, in short, exactly the situation which all the standard regression formulas aim
at.

More generally, if X1,X2, . . .Xp are multivariate Gaussian, then conditioning on
X1, . . .Xq gives the remaining variables Xq+1, . . .Xp a Gaussian distribution as well.

If we say that ~µ = (~µA, ~µB ) and Σ =
�

ΣAA ΣAB
ΣBA ΣBB

�

, where A stands for the condi-

tioning variables and B for the conditioned, then

~XB |~XA= ~xa ∼MVN (~µB +ΣBAΣ
−1
AA(~xA− ~µA),ΣBB −ΣBAΣ

−1
AAΣAB ) (15.22)

(Remember that here ΣBA=Σ
T
AB [Why?].) This, too, is just doing a linear regression

of ~XB on ~XA.

15.2.3 Projections of Multivariate Gaussians
A useful fact about multivariate Gaussians is that all their univariate projections are
also Gaussian. That is, if ~X ∼MVN (~µ,Σ), and we fix any unit vector ~w, then ~w · ~X
has a Gaussian distribution. This is easy to see if Σ is diagonal: then ~w · ~X reduces
to a sum of independent Gaussians, which we know from basic probability is also
Gaussian. But we can use the eigen-decomposition of Σ to check that this holds more
generally.

One can also show that the converse is true: if ~w · ~X is a univariate Gaussian for
every choice of ~w, then ~X must be multivariate Gaussian. This fact is more useful for
probability theory than for data analysis2, but it’s still worth knowing.

15.2.4 Computing with Multivariate Gaussians
Computationally, it is not hard to write functions to calculate the multivariate Gaus-
sian density, or to generate multivariate Gaussian random vectors. Unfortunately,

2It’s a special case of a result called the Cramér-Wold theorem, or the Cramér-Wold device, which
asserts that two random vectors ~X and ~Y have the same distribution if and only if ~w · ~X and ~w · ~Y have
the same distribution for every ~w.
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no one seems to have thought to put a standard set of such functions in the basic
set of R packages, so you have to use a different library. The MASS library con-
tains a function, mvrnorm, for generating multivariate Gaussian random vectors. The
mvtnorm contains functions for calculating the density, cumulative distribution and
quantiles of the multivariate Gaussian, as well as generating random vectors3 The
package mixtools, which will use in Chapter 20 for mixture models, includes func-
tions for the multivariate Gaussian density and for random-vector generation.

15.3 Inference with Multivariate Distributions
As with univariate distributions, there are several ways of doing statistical inference
for multivariate distributions. Here I will focus on parametric inference, since non-
parametric inference is covered in Chapter 16.

15.3.1 Estimation
The oldest method of estimating parametric distributions is moment-matching or
the method of moments. If there are q unknown parameters of the distribution,
one picks q expectation values — means, variances, and covariances are popular —
and finds algebraic expressions for them in terms of the parameters. One then sets
these equal to the sample moments, and solves for the corresponding parameters.
This method can fail if you happen to chose algebraically redundant moments, since
then you really have fewer equations than unknowns4. Perhaps more importantly, it
quickly becomes very awkward to set up and solve all the necessary equations, and
anyway this neglects a lot of information the data.[[TODO: Refer results on es-

timation via ML to an ap-
pendix on optimization]]

The approach which has generally replaced the method of moments is simply the
method of maximum likelihood. The likelihood is defined in exactly the same way for
multivariate distributions as for univariate ones. If the observations ~xi are assumed
to be independent, and θ stands for all the parameters bundled together, then

L(θ) =
n
∏

i=1

p(~xi ;θ) (15.23)

and the maximum likelihood estimate (MLE) is

bθM LE = argmax
θ

L(θ) (15.24)

Again, as in the univariate case, it is usually simpler and more stable to use the log-
likelihood:

`(θ) =
n
∑

i=1

log p(~xi ;θ) (15.25)

3It also has such functions for multivariate t distributions, which are to multivariate Gaussians exactly
as ordinary t distributions are to univariate Gaussians.

4For instance, you can’t use variances, covariances and correlations, since knowing variances and co-
variances fixes the correlations.
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making use of the fact that

argmax
θ

L(θ) = argmax
θ

`(θ) (15.26)

The simplest possible case for this is the multivariate Gaussian, where the MLE
is the sample mean vector and the sample covariance matrix. Generally, however, the
maximum likelihood estimate and the moment-matching estimate will not coincide.

Of course, for inference, we generally need more than just a point estimate like
bθM LE , we need some idea of uncertainty. We can get that pretty generically from
maximum likelihood. Very informally, since we are maximizing the log-likelihood,
the precision with which we estimate the parameter depends on how sharp that max-
imum is — the bigger the second derivative, the more precise our estimate. In fact,
one can show (Wasserman, 2003, §9.7 and 9.10) that

bθM LE  MVN (θ0,−H−1(θ0)) (15.27)

where θ0 is the true parameter value, and H is the Hessian of the log-likelihood, its
matrix of second partial derivatives,

H j k (θ) =
∂ 2`

∂ θ j∂ θk

�

�

�

�

�

θ

(15.28)

In turn,
1

n
H j k (θ0)→ E





∂ 2 log p(X ;θ0)

∂ θ j∂ θk



≡−I j k (θ0) (15.29)

which defines the Fisher information matrix I. One can therefore get (approximate)
confidence regions by assuming that bθM LE has a Gaussian distribution with covari-
ance matrix n−1I−1(bθM LE ), or, somewhat more accurately, −H−1(bθM LE ). We thus

get that Var
h

bθM LE

i

=O(n−1), and bθM LE −θ0 =O(n−1/2).
Note that Eq. 15.27 is only valid as n→∞, and further assumes that (i) the model

is well-specified, (ii) the true parameter value θ0 is in the interior of the parameter
space, and (iii) the Hessian matrix is strictly positive. If these conditions fail, then the
distribution of the MLE need not be Gaussian, or controlled by the Fisher informa-
tion matrix, etc.

An alternative to the asymptotic formula, Eq. 15.27, is simply parametric or non-
parametric bootstrapping.

15.3.2 Model Comparison
Out of sample, models can be compared on log-likelihood. When a strict out-of-
sample comparison is not possible, we can use cross-validation.

In sample, a likelihood ratio test can be used. This has two forms, depending on
the relationship between the models. Suppose that there is a large or wide model,
with parameter Θ, and a narrow or small model, with parameter θ, which we get
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by fixing some of the components of Θ. Thus the dimension of Θ is q and that of
θ is r < q . Since every distribution we can get from the narrow model we can also
get from the wide model, in-sample the likelihood of the wide model must always be
larger. Thus

`(bΘ)− `(bθ)≥ 0 (15.30)

Here we have a clear null hypothesis, which is that the data comes from the narrower,
smaller model. Under this null hypothesis, as n→∞,

2[`(bΘ)− `(bθ)]  χ 2
q−r (15.31)

provided that the restriction imposed by the small model doesn’t place it on the
boundary of the parameter space of Θ. (See Appendix F.)

For instance, suppose that ~X is bivariate, and the larger model is an unrestricted

Gaussian, so Θ =
�

(µ1,µ2),
�

Σ11 Σ12
Σ12 Σ22

��

. A possible narrow model might im-

pose the assumption that the components of ~X are uncorrelated, so θ=
�

(µ1,µ2),
�

Σ11 0
0 Σ22

��

.

This is a restriction on the broader model, but not one which is on the boundary of
the parameter space, so the large-sample χ 2 distribution should apply. A restriction
which would be on the boundary would be to insist that X2 was constant, so Σ22 = 0.
(This would also force Σ12 = 0.)

If, on the other hand, that we have two models, with parameters θ and ψ, and
they are completely non-nested, meaning there are no parameter combinations where

p(·;θ) = p(·;ψ) (15.32)

then in many ways things become easier. For fixed parameter values θ0, ψ0, the mean
log-likelihood ratio is just an average of IID terms:

1

n
[`(θ0)− `(ψ0)] ≡

1

n

n
∑

i=1

Λi (15.33)

=
1

n

n
∑

i=1

log
p(xi ;θ0)

p(xi ;ψ0)
(15.34)

By the law of large numbers, then, the mean log-likelihood ratio converges to an
expected value E[Λ]. This is positive if θ0 has a higher expected log-likelihood than
ψ0, and negative the other way around. Furthermore, by the central limit theorem,
as n grows, the fluctuations around this expected value are Gaussian, with variance
σ2
Λ/n. We can estimate σ2

Λ by the sample variance of log p(xi ;θ0)
p(xi ;ψ0)

.
Ordinarily, we don’t have just a single parameter value for each model, but also

ordinarily, bθM LE and bψM LE both converge to limits, which we can call θ0 and p s i0.
At the cost of some fancy probability theory, one can show that, in the non-nested
case, p

n

n

`(bθ)− `( bψ)
σ2
Λ

 N (E[Λ] , 1) (15.35)
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and that we can consistently estimate E[Λ] and σ2
Λ by “plugging in” bθ and bψ in place

of θ0 andψ0. This gives the Vuong test for comparing the two models Vuong (1989).
The null hypothesis in the Vuong test is that the two models are equally good (and
neither is exactly true). In this case,

V =
1
p

n

`(bθ)− `( bψ)
bσΛ

 N (0,1) (15.36)

If V is significantly positive, we have evidence in favor of the θ model being better
(though not necessarily true), while if it is significantly negative we have evidence in
favor of the ψmodel being better.

The cases where two models partially overlap is complicated; see Vuong (1989)
for the gory details5

15.3.3 Goodness-of-Fit
For univariate distributions, we often assess goodness-of-fit through the Kolmogorov-
Smirnov (KS) test6, where the test statistic is

dK S =max
a
|bFn(a)− F (a)| (15.37)

with bFn being the empirical CDF, and F its theoretical counterpart. The null hy-
pothesis here is that the data were drawn IID from F , and what Kolmogorov and
Smirnov did was to work out the distribution of dK S under this null hypothesis, and
show it was the same for all F (at least for large n). This lets us actually calculate p
values.

We could use such a test statistic for multivariate data, where we’d just take the
maximum over vectors a, rather than scalars. But the problem is that we do not know
its sampling distribution under the null hypothesis in the multivariate case — Kol-
mogorov and Smirnov’s arguments don’t work there — so we don’t know whether a
given value of dK S is large or small or what.

There is however a fairly simple approximate way of turning univariate tests into
multivariate ones. Suppose our data consists of vectors ~x1,~x2, . . .~xn . Pick a unit vector
~w, and set zi = ~w ·~xi . Geometrically, this is just the projection of the data along the
direction ~w, but these projections are univariate random variables. If the ~xi were
drawn from F , then the zi must have be drawn from the corresponding projection
of F , call it F ~w . If we can work out the latter distribution, then we can apply our
favorite univariate test to the zi . If the fit is bad, then we know that the ~xi can’t have
come from F . If the fit is good for the zi , then the fit is also good for the ~xi — at least

5If you are curious about why this central-limit-theorem argument doesn’t work in the nested case,
notice that when we have nested models, and the null hypothesis is true, then bΘ→ bθ, so the numerator in
the Vuong test statistic, [`(bθ)−`( bψ)]/n, is converging to zero, but so is the denominator σ2

Λ. Since 0/0 is
undefined, we need to use a stochastic version of L’Hoptial’s rule, which gives us back Eq. 15.31. See, yet
again, Vuong (1989).

6I discuss the KS test here for concreteness. Much the same ideas apply to the Anderson-Darling test,
the Cramér-von Mises test, and others which, not being such good ideas, were only invented by one person.
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along the direction ~w. Now, we can either carefully pick ~w to be a direction which
we care about for some reason, or we can chose it randomly. If the projection of the
~xi along several random directions matches that of F , it becomes rather unlikely that
they fail to match over-all7.

To summarize:

1. Chose a random unit vector ~W . (For instance, let ~U ∼ MVN (0, Ip ), and
~W = ~U/‖ ~U‖.)

2. Calculate Zi = ~W ·~xi .

3. Calculate the corresponding projection of the theoretical distribution F , call it
F ~W .

4. Apply your favorite univariate goodness-of-fit test to ~Zi and F ~W .

5. Repeat (1)–(4) multiple times, with Bonferroni correction for multiple testing.
[[TODO: Multiple compar-
isons needs to be an appendix
topic]] 15.4 Exercises

1. Write a function to calculate the density of a multivariate Gaussian with a given
mean vector and covariance matrix. Check it against an existing function from
one of the packages mentioned in §15.2.4.

2. Write a function to generate multivariate Gaussian random vectors, using rnorm.

3. If ~X has mean ~µ and variance-covariance matrix Σ, and ~w is a fixed, non-
random vector, find the mean and variance of w ·X .

4. If ~X ∼ MVN (~µ,Σ), and b and c are two non-random matrices, find the
covariance matrix of b~X and c~X .

[[TODO: Move review mate-
rial into an appendix]]

7Theoretically, we appeal to the Cramér-Wold device again: the random vectors ~X and ~Y have the same
distribution if and only if ~w · ~X and ~w · ~Y have the same distribution for every ~w. Failing to match for any
~w implies that ~X and ~Y have different distributions. Conversely, if ~X and ~Y differ in distribution at all,
~w · ~X must differ in distribution from ~w · ~Y for some choice of ~w. Randomizing the choice of ~w gives us
power to detect a lot of differences in distribution.
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Chapter 16

Estimating Distributions and
Densities

We have spent a lot of time looking at how to estimate expectations (which is re-
gression). We have also seen how to estimate variances, by turning it into a problem
about expectations. We could extend the same methods to looking at higher mo-
ments — if you need to find the conditional skewness or kurtosis functions1, you can
tackle that in the same way as finding the conditional variance. But what if we want
to look at the whole distribution?

You’ve already seen the parametric solution to the problem in earlier statistics
courses: posit a parametric model for the density (Gaussian, Student’s t, exponential,
gamma, beta, Pareto, . . . ) and estimate the parameters. Maximum likelihood esti-
mates are generally consistent and efficient for such problems. Chapter 15 reminded
us of how this machinery can be extended to multivariate data. But suppose you
don’t have any particular parametric density family in mind, or want to check one —
how could we estimate a probability distribution non-parametrically?

16.1 Histograms Revisited

For most of you, making a histogram was probably one of the first things you learned
how to do in intro stats (if not before). This is a simple way of estimating a distribu-
tion: we split the sample space up into bins, count how many samples fall into each
bin, and then divide the counts by the total number of samples. If we hold the bins
fixed and take more and more data, then by the law of large numbers we anticipate
that the relative frequency for each bin will converge on the bin’s probability.

So far so good. But one of the things you learned in intro stats was also to work
with probability density functions, not just probability mass functions. Where do we
get pdfs? Well, one thing we could do is to take our histogram estimate, and then say

1When you find out what the kurtosis is good for, be sure to tell the world.
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that the probability density is uniform within each bin. This gives us a piecewise-
constant estimate of the density.

Unfortunately, this isn’t going to work — isn’t going to converge on the true pdf
— unless we can shrink the bins of the histogram as we get more and more data.
To see this, think about estimating the pdf when the data comes from any of the
standard distributions, like an exponential or a Gaussian. We can approximate the
true pdf f (x) to arbitrary accuracy by a piecewise-constant density (indeed, that’s
what happens every time we plot it on our screens), but, for a fixed set of bins, we
can only come so close to the true, continuous density.

This reminds us of our old friend the bias-variance trade-off, and rightly so. If
we use a large number of very small bins, the minimum bias in our estimate of any
density becomes small, but the variance in our estimates grows. (Why does variance
increase?) To make some use of this insight, though, there are some things we need
to establish first.

• Is learning the whole distribution non-parametrically even feasible?

• How can we measure error so deal with the bias-variance trade-off?

16.2 “The Fundamental Theorem of Statistics”

Let’s deal with the first point first. In principle, something even dumber than shrink-
ing histograms will work to learn the whole distribution. Suppose we have one-
dimensional one-dimensional samples x1, x2, . . . xn with a common cumulative distri-
bution function F . The empirical cumulative distribution function on n samples,
F̃n(a) is

F̃n(a)≡
1

n

n
∑

i=1

1(−∞,a])(xi ) (16.1)

In words, this is just the fraction of the samples which are ≤ a. Then the Glivenko-
Cantelli theorem says

max
a
|F̃n(a)− F (a)| → 0 (16.2)

So the empirical CDF converges to the true CDF everywhere; the maximum gap
between the two of them goes to zero. Pitman (1979) calls this the “fundamental
theorem of statistics”, because it says we can learn distributions just by collecting
enough data.2 The same kind of result also holds for higher-dimensional vectors.

2Note that for any one, fixed value of a, that |F̃n(a)−F (a)| → 0 is just an application of the law of large
numbers. The extra work Glivenko and Cantelli did was to show that this held for infinitely many values
of a at once, so that even if we focus on the biggest gap between the estimate and the truth, that still shrinks
with n. We won’t go into the details, but here’s the basic idea. Fix an ε > 0; first show that there is some
finite set of points on the line, call them b1, . . . bq , such that |F̃n(a)− F̃n(bi )|< ε| and |F (a)−F (bi )|< ε for

some bi . Next, show that, for large enough n, |F (bi )− F̃n(bi )| < ε for all the bi . (This follows from the
law of large numbers and the fact that q is finite.) Finally, use the triangle inequality to conclude that, for
large enough n, |F̃n(a)− F (a)|< 3ε. Since ε can be made arbitrarily small, the Glivenko-Cantelli theorem
follows. (Yes, there are some details I’m glossing over.) This general strategy — combining pointwise
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If the Glivenko-Cantelli theorem is so great, why aren’t we just content with the
empirical CDF? Sometimes we are, but it inconveniently doesn’t give us a probability
density. Suppose that x1, x2, . . . xn are sorted into increasing order. What probability
does the empirical CDF put on the interval (xi , xi+1)? Clearly, zero. (Whereas the
interval [xi , xi+1] gets probability 2/n.) This could be right, but we have centuries
of experience now with probability distributions, and this tells us that pretty often
we can expect to find some new samples between our old ones. So we’d like to get a
non-zero density between our observations.

Using a uniform distribution within each bin of a histogram doesn’t have this
issue, but it does leave us with the problem of picking where the bins go and how
many of them we should use. Of course, there’s nothing magic about keeping the
bin size the same and letting the number of points in the bins vary; we could equally
well pick bins so they had equal counts.3 So what should we do? [[TODO: Mention DKW

inequality and correspond-
ing confidence band for the
CDF]]16.3 Error for Density Estimates

Our first step is to get clear on what we mean by a “good” density estimate. There
are three leading ideas:

1.
∫

( f (x)− f̂ (x))
2
d x should be small: the squared deviation from the true den-

sity should be small, averaging evenly over all space.

2.
∫

| f (x)− f̂ (x)|d x should be small: minimize the average absolute, rather than
squared, deviation.

3.
∫

f (x) log f (x)
bf (x)

d x should be small: the average log-likelihood ratio should be

kept low.

Option (1) is reminiscent of the MSE criterion we’ve used in regression. Option
(2) looks at what’s called the L1 or total variation distance between the true and
the estimated density. It has the nice property that 1

2

∫

| f (x)− f̂ (x)|d x is exactly the
maximum error in our estimate of the probability of any set. Unfortunately it’s a
bit tricky to work with, so we’ll skip it here. (But see Devroye and Lugosi (2001)).
Finally, minimizing the log-likelihood ratio is intimately connected to maximizing

convergence theorems with approximation arguments — forms the core of what’s called empirical process
theory, which underlies the consistency of basically all the non-parametric procedures we’ve seen. If this
line of thought is at all intriguing, the closest thing to a gentle introduction is Pollard (1989).

3A specific idea for how to do this is sometimes called a k − d tree. We have d random variables and
want a joint density for all of them. Fix an ordering of the variables Start with the first variable, and
find the thresholds which divide it into k parts with equal counts. (Usually but not always k = 2.) Then
sub-divide each part into k equal-count parts on the second variable, then sub-divide each of those on the
third variable, etc. After splitting on the d th variable, go back to splitting on the first, until no further
splits are possible. With n data points, it takes about logk n splits before coming down to individual data
points. Each of these will occupy a cell of some volume. Estimate the density on that cell as one over that
volume. Of course it’s not strictly necessary to keep refining all the way down to single points.
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the likelihood. We will come back to this (§16.6), but, like most texts on density es-
timation, we will give more attention to minimizing (1), because it’s mathematically
tractable.

Notice that
∫

( f (x)− f̂ (x))
2
d x =

∫

f 2(x)d x − 2
∫

f̂ (x) f (x)d x +
∫

f̂ 2(x)d x (16.3)

The first term on the right hand side doesn’t depend on the estimate f̂ (x) at all, so
we can ignore it for purposes of optimization. The third one only involves f̂ , and is
just an integral, which we can do numerically. That leaves the middle term, which
involves both the true and the estimated density; we can approximate it by

−
2

n

n
∑

i=1

f̂ (xi ) (16.4)

The reason we can do this is that, by the Glivenko-Cantelli theorem, integrals over
the true density are approximately equal to sums over the empirical distribution.

So our final error measure is

−
2

n

n
∑

i=1

f̂ (xi )+
∫

f̂ 2(x)d x (16.5)

In fact, this error measure does not depend on having one-dimension data; we can use
it in any number of dimensions.4 For purposes of cross-validation (you knew that
was coming, right?), we can estimate f̂ on the training set, and then restrict the sum
to points in the testing set.

16.3.1 Error Analysis for Histogram Density Estimates
We now have the tools to do most of the analysis of histogram density estimation.
(We’ll do it in one dimension for simplicity.) Choose our favorite location x, which
lies in a bin whose boundaries are x0 and x0+ h. We want to estimate the density at
x, and this is

f̂n(x) =
1

h

1

n

n
∑

i=1

1(x0,x0+h](xi ) (16.6)

Let’s call the sum, the number of points in the bin, b . It’s a random quantity, B ∼
Binomial(n, p), where p is the true probability of falling into the bin, p = F (x0 +
h)− F (x0). The mean of B is n p, and the variance is n p(1− p), so

E
h

f̂n(x)
i

=
1

nh
E[B] (16.7)

=
n[F (x0+ h)− F (x0)]

nh
(16.8)

=
F (x0+ h)− F (x0)

h
(16.9)

4Admittedly, in high-dimensional spaces, doing the final integral can become numerically challenging.
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and the variance is

Var
h

f̂n(x)
i

=
1

n2h2
Var[B] (16.10)

=
n[F (x0+ h)− F (x0)][1− F (x0+ h)+ F (x0)]

n2h2
(16.11)

= E
h

f̂n(x)
i 1− F (x0+ h)+ F (x0)

nh
(16.12)

If we let h→ 0 as n→∞, then

E
h

f̂h (x)
i

→ lim
h→0

F (x0+ h)− F (x0)

h
= f (x0) (16.13)

since the pdf is the derivative of the CDF. But since x is between x0 and x0 + h,
f (x0) → f (x). So if we use smaller and smaller bins as we get more data, the his-
togram density estimate is unbiased. We’d also like its variance to shrink as the same
grows. Since 1− F (x0+ h) + F (x0)→ 1 as h → 0, to get the variance to go away we
need nh→∞.

To put this together, then, our first conclusion is that histogram density estimates
will be consistent when h → 0 but nh →∞ as n →∞. The bin-width h needs to
shrink, but slower than n−1.

At what rate should it shrink? Small h gives us low bias but (as you can verify
from the algebra above) high variance, so we want to find the trade-off between the
two. One can calculate the bias at x from our formula for E

h

f̂h (x)
i

through a some-

what lengthy calculus exercise, analogous to what we did for kernel smoothing in
Chapter 45; the upshot is that the integrated squared bias is

∫

�

f (x)−E
h

f̂h (x)
i�2

d x =
h2

12

∫

�

f ′(x)
�2d x + o(h2) (16.14)

We already got the variance at x, and when we integrate that over x we find
∫

Var
h

f̂h (x)
i

d x =
1

nh
+ o(n−1) (16.15)

So the total integrated squared error is

ISE=
h2

12

∫

�

f ′(x)
�2d x +

1

nh
+ o(h2)+ o(n−1) (16.16)

Differentiating this with respect to h and setting it equal to zero, we get

hopt

6

∫

�

f ′(x)
�2d x =

1

nh2
opt

(16.17)

5You need to use the intermediate value theorem multiple times; see for instance Wasserman (2006, sec.
6.8).
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hopt =





6
∫ �

f ′(x)
�2d x





1/3

n−1/3 =O(n−1/3) (16.18)

So we need narrow bins if the density changes rapidly (
∫ �

f ′(x)
�2d x is large), and

wide bins if the density is relatively flat. No matter how rough the density, the bin
width should shrink like O(n−1/3). Plugging that rate back into the equation for the
ISE, we see that it is O(n−2/3).

It turns out that if we pick h by cross-validation, then we attain this optimal rate
in the large-sample limit. By contrast, if we knew the correct parametric form and
just had to estimate the parameters, we’d typically get an error decay of O(n−1). This
is substantially faster than histograms, so it would be nice if we could make up some
of the gap, without having to rely on parametric assumptions.

16.4 Kernel Density Estimates

It turns out that one can improve the convergence rate, as well as getting smoother
estimates, but using kernels. The kernel density estimate is

bfh (x) =
1

n

n
∑

i=1

1

h
K
� x − xi

h

�

(16.19)

where K is a kernel function such as we encountered when looking at kernel regres-
sion. (The factor of 1/h inside the sum is so that bfh will integrate to 1; we could
have included it in both the numerator and denominator of the kernel regression
formulae, but then it would’ve just canceled out.) As before, h is the bandwdith of
the kernel. We’ve seen typical kernels in things like the Gaussian. One advantage of
using them is that they give us a smooth density everywhere, unlike histograms, and
in fact we can even use them to estimate the derivatives of the density, should that be
necessary.6

16.4.1 Analysis of Kernel Density Estimates

How do we know that kernels will in fact work? Well, let’s look at the mean and vari-
ance of the kernel density estimate at a particular point x, and use Taylor’s theorem

6The advantage of histograms is that they’re computationally and mathematically simpler.
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on the density.

E
h

bfh (x)
i

=
1

n

n
∑

i=1

E
� 1

h
K
� x −Xi

h

��

(16.20)

= E
� 1

h
K
� x −X

h

��

(16.21)

=
∫ 1

h
K
� x − t

h

�

f (t )d t (16.22)

=
∫

K(u) f (x − h u)d u (16.23)

=
∫

K(u)
�

f (x)− h u f ′(x)+
h2u2

2
f ′′(x)+ o(h2)

�

d u (16.24)

= f (x)+
h2 f ′′(x)

2

∫

K(u)u2d u + o(h2) (16.25)

(16.26)

because, by definition,
∫

K(u)d u = 1 and
∫

uK(u)d u = 0. If we call
∫

K(u)u2d u =
σ2

K , then the bias of the kernel density estimate is

E
h

bfh (x)
i

− f (x) =
h2σ2

K f ′′(x)

2
+ o(h2) (16.27)

So the bias will go to zero if the bandwidth h shrinks to zero. What about the
variance? Use Taylor’s theorem again:

Var
h

bfh (x)
i

=
1

n
Var
� 1

h
K
� x −X

h

��

(16.28)

=
1

n

�

E
� 1

h2
K2
� x −X

h

��

−
�

E
� 1

h
K
� x −X

h

���2�

(16.29)

=
1

n

�∫ 1

h2
K2
� x − t

h

�

d t −
�

f (x)+O(h2)
�2
�

(16.30)

=
1

n

�∫ 1

h
K2(u) f (x − h u)d u − f 2(x)+O(h2)

�

(16.31)

=
1

n

�∫ 1

h
K2(u)

�

f (x)− h u f ′(x)
�

d u − f 2(x)+O(h)
�

(16.32)

=
f (x)

hn

∫

K2(u)d u +O(1/n) (16.33)

This will go to zero if nh → ∞ as n → ∞. So the conclusion is the same as for
histograms: h has to go to zero, but slower than 1/n.

Since the expected squared error at x is the bias squared plus the variance,

h4σ4
K ( f

′′(x))2

4
+

f (x)

hn

∫

K2(u)d u + small (16.34)
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the expected integrated squared error is

ISE≈
h4σ4

K

4

∫

( f ′′(x))2d x +

∫

K2(u)d u

nh
(16.35)

Differentiating with respect to h for the optimal bandwidth hopt, we find

h3
optσ

4
K

∫

( f ′′(x))2d x =

∫

K2(u)d u

nh2
opt

(16.36)

hopt =

 
∫

K2(u)d u

σ4
K

∫

( f ′′(x))2d x

!1/5

n−1/5 =O(n−1/5) (16.37)

That is, the best bandwidth goes to zero like one over the fifth root of the number
of sample points. Plugging this into Eq. 16.35, the best ISE = O(n−4/5). This is
better than the O(n−2/3) rate of histograms, but still includes a penalty for having to
figure out what kind of distribution we’re dealing with. Remarkably enough, using
cross-validation to pick the bandwidth gives near-optimal results.7

As an alternative to cross-validation, or at least a starting point, one can use Eq.
16.37 to show that the optimal bandwidth for using a Gaussian kernel to estimate a
Gaussian distribution is 1.06σn−1/5, with σ being the standard deviation of the Gaus-
sian. This is sometimes called the Gaussian reference rule or the rule-of-thumb
bandwidth. When you call density in R, this is basically what it does.

Yet another technique is the plug-in method. Eq. 16.37 calculates the optimal
bandwidth from the second derivative of the true density. This doesn’t help if we
don’t know the density, but it becomes useful if we have an initial density estimate
which isn’t too bad. In the plug-in method, we start with an initial bandwidth (say
from the Gaussian reference rule) and use it to get a preliminary estimate of the den-
sity. Taking that crude estimate and “plugging it in” to Eq. 16.37 gives us a new
bandwidth, and we re-do the kernel estimate with that new bandwidth. Iterating this
a few times is optional but not uncommon.

16.4.2 Joint Density Estimates
The discussion and analysis so far has been focused on estimating the distribution
of a one-dimensional variable. Just as kernel regression can be done with multiple
input variables (§4.3), we can make kernel density estimates of joint distributions.
We simply need a kernel for the vector:

bf (~x) =
1

n

n
∑

i=1

K(~x − ~xi ) (16.38)

7Substituting Eq. 16.37 into Eq. 16.35 gives a squared error of
1.25n−4/5σ4/5

K

�∫

( f ′′(x))2d x
�1/5�∫ K2(u)d u

�4/5. The only two parts of this which depend on the
kernel are σK and

∫

K2(u)d u. This is the source of the (correct) folklore that the choice of kernel is less
important than the choice of bandwidth.
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One could use any multivariate distribution as the kernel (provided it is centered and
has finite covariance). Typically, however, just as in smoothing, one uses a product
kernel, i.e., a product of one-dimensional kernels,

K(~x − ~xi ) =K1(x
1− x1

i )K2(x
2− x2

i ) . . .Kd (x
d − xd

i ) , (16.39)

Doing this requires a bandwidth for each coordinate, so the over-all form of the joint
PDF estimate is

bf (~x) =
1

n
∏d

j=1 h j

n
∑

i=1

d
∏

j=1

K j







x j − x j
i

h j






(16.40)

Going through a similar analysis for d -dimensional data shows that the ISE goes
to zero like O(n−4/(4+d )), and again, if we use cross-validation to pick the bandwidths,
asymptotically we attain this rate. Unfortunately, if d is large, this rate becomes very
slow — for instance, if d = 24, the rate is O(n−1/7). There is simply no universally
good way to figure out high-dimensional distributions from scratch; either we make
strong parametric assumptions, which could be badly wrong, or we accept a poten-
tially very slow convergence. [[TODO: Emphasize the

need for structure in distri-
butions to escape curse-of-
dimensionality issues]]

16.4.3 Categorical and Ordered Variables

Estimating probability mass functions with discrete variables can be straightforward:
there are only a finite number of values, and so one just counts how often they occur
and takes the relative frequency. If one has a discrete variable X and a continuous
variable Y and one wants a joint distribution, one could just get a separate density
for Y for each value of x, and tabulate the probabilities for x.

In principle, this will work, but it can be practically awkward if the number of
levels for the discrete variable is large compared to the number of samples. Moreover,
for the joint distribution problem, it has us estimating completely separate distribu-
tions for Y for every x, without any sharing of information between them. It would
seem more plausible to smooth those distributions towards each others. To do this,
we need kernels for discrete variables.

Several sets of such kernels have been proposed. The most straightforward, how-
ever, are the following. If X is a categorical, unordered variable with c possible values,
then, for 0≤ h < 1,

K(x1, x2) =
�

1− h x1 = x2
h/c x1 6= x2

(16.41)

is a valid kernel. For an ordered x,

K(x1, x2) =
� c

|x1− x2|

�

h |x1−x2|(1− h)c−|x1−x2| (16.42)

where |x1− x2| should be understood as just how many levels apart x1 and x2 are. As
h → 0, both of these become indicators, and return us to simple relative frequency
counting. Both of these are implemented in np.

11:36 Saturday 22nd November, 2014



16.4. KERNEL DENSITY ESTIMATES 308

16.4.4 Practicalities
The standard R function density implements one-dimensional kernel density esti-
mation, defaulting to Gaussian kernels with the rule-of-thumb bandwidth. There are
some options for doing cleverer bandwidth selection, including a plug-in rule. (See
the help file.)

For more sophisticated methods, and especially for more dimensions, you’ll need
to use other packages. The np package estimates joint densities using the npudens
function. (The u is for “unconditional”.) This has the same sort of automatic band-
width selection as npreg, using cross-validation. Other packages which do kernel
density estimation include KernSmooth and sm.

16.4.5 Kernel Density Estimation in R: An Economic Example
The data set oecdpanel, in the np library, contains information about much the
same sort of variables at the Penn World Tables data you worked with in the home-
work, over much the same countries and years, but with some of the variables pre-
transformed, with identifying country information removed, and slightly different
data sources. See help(oecdpanel) for details.

Here’s an example of using npudens with variables from the oecdpanel data
set [[you saw in the homework]]. We’ll look at the joint density of popgro (the
logarithm of the population growth rate) and inv (the logarithm of the investment
rate). Figure 16.1 illustrates how to call the command, and a useful trick where we
get np’s plotting function to do our calculations for us, but then pass the results to a
different graphics routine. (See help(npplot).) The distribution we get has two big
modes, one at a comparatively low population growth rate (≈−2.9 — remember this
is logged so it’s not actually a shrinking population) and high investment (≈ −1.5),
and the other at a lower rate of investment (≈ −2) and higher population growth
(≈ −2.6). There is a third, much smaller mode at high population growth (≈ −2.7)
and very low investment (≈−4).
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library(np)
data(oecdpanel)
popinv <- npudens(~popgro+inv, data=oecdpanel)
fhat <- plot(popinv,plot.behavior="data")
fhat <- fhat$d1
library(lattice)
contourplot(fhat$dens~fhat$eval$Var1*fhat$eval$Var2,cuts=20,
xlab="popgro",ylab="inv",labels=list(cex=0.5))

Figure 16.1: Gaussian kernel estimate of the joint distribution of logged population
growth rate (popgro) and investment rate (inv). Notice that npudens takes a for-
mula, but that there is no dependent variable on the left-hand side of the ∼. With
objects produced by the np library, one can give the plotting function the argument
plot.behavior — the default is plot, but if it’s set to data (as here), it calculates
all the information needed to plot and returns a separate set of objects, which can be
plotted in other functions. (The value plot-data does both.) See help(npplot) for
more.
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16.5 Conditional Density Estimation

In addition to estimating marginal and joint densities, we will often want to get con-
ditional densities. The most straightforward way to get the density of Y given X ,
fY |X (y|x), is

bfY |X (y|x) =
bfX ,Y (x, y)
bfX (x)

(16.43)

i.e., to estimate the joint and marginal densities and divide one by the other.
To be concrete, let’s suppose that we are using a product kernel to estimate the

joint density, and that the marginal density is consistent with it:

bfX ,Y (x, y) =
1

nhX hY

n
∑

i=1

KX

�

x − xi

hX

�

KY

�

y − yi

hY

�

(16.44)

bfX (x) =
1

nhX

n
∑

i=1

KX

�

x − xi

hX

�

(16.45)

Thus we need to pick two bandwidths, hX and hY , one for each variable.
This might seem like a solved problem — we just use cross-validation to find hX

and hY so as to minimize the integrated squared error for bfX ,Y , and then plug in to
Equation 16.43. However, this is a bit hasty, because the optimal bandwidths for the
joint density are not necessarily the optimal bandwidths for the conditional density.
An extreme but easy to understand example is when Y is actually independent of X .
Since the density of Y given X is just the density of Y , we’d be best off just ignoring
X by taking hX = ∞. (In practice, we’d just use a very big bandwidth.) But if we
want to find the joint density, we would not want to smooth X away completely like
this.

The appropriate integrated squared error measure for the conditional density is

∫

d x fX (x)
∫

d y
�

fY |X (y|x)− bfY |X (y|x)
�2

(16.46)

and this is what we want to minimize by picking hX and hY . The cross-validation
goes as usual.

One nice, and quite remarkable, property of cross-validation for conditional den-
sity estimation is that it can detect and exploit conditional independence. Say that
X = (U ,V ), and that Y is independent of U given V — symbolically, Y |= U |V .
Then fY |U ,V (y|u, v) = fy|v (y|v), and we should just ignore U in our estimation of
the conditional density. It turns out that when cross-validation is used to pick band-
widths for conditional density estimation, chU → ∞ when Y |= U |V , but not oth-
erwise (Hall et al., 2004). In other words, cross-validation will automatically detect
which variables are irrelevant, and smooth them away.
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16.5.1 Practicalities and a Second Example
The np package implements kernel conditional density estimation through the func-
tion npcdens. The syntax is pretty much exactly like that of npreg, and indeed we
can think of estimating the conditional density as a sort of regression, where the
dependent variable is actually a distribution.

To give a concrete example, let’s look at how the distribution of countries’ pop-
ulation growth rates has changed over time, using the oecdpanel data (Figure 16.2).
The selected bandwidth for year is 10, while that for popgro is 0.048. (Note that
year is being treated as a continuous variable.)

You can see from the figure that the mode for population growth rates is towards
the high end of observed values, but the mode is shrinking and becoming less pro-
nounced over time. The distribution in fact begins as clearly bimodal, but the smaller
mode at the lower growth rate turns into a continuous “shoulder”. Overall, Figure
16.2 shows a trend for population growth rates to shrink over time, and for the dis-
tribution of growth rates to become less dispersed.

Let’s expand on this point. One of the variables in oecdpanel is oecd, which is
1 for countries which are members of the Organization for Economic Cooperation
and Development, and 0 otherwise. The OECD countries are basically the “devel-
oped” ones (stable capitalist democracies). We can include OECD membership as
a conditioning variable for population growth (we need to use a categorical-variable
kernel), and look at the combined effect of time and development (Figure 16.3).

What the figure shows is that OECD and non-OECD countries both have uni-
modal distributions of growth rates. The mode for the OECD countries has become
sharper, but the value has decreased. The mode for non-OECD countries has also
decreased, while the distribution has become more spread out, mostly by having
more probability of lower growth rates. (These trends have continued since 1995.) In
words, despite the widespread contrary impression, population growth has actually
been slowing for decades in both rich and poor countries.
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pop.cdens <- npcdens(popgro ~ year,data=oecdpanel)
plotting.grid <- expand.grid(year=seq(from=1965,to=1995,by=1),

popgro=seq(from=-3.5,to=-2.4,length.out=300))
fhat <- predict(pop.cdens,newdata=plotting.grid)
wirefame(fhat~plotting.grid$year*plotting.grid$popgro,

scales=list(arrows=FALSE),xlab="year",ylab="popgro",zlab="pdf")

Figure 16.2: Conditional density of logarithmic population growth rates as a function
of time.
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pop.cdens.o <- npcdens(popgro~year+factor(oecd),data=oecdpanel)
oecd.grid <- expand.grid(year=seq(from=1965,to=1995,by=1),
popgro=seq(from=-3.4,to=-2.4,length.out=300),
oecd=unique(oecdpanel$oecd))

fhat <- predict(pop.cdens.o,newdata=oecd.grid)
wireframe(fhat~oecd.grid$year*oecd.grid$popgro|oecd.grid$oecd,
scales=list(arrows=FALSE),xlab="year",ylab="popgro",zlab="pdf")

Figure 16.3: Conditional density of population growth rates given year and OECD
membership. The left panel is countries not in the OECD, the right is ones which
are.
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16.6 More on the Expected Log-Likelihood Ratio

I want to say just a bit more about the expected log-likelihood ratio
∫

f (x) log f (x)
bf (x)

d x.

More formally, this is called the Kullback-Leibler divergence or relative entropy of
bf from f , and is also written D( f ‖ bf ). Let’s expand the log ratio:

D( f ‖ bf ) =−
∫

f (x) log bf (x)d x +
∫

f (x) log f (x)d x (16.47)

The second term does not involve the density estimate, so it’s irrelevant for purposes
of optimizing over bf . (In fact, we’re just subtracting off the entropy of the true
density.) Just as with the squared error, we could try approximating the integral with
a sum:

∫

f (x) log bf (x)d x ≈
1

n

n
∑

i=1

log bf (xi ) (16.48)

which is just the log-likelihood per observation. Since we know and like maximum
likelihood methods, why not just use this?

Well, let’s think about what’s going to happen if we plug in the kernel density
estimate:

1

n

n
∑

i=1

log







1

nh

n
∑

j=1

K
� x j − xi

h

�






=− log nh +

1

n

n
∑

i=1

log







n
∑

j=1

K
� x j − xi

h

�







(16.49)
If we take h to be very small, K(

x j−xi

h ) ≈ 0 unless x j = xi , so the over-all likelihood
becomes

≈− log nh + logK(0) (16.50)

which goes to +∞ as h → 0. So if we want to maximize the likelihood of a kernel
density estimate, we always want to make the bandwidth as small as possible. In fact,
the limit is to say that the density is

f̃ (x) =
1

n

n
∑

i=1

δ(x − xi ) (16.51)

where δ is the Dirac delta function.8 Of course this is just what we’d get if we took
the empirical CDF “raw”.

What’s gone wrong here? Why is maximum likelihood failing us? Well, it’s doing
exactly what we asked it to: to find the distribution where the observed sample is as
probable as possible. Giving any probability to un-observed values can only come

8Recall that the delta function is defined by how it integrates with other functions:
∫

δ(x) f (x)d x =
f (0). You can imagineδ(x) as zero everywhere except at the origin, where it has an infinitely tall, infinitely
narrow spike, the area under the spike being one. If you are suspicious that this is really a valid function,
you’re right; strictly speaking it’s just a linear operator on actual functions. We can however approximate
it as the limit of well-behaved functions. For instance, take δh (x) = 1/h when x ∈ [−h/2, h/2] with
δh (x) = 0 elsewhere, and let h go to zero. This is, of course, where we came in.
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at the expense of the probability of observed values, so Eq. 16.51 really is the un-
restricted maximum likelihood estimate of the distribution. Anything else imposes
some restrictions or constraints which don’t, strictly speaking, come from the data.
However, those restrictions are what let us generalize to new data, rather than just
memorizing the training sample.

One way out of this is to use the cross-validated log-likelihood to pick a band-
width, i.e., to restrict the sum in Eq. 16.48 to running over the testing set only. This
way, very small bandwidths don’t get an unfair advantage for concentrating around
the training set. (If the test points are in fact all very close to the training points, then
small bandwidths get a fair advantage.) This is in fact the default procedure in the np
package, through the bwmethod option ("cv.ml" vs. "cv.ls").

16.7 Simulating from Density Estimates

16.7.1 Simulating from Kernel Density Estimates

There are times when one wants to draw a random sample from the estimated dis-
tribution. This is easy with kernel density estimates, because each kernel is itself a
probability density, generally a very tractable one. The general pattern goes as fol-
lows. Suppose the kernel is Gaussian, that we have scalar observations x1, x2, . . . xn ,
and the selected bandwidth is h. Then we pick an integer i uniformly at random
from 1 to n, and invoke rnorm(1,x[i],h).9 Using a different kernel, we’d just need
to use the random number generator function for the corresponding distribution.

We can see that this works, i.e., that it gives the right distribution, with just a little
math. A kernel K(x, xi h) with bandwidth h and center xi is a probability density
function. The probability the density estimate gives to any set A is just an integral:

bF (A) =
∫

A

bf (x)d x (16.52)

=
∫

A

1

n

n
∑

i=1

K(x, xi , h)d x (16.53)

=
1

n

n
∑

i=1

∫

A
K(x, xi , h)d x (16.54)

=
1

n

n
∑

i=1

C (A, xi , h) (16.55)

introducing C to stand for the probability distribution corresponding to the kernel.
The simulation procedure works if the probability that the simulated value X̃ falls
into A matches this. To generate X̃ , we first pick a random data point, which really

9In fact, if we want to draw a sample of size q , rnorm(q,sample(x,q,replace=TRUE),h) will work
in R — it’s important though that sampling be done with replacement.
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means picking a random integer J , uniformly from 1 to n. Then

Pr
�

X̃ ∈A
�

= E
�

1A(X̃ )
�

(16.56)

= E
�

E
�

1A(X̃ )|J
��

(16.57)

= E
�

C (A, xJ , h)
�

(16.58)

=
1

n

n
∑

i=1

C (A, xi , h) (16.59)

The first step uses the fact that a probability is the expectation of an indicator func-
tion; the second uses the law of total expectation; the last steps us the definitions of
C and J , and the distribution of J .

16.7.1.1 Sampling from a Kernel Joint Density Estimate

The procedure given above works with only trivial modification for sampling from
a joint, multivariate distribution. If we’re using a product kernel, we pick a random
data point, and then sample each coordinate independently. The argument for cor-
rectness actually goes exactly as before.

16.7.1.2 Sampling from Kernel Conditional Density Estimates

Sampling from a conditional density estimate with product kernels is again straight-
forward. The one trick is that one needs to do a weighted sample of data points. To
see why, look at the conditional distribution (not density) function:

bF (Y ∈A|X = x) (16.60)

=
∫

A

bfY |X (y|x)d y

=
∫

A

1
nhX hY

∑n
i=1 KX

�

x−xi
hX

�

KY

�

y−yi
hY

�

bfX (x)
d y (16.61)

=
1

nhX hY
bfX (x)

∫

A

n
∑

i=1

KX

�

x − xi

hX

�

KY

�

y − yi

hY

�

d y (16.62)

=
1

nhX hY
bfX (x)

n
∑

i=1

KX

�

x − xi

hX

�
∫

A
KY

�

y − yi

hY

�

d y (16.63)

=
1

nhX
bfX (x)

n
∑

i=1

KX

�

x − xi

hX

�

CY (A, yi , hY ) (16.64)

If we select the data point i with a weight proportional to KX

�

x−xi
hX

�

, and then

generate Ỹ from the KY distribution centered at yi , then, Ỹ will follow the appropri-
ate probability density function.
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16.7.2 Sampling from Histogram Estimates

Sampling from a histogram estimate is also simple, but in a sense goes in the opposite
order from kernel simulation. We first randomly pick a bin by drawing from a multi-
nomial distribution, with weights proportional to the bin counts. Once we have a
bin, we draw from a uniform distribution over its range.

16.7.3 Examples of Simulating from Kernel Density Estimates

To make all this more concrete, let’s continue working with the oecdpanel data.
Section 16.4.5 shows the joint pdf estimate for the variables popgro and inv in that
data set. These are the logarithms of the population growth rate and investment rate.
Undoing the logarithms and taking the density,

popinv2 <- npudens(~exp(popgro)+exp(inv),data=oecdpanel)

gives Figure 16.4.
Let’s abbreviate the actual (not logged) population growth rate as X and the actual

(not logged) investment rate as Y in what follows.
Since this is a joint distribution, it implies a certain expected value for Y /X ,

the ratio of investment rate to population growth rate10. Extracting this by direct
calculation from popinv2 would not be easy; we’d need to do the integral

∫ 1

x=0

∫ 1

y=0

y

x
bfX ,Y (x, y)d yd x (16.65)

To find E[Y /X ] by simulation, however, we just need to generate samples from the
joint distribution, say (X̃1, Ỹ1), (X̃2, Ỹ2), . . . (X̃T , ỸT ), and average:

1

T

T
∑

i=1

Ỹi

X̃i

= g̃T
T→∞−→ E

�Y

X

�

(16.66)

where the convergence happens because that’s the law of large numbers. If the num-
ber of simulation points T is big, then g̃T ≈ E[Y /X ]. How big do we need to make
T ? Use the central limit theorem:

g̃T  N (E[Y /X ] ,Var[ g̃1]/
p

T ) (16.67)

How do we find the variance Var[ g̃1]? We approximate it by simulating.
Code Example 31 is a function which draws a sample from the fitted kernel den-

sity estimate. First let’s check that it works, by giving it something easy to do, namely
reproducing the means, which we can work out:

> mean(exp(oecdpanel$popgro))
[1] 0.06930789

10Economically, we might want to know this because it would tell us about how quickly the capital
stock per person grows.
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Figure 16.4: Gaussian kernel density estimate for the un-logged population growth
rate and investment rate.
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rpopinv <- function(n) {
n.train <- length(popinv2$dens)
ndim <- popinv2$ndim
points <- sample(1:n.train,size=n,replace=TRUE)
z <- matrix(0,nrow=n,ncol=ndim)
for (i in 1:ndim) {
coordinates <- popinv2$eval[points,i]
z[,i] <- rnorm(n,coordinates,popinv2$bw[i])

}
colnames(z) <- c("pop.growth.rate","invest.rate")
return(z)

}

Code Example 31: Sampling from the fitted kernel density estimate popinv2. Can
you see how to modify it to sample from other bivariate density estimates produced
by npudens? From higher-dimensional distributions? Can you replace the for loop
with less iterative code?

> mean(exp(oecdpanel$inv))
[1] 0.1716247
> colMeans(rpopinv(200))
pop.growth.rate invest.rate

0.06865678 0.17623612

This is pretty satisfactory for only 200 samples, so the simulator seems to be working.
Now we just use it:

> z <- rpopinv(2000)
> mean(z[,"invest.rate"]/z[,"pop.growth.rate"])
[1] 2.597916
> sd(z[,"invest.rate"]/z[,"pop.growth.rate"])/sqrt(2000)
[1] 0.0348991

So this tells us that E[Y /X ]≈ 2.59, with a standard error of ±0.035.
Suppose we want not the mean of Y /X but the median?

> median(z[,"invest.rate"]/z[,"pop.growth.rate"])
[1] 2.31548

Getting the whole distribution of Y /X is not much harder (Figure 16.5). Of course
complicated things like distributions converge more slowly than simple things like
means or medians, so we want might want to use more than 2000 simulated values
for the distribution. Alternately, we could repeat the simulation many times, and
look at how much variation there is from one realization to the next (Figure 16.6).

Of course, if we are going to do multiple simulations, we could just average them
together. Say that g̃ (1)

T
, g̃ (2)

T
, . . . g̃ (s)

T
are estimates of our statistic of interest from s
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YoverX <- z[,"invest.rate"]/z[,"pop.growth.rate"]
plot(density(YoverX),xlab="Y/X",ylab="Probability density",main="")
rug(YoverX,side=1)

Figure 16.5: Distribution of Y /X implied by the joint density estimate popinv2.

independent realizations of the model, each of size T . We can just combine them
into one grand average:

g̃s ,T =
1

s

s
∑

i=1

g̃ (1)
T

(16.68)

As an average of IID quantities, the variance of g̃s ,T is 1/s times the variance of g̃ (1)
T

.
By this point, we are getting the sampling distribution of the density of a nonlin-

ear transformation of the variables in our model, with no more effort than calculating
a mean.
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plot(0,xlab="Y/X",ylab="Probability density",type="n",xlim=c(-1,10),
ylim=c(0,0.3))

one.plot <- function() {
zprime <- rpopinv(2000)
YoverXprime <- zprime[,"invest.rate"]/zprime[,"pop.growth.rate"]
density.prime <- density(YoverXprime)
lines(density.prime,col="grey")

}
invisible(replicate(50,one.plot()))

Figure 16.6: Showing the sampling variability in the distribution of Y /X by “over-
plotting”. Each line is a distribution from an estimated sample of size 2000, as in
Figure 16.5; here 50 of them are plotted on top of each other. The thickness of the
bands indicates how much variation there is from simulation to simulation at any
given value of Y /X . (Setting the type of the initial plot to n, for “null”, creates the
plotting window, axes, legends, etc., but doesn’t actually plot anything.)
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16.8 Exercises
1. Reproduce Figure 16.4?

2. Qualitatively, is this compatible with Figure 16.1?

3. How could we use popinv2 to calculate a joint density for popgro and inv (not
exp(popgro) and exp(inv))?

4. Should the density popinv2 implies for those variables be the same as what
we’d get from directly estimating their density with kernels?

5. You are given a kernel K which satisfies K(u)≥ 0,
∫

K(u)d u = 1,
∫

uK(u)d u =
0,
∫

u2K(u)d u = σ2
K <∞. You are also given a bandwidth h > 0, and a collec-

tion of n univariate observations x1, x2, . . . xn . Assume that the data are inde-
pendent samples from some unknown density f .

(a) Give the formula for f̂h , the kernel density estimate corresponding to
these data, this bandwidth, and this kernel.

(b) Find the expectation of a random variable whose density is f̂h , in terms
of the sample moments, h, and the properties of the kernel function.

(c) Find the variance of a random variable whose density is f̂h , in terms of
the sample moments, h, and the properties of the kernel function.

(d) How must h change as n grows to ensure that the expectation and vari-
ance of f̂h will converge on the expectation and variance of f ?

6. Many variables have natural range restrictions, like being non-negative, or ly-
ing between 0 and 1. Kernel density estimators do not generally obey these
restrictions, so they can give positive probability density to impossible values.
One way around this is the transformation method or the transformation trick:
use an invertible function q to map the limited range of X to the whole real
line, find the density of the transformed variable, and then undo the transfor-
mation.

In what follows, X is a random variable with pdf f , Y is a random variable
with pdf g , and Y = q(X ), for a known function q . You may assume that q
is continuous, differentiable and monotonically increasing, inverse q−1 exists,
and is also continuous, differentiable and monotonically increasing.

(a) Find g (y) in terms of f and q .

(b) Find f (x) in terms of g and q .

(c) Suppose X is confined to the unit interval [0,1] and q(x) = log x
1−x . Find

f (x) in terms of g and this particular q .

(d) The Beta distribution is confined to [0,1]. Draw 1000 random values
from the Beta distribution with both shape parameters equal to 1/2. Call
this sample x, and plot its histogram. (Hint: ?rbeta.)
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(e) Fit a Gaussian kernel density estimate to x , using density, npudens, or
any other existing one-dimensional density estimator you like.

(f) Find a Gaussian kernel density estimate for logit(x).

(g) Using your previous results, convert the KDE for logit(x) into a den-
sity estimate for x .

(h) Make a plot showing (i) the true Beta density, (ii) the “raw” kernel density
estimate from 6e, and (iii) the transformed KDE from 6g. Make sure that
the plotting region shows all three curves adequately, and that the three
curves are visually distinct.
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Chapter 17

Relative Distributions and
Smooth Tests of
Goodness-of-Fit

In §5.2.2.3, we saw how to use the quantile function to turn uniformly-distributed
random numbers into random numbers with basically arbitrary distributions. In this
chapter, we will look at two closely-related data-analysis tools which go the other way,
trying to turn data into uniformly-distributed numbers. One of these, the smooth
test, turns a lot of problems into ones of testing a uniform distribution. Another, the
relative distribution, gives us a way of comparing whole distributions, rather than
specific statistics (like the expectation or the variance).

17.1 Smooth Tests of Goodness of Fit

17.1.1 From Continuous CDFs to Uniform Distributions
Suppose that X has probability density function f , and that f is continuous. The
corresponding cumulative distribution function F is then continuous and strictly
increasing (on the support of f ). Since F is a fixed function, we can ask what the
probability distribution of F (X ) is. Clearly,

Pr (F (X )≤ 0) = 0 (17.1)
Pr (F (X )≤ 1) = 1 (17.2)

Since F is continuous and strictly increasing, it has an inverse, the quantile function
Q, which is also continuous and strictly increasing. Then, for 0≤ a ≤ 1,

Pr (F (X )≤ a) = Pr (Q(F (X ))≤Q(a)) (17.3)
= Pr (X ≤Q(a)) (17.4)
= F (Q(a)) = a (17.5)
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Thus, when F is continuous and strictly-increasing, F (X ) is uniformly distributed
on the unit interval,

F (X )∼Unif(0,1) (17.6)

If the distribution of X is F , but we guess that it has some other distribution,
with CDF F0, then this trick will not work. F0(X ) will still be in the unit interval,
but it won’t be uniformly distributed:

This only works if X really is distributed according to F . If instead X were
distributed according, say, F0, then F (X ) will still be in the unit interval, but it will
not be uniformly distributed:

Pr (F0(X )≤ a) = Pr (X ≤Q0(a)) (17.7)
= F (Q0(a)) 6= a (17.8)

because F0 6=Q−1.
Putting this together, we see that when X has a continuous distribution, F (X )∼

Unif(0,1) if and only if F is the cumulative distribution function for X . This means
that we can reduce the problem of testing whether X ∼ F to that of testing whether
F (X ) is uniform. We need to work out one testing problem, rather than many differ-
ent testing problems for many different distributions.

17.1.2 Testing Uniformity

Now we have a random variable, say Y , which lives on the unit interval [0,1], and
we want to test whether it is uniformly distributed. There are several different ways
we could do this. One frequently-used strategy is to use the Kolmogorov-Smirnov
test: calculate the K-S distance,

dK S = max
a∈[0,1]

�

�

�

bFn,Y (a)− a
�

�

� (17.9)

where bFn,Y (a) is the empirical CDF of Y , and look up the appropriate p-value for the
K-S test. One could use any other one-sample non-parametric test here, like Cramér-
von Mises or Anderson-Darling1 All of these tests can work quite well in the right
circumstances, and they have the advantage of requiring little additional work over
and above typing ks.test or the like.

17.1.3 Neyman’s Smooth Test

There are however two disadvantages of just applying off-the-shelf tests to check uni-
formity. One is that it turns out that they often do not have very high power. The
other, which is in some ways even more serious, is that rejecting the null hypothesis
of uniformity doesn’t tell you how uniformity fails — it doesn’t suggest any sort of
natural alternative.

1You could even use a χ 2 test, but this would be dumb. Because the χ 2 test requires discrete data, using
it means binning continuous values, thereby destroying information, to no good purpose.
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As you can guess from my having brought up these points, there is a test which
avoids both difficulties, called Neyman’s smooth test. It works by embedding the
uniform distribution on the unit interval in a larger class of alternatives, and then
testing the null of uniformity against those alternatives.

The alternatives all have pdfs of the form

g (y;θ)≡







e
∑d

j=1
θ j h j (y)

z(θ) 0≤ y ≤ 1
0 elsewhere

(17.10)

where the h j are carefully chosen functions (see below), and the normalizing factor
or partition function z(θ) just makes sure the density integrates to 1:

z(θ)≡
∫ 1

0
e
∑d

j=1 θ j h j (y)d y (17.11)

No matter what functions we pick for the h j , uniformity corresponds to the choice
θ= 0, since then the density is just 1. As we move θ slightly away from 0, the density
departs smoothly from uniformity; hence the name of the test.

To ensure that everything works out, we need to put some requirements on the
functions h j : they need to be orthogonal to each other and to the constant function,

∫ 1

0
h j (y)d y = 0 (17.12)

∫ 1

0
h j (y)hk (y)d y = 0 (17.13)

and normalized in magnitude,

∫ 1

0
h2

j (y)d y = 1 (17.14)

Further details, while practically important, do not matter for the general idea of the
test, so I’ll put them off to §17.1.3.1.

We can estimate θ by maximum likelihood. Because uniformity corresponds to
θ = 0, we can test the hypothesis that θ = 0 against the alternative that θ 6= 0 with a
likelihood ratio test. Writing `(θ̂) for the log-likelihood under the MLE, and `(0) for
the log-likelihood under the null, by general results on the likelihood-ratio (Appendix
F), under the null, as n→∞,

2(`(θ̂)− `(0))  χ 2
d (17.15)

In fact, `(0) = 0 (why?), so we only need to calculate the log-likelihood under the
alternative, and reject uniformity when, and only when, that log-likelihood is large.
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Alternatively, and this was Neyman’s original recommendation and what is usu-
ally meant by his “smooth test”, we can calculate the sample mean of each of the
h j ,

h j =
1

n

n
∑

i=1

h j (yi ) (17.16)

and form the test statistic

Ψ2 = n
d
∑

j=1

h j
2

(17.17)

which also has a χ 2
d

distribution under the null.2

It can be shown that Neyman’s smooth test has, in a certain sense, optimal power
against smooth alternatives like this — see Rayner and Best (1989) or Bera and Ghosh
(2002) for the gory details. More importantly, for data analysis, when we reject
the null hypothesis of uniformity, we have a ready-made alternative to fall back on,
namely g (y; θ̂).

To make all this work, we have to pick some “basis functions” h j , and we need to
decide how many of them we want to use, d .

17.1.3.1 Choice of Function Basis

Neyman’s original proposal was to use orthonormal polynomials for basis func-
tions: h j would be a polynomial of degree j , which was orthogonal to all the ones
before it,

∫ 1

0
h j (y)hk (y)d y = 0 ∀k < j (17.18)

including the constant “polynomial” h0(y) = 1, and normalized to size 1,
∫ 1

0
h2

j (y)d y = 1 (17.19)

Since there are j+1 coefficients in a polynomial of degree j , and this gives j+1 equa-
tions, the polynomial is uniquely determined. In fact, there are recursively formulas
which let you find the coefficients of h j from those of the previous polynomials3. Fig-
ure 17.1 shows the first few of these polynomials, and their exponentiated versions
(which are what appear in Eq. 17.10).

2To appreciate what’s going on, notice that h j → 0 under the null, by the law of large numbers. (This is

where being orthogonal to the constant function h0(y) = 1 comes in.) Multiplying h j
2

by n corresponds to

looking at
p

nh j , which should, by the central limit theorem, be a Gaussian; the variance of this Gaussian

is 1. (This is where normalizing each h j comes in.) Finally,
p

nh j and
p

nhk are uncorrelated. (This is
where the mutual orthogonality of the h j comes in.) Thus, the Ψ2 statistic is a sum of d uncorrelated
standard Gaussians, which has a χ 2

d
distribution.

3In fact, the polynomials Neyman proposed to use are, as he knew, the “Legendre polynomials”,
though many math books (and Wikipedia) give the version of those defined on [−1,1], rather than on
[0,1]. If l j is the polynomial on [−1,1], then h j (y) = l j (2(y − 0.5)).
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Experience has shown that the specific choice of basis functions doesn’t matter as
much as ensuring that they are orthonormal. One could, for instance, use h j (y) =
c j cos2π j y, where c j is a normalizing constant4.

17.1.3.2 Choice of Number of Basis Functions

As we make d in Eq. 17.10, we include more and more distributions in the alternative
to the null hypothesis of uniformity. In fact, since any smooth function on [0,1] can
be approximated arbitrarily closely by sufficiently-high order polynomials5, as we
let d →∞ we eventually get all continuous distributions, other than uniformity, as
part of the alternative. However, using a large value of d means estimating a lot of
parameters, which means we are at risk of over-fitting. What to do?

Neyman’s original advice was to guess a particular value of d before looking at
the data and stick to it. (He thought d = 4 would usually be enough.) More modern
approaches try to adaptively pick a good value of d . We could attempt this through
cross-validation based on the log-likelihood, but what’s usually done, in implemented
software, is to pick d to maximize Schwarz’s information criterion:

d ∗ = argmax
d

1

n
`(bθ(d ))−

d

2

log n

n
(17.20)

which imposes an extra penalty for each parameter (d ), with the size of the penalty
depending on how much data we have, and getting relatively harsher as n grows6. So
in a data-driven smooth test (Kallenberg and Ledwina, 1997), we pick d ∗ using Eq.
17.20, and then compute the test statistic using d ∗.

Unfortunately, since d ∗ is random (through the data), the nice asymptotic theory
which says that the test statistic is χ 2

d
under the null hypothesis no longer applies.

However, this is why we have bootstrapping: by simulating from the null hypothesis,
which remember is just Unif(0,1), and treating the simulation output like real data
we can work out the sampling distribution as accurately as we need. This sampling
distribution then gives us our p-values.

17.1.3.3 Application: Combining p-Values

One useful property of p-values is that they are always uniformly distributed on
[0,1] under the null hypothesis7. Suppose we have conducted a bunch of tests of the
same null hypothesis — these might be different clinical trials of the same drug, or

4If this makes you think of Fourier analysis, you’re right.
5This may be obvious, but making it precise (what do we mean by “smooth” and “arbitrarily close”?)

is the “Stone-Weierstrauss theorem”. There is nothing magic about polynomials here; we could also use
sines and cosines, or many other function bases.

6It is common in the literature to see the criterion written out multiplied through by n, or even by 2n.
Also, it is often called the “Bayesian information criterion”, or BIC. This is an unfortunate name, because,
despite what Schwarz (1978) thought, it really has nothing at all to do with Bayes’s rule or even Bayesian
statistics. It’s best thought of as a fast, but very crude and not always very accurate, approximation to
cross-validation. If you want to know more, Claeskens and Hjort (2008) is probably the best reference.

7Unless someone has messed up a calculation, that is.
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h1 <- function(y) { sqrt(12)*(y-0.5) }
h2 <- function(y) { sqrt(5)*(6*(y-0.5)^2-0.5) }
h3 <- function(y) { sqrt(7)*(20*(y-0.5)^3 - 3*(y-0.5)) }
curve(h1(x),ylab=expression(h[j](y)),xlab="y")
curve(h2(x),add=TRUE,lty="dashed")
curve(h3(x),add=TRUE,lty="dotted")
legend(legend=c(expression(h[1]),expression(h[2]),expression(h[3])),
lty=c("solid","dashed","dotted"),x="bottomright")

curve(exp(h1(x)),ylab=expression(e^h[j](y)),xlab="y")
curve(exp(h2(x)),add=TRUE,lty="dashed")
curve(exp(h3(x)),add=TRUE,lty="dotted")
legend(legend=c(expression(h[1]),expression(h[2]),expression(h[3])),
lty=c("solid","dashed","dotted"),x="bottomright")

Figure 17.1: Left panel: the first three of the basis functions for Neyman’s smooth
tests, h1, h2 and h3. Each h j is a polynomial of order j which is orthogonal to the

others, in the sense that
∫ 1

0 h j (y)hk (y)d y = 0 when j 6= k, but normalized in size,
∫ 1

0 h2
j (y)d y = 1. The right panel shows e h j (y), to give an indication of how the func-

tions contribute to the probability density in Eq. 17.10.
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x <- (1:1e6)/1e6
z <- sum(exp(h1(x)+h2(x)-h3(x)))/1e6
curve(exp(h1(x)+h2(x)-h3(x))/z,xlab="y",ylab=expression(g(y,theta)))
abline(h=1,col="grey")

Figure 17.2: Illustration of a smooth alternative density: using the same basis func-
tions as before, with θ1 = 1, θ2 = 1, θ3 = −1. The first two lines of the R calculate
the normalizing constant z(θ) by a simple numerical integral. The grey line shows
the uniform density.
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attempts to replicate some surprising effect in separate laboratories8. If the tests are
independent, then the p-values should be IID and uniform. It would seem like we
should be able to combine these into some over-all p-value. This is precisely what
Neyman’s smooth test of uniformity lets us do.

17.1.3.4 Density Estimation by Series Expansion

As an aside, notice what we have done. By using a large enough d , as I said, densities
which look like Eq. 17.10 can come as close as we like to any smooth density on
[0,1]. And now we have at least two ways of picking d : by cross-validation, or by
the Schwarz information criterion (Eq. 17.20). If we let d →∞ as n→∞, then we
have a way of approximating any density on the unit interval, without knowing what
it was to start with, or assuming a particular parametric form for it. That is, we have
a way of doing non-parametric density estimation, at least on [0,1], without using
kernels.

If you want to estimate a density on (−∞,∞) instead of on [0,1], you can do so
by using a transformation, e.g., the inverse logit. This is the opposite of what you did
in the homework, where you used a transformation to take [0,1] to (−∞,∞) so you
could use kernel density estimation.

17.1.4 Smooth Tests of Non-Uniform Parametric Families
Remember that we went into all these details about testing uniformity because we
want to test whether X is distributed according to some continuous distribution
with CDF F . From §17.1.1, if we define Y = F (X ), then X ∼ F is equivalent to
Y ∼Unif(0,1), so we have a two-step procedure for testing whether X ∼ F :

1. Use the CDF F to transform the data, yi = F (xi )

2. Test whether the transformed data yi are uniform

Let’s think about what the alternatives considered in the test look like. For y, the
alternative densities are (to repeat Eq. 17.10)

g (y;θ)≡







e
∑d

j=1
θ j h j (y)

z(θ) 0≤ y ≤ 1
0 elsewhere

(17.21)

Since X = F −1(Y ), this implies a density for X :

gX (x;θ) =
e
∑d

j=1 θ j h j (F (x))

z(θ)

d F

d x
(17.22)

=
e
∑d

j=1 θ j h j (F (x))

z(θ)
f (x) (17.23)

8These are typical examples of meta-analysis, trying to combine the results of many different data
analyses (without just going back to the original data).
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curve(h1(pnorm(x)),xlab="x",ylab=expression(h[j](F(x))),from=-5,to=5,
ylim=c(-3,3))

curve(h2(pnorm(x)),add=TRUE,lty="dashed")
curve(h3(pnorm(x)),add=TRUE,lty="dotted")
legend(legend=c(expression(h[1]),expression(h[2]),expression(h[3])),

lty=c("solid","dashed","dotted"),x="bottomright")
curve(dnorm(x)*exp(h1(pnorm(x))+h2(pnorm(x))-h3(pnorm(x)))/z,xlab="x",

ylab=expression(g[X](x,theta)),from=-5,to=5)
curve(dnorm(x),add=TRUE,col="grey")

Figure 17.3: Left panel: the basis functions from Figure 17.1 composed with the
standard Gaussian CDF. Right panel: the alternative to the standard Gaussian cor-
responding to the alternative to the uniform distribution plotted in Figure 17.2, i.e.,
θ1 = θ2 = 1, θ3 = −1. The grey curve is the standard Gaussian density, correspond-
ing to the flat line in Figure 17.2.

where f is the pdf corresponding to the CDF F . (Why do we not have to worry
about setting this to zero outside some range?) Just like g (·;θ) is a modulation or
distortion of the uniform density, gX (·;θ) is a modulation or distortion of f (·). If
and when we reject the density f , gX (·;θ) is available to us as an alternative.

Even if h j (y) is a polynomial in y, h j (F (x)) will not (in general) be a polynomial
in x, but it remains true that

∫ ∞

−∞
h j (F (x))hk (F (x)) f (x)d x = δ j k (17.24)

Figure 17.3 illustrates what happens to the basis functions, and to particular alterna-
tives.
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When it comes to the actual smooth test, we can either use the likelihood ratio,
or we can calculate

h j =
1

n

n
∑

i=1

h j (yi ) =
1

n

n
∑

i=1

h j (F (xi )) (17.25)

leading as before to the test statistic

Ψ2 = n
n
∑

j=1

h j
2

(17.26)

The distribution of the test statistics is unchanged under the null hypothesis, i.e., still
χ 2

d
if d is fixed. (There are still d degrees of freedom, because we are still fixing d

parameters from distributions of the form Eq. 17.23.) If d is chosen from the data,
we still need to bootstrap, but can do so just as before.

17.1.4.1 Estimated Parameters

So far, the discussion has assumed that F is fixed and won’t change with the data.
This is often not very realistic. Rather, F comes from some parametrized family of
distributions, with parameter (say) β, i.e., F (·;β) is a different CDF for each value
of β. For Gaussians, for instance, β is a vector consisting of the mean and variance
(or mean and standard deviation). Let’s assume that there are always corresponding
densities, f (·;β), and these are always continuous.

We don’t know β so we have to estimate it. After estimating, we’d like to test
whether the model really matches the data. It would be convenient if we could do
the following:

1. Get estimate bβ from x1, x2, . . . xn

2. Calculate yi = F (xi ;
bβ)

3. Apply a smooth test of uniformity to y1, y2, . . . yn

That is, it would be convenient if we could just ignore the fact that we had to estimate
β.

We can do this if bβ is the maximum likelihood estimate. To understand this,
think about the family of alternative distributions we’re now considering in the test.
Substituting into Eq. 17.23, they are

gX (x;β,θ) =
e
∑d

j=1 θ j h j (F (x;β))

z(θ)
f (x;β) (17.27)

The null hypothesis that X ∼ F (·;β) for someβ is thus corresponds to X ∼GX (·;β, 0)
— we are still fixing d parameters in the larger family. And, generally speaking,
when we fix d parameters in a parametric model, we get a χ 2

d
distribution in the log-

likelihood ratio test (Appendix F). If d is not fixed but data-driven, then, again, we
need to bootstrap.
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17.1.5 Implementation in R
The main implementation of smooth tests available in R is the ddst package (Biecek
and Ledwina, 2010), standing for “data-driven smooth tests”. It provides a ddst.uniform.test,
which we could use for any family where we can calculate the CDF. But it also pro-
vides functions for directly testing several families of distributions, notably Gaussians
(ddst.norm.test) and exponentials (ddst.exp.test).

17.1.5.1 Some Examples

Let’s give ddst.norm.test some Gaussian data and see what happens.

> r <- rnorm(100)
> ddst.norm.test(r)

Data Driven Smooth Test for Normality

data: r, base: ddst.base.legendre, c: 100
WT* = 0.6183, n. coord = 1

This reminds us what the data was, tells us that the test used Legendre polynomials
(as opposed to cosines), that d was selected to be 1, and that the value of the test
statistic was 0.6183. (The c setting has to do with the order-selection penalty, and is
basically ignorable for most users.) These numbers are all attributes of the returned
object.

What is missing is the p-value, because this is computationally expensive to cal-
culate. (You can control how many bootstraps it uses, but the default is 1000.)

> ddst.norm.test(r,compute.p=TRUE)

Data Driven Smooth Test for Normality

data: r, base: ddst.base.legendre, c: 100
WT* = 0.6183, n. coord = 1, p-value = 0.476

So the p-value is 0.476, giving us no reason to reject a Gaussian distribution when
we’re looking at numbers from the standard Gaussian. If we ignored the fact that
d was selected from the data and plugged into the corresponding c hi2

d
distribution,

we’d get a p-value of

> pchisq(0.6183,df=1,lower.tail=FALSE)
[1] 0.4316797

which to say a relative error of about 10%.
What if we give the procedure some non-Gaussian data? Say, the same amount of

data from a t distribution with 5 degrees of freedom?

> ng <- rt(100,df=5)
> ddst.norm.test(ng,compute.p=TRUE)
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plot(hist(r),freq=FALSE,main="")
rug(r)
curve(dnorm(x),add=TRUE,col="grey")
rF <- pnorm(r,mean=mean(r),sd=sd(r))
plot(hist(rF),freq=FALSE,main="")
rug(rF)
abline(h=1,col="grey")

Figure 17.4: Left panel: histogram of the 100 random values from the standard Gaus-
sian used in the text (exact values marked along the horizontal axis), plus the true
density in grey. Right panel: transforming the data according to the Gaussian fitted
to the data by maximum likelihood.
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plot(hist(ng),freq=FALSE,main="")
rug(ng)
curve(dnorm(x,mean=mean(ng),sd=sd(ng)),add=TRUE,col="grey")
ngF <- pnorm(r,mean=mean(ng),sd=sd(ng))
plot(hist(ngF),freq=FALSE,main="")
rug(ngF)
abline(h=1,col="grey")

Figure 17.5: Treating the draw from the t distribution discussed in the text the same
as the Gaussian sample in Figure 17.4.

Data Driven Smooth Test for Normality

data: ng, base: ddst.base.legendre, c: 100
WT* = 16.5623, n. coord = 2, p-value = 0.007

Of course, it won’t always reject, because the we’re only looking at 100 samples,
and the t distribution isn’t that different from a Gaussian. Still, when I repeat this
experiment many times, we get quite respectable power at the standard 5% size:

> mean(replicate(100,
+ ddst.norm.test(rt(100,df=5),compute.p=TRUE)$p.value)<0.05)
[1] 0.51

See Exercise 3 for a small project of ddst.exp.test to check a Pareto distribu-
tion.
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17.1.6 Conditional Distributions and Calibration
Suppose that we are not interested in the marginal distribution of X , but rather its
conditional distribution given some other variable or variables C (for “covariates”).
If the conditional density f (x|C = c) is continuous in x for every c , then it is easy
to argue, in parallel with §17.1.1, that F (X |C = c), the conditional CDF, should
∼ Unif(0,1). So, as long as we use the conditional CDF to transform X , we can
apply smooth tests as before.

One important use of this is regression residuals. Suppose X is the target variable
of a regression, with C being the predictor variables9, and we have some parametric
distribution in mind for the noise (Gaussian, say), with the noise ε being independent
of C . Then the model is X = r (C )+ε, so looking at the conditional CDF of X given
Z is equivalent to looking at the at unconditional CDF of the residuals. We can then
actually test whether the residuals are Gaussian, rather than just squinting at a Q-Q
plot. We could also do this by applying a K-S test to the transformed residuals, but
everything that was said above in favor of smooth tests would still apply.

Notice, by the way, that by applying the CDF transformation to the residuals,
we are checking whether the model is properly calibrated, i.e., whether events it
says happen with probability p actually have a frequency close to p. We do need
to impose assumptions about the distribution of the noise to check calibration for a
regression model, since if we just predict expected values, we say nothing about how
often any particular range of values should happen.

Later, when we look at graphical models and at time series, we will see several
other important situations where a statistical model is really about conditional dis-
tributions, and so can be checked by looking at conditional CDF transformations.
It seems to be somewhat more common to apply K-S tests than smooth tests after
the conditional CDF transformation (e.g., Bai 2003), but I think this is just because
smooth tests are not as widely known and used as they should be.

9I know you’re used to X being the predictor and Y being the target.
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17.2 Relative Distributions

So far, I have been talking about how we can test whether our data follows some
hypothesized distribution, or family of distributions, by using the fact that F (X ) is
uniform if and only if X has CDF F . If the values of F (xi ) are close enough to being
uniform, the true CDF has to be pretty close to F (with high confidence); if they are
far from uniform, the true CDF has to be far from F (again with high confidence).

In many situations, however, we already know (or are at least pretty sure) that
X doesn’t have some distribution, say F0, and what we are interested in is how X
fails to follow it; we want, in other words, to compare the distribution of X to some
reference distribution F0. For instance:

1. We are trying a new medical procedure, and we want to compare the distribu-
tion of outcomes for patients who got the treatment to those who did not.

2. We want to compare the distribution of some social outcome across two cate-
gories at the same time. (For instance, we might compare income, or lifespan,
for men and for women.)

3. We might want to compare members of the same category at different times,
or in different locations. (We might compare the income distribution of Amer-
ican men in 1980 to that of 2010, or the lifespans of American men in 2010 to
those of Canadian men.)

4. We might compare our actual population to the distribution predicted by a
model we know to be too simple (or just approximate) to try to learn what it
is missing.

You learned how to do comparisons of simple summaries of distributions in baby
stats. (For instance, you learned how to compare group means by doing t -tests.)
While these certainly have their places, they can miss an awful lot. For example, a
few years ago now an anesthesiologist came to the CMU statistics department for
help evaluating a new pain-management procedure, which was supposed to reduce
how many pain-killers patients recovering from surgery needed. Under both the
old procedure and the new one, the distribution was strongly bimodal, with some
patients needing very little by way of pain-killers, many needing much more, and a
few needing an awful lot of drugs. Simply looking at the change in the mean amount
of drugs taken, or even the changes in the mean and the variance, would have told us
very little about whether things were any better10.

In this example, the reference distribution, F0, is given by the distribution of
drug demand for patients on the old pain-management protocol. The new or com-
parison sample, x1, . . . xn , are realizations of a random variable X , representing the
demand for pain-killers under the new protocol. X follows the comparison distri-
bution F , which is presumably not the same as F0; how does it differ?

10I am omitting some details, and not providing a reference because the study is still, so far as I know,
unpublished.
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The idea of the relative distribution is to characterize the change in distributions
by using F0 to transform X into [0,1], and then looking at how it departs from
uniformity. The relative data, or grades, are

ri = F0(xi ) (17.28)

Simply put, we take the comparison data points and see where they fall in the refer-
ence distribution.

What is the cumulative distribution function of the relative data? Let’s look at
this first at the population level, where we have F0 (the reference distribution) and
F (the comparison distribution), rather than just samples. Let’s call the CDF of the
relative data G:

G(a) ≡ Pr (R≤ a) (17.29)
= Pr (F0(X )≤ a) (17.30)
= Pr (X ≤Q0(a)) (17.31)
= F (Q0(a)) (17.32)

where remember Q0 = F −1
0 is the quantile function of the reference distribution.

This in turn implies a probability density function of the relative data:

g (y) ≡
dG

da

�

�

�

�

�

a=y

(17.33)

=
d F

d u

�

�

�

�

�

u=Q0(y)

d F −1
0

da

�

�

�

�

�

a=y

(17.34)

= f (Q0(y))
1

f0(Q0(y))
=

f (Q0(y))

f0(Q0(y))
(17.35)

This only applies when y ∈ [0,1]; elsewhere, g (y) is straightforwardly 0.
When g (y)> 1, we have f (Q0(y))> f0(Q0(y))— that is, values around Q0(y) are

relatively more probable in the comparison distribution than in the reference distri-
bution. Likewise, when g (y) < 1, the comparison distribution puts less weight on
values around Q0(y) than does the reference distribution. If the comparison distri-
bution was exactly the same as the reference distribution, we would, of course, get
g (y) = 1 everywhere.

One very important property of the relative distribution is that it is invariant un-
der monotone transformations. That is, suppose instead of looking at X , we looked
at h(X ) for some monotonic function h. (An obvious example would be change of
units, but we might also take logs or powers.) Summary statistics like differences in
means are generally not even equi-variant11. But it is easy to check (Exercise 4) that

11Remember that a statistic, say δ, is a function of the data, δ(x1, x2, . . . xn). The statistic is in-
variant under a transformation h if δ(h(x1), h(x2), . . . h(xn)) = δ(x1, x2, . . . xn) — the transformation
does not change the statistic. The statistic is equivariant if it “changes along with” the transformation,
δ(h(x1), h(x2), . . . h(xn)) = h(δ(x1, x2, . . . xn)). Maximum likelihood estimates are equivariant. Statistics
like the mean are equivariant under linear and affine transformations (but not others).
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the relative distribution of h(X ) is the same as the relative distribution of X . This
expresses the idea that the difference between the reference and comparison distribu-
tions is independent of our choice of a coordinate system for X .

17.2.1 Estimating the Relative Distribution

In some situations, the reference distribution can come from a theoretical model, but
the comparison distribution is unknown, though we have samples. Estimating the
relative density g is then extremely similar to what we had to do in the last section for
hypothesis testing. Non-parametric estimation of g can thus proceed either through
fitting series expansions like Eq. 17.10 (with a data-driven choice of d , as above), or
through using a fixed, data-independent transformation to map [0,1] to (−∞,∞) and
using kernel density estimation12.

If, on the other hand, neither the reference nor the comparison distribution is
fully known, but we have samples from both, estimating the relative distribution
involves estimating Q0, the quantile function of the reference distribution. This is
typically estimated as just the empirical quantile function, but in principle one could
use, say, kernel smoothing to get at Q0. Once we have an estimate for it, though,
we have reduced the problem of estimating g to the case considered in the previous
paragraph.

Uncertainty in the estimate of the relative density g is, as usual, most easily as-
sessed through the bootstrap. Be careful to include the uncertainty in estimates of Q0
as well, if the reference quantiles have to be estimated. One can, however, also use
asymptotic approximations (Handcock and Morris, 1999, §9.6).

17.2.2 R Implementation and Examples

Relative distribution methods were introduced by Handcock and Morris (1998, 1999),
who also wrote an R package, reldist, which is by far the easiest way to work with
relative distributions. Rather than explain abstractly how this works, we’ll turn im-
mediately to examples.

17.2.2.1 Example: Conservative versus Liberal Brains

In the homework, we have looked at the data from Kanai et al. (2011), which record
the volumes of two parts of the brain, the amygdala and the anterior cingulate cortex
(ACC), adjusted for body size, sex, etc., and political orientation on a five-point or-
dinal scale, with 1 being the most conservative and 5 the most liberal13. The subjects
being British university students, the lowest score for political orientation recorded
was 2, and so we will look at relative distributions between those students and the
rest of the sample. That is, we take the conservatives as the comparison sample, and
the rest as the reference sample14.

12We saw how to do this in the homework
13I am grateful to Dr. Kanai for graciously sharing the data.
14This implies no value judgment about conservatives being “weird”, but rather reflects the fact that

there are many fewer of them than of non-conservatives in this data.
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Having loaded the data into the data frame n90, we can look at simple density
estimates for the two classes and the two variables (Figure 17.6). This indicates that
conservative subjects tend to have relatively larger amygdalas and relatively smaller
ACCs, though with very considerable overlap. (We are not looking at the uncertainty
here at all.)

Enough preliminaries; let’s find the relative distribution. Figure 17.7).

library(reldist)
acc.rel <- reldist(y=n90$acc[n90$orientation<3],
yo=n90$acc[n90$orientation>2],ci=TRUE,
yolabs=pretty(n90$acc[n90$orientation>2]),
main="Relative density of adjusted ACC volume")

The first argument is the comparison sample; the second is the reference sample. The
labeling of the horizontal axis is in terms of the quantiles of the reference distribution;
I convert this back to the original units with the optional yolabs argument15. The
dots show a pointwise 95%-confidence band, but based on asymptotic approxima-
tions which should not be taken seriously when there are only 77 reference samples
and just 13 comparison samples.

15The function pretty() is a built-in routine for coming up with reasonable axis tick-marks from a
vector. See help(pretty).
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par(mfrow=c(2,1))
plot(density(n90$amygdala[n90$orientation>2]),main="",

xlab="Adjusted amygdala volume")
lines(density(n90$amygdala[n90$orientation<3]),lty="dashed")
plot(density(n90$acc[n90$orientation<3]),lty="dashed",main="",

xlab="Adjusted ACC volume")
lines(density(n90$acc[n90$orientation>2]))

Figure 17.6: Estimated densities for the (adjusted) volume of the amygdala (upper
panel) and ACC (lower panel) in non-conservative (solid lines) and conservative
(dashed) students.
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par(mfrow=c(2,1))
reldist(y=n90$amygdala[n90$orientation<3],
yo=n90$amygdala[n90$orientation>2],ci=TRUE,
yolabs=pretty(n90$amygdala[n90$orientation>2]),
main="Relative density of adjusted amygdala volume")

reldist(y=n90$acc[n90$orientation<3],
yo=n90$acc[n90$orientation>2],ci=TRUE,
yolabs=pretty(n90$acc[n90$orientation>2]),
main="Relative density of adjusted ACC volume")

Figure 17.7: Relative distribution of adjusted brain-region volumes, contrasting con-
servative subjects (comparison samples) to non-conservative subjects (reference sam-
ples). Dots indicate 95% confidence limits, but these are based on asymptotic approx-
imations which don’t work here. (The supposed lower limit for the relative density
of the amygdala is almost always negative!) The dashed lines mark a relative density
of 1, which would be
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library(np)
data(oecdpanel)
in.oecd <- oecdpanel$oecd==1
reldist(y=oecdpanel$growth[in.oecd],

yo=oecdpanel$growth[!in.oecd],
yolabs=pretty(oecdpanel$growth[!in.oecd]),
ci=TRUE,ylim=c(0,3))

Figure 17.8: Relative distribution of the per-capita GDP growth rates of OECD-
member countries compared to those of non-OECD countries.

17.2.2.2 Example: Economic Growth Rates

For a second example, let’s return to the OECD data on economic growth featured
in Chapter 16. We want to know how the economic growth rates of countries which
are already economically developed compares to the growth rates of developing and
undeveloped countries. I approximate “is a developed country” by “is a membership
of the OECD”, as in §16.5.1. I will take the non-developed countries as the reference
distribution and the OECD members as the comparison group, mostly because there
are more of the former and they are more diverse.

The basic commands now go as before (aside from loading the data from a differ-
ent library):

library(np)
data(oecdpanel)
in.oecd <- oecdpanel$oecd==1
reldist(y=oecdpanel$growth[in.oecd],

yo=oecdpanel$growth[!in.oecd],
yolabs=pretty(oecdpanel$growth[!in.oecd]))

Examining the resulting plot (Figure 17.8), the relative distribution is unimodal,
peaking around the 60th percentile of the reference distribution, a growth rate of
about 2.5% per year. The relative distribution drops below 1 at both low (negative)
or high (> 0.05%) growth rates — developed countries, at least over the period of this
data, tend to grow steadily and within a fairly narrow band, without so much of both
the positive and negative extremes of non-developed countries16

It’s also worth illustrating how to use reldist for comparison to a theoretical
CDF. A very primitive, or better yet nihilistic, model of economic growth would say
that the factors causing economies to grow or shrink are so many, and so various,
and so complicated that there is no hope of tracking them systematic, but rather that
we should regard them as effectively random. As we know from introduction prob-
ability, the average of many small independent forces has a Gaussian distribution; so

16It’s easy to tell a story for why the distribution of growth rates for poor countries is so wide. Some
poor countries grow very slowly or even shrink because they suffer from poor institutions, corruption,
war, lack of resources, technological backwardness, etc.; some poor countries grow very quickly if they
over-come or escape these obstacles and can quickly make use of technologies developed elsewhere. No-
body has a particular good story for why the growth rates of all developed countries are so similar.
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we’ll just assume that each country grows (or shrinks) by some independent Gaussian
amount every year.

Doing this just means applying the cumulative distribution function of the model’s
distribution to the values from our comparison sample, as in Figure 17.9. The result
does not look too different from Figure 17.8. (This does not mean that the nihilistic
model of economic growth is right.)

17.2.3 Adjusting for Covariates
Another nice use of relative distributions is in adjusting for covariates or predictors
more flexibly than is easy to do with regression. Suppose that we have measurements
of two variables, X and Z . In general, when we move from the reference population
to the comparison population, both variables will change their marginal distribu-
tions. If the marginal distribution of Z changes, and the conditional distribution of
X given Z did not, then the marginal distribution of X would change. It is often in-
formative to know how the change in the distribution of X compares to what would
be anticipated just from the change in Z :

• The two populations might be male and female workers in the same industry,
with X income and Z (say) education, or some measure of qualifications.

• The two populations might be students at two different schools, or taught in
two different ways, with X their test scores at the end of the year, and Z some
measure of prior knowledge.

Write the conditional density of X given Z in the reference population as f0(x|z).
Then, just from the definitions of conditional and marginal probability,

f0(x) =
∫

f0(x|z) f0(z)d z (17.36)

If the distribution of the covariate Z is instead taken from the comparison popula-
tion, we get a different distribution for x,

f0C (x) =
∫

f0(x|z) f (z)d z (17.37)

with the C standing for “covariate” or “compensated”, depending on who you talk
to. This is the distribution we would have seen for X if the distribution of X shifted
but the relation between X and Z did not.

Before, we looked at the relative distribution of the comparison distribution F to
the reference distribution F0, which had the density (Eq. 17.35) g (y) = f (Q0(y))/ f0(Q0(y)).
Notice that

f (Q0(y))

f0(Q0(y))
=

f0C (Q0(y))

f0(Q0(y))

f (Q0(y))

f0C (Q0(y))
(17.38)

The first ratio on the right-hand side the relative density of F0C compared to f0; the
second ratio is the relative density of F compared to F0C .
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growth.mean <- mean(oecdpanel$growth[!in.oecd])
growth.sd <- sd(oecdpanel$growth[!in.oecd])
r = pnorm(oecdpanel$growth[in.oecd],growth.mean,growth.sd)
reldist(y=r,ci=TRUE,ylim=c(0,3))
top.ticks <- (1:9)/10
top.tick.values <- signif(qnorm(top.ticks,growth.mean,growth.sd),2)
axis(side=3,at=top.ticks,labels=top.tick.values)

Figure 17.9: Distribution of the growth rates of developed countries, relative to a
Gaussian fitted to all growth rates.
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I have written everything as though Z were just a scalar, but it could be a vector,
so we can adjust for multiple covariates at once. Also, it is important to emphasize
that there is no implication that Z is in any sense the cause of X here (though such
adjustments are often more interesting when that’s true).

17.2.3.1 Example: Adjusting Growth Rates

It will be easier to see how this works with an example. The oecdpanel data set
also includes a variable called humancap, which is the log of the average number of
years of education of people over the age of fifteen17. How do the growth rates of
developed countries compare to those of undeveloped countries once we adjust for
education?

As Figure 17.10 shows, after adjusting for education levels, the relative density
shifts somewhat to the left, with its peak peaked closer to the median of the reference
distribution. That is, some of the higher-than-usual growth of the developed coun-
tries can be explained away by their (unusually high: Figure 17.11) levels of education.
But the relative density is now even more sharply peaked than it was before.

Again, it would be rash to read too much causality into this. It could be that
education promotes economic growth18, or it could be that education is a luxury of
rich societies, which grow faster than average for other reasons.

17If you look at help(oecdpanel), it calls this variable “average secondary school enrollment rate”,
but that’s clearly wrong, and examining the original papers referenced there shows the correct meaning
of the variable. I am not sure why it was logged. (Incidentally, humancap stands for “human capital”.
Whether education is best thought of in this way, or indeed whether years of schooling are a good measure
of human capital, are hard questions which we fortunately do not have to answer.)

18Certainly it’s convenient for a teacher to think so.

11:36 Saturday 22nd November, 2014



17.2. RELATIVE DISTRIBUTIONS 348

reldist(y=oecdpanel$growth[in.oecd],
yo=oecdpanel$growth[!in.oecd],
yolabs=pretty(oecdpanel$growth[!in.oecd]),
z=oecdpanel$humancap[in.oecd],
zo=oecdpanel$humancap[!in.oecd],
decomp="covariate",
ci=TRUE,ylim=c(0,4))

Figure 17.10: Relative distribution of per-capita GDP growth rates after adjusting for
education (humancap).
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reldist(y=exp(oecdpanel$humancap[in.oecd]),
yo=exp(oecdpanel$humancap[!in.oecd]),
yolabs=pretty(exp(oecdpanel$humancap[!in.oecd])))

Figure 17.11: Relative distribution of years of education, comparing OECD coun-
tries to non-OECD countries.
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17.3 Further Reading
On smooth tests of goodness of fit, see Bera and Ghosh (2002) (a pleasantly enthu-
siastic paper) and Rayner and Best (1989). The ddst package is ultimately based on
Kallenberg and Ledwina (1997). On relative distributions, see Handcock and Mor-
ris (1998) (an expository paper aimed at social scientists) and Handcock and Morris
(1999) (a more comprehensive book with technical details).

17.4 Exercises
1. §17.1.3.1 asserts that one could use cosines orthonormal basis functions in a

Neyman test, with h j (x) = c j cos2π j x. Find an expression for the normalizing
constant c j such that these functions satisfy Eq. 17.18 and Eq. 17.19.

2. Prove Eq. 17.24. Hint: change of variables. Also, prove that

∫ ∞

−∞
f (x)exp

∑d
j=1 θ j h j (F (x)) d x =

∫ 1

0
exp

∑d
j=1 θ j h j (y) d y = z(θ) (17.39)

3. If X ∼ Pareto(α, x0), then logX /x0 ∼ Exp(α) — the log of a power-law dis-
tributed variable has an exponential distribution. Using the wealth.dat data
from Chapter 6 and ddst.exp.test, test whether net worths over $3× 108

follow a Pareto distribution.

4. Let T = h(X ) for some fixed and strictly monotonic function h. Prove that
the relative density of T is the same as the relative density of X . Hint: find the
density of T under both the reference and comparison distribution in terms of
f0, f and h.
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Chapter 18

Principal Components Analysis

[[TODO: Add scree plots and
cautions against same re how
many PCs? ]]

Principal components analysis (PCA) is one of a family of techniques for taking
high-dimensional data, and using the dependencies between the variables to represent
it in a more tractable, lower-dimensional form, without losing too much information.
PCA is one of the simplest and most robust ways of doing such dimensionality
reduction. It is also one of the oldest, and has been rediscovered many times in
many fields, so it is also known as the Karhunen-Loève transformation, the Hotelling
transformation, the method of empirical orthogonal functions, and singular value
decomposition1. We will call it PCA.

18.1 Mathematics of Principal Components
We start with p-dimensional vectors, and want to summarize them by projecting
down into a q -dimensional subspace. Our summary will be the projection of the
original vectors on to q directions, the principal components, which span the sub-
space.

There are several equivalent ways of deriving the principal components mathe-
matically. The simplest one is by finding the projections which maximize the vari-
ance. The first principal component is the direction in space along which projections
have the largest variance. The second principal component is the direction which
maximizes variance among all directions orthogonal to the first. The k th component
is the variance-maximizing direction orthogonal to the previous k − 1 components.
There are p principal components in all.

Rather than maximizing variance, it might sound more plausible to look for the
projection with the smallest average (mean-squared) distance between the original
vectors and their projections on to the principal components; this turns out to be
equivalent to maximizing the variance.

Throughout, assume that the data have been “centered”, so that every variable
has mean 0. If we write the centered data in a matrix x, where rows are objects and

1Strictly speaking, singular value decomposition is a matrix algebra trick which is used in the most
common algorithm for PCA.
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columns are variables, then xT x = nv, where v is the covariance matrix of the data.
(You should check that last statement!)

18.1.1 Minimizing Projection Residuals
We’ll start by looking for a one-dimensional projection. That is, we have p-dimensional
vectors, and we want to project them on to a line through the origin. We can specify
the line by a unit vector along it, ~w, and then the projection of a data vector ~xi on to
the line is ~xi · ~w, which is a scalar. (Sanity check: this gives us the right answer when
we project on to one of the coordinate axes.) This is the distance of the projection
from the origin; the actual coordinate in p-dimensional space is (~xi · ~w) ~w. The mean
of the projections will be zero, because the mean of the vectors ~xi is zero:

1

n

n
∑

i=1

(~xi · ~w) ~w =
  

1

n

n
∑

i=1

xi

!

· ~w
!

~w (18.1)

If we try to use our projected or image vectors instead of our original vectors,
there will be some error, because (in general) the images do not coincide with the
original vectors. (When do they coincide?) The difference is the error or residual of
the projection. How big is it? For any one vector, say ~xi , it’s

‖~xi − ( ~w · ~xi ) ~w‖
2 =

�

~xi − ( ~w · ~xi ) ~w
�

·
�

~xi − ( ~w · ~xi ) ~w
�

(18.2)
= ~xi · ~xi − ~xi · ( ~w · ~xi ) ~w (18.3)
−( ~w · ~xi ) ~w · ~xi +( ~w · ~xi ) ~w · ( ~w · ~xi ) ~w

= ‖~xi‖
2− 2( ~w · ~xi )

2+( ~w · ~xi )
2 ~w · ~w (18.4)

= ~xi · ~xi − ( ~w · ~xi )
2 (18.5)

since ~w · ~w = ‖ ~w‖2 = 1. Add those residuals up across all the vectors:

M SE( ~w) =
1

n

n
∑

i=1

‖~xi‖
2− ( ~w · ~xi )

2 (18.6)

=
1

n

 

n
∑

i=1

‖~xi‖
2−

n
∑

i=1

( ~w · ~xi )
2

!

(18.7)

The first summation doesn’t depend on ~w, so it doesn’t matter for trying to minimize
the mean squared residual. To make the MSE small, what we must do is make the
second sum big, i.e., we want to maximize

1

n

n
∑

i=1

( ~w · ~xi )
2 (18.8)

which we can see is the sample mean of ( ~w · ~xi )
2. The mean of a square is always equal

to the square of the mean plus the variance:

1

n

n
∑

i=1

( ~w · ~xi )
2 =

 

1

n

n
∑

i=1

~xi · ~w
!2

+Var
�

~w · ~xi
�

(18.9)
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Since we’ve just seen that the mean of the projections is zero, minimizing the residual
sum of squares turns out to be equivalent to maximizing the variance of the projec-
tions.

(Of course in general we don’t want to project on to just one vector, but on to
multiple principal components. If those components are orthogonal and have the
unit vectors ~w1, ~w2, . . . ~wk , then the image of xi is its projection into the space spanned
by these vectors,

k
∑

j=1

(~xi · ~w j ) ~w j (18.10)

The mean of the projection on to each component is still zero. If we go through the
same algebra for the mean squared error, it turns [Exercise 2] out that the cross-terms
between different components all cancel out, and we are left with trying to maximize
the sum of the variances of the projections on to the components.)

18.1.2 Maximizing Variance

Accordingly, let’s maximize the variance! Writing out all the summations grows te-
dious, so let’s do our algebra in matrix form. If we stack our n data vectors into an
n× p matrix, x, then the projections are given by xw, which is an n× 1 matrix. The
variance is

σ2
~w =

1

n

∑

i

�

~xi · ~w
�2 (18.11)

=
1

n
(xw)T (xw) (18.12)

=
1

n
wT xT xw (18.13)

= wT xT x

n
w (18.14)

= wT vw (18.15)

We want to chose a unit vector ~w so as to maximize σ2
~w
. To do this, we need to

make sure that we only look at unit vectors — we need to constrain the maximization.
The constraint is that ~w · ~w = 1, or wT w = 1. To enforce this constraint, we introduce
a Lagrange multiplier λ (Appendix D) and do a larger unconstrained optimization:

L (w,λ) ≡ σ2
w−λ(w

T w− 1) (18.16)

∂ L

∂ λ
= wT w− 1 (18.17)

∂ L

∂ w
= 2vw− 2λw (18.18)
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Setting the derivatives to zero at the optimum, we get

wT w = 1 (18.19)
vw = λw (18.20)

Thus, desired vector w is an eigenvector of the covariance matrix v, and the maxi-
mizing vector will be the one associated with the largest eigenvalue λ. This is good
news, because finding eigenvectors is something which can be done comparatively
rapidly, and because eigenvectors have many nice mathematical properties, which we
can use as follows.

We know that v is a p × p matrix, so it will have p different eigenvectors.2 We
know that v is a covariance matrix, so it is symmetric, and then linear algebra tells
us that the eigenvectors must be orthogonal to one another. Again because v is a
covariance matrix, it is a positive matrix, in the sense that ~x · v~x ≥ 0 for any ~x. This
tells us that the eigenvalues of v must all be ≥ 0.

The eigenvectors of v are the principal components of the data. We know that
they are all orthogonal to each other from the previous paragraph, so together they
span the whole p-dimensional space. The first principal component, i.e. the eigen-
vector which goes the largest value of λ, is the direction along which the data have
the most variance. The second principal component, i.e. the second eigenvector, is
the direction orthogonal to the first component with the most variance. Because it
is orthogonal to the first eigenvector, their projections will be uncorrelated. In fact,
projections on to all the principal components are uncorrelated with each other. If
we use q principal components, our weight matrix w will be a p × q matrix, where
each column will be a different eigenvector of the covariance matrix v. The eigen-
values will give the total variance described by each component. The variance of the
projections on to the first q principal components is then

∑q
i=1 λi .

18.1.3 More Geometry; Back to the Residuals
Suppose that the data really are q -dimensional. Then v will have only q positive
eigenvalues, and p−q zero eigenvalues. If the data fall near a q -dimensional subspace,
then p − q of the eigenvalues will be nearly zero.

If we pick the top q components, we can define a projection operator Pq . The
images of the data are then xPq . The projection residuals are x− xPq or x(I−Pq ).
(Notice that the residuals here are vectors, not just magnitudes.) If the data really
are q -dimensional, then the residuals will be zero. If the data are approximately q -
dimensional, then the residuals will be small. In any case, we can define the R2 of the
projection as the fraction of the original variance kept by the image vectors,

R2 ≡
∑q

i=1 λi
∑p

j=1 λ j

(18.21)

just as the R2 of a linear regression is the fraction of the original variance of the
dependent variable kept by the fitted values.

2Exception: if n < p, there are only n distinct eigenvectors and eigenvalues.
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The q = 1 case is especially instructive. We know that the residual vectors are all
orthogonal to the projections. Suppose we ask for the first principal component of
the residuals. This will be the direction of largest variance which is perpendicular to
the first principal component. In other words, it will be the second principal com-
ponent of the data. This suggests a recursive algorithm for finding all the principal
components: the k th principal component is the leading component of the residu-
als after subtracting off the first k − 1 components. In practice, it is faster to use
eigenvector-solvers to get all the components at once from v, but this idea is correct
in principle.

This is a good place to remark that if the data really fall in a q -dimensional sub-
space, then v will have only q positive eigenvalues, because after subtracting off those
components there will be no residuals. The other p − q eigenvectors will all have
eigenvalue 0. If the data cluster around a q -dimensional subspace, then p − q of the
eigenvalues will be very small, though how small they need to be before we can ne-
glect them is a tricky question.3

Projections on to the first two or three principal components can be visualized;
however they may not be enough to really give a good summary of the data. Usually,
to get an R2 of 1, you need to use all p principal components.4 How many principal
components you should use depends on your data, and how big an R2 you need. In
some fields, you can get better than 80% of the variance described with just two or
three components. A sometimes-useful device is to plot 1−R2 versus the number of
components, and keep extending the curve it until it flattens out. [[ Picking number of PCs

ought to come here, along
with plots ]]18.1.4 Statistical Inference, or Not

You may have noticed, and even been troubled by, the fact that I have said nothing
at all yet like “assume the data are drawn at random from some distribution”, or
“assume the different rows of the data frame are statistically independent”. This is
because no such assumption is required for principal components. All it does is say
“these data can be summarized using projections along these directions”. It says noth-
ing about the larger population or stochastic process the data came from; it doesn’t
even suppose the latter exist.

However, we could add a statistical assumption and see how PCA behaves under
those conditions. The simplest one is to suppose that the data are IID draws from
a distribution with covariance matrix V0. Then the sample covariance matrix V ≡
1
n XT X will converge on V0 as n →∞. Since the principal components are smooth
functions of V (namely its eigenvectors), they will tend to converge as n grows5. So,

3Be careful when n < p. Any two points define a line, and three points define a plane, etc., so if there
are fewer data points than variables, it is necessarily true that the fall on a low-dimensional subspace. In
§18.3.1, we represent stories in the New York Times as vectors with p ≈ 440, but n = 102. Finding that
only 102 principal components keep all the variance is not an empirical discovery but a mathematical
artifact.

4The exceptions are when some of your variables are linear combinations of the others, so that you
don’t really have p different variables, or when n < p.

5There is a wrinkle if V0 has “degenerate” eigenvalues, i.e., two or more eigenvectors with the same
eigenvalue. Then any linear combination of those vectors is also an eigenvector, with the same eigenvalue
(Exercise 3.) For instance, if V0 is the identity matrix, then every vector is an eigenvector, and PCA
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Variable Meaning
Sports Binary indicator for being a sports car
SUV Indicator for sports utility vehicle
Wagon Indicator
Minivan Indicator
Pickup Indicator
AWD Indicator for all-wheel drive
RWD Indicator for rear-wheel drive
Retail Suggested retail price (US$)
Dealer Price to dealer (US$)
Engine Engine size (liters)
Cylinders Number of engine cylinders
Horsepower Engine horsepower
CityMPG City gas mileage
HighwayMPG Highway gas mileage
Weight Weight (pounds)
Wheelbase Wheelbase (inches)
Length Length (inches)
Width Width (inches)

Table 18.1: Features for the 2004 cars data.

along with that additional assumption about the data-generating process, PCA does
make a prediction: in the future, the principal components will look like they do
now.

18.2 Example: Cars

Let’s work an example. The data6 consists of 388 cars from the 2004 model year, with
18 features. Eight features are binary indicators; the other 11 features are numerical
(Table 18.1). All of the features except Type are numerical. Table 18.2 shows the first
few lines from the data set. PCA only works with numerical variables, so we have
ten of them to play with.

There are two R functions for doing PCA, princomp and prcomp, which differ in
how they do the actual calculation.7 The latter is generally more robust, so we’ll just
use it.

cars04 = read.csv("cars-fixed04.dat")
cars04.pca = prcomp(cars04[,8:18], scale.=TRUE)

routines will return an essentially arbitrary collection of mutually perpendicular vectors. Generically,
however, any arbitrarily small tweak to V0 will break the degeneracy.

6On the course website; from http://www.amstat.org/publications/jse/datasets/04cars.
txt, with incomplete records removed.

7princomp actually calculates the covariance matrix and takes its eigenvalues. prcomp uses a different
technique called “singular value decomposition”.
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Sports, SUV, Wagon, Minivan, Pickup, AWD, RWD, Retail,Dealer,Engine,
Cylinders,Horsepower,CityMPG,HighwayMPG,Weight,Wheelbase,Length,Width

Acura 3.5 RL,0,0,0,0,0,0,0,43755,39014,3.5,6,225,18,24,3880,115,197,72
Acura MDX,0,1,0,0,0,1,0,36945,33337,3.5,6,265,17,23,4451,106,189,77
Acura NSX S,1,0,0,0,0,0,1,89765,79978,3.2,6,290,17,24,3153,100,174,71

Table 18.2: The first few lines of the 2004 cars data set.

The second argument to prcomp tells it to first scale all the variables to have variance
1, i.e., to standardize them. You should experiment with what happens with this data
when we don’t standardize.

We can now extract the loadings or weight matrix from the cars04.pca object.
For comprehensibility I’ll just show the first two components.

> round(cars04.pca$rotation[,1:2],2)
PC1 PC2

Retail -0.26 -0.47
Dealer -0.26 -0.47
Engine -0.35 0.02
Cylinders -0.33 -0.08
Horsepower -0.32 -0.29
CityMPG 0.31 0.00
HighwayMPG 0.31 0.01
Weight -0.34 0.17
Wheelbase -0.27 0.42
Length -0.26 0.41
Width -0.30 0.31

This says that all the variables except the gas-mileages have a negative projection on to
the first component. This means that there is a negative correlation between mileage
and everything else. The first principal component tells us about whether we are
getting a big, expensive gas-guzzling car with a powerful engine, or whether we are
getting a small, cheap, fuel-efficient car with a wimpy engine.

The second component is a little more interesting. Engine size and gas mileage
hardly project on to it at all. Instead we have a contrast between the physical size
of the car (positive projection) and the price and horsepower. Basically, this axis
separates mini-vans, trucks and SUVs (big, not so expensive, not so much horse-
power) from sports-cars (small, expensive, lots of horse-power).

To check this interpretation, we can use a useful tool called a biplot, which plots
the data, along with the projections of the original variables, on to the first two com-
ponents (Figure 18.1). Notice that the car with the lowest value of the second com-
ponent is a Porsche 911, with pick-up trucks and mini-vans at the other end of the
scale. Similarly, the highest values of the first component all belong to hybrids.
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biplot(cars04.pca,cex=0.4)

Figure 18.1: “Biplot” of the 2004 cars data. The horizontal axis shows projections on
to the first principal component, the vertical axis the second component. Car names
are written at their projections on to the components (using the coordinate scales on
the top and the right). Red arrows show the projections of the original variables on
to the principal components (using the coordinate scales on the bottom and on the
left).
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18.3 Latent Semantic Analysis

Information retrieval systems (like search engines) and people doing computational
text analysis often represent documents as what are called bags of words: documents
are represented as vectors, where each component counts how many times each word
in the dictionary appears in the text. This throws away information about word or-
der, but gives us something we can work with mathematically. Part of the represen-
tation of one document might look like:

a abandoned abc ability able about above abroad absorbed absorbing abstract
43 0 0 0 0 10 0 0 0 0 1

and so on through to “zebra”, “zoology”, “zygote”, etc. to the end of the dictionary.
These vectors are very, very large! At least in English and similar languages, these
bag-of-word vectors have three outstanding properties:

1. Most words do not appear in most documents; the bag-of-words vectors are
very sparse (most entries are zero).

2. A small number of words appear many times in almost all documents; these
words tell us almost nothing about what the document is about. (Examples:
“the”, “is”, “of”, “for”, “at”, “a”, “and”, “here”, “was”, etc.)

3. Apart from those hyper-common words, most words’ counts are correlated
with some but not all other words; words tend to come in bunches which
appear together.

Taken together, this suggests that we do not really get a lot of value from keeping
around all the words. We would be better off if we could project down a smaller
number of new variables, which we can think of as combinations of words that tend
to appear together in the documents, or not at all. But this tendency needn’t be abso-
lute — it can be partial because the words mean slightly different things, or because
of stylistic differences, etc. This is exactly what principal components analysis does.

To see how this can be useful, imagine we have a collection of documents (a cor-
pus), which we want to search for documents about agriculture. It’s entirely possible
that many documents on this topic don’t actually contain the word “agriculture”, just
closely related words like “farming”. A simple search on “agriculture” will miss them.
But it’s very likely that the occurrence of these related words is well-correlated with
the occurrence of “agriculture”. This means that all these words will have similar pro-
jections on to the principal components, and will be easy to find documents whose
principal components projection is like that for a query about agriculture. This is
called latent semantic indexing.

To see why this is indexing, think about what goes into coming up with an index
for a book by hand. Someone draws up a list of topics and then goes through the
book noting all the passages which refer to the topic, and maybe a little bit of what
they say there. For example, here’s the start of the entry for “Agriculture” in the
index to Adam Smith’s The Wealth of Nations:
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AGRICULTURE, the labour of, does not admit of such subdivisions
as manufactures, 6; this impossibility of separation, prevents agricul-
ture from improving equally with manufactures, 6; natural state of, in
a new colony, 92; requires more knowledge and experience than most
mechanical professions, and yet is carried on without any restrictions,
127; the terms of rent, how adjusted between landlord and tenant, 144;
is extended by good roads and navigable canals, 147; under what circum-
stances pasture land is more valuable than arable, 149; gardening not a
very gainful employment, 152–3; vines the most profitable article of cul-
ture, 154; estimates of profit from projects, very fallacious, ib.; cattle and
tillage mutually improve each other, 220; . . .

and so on. (Agriculture is an important topic in The Wealth of Nations.) It’s asking
a lot to hope for a computer to be able to do something like this, but we could at
least hope for a list of pages like “6,92,126,144,147,152 − −3,154,220, . . .”. One
could imagine doing this by treating each page as its own document, forming its
bag-of-words vector, and then returning the list of pages with a non-zero entry for
“agriculture”. This will fail: only two of those nine pages actually contains that
word, and this is pretty typical. On the other hand, they are full of words strongly
correlated with “agriculture”, so asking for the pages which are most similar in their
principal components projection to that word will work great.8

At first glance, and maybe even second, this seems like a wonderful trick for
extracting meaning, or semantics, from pure correlations. Of course there are also all
sorts of ways it can fail, not least from spurious correlations. If our training corpus
happens to contain lots of documents which mention “farming” and “Kansas”, as
well as “farming” and “agriculture”, latent semantic indexing will not make a big
distinction between the relationship between “agriculture” and “farming” (which is
genuinely semantic) and that between “Kansas” and “farming” (which is accidental,
and probably wouldn’t show up in, say, a corpus collected from Europe).

Despite this susceptibility to spurious correlations, latent semantic indexing is an
extremely useful technique in practice, and the foundational papers (Deerwester et al.,
1990; Landauer and Dumais, 1997) are worth reading.

18.3.1 Principal Components of the New York Times

To get a more concrete sense of how latent semantic analysis works, and how it re-
veals semantic information, let’s apply it to some data. The accompanying R file and
R workspace contains some news stories taken from the New York Times Annotated
Corpus (Sandhaus, 2008), which consists of about 1.8 million stories from the Times,
from 1987 to 2007, which have been hand-annotated by actual human beings with
standardized machine-readable information about their contents. From this corpus,
I have randomly selected 57 stories about art and 45 stories about music, and turned
them into a bag-of-words data frame, one row per story, one column per word; plus
an indicator in the first column of whether the story is one about art or one about

8Or it should anyway; I haven’t actually done the experiment with this book.
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music.9 The original data frame thus has 102 rows, and 4432 columns: the categorical
label, and 4431 columns with counts for every distinct word that appears in at least
one of the stories.10

The PCA is done as it would be for any other data:

nyt.pca <- prcomp(nyt.frame[,-1])
nyt.latent.sem <- nyt.pca$rotation

We need to omit the first column in the first command because it contains categorical
variables, and PCA doesn’t apply to them. The second command just picks out the
matrix of projections of the variables on to the components — this is called rotation
because it can be thought of as rotating the coordinate axes in feature-vector space.

Now that we’ve done this, let’s look at what the leading components are.

> signif(sort(nyt.latent.sem[,1],decreasing=TRUE)[1:30],2)
music trio theater orchestra composers opera
0.110 0.084 0.083 0.067 0.059 0.058

theaters m festival east program y
0.055 0.054 0.051 0.049 0.048 0.048

jersey players committee sunday june concert
0.047 0.047 0.046 0.045 0.045 0.045

symphony organ matinee misstated instruments p
0.044 0.044 0.043 0.042 0.041 0.041
X.d april samuel jazz pianist society

0.041 0.040 0.040 0.039 0.038 0.038
> signif(sort(nyt.latent.sem[,1],decreasing=FALSE)[1:30],2)

she her ms i said mother cooper
-0.260 -0.240 -0.200 -0.150 -0.130 -0.110 -0.100

my painting process paintings im he mrs
-0.094 -0.088 -0.071 -0.070 -0.068 -0.065 -0.065

me gagosian was picasso image sculpture baby
-0.063 -0.062 -0.058 -0.057 -0.056 -0.056 -0.055
artists work photos you nature studio out
-0.055 -0.054 -0.051 -0.051 -0.050 -0.050 -0.050

says like
-0.050 -0.049

These are the thirty words with the largest positive and negative projections on to the
first component.11 The words with positive projections are mostly associated with
music, those with negative components with the visual arts. The letters “m” and “p”

9Actually, following standard practice in language processing, I’ve normalized the bag-of-word vectors
so that documents of different lengths are comparable, and used “inverse document-frequency weighting”
to de-emphasize hyper-common words like “the” and emphasize more informative words. See the lecture
notes for data mining if you’re interested.

10If we were trying to work with the complete corpus, we should expect at least 50000 words, and
perhaps more.

11Which direction is positive and which negative is of course arbitrary; basically it depends on internal
choices in the algorithm.
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show up with msuic because of the combination “p.m”, which our parsing breaks
into two single-letter words, and because stories about music give show-times more
often than do stories about art. Personal pronouns appear with art stories because
more of those quote people, such as artists or collectors.12

What about the second component?

> signif(sort(nyt.latent.sem[,2],decreasing=TRUE)[1:30],2)
art museum images artists donations museums

0.150 0.120 0.095 0.092 0.075 0.073
painting tax paintings sculpture gallery sculptures

0.073 0.070 0.065 0.060 0.055 0.051
painted white patterns artist nature service

0.050 0.050 0.047 0.047 0.046 0.046
decorative feet digital statue color computer

0.043 0.043 0.043 0.042 0.042 0.041
paris war collections diamond stone dealers
0.041 0.041 0.041 0.041 0.041 0.040

> signif(sort(nyt.latent.sem[,2],decreasing=FALSE)[1:30],2)
her she theater opera ms

-0.220 -0.220 -0.160 -0.130 -0.130
i hour production sang festival

-0.083 -0.081 -0.075 -0.075 -0.074
music musical songs vocal orchestra
-0.070 -0.070 -0.068 -0.067 -0.067

la singing matinee performance band
-0.065 -0.065 -0.061 -0.061 -0.060
awards composers says my im
-0.058 -0.058 -0.058 -0.056 -0.056

play broadway singer cooper performances
-0.056 -0.055 -0.052 -0.051 -0.051

Here the positive words are about art, but more focused on acquiring and trading
(“collections”, “dealers”, “donations”, “dealers”) than on talking with artists or about
them. The negative words are musical, specifically about musical theater and vocal
performances.

I could go on, but by this point you get the idea.

18.4 PCA for Visualization
Let’s try displaying the Times stories using the principal components. (Assume that
the objects from just before are still in memory.)

plot(nyt.pca$x[,1:2],type="n")
points(nyt.pca$x[nyt.frame[,"class.labels"]=="music",1:2],pch="m",col="blue")
points(nyt.pca$x[nyt.frame[,"class.labels"]=="art",1:2],pch="a",col="red")

12You should check out these explanations for yourself. The raw stories are part of the R workspace.
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Figure 18.2: Projection of the Times stories on to the first two principal components.
Labels: “a” for art stories, “m” for music.

The first command makes an empty plot — I do this just to set up the axes nicely
for the data which will actually be displayed. The second and third commands plot a
blue “m” at the location of each music story, and a red “a” at the location of each art
story. The result is Figure 18.2.

Notice that even though we have gone from 4431 dimensions to 2, and so thrown
away a lot of information, we could draw a line across this plot and have most of
the art stories on one side of it and all the music stories on the other. If we let
ourselves use the first four or five principal components, we’d still have a thousand-
fold savings in dimensions, but we’d be able to get almost-perfect separation between
the two classes. This is a sign that PCA is really doing a good job at summarizing the
information in the word-count vectors, and in turn that the bags of words give us a
lot of information about the meaning of the stories.
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The figure also illustrates the idea of multidimensional scaling, which means
finding low-dimensional points to represent high-dimensional data by preserving the
distances between the points. If we write the original vectors as ~x1,~x2, . . .~xn , and their
images as ~y1,~y2, . . .~yn , then the MDS problem is to pick the images to minimize the
difference in distances:

∑

i

∑

j 6=i

�

‖~yi −~y j‖−‖~xi −~x j‖
�2

(18.22)

This will be small if distances between the image points are all close to the distances
between the original points. PCA accomplishes this precisely because ~yi is itself close
to ~xi (on average).

18.5 PCA Cautions
Trying to guess at what the components might mean is a good idea, but like many
good ideas it’s easy to go overboard. Specifically, once you attach an idea in your
mind to a component, and especially once you attach a name to it, it’s very easy to
forget that those are names and ideas you made up; to reify them, as you might reify
clusters. Sometimes the components actually do measure real variables, but some-
times they just reflect patterns of covariance which have many different causes. If I
did a PCA of the same variables but for, say, European cars, I might well get a simi-
lar first component, but the second component would probably be rather different,
since SUVs are much less common there than here.

A more important example comes from population genetics. Starting in the late
1960s, L. L. Cavalli-Sforza and collaborators began a huge project of mapping hu-
man genetic variation — of determining the frequencies of different genes in different
populations throughout the world. (Cavalli-Sforza et al. (1994) is the main summary;
Cavalli-Sforza has also written several excellent popularizations.) For each point in
space, there are a very large number of variables, which are the frequencies of the var-
ious genes among the people living there. Plotted over space, this gives a map of that
gene’s frequency. What they noticed (unsurprisingly) is that many genes had simi-
lar, but not identical, maps. This led them to use PCA, reducing the huge number
of variables (genes) to a few components. Results look like Figure 18.3. They inter-
preted these components, very reasonably, as signs of large population movements.
The first principal component for Europe and the Near East, for example, was sup-
posed to show the expansion of agriculture out of the Fertile Crescent. The third,
centered in steppes just north of the Caucasus, was supposed to reflect the expansion
of Indo-European speakers towards the end of the Bronze Age. Similar stories were
told of other components elsewhere.

Unfortunately, as Novembre and Stephens (2008) showed, spatial patterns like
this are what one should expect to get when doing PCA of any kind of spatial data
with local correlations, because that essentially amounts to taking a Fourier trans-
form, and picking out the low-frequency components.13 They simulated genetic dif-
fusion processes, without any migration or population expansion, and got results that

13Remember that PCA re-writes the original vectors as a weighted sum of new, orthogonal vectors, just

11:36 Saturday 22nd November, 2014



365 18.6. EXERCISES

looked very like the real maps (Figure 18.4). This doesn’t mean that the stories of the
maps must be wrong, but it does undercut the principal components as evidence for
those stories.

18.6 Exercises
1. Step through the pca.R file on the class website. Then replicate the analysis of

the cars data given above.

2. Suppose that we use q directions, given by q orthogonal length-one vectors
~w1, . . . ~wq . We want to show that minimizing the mean squared error is equiva-
lent to maximizing the sum of the variances of the scores along these directions.

(a) Write w for the matrix forms by stacking the ~wi . Prove that wT w= Iq .

(b) Find the matrix of q -dimensional scores in terms of x and w. Hint: your
answer should reduce to ~xi · ~w1 when q = 1.

(c) Find the matrix of p-dimensional approximations based on these scores
in terms of x and w. Hint: your answer should reduce to (~xi · ~w1) ~w1 when
q = 1.

(d) Show that the MSE of using the vectors ~w1, . . . ~wq is the sum of two terms,
one of which depends only on x and not w, and the other depends only
on the scores along those directions (and not otherwise on what those
directions are). Hint: look at the derivation of Eq. 18.5, and use Exercise
2a.

(e) Explain in what sense minimizing projection residuals is equivalent to
maximizing the sum of variances along the different directions.

3. Suppose that u has two eigenvectors, ~w1 and ~w2, with the same eigenvalue a.
Prove that any linear combination of ~w1 and ~w2 is also an eigenvector of u, and
also has eigenvalue a.

as Fourier transforms do. When there is a lot of spatial correlation, values at nearby points are similar, so
the low-frequency modes will have a lot of amplitude, i.e., carry a lot of the variance. So first principal
components will tend to be similar to the low-frequency Fourier modes.
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Figure 18.3: Principal components of genetic variation in the old world, according to
Cavalli-Sforza et al. (1994), as re-drawn by Novembre and Stephens (2008).
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Figure 18.4: How the PCA patterns can arise as numerical artifacts (far left column)
or through simple genetic diffusion (next column). From Novembre and Stephens
(2008).
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Chapter 19

Factor Analysis

19.1 From PCA to Factor Analysis

Let’s sum up PCA. We start with n different p-dimensional vectors as our data, i.e.,
each observation as p numerical variables. We want to reduce the number of dimen-
sions to something more manageable, say q . The principal components of the data
are the q orthogonal directions of greatest variance in the original p-dimensional
space; they can be found by taking the top q eigenvectors of the sample covariance
matrix. Principal components analysis summarizes the data vectors by projecting
them on to the principal components.

All of this is purely an algebraic undertaking; it involves no probabilistic assump-
tions whatsoever. It also supports no statistical inferences — saying nothing about
the population or stochastic process which made the data, it just summarizes the
data. How can we add some probability, and so some statistics? And what does that
let us do?

Start with some notation. X is our data matrix, with n rows for the different
observations and p columns for the different variables, so Xi j is the value of variable
j in observation i . Each principal component is a vector of length p, and there are
p of them, so we can stack them together into a p × p matrix, say w. Finally, each
data vector has a projection on to each principal component, which we collect into
an n× p matrix F. Then

X = Fw (19.1)
[n× p] = [n× p][p × p]

where I’ve checked the dimensions of the matrices underneath. This is an exact equa-
tion involving no noise, approximation or error, but it’s kind of useless; we’ve re-
placed p-dimensional vectors in X with p-dimensional vectors in F. If we keep only
to q < p largest principal components, that corresponds to dropping columns from
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F and rows from w. Let’s say that the truncated matrices are Fq and wq . Then

X ≈ Fqwq (19.2)

[n× p] = [n× q][q × p]

The error of approximation — the difference between the left- and right- hand-sides
of Eq. 19.2 — will get smaller as we increase q . (The line below the equation is a
sanity-check that the matrices are the right size, which they are. Also, at this point
the subscript qs get too annoying, so I’ll drop them.) We can of course make the two
sides match exactly by adding an error or residual term on the right:

X= Fw+ ε (19.3)

where ε has to be an n× p matrix.
Now, Eq. 19.3 should look more or less familiar to you from regression. On

the left-hand side we have a measured outcome variable (X), and on the right-hand
side we have a systematic prediction term (Fw) plus a residual (ε). Let’s run with
this analogy, and start treating ε as noise, as a random variable which has got some
distribution, rather than whatever arithmetic says is needed to balance the two sides.
(This move is the difference between just drawing a straight line through a scatter
plot, and inferring a linear regression.) Then X will also be a random variable. When
we want to talk about the random variable which goes in the i th column of X, we’ll
call it Xi .

What about F? Well, in the analogy it corresponds to the independent variables
in the regression, which ordinarily we treat as fixed rather than random, but that’s
because we actually get to observe them; here we don’t, so it will make sense to
treat F, too, as random. Now that they are random variables, we say that we have
q factors, rather than components, that F is the matrix of factor scores and w is
the matrix of factor loadings. The variables in X are called observable or manifest
variables, those in F are hidden or latent. (Technically ε is also latent.)

Before we can actually do much with this model, we need to say more about the
distributions of these random variables. The traditional choices are as follows.

1. All of the observable random variables Xi have mean zero and variance 1.

2. All of the latent factors have mean zero and variance 1.

3. The noise terms ε all have mean zero.

4. The factors are uncorrelated across individuals (rows of F) and across variables
(columns).

5. The noise terms are uncorrelated across individuals, and across observable vari-
ables.

6. The noise terms are uncorrelated with the factor variables.
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Item (1) isn’t restrictive, because we can always center and standardize our data. Item
(2) isn’t restrictive either — we could always center and standardize the factor vari-
ables without really changing anything. Item (3) actually follows from (1) and (2).
The substantive assumptions — the ones which will give us predictive power but
could also go wrong, and so really define the factor model — are the others, about
lack of correlation. Where do they come from?

Remember what the model looks like:

X= Fw+ ε (19.4)

All of the systematic patterns in the observations X should come from the first term
on the right-hand side. The residual term ε should, if the model is working, be un-
predictable noise. Items (3) through (5) express a very strong form of this idea. In
particular it’s vital that the noise be uncorrelated with the factor scores.

19.1.1 Preserving correlations

There is another route from PCA to the factor model, which many people like but
which I find less compelling; it starts by changing the objectives.

PCA aims to minimize the mean-squared distance from the data to their projects,
or what comes to the same thing, to preserve variance. But it doesn’t preserve corre-
lations. That is, the correlations of the features of the image vectors are not the same
as the correlations among the features of the original vectors (unless q = p, and we’re
not really doing any data reduction). We might value those correlations, however,
and want to preserve them, rather than the than trying to approximate the actual
data.1 That is, we might ask for a set of vectors whose image in the feature space
will have the same correlation matrix as the original vectors, or as close to the same
correlation matrix as possible while still reducing the number of dimensions. This
leads to the factor model we’ve already reached, as we’ll see.

19.2 The Graphical Model

It’s common to represent factor models visually, as in Figure 19.1. This is an example
of a graphical model, in which the nodes or vertices of the graph represent random
variables, and the edges of the graph represent direct statistical dependencies between
the variables. The figure shows the observables or features in square boxes, to indicate
that they are manifest variables we can actual measure; above them are the factors,
drawn in round bubbles to show that we don’t get to see them. The fact that there
are no direct linkages between the factors shows that they are independent of one
another. From below we have the noise terms, one to an observable.

1Why? Well, originally the answer was that the correlation coefficient had just been invented, and
was about the only way people had of measuring relationships between variables. Since then it’s been
propagated by statistics courses where it is the only way people are taught to measure relationships. The
great statistician John Tukey once wrote “Does anyone know when the correlation coefficient is useful, as
opposed to when it is used? If so, why not tell us?” (Tukey, 1954, p. 721).
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F1

X1

0.87

X2

-0.75

F2

0.34

X3

0.13

X4

0.20

F3

0.73 0.10

X5

0.15

X6

0.45

E1 E2 E3 E4 E5 E6

Figure 19.1: Graphical model form of a factor model. Circles stand for the unob-
served variables (factors above, noises below), boxes for the observed features. Edges
indicate non-zero coefficients — entries in the factor loading matrix w, or specific
variancesψi . Arrows representing entries in w are decorated with those entries. Note
that it is common to omit the noise variables in such diagrams, with the implicit un-
derstanding that every variable with an incoming arrow also has an incoming noise
term.

Notice that not every observable is connected to every factor: this depicts the fact
that some entries in w are zero. In the figure, for instance, X1 has an arrow only from
F1 and not the other factors; this means that while w11 = 0.87, w21 = w31 = 0.

Drawn this way, one sees how the factor model is generative — how it gives us
a recipe for producing new data. In this case, it’s: draw new, independent values for
the factor scores F1, F2, . . . Fq ; add these up with weights from w; and then add on the
final noises ε1,ε2, . . .εp . If the model is right, this is a procedure for generating new,
synthetic data with the same characteristics as the real data. In fact, it’s a story about
how the real data came to be — that there really are some latent variables (the factor
scores) which linearly cause the observables to have the values they do.
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19.2.1 Observables Are Correlated Through the Factors
One of the most important consequences of the factor model is that observable vari-
ables are correlated with each other solely because they are correlated with the hidden
factors. To see how this works, take X1 and X2 from the diagram, and let’s calculate
their covariance. (Since they both have variance 1, this is the same as their correla-
tion.)

Cov[X1,X2] = E[X1X2]−E[X1]E[X2] (19.5)
= E[X1X2] (19.6)
= E[(F1w11+ F2w21+ ε1)(F1w12+ F2w22+ ε2)] (19.7)

= E
�

F 2
1 w11w12+ F1F2(w11w22+w21w12)+ F 2

2 w21w22

�

+E[ε1ε2]+E[ε1(F1w12+ F2w22)]
+E[ε2(F1w11+ F2w21)] (19.8)

Since the noise terms are uncorrelated with the factor scores, and the noise terms for
different variables are uncorrelated with each other, all the terms containing εs have
expectation zero. Also, F1 and F2 are uncorrelated, so

Cov[X1,X2] = E
�

F 2
1

�

w11w12+E
�

F 2
2

�

w21w22 (19.9)

= w11w12+w21w22 (19.10)

using the fact that the factors are scaled to have variance 1. This says that the covari-
ance between X1 and X2 is what they have from both correlating with F1, plus what
they have from both correlating with F2; if we had more factors we would add on
w31w32+w41w42+ . . . out to wq1wq2. And of course this would apply as well to any
other pair of observable variables. So the general form is

Cov
�

Xi ,X j

�

=
q
∑

k=1

wki wk j (19.11)

so long as i 6= j .
The jargon says that observable i loads on factor k when wki 6= 0. If two observ-

ables do not load on to any of the same factors, if they do not share any common
factors, then they will be independent. If we could condition on (“control for”) the
factors, all of the observables would be conditionally independent.

Graphically, we draw an arrow from a factor node to an observable node if and
only if the observable loads on the factor. So then we can just see that two observables
are correlated if they both have in-coming arrows from the same factors. (To find
the actual correlation, we multiply the weights on all the edges connecting the two
observable nodes to the common factors; that’s Eq. 19.11.) Conversely, even though
the factors are marginally independent of each other, if two factors both send arrows
to the same observable, then they are dependent conditional on that observable.2

2To see that this makes sense, suppose that X1 = F1w11 + F2w21 + ε1. If we know the value of X1, we
know what F1, F2 and ε1 have to add up to, so they are conditionally dependent.
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19.2.2 Geometry: Approximation by Hyper-planes

Each observation we take is a vector in a p-dimensional space; the factor model says
that these vectors have certain geometric relations to each other — that the data has
a certain shape. To see what that is, pretend for right now that we can turn off the
noise terms ε. The loading matrix w is a q × p matrix, so each row of w is a vector
in p-dimensional space; call these vectors ~w1, ~w2, . . . ~wq . Without the noise, our ob-
servable vectors would be linear combinations of these vectors (with the factor scores
saying how much each vector contributes to the combination). Since the factors are
orthogonal to each other, we know that they span a q -dimensional sub-space of the
p-dimensional space — a line if q = 1, a plane if q = 2, in general a hyper-plane. If
the factor model is true and we turn off noise, we would find all the data lying exactly
on this hyper-plane. Of course, with noise we expect that the data vectors will be
scattered around the hyper-plane; how close depends on the variance of the noise.
But this is still a rather specific prediction about the shape of the data.

A weaker prediction than “the data lie on a low-dimensional plane in the high-
dimensional space” is “the data lie on some low-dimensional surface, possibly curved,
in the high-dimensional space”; there are techniques for trying to recover such sur-
faces, which can work even when factor analysis fails. But they are more complicated
than factor analysis and outside the scope of this class. (Take data mining.)

19.3 Roots of Factor Analysis in Causal Discovery

The roots of factor analysis go back to work by Charles Spearman just over a century
ago (Spearman, 1904); he was trying to discover the hidden structure of human intel-
ligence. His observation was that schoolchildren’s grades in different subjects were
all correlated with each other. He went beyond this to observe a particular pattern
of correlations, which he thought he could explain as follows: the reason grades in
math, English, history, etc., are all correlated is performance in these subjects is all
correlated with something else, a general or common factor, which he named “general
intelligence”, for which the natural symbol was of course g or G.

Put in a form like Eq. 19.4, Spearman’s model becomes

X= ε+Gw (19.12)

where G is an n× 1 matrix (i.e., a row vector) and w is a 1× p matrix (i.e., a column
vector). The correlation between feature i and G is just wi ≡ w1i , and, if i 6= j ,

vi j ≡Cov
�

Xi ,X j

�

= wi w j (19.13)

where I have introduced vi j as a short-hand for the covariance.
Up to this point, this is all so much positing and assertion and hypothesis. What

Spearman did next, though, was to observe that this hypothesis carried a very strong
implication about the ratios of correlation coefficients. Pick any four distinct features,
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i , j , k , l . Then, if the model (19.12) is true,

vi j/vk j

vi l/vk l
=

wi w j/wk w j

wi wl/wk wl
(19.14)

=
wi/wk

wi/wk
(19.15)

= 1 (19.16)

The relationship
vi j vk l = vi l vk j (19.17)

is called the “tetrad equation”, and we will meet it again later when we consider meth-
ods for causal discovery in Part III. In Spearman’s model, this is one tetrad equation
for every set of four distinct variables.

Spearman found that the tetrad equations held in his data on school grades (to a
good approximation), and concluded that a single general factor of intelligence must
exist3. This was, of course, logically fallacious.

Later work, using large batteries of different kinds of intelligence tests, showed
that the tetrad equations do not hold in general, or more exactly that departures
from them are too big to explain away as sampling noise. (Recall that the equations
are about the true correlations between the variables, but we only get to see sample
correlations, which are always a little off.) The response, done in an ad hoc way
by Spearman and his followers, and then more systematically by Thurstone, was to
introduce multiple factors. This breaks the tetrad equation, but still accounts for
the correlations among features by saying that features are really directly correlated
with factors, and uncorrelated conditional on the factor scores.4 Thurstone’s form of
factor analysis is basically the one people still use — there have been refinements, of
course, but it’s mostly still his method.

19.4 Estimation
The factor model introduces a whole bunch of new variables to explain the observ-
ables: the factor scores F, the factor loadings or weights w, and the observable-specific
variances ψi . The factor scores are specific to each individual, and individuals by as-
sumption are independent, so we can’t expect them to really generalize. But the
loadings w are, supposedly, characteristic of the population. So it would be nice if we
could separate estimating the population parameters from estimating the attributes
of individuals; here’s how.

Since the variables are centered, we can write the covariance matrix in terms of
the data frames:

v= E
� 1

n
XT X

�

(19.18)

3Actually, the equations didn’t hold when music was one of the grades, so Spearman argued musical
ability did not load on general intelligence.

4You can (and should!) read the classic “The Vectors of Mind” paper (Thurstone, 1934) online.
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(This is the true, population covariance matrix on the left.) But the factor model tells
us that

X= Fw+ ε (19.19)

This involves the factor scores F, but reember that when we looked at the correlations
between individual variables, those went away, so let’s substitute Eq. 19.19 into Eq.
19.18 and see what happens:

E
� 1

n
XT X

�

(19.20)

=
1

n
E
�

(εT +wT FT )(Fw+ ε)
�

(19.21)

=
1

n

�

E
�

εT ε
�

+wT E
�

FT ε
�

+E
�

εT F
�

w+wT E
�

FT F
�

w
�

(19.22)

= ψ+ 0+ 0+
1

n
wT nIw (19.23)

= ψ+wT w (19.24)

Behold:
v=ψ+wT w (19.25)

The individual-specific variables F have gone away, leaving only population parame-
ters on both sides of the equation.

19.4.1 Degrees of Freedom
It only takes a bit of playing with Eq. 19.25 to realize that we are in trouble. Like any
matrix equation, it represents a system of equations. How many equations in how
many unknowns? Naively, we’d say that we have p2 equations (one for each element
of the matrix v), and p + pq unknowns (one for each diagonal element of ψ, plus
one for each element of w). If there are more equations than unknowns, then there
is generally no solution; if there are fewer equations than unknowns, then there are
generally infinitely many solutions. Either way, solving for w seems hopeless (unless
q = p − 1, in which case it’s not very helpful). What to do?

Well, first let’s do the book-keeping for degrees of freedom more carefully. The
observables variables are scaled to have standard deviation one, so the diagonal entries
of v are all 1. Moreover, any covariance matrix is symmetric, so we are left with only
p(p − 1)/2 degrees of freedom in v — only that many equations. On the other side,
scaling to standard deviation 1 means we don’t really need to solve separately for ψ
— it’s fixed as soon as we know what wT w is — which saves us p unknowns. Also,
the entries in w are not completely free to vary independently of each other, because
each row has to be orthogonal to every other row. (Look back at the notes on PCA.)
Since there are q rows, this gives is q(q − 1)/2 constraints on w — we can think of
these as either extra equations, or as reductions in the number of free parameters
(unknowns).5

5Notice that ψ+wT w is automatically symmetric, since ψ is diagonal, so we don’t need to impose any
extra constraints to get symmetry.
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Summarizing, we really have p(p−1)/2 degrees of freedom in v, and pq− q(q−
1)/2 degrees of freedom in w. If these two match, then there is (in general) a unique
solution which will give us w. But in general they will not be equal; then what? Let
us consider the two cases.

More unknowns (free parameters) than equations (constraints) This is fairly
straightforward: there is no unique solution to Eq. 19.25; instead there are infinitely
many solutions. It’s true that the loading matrix w does have to satisfy some con-
straints, that not just any w will work, so the data does give us some information, but
there is a continuum of different parameter settings which are all match the covari-
ance matrix perfectly. (Notice that we are working with the population parameters
here, so this isn’t an issue of having only a limited sample.) There is just no way to
use data to decide between these different parameters, to identify which one is right,
so we say the model is unidentifiable. Most software for factor analysis, include R’s
factanal function, will check for this and just refuse to fit a model with too many
factors relative to the number of observables.

More equations (constraints) than unknowns (free parameters) This is more in-
teresting. In general, systems of equations like this are overdetermined, meaning
that there is no way to satisfy all the constraints at once, and there isn’t even a single
solution. It’s just not possible to write an arbitrary covariance matrix v among, say,
seven variables in terms of, say, a one-factor model (as p(p−1)/2= 7(7−1)/2= 21>
7(1)−1(1−1)/2= 7= pq−q(q−1)/2). But it is possible for special covariance matri-
ces. In these situations, the factor model actually has testable implications for the data
— it says that only certain covariance matrices are possible and not others. For ex-
ample, we saw above that the one-fator model implies the tetrad equations must hold
among the observable covariances; the constraints on v for multiple-factor models
are similar in kind but more complicated algebraically. By testing these implications,
we can check whether or not the our favorite factor model is right.6

Now we don’t know the true, population covariance matrix v, but we can esti-
mate it from data, getting an estimate bv. The natural thing to do then is to equate this
with the parameters and try to solve for the latter:

bv= bψ+ bwT
bw (19.26)

The book-keeping for degrees of freedom here is the same as for Eq. 19.25. If q is too
large relative to p, the model is unidentifiable; if it is too small, the matrix equation
can only be solved if bv is of the right, restricted form, i.e., if the model is right. Of
course even if the model is right, the sample covariances are the true covariances plus
noise, so we shouldn’t expect to get an exact match, but we can try in various way to
minimize the discrepancy between the two sides of the equation.

6Actually, we need to be a little careful here. If we find that the tetrad equations don’t hold, we know
a one-factor model must be wrong. We could only conclude that the one-factor model must be right if we
found that the tetrad equations held, and that there were no other models which implied those equations;
but, as we’ll see, there are.
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19.4.2 A Clue from Spearman’s One-Factor Model
Remember that in Spearman’s model with a single general factor, the covariance be-
tween observables i and j in that model is the product of their factor weightings:

vi j = wi w j (19.27)

The exception is that vi i = w2
i +ψi , rather than w2

i . However, if we look at u= v−ψ,
that’s the same as v off the diagonal, and a little algebra shows that its diagonal entries
are, in fact, just w2

i . So if we look at any two rows of U, they’re proportional to each
other:

ui j =
wi

wk
uk j (19.28)

This means that, when Spearman’s model holds true, there is actually only one linearly-
independent row in in u.

Recall from linear algebra that the rank of a matrix is how many linearly inde-
pendent rows it has.7 Ordinarily, the matrix is of full rank, meaning all the rows are
linearly independent. What we have just seen is that when Spearman’s model holds,
the matrix u is not of full rank, but rather of rank 1. More generally, when the factor
model holds with q factors, the matrix u=wT w has rank q . The diagonal entries of
u, called the common variances or commonalities, are no longer automatically 1,
but rather show how much of the variance in each observable is associated with the
variances of the latent factors. Like v, u is a positive symmetric matrix.

Because u is a positive symmetric matrix, we know from linear algebra that it can
be written as

u= cdcT (19.29)

where c is the matrix whose columns are the eigenvectors of u, and d is the diagonal
matrix whose entries are the eigenvalues. That is, if we use all p eigenvectors, we can
reproduce the covariance matrix exactly. Suppose we instead use cq, the p×q matrix
whose columns are the eigenvectors going with the q largest eigenvalues, and likewise
make dq the diagonal matrix of those eigenvalues. Then cqdqcq

T will be a symmetric
positive p × p matrix. This is a matrix of rank q , and so can only equal u if the
latter also has rank q . Otherwise, it’s an approximation which grows more accurate
as we let q grow towards p, and, at any given q , it’s a better approximation to u than
any other rank-q matrix. This, finally, is the precise sense in which factor analysis
tries preserve correlations, as opposed to principal components trying to preserve
variance.

To resume our algebra, define dq
1/2 as the q × q diagonal matrix of the square

roots of the eigenvalues. Clearly dq = dq
1/2dq

1/2. So

cqdqcq
T = cqdq

1/2dq
1/2cq

T =
�

cqdq
1/2
��

cqdq
1/2
�T

(19.30)

So we have
u≈

�

cqdq
1/2
��

cqdq
1/2
�T

(19.31)

7We could also talk about the columns; it wouldn’t make any difference.
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but at the same time we know that u=wT w. So we just identify w with
�

cqdq
1/2
�T

:

w=
�

cqdq
1/2
�T

(19.32)

and we are done with our algebra.
Let’s think a bit more about how well we’re approximating v. The approximation

will always be exact when q = p, so that there is one factor for each feature (in which
case ψ = 0 always). Then all factor analysis does for us is to rotate the coordinate
axes in feature space, so that the new coordinates are uncorrelated. (This is the same
was what PCA does with p components.) The approximation can also be exact with
fewer factors than features if the reduced covariance matrix is of less than full rank,
and we use at least as many factors as the rank.

19.4.3 Estimating Factor Loadings and Specific Variances
The classical method for estimating the factor model is now simply to do this eigen-
vector approximation on the sample correlation matrix. Define the reduced or ad-
justed sample correlation matrix as

bu= bv− bψ (19.33)

We can’t actually calculate bu until we know, or have a guess as to, bψ. A reasonable
and common starting-point is to do a linear regression of each feature j on all the
other features, and then set cψ j to the mean squared error for that regression. (We’ll
come back to this guess later.)

Once we have the reduced correlation matrix, find its top q eigenvalues and eigen-
vectors, getting matrices bcq and bdq as above. Set the factor loadings accordingly, and
re-calculate the specific variances:

bw =
�

cqdq
1/2
�T

(19.34)

cψ j = 1−
k
∑

r=1

w2
r j (19.35)

ṽ ≡ bψ+ bwT
bw (19.36)

The “predicted” covariance matrix ṽ in the last line is exactly right on the diagonal (by
construction), and should be closer off-diagonal than anything else we could do with
the same number of factors. However, our guess as to u depended on our initial guess
about ψ, which has in general changed, so we can try iterating this (i.e., re-calculating
cq and dq), until we converge.

19.5 Maximum Likelihood Estimation
It has probably not escaped your notice that the estimation procedure above requires
a starting guess as to ψ. This makes its consistency somewhat shaky. (If we contin-
ually put in ridiculous values for ψ, there’s no reason to expect that bw → w, even
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with immensely large samples.) On the other hand, we know from our elementary
statistics courses that maximum likelihood estimates are generally consistent, unless
we choose a spectacularly bad model. Can we use that here?

We can, but at a cost. We have so far got away with just making assumptions
about the means and covariances of the factor scores F. To get an actual likelihood,
we need to assume something about their distribution as well.

The usual assumption is that Fi k ∼N (0,1), and that the factor scores are indepen-
dent across factors k = 1, . . . q and individuals i = 1, . . . n. With this assumption, the
features have a multivariate normal distribution ~Xi ∼ N (0,ψ+wT w). This means
that the log-likelihood is

L=−
n p

2
log2π−

n

2
log |ψ+wT w| −

n

2
tr
�

(ψ+wT w)−1
bv
�

(19.37)

where tra is the trace of the matrix a, the sum of its diagonal elements. Notice that
the likelihood only involves the data through the sample covariance matrix bv — the
actual factor scores F are not needed for the likelihood.

One can either try direct numerical maximization, or use a two-stage procedure.
Starting, once again, with a guess as toψ, one finds that the optimal choice ofψ1/2wT

is given by the matrix whose columns are the q leading eigenvectors of ψ1/2
bvψ1/2.

Starting from a guess as to w, the optimal choice of ψ is given by the diagonal entries
of bv−wT w. So again one starts with a guess about the unique variances (e.g., the
residuals of the regressions) and iterates to convergence.8

The differences between the maximum likelihood estimates and the “principal
factors” approach can be substantial. If the data appear to be normally distributed
(as shown by the usual tests), then the additional efficiency of maximum likelihood
estimation is highly worthwhile. Also, as we’ll see below, it is a lot easier to test the
model assumptions is one uses the MLE.

19.5.1 Alternative Approaches

Factor analysis is an example of trying to approximate a full-rank matrix, here the
covariance matrix, with a low-rank matrix, or a low-rank matrix plus some correc-
tions, here ψ+wT w. Such matrix-approximation problems are currently the subject
of very intense interest in statistics and machine learning, with many new methods
being proposed and refined, and it is very plausible that some of these will prove to
work better than older approaches to factor analysis.

In particular, Kao and Van Roy (2011) have recently used these ideas to propose a
new factor-analysis algorithm, which simultaneously estimates the number of factors
and the factor loadings, and does so through a modification of PCA, distinct from the
old “principal factors” method. In their examples, it works better than conventional
approaches, but whether this will hold true generally is not clear. They do not,
unfortunately, provide code.

8The algebra is tedious. See section 3.2 in Bartholomew (1987) if you really want it. (Note that
Bartholomew has a sign error in his equation 3.16.)
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19.5.2 Estimating Factor Scores
The probably the best method for estimating factor scores is the “regression” or
“Thomson” method, which says

bFi r =
∑

j

Xi j bi j (19.38)

and seeks the weights bi j which will minimize the mean squared error, E[(bFi r −
Fi r )

2]. You can work out the bi j as an exercise, assuming you know w.

19.6 The Rotation Problem
Recall from linear algebra that a matrix o is orthogonal if its inverse is the same as
its transpose, oT o = I. The classic examples are rotation matrices. For instance, to
rotate a two-dimensional vector through an angle α, we multiply it by

rα =
�

cosα − sinα
sinα cosα

�

(19.39)

The inverse to this matrix must be the one which rotates through the angle −α,
r−1
α
= r−α, but trigonometry tells us that r−α = rT

α
.

To see why this matters to us, go back to the matrix form of the factor model,
and insert an orthogonal q × q matrix and its transpose:

X = ε+Fw (19.40)
= ε+FooT w (19.41)
= ε+Hy (19.42)

We’ve changed the factor scores to H≡Ho, and we’ve changed the factor loadings to
y ≡ oT w, but nothing about the features has changed at all. We can do as many or-
thogonal transformations of the factors as we like, with no observable consequences
whatsoever.9

Statistically, the fact that different parameter settings give us the same observa-
tional consequences means that the parameters of the factor model are unidentifi-
able. The rotation problem is, as it were, the revenant of having an ill-posed problem:
we thought we’d slain it through heroic feats of linear algebra, but it’s still around and
determined to have its revenge.10

9Notice that the log-likelihood only involves wT w, which is equal to wT ooT w = yT y, so even as-
suming Gaussian distributions doesn’t let us tell the difference between the original and the transformed
variables. In fact, if ~F ∼N (0, I), then ~F o ∼N (0o,oT Io) =N (0, I) — in other words, the rotated factor
scores still satisfy our distributional assumptions.

10Remember that we obtained the loading matrix w as a solution to wT w = u, that is to we got w as a
kind of matrix square root of the reduced correlation matrix. For a real number u there are two square
roots, i.e., two numbers w such that w × w = u, namely the usual w =

p
u and w = −

p
u, because

(−1)× (−1) = 1. Similarly, whenever we find one solution to wT w= u, oT w is another solution, because
ooT = I. So while the usual “square root” of u is w = dq

1/2c, for any orthogonal matrix oT dq
1/2c will

always work just as well.
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Mathematically, this should not be surprising at all. The factor live in a q -dimensional
vector space of their own. We should be free to set up any coordinate system we feel
like on that space. Changing coordinates in factor space will just require a compensat-
ing change in how factor space coordinates relate to feature space (the factor loadings
matrix w). That’s all we’ve done here with our orthogonal transformation.

Substantively, this should be rather troubling. If we can rotate the factors as much
as we like without consequences, how on Earth can we interpret them?

19.7 Factor Analysis as a Predictive Model
Unlike principal components analysis, factor analysis really does give us a predictive
model. Its prediction is that if we draw a new member of the population and look at
the vector of observables we get from them,

~X ∼N (0,wT w+ψ) (19.43)

if we make the usual distributional assumptions. Of course it might seem like it
makes a more refined, conditional prediction,

~X |~F ∼N (F w,ψ) (19.44)

but the problem is that there is no way to guess at or estimate the factor scores ~F
until after we’ve seen ~X , at which point anyone can predict X perfectly. So the actual
forecast is given by Eq. 19.43.11

Now, without going through the trouble of factor analysis, one could always just
postulate that

~X ∼N (0,v) (19.45)

and estimate v; the maximum likelihood estimate of it is the observed covariance
matrix, but really we could use any estimator of the covariance matrix. The closer
our is to the true v, the better our predictions. One way to think of factor analysis
is that it looks for the maximum likelihood estimate, but constrained to matrices of
the form wT w+ψ.

On the plus side, the constrained estimate has a faster rate of convergence. That
is, both the constrained and unconstrained estimates are consistent and will converge
on their optimal, population values as we feed in more and more data, but for the
same amount of data the constrained estimate is probably closer to its limiting value.
In other words, the constrained estimate bwT

bw+ bψ has less variance than the uncon-
strained estimate bv.

On the minus side, maybe the true, population v just can’t be written in the form
wT w+ψ. Then we’re getting biased estimates of the covariance and the bias will not

11A subtlety is that we might get to see some but not all of ~X , and use that to predict the rest. Say
~X = (X1,X2), and we see X1. Then we could, in principle, compute the conditional distribution of the
factors, p(F |X1), and use that to predict X2. Of course one could do the same thing using the correlation
matrix, factor model or no factor model.
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go away, even with infinitely many samples. Using factor analysis rather than just
fitting a multivariate Gaussian means betting that either this bias is really zero, or
that, with the amount of data on hand, the reduction in variance outweighs the bias.

(I haven’t talked about estimated errors in the parameters of a factor model. With
large samples and maximum-likelihood estimation, one could use the usual asymp-
totic theory. For small samples, one bootstraps as usual.)

19.7.1 How Many Factors?

How many factors should we use? All the tricks people use for the how-many-
principal-components question can be tried here, too, with the obvious modifica-
tions. However, some other answers can also be given, using the fact that the factor
model does make predictions, unlike PCA.

1. Log-likelihood ratio tests Sample covariances will almost never be exactly equal
to population covariances. So even if the data comes from a model with q
factors, we can’t expect the tetrad equations (or their multi-factor analogs) to
hold exactly. The question then becomes whether the observed covariances are
compatible with sampling fluctuations in a q -factor model, or are too big for
that.

We can tackle this question by using log likelihood ratio tests. The crucial
observations are that a model with q factors is a special case of a model with
q + 1 factors (just set a row of the weight matrix to zero), and that in the most
general case, q = p, we can get any covariance matrix v into the form wT w.
(Set ψ= 0 and proceed as in the “principal factors” estimation method.)

As explained in Appendix F, if bθ is the maximum likelihood estimate in a
restricted model with u parameters, and bΘ is the MLE in a more general model
with r > s parameters, containing the former as a special case, and finally ` is
the log-likelihood function

2[`(bΘ)− `(bθ)]  χ 2
r−s (19.46)

when the data came from the small model. The general regularity conditions
needed for this to hold apply to Gaussian factor models, so we can test whether
one factor is enough, two, etc.

(Said another way, adding another factor never reduces the likelihood, but the
equation tells us how much to expect the log-likelihood to go up when the new
factor really adds nothing and is just over-fitting the noise.)

Determining q by getting the smallest one without a significant result in a like-
lihood ratio test is fairly traditional, but statistically messy.12 To raise a subject
we’ll return to, if the true q > 1 and all goes well, we’ll be doing lots of hypoth-
esis tests, and making sure this compound procedure works reliably is harder

12Suppose q is really 1, but by chance that gets rejected. Whether q = 2 gets rejected in term is not
independent of this!
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than controlling any one test. Perhaps more worrisomely, calculating the like-
lihood relies on distributional assumptions for the factor scores and the noises,
which are hard to check for latent variables.

2. If you are comfortable with the distributional assumptions, use Eq. 19.43 to
predict new data, and see which q gives the best predictions — for compara-
bility, the predictions should be compared in terms of the log-likelihood they
assign to the testing data. If genuinely new data is not available, use cross-
validation.

Comparative prediction, and especially cross-validation, seems to be somewhat
rare with factor analysis. There is no good reason why this should be so.

19.7.1.1 R2 and Goodness of Fit

For PCA, we saw that R2 depends on the sum of the eigenvalues. For factor models,
the natural notion of R2 is the sum of squared factor loadings:

R2 =

∑q
j=1

∑p
k=1

w2
j k

p
(19.47)

(Remember that the factors are, by design, uncorrelated with each other, and that the
entries of w are the correlations between factors and observables.) If we write w in

terms of eigenvalues and eigenvectors as in §19.4.2, w =
�

cqdq
1/2
�T

, then you can
show that the numerator in R2 is, again, a sum of eigenvalues.

People sometimes select the number of factors by looking at how much variance
they “explain” — really, how much variance is kept after smoothing on to the plane.
As usual with model selection by R2, there is little good to be said for this, except
that it is fast and simple.

In particular, R2 should not be used to assess the goodness-of-fit of a factor model.
The bluntest way to see this is to simulate data which does not come from a factor
model, fit a small number of factors, and see what R2 one gets. This was done by
Peterson (2000), who found that it was easy to get R2 of 0.4 or 0.5, and sometimes
even higher13 The same paper surveyed values of R2 from the published literature on
factor models, and found that the typical value was also somewhere around 0.5; no
doubt this was just a coincidence14.

Instead of looking at R2, it is much better to check goodness-of-fit by actually
goodness-of-fit tests. We looked at some tests of multivariate goodness-of-fit in Chap-
ter 15. In the particular case of factor models with the Gaussian assumption, we can
use a log-likelihood ratio test, checking the null hypothesis that the number of factors
= q against the alternative of an arbitrary multivariate Gaussian (which is the same
as p factors). This test is automatically performed by factanal in R.

If the Gaussian assumption is dubious but we want a factor model and goodness-
of-fit anyway, we can look at the difference between the empirical covariance matrix

13See also http://bactra.org/weblog/523.html for a similar experiment, with R code.
14Peterson (2000) also claims that reported values of R2 for PCA are roughly equal to those of factor

analysis, but by this point I hope that none of you take that as an argument in favor of PCA.
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v and the one estimated by the factor model, bψ+ bwT
bw. There are several notions of

distance between matrices (matrix norms) which could be used as test statistics; one
could also use the sum of squared differences between the entries of v and those of
bψ+ bwT

bw. Sampling distributions would have to come from bootstrapping, where
we would want to simulate from the factor model.

19.8 Reification, and Alternatives to Factor Models
A natural impulse, when looking at something like Figure 19.1, is to reify the factors,
and to treat the arrows causally: that is, to say that there really is some variable
corresponding to each factor, and that changing the value of that variable will change
the features. For instance, one might want to say that there is a real, physical variable
corresponding to the factor F1, and that increasing this by one standard deviation
will, on average, increase X1 by 0.87 standard deviations, decrease X2 by 0.75 standard
deviations, and do nothing to the other features. Moreover, changing any of the other
factors has no effect on X1.

Sometimes all this is even right. How can we tell when it’s right?

19.8.1 The Rotation Problem Again
Consider the following matrix, call it r :







cos30 − sin30 0
sin30 cos30 0

0 0 1






(19.48)

Applied to a three-dimensional vector, this rotates it thirty degrees counter-clockwise
around the vertical axis. If we apply r to the factor loading matrix of the model in
the figure, we get the model in Figure 19.2. Now instead of X1 being correlated with
the other variables only through one factor, it’s correlated through two factors, and
X4 has incoming arrows from three factors.

Because the transformation is orthogonal, the distribution of the observations is
unchanged. In particular, the fit of the new factor model to the data will be exactly
as good as the fit of the old model. If we try to take this causally, however, we come
up with a very different interpretation. The quality of the fit to the data does not,
therefore, let us distinguish between these two models, and so these two stories about
the causal structure of the data.

The rotation problem does not rule out the idea that checking the fit of a factor
model would let us discover how many hidden causal variables there are.

19.8.2 Factors or Mixtures?
Suppose we have two distributions with probability densities f0(x) and f1(x). Then
we can define a new distribution which is a mixture of them, with density fα(x) =
(1− α) f0(x) + α f1(x), 0 ≤ α ≤ 1. The same idea works if we combine more than
two distributions, so long as the sum of the mixing weights sum to one (as do α
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G1
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X2

-0.45

X3

-0.13

X4

-0.20

G2

0.86 -0.69 0.02 0.03
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X5

0.15

X6

0.45
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Figure 19.2: The model from Figure 19.1, after rotating the first two factors by 30
degrees around the third factor’s axis. The new factor loadings are rounded to two
decimal places.

and 1−α). We will look more later at mixture models, which provide a very flexible
and useful way of representing complicated probability distributions. They are also
a probabilistic, predictive alternative to the kind of clustering techniques we’ve seen
before this: each distribution in the mixture is basically a cluster, and the mixing
weights are the probabilities of drawing a new sample from the different clusters.15

I bring up mixture models here because there is a very remarkable result: any
linear, Gaussian factor model with k factors is equivalent to some mixture model with
k + 1 clusters, in the sense that the two models have the same means and covariances
(Bartholomew, 1987, pp. 36–38). Recall from above that the likelihood of a factor
model depends on the data only through the correlation matrix. If the data really
were generated by sampling from k + 1 clusters, then a model with k factors can
match the covariance matrix very well, and so get a very high likelihood. This means
it will, by the usual test, seem like a very good fit. Needless to say, however, the
causal interpretations of the mixture model and the factor model are very different.
The two may be distinguishable if the clusters are well-separated (by looking to see
whether the data are unimodal or not), but that’s not exactly guaranteed.

15We will get into mixtures in considerable detail in the next lecture.
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All of which suggests that factor analysis can’t really tell us whether we have
k continuous hidden causal variables, or one discrete hidden variable taking k + 1
values.

19.8.3 The Thomson Sampling Model
We have been working with fewer factors than we have features. Suppose that’s not
true. Suppose that each of our features is actually a linear combination of a lot of
variables we don’t measure:

Xi j = ηi j +
q
∑

k=1

Ai k Tk j = ηi j + ~Ai · ~T j (19.49)

where q � p. Suppose further that the latent variables Ai k are totally independent
of one another, but they all have mean 0 and variance 1; and that the noises ηi j
are independent of each other and of the Ai k , with variance φ j ; and the Tk j are
independent of everything. What then is the covariance between Xia and Xi b ? Well,
because E

�

Xia
�

= E
�

Xi b
�

= 0, it will just be the expectation of the product of the
features:

E
�

XiaXi b
�

(19.50)

= E
h

(ηia + ~Ai · ~Ta)(ηi b + ~Ai · ~Tb )
i

(19.51)

= E
�

ηiaηi b
�

+E
h

ηia
~Ai · ~Tb

i

+E
h

ηi b
~Ai · ~Ta

i

+E
h

(~Ai · ~Ta)(~Ai · ~Tb )
i

(19.52)

= 0+ 0+ 0+E





 q
∑

k=1

Ai k Tka

! q
∑

l=1

Ai l Tl b

!

 (19.53)

= E







∑

k ,l

Ai k Ai l TkaTl b






(19.54)

=
∑

k ,l

E
�

Ai k Ai l
�

TkaTl b (19.55)

=
∑

k ,l

E
�

Ai k Ai l
�

E
�

TkaTl b
�

(19.56)

=
q
∑

k=1

E
�

TkaTk b
�

(19.57)

where to get the last line I use the fact that E
�

Ai k Ai l
�

= 1 if k = l and= 0 otherwise.
If the coefficients T are fixed, then the last expectation goes away and we merely have
the same kind of sum we’ve seen before, in the factor model.

Instead, however, let’s say that the coefficients T are themselves random (but
independent of A and η). For each feature Xia , we fix a proportion za between 0 and
1. We then set Tka ∼ Bernoulli(za), with Tka |= Tl b unless k = l and a = b . Then

E
�

TkaTk b
�

= E
�

Tka
�

E
�

Tk b
�

= za zb (19.58)
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and
E
�

XiaXi b
�

= q za zb (19.59)

Of course, in the one-factor model,

E
�

XiaXi b
�

= wa wb (19.60)

So this random-sampling model looks exactly like the one-factor model with factor
loadings proportional to za . The tetrad equation, in particular, will hold.

Now, it doesn’t make a lot of sense to imagine that every time we make an ob-
servation we change the coefficients T randomly. Instead, let’s suppose that they are
first generated randomly, giving values Tk j , and then we generate feature values ac-
cording to Eq. 19.49. The covariance between Xia and Xi b will be

∑q
k=1

TkaTk b . But
this is a sum of IID random values, so by the law of large numbers as q gets large this
will become very close to q za zb . Thus, for nearly all choices of the coefficients, the
feature covariance matrix should come very close to satisfying the tetrad equations
and looking like there’s a single general factor.

In this model, each feature is a linear combination of a random sample of a huge
pool of completely independent features, plus some extra noise specific to the fea-
ture.16 Precisely because of this, the features are correlated, and the pattern of corre-
lations is that of a factor model with one factor. The appearance of a single common
cause actually arises from the fact that the number of causes is immense, and there is
no particular pattern to their influence on the features.

The file thomson-model.R (on the class website) simulates the Thomson model.

> tm = rthomson(50,11,500,50)
> factanal(tm$data,1)

The first command generates data from n = 50 items with p = 11 features and
q = 500 latent variables. (The last argument controls the average size of the specific
variancesφ j .) The result of the factor analysis is of course variable, depending on the
random draws; my first attempt gave the proportion of variance associated with the
factor as 0.391, and the p-value as 0.527. Repeating the simulation many times, one
sees that the p-value is pretty close to uniformly distributed, which is what it should
be if the null hypothesis is true (Figure 19.3). For fixed n, the distribution becomes
closer to uniform the larger we make q . In other words, the goodness-of-fit test has
little or no power against the alternative of the Thomson model.

16When Godfrey Thomson introduced this model in 1914, he used a slightly different procedure to
generate the coefficient Tk j . For each feature he drew a uniform integer between 1 and q , call it q j , and
then sampled the integers from 1 to q without replacement until he had q j random numbers; these were the
values of k where Tk j = 1. This is basically similar to what I describe, setting z j = q j /q , but a bit harder
to analyze in an elementary way. — Thomson (1916), the original paper, includes what we would now call
a simulation study of the model, where Thomson stepped through the procedure to produce simulated
data, calculate the empirical correlation matrix of the features, and check the fit to the tetrad equations.
Not having a computer, Thomson generated the values of Tk j with a deck of cards, and of the Ai k and ηi j
by rolling 5220 dice.
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> plot(ecdf(replicate(200,factanal(rthomson(50,11,500,50)$data,1)$PVAL)),
xlab="p value",ylab="Empirical CDF",
main="Sampling distribution of FA p-value under Thomson model",
sub="200 replicates of 50 subjects each")

> abline(0,1,lty=2)

Figure 19.3: Mimcry of the one-factor model by the Thomson model. The Thom-
son model was simulated 200 times with the parameters given above; each time, the
simulated data was then fit to a factor model with one factor, and the p-value of the
goodness-of-fit test extracted. The plot shows the empirical cumulative distribution
function of the p-values. If the null hypothesis were exactly true, then p ∼Unif(0,1),
and the theoretical CDF would be the diagonal line (dashed).
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Modifying the Thomson model to look like multiple factors grows notation-
ally cumbersome; the basic idea however is to use multiple pools of independently-
sampled latent variables, and sum them:

Xi j = ηi j +
q1
∑

k=1

Ai k Tk j +
q2
∑

k=1

Bi k Rk j + . . . (19.61)

where the Tk j coefficients are uncorrelated with the Rk j , and so forth. In expectation,
if there are r such pools, this exactly matches the factor model with r factors, and any
particular realization is overwhelmingly likely to match if the q1, q2, . . . qr are large
enough.17

It’s not feasible to estimate the T of the Thomson model in the same way that
we estimate factor loadings, because q > p. This is not the point of considering the
model, which is rather to make it clear that we actually learn very little about where
the data come from when we learn that a factor model fits well. It could mean that
the features arise from combining a small number of factors, or on the contrary from
combining a huge number of factors in a random fashion. A lot of the time the latter
is a more plausible-sounding story.18

For example, a common application of factor analysis is in marketing: you survey
consumers and ask them to rate a bunch of products on a range of features, and then
do factor analysis to find attributes which summarize the features. That’s fine, but it
may well be that each of the features is influenced by lots of aspects of the product you
don’t include in your survey, and the correlations are really explained by different
features being affected by many of the same small aspects of the product. Similarly for
psychological testing: answering any question is really a pretty complicated process
involving lots of small processes and skills (of perception, several kinds of memory,
problem-solving, attention, etc.), which overlap partially from question to question.

Exercises

1. Prove Eq. 19.13.

2. Why is it fallacious to go from “the data have the kind of correlations predicted
by a one-factor model” to “the data were generated by a one-factor model”?

3. Show that the correlation between the j th feature and G, in the one-factor
model, is w j .

4. Check that Eq. 19.11 and Eq. 19.25 are compatible.

17A recent paper on the Thomson model (Bartholomew et al., 2009) proposes just this modification
to multiple factors and to Bernoulli sampling. However, I proposes this independently, in the fall 2008
version of these notes, about a year before their paper.

18Thomson (1939) remains one of the most insightful books on factor analysis, though obviously there
have been a lot of technical refinements since he wrote. It’s strongly recommended for anyone who plans
to make much use of factor analysis. While out of print, used copies are reasonably plentiful and cheap,
and at least one edition is free online (URL in the bibliography).
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5. Find the weights bi j for the Thomson estimator, assuming you know w. Do
you need to assume a Gaussian distribution?

6. Step through the examples in the accompanying R code on the class website.
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Chapter 20

Mixture Models

[[TODO: Add stuff about
simulating from mixtures, or
cross-ref. to simulation chap-
ter]]

20.1 Two Routes to Mixture Models

20.1.1 From Factor Analysis to Mixture Models

In factor analysis, the origin myth is that we have a fairly small number, q of real
variables which happen to be unobserved (“latent”), and the much larger number p
of variables we do observe arise as linear combinations of these factors, plus noise.
The mythology is that it’s possible for us (or for Someone) to continuously adjust the
latent variables, and the distribution of observables likewise changes continuously.
What if the latent variables are not continuous but ordinal, or even categorical? The
natural idea would be that each value of the latent variable would give a different
distribution of the observables.

20.1.2 From Kernel Density Estimates to Mixture Models

We have also previously looked at kernel density estimation, where we approximate
the true distribution by sticking a small ( 1

n weight) copy of a kernel pdf at each ob-
served data point and adding them up. With enough data, this comes arbitrarily
close to any (reasonable) probability density, but it does have some drawbacks. Sta-
tistically, it labors under the curse of dimensionality. Computationally, we have to
remember all of the data points, which is a lot. We saw similar problems when we
looked at fully non-parametric regression, and then saw that both could be amelio-
rated by using things like additive models, which impose more constraints than, say,
unrestricted kernel smoothing. Can we do something like that with density estima-
tion?

Additive modeling for densities is not as common as it is for regression — it’s
harder to think of times when it would be natural and well-defined1 — but we can

1Remember that the integral of a probability density over all space must be 1, while the integral of a re-
gression function doesn’t have to be anything in particular. If we had an additive density, f (x) =

∑

j f j (x j ),
ensuring normalization is going to be very tricky; we’d need

∑

j
∫

f j (x j )d x1d x2d xp = 1. It would be
easier to ensure normalization while making the log-density additive, but that assumes the features are
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do things to restrict density estimation. For instance, instead of putting a copy of
the kernel at every point, we might pick a small number K � n of points, which we
feel are somehow typical or representative of the data, and put a copy of the kernel at
each one (with weight 1

K ). This uses less memory, but it ignores the other data points,
and lots of them are probably very similar to those points we’re taking as prototypes.
The differences between prototypes and many of their neighbors are just matters of
chance or noise. Rather than remembering all of those noisy details, why not collapse
those data points, and just remember their common distribution? Different regions
of the data space will have different shared distributions, but we can just combine
them.

20.1.3 Mixture Models

More formally, we say that a distribution f is a mixture of K component distribu-
tions f1, f2, . . . fK if

f (x) =
K
∑

k=1

λk fk (x) (20.1)

with the λk being the mixing weights, λk > 0,
∑

k λk = 1. Eq. 20.1 is a complete
stochastic model, so it gives us a recipe for generating new data points: first pick a
distribution, with probabilities given by the mixing weights, and then generate one
observation according to that distribution. Symbolically,

Z ∼ Mult(λ1,λ2, . . .λK ) (20.2)
X |Z ∼ fZ (20.3)

where I’ve introduced the discrete random variable Z which says which component
X is drawn from.

I haven’t said what kind of distribution the fks are. In principle, we could make
these completely arbitrary, and we’d still have a perfectly good mixture model. In
practice, a lot of effort is given over to parametric mixture models, where the fk
are all from the same parametric family, but with different parameters — for instance
they might all be Gaussians with different centers and variances, or all Poisson dis-
tributions with different means, or all power laws with different exponents. (It’s not
necessary, just customary, that they all be of the same kind.) We’ll write the parame-
ter, or parameter vector, of the k th component as θk , so the model becomes

f (x) =
K
∑

k=1

λk f (x;θk ) (20.4)

The over-all parameter vector of the mixture model is thus θ= (λ1,λ2, . . .λK ,θ1,θ2, . . .θK ).
Let’s consider two extremes. When K = 1, we have a simple parametric distribu-

tion, of the usual sort, and density estimation reduces to estimating the parameters,
by maximum likelihood or whatever else we feel like. On the other hand when

independent of each other.
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K = n, the number of observations, we have gone back towards kernel density es-
timation. If K is fixed as n grows, we still have a parametric model, and avoid the
curse of dimensionality, but a mixture of (say) ten Gaussians is more flexible than a
single Gaussian — thought it may still be the case that the true distribution just can’t
be written as a ten-Gaussian mixture. So we have our usual bias-variance or accuracy-
precision trade-off — using many components in the mixture lets us fit many distri-
butions very accurately, with low approximation error or bias, but means we have
more parameters and so we can’t fit any one of them as precisely, and there’s more
variance in our estimates.

20.1.4 Geometry
In Chapter 18, we looked at principal components analysis, which finds linear struc-
tures with q space (lines, planes, hyper-planes, . . . ) which are good approximations
to our p-dimensional data, q � p. In Chapter 19, we looked at factor analysis,
where which imposes a statistical model for the distribution of the data around this
q -dimensional plane (Gaussian noise), and a statistical model of the distribution of
representative points on the plane (also Gaussian). This set-up is implied by the
mythology of linear continuous latent variables, but can arise in other ways.

Now, we know from geometry that it takes q+1 points to define a q -dimensional
plane, and that in general any q + 1 points on the plane will do. This means that if
we use a mixture model with q + 1 components, we will also get data which clusters
around a q -dimensional plane. Furthermore, by adjusting the mean of each compo-
nent, and their relative weights, we can make the global mean of the mixture what-
ever we like. And we can even match the covariance matrix of any q -factor model by
using a mixture with q + 1 components2. Now, this mixture distribution will hardly
ever be exactly the same as the factor model’s distribution — mixtures of Gaussians
aren’t Gaussian, the mixture will usually (but not always) be multimodal while the
factor distribution is always unimodal — but it will have the same geometry, the
same mean and the same covariances, so we will have to look beyond those to tell
them apart. Which, frankly, people hardly ever do.

20.1.5 Identifiability
Before we set about trying to estimate our probability models, we need to make sure
that they are identifiable — that if we have distinct representations of the model, they
make distinct observational claims. It is easy to let there be too many parameters, or
the wrong choice of parameters, and lose identifiability. If there are distinct repre-
sentations which are observationally equivalent, we either need to change our model,
change our representation, or fix on a unique representation by some convention.

• With additive regression, E[Y |X = x] = α+
∑

j f j (x j ), we can add arbitrary
constants so long as they cancel out. That is, we get the same predictions from
α+ c0+

∑

j f j (x j )+ c j when c0 =−
∑

j c j . This is another model of the same
form, α′ +

∑

j f ′j (x j ), so it’s not identifiable. We dealt with this by imposing

2See Bartholomew (1987, pp. 36–38). The proof is tedious algebraically.
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the convention that α = E[Y ] and E
�

f j (X j )
�

= 0 — we picked out a favorite,
convenient representation from the infinite collection of equivalent represen-
tations.

• Linear regression becomes unidentifiable with collinear features. Collinearity
is a good reason to not use linear regression (i.e., we change the model.)

• Factor analysis is unidentifiable because of the rotation problem. Some people
respond by trying to fix on a particular representation, others just ignore it.

Two kinds of identification problems are common for mixture models; one is
trivial and the other is fundamental. The trivial one is that we can always swap the
labels of any two components with no effect on anything observable at all — if we
decide that component number 1 is now component number 7 and vice versa, that
doesn’t change the distribution of X at all. This label degeneracy can be annoying,
especially for some estimation algorithms, but that’s the worst of it.

A more fundamental lack of identifiability happens when mixing two distribu-
tions from a parametric family just gives us a third distribution from the same family.
For example, suppose we have a single binary feature, say an indicator for whether
someone will pay back a credit card. We might think there are two kinds of cus-
tomers, with high- and low- risk of not paying, and try to represent this as a mixture
of Bernoulli distribution. If we try this, we’ll see that we’ve gotten a single Bernoulli
distribution with an intermediate risk of repayment. A mixture of Bernoulli is al-
ways just another Bernoulli. More generally, a mixture of discrete distributions over
any finite number of categories is just another distribution over those categories3

20.1.6 Probabilistic Clustering

Yet another way to view mixture models, which I hinted at when I talked about how
they are a way of putting similar data points together into “clusters”, where clusters
are represented by, precisely, the component distributions. The idea is that all data
points of the same type, belonging to the same cluster, are more or less equivalent and
all come from the same distribution, and any differences between them are matters
of chance. This view exactly corresponds to mixture models like Eq. 20.1; the hidden
variable Z I introduced above in just the cluster label.

One of the very nice things about probabilistic clustering is that Eq. 20.1 actually
claims something about what the data looks like; it says that it follows a certain dis-
tribution. We can check whether it does, and we can check whether new data follows
this distribution. If it does, great; if not, if the predictions systematically fail, then

3That is, a mixture of any two n = 1 multinomials is another n = 1 multinomial. This is not generally
true when n > 1; for instance, a mixture of a Binom(2,0.75) and a Binom(2,0.25) is not a Binom(2, p)
for any p. (EXERCISE: show this.) However, both of those binomials is a distribution on {0,1,2}, and
so is their mixture. This apparently trivial point actually leads into very deep topics, since it turns out
that which models can be written as mixtures of others is strongly related to what properties of the data-
generating process can actually be learned from data: see Lauritzen (1984). (Thanks to Bob Carpenter for
pointing out an error in an earlier draft.)
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the model is wrong. We can compare different probabilistic clusterings by how well
they predict (say under cross-validation).4

In particular, probabilistic clustering gives us a sensible way of answering the
question “how many clusters?” The best number of clusters to use is the number
which will best generalize to future data. If we don’t want to wait around to get new
data, we can approximate generalization performance by cross-validation, or by any
other adaptive model selection procedure.

20.1.7 Simulation

Simulating from a mixture model works rather like simulating from a kernel density
estimate. To draw a new value X̃ , first draw a random integer Z from 1 to k, with
probabilities λk , then draw from the Z th mixture component. (That is, X̃ |Z ∼ fZ .)
Note that if we want multiple draws, X̃1, X̃2, . . . X̃b , each of them needs an indepen-
dent Z ,

20.2 Estimating Parametric Mixture Models

From intro stats., we remember that it’s generally a good idea to estimate distribu-
tions using maximum likelihood, when we can. How could we do that here?

Remember that the likelihood is the probability (or probability density) of ob-
serving our data, as a function of the parameters. Assuming independent samples,
that would be

n
∏

i=1

f (xi ;θ) (20.5)

for observations x1, x2, . . . xn . As always, we’ll use the logarithm to turn multiplica-
tion into addition:

`(θ) =
n
∑

i=1

log f (xi ;θ) (20.6)

=
n
∑

i=1

log
K
∑

k=1

λk f (xi ;θk ) (20.7)

4Contrast this with k-means or hierarchical clustering, which you may have seen in other classes: they
make no predictions, and so we have no way of telling if they are right or wrong. Consequently, comparing
different non-probabilistic clusterings is a lot harder!
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Let’s try taking the derivative of this with respect to one parameter, say θ j .

∂ `

∂ θ j
=

n
∑

i=1

1
∑K

k=1 λk f (xi ;θk )
λ j

∂ f (xi ;θ j )

∂ θ j
(20.8)

=
n
∑

i=1

λ j f (xi ;θ j )
∑K

k=1 λk f (xi ;θk )

1

f (xi ;θ j )

∂ f (xi ;θ j )

∂ θ j
(20.9)

=
n
∑

i=1

λ j f (xi ;θ j )
∑K

k=1 λk f (xi ;θk )

∂ log f (xi ;θ j )

∂ θ j
(20.10)

If we just had an ordinary parametric model, on the other hand, the derivative of the
log-likelihood would be

n
∑

i=1

∂ log f (xi ;θ j )

∂ θ j
(20.11)

So maximizing the likelihood for a mixture model is like doing a weighted likelihood
maximization, where the weight of xi depends on cluster, being

wi j =
λ j f (xi ;θ j )

∑K
k=1 λk f (xi ;θk )

(20.12)

The problem is that these weights depend on the parameters we are trying to esti-
mate!

Let’s look at these weights wi j a bit more. Remember that λ j is the probability
that the hidden class variable Z is j , so the numerator in the weights is the joint prob-
ability of getting Z = j and X = xi . The denominator is the marginal probability of
getting X = xi , so the ratio is the conditional probability of Z = j given X = xi ,

wi j =
λ j f (xi ;θ j )

∑K
k=1 λk f (xi ;θk )

= p(Z = j |X = xi ;θ) (20.13)

If we try to estimate the mixture model, then, we’re doing weighted maximum like-
lihood, with weights given by the posterior cluster probabilities. These, to repeat,
depend on the parameters we are trying to estimate, so there seems to be a vicious
circle.

But, as the saying goes, one man’s vicious circle is another man’s successive ap-
proximation procedure. A crude way of doing this5 would start with an initial guess
about the component distributions; find out which component each point is most
likely to have come from; re-estimate the components using only the points assigned
to it, etc., until things converge. This corresponds to taking all the weights wi j to be
either 0 or 1. However, it does not maximize the likelihood, since we’ve seen that to
do so we need fractional weights.

What’s called the EM algorithm is simply the obvious refinement of this “hard”
assignment strategy.

5Related to what’s called “k-means” clustering.
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1. Start with guesses about the mixture components θ1,θ2, . . .θK and the mixing
weights λ1, . . .λK .

2. Until nothing changes very much:

(a) Using the current parameter guesses, calculate the weights wi j (E-step)

(b) Using the current weights, maximize the weighted likelihood to get new
parameter estimates (M-step)

3. Return the final parameter estimates (including mixing proportions) and clus-
ter probabilities

The M in “M-step” and “EM” stands for “maximization”, which is pretty trans-
parent. The E stands for “expectation”, because it gives us the conditional probabili-
ties of different values of Z , and probabilities are expectations of indicator functions.
(In fact in some early applications, Z was binary, so one really was computing the
expectation of Z .) The whole thing is also called the “expectation-maximization”
algorithm.

20.2.1 More about the EM Algorithm
[[TODO: Give explicit up-
date for mixing proportions]]
[[TODO: Discuss continuous
case]]
[[TODO: Relate general for-
mulation here to explicit mix-
ture set-up]]
[[TODO: Discuss other miss-
ing data approaches, including
Monte Carlo EM and Geyer’s
Monte Carlo missing data]]

The EM algorithm turns out to be a general way of maximizing the likelihood when
some variables are unobserved, and hence useful for other things besides mixture
models. So in this section, where I try to explain why it works, I am going to be a
bit more general abstract. (Also, it will actually cut down on notation.) I’ll pack the
whole sequence of observations x1, x2, . . . xn into a single variable d (for “data”), and
likewise the whole sequence of z1, z2, . . . zn into h (for “hidden”). What we want to
do is maximize

`(θ) = log p(d ;θ) = log
∑

h

p(d , h;θ) (20.14)

This is generally hard, because even if p(d , h;θ) has a nice parametric form, that is
lost when we sum up over all possible values of h (as we saw above). The essential
trick of the EM algorithm is to maximize not the log likelihood, but a lower bound
on the log-likelihood, which is more tractable; we’ll see that this lower bound is
sometimes tight, i.e., coincides with the actual log-likelihood, and in particular does
so at the global optimum.

We can introduce an arbitrary6 distribution on h, call it q(h), and we’ll

`(θ) = log
∑

h

p(d , h;θ) (20.15)

= log
∑

h

q(h)

q(h)
p(d , h;θ) (20.16)

= log
∑

h

q(h)
p(d , h;θ)

q(h)
(20.17)

6Well, almost arbitrary; it shouldn’t give probability zero to value of h which has positive probability
for all θ.
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Figure 20.1: The logarithm is a concave function, i.e., the curve connecting any two
points lies above the straight line doing so. Thus the average of logarithms is less than
the logarithm of the average.

So far so trivial.
Now we need a geometric fact about the logarithm function, which is that its

curve is concave: if we take any two points on the curve and connect them by a
straight line, the curve lies above the line (Figure 20.1). Algebraically, this means that

w log t1+(1−w) log t2 ≤ log w t1+(1−w)t2 (20.18)

for any 0 ≤ w ≤ 1, and any points t1, t2 > 0. Nor does this just hold for two points:
for any r points t1, t2, . . . tr > 0, and any set of non-negative weights

∑r
i=1 wr = 1,

r
∑

i=1

wi log ti ≤ log
r
∑

i=1

wi ti (20.19)

In words: the log of the average is at least the average of the logs. This is called
Jensen’s inequality. So

log
∑

h

q(h)
p(d , h;θ)

q(h)
≥

∑

h

q(h) log
p(d , h;θ)

q(h)
(20.20)

≡ J (q ,θ) (20.21)

We are bothering with this because we hope that it will be easier to maximize
this lower bound on the likelihood than the actual likelihood, and the lower bound
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is reasonably tight. As to tightness, suppose that q(h) = p(h|d ;θ). Then

p(d , h;θ)

q(h)
=

p(d , h;θ)

p(h|d ;θ)
=

p(d , h;θ)

p(h, d ;θ)/p(d ;θ)
= p(d ;θ) (20.22)

no matter what h is. So with that choice of q , J (q ,θ) = `(θ) and the lower bound is
tight. Also, since J (q ,θ)≤ `(θ), this choice of q maximizes J for fixed θ.

Here’s how the EM algorithm goes in this formulation.

1. Start with an initial guess θ(0) about the components and mixing weights.

2. Until nothing changes very much

(a) E-step: q (t ) = argmaxq J (q ,θ(t ))

(b) M-step: θ(t+1) = argmaxθ J (q (t ),θ)

3. Return final estimates of θ and q

The E and M steps are now nice and symmetric; both are about maximizing J . It’s
easy to see that, after the E step,

J (q (t ),θ(t ))≥ J (q (t−1),θ(t )) (20.23)

and that, after the M step,

J (q (t ),θ(t+1))≥ J (q (t ),θ(t )) (20.24)

Putting these two inequalities together,

J (q (t+1),θ(t+1)) ≥ J (q (t ),θ(t )) (20.25)

`(θ(t+1)) ≥ `(θ(t )) (20.26)

So each EM iteration can only improve the likelihood, guaranteeing convergence to
a local maximum. Since it only guarantees a local maximum, it’s a good idea to try a
few different initial values of θ(0) and take the best.

We saw above that the maximization in the E step is just computing the posterior
probability p(h|d ;θ). What about the maximization in the M step?

∑

h

q(h) log
p(d , h;θ)

q(h)
=
∑

h

q(h) log p(d , h;θ)−
∑

h

q(h) log q(h) (20.27)

The second sum doesn’t depend on θ at all, so it’s irrelevant for maximizing, giving
us back the optimization problem from the last section. This confirms that using the
lower bound from Jensen’s inequality hasn’t yielded a different algorithm!
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20.2.2 Further Reading on and Applications of EM

My presentation of the EM algorithm draws heavily on Neal and Hinton (1998).
Because it’s so general, the EM algorithm is applied to lots of problems with

missing data or latent variables. Traditional estimation methods for factor analy-
sis, for example, can be replaced with EM. (Arguably, some of the older methods
were versions of EM.) A common problem in time-series analysis and signal process-
ing is that of “filtering” or “state estimation”: there’s an unknown signal St , which
we want to know, but all we get to observe is some noisy, corrupted measurement,
Xt = h(St )+ ηt . (A historically important example of a “state” to be estimated from
noisy measurements is “Where is our rocket and which way is it headed?” — see
McGee and Schmidt, 1985.) This is solved by the EM algorithm, with the signal as
the hidden variable; Fraser (2008) gives a really good introduction to such models and
how they use EM.

Instead of just doing mixtures of densities, one can also do mixtures of predictive
models, say mixtures of regressions, or mixtures of classifiers. The hidden variable
Z here controls which regression function to use. A general form of this is what’s
known as a mixture-of-experts model (Jordan and Jacobs, 1994; Jacobs, 1997) — each
predictive model is an “expert”, and there can be a quite complicated set of hidden
variables determining which expert to use when.

The EM algorithm is so useful and general that it has in fact been re-invented mul-
tiple times. The name “EM algorithm” comes from the statistics of mixture models
in the late 1970s; in the time series literature it’s been known since the 1960s as the
“Baum-Welch” algorithm.

20.2.3 Topic Models and Probabilistic LSA
Mixture models over words provide an alternative to latent semantic indexing for
document analysis. Instead of finding the principal components of the bag-of-words
vectors, the idea is as follows. There are a certain number of topics which documents
in the corpus can be about; each topic corresponds to a distribution over words. The
distribution of words in a document is a mixture of the topic distributions. That is,
one can generate a bag of words by first picking a topic according to a multinomial
distribution (topic i occurs with probability λi ), and then picking a word from that
topic’s distribution. The distribution of topics varies from document to document,
and this is what’s used, rather than projections on to the principal components, to
summarize the document. This idea was, so far as I can tell, introduced by Hofmann
(1999), who estimated everything by EM. Latent Dirichlet allocation, due to Blei
and collaborators (Blei et al., 2003) is an important variation which smoothes the
topic distributions; there is a CRAN package called lda. Blei and Lafferty (2009) is a
good recent review paper of the area.

20.3 Non-parametric Mixture Modeling
We could replace the M step of EM by some other way of estimating the distribution
of each mixture component. This could be a fast-but-crude estimate of parameters
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(say a method-of-moments estimator if that’s simpler than the MLE), or it could even
be a non-parametric density estimator of the type we talked about in Chapter 16.
(Similarly for mixtures of regressions, etc.) Issues of dimensionality re-surface now,
as well as convergence: because we’re not, in general, increasing J at each step, it’s
harder to be sure that the algorithm will in fact converge. This is an active area of
research.

20.4 Worked Computing Example: Snoqualmie Falls
Revisited

20.4.1 Mixture Models in R

There are several R packages which implement mixture models. The mclust package
(http://www.stat.washington.edu/mclust/) is pretty much standard for Gaus-
sian mixtures. One of the most recent and powerful is mixtools (Benaglia et al.,
2009), which, in addition to classic mixtures of parametric densities, handles mix-
tures of regressions and some kinds of non-parametric mixtures. The FlexMix pack-
age (Leisch, 2004) is (as the name implies) very good at flexibly handling complicated
situations, though you have to do some programming to take advantage of this.

20.4.2 Fitting a Mixture of Gaussians to Real Data

Let’s go back to the Snoqualmie Falls data set, last used in §13.3. There we built a
system to forecast whether there would be precipitation on day t , on the basis of
how much precipitation there was on day t − 1. Let’s look at the distribution of the
amount of precipitation on the wet days.

snoqualmie <- read.csv("snoqualmie.csv",header=FALSE)
snoqualmie.vector <- na.omit(unlist(snoqualmie))
snoq <- snoqualmie.vector[snoqualmie.vector > 0]

Figure 20.2 shows a histogram (with a fairly large number of bins), together with
a simple kernel density estimate. This suggests that the distribution is rather skewed
to the right, which is reinforced by the simple summary statistics

> summary(snoq)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 6.00 19.00 32.28 44.00 463.00

Notice that the mean is larger than the median, and that the distance from the first
quartile to the median is much smaller (13/100 of an inch of precipitation) than that
from the median to the third quartile (25/100 of an inch). One way this could arise,
of course, is if there are multiple types of wet days, each with a different characteristic
distribution of precipitation.

We’ll look at this by trying to fit Gaussian mixture models with varying numbers
of components. We’ll start by using a mixture of two Gaussians. We could code up
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Precipitation in Snoqualmie Falls
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plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty=2)

Figure 20.2: Histogram (grey) for precipitation on wet days in Snoqualmie Falls. The
dashed line is a kernel density estimate, which is not completely satisfactory. (It gives
non-trivial probability to negative precipitation, for instance.)
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the EM algorithm for fitting this mixture model from scratch, but instead we’ll use
the mixtools package.

library(mixtools)
snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)

The EM algorithm “runs until convergence”, i.e., until things change so little that
we don’t care any more. For the implementation in mixtools, this means running
until the log-likelihood changes by less than epsilon. The default tolerance for con-
vergence is not 10−2, as here, but 10−8, which can take a very long time indeed. The
algorithm also stops if we go over a maximum number of iterations, even if it has
not converged, which by default is 1000; here I have dialed it down to 100 for safety’s
sake. What happens?

> snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)
number of iterations= 59
> summary(snoq.k2)
summary of normalmixEM object:

comp 1 comp 2
lambda 0.557564 0.442436
mu 10.267390 60.012594
sigma 8.511383 44.998102
loglik at estimate: -32681.21

There are two components, with weights (lambda) of about 0.56 and 0.44, two means
(mu) and two standard deviations (sigma). The over-all log-likelihood, obtained after
59 iterations, is −32681.21. (Demanding convergence to ±10−8 would thus have re-
quired the log-likelihood to change by less than one part in a trillion, which is quite
excessive when we only have 6920 observations.)

We can plot this along with the histogram of the data and the non-parametric
density estimate. I’ll write a little function for it.

plot.normal.components <- function(mixture,component.number,...) {
curve(mixture$lambda[component.number] *

dnorm(x,mean=mixture$mu[component.number],
sd=mixture$sigma[component.number]), add=TRUE, ...)

}

This adds the density of a given component to the current plot, but scaled by the
share it has in the mixture, so that it is visually comparable to the over-all density.
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Precipitation in Snoqualmie Falls
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plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty=2)
sapply(1:2,plot.normal.components,mixture=snoq.k2)

Figure 20.3: As in the previous figure, plus the components of a mixture of two
Gaussians, fitted to the data by the EM algorithm (dashed lines). These are scaled by
the mixing weights of the components.
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20.4.3 Calibration-checking for the Mixture
Examining the two-component mixture, it does not look altogether satisfactory — it
seems to consistently give too much probability to days with about 1 inch of precip-
itation. Let’s think about how we could check things like this.

When we looked at logistic regression, we saw how to check probability forecasts
by checking calibration — events predicted to happen with probability p should in
fact happen with frequency ≈ p. Here we don’t have a binary event, but we do
have lots of probabilities. In particular, we have a cumulative distribution function
F (x), which tells us the probability that the precipitation is ≤ x on any given day.
When x is continuous and has a continuous distribution, F (x) should be uniformly
distributed.7 The CDF of a two-component mixture is

F (x) = λ1F1(x)+λ2F2(x) (20.28)

and similarly for more components. A little R experimentation gives a function for
computing the CDF of a Gaussian mixture:

pnormmix <- function(x,mixture) {
lambda <- mixture$lambda
k <- length(lambda)
pnorm.from.mix <- function(x,component) {
lambda[component]*pnorm(x,mean=mixture$mu[component],

sd=mixture$sigma[component])
}
pnorms <- sapply(1:k,pnorm.from.mix,x=x)
return(rowSums(pnorms))

}

and so produce a plot like Figure 20.4.3. We do not have the tools to assess whether
the size of the departure from the main diagonal is significant8, but the fact that the
errors are so very structured is rather suspicious.

7We saw this principle when we looked at generating random variables in Chapter 5.
8Though we could: the most straight-forward thing to do would be to simulate from the mixture, and

repeat this with simulation output.
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distinct.snoq <- sort(unique(snoq))
tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k2)
ecdfs <- ecdf(snoq)(distinct.snoq)
plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),

ylim=c(0,1))
abline(0,1)

Figure 20.4: Calibration plot for the two-component Gaussian mixture. For each
distinct value of precipitation x, we plot the fraction of days predicted by the mixture
model to have ≤ x precipitation on the horizontal axis, versus the actual fraction of
days ≤ x.
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20.4.4 Selecting the Number of Components by Cross-Validation
Since a two-component mixture seems iffy, we could consider using more compo-
nents. By going to three, four, etc. components, we improve our in-sample like-
lihood, but of course expose ourselves to the danger of over-fitting. Some sort of
model selection is called for. We could do cross-validation, or we could do hypothe-
sis testing. Let’s try cross-validation first.

We can already do fitting, but we need to calculate the log-likelihood on the held-
out data. As usual, let’s write a function; in fact, let’s write two.

dnormalmix <- function(x,mixture,log=FALSE) {
lambda <- mixture$lambda
k <- length(lambda)
# Calculate share of likelihood for all data for one component
like.component <- function(x,component) {
lambda[component]*dnorm(x,mean=mixture$mu[component],

sd=mixture$sigma[component])
}
# Create array with likelihood shares from all components over all data
likes <- sapply(1:k,like.component,x=x)
# Add up contributions from components
d <- rowSums(likes)
if (log) {
d <- log(d)

}
return(d)

}

loglike.normalmix <- function(x,mixture) {
loglike <- dnormalmix(x,mixture,log=TRUE)
return(sum(loglike))

}

To check that we haven’t made a big mistake in the coding:

> loglike.normalmix(snoq,mixture=snoq.k2)
[1] -32681.2

which matches the log-likelihood reported by summary(snoq.k2). But our function
can be used on different data!

We could do five-fold or ten-fold CV, but just to illustrate the approach we’ll do
simple data-set splitting, where a randomly-selected half of the data is used to fit the
model, and half to test.

n <- length(snoq)
data.points <- 1:n
data.points <- sample(data.points) # Permute randomly
train <- data.points[1:floor(n/2)] # First random half is training
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test <- data.points[-(1:floor(n/2))] # 2nd random half is testing
candidate.component.numbers <- 2:10
loglikes <- vector(length=1+length(candidate.component.numbers))
# k=1 needs special handling
mu<-mean(snoq[train]) # MLE of mean
sigma <- sd(snoq[train])*sqrt((n-1)/n) # MLE of standard deviation
loglikes[1] <- sum(dnorm(snoq[test],mu,sigma,log=TRUE))
for (k in candidate.component.numbers) {

mixture <- normalmixEM(snoq[train],k=k,maxit=400,epsilon=1e-2)
loglikes[k] <- loglike.normalmix(snoq[test],mixture=mixture)

}

When you run this, you will probably see a lot of warning messages saying “One
of the variances is going to zero; trying new starting values.” The issue is that we
can give any one value of x arbitrarily high likelihood by centering a Gaussian there
and letting its variance shrink towards zero. This is however generally considered
unhelpful — it leads towards the pathologies that keep us from doing pure maximum
likelihood estimation in non-parametric problems (Chapter 16) — so when that hap-
pens the code recognizes it and starts over.

If we look at the log-likelihoods, we see that there is a dramatic improvement
with the first few components, and then things slow down a lot9:

> loglikes
[1] -17656.86 -16427.83 -15808.77 -15588.44 -15446.77 -15386.74
[7] -15339.25 -15325.63 -15314.22 -15315.88

(See also Figure 20.5). This favors nine components to the mixture. It looks like
Figure 20.6. The calibration is now nearly perfect, at least on the training data (Figure
20.4.4).

9Notice that the numbers here are about half of the log-likelihood we calculated for the two-component
mixture on the complete data. This is as it should be, because log-likelihood is proportional to the number
of observations. (Why?) It’s more like the sum of squared errors than the mean squared error. If we want
something which is directly comparable across data sets of different size, we should use the log-likelihood
per observation.
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plot(x=1:10, y=loglikes,xlab="Number of mixture components",
ylab="Log-likelihood on testing data")

Figure 20.5: Log-likelihoods of different sizes of mixture models, fit to a random half
of the data for training, and evaluated on the other half of the data for testing.
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snoq.k9 <- normalmixEM(snoq,k=9,maxit=400,epsilon=1e-2)
plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,

xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")
lines(density(snoq),lty=2)
sapply(1:9,plot.normal.components,mixture=snoq.k9)

Figure 20.6: As in Figure 20.3, but using the nine-component Gaussian mixture.
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distinct.snoq <- sort(unique(snoq))
tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k9)
ecdfs <- ecdf(snoq)(distinct.snoq)
plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),

ylim=c(0,1))
abline(0,1)

Figure 20.7: Calibration plot for the nine-component Gaussian mixture.
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20.4.5 Interpreting the Mixture Components, or Not
The components of the mixture are far from arbitrary. It appears from Figure 20.6
that as the mean increases, so does the variance. This impression is confirmed from
Figure 20.8. Now it could be that there really are nine types of rainy days in Sno-
qualmie Falls which just so happen to have this pattern of distributions, but this
seems a bit suspicious — as though the mixture is trying to use Gaussians systemati-
cally to approximate a fundamentally different distribution, rather than get at some-
thing which really is composed of nine distinct Gaussians. This judgment relies on
our scientific understanding of the weather, which makes us surprised by seeing a pat-
tern like this in the parameters. (Calling this “scientific knowledge” is a bit excessive,
but you get the idea.) Of course we are sometimes wrong about things like this, so
it is certainly not conclusive. Maybe there really are nine types of days, each with a
Gaussian distribution, and some subtle meteorological reason why their means and
variances should be linked like this. For that matter, maybe our understanding of
meteorology is wrong.

There are two directions to take this: the purely statistical one, and the substan-
tive one.

On the purely statistical side, if all we care about is being able to describe the dis-
tribution of the data and to predict future precipitation, then it doesn’t really matter
whether the nine-component Gaussian mixture is true in any ultimate sense. Cross-
validation picked nine components not because there really are nine types of days, but
because a nine-component model had the best trade-off between approximation bias
and estimation variance. The selected mixture gives a pretty good account of itself,
nearly the same as the kernel density estimate (Figure 20.9). It requires 26 parame-
ters10, which may seem like a lot, but the kernel density estimate requires keeping
around all 6920 data points plus a bandwidth. On sheer economy, the mixture then
has a lot to recommend it.

On the substantive side, there are various things we could do to check the idea
that wet days really do divide into nine types. These are going to be informed by our
background knowledge about the weather. One of the things we know, for example,
is that weather patterns more or less repeat in an annual cycle, and that different types
of weather are more common in some parts of the year than in others. If, for example,
we consistently find type 6 days in August, that suggests that is at least compatible
with these being real, meteorological patterns, and not just approximation artifacts.

Let’s try to look into this visually. snoq.k9$posterior is a 6920×9 array which
gives the probability for each day to belong to each class. I’ll boil this down to assign-
ing each day to its most probable class:

day.classes <- apply(snoq.k9$posterior,1,which.max)

We can’t just plot this and hope to see any useful patterns, because we want to see
stuff recurring every year, and we’ve stripped out the dry days, the division into
years, the padding to handle leap-days, etc. Fortunately, snoqualmie has all that, so
we’ll make a copy of that and edit day.classes into it.

10A mean and a standard deviation for each of nine components (=18 parameters), plus mixing weights
(nine of them, but they have to add up to one).
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plot(0,xlim=range(snoq.k9$mu),ylim=range(snoq.k9$sigma),type="n",
xlab="Component mean", ylab="Component standard deviation")

points(x=snoq.k9$mu,y=snoq.k9$sigma,pch=as.character(1:9),
cex=sqrt(0.5+5*snoq.k9$lambda))

Figure 20.8: Characteristics of the components of the 9-mode Gaussian mixture. The
horizontal axis gives the component mean, the vertical axis its standard deviation.
The area of the number representing each component is proportional to the compo-
nent’s mixing weight.
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plot(density(snoq),lty=2,ylim=c(0,0.04),
main=paste("Comparison of density estimates\n",

"Kernel vs. Gaussian mixture"),
xlab="Precipitation (1/100 inch)")

curve(dnormalmix(x,snoq.k9),add=TRUE)

Figure 20.9: Dashed line: kernel density estimate. Solid line: the nine-Gaussian mix-
ture. Notice that the mixture, unlike the KDE, gives negligible probability to nega-
tive precipitation.
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snoqualmie.classes <- snoqualmie
wet.days <- (snoqualmie > 0) & !(is.na(snoqualmie))
snoqualmie.classes[wet.days] <- day.classes

(Note that wet.days is a 36× 366 logical array.) Now, it’s somewhat inconvenient
that the index numbers of the components do not perfectly correspond to the mean
amount of precipitation — class 9 really is more similar to class 6 than to class 8. (See
Figure 20.8.) Let’s try replacing the numerical labels in snoqualmie.classes by
those means.

snoqualmie.classes[wet.days] <- snoq.k9$mu[day.classes]

This leaves alone dry days (still zero) and NA days (still NA). Now we can plot
(Figure 20.10).

The result is discouraging if we want to read any deeper meaning into the classes.
The class with the heaviest amounts of precipitation is most common in the winter,
but so is the classes with the second-heaviest amount of precipitation, the etc. It looks
like the weather changes smoothly, rather than really having discrete classes. In this
case, the mixture model seems to be merely a predictive device, and not a revelation
of hidden structure.11

11A a distribution called a “type II generalized Pareto”, where p(x)∝ (1+ x/σ)−θ−1, provides a decent
fit here. (See Shalizi 2007; Arnold 1983 on this distribution and its estimation.) With only two param-
eters, rather than 26, its log-likelihood is only 1% higher than that of the nine-component mixture, and
it is almost but not quite as calibrated. One origin of the type II Pareto is as a mixture of exponentials
(Maguire et al., 1952). If X |Z ∼ Exp(σ/Z), and Z itself has a Gamma distribution, Z ∼ Γ(θ, 1), then the
unconditional distribution of X is type II Pareto with scale σ and shape θ. We might therefore investigate
fitting a finite mixture of exponentials, rather than of Gaussians, for the Snoqualmie Falls data. We might
of course still end up concluding that there is a continuum of different sorts of days, rather than a finite
set of discrete types.
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plot(0,xlim=c(1,366),ylim=range(snoq.k9$mu),type="n",xaxt="n",
xlab="Day of year",ylab="Expected precipiation (1/100 inch)")

axis(1,at=1+(0:11)*30)
for (year in 1:nrow(snoqualmie.classes)) {

points(1:366,snoqualmie.classes[year,],pch=16,cex=0.2)
}

Figure 20.10: Plot of days classified according to the nine-component mixture. Hori-
zontal axis: day of the year, numbered from 1 to 366 (to handle leap-years). Vertical
axis: expected amount of precipitation on that day, according to the most probable
class for the day.
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20.4.6 Hypothesis Testing for Mixture-Model Selection
An alternative to using cross-validation to select the number of mixtures is to use
hypothesis testing. The k-component Gaussian mixture model is nested within the
(k + 1)-component model, so the latter must have a strictly higher likelihood on the
training data. If the data really comes from a k-component mixture (the null hypoth-
esis), then this extra increment of likelihood will follow one distribution, but if the
data come from a larger model (the alternative), the distribution will be different, and
stochastically larger.

Based on general likelihood theory, we might expect that the null distribution is,
for large sample sizes,

2(log Lk+1− log Lk )∼ χ
2
d i m(k+1)−d i m(k) (20.29)

where Lk is the likelihood under the k-component mixture model, and d i m(k) is the
number of parameters in that model. (See Appendix F.) There are however several
reasons to distrust such an approximation, including the fact that we are approxi-
mating the likelihood through the EM algorithm. We can instead just find the null
distribution by simulating from the smaller model, which is to say we can do a para-
metric bootstrap.

While it is not too hard to program this by hand (Exercise 4), the mixtools pack-
age contains a function to do this for us, called boot.comp, for “bootstrap compari-
son”. Let’s try it out12.

# See footnote regarding this next command
source("http://www.stat.cmu.edu/~cshalizi/402/lectures/20-mixture-examples/bootcomp.R")
snoq.boot <- boot.comp(snoq,max.comp=10,mix.type="normalmix",

maxit=400,epsilon=1e-2)

This tells boot.comp() to consider mixtures of up to 10 components (just as
we did with cross-validation), increasing the size of the mixture it uses when the
difference between k and k + 1 is significant. (The default is “significant at the 5%
level”, as assessed by 100 bootstrap replicates, but that’s controllable.) The command
also tells it what kind of mixture to use, and passes along control settings to the EM
algorithm which does the fitting. Each individual fit is fairly time-consuming, and
we are requiring 100 at each value of k. This took about five minutes to run on my
laptop.

This selected three components (rather than nine), and accompanied this deci-
sion with a rather nice trio of histograms explaining why (Figure 20.11). Remember
that boot.comp() stops expanding the model when there’s even a 5% chance of that
the apparent improvement could be due to mere over-fitting. This is actually pretty
conservative, and so ends up with rather fewer components than cross-validation.

Let’s explore the output of boot.comp(), conveniently stored in the object snoq.boot.
12As of this writing (5 April 2011), there is a subtle, only-sporadically-appearing bug in the version of

this function which is part of the released package. The bootcomp.R file on the class website contains
a fix, kindly provided by Dr. Derek Young, and should be sourced after loading the package, as in the
code example following. Dr. Young informs me that the fix will be incorporated in the next release of the
mixtools package, scheduled for later this month.
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Figure 20.11: Histograms produced by boot.comp(). The vertical red lines mark the
observed difference in log-likelihoods.
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> str(snoq.boot)
List of 3
$ p.values : num [1:3] 0 0.01 0.05
$ log.lik :List of 3
..$ : num [1:100] 5.889 1.682 9.174 0.934 4.682 ...
..$ : num [1:100] 2.434 0.813 3.745 6.043 1.208 ...
..$ : num [1:100] 0.693 1.418 2.372 1.668 4.084 ...
$ obs.log.lik: num [1:3] 5096 2354 920

This tells us that snoq.boot is a list with three elements, called p.values, log.lik
and obs.log.lik, and tells us a bit about each of them. p.values contains the
p-values for testing H1 (one component) against H2 (two components), testing H2
against H3, and H3 against H4. Since we set a threshold p-value of 0.05, it stopped
at the last test, accepting H3. (Under these circumstances, if the difference between
k = 3 and k = 4 was really important to us, it would probably be wise to increase
the number of bootstrap replicates, to get more accurate p-values.) log.lik is itself
a list containing the bootstrapped log-likelihood ratios for the three hypothesis tests;
obs.log.lik is the vector of corresponding observed values of the test statistic.

Looking back to Figure 20.5, there is indeed a dramatic improvement in the gen-
eralization ability of the model going from one component to two, and from two to
three, and diminishing returns to complexity thereafter. Stopping at k = 3 produces
pretty reasonable results, though repeating the exercise of Figure 20.10 is no more
encouraging for the reality of the latent classes.
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20.5 Exercises
[[TODO: Add references to
appropriate sections or equa-
tions]]

1. Write a function to simulate from a Gaussian mixture model. Check that it
works by comparing a density estimated on its output to the theoretical den-
sity.

2. Work through the E- step and M- step for a mixture of two Poisson distribu-
tions.

3. Code up the EM algorithm for a mixture of K Gaussians. Simulate data from
K = 3 Gaussians. How well does your code assign data-points to components
if you give it the actual Gaussian parameters as your initial guess? If you give it
other initial parameters?

4. Write a function to find the distribution of the log-likelihood ratio for testing
the hypothesis that the mixture has k Gaussian components against the alter-
native that it has k+1, by simulating from the k-component model. Compare
the output to the boot.comp function in mixtools.

5. Write a function to fit a mixture of exponential distributions using the EM
algorithm. Does it do any better at discovering sensible structure in the Sno-
qualmie Falls data?

6. Explain how to use relative distribution plots to check calibration, along the
lines of Figure 20.4.3.
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Chapter 21

Graphical Models

We have spent a lot of time looking at ways of figuring out how one variable (or set
of variables) depends on another variable (or set of variables) — this is the core idea in
regression and in conditional density estimation. We have also looked at how to esti-
mate the joint distribution of variables, both with kernel density estimation and with
models like factor and mixture models. The later two show an example of how to
get the joint distribution by combining a conditional distribution (observables given
factors; mixture components) with a marginal distribution (Gaussian distribution of
factors; the component weights). When dealing with complex sets of dependent vari-
ables, it would be nice to have a general way of composing conditional distributions
together to get joint distributions, and especially nice if this gave us a way of reason-
ing about what we could ignore, of seeing which variables are irrelevant to which
other variables. This is what graphical models let us do.

21.1 Conditional Independence and Factor Models
The easiest way into this may be to start with the diagrams we drew for factor anal-
ysis. There, we had observables and we had factors, and each observable depended
on, or loaded on, some of the factors. We drew a diagram where we had nodes,
standing for the variables, and arrows running from the factors to the observables
which depended on them. In the factor model, all the observables were conditionally
independent of each other, given all the factors:

p(X1,X2, . . .Xp |F1, F2, . . . Fq ) =
p
∏

i=1

p(Xi |F1, . . . Fq ) (21.1)

But in fact observables are also independent of the factors they do not load on, so
this is still too complicated. Let’s write loads(i) for the set of factors on which the
observable Xi loads. Then

p(X1,X2, . . .Xp |F1, F2, . . . Fq ) =
p
∏

i=1

p(Xi |Floads(i)) (21.2)
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Figure 21.1: Illustration of a typical model with two latent factors (F1 and F2, in
circles) and four observables (X1 through X4).

Consider Figure 21.1. The conditional distribution of observables given factors
is

p(X1,X2,X3,X4|F1, F2) = p(X1|F1, F2)p(X2|F1, F2)p(X3|F1)p(X4|F 2) (21.3)

X1 loads on F1 and F2, so it is independent of everything else, given those two vari-
ables. X1 is unconditionally dependent on X2, because they load on common factors,
F1 and F2; and X1 and X3 are also dependent, because they both load on F1. In fact, X1
and X2 are still dependent given F1, because X2 still gives information about F2. But
X1 and X3 are independent given F1, because they have no other factors in common.
Finally, X3 and X4 are unconditionally independent because they have no factors in
common. But they become dependent given X1, which provides information about
both the common factors.

None of these assertions rely on the detailed assumptions of the factor model,
like Gaussian distributions for the factors, or linear dependence between factors and
observables. What they rely on is that Xi is independent of everything else, given the
factors it loads on. The idea of graphical models is to generalize this, by focusing on
relations of direct dependence, and the conditional independence relations implied
by them.

21.2 Directed Acyclic Graph (DAG) Models
We have a collection of variables, which to be generic I’ll write X1,X2, . . .Xp . These
may be discrete, continuous, or even vectors; it doesn’t matter. We represent these
visually as nodes in a graph. There are arrows connecting some of these nodes. If an
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arrow runs from Xi to X j , then Xi is a parent of X j . This is, as the name “parent”
suggests, an anti-symmetric relationship, i.e., X j cannot also be the parent of Xi .
This is why we use an arrow, and why the graph is directed1. We write the set of
all parents of X j as parents( j ); this generalizes the notion of the factors which an
observable loads on to. The joint distribution “decomposes according to the graph”:

p(X1,X2, . . .Xp ) =
p
∏

i=1

p(Xi |Xparents(i)) (21.4)

If Xi has no parents, because it has no incoming arrows, take p(Xi |Xparents(i)) just to
be the marginal distribution p(Xi ). Such variables are called exogenous; the others,
with parents, are endogenous. An unfortunate situation could arise where X1 is the
parent of X2, which is the parent of X3, which is the parent of X1. Perhaps, under
some circumstances, we could make sense of this and actually calculate with Eq. 21.4,
but the general practice is to rule it out by assuming the graph is acyclic, i.e., that it
has no cycles, i.e., that we cannot, by following a series of arrows in the graph, go
from one node to other nodes and ultimately back to our starting point. Altogether
we say that we have a directed acyclic graph, or DAG, which represents the direct
dependencies between variables.2

What good is this? The primary virtue is that if we are dealing with a DAG model,
the graph tells us all the dependencies we need to know; those are the conditional
distributions of variables on their parents, appearing in the product on the right hand
side of Eq. 21.4. (This includes the distribution of the exogeneous variables.) This fact
has two powerful sets of implications, for probabilistic reasoning and for statistical
inference.

Let’s take inference first, because it’s more obvious: all that we have to estimate
are the conditional distributions p(Xi |Xparents(i)). We do not have to estimate the
distribution of Xi given all of the other variables, unless of course they are all parents
of Xi . Since estimating distributions, or even just regressions, conditional on many
variables is hard, it is extremely helpful to be able to read off from the graph which
variables we can ignore. Indeed, if the graph tells us that Xi is exogeneous, we don’t
have to estimate it conditional on anything, we just have to estimate its marginal
distribution.

21.2.1 Conditional Independence and the Markov Property

The probabilistic implication of Eq. 21.4 is perhaps even more important, and that
has to do with conditional independence. Pick any two variables Xi and X j , where
X j is not a parent of Xi . Consider the distribution of Xi conditional on its parents
and X j . There are two possibilities. (i) X j is not a descendant of Xi . Then we can
see that Xi and X j are conditionally independent. This is true no matter what the
actual conditional distribution functions involved are; it’s just implied by the joint

1See Appendix H for a brief review of the ideas and jargon of graph theory.
2See §21.4 for remarks on undirected graphical models, and graphs with cycles.
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X1 X2 X3 X4

Figure 21.2: DAG for a discrete-time Markov process. At each time t , Xt is the child
of Xt−1 and the parent of Xt+1.

distribution respecting the graph. (ii) Alternatively, X j is a descendant of Xi . Then in
general they are not independent, even conditional on the parents of Xi . So the graph
implies that certain conditional independence relations will hold, but that others in
general will not hold.

As you know from your probability courses, a sequence of random variables
X1,X2,X3, . . . forms a Markov process3 when “the past is independent of the future
given the present”: that is,

Xt+1 |= (Xt−1,Xt−2, . . .X1)|Xt (21.5)

from which it follows that

(Xt+1,Xt+2,Xt+3, . . .) |= (Xt−1,Xt−2, . . .X1)|Xt (21.6)

which is called the Markov property. DAG models have a similar property: if we
take any collection of nodes I , it is independent of its non-descendants, given its
parents:

XI |= Xnon−descendants(I )|Xparents(I ) (21.7)

This is the directed graph Markov property. The ordinary Markov property is in
act a special case of this, when the graph looks like Figure 21.24.

21.3 Examples of DAG Models and Their Uses
Factor models are examples of DAG models (as we’ve seen). So are mixture models
(Figure 21.3) and Markov chains (see above). DAG models are considerably more
flexible, however, and can combine observed and unobserved variables in many ways.

Consider, for instance, Figure 21.4. Here there are two exogeneous variables,
labeled “Smoking” and “Asbestos”. Everything else is endogenous. Notice that “Yel-
low teeth” is a child of “Smoking” alone. This does not mean that (in the model)

3After the Russian mathematician A. A. Markov, who introduced the theory of Markov processes in
the course of a mathematical dispute with his arch-nemesis, to show that probability and statistics could
apply to dependent events, and hence that Christianity was not necessarily true (I am not making this up:
Basharin et al., 2004).

4To see this, take the “future” nodes, indexed by t +1 and up, as the set I . Their parent consists just of
Xt , and all their non-descendants are the even earlier nodes at times t − 1, t − 2, etc.
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Z

X

Figure 21.3: DAG for a mixture model. The latent class Z is exogenous, and the
parent of the observable random vector X . (If the components of X are conditionally
independent given Z , they could be represented as separate boxes on the lower level.

whether someone’s teeth get yellowed (and, if so, how much) is a function of smok-
ing alone; it means that whatever other influences go into that are independent of
the rest of the model, and so unsystematic that we can think about those influences,
taken together, as noise.

Continuing, the idea is that how much someone smokes influences how yellow
their teeth become, and also how much tar builds up in their lungs. Tar in the lungs,
in turn, leads to cancer, as does by exposure to asbestos.

Now notice that, in this model, teeth-yellowing will be unconditionally depen-
dent on, i.e., associated with, the level of tar in the lungs, because they share a com-
mon parent, namely smoking. Yellow teeth and tarry lungs will however be condi-
tionally independent given that parent, so if we control for smoking we should not
be able to predict the state of someone’s teeth from the state of their lungs or vice
versa.

On the other hand, smoking and exposure to asbestos are independent, at least
in this model, as they are both exogenous5. Conditional on whether someone has
cancer, however, smoking and asbestos will become dependent.

To understand the logic of this, suppose (what is in fact true) that both how much
someone smokes and how much they are exposed to asbestos raises the risk of can-
cer. Conditional on not having cancer, then, one was probably exposed to little of
either tobacco smoke or asbestos. Conditional on both not having cancer and having

5If we had two variables which in some physical sense were exogenous but dependent on each other,
we would represent them in a DAG model by either a single vector-valued random variable (which would
get only one node), or as children of a latent unobserved variable, which was truly exogenous.
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Smoking

Yellow teeth Tar in lungs

Cancer

Asbestos

Figure 21.4: DAG model indicating (hypothetical) relationships between smoking,
asbestos, cancer, and covariates.
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been exposed to a high level of asbestos, one probably was exposed to an unusually
low level of tobacco smoke. Vice versa, no cancer plus high levels of tobacco tend to
imply especially little exposure to asbestos. We thus have created a negative associa-
tion between smoking and asbestos by conditioning on cancer. Naively, a regression
where we “controlled for” cancer would in fact tell us that exposure to asbestos keeps
tar from building up in the lungs, prevents smoking, and whitens teeth.

More generally, conditioning on a third variable can create dependence between
otherwise independent variables, when what we are conditioning on is a common
descendant of the variables in question.6 This conditional dependence is not some
kind of finite-sample artifact or error — it really is there in the joint probability dis-
tribution. If all we care about is prediction, then it is perfectly legitimate to use it. In
the world of Figure 21.4, it really is true that you can predict the color of someone’s
teeth from whether they have cancer and how much asbestos they’ve been exposed
to, so if that’s what you want to predict7, why not use that information? But if you
want to do more than just make predictions without understanding, if you want to
understand the structure tying together these variables, if you want to do science, if
you don’t want to go around telling yourself that asbestos whitens teeth, you really
do need to know the graph.8

21.3.1 Missing Variables
Suppose that we do cannot observe one of the variables, such as the quantity of tar
in the lungs, but we somehow know all of the conditional distributions required by
the graph. (Tar build-up in the lungs might indeed be hard to measure for living
people.) Because we have a joint distribution for all the variables, we could estimate
the conditional distribution of one of them given the rest, using the definition of
conditional probability and of integration:

p(Xi |X1,X2,Xi−1,Xi+1,Xp ) =
p(X1,X2,Xi−1,Xi ,Xi+1,Xp )

∫

p(X1,X2,Xi−1, xi ,Xi+1,Xp )d xi

(21.8)

We could in principle do this for any joint distribution. When the joint distribution
comes from a DAG model, however, we can simplify this considerably. Recall that,
from Eq. 21.7, Xi conditioning on its parents makes Xi independent of all its non-
descendants. We can therefore drop from the conditioning everything which isn’t
either a parent of Xi , or a descendant. In fact, it’s not hard to see that given the
children of Xi , its more remote descendants are also redundant. Actually doing the
calculation then boils down to a version of the EM algorithm.9

6Economists, psychologists, and other non-statisticians often repeat the advice that if you want to
know the effect of X on Y , you should not condition on Z when Z is endogenous. This is bit of folklore
is an incorrect relic of the days of ignorance, though it shows a sound indistinct groping towards a truth
those people were unable to grasp. If we want to know whether asbestos is associated with tar in the lungs,
conditioning on the yellowness of teeth is fine, even though that is an endogenous variable.

7Maybe you want to guess who’d be interested in buying whitening toothpaste.
8We return to this example in §22.2.2.
9Graphical models, especially directed ones, are often called “Bayes nets” or “Bayesian networks”, be-

cause this equation is, or can be seen as, a version of Bayes’s rule. Since of course it follows directly from
the definition of conditional probability, there is really nothing Bayesian about them.
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If we observe only a subset of the other variables, we can still use the DAG to de-
termine which ones actually matter to estimating Xi , and which ones are superfluous.
The calculations then however become much more intricate.10

21.4 Non-DAG Graphical Models: Undirected Graphs
and Directed Graphs with Cycles

This section is optional, as, for various reasons, we will not use these models in this
course.

21.4.1 Undirected Graphs
There is a lot of work on probability models which are based on undirected graphs, in
which the relationship between random variables linked by edges is completely sym-
metric, unlike the case of DAGs11. Since the relationship is symmetric, the preferred
metaphor is not “parent and child”, but “neighbors”. The models are sometimes
called Markov networks or Markov random fields, but since DAG models have a
Markov property of their own, this is not a happy choice of name, and I’ll just call
them “undirected graphical models”.

The key Markov property for undirected graphical models is that any set of nodes
I is independent of the rest of the graph given its neighbors:

XI |= Xnon−neighbors(I )|Xneighbors(I ) (21.9)

This corresponds to a factorization of the joint distribution, but a more complex one
than that of Eq. 21.4, because a symmetric neighbor-of relation gives us no way of
ordering the variables, and conditioning the later ones on the earlier ones. The trick
turns out to go as follows. First, as a bit of graph theory, a clique is a set of nodes
which are all neighbors of each other, and which cannot be expanded without los-
ing that property. We write the collection of all cliques in a graph G as cliques(G).
Second, we introduce potential functions ψc which take clique configurations and
return non-negative numbers. Third, we say that a joint distribution is a Gibbs dis-
tribution12 when

p(X1,X2, . . .Xp )∝
∏

c∈cliques(G)

ψc (Xi∈c ) (21.10)

That is, the joint distribution is a product of factors, one factor for each clique. Fre-
quently, one introduces what are called potential functions, Uc = logψc , and then
one has

p(X1,X2, . . .Xp )∝ e−
∑

c∈cliques(G)Ui (Xi∈c ) (21.11)

10There is an extensive discussion of relevant methods in Jordan (1998).
11I am told that this is more like the idea of causation in Buddhism, as something like “co-dependent

origination”, than the asymmetric one which Europe and the Islamic world inherited from the Greeks
(especially Aristotle), but you would really have to ask a philosopher about that.

12After the American physicist and chemist J. W. Gibbs, who introduced such distributions as part
of statistical mechanics, the theory of the large-scale patterns produced by huge numbers of small-scale
interactions.
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The key correspondence is what is sometimes called the Gibbs-Markov theorem:
a distribution is a Gibbs distribution with respect to a graph G if, and only if, it obeys
the Markov property with neighbors defined according to G.13.

In many practical situations, one combines the assumption of an undirected graph-
ical model with the further assumption that the joint distribution of all the random
variables is a multivariate Gaussian, giving a Gaussian graphical model. An im-
portant consequence of this assumption is that the graph can be “read off” from the
inverse of the covariance matrix Σ, sometimes called the precision matrix. Specifi-
cally, there is an edge linking Xi to X j if and only if (Σ−1)i j 6= 0. (See Lauritzen (1996)
for an extensive discussion.) These ideas sometimes still work for non-Gaussian dis-
tributions, when there is a natural way of transforming them to be Gaussian (Liu
et al., 2009), though it is unclear just how far that goes.

Further reading Markov random fields where the graph is a regular lattice are used
extensively in spatial statistics. Good introductory-level treatments are provided by
Kindermann and Snell (1980) (the full text of which is free online), and by Guttorp
(1995), which also covers the associated statistical methods. Winkler (1995) is also
good, but presumes more background in statistical theory. (I would recommend
reading it after Guttorp.) Guyon (1995) is at a similar level of sophistication to Win-
kler, but, unlike the previous references, emphasizes the situations where the graph
is not a regular lattice. Griffeath (1976), while presuming more probability theory on
the part of the reader, is extremely clear and insightful, including what is simultane-
ously one of the deepest and most transparent proofs of the Gibbs-Markov theorem.
Lauritzen (1996) is a mathematically rigorous treatment of graphical models from the
viewpoint of theoretical statistics, covering both the directed and undirected cases.

If you are curious about Gibbs distributions in, so to speak, their natural habitat,
the book by Sethna (2006), also free online, is the best introduction to statistical me-
chanics I have seen, and presumes very little knowledge of actual physics on the part
of the reader. Honerkamp (2002) is less friendly, but tries harder to make connec-
tions to statistics. If you already know what an exponential family is, then Eq. 21.11
is probably extremely suggestive, and you should read Mandelbrot (1962).

21.4.2 Directed but Cyclic Graphs
Much less work has been done on directed graphs with cycles. It is very hard to give
these a causal interpretation, in the fashion described in the next chapter. Feedback
processes are of course very common in nature and technology, and one might think
to represent these as cycles in a graph. A model of a thermostat, for instance, might

13This theorem was proved, in slightly different versions, under slightly different conditions, and by
very different methods, more or less simultaneously by (alphabetically) Dobrushin, Griffeath, Grimmett,
and Hammersley and Clifford, and almost proven by Ruelle. In the statistics literature, it has come
to be called the “Hammersley-Clifford” theorem, for no particularly good reason. In my opinion, the
clearest and most interesting version of the theorem is that of Griffeath (1976), an elementary exposi-
tion of which is given by Pollard (http://www.stat.yale.edu/~pollard/Courses/251.spring04/
Handouts/Hammersley-Clifford.pdf). (On the other hand, Griffeath was one of my teachers, so dis-
count accordingly.) Calling it the “Gibbs-Markov theorem” says more about the content, and is fairer to
all concerned.
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Set point
on thermostat Furnace+ Interior

temperature
+
-

Exterior
temperature

+

Figure 21.5: Directed but cyclic graphical model of a feedback loop. Signs (+, − on
arrows are “guides to the mind”. Cf. Figure 21.6.

have variables for the set-point temperature, the temperature outside, how much the
furnace runs, and the actual temperature inside, with a cycle between the latter two
(Figure 21.5).

Thinking in this way is however simply sloppy. It always takes some time to tra-
verse a feedback loop, and so the cycle really “unrolls” into an acyclic graph link-
ing similar variables at different times (Figure 21.6). Sometimes14, it is clear that
when people draw a diagram like Figure 21.5, the incoming arrows really refer to
the change, or rate of change, of the variable in question, so it is merely a visual
short-hand for something like Figure 21.6.

Directed graphs with cycles are thus primarily useful when measurements are so
slow or otherwise imprecise that feedback loops cannot be unrolled into the actual
dynamical processes which implement them, and one is forced to hope that one can
reason about equilibria instead15. If you insist on dealing with cyclic directed graphi-
cal models, see Richardson (1996); Lacerda et al. (2008) and references therein.

21.5 Further Reading
The paper collection Jordan (1998) is actually extremely good, unlike most collec-
tions of edited papers; Jordan and Sejnowski (2001) is also useful. Lauritzen (1996)
is thorough but more mathematically demanding. The books by Spirtes et al. (1993,
2001) and by Pearl (1988, 2000, 2009b) are classics, especially for their treatment of
causality, of which much more soon. Glymour (2001) discusses applications to psy-
chology.

While I have presented DAG models as an outgrowth of factor analysis, their
historical ancestry is actually closer to the “path analysis” models introduced by the
great mathematical biologist Sewall Wright in the 1920s to analyze processes of de-
velopment and genetics. These proved extremely influential in psychology. Loehlin
(1992) is user-friendly, though aimed at psychologists with less mathematical sophis-
tication than students taking this course. Li (1975), while older, is very enthusiastic
and has many interesting applications.

14As in Puccia and Levins (1985), and the LoopAnalyst package based on it (Dinno, 2009).
15Economists are fond of doing so, generally without providing any rationale, based in economic theory,

for supposing that equilibrium is a good approximation.
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Set point
on thermostat

Furnace
at time t

+

Furnace
at time t+1

+

Interior
temperature
at time t+1

+

Exterior
temperature

+
Interior

temperature
at time t

+

-+

Figure 21.6: Directed, acyclic graph for the situation in Figure 21.5, taking into ac-
count the fact that it takes time to traverse a feedback loop. One should imagine this
repeating to times t + 2, t + 3, etc., and extending backwards to times t − 1, t − 2,
etc., as well. Notice that there are no longer any cycles.
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Chapter 22

Graphical Causal Models

[[ TODO: discuss latent vari-
ables and measurement either
here or in the previous chapter
]]

22.1 Causation and Counterfactuals

Take a piece of cotton, say an old rag. Apply flame to it; the cotton burns. We say
the fire caused the cotton to burn. The flame is certainly correlated with the cotton
burning, but, as we all know, correlation is not causation (Figure 22.1). Perhaps every
time we set rags on fire we handle them with heavy protective gloves; the gloves don’t
make the cotton burn, but the statistical dependence is strong. So what is causation?

We do not have to settle 2500 years (or more) of argument among philosophers
and scientists. For our purposes, it’s enough to realize that the concept has a counter-
factual component: if, contrary to fact, the flame had not been applied to the rag,
then the rag would not have burned1. On the other hand, the fire makes the cotton
burn whether we are wearing protective gloves or not.

To say it a somewhat different way, the distributions we observe in the world
are the outcome of complicated stochastic processes. The mechanisms which set
the value of one variable inter-lock with those which set other variables. When we
make a probabilistic prediction by conditioning — whether we predict E[Y |X = x]
or Pr (Y |X = x) or something more complicated — we are just filtering the output
of those mechanisms, picking out the cases where they happen to have set X to the
value x, and looking at what goes along with that.

When we make a causal prediction, we want to know what would happen if the
usual mechanisms controlling X were suspended and it was set to x. How would
this change propagate to the other variables? What distribution would result for Y ?
This is often, perhaps even usually, what people really want to know from a data
analysis, and they settle for statistical prediction either because they think it is causal
prediction, or for lack of a better alternative.

Causal inference is the undertaking of trying to answer causal questions from
empirical data. Its fundamental difficulty is that we are trying to derive counter-
factual conclusions with only factual premises. As a matter of habit, we come to

1If you immediately start thinking about quibbles, like “What if we hadn’t applied the flame, but the
rag was struck by lightning?”, then you may have what it takes to be a philosopher.
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Figure 22.1: “Correlation doesn’t imply causation, but it does waggle its eyebrows
suggestively and gesture furtively while mouthing ‘look over there”’ (Image and text
copyright by Randall Munroe, used here under a Creative Commons attribution-
noncommercial license; see http://xkcd.com/552/. [[TODO: Excise from the
commercial version]])

expect cotton to burn when we apply flames. We might even say, on the basis of
purely statistical evidence, that the world has this habit. But as a matter of pure logic,
no amount of evidence about what did happen can compel beliefs about what would
have happened under non-existent circumstances2. (For all my data shows, all the
rags I burn just so happened to be on the verge of spontaneously bursting into flames
anyway.) We must supply some counter-factual or causal premise, linking what we
see to what we could have seen, to derive causal conclusions.

One of our goals, then, in causal inference will be to make the causal premises as
weak and general as possible, so as to limit what we take on faith.

22.2 Causal Graphical Models

We will need a formalism for representing causal relations. It will not surprise you
by now to learn that these will be graphical models. We will in fact use DAG models
from last time, with “parent” interpreted to mean “directly causes”. These will be
causal graphical models, or graphical causal models.3

We make the following assumptions.

2The first person to really recognize this seems to have been the medieval Muslim theologian and anti-
philosopher al Ghazali (1100/1997). (See Kogan (1985) for some of the history.) Very similar arguments
were revived centuries later by Hume (1739); whether there was some line of intellectual descent linking
them — that is, any causal connection — I don’t know.

3Because DAG models have joint distributions which factor according to the graph, we can always
write them in the form of a set of equations, as Xi = fi (Xparents(i)) + εi , with the catch that the noise εi
is not necessarily independent of Xi ’s parents. This is what is known, in many of the social sciences, as a
structural equation model. So those are, strictly, a sub-class of DAG models. They are also often used to
represent causal structure.
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1. There is some directed acyclic graph G representing the relations of causation
among the our variables.

2. The Causal Markov condition: The joint distribution of the variables obeys
the Markov property on G.

3. Faithfulness: The joint distribution has all of the conditional independence
relations implied by the causal Markov property, and only those conditional
independence relations.

The point of the faithfulness condition is to rule out “conspiracies among the param-
eters”, where, say, two causes of a common effect, which would typically be depen-
dent conditional on that effect, have their impact on the joint effect and their own
distributions matched just so exactly that they remain conditionally independent.

22.2.1 Calculating the “effects of causes”

Let’s fix two sub-sets of variables in the graph, XC and XE . (Assume they don’t over-
lap, and call everything else XN .) If we want to make a probabilistic prediction for
XE ’s value when Xc takes a particular value, xc , that’s the conditional distribution,
Pr
�

XE |Xc = xc
�

, and we saw last time how to calculate that using the graph. Con-
ceptually, this amounts to selecting, out of the whole population or ensemble, the
sub-population or sub-ensemble where Xc = xc , and accepting whatever other behav-
ior may go along with that.

Now suppose we want to ask what the effect would be, causally, of setting XC
to a particular value xc . We represent this by “doing surgery on the graph”: we
(i) eliminate any arrows coming in to nodes in Xc , (ii) fix their values to xc , and
(iii) calculate the resulting distribution for XE in the new graph. By steps (i) and
(ii), we imagine suspending or switching off the mechanisms which ordinarily set
Xc . The other mechanisms in the assemblage are left alone, however, and so step (iii)
propagates the fixed values of Xc through them. We are not selecting a sub-population,
but producing a new one.

If setting Xc to different values, say xc and x ′c , leads to different distributions for
XE , then we say that Xc has an effect on XE — or, slightly redundantly, has a causal
effect on XE . Sometimes4 “the effect of switching from xc to x ′c ” specifically refers to
a change in the expected value of XE , but since profoundly different distributions can
have the same mean, this seems needlessly restrictive.5 If one is interested in average
effects of this sort, they are computed by the same procedure.

It is convenient to have a short-hand notation for this procedure of causal condi-
tioning. One more-or-less standard idea, introduced by Judea Pearl, is to introduce a
d o operator which encloses the conditioning variable and its value. That is,

Pr
�

XE |Xc = xc
�

(22.1)

4Especially in economics.
5Economists are also fond of the horribly misleading usage of talking about “an X effect” or “the effect

of X ” when they mean the regression coefficient of X . Don’t do this.
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is probabilistic conditioning, or selecting a sub-ensemble from the old mechanisms;
but

Pr
�

XE |d o(Xc = xc )
�

(22.2)

is causal conditioning, or producing a new ensemble. Sometimes one sees this written
as Pr

�

XE |Xc=̂xc
�

, or even Pr
�

XE |bxc
�

. I am actually fond of the d o notation and will
use it.

Suppose that Pr
�

XE |Xc = xc
�

= Pr
�

XE |d o(Xc = xc )
�

. This would be extremely
convenient for causal inference. The conditional distribution on the right is the
causal, counter-factual distribution which tells us what would happen if xc was im-
posed. The distribution on the left is the ordinary probabilistic distribution we have
spent years learning how to estimate from data. When do they coincide?

One time when they would is if Xc contains all the parents of XE , and none
of its descendants. Then, by the Markov property, XE is independent of all other
variables given XC , and removing the arrows into XC will not change that, or the
conditional distribution of XE given its parents. Doing causal inference for other
choices of XC will demand other conditional independence relations implied by the
Markov property. This is the subject of Chapter 23.

22.2.2 Back to Teeth
Let us return to the example of Figure 21.4, and consider the relationship between
exposure to asbestos and the staining of teeth. In the model depicted by that figure,
the joint distribution factors as6

p(Yellow teeth,Smoking,Asbestos,Tar in lungs,Cancer)
= p(Smoking)p(Asbestos) (22.3)
×p(Tar in lungs|Smoking)
×p(Yellow teeth|Smoking)
×p(Cancer|Asbestos,Tar in lungs)

As we saw, whether or not someone’s teeth are yellow (in this model) is uncondi-
tionally independent of asbestos exposure, but conditionally dependent on asbestos,
given whether or not they have cancer. A logistic regression of tooth color on as-
bestos would show a non-zero coefficient, after “controlling for” cancer. This coeffi-
cient would become significant with enough data. The usual interpretation of this co-
efficient would be to say that the log-odds of yellow teeth increase by so much for each
one unit increase in exposure to asbestos, “other variables being held equal”.7 But to
see the actual causal effect of increasing exposure to asbestos by one unit, we’d want to
compare p(Yellow teeth|d o(Asbestos= a)) to p(Yellow teeth|d o(Asbestos= a+1)),
and it’s easy to check (Exercise 1) that these two distributions have to be the same.
In this case, because asbestos is exogenous, one will in fact get the same result for
p(Yellow teeth|d o(Asbestos= a) and for p(Yellow teeth|Asbestos= a).

6I am grateful to Janet E. Rosenbaum for pointing out an error in an earlier version of this example.
7Nothing hinges on this being a logistic regression, similar interpretations are given to all the other

standard models.
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Frequency of toohbrushing

Gum disease

Inflammatory
immune response

Heart disease

Health
consciousness

Frequency of exercise

Amount of fat and 
red meat in diet

Figure 22.2: Graphical model illustrating hypothetical pathways linking brushing
your teeth to not getting heart disease.

For a more substantial example, consider Figure 22.28 The question of interest
here is whether regular brushing and flossing actually prevents heart-disease. The
mechanism by which it might do so is as follows: brushing is known to make it less
likely for people to get gum disease. When you have gum disease, your gums are sub-
ject to constant, low-level inflammation. This inflammation (which can be measured
through various messenger chemicals of the immune system) is thought to increase
the risk of heart disease. Against this, people who are generally health-conscious are
likely to brush regularly, and to take other actions, like regularly exercising and con-
trolling their diets, which also make them less likely to get heart disease. In this case,
if we were to manipulate whether people brush their teeth9, we would shift the graph
from Figure 22.2 to Figure 22.3, and we would have

p(Heart disease|Brushing= b ) 6= p(Heart disease|d o(Brushing= b )) (22.4)

8Based on de Oliveira et al. (2010), and the discussion of this
paper by Chris Blattman (http://chrisblattman.com/2010/06/01/
does-brushing-your-teeth-lower-cardiovascular-disease/).

9Hopefully, by ensuring that everyone brushes, rather than keeping people from brushing.
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Figure 22.3: The previous graphical model, “surgically” altered to reflect a manipula-
tion (d o) of brushing.
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a

X Z Y

b

ZX Y

c

ZX Y

d

X Z Y

Figure 22.4: Four DAGs for three linked variables. The first two (a and b ) are called
chains; c is a fork; d is a collider. If these were the whole of the graph, we would
have X 6 |= Y and X |= Y |Z . For the collider, however, we would have X |= Y while
X 6 |= Y |Z .

22.3 Conditional Independence and d -Separation

It is clearly very important to us to be able to deduce when two sets of variables
are conditionally independent of each other given a third. One of the great uses of
DAGs is that they give us a fairly simple criterion for this, in terms of the graph
itself. All distributions which conform to a given DAG share a common set of con-
ditional independence relations, implied by the Markov property, no matter what
their parameters or the form of the distributions. Faithful distributions have no other
conditional independence relations. Let us think this through.

Our starting point is that while causal influence flows one way through the graph,
along the directions of arrows from parents to children, statistical information can
flow in either direction. We can certainly make inferences about an effect from its
causes, but we can equally make inferences about causes from their effects. It might be
harder to actually do the calculations10, and we might be left with more uncertainty,
but we could do it.

While we can do inference in either direction across any one edge, we do have to
worry about whether we can propagate this information further. Consider the four
graphs in Figure 22.4. In every case, we condition on X , which acts as the source of
information. In the first three cases, we can (in general) propagate the information
from X to Z to Y — the Markov property tells us that Y is independent of its non-
descendants given its parents, but in none of those cases does that make X and Y
independent. In the last graph, however, what’s called a collider11, we cannot prop-
agate the information, because Y has no parents, and X is not its descendant, hence
they are independent. We learn about Z from X , but this doesn’t tell us anything
about Z ’s other cause, Y .

10Janzing (2007) makes the very interesting suggestion that the direction of causality can be discovered
by using this — roughly speaking, that if X |Y is much harder to compute than is Y |X , we should presume
that X → Y rather than the other way around.

11Because two incoming arrows “collide” there.
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All of this flips around when we condition on the intermediate variable (Z in
Figure 22.4). The chains (Figures 22.4a and b ), conditioning on the intermediate
variable blocks the flow of information from X to Y — we learn nothing more about
Y from X and Z than from Z alone, at least not along this path. This is also true
of the fork (Figure 22.4c ) — conditional on their common cause, the two effects are
uninformative about each other. But in a collider, conditioning on the common effect
Z makes X and Y dependent on each other, as we’ve seen before. In fact, if we don’t
condition on Z , but do condition on a descendant of Z , we also create dependence
between Z ’s parents.

We are now in a position to work out conditional independence relations. We
pick our two favorite variables, X and Y , and condition them both on some third set
of variables S. If S blocks every undirected path12 from X to Y , then they must be
conditionally independent given S. An unblocked path is also called active. A path
is active when every variable along the path is active; if even one variable is blocked
by S, the whole path is blocked. A variable Z along a path is active, conditioning on
S, if

1. Z is a collider along the path, and in S; or,

2. Z is a descendant of a collider, and in S; or

3. Z is not a collider, and not in S.

Turned around, Z is blocked or de-activated by conditioning on S if

1. Z is a non-collider and in S; or

2. Z is collider, and neither Z nor any of its descendants is in S

In words, S blocks a path when it blocks the flow of information by conditioning
on the middle node in a chain or fork, and doesn’t create dependence by conditioning
on the middle node in a collider (or the descendant of a collider). Only one node in a
path must be blocked to block the whole path. When S blocks all the paths between
X and Y , we say it d-separates them13. A collection of variables U is d-separated
from another collection V by S if every X ∈U and Y ∈V are d-separated.

In every distribution which obeys the Markov property, d-separation implies con-
ditional independence. If the distribution is also faithful to the graph, then condi-
tional independence also implies d-separation14. In a faithful causal graphical model,
then, conditional independence is exactly the same as blocking the flow of informa-
tion across the graph. This turns out to be the single most important fact enabling
causal inference; we will see how that works next time.

12Whenever I talk about undirected paths, I mean paths without cycles.
13The “d” stands for “directed”
14We will not prove this, though I hope I have made it plausible. You can find demonstrations in Spirtes

et al. (2001); Pearl (2000); Lauritzen (1996).
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X1

Y

X3

X2

X4

X6

X5

Figure 22.5: Example DAG used to illustrate d-separation.

22.3.1 D-Separation Illustrated

The discussion of d-separation has been rather abstract, and perhaps confusing for
that reason. Figure 22.5 shows a DAG which might make this clearer and more
concrete15.

If we make the conditioning set S the empty set, that is, we condition on nothing,
we “block” paths which pass through colliders. For instance, there are three exoge-
nous variables in the graph, X2,X3 and X5. Because they have no parents, any path
from one to another must go over a collider (see exercises). If we do not condition on
anything, therefore, we find that the exogenous variables are d-separated and thus in-
dependent. Since X3 is not on any path linking X2 and X5, or descended from a node
on any such path, if we condition only on X3, then X2 and X5 are still d-separated,
so X2 |= X5|X3. There are two paths linking X3 to X5: X3 → X1 ← X2 → X4 ← X5,

15I am grateful to Donald Schoolmaster, Jr., for pointing out errors in an earlier version of this example.
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and X3 → X1 → Y ← X5. Conditioning on X2 (and nothing else) blocks the first
path (since X2 is part of it, but is a fork), and also blocks the second path (since X2 is
not part of it, and Y is a blocked collider). Thus, X3 |= X5|X2. Similarly, X3 |= X2|X5
(Exercise 4).

For a slightly more interesting example, let’s look at the relation between X3 and
Y . There are, again, two paths here: X3 → X1 → Y , and X3 → X1 ← X2 → X4 ←
X5→ Y . If we condition on nothing, the first path, which is a simple chain, is open,
so X3 and Y are d-connected and dependent. If we condition on X1, we block the
first path. X1 is a collider on the second path, so conditioning on X1 opens the path
there. However, there is a second collider, X4, along this path, and just conditioning
on X1 does not activate the second collider, so the path as a whole remains blocked.

Y 6 |= X3 (22.5)
Y |= X3|X1 (22.6)

To activate the second path, we can condition on X1 and either X4 (a collider
along that path) or on X6 (a descendant of a collider) or on both:

Y 6 |= X3|X1,X4 (22.7)
Y 6 |= X3|X1,X6 (22.8)
Y 6 |= X3|X1,X4,X6 (22.9)

Conditioning on X4 and/or X6 does not activate the X3 → X1 → Y path, but it’s
enough for there to be one active path to create dependence.

To block the second path again, after having opened it in one of these ways, we
can condition on X2 (since it is a fork along that path, and conditioning on a fork
blocks it), or on X5 (also a fork), or on both X2 and X5. So

Y |= X3|X1,X2 (22.10)
Y |= X3|X1,X5 (22.11)
Y |= X3|X1,X2,X5 (22.12)
Y |= X3|X1,X2,X4 (22.13)
Y |= X3|X1,X2,X6 (22.14)
Y |= X3|X1,X2,X5,X6 (22.15)

etc., etc.
Let’s look at the relationship between X4 and Y . X4 is not an ancestor of Y , or a

descendant of it, but they do share common ancestors, X5 and X2. Unconditionally,
Y and X4 are dependent, both through the path going X4 ← X5 → Y , and through
that going X4←X2→X1→ Y . Along both paths, the exogenous variables are forks,
so not conditioning on them leaves the path unblocked. X4 and Y become d-separated
when we condition on X5 and X2.

X6 and X3 have no common ancestors. Unconditionally, they should be inde-
pendent, and indeed they are: the two paths are X6 ← X4 ← X2 → X1 ← X3, and
X6 ← X4 ← X5 → Y ← X1 ← X3. Both paths contain a single collider (X1 and Y ,
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respectively), so if we do not condition on them the paths are blocked and X6 and X3
are independent. If we condition on either Y or X1 (or both), however, we unblock
the paths, and X6 and X3 become d-connected, hence dependent. To get back to d-
separation while conditioning on Y , we must also condition on X4 or X5, or both.
To get d-separation while conditioning on X1, we must also condition on X4, or on
X2, or on X4 and X2. If we condition on both X1 and Y and want d-separation, we
could just add conditioning on X4, or we could condition on X2 and X5, or all three.

If the abstract variables are insufficiently concrete, consider reading them as fol-
lows:

Y ⇔ Grade in 402
X1 ⇔ Effort spent on 402
X2 ⇔ Enjoyment of statistics
X3 ⇔ Workload this semester
X4 ⇔ Quality of work in 401
X5 ⇔ Amount learned in 401
X6 ⇔ Grade in 401

Pretending, for the sake of illustration, that this is accurate, how heavy your work-
load is this semester (X3) would predict, or rather retrodict, your grade in modern
regression last semester (X6), once we control for how much effort you put into data
analysis this semester (X1). Changing your workload this semester would not, how-
ever, reach backwards in time to raise or lower your grade in regression.

22.3.2 Linear Graphical Models and Path Coefficients

We began our discussion of graphical models with factor analysis as our starting
point. Factor models are a special case of linear (directed) graphical models, a.k.a.
path models16 As with factor models, in the larger class we typically center all the
variables (so they have expectation zero) and scale them (so they have variance 1). In
factor models, the variables were split into two sets, the factors and the observables,
and all the arrows went from factors to observables. In the more general case, we do
not necessarily have this distinction, but we still assume the arrows from a directed
acyclic graph. The conditional expectation of each variable is a linear combination
of the values of its parents:

E
�

Xi |Xparents(i)

�

=
∑

j∈parents(i)

w j i X j (22.16)

just as in a factor model. In a factor model, the coefficients w j i were the factor load-
ings. More generally, they are called path coefficients.

The path coefficients determine all of the correlations between variables in the
model. To find the correlation between Xi and X j , we proceed as follows:

16Some people use the phrase “structural equation models” for such models exclusively.
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• Find all of the undirected paths between Xi and X j .

• Discard all of the paths which go through colliders.

• For each remaining path, multiply all the path coefficients along the path.

• Sum up these products over paths.

These rules were introduced by the great geneticist and mathematical biologist Sewall
Wright in the early 20th century, in a series of papers culminating in Wright (1934)17

These “Wright path rules” often seem mysterious, particularly the bit where paths
with colliders are thrown out. But from our perspective, we can see that what Wright
is doing is finding all of the unblocked paths between Xi and X j . Each path is a channel
along which information (here, correlation) can flow, and so we add across channels.

It is frequent, and customary, to assume that all of the variables are Gaussian. (We
saw this in factor models as well.) With this extra assumption, the joint distribution
of all the variables is a multivariate Gaussian, and the correlation matrix (which we
find from the path coefficients) gives us the joint distribution.

If we want to find conditional correlations, corr(Xi ,X j |Xk ,Xl , . . .), we still sum
up over the unblocked paths. If we have avoided conditioning on colliders, then
this is just a matter of dropping the now-blocked paths from the sum. If on the
other hand we have conditioned on a collider, that path does become active (unless
blocked elsewhere), and we in fact need to modify the path weights. Specifically, we
need to work out the correlation induced between the two parents of the collider,
by conditioning on that collider. This can be calculated from the path weights, and
some fairly tedious algebra18. The important thing is to remember that the rule of
d-separation still applies, and that conditioning on a collider can create correlations.

22.3.3 Positive and Negative Associations
We say that variables X and Y are positively associated if increasing X predicts, on
average, an increase in Y , and vice versa19; if increasing X predicts a decrease in Y ,
then they are negatively associated. If this holds when conditioning out other vari-
ables, we talk about positive and negative partial associations. Heuristically, positive
association means positive correlation in the neighborhood of any given x, though
the magnitude of the positive correlation need not be constant. Note that not all
dependent variables have to have a definite sign for their association.

We can multiply together the signs of positive and negative partial associations
along a path in a graphical model, the same we can multiply together path coeffi-
cients in a linear graphical model. Paths which contain (inactive!) colliders should
be neglected. If all the paths connecting X and Y have the same sign, then we know
that over-all association between X and Y must have that sign. If different paths have

17That paper is now freely available online, and worth reading. See also http://www.ssc.wisc.edu/
soc/class/soc952/Wright/wright_biblio.htm for references to, and in some cases copies of, related
papers by Wright.

18See for instance Li et al. (1975).
19I.e., if dE[Y |X=x]

d x ≥ 0
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different signs, however, then signs alone are not enough to tell us about the over-all
association.

If we are interested in conditional associations, we have to consider whether our
conditioning variables block paths or not. Paths which are blocked by conditioning
should be dropped from consideration. If a path contains an activated collider, we
need to include it, but we reverse the sign of one arrow into the collider. That is, if
X
+→ Z

+← Y , and we condition on Z , we need to replace one of the plus signs with
a − sign, because the two parents now have an over-all negative association.20 If on
the other hand one of the incoming arrows had a positive association and the other
was negative, we need to flip one of them so they are both positive or both negative;
it doesn’t matter which, since it creates a positive association between the parents21.

22.4 Independence, Conditional Independence, and In-
formation Theory

Take two random variables, X and Y . They have some joint distribution, which
we can write p(x, y). (If they are both discrete, this is the joint probability mass
function; if they are both continuous, this is the joint probability density function;
if one is discrete and the other is continuous, there’s still a distribution, but it needs
more advanced tools.) X and Y each have marginal distributions as well, p(x) and
p(y). X |= Y if and only if the joint distribution is the product of the marginals:

X |= Y ⇔ p(x, y) = p(x)p(y) (22.17)

We can use this observation to measure how dependent X and Y are. Let’s start with
the log-likelihood ratio between the joint distribution and the product of marginals:

log
p(x, y)

p(x)p(y)
(22.18)

This will always be exactly 0 when X |= Y . We use its average value as our measure of
dependence:

I [X ;Y ]≡
∑

x,y
p(x, y) log

p(x, y)

p(x)p(y)
(22.19)

(If the variables are continuous, replace the sum with an integral.) Clearly, if X |= Y ,
then I [X ;Y ] = 0. One can show22 that I [X ;Y ] ≥ 0, and that I [X ;Y ] = 0 implies

20If both smoking and asbestos are positively associated with lung cancer, and we know the patient does
not have lung cancer, then high levels of smoking must be compensated for by low levels of asbestos, and
vice versa.

21If yellow teeth are positively associated with smoking and negatively associated with dental insurance,
and we know the patient does not have yellow teeth, then high levels of smoking must be compensated
for by excellent dental care, and conversely poor dental care must be compensated for by low levels of
smoking.

22Using the same type of convexity argument (“Jensen’s inequality”) we used in Lecture 19 for under-
standing the details of the EM algorithm.
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X |= Y . The quantity I [X ;Y ] is clearly symmetric between X and Y . Less obvi-
ously, I [X ;Y ] = I [ f (X ); g (Y )] whenever f and g are invertible functions. This
coordinate-freedom means that I [X ;Y ] measures all forms of dependence, not just
linear relationships, like the ordinary (Pearson) correlation coefficient, or monotone
dependence, like the rank (Spearman) correlation coefficient. In information theory,
I [X ;Y ] is called the mutual information, or Shannon information, between X
and Y . So we have the very natural statement that random variables are independent
just when they have no information about each other.

There are (at least) two ways of giving an operational meaning to I [X ;Y ]. One,
the original use of the notion, has to do with using knowledge of Y to improve
the efficiency with which X can be encoded into bits (Shannon, 1948; Cover and
Thomas, 2006). While this is very important — it’s literally transformed the world
since 1945 — it’s not very statistical. For statisticians, what matters is that if we
test the hypothesis that X and Y are independent, with joint distribution p(x)p(y),
against the hypothesis that they dependent, with joint distribution p(x, y), then our
power to detect dependence grows exponentially with the number of samples, and the
exponential rate at which it grows is I [X ;Y ]. More exactly, if we take independence
to be the null hypothesis, and βn is the error probability with n samples,

−
1

n
logβn→ I [X ;Y ] (22.20)

(See Cover and Thomas (2006) again, or Kullback (1968).) So positive mutual infor-
mation means dependence, and the magnitude of mutual information tells us about
how detectable the dependence is.

Suppose we conditioned X and Y on a third variable (or variables) Z . For each
realization z, we can calculate the mutual information,

I [X ;Y |Z = z]≡
∑

x,y
p(x, y|z) log

p(x, y|z)
p(x|z)p(y|z)

(22.21)

And we can average over z,

I [X ;Y |Z]≡
∑

z
p(z)I [X ;Y |Z = z] (22.22)

This is the conditional mutual information. It will not surprise you at this point to
learn that X |= Y |Z if and only if I [X ;Y |Z] = 0. The magnitude of the conditional
mutual information tells us how easy it is to detect conditional dependence.

22.5 Further Reading
The two foundational books on graphical causal models are Spirtes et al. (2001) and
Pearl (2009b). Both are excellent and recommended in the strongest possible terms;
but if you had to read just one, I would recommend Spirtes et al. (2001). If on the
other hand you do not feel up to reading a book at all, then Pearl (2009a) is much
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shorter, and covers most of the high points. (Also, it’s free online.) The textbook
by Morgan and Winship (2007) is much less demanding mathematically, which also
means it is less complete conceptually, but it does explain the crucial ideas clearly, sim-
ply, and with abundant examples.23 Lauritzen (1996) has a mathematically rigorous
treatment of d-separation (among many other things), but de-emphasizes causality.

Linear path models have a very large literature, going back to the early 20th cen-
tury; see references in the previous chapter. Many software packages for linear struc-
tural equation models and path analysis offer options to search for models; these are
not, in general, reliable (Spirtes et al., 2001).

On information theory (§22.4), the best book is Cover and Thomas (2006) by a
large margin. Raginsky (2011) provides a fascinating information-theoretic account
of graphical causal models and d o(), in terms of the notion of directed (rather than
mutual) information.

22.6 Exercises
1. Show, for the graphical model in Figure 21.4, that p(Yellow teeth|d o(Asbestos=

a)) is always the same as p(Yellow teeth|d o(Asbestos= a+ 1)).

2. Find all the paths between the exogenous variables in Figure 22.5, and verify
that every such path goes through at least one collider.

3. Is it true that in any DAG, every path between exogenous variables must go
through at least one collider, or descendant of a collider? Either prove it or
construct a counter-example in which it is not true. Does the answer change
we say “go through at least one collider”, rather than “collider or descendant
of a collider”?

4. Prove that X2 |= X3|X5 in Figure 22.5.

23This textbook also discusses an alternative formalism for counterfactuals, due to Donald Rubin. While
Rubin has done very distinguished work in causal inference, his formalism is vastly harder to manipulate
than are graphical models, but has no more expressive power. (Pearl (2009a) has a convincing discussion
of this point.) I have accordingly skipped the Rubin formalism here, but good accounts are available in
Morgan and Winship (2007, ch. 2), and in Rubin’s collected papers (Rubin, 2006).
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Chapter 23

Identifying Causal Effects from
Observations

There are two problems which are both known as “causal inference”:

1. Given the causal structure of a system, estimate the effects the variables have
on each other.

2. Given data about a system, find its causal structure.

The first problem is easier, so we’ll begin with it.

23.1 Causal Effects, Interventions and Experiments
As a reminder, when I talk about the causal effect of X on Y , which I write

Pr (Y |d o(X = x)) (23.1)

I mean the distribution of Y which would be generated, counterfactually, were X
to be set to the particular value x. This is not, in general, the same as the ordinary
conditional distribution

Pr (Y |X = x) (23.2)

The reason these are different is that the latter represents taking the original pop-
ulation, as it is, and just filtering it to get the sub-population where X = x. The
processes which set X to that value may also have influenced Y through other chan-
nels, and so this distribution will not, typically, really tell us what would happen if
we reached in and manipulated X . We can sum up the contrast in a little table (Ta-
ble 23.1). As we saw in Chapter 21, if we have the full graph for a directed acyclic
graphical model, it tells us how to calculate the joint distribution of all the variables,
from which of course the conditional distribution of any one variable given another
follows. As we saw in Chapter 22, calculations of Pr (Y |d o(X = x)) use a “surgically”
altered graph, in which all arrows into X are removed, and its value is pinned at x,
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Probabilistic conditioning Causal conditioning

Pr (Y |X = x) Pr (Y |d o(X = x))
Factual Counter-factual
Select a sub-population Generate a new population
Predicts passive observation Predicts active manipulation
Calculate from full DAG Calculate from surgically-altered DAG
Always identifiable when X and Y Not always identifiable even
are observable when X and Y are observable

Table 23.1: Contrasts between ordinary probabilistic conditioning and causal condi-
tioning. (See below on identifiability.)

but the rest of the graph is as before. If we know the DAG, and we know the distri-
bution of each variable given its parents, we can calculate any causal effect we want,
by graph-surgery.

23.1.1 The Special Role of Experiment

If we want to estimate Pr (Y |d o(X = x)), the most reliable procedure is also the sim-
plest: actually manipulate X to the value x, and see what happens to Y . (As my
mother says, “Why think, when you can just do the experiment?”) A causal or
counter-factual assumption is still required here, which is that the next time we re-
peat the manipulation, the system will respond similarly, but this is pretty weak as
such assumptions go.

While this seems like obvious common sense to us now, it is worth taking a mo-
ment to reflect on the fact that systematic experimentation is a very recent thing;
it only goes back to around 1600. Since then, the knowledge we have acquired by
combining experiments with mathematical theories have totally transformed human
life, but for the first four or five thousand years of civilization, philosophers and
sages much smarter than (almost?) any scientist now alive would have dismissed ex-
periment as something fit only for cooks, potters and blacksmiths, who didn’t really
know what they were doing.

The major obstacle the experimentalist must navigate around is to make sure they
the experiment they are doing is the one they think they are doing. Symbolically,
when we want to know Pr (Y |d o(X = x)), we need to make sure that we are only
manipulating X , and not accidentally doing Pr (Y |d o(X = x),Z = z) (because we are
only experimenting on a sub-population), or Pr (Y |d o(X = x,Z = z)) (because we
are also, inadvertently, manipulating Z). There are two big main divisions about
how to avoid these confusions.

1. The older strategy is to deliberately control or manipulate as many other vari-
ables as possible. If we find Pr (Y |d o(X = x,Z = z)) and Pr

�

Y |d o(X = x ′,Z = z)
�

then we know the differences between them are indeed just due to changing X .
This strategy, of actually controlling or manipulating whatever we can, is the
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traditional one in the physical sciences, and more or less goes back to Galileo
and the beginning of the Scientific Revolution1.

2. The younger strategy is to randomize over all the other variables but X . That
is, to examine the contrast between Pr (Y |d o(X = x)) and Pr

�

Y |d o(X = x ′)
�

,
we use an independent source of random noise to decide which experimental
subjects will get d o(X = x) and which will get d o(X = x ′). It is easy to con-
vince yourself that this makes Pr (Y |d o(X = x)) equal to Pr (Y |X = x). The
great advantage of the randomization approach is that we can apply it even
when we cannot actually control the other causally relevant variables, or even
are unsure of what they are. Unsurprisingly, it has its origins in the biological
sciences, especially agriculture. If we want to credit its invention to a single
culture hero, it would not be too misleading2 to attribute it to R. A. Fisher in
the early 1900s.

Experimental evidence is compelling, but experiments are often slow, expensive,
and difficult. Moreover, experimenting on people is hard, both because there are
many experiments we shouldn’t do, and because there are many experiments which
would just be too hard to organize. We must therefore consider how to do causal
inference from non-experimental, observational data.

23.2 Identification and Confounding

For today’s purposes, the most important distinction between probabilistic and causal
conditioning has to do with the identification (or identifiability), of the condi-
tional distributions. An aspect of a statistical model is identifiable when it cannot
be changed without there also being some change in the distribution of the observ-
able variables. If we can alter part of a model with no observable consequences, that
part of the model is unidentifiable3. Sometimes the lack of identification is trivial:
in a two-component mixture model, we get the same observable distribution if we
swap the labels of the two component distributions. The rotation problem for factor
models is a less trivial identification problem4. If two variables are co-linear, then
their coefficients in a linear regression are unidentifiable5. Note that identification is
about the true distribution, not about what happens with finite data. A parameter
might be identifiable, but we could have so little information about it in our data that

1The anguished sound you hear as you read this is every historian of science wailing in protest as the
over-simplification, but this will do as an origin myth for our purposes.

2See previous note.
3More formally, say that the model has two parameters, θ and ψ. The distinction between θ1 and θ2 is

identifiable if, for all ψ1, ψ2, the distribution over observables coming from (θ1,ψ1) is different from that
coming from (θ2,ψ2). If the right choice of ψ1 and ψ2 masks the distinction between θ1 and θ2, then θ is
unidentifiable.

4As this example suggests, what is identifiable depends on what is observed. If we could observe the
factors directly, factor loadings would be identifiable.

5As that example suggests, whether one aspect of a model is identifiable or not can depend on other
aspects of the model. If the co-linearity was broken, the two regression coefficients would become identi-
fiable.
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X Y

U

Figure 23.1: The distribution of Y given X , Pr (Y |X ), confounds the actual causal
effect of X on Y , Pr (Y |d o(X = x)), with the indirect dependence between X and Y
created by their unobserved common cause U . (You may imagine that U is really
more than one variable, with some internal sub-graph.)

our estimates are unusable, with immensely wide confidence intervals; that’s unfor-
tunate, but we just need more data. An unidentifiable parameter, however, cannot be
estimated even with infinite data.6

When X and Y are both observable variables, Pr (Y |X = x) can’t help being
identifiable. (Changing this just is changing part of the distribution of observables.)
Things are very different, however, for Pr (Y |d o(X = x)). In some models, it’s en-
tirely possible to change this drastically, and always have the same distribution of
observables, by making compensating changes to other parts of the model. When
this is the case, we simply cannot estimate causal effects from observational data.
The basic problem is illustrated in Figure 23.1

In Figure 23.1, X is a parent of Y . But if we analyze the dependence of Y on X ,
say in the form of the conditional distribution Pr (Y |X = x), we see that there are two
channels by which information flows from cause to effect. One is the direct, causal
path, represented by Pr (Y |d o(X = x)). The other is the indirect path, where X gives
information about its parent U , and U gives information about its child Y . If we just
observe X and Y , we cannot separate the causal effect from the indirect inference.
The causal effect is confounded with the indirect inference. More generally, the
effect of X on Y is confounded whenever Pr (Y |d o(X = x)) 6= Pr (Y |X = x). If there
is some way to write Pr (Y |d o(X = x)) in terms of distributions of observables, we
say that the confounding can be removed by an identification strategy, which de-
confounds the effect. If there is no way to de-confound, then this causal effect is
unidentifiable.

The effect of X on Y in Figure 23.1 is unidentifiable. Even if we erased the arrow

6For more on identifiability, and what to do with unidentifiable problems, see the great book by Man-
ski (2007).
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from X to Y , we could get any joint distribution for X and Y we liked by picking
P (X |U ), P (Y |U ) and P (U ) appropriately. So we cannot even, in this situation, use
observations to tell whether X is actually a cause of Y . Notice, however, that even if
U was observed, it would still not be the case that Pr (Y |X = x) = Pr (Y |d o(X = x)).
While the effect would be identifiable (via the back door criterion; see below), we
would still need some sort of adjustment to recover it.

In the next section, we will look at such identification strategies and adjustments.
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23.3 Identification Strategies
To recap, we want to calculate the causal effect of X on Y , Pr (Y |d o(X = x)), but we
cannot do an experiment, and must rely on observations. In addition to X and Y ,
there will generally be some covariates Z which we know, and we’ll assume we know
the causal graph, which is a DAG. Is this enough to determine Pr (Y |d o(X = x))?
That is, does the joint distribution identify the causal effect?

The answer is “yes” when the covariates Z contain all the other relevant vari-
ables7. The inferential problem is then no worse than any other statistical estimation
problem. In fact, if we know the causal graph and get to observe all the variables,
then we could (in principle) just use our favorite non-parametric conditional den-
sity estimate at each node in the graph, with its parent variables as the inputs and its
own variable as the response. Multiplying conditional distributions together gives
the whole distribution of the graph, and we can get any causal effects we want by
surgery. Equivalently (Exercise 2), we have that

Pr (Y |d o(X = x)) =
∑

t
Pr (Y |X = x,Pa(X ) = t )Pr (Pa(X ) = t ) (23.3)

where Pa(X ) is the complete set of parents of X .
If we’re willing to assume more, we can get away with just using non-parametric

regression or even just an additive model at each node. Assuming yet more, we could
use parametric models at each node; the linear-Gaussian assumption is (alas) very
popular.

If some variables are not observed, then the issue of which causal effects are obser-
vationally identifiable is considerably trickier. Apparently subtle changes in which
variables are available to us and used can have profound consequences.

The basic principle underlying all considerations is that we would like to condi-
tion on adequate control variables, which will block paths linking X and Y other
than those which would exist in the surgically-altered graph where all paths into X
have been removed. If other unblocked paths exist, then there is some confounding
of the causal effect of X on Y with their mutual dependence on other variables.

This is familiar to use from regression as the basic idea behind using additional
variables in our regression, where the idea is that by introducing covariates, we “con-
trol for” other effects, until the regression coefficient for our favorite variable repre-
sents only its causal effect. Leaving aside the inadequacies of linear regression as such
(Chapter 2), we need to be cautious here. Just conditioning on everything possible
does not give us adequate control, or even necessarily bring us closer to it. As Fig-
ure 23.2 illustrates, and as the next homework will drive home, adding an ill-chosen
covariate to a regression can create confounding. [[TODO: Fix "the next home-

work" bit above]]7This condition is sometimes known as causal sufficiency. Strictly speaking, we do not have to sup-
pose that all causes are included in the model and observable. What we have to assume is that all of the
remaining causes have such an unsystematic relationship to the ones included in the DAG that they can
be modeled as noise. (This does not mean that the noise is necessarily small.) In fact, what we really have
to assume is that the relationships between the causes omitted from the DAG and those included is so
intricate and convoluted that it might as well be noise, along the lines of algorithmic information theory
(Li and Vitányi, 1997), whose key result might be summed up as “Any determinism distinguishable from
randomness is insufficiently complex”. But here we verge on philosophy.
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X Y

Z

Figure 23.2: “Controlling for” additional variables can introduce bias into es-
timates of causal effects. Here the effect of X on Y is directly identifiable,
Pr (Y |d o(X = x)) = Pr (Y |X = x). If we also condition on Z however, because it
is a common effect of X and Y , we’d get Pr (Y |X = x,Z = z) 6= Pr (Y |X = x). In fact,
even if there were no arrow from X to Y , conditioning on Z would make Y depend
on X .

There are three main ways we can find adequate controls, and so get both identi-
fiability and appropriate adjustments:

1. We can condition on an intelligently-chosen set of covariates S, which block all
the indirect paths from X to Y , but leave all the direct paths open. (That is, we
can follow the regression strategy, but do it right.) To see whether a candidate
set of controls S is adequate, we apply the back-door criterion.

2. We can find a set of variables M which mediate the causal influence of X on Y
— all of the direct paths from X to Y pass through M . If we can identify the
effect of M on Y , and of X on M , then we can combine these to get the effect of
X on Y . (That is, we can just study the mechanisms by which X influences Y .)
The test for whether we can do this combination is the front-door criterion.

3. We can find a variable I which affects X , and which only affects Y by influ-
encing X . If we can identify the effect of I on Y , and of I on X , then we can,
sometimes, “factor” them to get the effect of X on Y . (That is, I gives us vari-
ation in X which is independent of the common causes of X and Y .) I is then
an instrumental variable for the effect of X on Y .

Let’s look at these three in turn.
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U

X
Y

S1 V S3

S2

B

Figure 23.3: Illustration of the back-door criterion for identifying the causal effect of
X on Y . Setting S = {S1, S2} satisfies the criterion, but neither S1 nor S2 on their own
would. Setting S = {S3}, or S = {S1, S2, S3} also works. Adding B to any of the good
sets makes them fail the criterion.

23.3.1 The Back-Door Criterion: Identification by Conditioning

When estimating the effect of X on Y , a back-door path is an undirected path be-
tween X and Y with an arrow into X . These are the paths which create confounding,
by providing an indirect, non-causal channel along which information can flow. A
set of conditioning variables or controls S satisfies the back-door criterion when (i)
S blocks every back-door path between X and Y , and (ii) no node in S is a descendant
of X . (Cf. Figure 23.3.) When S meets the back-door criterion,

Pr (Y |d o(X = x)) =
∑

s
Pr (Y |X = x, S = s)Pr (S = s) (23.4)

Notice that all the items on the right-hand side are observational conditional proba-
bilities, not counterfactuals. Thus we have achieved identifiability, as well as having
an adjustment strategy.

The motive for (i) is plain, but what about (ii)? We don’t want to include descen-
dants of X which are also ancestors of Y , because that blocks off some of the causal
paths from X to Y , and we don’t want to include descendants of X which are also
descendants of Y , because they provide non-causal information about Y 8.

More formally, we can proceed as follows (Pearl, 2009b, §11.3.3). We know from
Eq. 23.3 that

Pr (Y |d o(X = x)) =
∑

t
Pr (Pa(X ) = t )Pr (Y |X = x,Pa(X ) = t ) (23.5)

8What about descendants of X which are neither ancestors nor descendants of Y ? Conditioning on
them is either creates potential colliders, if they are also descended from ancestors of Y other than X , or
needlessly complicates the adjustment in Eq. 23.4.
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Now suppose we can always introduce another set of conditioned variables, if we
sum out over them:

Pr (Y |d o(X = x)) =
∑

t
Pr (Pa(X ) = t )

∑

s
Pr (Y, S = s |X = x,Pa(X ) = t ) (23.6)

We can do this for any set of variables S, it’s just probability. It’s also just probability
that

Pr (Y, S |X = x,Pa(X ) = t ) = (23.7)
Pr (Y |X = x,Pa(X ) = t , S = s)Pr (S = s |X = x,Pa(X ) = t )

so

Pr (Y |d o(X = x)) = (23.8)
∑

t
Pr (Pa(X ) = t )

∑

s
Pr (Y |X = x,Pa(X ) = t , S = s)Pr (S = s |X = x,Pa(X ) = t )

Now we invoke the fact that S satisfies the back-door criterion. Point (i) of the crite-
rion, blocking back-door paths, implies that Y |= Pa(X )|X , S. Thus

Pr (Y |d o(X = x)) = (23.9)
∑

t
Pr (Pa(X ) = t )

∑

s
Pr (Y |X = x, S = s)Pr (S = s |X = x,Pa(X ) = t )

Point (ii) of the criterion, not containing descendants of X , means (by the Markov
property) that X |= S |Pa(X ). Therefore

Pr (Y |d o(X = x)) = (23.10)
∑

t
Pr (Pa(X ) = t )

∑

s
Pr (Y |X = x, S = s)Pr (S = s |Pa(X ) = t )

Since
∑

t Pr (Pa(X ) = t )Pr (S = s |Pa(X ) = t ) = Pr (S = s), we have, at last,

Pr (Y |d o(X = x)) =
∑

s
Pr (Y |X = x, S = s)Pr (S = s) (23.11)

as promised. �

23.3.1.1 The Entner Rules

Using the back-door criterion requires us to know the causal graph. Recently, Entner
et al. (2013) have given a simple set of rules which provide sufficient conditions for
deciding that set of variables satisfy the back-door criterion, or that X actually has no
effect on Y , which can be used without knowing the graph completely.

It makes no sense to control for anything which is a descendant of either Y or X ;
that’s either blocking a directed path or activating a collider. So let W be the set of
all observed variables which descend neither from X nor Y .
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1. If there is a set of controls S such that X |= Y |S, then X has no causal effect on
Y .

Reasoning: Y can’t be a child of X if we can make them independent by condi-
tioning on anything, and Y can’t be a more remote descendant either, since S
doesn’t include any descendants of X . So in this situation all the paths linking
X to Y must be back-door paths, and S, blocking them, shows there’s no effect.

2. If there is a W ∈ W and a subset S of the W , not including W , such that (i)
W 6 |= Y |S, but (ii) W |= Y |S,X , then X has an effect on Y , and S satisfies the
back-door criterion for estimating the effect.

Reasoning: Point (i) shows that conditioning on S leaves open path from W to
Y . By point (ii), these paths must all pass through X , since conditioning on X
blocks them, hence X has an effect on Y . S must block all the back-door paths
between X and Y , otherwise X would be a collider on paths between W and
Y , so conditioning on X would activate those paths.

3. If there is a W ∈W and a subset S ofW , excluding W , such that (i) W 6 |= X |S
but (ii) W |= Y |S, then X has no effect on Y .

Reasoning: Point (i) shows that conditioning on S leaves open active paths from
W to X . But by (ii), there cannot be any open paths from W to Y , so there
cannot be any open paths from X to Y .

If none of these rules apply, whether X has an effect on Y , and if so what adequate
controls are for finding it, will depend on the exact graph, and cannot be determined
just from independence relations among the observables. (For proofs of everything,
see the paper.)
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X M Y

U

Figure 23.4: Illustration of the front-door criterion, after Pearl (2009b, Figure 3.5).
X , Y and M are all observed, but U is an unobserved common cause of both X
and Y . X ← U → Y is a back-door path confounding the effect of X on Y with
their common cause. However, all of the effect of X on Y is mediated through
X ’s effect on M . M ’s effect on Y is, in turn, confounded by the back-door path
M ← X ← U → Y , but X blocks this path. So we can use back-door adjustment to
find Pr (Y |d o(M = m)), and directly find Pr (M |d o(X = x)) = Pr (M |X = x). Putting
these together gives Pr (Y |d o(X = x)).

23.3.2 The Front-Door Criterion: Identification by Mechanisms

A set of variables M satisfies the front-door criterion when (i) M blocks all directed
paths from X to Y , (ii) there are no unblocked back-door paths from X to M , and
(iii) X blocks all back-door paths from M to Y . Then

Pr (Y |d o(X = x)) = (23.12)
∑

m
Pr (M = m|X = x)

∑

x ′
Pr
�

Y |X = x ′, M = m
�

Pr
�

X = x ′
�

A natural reaction to the front-door criterion is “Say what?”, but it becomes more
comprehensible if we take it apart. Because, by clause (i), M blocks all directed paths
from X to Y , any causal dependence of Y on X must be mediated by a dependence
of Y on M :

Pr (Y |d o(X = x)) =
∑

m
Pr (Y |d o(M = m))Pr (M = m|d o(X = x)) (23.13)

Clause (ii) says that we can get the effect of X on M directly,

Pr (M = m|d o(X = x)) = Pr (M = m|X = x) . (23.14)

Clause (iii) say that X satisfies the back-door criterion for identifying the effect of M
on Y , and the inner sum in Eq. 23.12 is just the back-door computation (Eq. 23.4) of
Pr (Y |d o(M = m)). So really we are using the back door criterion, twice. (See Figure
23.4.)
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For example, in the “does tooth-brushing prevent heart-disease?” example of
§22.2.2, we have X = “frequency of tooth-brushing”, Y = “heart disease”, and we
could take as the mediating M either “gum disease” or “inflammatory immune re-
sponse”, according to Figure 22.2.

23.3.2.1 The Front-Door Criterion and Mechanistic Explanation

Morgan and Winship (2007, ch. 8) give a useful insight into the front-door criterion.
Each directed path from X to Y is, or can be thought of as, a separate mechanism by
which X influences Y . The requirement that all such paths be blocked by M , (i), is
the requirement that the set of mechanisms included in M be “exhaustive”. The two
back-door conditions, (ii) and (iii), require that the mechanisms be “isolated”, not
interfered with by the rest of the data-generating process (at least once we condition
on X ). Once we identify an isolated and exhaustive set of mechanisms, we know all
the ways in which X actually affects Y , and any indirect paths can be discounted,
using the front-door adjustment 23.12.

One interesting possibility suggested by this is to elaborate mechanisms into sub-
mechanisms, which could be used in some cases where the plain front-door criterion
won’t apply9, such as Figure 23.5. Because U is a parent of M , we cannot use the
front-door criterion to identify the effect of X on Y . (Clause (i) holds, but (ii) and (iii)
both fail.) But we can use M1 and the front-door criterion to find Pr (M |d o(X = x)),
and we can use M2 to find Pr (Y |d o(M = m)). Chaining those together, as in Eq.
23.13, would given Pr (Y |d o(X = x)). So even though the whole mechanism from X
to Y is not isolated, we can still identify effects by breaking it into sub-mechanisms
which are isolated. This suggests a natural point at which to stop refining our account
of the mechanism into sub-sub-sub- mechanisms: when we can identify the causal
effects we’re concerned with.

9The ideas in this paragraph come from conversation Prof. Winship, who I understand is currently
preparing a paper on this.
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X M1 M M2 Y

U

Figure 23.5: The path X → M → Y contains all the mechanisms by which X in-
fluences Y , but is not isolated from the rest of the system (U → M ). The sub-
mechanisms X → M1 → M and M → M2 → Y are isolated, and the original causal
effect can be identified by composing them.
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I
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Y

U

Figure 23.6: A valid instrumental variable, I , is related to the cause of interest, X ,
and influences Y only through its influence on X , at least once control variables
block other paths. Here, to use I as an instrument, we should condition on S, but
should not condition on B . (If we could condition on U , we would not need to use
an instrument.)

23.3.3 Instrumental Variables

A variable I is an instrument10 for identifying the effect of X on Y when there is
a set of controls S such that (i) I 6 |= X |S, and (ii) every unblocked path from I to
Y has an arrow pointing into to X . Another way to say (ii) is that I |= Y |S, d o(X ).
Colloquially, I influences Y , but only through first influencing X (at least once we
control for S). (See Figure 23.6.)

How is this useful? By making back-door adjustments for S, we can identify
Pr (Y |d o(I = i)) and Pr (X |d o(I = i)). Since all the causal influence of I on Y must
be channeled through X (by point (ii)), we have

Pr (Y |d o(I = i)) =
∑

x
Pr (Y |d o(X = x))Pr (X = x|d o(I = i)) (23.15)

as in Eq. 23.3. We can thus identify the causal effect of X on Y whenever Eq. 23.15
can be solved for Pr (Y |d o(X = x)) in terms of Pr (Y |d o(I = i)) and Pr (X |d o(I = i)).
Figuring out when this is possible in general requires an excursion into the theory of

10The term “instrumental variables” comes from econometrics, where they were originally used, in the
1940s, to identify parameters in simultaneous equation models. (The metaphor was that I is a measuring
instrument for the otherwise inaccessible parameters.) Definitions of instrumental variables are surpris-
ingly murky and controversial outside of extremely simple linear systems; this one is taken from Galles
and Pearl (1997), via Pearl (2009b, §7.4.5).
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I X

Y

U

Figure 23.7: I acts as an instrument for estimating the effect of X on Y , despite the
presence of the confounding, unobserved variable U .

integral equations11, which is beyond the scope of this class; the upshot is that, in gen-
eral, there are no solutions. However, in the special case where the relations between
all variables are linear, we can do better.

Let’s start with the most basic possible set-up for an instrumental variable, namely
that in Figure 23.7, where we just have X , Y , the instrument I , and the unobserved
confounders S. If everything is linear, identifying the causal effect of X on Y is
equivalent to identifying the coefficient on the X → Y arrow. We can write

X = α0+αI +δU + εX (23.16)

and
Y =β0+βX + γU + εY (23.17)

where εX and εY are mean-zero noise terms, independent of each other and of the
other variables, and we can, without loss of generality, assume U has mean zero as
well. We want to find β. Substituting,

Y =β0+βα0+βαI +(βδ + γ )U +βεX + εY (23.18)

Since U , εX and εY are all unobserved, we can re-write this as

Y = γ0+βαI +η (23.19)

where η= (βδ + γ )U +βεX + εY has mean zero.
Now take the covariances:

Cov[I ,X ] = αVar[I ]+Cov[εX , I ] (23.20)
Cov[I ,Y ] = βαVar[I ]+Cov[η, I ] (23.21)

= βαVar[I ]+ (βδ + γ )Cov[U , I ] (23.22)
+βCov[εX , I ]+Cov[εY , I ]

11If X is continuous, then the analog of Eq. 23.15 is Pr (Y |d o(I = i)) =
∫

p(Y |d o(X = x))p(X = x|d o(I = i))d x, where the “integral operator”
∫

·p(X = x|d o(I = i))d x is
known, as is Pr (Y |d o(I = i)).
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By condition (ii), however, we must have Cov[U , I ] = 0, and of course Cov[εX , I ] =
Cov[εY , I ] = 0. Therefore Cov[I ,Y ] =βαVar[I ]. Solving,

β=
Cov[I ,Y ]

Cov[I ,X ]
(23.23)

This can be estimated by substituting in the sample covariances, or any other consis-
tent estimators of these two covariances.

On the other hand, the (true or population-level) coefficient for linearly regress-
ing Y on X is

Cov[X ,Y ]

Var[X ]
=

βVar[X ]+ γCov[U ,X ]

Var[X ]
(23.24)

= β+ γ
Cov[U ,X ]

Var[X ]
(23.25)

= β+ γ
δVar[U ]

α2Var[I ]+δ2Var[U ]+Var[εX ]
(23.26)

That is, “OLS is biased for the causal effect when X is correlated with the noise”. In
other words, simple regression is misleading in the presence of confounding12.

The instrumental variable I provides a source of variation in X which is uncor-
related with the other common ancestors of X and Y . By seeing how both X and Y
respond to these perturbations, and using the fact that I only influences Y through
X , we can deduce something about how X influences Y , though linearity is very
important to our ability to do so.

The simple line of reasoning above runs into trouble if we have multiple instru-
ments, or need to include controls (as the definition of an instrument allows). In
§24.2 we’ll look at the more complicated estimation methods which can handle this,
again assuming linearity.

23.3.3.1 Some Invalid Instruments

Not everything which looks like an instrument actually works. If Y is indeed a
descendant of I , but there is a line of descent that doesn’t go through X , then I is
not a valid instrument for X (Figure 23.8). If there are unblocked back-door paths
linking I and Y — if I and Y have common ancestors, for instance — then I is not a
valid instrument (Figure 23.9).

Economists sometimes refer to both sets of problems with instruments as “vi-
olations of exclusion restrictions”. The second sort of problem, in particular, is a
“failure of exogeneity”.

12But observe that if we want to make a linear prediction of Y and only have X available, i.e., to find
the best r1 in E[Y |X = x] = r0+ r1 x, then Eq. 23.26 is exactly the coefficient we would want to use. OLS
is doing its job.
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Figure 23.8: I is not a valid instrument for identifying the effect of X on Y , because
I can influence Y through a path not going through X . If we could control for Z ,
however, I would become valid.

I

X

S Y

U

Figure 23.9: I is not a valid instrument for identifying the effect of X on Y , because
there is an unblocked back-door path connecting I and Y . If we could control for S,
however, I would become valid.
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23.3.3.2 Critique of Instrumental Variables

By this point, you may well be thinking that instrumental variable estimation is very
much like using the front-door criterion. There, the extra variable M came between
X and Y ; here, X comes between I and Y . It is, perhaps, surprising (if not annoying)
that using an instrument only lets us identify causal effects under extra assumptions,
but that’s life. Just as the front-door criterion relies on using our scientific knowl-
edge, or rather theories, to find isolated and exhaustive mechanisms, finding valid
instruments relies on theories about the world (or the part of it under study), and
one would want to try to check those theories.

In fact, instrumental variable estimates of causal effects are often presented as
more or less unquestionable, and free of theoretical assumptions; economists, and
other social scientists influenced by them, are especially apt to do this. As the economist
Daniel Davies puts it13, devotees of this approach

have a really bad habit of saying:
“Whichever way you look at the numbers, X”.
when all they can really justify is:
“Whichever way I look at the numbers, X”.
but in fact, I should have said that they could only really support:
“Whichever way I look at these numbers, X”.

(Emphasis in the original.) It will not surprise you to learn that I think this is very
wrong.

I hope that, after four months of nonlinear models, if someone tries to sell you
a linear regression, you should be very skeptical, but let’s leave that to one side. (It’s
not impossible that everything really is linear.) The clue that instrumental variable
estimation is a creature of theoretical assumptions is point (ii) in the definition of an
instrument: I |= Y |S, d o(X ). This says that if we eliminate all the arrows into X , the
control variables S block all the other paths between I and Y . This is exactly as much
an assertion about mechanisms as what we have to do with the front-door criterion.
In fact it doesn’t just say that every mechanism by which I influences Y is mediated
by X , it also says that there are no common causes of I and Y (other than those
blocked by S).

This assumption is most easily defended when I is genuinely random, For in-
stance, if we do a randomized experiment, I might be a coin-toss which assigns each
subject to be in either the treatment or control group, each with a different value
of X . If “compliance” is not perfect (if some of those in the treatment group don’t
actually get the treatment, or some in the control group do), it is nonetheless plau-
sible that the only route by which I influences the outcome is through X , so an
instrumental variable regression is appropriate. (I here is sometimes called “intent to
treat”.)

Even here, we must be careful. If we are evaluating a new medicine, whether
people think they are getting a medicine or not could change how they act, and med-
ical outcomes. Knowing whether they were assigned to the treatment or the control

13In part four of his epic and insightful review of Freakonomics; see http://d-squareddigest.
blogspot.com/2007/09/freakiology-yes-folks-its-part-4-of.html.
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group would thus create another path from I to Y , not going through X . This is
why randomized clinical trials are generally “double-blinded” (neither patients nor
medical personnel know who is in the control group); but how effective the double-
blinding is itself a theoretical assumption.

More generally, any argument that a candidate instrument is valid is really an
argument that other channels of influence, apart from the favored one through X ,
can be ruled out. This generally cannot be done through analyzing the same variables
used in the instrumental-variable estimation (see below), but involves some theory
about the world, and rests on the strength of the evidence for that theory. As has been
pointed out multiple times — for instance, by Rosenzweig and Wolpin (2000), and
by Deaton (2010) — the theories needed to support instrumental variable estimates
in particular concrete cases are often not very well-supported, and plausible rival
theories can produce very different conclusions from the same data.

Many people have thought that one can test for the validity of an instrument, by
looking at whether I |= Y |X — the idea being that, if influence flows from I through
X to Y , conditioning on X should block the channel. The problem is that, in the
instrumental-variable set-up, X is a collider, so conditioning on X actually creates an
indirect dependence even if I is valid. So I 6 |= Y |X , whether or not the instrument is
valid, and the test (even if performed perfectly with infinite data) tells us nothing14.

A final, more or less technical, issue with instrumental variable estimation is that
many instruments are (even if valid) weak — they only have a little influence on
X , and a small covariance with it. This means that the denominator in Eq. 23.23
is a number close to zero. Error in estimating the denominator, then, results in
a much larger error in estimating the ratio. Weak instruments lead to noisy and
imprecise estimates of causal effects. It is not hard to construct scenarios where, at
reasonable sample sizes, one is actually better off using the biased OLS estimate than
the unbiased but high-variance instrumental estimate.

14However, see Pearl (2009b, §8.4) for a different approach which can “screen out very bad would-be
instruments”.
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Figure 23.10: Social influence is confounded with selecting friends with similar traits,
unobserved in the data.

23.3.4 Failures of Identification

The back-door and front-door criteria, and instrumental variables, are all sufficient
for estimating causal effects from probabilistic distributions, but are not necessary.
A necessary condition for un-identifiability is the presence of an unblockable back-
door path from X to Y . However, this is not sufficient for lack of identification
— we might, for instance, be able to use the front door criterion, as in Figure 23.4.
There are necessary and sufficient conditions for the identifiability of causal effects
in terms of the graph, and so for un-identifiability, but they are rather complex and I
will not go over them (see Shpitser and Pearl (2008), and Pearl (2009b, §§3.4–3.5) for
an overview).

As an example of the unidentifiable case, consider Figure 23.10. This DAG de-
picts the situation analyzed in Christakis and Fowler (2007), a famous paper claiming
to show that obesity is contagious in social networks (or at least in the town in Mas-
sachusetts where the data was collected). At each observation, participants in the
study get their weight taken, and so their obesity status is known over time. They
also provide the name of a friend. This friend is often in the study. Christakis and
Fowler were interested in the possibility that obesity is contagious, perhaps through
some process of behavioral influence. If this is so, then Irene’s obesity status in year
2 should depend on Joey’s obesity status in year one, but only if Irene and Joey are
friends — not if they are just random, unconnected people. It is indeed the case that
if Joey becomes obese, this predicts a substantial increase in the odds of Joey’s friend
Irene becoming obese, even controlling for Irene’s previous history of obesity15.

The difficulty arises from the latent variables for Irene and Joey (the round nodes

15The actual analysis was a bit more convoluted than that, but this is the general idea.
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in Figure 23.10). These include all the traits of either person which (a) influence who
they become friends with, and (b) influence whether or not they become obese. A
very partial list of these would include: taste for recreational exercise, opportunity
for recreational exercise, taste for alcohol, ability to consume alcohol, tastes in food,
occupation and how physically demanding it is, ethnic background16, etc. Put simply,
if Irene and Joey are friends because they spend two hours in the same bar every day
drinking and eating chicken wings with ranch dressing, it’s less surprising that both of
them have an elevated chance of becoming obese, and likewise if they became friends
because they both belong to the decathlete’s club, they are both unusually unlikely
to become obese. Irene’s status is predictable from Joey’s, then, not (or not just)
because Joey influences Irene, but because seeing what kind of person Irene’s friends
are tells us about what kind of person Irene is. It is not too hard to convince oneself
that there is just no way, in this DAG, to get at the causal effect of Joey’s behavior on
Irene’s that isn’t confounded with their latent traits (Shalizi and Thomas, 2011). To
de-confound, we would need to actual measure those latent traits, which may not be
impossible but is certainly was not done here17.

When identification is not possible — when we can’t de-confound — it may still be
possible to bound causal effects. That is, even if we can’t say exactly that Pr (Y |d o(X = x))
must be, we can still say it has to fall within a certain (non-trivial!) range of possibil-
ities. The development of bounds for non-identifiable quantities, what’s sometimes
called partial identification, is an active area of research, which I think is very likely
to become more and more important in data analysis; the best introduction I know
is Manski (2007).

16Friendships often run within ethnic communities. On the one hand, this means that friends tend
to be more genetically similar than random members of the same town, so they will be usually apt to
share genes which influence susceptibility to obesity (in that environment). On the other hand, ethnic
communities transmit, non-genetically, traditions regarding food, alcohol, sports, exercise, etc., and (again
non-genetically) influence employment and housing opportunities.

17Of course, the issue is not really about obesity. Studies of “viral marketing”, and of social influence
more broadly, all generically have the same problem. Predicting someone’s behavior from that of their
friend means conditioning on the existence of a social tie between them, but that social tie is a collider,
and activating the collider creates confounding.
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23.4 Summary

Of the four techniques I have introduced, instrumental variables are clever, but fragile
and over-sold18. Experimentation is ideal, but often unavailable. The back-door and
front-door criteria are, I think, the best observational approaches, when they can be
made to work.

Often, nothing can be made to work. Many interesting causal effects are just not
identifiable from observational data. More exactly, they only become identifiable un-
der very strong modeling assumptions, typically ones which cannot be tested from
the same data, and sometimes ones which cannot be tested by any sort of empirical
data whatsoever. Sometimes, we have good reasons (from other parts of our scien-
tific knowledge) to make such assumptions. Sometimes, we make such assumptions
because we have a pressing need for some basis on which to act, and a wrong guess is
better than nothing19. If you do make such assumptions, you need to make clear that
you are doing so, and what they are; explain your reasons for making those assump-
tions, and not others20; and indicate how different your conclusions could be if you
made different assumptions.

23.4.1 Further Reading

My presentation of the three major criteria is heavily indebted to Morgan and Win-
ship (2007), but I hope not a complete rip-off. Pearl (2009b) is also essential reading
on this topic. Berk (2004) provides an excellent critique of naive (that is, overwhelm-
ingly common) uses of regression for estimating causal effects.

Most econometrics texts devote considerable space to instrumental variables. Didelez
et al. (2010) is a very good discussion of instrumental variable methods, with less-
standard applications. There is some work on non-parametric versions of instru-
mental variables (e.g., Newey and Powell 2003), but the form of the models must
be restricted or they are unidentifiable. On the limitations of instrumental variables,
Rosenzweig and Wolpin (2000) and Deaton (2010) are particularly recommended; the
latter reviews the issue in connection with important recent work in development
economics and the alleviation of extreme poverty, an area where statistical estimates
really do matter.

There is a large literature in the philosophy of science and in methodology on the
notion of “mechanisms”. References I have found useful include, in general, Salmon
(1984), and, specifically on social processes, Elster (1989), Hedström and Swedberg
(1998) (especially Boudon 1998), Hedström (2005), Tilly (1984, 2008), and DeLanda
(2006).

18I confess that I would probably not be so down on them if others did not push them up so excessively.
19As I once heard a distinguished public health expert put it, “This problem is too important to worry

about getting it right.”
20“My boss/textbook says so” and “so I can estimate β” are not good reasons
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Figure 23.11: DAG for Exercise 3.

23.5 Exercises
1. Draw a graphical model representing the situation where a causal variable X

is set at random. Verify that Pr (Y |X = x) is then equal to Pr (Y |d o(X = x)).
(Hint: Use the back door criterion.)

2. Prove Eq. 23.3 from the causal Markov property to the appropriate surgically-
altered graph.

3. Refer to Figure 23.11. Can we use the front door criterion to estimate the effect
of occupational prestige on cancer? If so, give a set S of variables that we would
adjust for in the front-door method. Is there more than one such set? If so, can
you find them all? Are there variables we could add to this set (or sets) which
would violate the front-door criterion?

4. Read Salmon (1984). When does his “statistical relevance basis” provide enough
information to identify causal effects?
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Chapter 24

Estimating Causal Effects from
Observations

Chapter 23 gave us ways of identifying causal effects, that is, of knowing when quan-
tities like Pr (Y = y|d o(X = x)) are functions of the distribution of observable vari-
ables. Once we know that something is identifiable, the next question is how we can
actually estimate it from data.

24.1 Estimators in the Back- and Front- Door Criteria

The back-door and front-door criteria for identification not only show us when causal
effects are identifiable, they actually give us formulas for representing the causal ef-
fects in terms of ordinary conditional probabilities. When S satisfies the back-door
criterion, for instance,

Pr (Y = y|d o(X = x)) =
∑

s
Pr (S = s)Pr (Y = y|X = x, S = s) (24.1)

Everything on the right-hand side refers to the distribution of observables, following
the usual DAG without any surgery.

This is very handy, because we have spent the whole first part of the book learning
different ways of estimating distributions like Pr (S = s) and Pr (Y = y|X = x, S = s).
We can do fully non-parametric density estimation (Chapter 16), we can use para-
metric density models, we can model Y |X , S = f (X , S) + εY and use regression, etc.
If bPr (Y = y|X = x, S = s) is a consistent estimator of Pr (Y = y|X = x, S = s), and
bPr (S = s) is a consistent estimator of Pr (S = s), then

∑

s

bPr (S = s) bPr (Y = y|X = x, S = s) (24.2)

will be a consistent estimator of Pr (Y |d o(X = x)).
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In principle, I could end this section right here, but there are some special cases
and tricks which are worth knowing about. For simplicity, I will in this section only
work with the back-door criterion, since estimating with the front-door criterion
amounts to doing two rounds of back-door adjustment.

24.1.1 Estimating Average Causal Effects
Because Pr(Y |d o(X = x)) is a probability distribution, we can ask about E[Y |d o(X = x)],
when it makes sense for Y to have an expectation value; it’s just

E[Y |d o(X = x)] =
∑

y
y Pr(Y = y|d o(X = x)) (24.3)

as you’d hope. This is the average effect, or sometimes just the effect of d o(X = x).
While it is certainly not always the case that it summarizes all there is to know about
the effect of X on Y , it is often useful.

If we identify the effect of X on Y through the back-door criterion, with control
variables S, then some algebra shows

E[Y |d o(X = x)] =
∑

y
y Pr(Y = y|d o(X = x)) (24.4)

=
∑

y
y
∑

s
Pr(Y = y|X = x, S = s)Pr(S = s) (24.5)

=
∑

s
Pr(S = s)

∑

y
y Pr(Y = y|X = x, S = s) (24.6)

=
∑

s
Pr(S = s)E[Y |X = x, S = s] (24.7)

The inner conditional expectation is just the regression function, for when we try to
make a point-prediction of Y from X and S, so now all of the regression methods
from Part I come into play. We would, however, still need to know the distribution
Pr(S), so as to average appropriately. Let’s turn to this.

24.1.2 Avoiding Estimating Marginal Distributions
We’ll continue to focus on estimating the causal effect of X on Y using the back-door
criterion, i.e., assuming we’ve found a set of control variables S such that

Pr(Y = y|d o(X = x)) =
∑

s
Pr(Y = y|X = x, S = s)Pr(S = s) (24.8)

S will generally contain multiple variables, so we are committed to estimating two po-
tentially quite high-dimensional distributions, Pr(S) and Pr(Y |X , S). Even assuming
that we knew all the distributions, just enumerating possible values s and summing
over them would be computationally demanding. (Similarly, if S is continuous, we
would need to do a high-dimensional integral.) Can we reduce these burdens?

One useful short-cut is to use the law of large numbers, rather than exhaustively
enumerating all possible values of s . Notice that the left-hand side fixes y and x,
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so Pr(Y = y|X = x, S = s) is just some function of s . If we have an IID sample
of realizations of S,say s1, s2, . . . sn , then the law of large numbers says that, for all
well-behaved function f ,

1

n

n
∑

i=1

f (si )→
∑

s
f (s)Pr(S = s) (24.9)

Therefore, with a large sample,

Pr(Y = y|d o(X = x))≈
1

n

n
∑

i=1

Pr(Y = y|X = x, S = si ) (24.10)

and this will still be (approximately) true when we use a consistent estimate of the
conditional probability, rather than its true value.

The same reasoning applies for estimating E[Y |d o(X = x)]. Moreover, we can
use the same reasoning to avoid explicitly summing over all possible s if we do have
Pr(S), by simulating from it1. Even if our sample (or simulation) is not completely
IID, but is statistically stationary, in the sense we will cover in Chapter 27 (strictly
speaking: “ergodic”), then we can still use this trick.

None of this gets us away from having to estimate Pr(Y |X , S), which is still going
to be a high-dimensional object, if S has many variables.

24.1.3 Propensity Scores

The problems of having to estimate high-dimensional conditional distributions and
of averaging over large sets of control values are both reduced if the set of control vari-
ables has in fact only a few dimensions. If we have two sets of control variables, S and
R, both of which satisfy the back-door criterion for identifying Pr (Y |d o(X = x)), all
else being equal we should use R if it contains fewer variables than S2

An important special instance of this is when we can set R = f (S), for some
function S, and have

X |= S |R (24.11)

In the jargon, R is a sufficient statistic3 for predicting X from S. To see why this
matters, suppose now that we try to identify Pr (Y = y|d o(X = x)) from a back-door

1This is a “Monte Carlo” approximation to the full expectation value.
2Other things which might not be equal: the completeness of data on R and S; parametric assumptions

might be more plausible for the variables in S, giving a better rate of convergence; we might be more
confident that S really does satisfy the back-door criterion.

3This is not the same sense of the word “sufficient” as in “causal sufficiency”.
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adjustment for R alone, not for S. We have4

∑

r
Pr (Y = y|X = x, R= r )Pr (R= r ) (24.12)

=
∑

r,s
Pr (Y = y, S = s |X = x, R= r )Pr (R= r )

=
∑

r,s
Pr (Y = y|X = x, R= r, S = s)Pr (S = s |X = x, R= r )Pr (R= r )(24.13)

=
∑

r,s
Pr (Y = y|X = x, S = s)Pr (S = s |X = x, R= r )Pr (R= r ) (24.14)

=
∑

r,s
Pr (Y = y|X = x, S = s)Pr (S = s |R= r )Pr (R= r ) (24.15)

=
∑

s
Pr (Y = y|X = x, S = s)

∑

r
Pr (S = s , R= r ) (24.16)

=
∑

s
Pr (Y = y|X = x, S = s)Pr (S = s) (24.17)

= Pr (Y = y|d o(X = x)) (24.18)

That is to say, if S satisfies the back-door criterion, then so does R. Since R is a
function of S, both the computational and the statistical problems which come from
using R are no worse than those of using S, and possibly much better, if R has much
lower dimension.

It may seem far-fetched that such a summary score should exist, but really all
that’s required is that some combinations of the variables in S carry the same infor-
mation about X as the whole of S does. Consider for instance, the set-up where

X ←
p
∑

j=1

V j + εX (24.19)

Y ← f (X ,V1,V2, . . .Vp )+ εY (24.20)

To identify the effect of X on Y , we need to block the back-door paths between them.
Each one of the V j provides such a back-door path, so we nee to condition on all of

them. However, if R =
∑p

j=1 V j , then X |=

¦

V1,V2, . . .Vp

©

|R, so we could reduce a
p-dimensional set of control variables to a one-dimensional set.

Often, as here, finding summary scores will depend on the functional form, and
so not be available in the general, non-parametric case. There is, however, an im-
portant special case where, if we can use the back-door criterion at all, we can use a
one-dimensional summary.

This is the case where X is binary. If we set f (S) = Pr (X = 1|S = s), and then
take this as our summary R, it is not hard to convince oneself that X |= S |R. This
f (S) is called the propensity score. It is remarkable, and remarkably convenient,
that an arbitrarily large set of control variables S, perhaps with very complicated

4Going from Eq. 24.13 to Eq. 24.14 uses the fact that R= f (S), so conditioning on both R and S is the
same as just conditioning on S. Going from Eq. 24.14 uses the fact that S |= X |R.
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relationships with X and Y , can always be boiled down to a single number between
0 and 1, but there it is.

That said, except in very special circumstances, there is no analytical formula for
f (S). This means that it must be modeled and estimated. The most common model
seems to be logistic regression, but so far as I can see this is just because many people
know no other way to model a binary outcome. Since accurate propensity scores are
needed to make the method work, it would seem to be worthwhile to model R very
carefully, and to consider GAM or fully non-parametric estimates.

24.1.4 Matching and Propensity Scores
Suppose that our causal variable of interest X is binary, or (almost equivalent) that we
are only interested in comparing the effect of two levels, d o(X = 1) and d o(X = 0).
Let’s call these the “treatment” and “control” groups for definiteness, though nothing
really hinges on one of them being in any sense a normal or default value (as “con-
trol” suggests) — for instance, we might want to know not just whether men get paid
more than women, but whether they are paid more because of their sex5. In situations
like this, we are often not so interested in the full distributions Pr (Y |d o(X = 1)) and
Pr (Y |d o(X = 0)), but just in the expectations, E[Y |d o(X = 1)] and E[Y |d o(X = 0)].
In fact, we are often interested just in the difference between these expectations,
E[Y |d o(X = 1)]−E[Y |d o(X = 0)].

Suppose we are the happy possessors of a set of control variables S which satisfy
the back-door criterion. How might we use them to estimate this average causal
effect?

E[Y |d o(X = 1)]−E[Y |d o(X = 0)] (24.21)

=
∑

s
Pr (S = s)E[Y |X = 1, S = s]−

∑

s
Pr (S = s)E[Y |X = 0, S = s]

=
∑

s
Pr (S = s) (E[Y |X = 1, S = s]−E[Y |X = 0, S = s]) (24.22)

Clearly, we need to estimate E[Y |X = 1, S = s]−E[Y |X = 0, S = s]. The simplest
way to do this would be to find all the individuals in the sample with S = s , and
compare the mean Y for those who are treated (X = 1) to the mean Y for those

5The example is both imperfect and controversial. It is imperfect because biological sex (never mind
cultural gender) is not quite binary, even in mammals, but it’s close enough for a good approximation. It
is controversial because many statisticians insist that there is no sense in talking about causal effects unless
there is some actual manipulation or intervention one could do to change X for an actually-existing “unit”
— see, for instance, Holland (1986), which seems to be the source of the slogan “No causation without
manipulation”. I will just note that (i) this is the kind of metaphysical argument which statisticians usually
avoid (if we can’t talk about sex or race as causes, because changing those makes the subject a “different
person”, how about native language? the shape of the nose? hair color? whether they go to college?); (ii)
genetic variables are highly manipulable with modern experimental techniques, though we don’t use those
techniques on people; (iii) real scientists routinely talk about causal effects with no feasible manipulation
(e.g., “continental drift causes earthquakes”), or even imaginable manipulation (e.g., “the solar system
formed because of gravitational attraction”). It appears to be merely coincidence that (iv) many of the
statisticians who make such pronouncements work or have worked for the Educational Testing Service,
an organization with an interest in asserting that, strictly speaking, sex and race cannot have any causal
role in the score anyone gets on the SAT. (Points (i)–(iii) follow Glymour (1986).)
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who are untreated (X = 0). This is a sort of a paired comparison, which is called
“matching”, because members of the treatment group are being compared to with
members of the control group with matching values of the covariates S.

If the number of covariates in S is large, the curse of dimensionality settles upon
us. Many values of S will have few or no individuals at all, let alone a large number in
both the treatment and the control groups. Even if the real difference E[Y |X = 1, S = s]−
E[Y |X = 0, S = s] is small, with only a few individuals in either sub-group we could
easily get a large difference in sample means. And of course with continuous covari-
ates in S, each individual will generally have no exact matches at all.

The very clever idea of Rosenbaum and Rubin (1983) is to solve this by matching
not on S, but on the propensity score defined in the last section. We have seen already
that when X is binary, adjusting for the propensity score is just as good as adjusting
for the full set of covariates S. It is easy to double-check (Exercise 1) that

∑

s
Pr (S = s) (E[Y |X = 1, S = s]−E[Y |X = 0, S = s])

=
∑

r
Pr (R= r ) (E[Y |X = 1, R= r ]−E[Y |X = 0, R= r ]) (24.23)

when R = Pr (X = 1|S = s), so we lose no essential information by matching on the
propensity score R rather than on the covariates S. Intuitively, we now compare each
treated individual with one who was just as likely to have received the treatment, but,
by chance, did not. On average, the differences between such matched individuals
have to be due to the treatment.

What have we gained by doing this? Since R is always a one-dimensional variable,
no matter how big S is, it is going to be much easier to find matches on R than on S —
the curse of dimensionality has been broken6. This is a tremendous advantage, which
makes matching actually feasible.

It is important to be clear, however, that the gain here is in computational tractabil-
ity and statistical efficiency, not in fundamental identification. With R= Pr (X = 1|S = s),
it will always be true that X |= S |R, whether or not the back-door criterion is satis-
fied. If the criterion is satisfied, in principle there is nothing stopping us from using
matching on S to estimate the effect, except our own impatience. If the criterion is
not satisfied, having a compact one-dimensional summary of the wrong set of control
variables is just going to let us get the wrong answer faster.

Some confusion seems to have arisen on this point, because, conditional on the
propensity score, the treated group and the control group have the same distribution
of covariates. (Again, recall that X |= S |R.) Since treatment and control groups have
the same distribution of covariates in a randomized experiment, some people have
concluded that propensity score matching is just as good as randomization7. This is
emphatically not the case.

6If no exact match is available, we might match to within some distance, or do some sort of kernel-
weighted matching. (It’s not a good idea to use these ideas directly on S, because they become very ineffi-
cient in high dimensions.) See, e.g., Stuart (2010) for details.

7These people do not include Rubin and Rosenbaum, but it is easy to see how their readers could come
away with this impression. See Pearl (2009b, §11.3.5), and especially Pearl (2009a).

11:36 Saturday 22nd November, 2014



477 24.2. INSTRUMENTAL-VARIABLES ESTIMATES

The propensity score matching method has become incredibly popular since Rosen-
baum and Rubin (1983), and there are a huge number of implementations of various
versions of it. The MatchIt package in R is one of the most common, but see Stuart
(2010) for a fairly recent listing of relevant software in R and other languages.

24.2 Instrumental-Variables Estimates
§23.3.3 introduced the idea of using instrumental variables to identify causal effects.
Roughly speaking, I is an instrument for identifying the effect of X on Y when I
is a cause of X , but the only way I is associated with Y is through directed paths
which go through X . To the extent that variation in I predicts variation in X and Y ,
this can only be because X has a causal influence on Y . More precisely, given some
controls S, I is a valid instrument when I 6 |= X |S, and every path from I to Y left
open by S has an arrow into X .

In the simplest case, of Figure 23.7, we saw that when everything is linear, we can
find the causal coefficient of Y on X as

β=
Cov[I ,Y ]

Cov[I ,X ]
(24.24)

A one-unit change in I causes (on average) an α-unit change in X , and an αβ-unit
change in Y , so β is, as it were, the gearing ratio or leverage of the mechanism con-
necting I to Y .

Estimating β by plugging in the sample values of the covariances into Eq. 24.24
is called the Wald estimator of β. In more complex situations, we might have mul-
tiple instruments, and be interested in the causal effects of multiple variables, and
we might have to control for some covariates to block undesired paths and get valid
instruments. In such situations, the Wald estimator breaks down.

There is however a more general procedure which still works, provided the linear-
ity assumption holds. This is called two-stage regression, or two-stage least squares
(2SLS).

1. Regress X on I and S. Call the fitted values x̂.

2. Regress Y on x̂ and S, but not on I . The coefficient of Y on x̂ is a consistent
estimate of β.

The logic is very much as in the Wald estimator: conditional on S, variations in I
are independent of the rest of the system. The only way they can affect Y is through
their effect on X . In the first stage, then, we see how much changes in the instruments
affect X . In the second stage, we see how much these I -caused changes in X change
Y ; and this gives us what we want.

To actually prove that this works, we would need to go through some heroic lin-
ear algebra to show that the population version of the two-stage estimator is actually
equal to β, and then a straight-forward argument that plugging in the appropriate
sample covariance matrices is consistent. The details can be found in any economet-
rics textbook, so I’ll skip them. (But see Exercise 3.)
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As mentioned in §24.2, there are circumstances where it is possible to use in-
strumental variables in nonlinear and even nonparametric models. The technique
becomes far more complicated, however, because finding Pr (Y = y|d o(X = x)) re-
quires solving Eq. 23.15,

Pr (Y |d o(I = i)) =
∑

x
Pr (Y |d o(X = x))Pr (X = x|d o(I = i))

and likewise finding E[Y |d o(X = x)]means solving

E[Y |d o(I = i)] =
∑

x
E[Y |d o(X = x)]Pr (X = x|d o(I = i)) (24.25)

When, as is generally the case, x is continuous, we have rather an integral equation,

E[Y |d o(I = i)] =
∫

E[Y |d o(X = x)] p(x|d o(I = i))d x (24.26)

Solving such integral equations is not (in general) impossible, but it is hard, and the
techniques needed are much more complicated than even two-stage least squares. I
will not go over them here, but see Li and Racine (2007, chs. 16–17).

24.3 Uncertainty and Inference
The point of the identification strategies from Chapter 23 is to reduce the problem of
causal inference to that of ordinary statistical inference. Having done so, we can assess
our uncertainty about any of our estimates of causal effects the same way we would
assess any other statistical inference. If we want confidence intervals or standard
errors for E[Y |d o(X = 1)]−E[Y |d o(X = 0)], for instance, we can treat our estimate
of this like any other point estimate, and proceed accordingly. In particular, we can
use the bootstrap (Chapter 6), if analytical formulas are not available or unappealing.

The one wrinkle to the use of analytical formulas comes from two-stage least-
squares. Taking standard errors, confidence intervals, etc., for β from the usual for-
mulas for the second regression neglects the fact that this estimate of β comes from
regressing Y on x̂, which is itself an estimate and so uncertain.

24.4 Recommendations
Instrumental variables are a very clever idea, but they need to be treated with caution.
They only work if the instruments are valid, and that validity is rests just as much on
assumptions about the underlying DAG as any of the other identification strategies.
The crucial point, after all, is that the instrument is an indirect cause of Y , but only
through X , with no other (unblocked) paths connecting I to Y . This can only too
easily fail, if some indirect path has been neglected.

Matching, especially propensity score matching, is just as ingenious, and just as
much at the mercy of the correctness of the DAG. Whether we match directly on
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covariates, or indirectly through the propensity score, what matters is whether the
covariates really block off the back-door pathways between X and Y . If they do, well
and good. If they do not, then ingenuity is not going to help you.

There is a curious divide, among practitioners, between those who lean mostly
on instrumental variables, and those who lean mostly on matching. The former
tend to suspect that (in our terms) the covariates used in matching are not enough
to block all the back-door paths8, and to think that the business is more or less over
once an exogenous variable has been found. The matchers, for their part, think the
instrumentalists are too quick to discount the possibility that their instruments are
connected to Y through unmeasured pathways9, but that if you match on enough
variables, you’ve got to block the back-door paths. (They don’t often worry that
they might be conditioning on colliders in doing so.) As is often the case in the
sciences, there is much truth to each faction’s criticism of the other side. You are now
in a position to think more clearly, and act more intelligently, in these matters than
many practitioners.

Throughout these chapters, we have been assuming that we know the correct
DAG. Without such assumptions, or ones equivalent to them, none of these ideas can
be used. In the next chapter, then, we will look at how to actually begin discovering
causal structure from data.

24.5 Further Reading

The material in §24.1 is largely “folklore”, though see Morgan and Winship (2007).
Rubin (2006) collects Rubin’s major papers on matching, including propensity

score matching. Rubin and Waterman (2006) is an extremely clear and easy-to-follow
introduction to propensity score matching as a method of causal inference.

8As an example for their side, Arceneaux et al. (2010) applied matching methods to an actual ex-
periment, where the real causal relations could be worked out straightforwardly for comparison. Well-
conduced propensity-score “matching suggests that [a] pre-election phone call that encouraged people to
wear their seat belts also generated huge increases in voter turnout”. Their paper provides a convincing
explanation of where this illusory effect comes from, i.e., of what the unblocked back-door path is, which
I will not spoil for you.

9For instance, a recent and widely-promoted preprint by three economists argued that watching tele-
vision caused autism in children. (I leave tracking down the paper as an exercise for the reader.) The
economists used the variation in how much it rains across different locations in California, Oregon and
Washington as an instrument to predict average TV-watching (X ) and its affects on the prevalence of
autism (Y ). It is certainly plausible that kids watch more TV when it rains, and that neither TV-watching
nor autism causes rain. But this leaves open the question of whether rain and the prevalence of autism
might not have some common cause, and for the West Coast in particular it is easy to find one. It is
well-established that the risk of autism is higher among children of older parents, and that more-educated
people tend to have children later in life. All three states have, of course, a striking contrast between large,
rainy cities full of educated people (San Francisco, Portland, Seattle), and very dry, very rural locations
on the other side of the mountains. Thus there is a (potential) uncontrolled common cause of rain and
autism, namely geographic location, and the situation is as in Figure 23.9. — For a rather more convincing
effort to apply ideas about causal inference to understanding the changing prevalence of autism, see Liu
et al. (2010).
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24.6 Exercises
1. Prove Eq. 24.23.

2. Suppose that X has three levels, say 0,1,2. Let R be the vector (Pr (X = 0|S = s) ,Pr (X = 1|S = s)).
Prove that X |= S |R. (This is how to generalize propensity scores to non-binary
X .)

3. For the situation in Figure 23.7, prove that the two-stage least-squares estimate
of β is the same as the Wald estimate.
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Chapter 25

Discovering Causal Structure
from Observations

[[TODO: Style: some redun-
dancy with respect to “how
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triple are there”, and “you can
use any CI test you like, hon-
est” — fragments of an incom-
plete 2012 re-write. Smooth
out]]
[[TODO: Mention algo-
rithms for hidden variables
(FCI, RFCI)]]
[[TODO: Further examples]]

The last few chapters have, hopefully, convinced you that when you want to do causal
inference, knowing the causal graph is very helpful. We have looked at how it would
let us calculate the effects of actual or hypothetical manipulations of the variables in
the system. Furthermore, knowing the graph tells us about what causal effects we
can and cannot identify, and estimate, from observational data. But everything has
posited that we know the graph somehow. This chapter finally deals with where the
graph comes from.

There are fundamentally three ways to get the DAG:

• Prior knowledge

• Guessing-and-testing

• Discovery algorithms

There is only a little to say about the first, because, while it’s important, it’s
not very statistical. As functioning adult human beings, you have a lot of everyday
causal knowledge, which does not disappear the moment you start doing data analy-
sis. Moreover, you are the inheritor of a vast scientific tradition which has, through
patient observation and toilsome experiments, acquired even more causal knowledge.
You can and should use this. Someone’s sex or race or caste might be causes of the
job they get or their pay, but not the other way around. Running an electric cur-
rent through a wire produces heat at a rate proportional to the square of the current.
Malaria is due to a parasite transmitted by mosquitoes, and spraying mosquitoes with
insecticides makes the survivors more resistant to those chemicals. All of these sorts
of ideas can be expressed graphically, or at least as constraints on graphs.

We can, and should, also use graphs to represent scientific ideas which are not as
secure as Ohm’s law or the epidemiology of malaria. The ideas people work with
in areas like psychology or economics, are really quite tentative, but they are ideas
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smoking

tar

genesstress

lung
disease

Figure 25.1: A hypothetical causal model in which smoking is associated with lung
disease, but does not cause it. Rather, both smoking and lung disease are caused by
common genetic variants. (This idea was due to R. A. Fisher.) Smoking is also caused,
in this model, by stress.

about the causal structure of parts of the world, and so graphical models are implicit
in them.

All of which said, even if we think we know very well what’s going on, we will
often still want to check it, and that brings us the guess-and-test route.

25.1 Testing DAGs

A graphical causal model makes two kinds of qualitative claims. One is about direct
causation. If the model says X is a parent of Y , then it says that changing X will
change the (distribution of) Y . If we experiment on X (alone), moving it back and
forth, and yet Y is unaltered, we know the model is wrong and can throw it out.

The other kind of claim a DAG model makes is about probabilistic conditional
independence. If S d-separates X from Y , then X |= Y |S. If we observed X , Y and S,
and see that X 6 |= Y |S, then we know the model is wrong and can throw it out. (More:
we know that there is a path linking X and Y which isn’t blocked by S.) Thus in the
model of Figure 25.1, lungdisease |= tar|smoking. If lung disease and tar turn out to
be dependent when conditioning on smoking, the model must be wrong.

This then is the basis for the guess-and-test approach to getting the DAG:

• Start with an initial guess about the DAG.

• Deduce conditional independence relations from d-separation.

• Test these, and reject the DAG if variables which ought to be conditionally
independent turn out to be dependent.

This is a distillation of primary-school scientific method: formulate a hypotheses (the
DAG), work out what the hypothesis implies, test those predictions, reject hypothe-
ses which make wrong predictions.
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smoking

tar

genesstress

lung
disease

Figure 25.2: As in Figure 25.1, but now tar in the lungs does cause lung disease.

It may happen that there are only a few competing, scientifically-plausible models,
and so only a few, competing DAGs. Then it is usually a good idea to focus on
checking predictions which differ between them. So in both Figure 25.1 and in Figure
25.2, stress |= tar|smoking. Checking that independence thus does nothing to help us
distinguish between the two graphs. In particular, confirming that stress and tar are
independent given smoking really doesn’t give us evidence for the model from Figure
25.1, since it equally follows from the other model. If we want such evidence, we
have to look for something they disagree about.

In any case, testing a DAG means testing conditional independence, so let’s turn
to that next.

25.2 Testing Conditional Independence

Recall from §22.4 that conditional independence is equivalent to zero conditional
information: X |= Y |Z if and only if I [X ;Y |Z] = 0. In principle, this solves the
problem. In practice, estimating mutual information is non-trivial, and in particular
the sample mutual information often has a very complicated distribution. You could
always bootstrap it, but often something more tractable is desirable. Completely
general conditional independence testing is actually an active area of research. Some
of this work is still quite mathematical (Sriperumbudur et al., 2010), but it has already
led to practical tests (Székely and Rizzo, 2009; Gretton et al., 2012; Zhang et al., 2011)
and no doubt more are coming soon.

If all the variables are discrete, one just has a big contingency table problem,
and could use a G2 or χ 2 test. If everything is linear and multivariate Gaussian,
X |= Y |Z is equivalent to zero partial correlation1. Nonlinearly, if X |= Y |Z , then
E[Y |Z] = E[Y |X ,Z], so if smoothing Y on X and Z leads to different predictions
than just smoothing on Z , conditional independence fails. To reverse this, and go
from E[Y |Z] = E[Y |X ,Z] to X |= Y |Z , requires the extra assumption that Y doesn’t

1Recall that the partial correlation between X and Y given Z is the correlation between X and Y , after
linearly regressing each of them on Z separately. That is, it is the correlation of their residuals.

11:36 Saturday 22nd November, 2014



25.3. FAITHFULNESS AND EQUIVALENCE 484

depend on X through its variance or any other moment. (This is weaker than the
linear-and-Gaussian assumption, of course.)

The conditional independence relation X |= Y |Z is fully equivalent to Pr (Y |X ,Z) =
Pr (Y |Z). We could check this using non-parametric density estimation, though we
would have to bootstrap the distribution of the test statistic. A more automatic, if
slightly less rigorous, procedure comes from the idea mentioned in Chapter 16: If
X is in fact useless for predicting Y given Z , then an adaptive bandwidth selection
procedure (like cross-validation) should realize that giving any finite bandwidth to X
just leads to over-fitting. The bandwidth given to X should tend to the maximum
allowed, smoothing X away altogether. This argument can be made more formal,
and made into the basis of a test (Hall et al., 2004; Li and Racine, 2007).

25.3 Faithfulness and Equivalence

In graphical models, d-separation implies conditional independence: if S blocks all
paths from U to V , then U |= V |S. To reverse this, and conclude that if U |= V |S then
S must d-separate U and V , we need an additional assumption, already referred to in
§22.2, called faithfulness. More exactly, if the distribution is faithful to the graph,
then if S does not d-separate U from V , U 6 |= V |S. The combination of faithfulness
and the Markov property means that U |= V |S if and only if S d-separates U and V .

This seems extremely promising. We can test whether U |= V |S for any sets of
variables we like. We could in particular test whether each pair of variables is in-
dependent, given all sorts of conditioning variable sets S. If we assume faithfulness,
when we find that X |= Y |S, we know that S blocks all paths linking X and Y , so
we learn something about the graph. If X 6 |= Y |S for all S, we would seem to have
little choice but to conclude that X and Y are directly connected. Might it not be
possible to reconstruct or discover the right DAG from knowing all the conditional
independence and dependence relations?

This is on the right track, but too hasty. Start with just two variables:

X → Y ⇒ X 6 |= Y (25.1)
X ← Y ⇒ X 6 |= Y (25.2)

With only two variables, there is only one independence (or dependence) relation to
worry about, and it’s the same no matter which way the arrow points.

Similarly, consider these arrangements of three variables:

X → Y → Z (25.3)
X ← Y ← Z (25.4)
X ← Y → Z (25.5)
X → Y ← Z (25.6)

The first two are chains, the third is a fork, the last is a collider. It is not hard to check
(Exercise 1) that the first three DAGs all imply exactly the same set of conditional
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independence relations, which are different from those implied by the fourth2.
These examples illustrate a general problem. There may be multiple graphs which

imply the same independence relations, even when we assume faithfulness. When this
happens, the exact same distribution of observables can factor according to, and be
faithful to, all of those graphs. The graphs are thus said to be equivalent, or Markov
equivalent. Observational alone cannot distinguish between equivalent DAGs. Ex-
periment can, of course — changing Y alters both X and Z in a fork, but not a chain
— which shows that there really is a difference between the DAGs, just not one obser-
vational data can track.

25.3.1 Partial Identification of Effects

Chapters 23–24 considered the identification and estimation of causal effects under
the assumption that there was a single known graph. If there are multiple equivalent
DAGs, then, as mentioned above, no amount of purely observational data can select
a single graph. Background knowledge lets us rule out some equivalent DAGs3, but it
may not narrow the set of possibilities to a single graph. How then are we to actually
do our causal estimation?

We could just pick one of the equivalent graphs, and do all of our calculations as
though it were the only possible graph. This is often what people seem to do. The
kindest thing one can say about it is that it shows confidence; phrases like “lying by
omission” also come to mind.

A more principled alternative is to admit that the uncertainty about the DAG
means that causal effects are only partially identified. Simply put, one does the es-
timation in each of the equivalent graphs, and reports the range of results4. If each
estimate is consistent, then this gives a consistent estimate of the range of possible
effects. Because the effects are not fully identified, this range will not narrow to a sin-
gle point, even in the limit of infinite data, but admitting this, rather than claiming a
non-existent precision, is simple scientific honesty.

25.4 Causal Discovery with Known Variables

Section 25.1 talks about how we can test a DAG, once we have it. This lets us elimi-
nate some DAGs, but still leaves mysterious where they come from in the first place.
While in principle there is nothing wrong which deriving your DAG from a vision
of serpents biting each others’ tails, so long as you test it, it would be nice to have a
systematic way of finding good models. This is the problem of model discovery, and
especially of causal discovery.

2In all of the first three, X 6 |= Z but X |= Z |Y , while in the collider, X |= Z but X 6 |= Z |Y . Remarkably
enough, the work which introduced the notion of forks and colliders, Reichenbach (1956), missed this —
he thought that X |= Z |Y in a collider as well as a fork. Arguably, this one mistake delayed the development
of causal inference by thirty years or more.

3If we know that X , Y and Z have to be in either a chain or a fork, with Y in the middle, and we know
that X comes before Y in time, then we can rule out the fork and the chain X ← Y → Z .

4Sometimes the different graphs will gave the same estimates of certain effects. For example, the chain
X → Y → Z and the fork X ← Y → Z will agree on the effect of Y on Z .
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Causal discovery is silly with just one variable, and too hard for us with just two.5

With three or more variables, we have however a very basic principle. If there is
no edge between X and Y , in either direction, then X is neither Y ’s parent nor its
child. But any variable is independent of its non-descendants given its parents. Thus,
for some set6 of variables S, X |= Y |S (Exercise 2). If we assume faithfulness, then the
converse holds: if X |= Y |S, then there cannot be an edge between X and Y . Thus,
there is no edge between X and Y if and only if we can make X and Y independent
by conditioning on some S. Said another way, there is an edge between X and Y if
and only if we cannot make the dependence between them go away, no matter what
we condition on7.

So let’s start with three variables, X , Y and Z . By testing for independence and
conditional independence, we could learn that there had to be edges between X and Y
and Y and Z , but not between X and Z . But conditional independence is a symmetric
relationship, so how could we orient those edges, give them direction? Well, to
rehearse a point from the last section, there are only four possible directed graphs
corresponding to that undirected graph:

• X → Y → Z (a chain);

• X ← Y ← Z (the other chain);

• X ← Y → Z (a fork on Y );

• X → Y ← Z ( a collision at Y )

With the fork or either chain, we have X |= Z |Y . On the other hand, with the
collider we have X 6 |= Z |Y . Thus X 6 |= Z |Y if and only if there is a collision at Y . By
testing for this conditional dependence, we can either definitely orient the edges, or
rule out an orientation. If X −Y −Z is just a subgraph of a larger graph, we can still
identify it as a collider if X 6 |= Z | {Y, S} for all collections of nodes S (not including X
and Z themselves, of course).

With more nodes and edges, we can induce more orientations of edges by con-
sistency with orientations we get by identifying colliders. For example, suppose we
know that X ,Y,Z is either a chain or a fork on Y . If we learn that X → Y , then the
triple cannot be a fork, and must be the chain X → Y → Z . So orienting the X −Y
edge induces an orientation of the Y −Z edge. We can also sometimes orient edges
through background knowledge; for instance we might know that Y comes later in
time than X , so if there is an edge between them it cannot run from Y to X .8 We can

5But see Janzing (2007); Hoyer et al. (2009) for some ideas on how you could do it if you’re willing to
make some extra assumptions. The basic idea of these papers is that the distribution of effects given causes
should be simpler, in some sense, than the distribution of causes given effects.

6Possibly empty: conditioning on the empty set of variables is the same as not conditioning at all.
7“No causation without association”, as it were.
8Some have argued, or at least entertained the idea, that the logic here is backwards: rather than order

in time constraining causal relations, causal order defines time order. (Versions of this idea are discussed
by, inter alia, Russell (1927); Wiener (1961); Reichenbach (1956); Pearl (2009b); Janzing (2007) makes a
related suggestion). Arguably then using order in time to orient edges in a causal graph begs the question,
or commits the fallacy of petitio principii. But of course every syllogism does, so this isn’t a distinctively
statistical issue. (Take the classic: “All men are mortal; Socrates is a man; therefore Socrates is mortal.”
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eliminate other edges based on similar sorts of background knowledge: men tend to
be heavier than women, but changing weight does not change sex, so there can’t be
an edge (or even a directed path!) from weight to sex, though there could be one the
other way around.

To sum up, we can rule out an edge between X and Y whenever we can make
them independent by conditioning on other variables; and when we have an X −Y −
Z pattern, we can identify colliders by testing whether X and Z are dependent given
Y . Having oriented the arrows going into colliders, we induce more orientations of
other edges.

Putting these three things — edge elimination by testing, collider finding, and
inducing orientations — gives the most basic causal discovery procedure, the SGS
(Spirtes-Glymour-Scheines) algorithm (Spirtes et al., 2001, §5.4.1, p. 82). This as-
sumes:

1. The data-generating distribution has the causal Markov property on a graph G.

2. The data-generating distribution is faithful to G.

3. Every member of the population has the same distribution.

4. All relevant variables are in G.

5. There is only one graph G to which the distribution is faithful.

Abstractly, the algorithm works as follows:

• Start with a complete undirected graph on all p variables, with edges between
all nodes.

• For each pair of variables X and Y , and each set of other variables S, see if
X |= Y |S; if so, remove the edge between X and Y .

• Find colliders by checking for conditional dependence; orient the edges of col-
liders.

• Try to orient undirected edges by consistency with already-oriented edges; do
this recursively until no more edges can be oriented.

Pseudo-code is in Appendix I.
Call the result of the SGS algorithm bG. If all of the assumptions above hold,

and the algorithm is correct in its guesses about when variables are conditionally
independent, then bG = G. In practice, of course, conditional independence guesses
are really statistical tests based on finite data, so we should write the output as bGn ,
to indicate that it is based on only n samples. If the conditional independence test is
consistent, then

lim
n→∞

Pr
�

bGn 6=G
�

= 0 (25.7)

How can we know that all men are mortal until we know about the mortality of this particular man,
Socrates? Isn’t this just like asserting that tomatoes and peppers must be poisonous, because they belong to
the nightshade family of plants, all of which are poisonous?) While these philosophical issues are genuinely
fascinating, this footnote has gone on long enough, and it is time to return to the main text.
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In other words, the SGS algorithm converges in probability on the correct causal
structure; it is consistent for all graphs G. Of course, at finite n, the probability
of error — of having the wrong structure — is (generally!) not zero, but this just
means that, like any statistical procedure, we cannot be absolutely certain that it’s
not making a mistake.

One consequence of the independence tests making errors on finite data can be
that we fail to orient some edges — perhaps we missed some colliders. These unori-
ented edges in bGn can be thought of as something like a confidence region — they
have some orientation, but multiple orientations are all compatible with the data.9

As more and more edges get oriented, the confidence region shrinks.
If the fifth assumption above fails to hold, then there are multiple graphs G to

which the distribution is faithful. This is just a more complicated version of the
difficulty of distinguishing between the graphs X → Y and X ← Y . All the graphs
in the equivalence class may have some arrows in common; in that case the SGS
algorithm will identify those arrows. If some edges differ in orientation across the
equivalence class, SGS will not orient them, even in the limit. In terms of the previous
paragraph, the confidence region never shrinks to a single point, just because the
data doesn’t provide the information needed to do this. The graph is only partially
identified.

If there are unmeasured relevant variables, we can get not just unoriented edges,
but actually arrows pointing in both directions. This is an excellent sign that some
basic assumption is being violated.

25.4.1 The PC Algorithm

The SGS algorithm is statistically consistent, but very computationally inefficient;
the number of tests it does grows exponentially in the number of variables p. This
is the worst-case complexity for any consistent causal-discovery procedure, but this
algorithm just proceeds immediately to the worst case, not taking advantage of any
possible short-cuts.

Since it’s enough to find one S making X and Y independent to remove their
edge, one obvious short-cut is to do the tests in some order, and skip unnecessary
tests. On the principle of doing the easy work first, the revised edge-removal step
would look something like this:

• For each X and Y , see if X |= Y ; if so, remove their edge.

• For each X and Y which are still connected, and each third variable Z , see if
X |= Y |Z ; if so, remove the edge between X and Y .

• For each X and Y which are still connected, and each third and fourth variables
Z1 and Z2, see if X |= Y |Z1,Z2; if so, remove their edge.

• . . .
9I say “multiple orientations” rather than “all orientations”, because picking a direction for one edge

might induce an orientation for others.
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• For each X and Y which are still connected, see if X |= Y | all the p − 2 other
variables; if so, remove, their edge.

If all the tests are done correctly, this will give the same result as the SGS procedure
(Exercise 3). And if some of the tests give erroneous results, conditioning on a small
number of variables will tend to be more reliable than conditioning on more (why?).

We can be even more efficient, however. If X |= Y |S for any S at all, then X |= Y |S ′,
where all the variables in S ′ are adjacent to X or Y (or both) (Exercise 4). To see the
sense of this, suppose that there is a single long directed path running from X to Y . If
we condition on any of the variables along the chain, we make X and Y independent,
but we could always move the point where we block the chain to be either right next
to X or right next to Y . So when we are trying to remove edges and make X and Y
independent, we only need to condition on variables which are still connected to X
and Y , not ones in totally different parts of the graph.

This then gives us the PC10 algorithm (Spirtes et al. 2001, §5.4.2, pp. 84–88; see
also Appendix I). It works exactly like the SGS algorithm, except for the edge-removal
step, where it tries to condition on as few variables as possible (as above), and only
conditions on adjacent variables. The PC algorithm has the same assumptions as
the SGS algorithm, and the same consistency properties, but generally runs much
faster, and does many fewer statistical tests. It should be the default algorithm for
attempting causal discovery.

25.4.2 Causal Discovery with Hidden Variables
Suppose that the set of variables we measure is not causally sufficient. Could we at
least discover this? Could we possibly get hold of some of the causal relationships?
Algorithms which can do this exist (e.g., the CI and FCI algorithms of Spirtes et al.
(2001, ch. 6)), but they require considerably more graph-fu. (The RFCI algorithm
(Colombo et al., 2012) is a modern, fast successor to FCI.) The results of these algo-
rithms can succeed in removing some edges between observable variables, and defi-
nitely orienting some of the remaining edges. If there are actually no latent common
causes, they end up acting like the SGS or PC algorithms.

Partial identification of effects When all relevant variables are observed, all ef-
fects are identified within one graph; partial identification happens because multiple
graphs are equivalent. When some variables are not observed, we may have to use
the identification strategies to get at the same effect. In fact, the same effect my be
identified in one graph and not identified in another, equivalent graph. This is, again,
unfortunate, but when it happens it needs to be admitted.

25.4.3 On Conditional Independence Tests
The abstract algorithms for causal discovery assume the existence of consistent tests
for conditional independence. The implementations known to me mostly assume
either that variables are discrete (so that one can basically use the χ 2 test), or that

10Peter-Clark
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they are continuous, Gaussian, and linearly related (so that one can test for vanishing
partial correlations), though the pcalg package does allow users to provide their
own conditional independence tests as arguments. It bears emphasizing that these
restrictions are not essential. As soon as you have a consistent independence test,
you are, in principle, in business. In particular, consistent non-parametric tests of
conditional independence would work perfectly well. An interesting example of this
is the paper by Chu and Glymour (2008), on finding causal models for the time series,
assuming additive but non-linear models.

25.5 Software and Examples

The PC and FCI algorithms are implemented in the stand-alone Java program Tetrad
(http://www.phil.cmu.edu/projects/tetrad/). They are also implemented in
the pcalg package on CRAN (Kalisch et al., 2010, 2012). This package also includes
functions for calculating the effects of interventions from fitted graphs, assuming
linear models. The documentation for the functions is somewhat confusing; rather
see Kalisch et al. (2012) for a tutorial introduction.

It’s worth going through how pcalg works11. The code is designed to take ad-
vantage of the modularity and abstraction of the PC algorithm itself; it separates ac-
tually finding the graph completely from performing the conditional independence
test, which is rather a function the user supplies. (Some common ones are built in.)
For reasons of computational efficiency, in turn, the conditional independence tests
are set up so that the user can just supply a set of sufficient statistics, rather than the
raw data.

Let’s walk through an example12, using the mathmarks data set you saw in the
second exam. There we had grades (“marks”) from 88 students in five mathematical
subjects, algebra, analysis, mechanics, statistics and vectors. All five variables are
positively correlated with each other.

library(pcalg)
library(SMPracticals)
data(mathmarks)
suffStat <- list(C=cor(mathmarks),n=nrow(mathmarks))
pc.fit <- pc(suffStat, indepTest=gaussCItest, p=ncol(mathmarks),alpha=0.005)

This uses a Gaussian (-and-linear) test for conditional independence, gaussCItest,
which is built into the pcalg package. Basically, it tests whether X |= Y |Z by testing
whether the partial correlation of X and Y given Z is close to zero. These partial
correlations can all be calculated from the correlation matrix, so the line before cre-
ates the sufficient statistics needed by gaussCItest — the matrix of correlations and

11A word about installing the package: you’ll need the package Rgraphviz for drawing graphs, which
is hosted not on CRAN (like pcalg) but on BioConductor. Try installing it, and its dependencies, before
installing pcalg. See http://www.bioconductor.org/packages/2.10/bioc/readmes/Rgraphviz/
README for help on installing Rgraphviz.

12After Spirtes et al. (2001, §6.12, pp. 152–154).
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Inferred DAG for mathmarks

mechanics

vectors

algebra

analysis

statistics

library(Rgraphviz)
plot(pc.fit,labels=colnames(mathmarks),main="Inferred DAG for mathmarks")

Figure 25.3: DAG inferred by the PC algorithm from the mathmarks data. Two-
headed arrows, like undirected edges, indicate that the algorithm was unable to orient
the edge. (It is obscure why pcalg sometimes gives an edge it cannot orient no heads
and sometimes two.)

the number of data points. We also have to tell pc how many variables there are, and
what significance level to use in the test (here, 0.5%).

Before going on, I encourage you to run pc as above, but with verbose=TRUE,
and to study the output.

Figure 25.3 shows what it looks like. If we take it seriously, it says that grades in
analysis are driven by grades in algebra, while algebra in turn is driven by statistics
and vectors. While one could make up stories for why this would be so (perhaps
something about the curriculum?), it seems safer to regard this as a warning against
blindly trusting any algorithm —- a key assumption of the PC algorithm, after all, is
that there are no unmeasured but causally-relevant variables, and it is easy to believe
these are violated. For instance, while knowledge of different mathematical fields
may be causally linked (it would indeed be hard to learn much mechanics without
knowing about vectors), test scores are only imperfect measurements of knowledge.

The size of the test may seem low, but remember we are doing a lot of tests:

> summary(pc.fit)
Object of class ’pcAlgo’, from Call:
skeleton(suffStat = suffStat, indepTest = indepTest, p = p, alpha = alpha,

verbose = verbose, fixedGaps = fixedGaps, fixedEdges = fixedEdges,
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mechanics

vectors

algebra

analysis

statistics

plot(pc(suffStat, indepTest=gaussCItest, p=ncol(mathmarks),alpha=0.05),
labels=colnames(mathmarks),main="")

Figure 25.4: Inferred DAG when the size of the test is 0.05.

NAdelete = NAdelete, m.max = m.max)

Nmb. edgetests during skeleton estimation:
===========================================
Max. order of algorithm: 3
Number of edgetests from m = 0 up to m = 3 : 20 31 4 0

Graphical properties of skeleton:
=================================
Max. number of neighbours: 2 at node(s) 2
Avg. number of neighbours: 1

This tells us that it considered going up to conditioning on three variables (the maxi-
mum possible, since there are only five variables), that it did twenty tests of uncondi-
tional independence, 31 tests where it conditioned on one variable, four tests where
it conditioned on two, and none where it conditioned on three. This 55 tests in all,
so a simple Bonferroni correction suggests the over-all size is 55×0.005= 0.275. This
is probably pessimistic (the Bonferroni correction typically is). Setting α= 0.05 gives
a somewhat different graph (Figure 25.4).

For a second example13, let’s use some data on academic productivity among psy-

13Following Spirtes et al. (2001, §5.8.1, pp. 98–102).
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chologists. The two variables of ultimate interest were the publication (pubs) and
citation (cites) rates, with possible measured causes including ability (basically,
standardized test scores), graduate program quality grad (basically, the program’s na-
tional rank), the quality of the psychologist’s first job, first, a measure of productiv-
ity prod, and sex. There were 162 subjects, and while the actual data isn’t reported,
the correlation matrix is.

> rm
ability grad prod first sex cites pubs

ability 1.00 0.62 0.25 0.16 -0.10 0.29 0.18
grad 0.62 1.00 0.09 0.28 0.00 0.25 0.15
prod 0.25 0.09 1.00 0.07 0.03 0.34 0.19
first 0.16 0.28 0.07 1.00 0.10 0.37 0.41
sex -0.10 0.00 0.03 0.10 1.00 0.13 0.43
cites 0.29 0.25 0.34 0.37 0.13 1.00 0.55
pubs 0.18 0.15 0.19 0.41 0.43 0.55 1.00

The model found by pcalg is fairly reasonable (Figure 25.5). Of course, the linear-
and-Gaussian assumption has no particular support here, and there is at least one
variable for which it must be wrong (which?), but unfortunately with just the corre-
lation matrix we cannot go further.
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ability

grad prod

first sex cites

pubs

plot(pc(list(C=rm,n=162),indepTest=gaussCItest,p=7,alpha=0.01),
labels=colnames(rm),main="")

Figure 25.5: Causes of academic success among psychologists. The arrow from cita-
tions to publications is a bit odd, but not impossible — people who get cited more
might get more opportunities to do research and so to publish.
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25.6 Limitations on Consistency of Causal Discovery
There are some important limitations to causal discovery algorithms (Spirtes et al.,
2001, §12.4). They are universally consistent: for all causal graphs G,14

lim
n→∞

Pr
�

bGn 6=G
�

= 0 (25.8)

The probability of getting the graph wrong can be made arbitrarily small by using
enough data. However, this says nothing about how much data we need to achieve a
given level of confidence, i.e., the rate of convergence. Uniform consistency would
mean that we could put a bound on the probability of error as a function of n which
did not depend on the true graph G. Robins et al. (2003) proved that no uniformly-
consistent causal discovery algorithm can exist. The issue, basically, is that the Ad-
versary could make the convergence in Eq. 25.8 arbitrarily slow by selecting a distri-
bution which, while faithful to G, came very close to being unfaithful, making some
of the dependencies implied by the graph arbitrarily small. For any given depen-
dence strength, there’s some amount of data which will let us recognize it with high
confidence, but the Adversary can make the required data size as large as he likes by
weakening the dependence, without ever setting it to zero.15

The upshot is that so uniform, universal consistency is out of the question; we
can be universally consistent, but without a uniform rate of convergence; or we can
converge uniformly, but only on some less-than-universal class of distributions. These
might be ones where all the dependencies which do exist are not too weak (and so not
too hard to learn reliably from data), or the number of true edges is not too large (so
that if we haven’t seen edges yet they probably don’t exist; Janzing and Herrmann,
2003; Kalisch and Bühlmnann, 2007).

It’s worth emphasizing that the Robins et al. (2003) no-uniform-consistency result
applies to any method of discovering causal structure from data. Invoking human
judgment, Bayesian priors over causal structures, etc., etc., won’t get you out of it.

14If the true distribution is faithful to multiple graphs, then we should read G as their equivalence class,
which has some undirected edges.

15Roughly speaking, if X and Y are dependent given Z , the probability of missing this conditional
dependence with a sample of size n should go to zero like O(2−nI [X ;Y |Z]), I being mutual information.
To make this probability equal to, say, α we thus need n =O(− logα/I ) samples. The Adversary can thus
make n extremely large by making I very small, yet positive.
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25.7 Further Reading
The best single reference on causal discovery algorithms remains Spirtes et al. (2001).
A lot of work has been done in recent years by the group centered around ETH-
Zürich, beginning with Kalisch and Bühlmnann (2007), connecting this to modern
statistical concerns about sparse effects and high-dimensional data.

As already mentioned, the best reference on partial identification is Manski (2007).
Partial identification of causal effects due to multiple equivalent DAGs is considered
in Maathuis et al. (2009), along with efficient algorithms for linear systems, which are
applied in Maathuis et al. (2010), and implemented in the pcalg package as ida().

Discovery is possible for directed cyclic graphs, though since it’s harder to un-
derstand what such models mean, it is less well-developed. Important papers on this
topic include Richardson (1996) and Lacerda et al. (2008).

25.8 Exercises
1. Prove that, assuming faithfulness, a three-variable chain and a three-variable

fork imply exactly the same set of dependence and independence relations, but
that these are different from those implied by a three-variable collider. Are
any implications common to chains, forks, and colliders? Could colliders be
distinguished from chains and forks without assuming faithfulness?

2. Prove that if X and Y are not parent and child, then either X |= Y , or there
exists a set of variables S such that X |= Y |S. Hint: start with the Markov
property, that any X is independent of all its non-descendants given its parents,
and consider separately the cases where Y a descendant of X and those where
it is not.

3. Prove that the graph produced by the edge-removal step of the PC algorithm
is exactly the same as the graph produced by the edge-removal step of the SGS
algorithm. Hint: SGS removes the edge between X and Y when X |= Y |S for
even one set S.

4. Prove that if X |= Y |S for some set of variables S, then X |= Y |S ′, where every
variable in S ′ is a neighbor of X or Y .

5. When, exactly, does E[Y |X ,Z] = E[Y |Z] imply Y |= X |Z?

6. Would the SGS algorithm work on a non-causal, merely-probabilistic DAG? If
so, in what sense is it a causal discovery algorithm? If not, why not?

7. Describe how to use bandwidth selection as a conditional independence test.

8. Read Kalisch et al. (2012) and write a conditional independence test function
based on bandwidth selection. Check that your test function gives the right
size when run on test cases where you know the variables are conditionally
independent. Check that your test function works with pcalg::pc.
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Chapter 26

Experimental Design

[[Chapter to come: basic ideas of experimental design; randomization; blocking;
factorial designs; partial factorial designs; optimal designs; within-subject designs in-
cluding cross-over]]
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Chapter 27

Time Series

So far, we have assumed that all data points are pretty much independent of each
other. In the chapters on regression, we assumed that each Yi was independent of
every other, given its Xi , and we often assumed that the Xi were themselves indepen-
dent. In the chapters on multivariate distributions and even on causal inference, we
allowed for arbitrarily complicated dependence between the variables, but each data-
point was assumed to be generated independently. We will now relax this assumption,
and see what sense we can make of dependent data.

27.1 Time Series, What They Are

The simplest form of dependent data are time series, which are just what they sound
like: a series of values recorded over time. The most common version of this, in
statistical applications, is to have measurements of a variable or variables X at equally-
spaced time-points starting from t , written say Xt ,Xt+h ,Xt+2h , . . ., or X (t ),X (t +
h),X (t + 2h), . . .. Here h, the amount of time between observations, is called the
“sampling interval”, and 1/h is the “sampling frequency” or “sampling rate”.

Figure 27.1 shows two fairly typical time series. One of them is actual data (the
number of lynxes trapped each year in a particular region of Canada); the other is
the output of a purely artificial model. (Without the labels, it might not be obvious
which one was which.) The basic idea of all of time series analysis is one which we’re
already familiar with from the rest of statistics: we regard the actual time series we see
as one realization of some underlying, partially-random (“stochastic”) process, which
generated the data. We use the data to make guesses (“inferences”) about the process,
and want to make reliable guesses while being clear about the uncertainty involved.
The complication is that each observation is dependent on all the other observations;
in fact it’s usually this dependence that we want to draw inferences about.

Other kinds of time series One sometimes encounters irregularly-sampled time
series, X (t1),X (t2), . . ., where ti − ti−1 6= ti+1 − ti . This is mostly an annoyance,
unless the observation times are somehow dependent on the values. Continuously-
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data(lynx); plot(lynx)

Figure 27.1: Left: annual number of trapped lynxes in the Mackenzie River region of
Canada. Right: a toy dynamical model. (See code online for the toy.)

observed processes are rarer — especially now that digital sampling has replaced ana-
log measurement in so many applications. (It is more common to model the process
as evolving continuously in time, but observe it at discrete times.) We skip both of
these in the interest of space.

Regular, irregular or continuous time series all record the same variable at every
moment of time. An alternative is to just record the sequence of times at which some
event happened; this is called a “point process”. More refined data might record the
time of each event and its type — a “marked point process”. Point processes include
very important kinds of data (e.g., earthquakes), but they need special techniques,
and we’ll skip them.

Notation For a regularly-sampled time series, it’s convenient not to have to keep
writing the actual time, but just the position in the series, as X1,X2, . . ., or X (1),X (2), . . ..
This leads to a useful short-hand, that X j

i = (Xi ,Xi+1, . . .X j−1,X j ), a whole block of
time; some people write Xi : j with the same meaning.

27.2 Stationarity
In our old IID world, the distribution of each observation is the same as the distribu-
tion of every other data point. It would be nice to have something like this for time
series. The property is called stationarity, which doesn’t mean that the time series
never changes, but that its distribution doesn’t.

More precisely, a time series is strictly stationary or strongly stationary when
X k

1 and X t+k−1
t have the same distribution, for all k and t — the distribution of
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blocks of length k is time-invariant. Again, this doesn’t mean that every block of
length k has the same value, just that it has the same distribution of values.

If there is strong or strict stationarity, there should be weak or loose (or wide-
sense) stationarity, and there is. All it requires is that E[X1] = E

�

Xt
�

, and that
Cov

�

X1,Xk
�

= Cov
�

Xt ,Xt+k−1
�

. (Notice that it’s not dealing with whole blocks
of time any more, just single time-points.) Clearly (exercise!), strong stationarity
implies weak stationarity, but not, in general, the other way around, hence the names.
It may not surprise you to learn that strong and weak stationarity coincide when Xt
is a Gaussian process, but not,in general, otherwise.

You should convince yourself that an IID sequence is strongly stationary.

27.2.1 Autocorrelation
Time series are serially dependent: Xt is in general dependent on all earlier values
in time, and on all later ones. Typically, however, there is decay of dependence
(sometimes called decay of correlations): Xt and Xt+h become more and more nearly
independent as h→∞. The oldest way of measuring this is the autocovariance,

γ (h) =Cov
�

Xt ,Xt+h
�

(27.1)

which is well-defined just when the process is weakly stationary. We could equally
well use the autocorrelation,

ρ(h) =
Cov

�

Xt ,Xt+h
�

Var
�

Xt
� =

γ (h)

γ (0)
(27.2)

again using stationarity to simplify the denominator.
As I said, for most time series γ (h) → 0 as h grows. Of course, γ (h) could be

exactly zero while Xt and Xt+h are strongly dependent. Figure 27.2 shows the auto-
correlation functions (ACFs) of the lynx data and the simulation model; the correla-
tion for the latter is basically never distinguishable from zero, which doesn’t accord
at all with the visual impression of the series. Indeed, we can confirm that some-
thing is going on the series by the simple device of plotting Xt+1 against Xt (Figure
27.3). More general measures of dependence would include looking at the Spearman
rank-correlation of Xt and Xt+h , or quantities like mutual information.

Autocorrelation is important for four reasons, however. First, because it is the
oldest measure of serial dependence, it has a “large installed base”: everybody knows
about it, they use it to communicate, and they’ll ask you about it. Second, in the
rather special case of Gaussian processes, it really does tell us everything we need
to know. Third, in the somewhat less special case of linear prediction, it tells us
everything we need to know. Fourth and finally, it plays an important role in a
crucial theoretical result, which we’ll go over next.
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Figure 27.2: Autocorrelation functions of the lynx data (above) and the simulation
(below). The acf function plots the autocorrelation function as an automatic side-
effect; it actually returns the actual value of the autocorrelations, which you can
capture. The 95% confidence interval around zero is computed under Gaussian as-
sumptions which shouldn’t be taken too seriously, unless the sample size is quite
large, but are useful as guides to the eye.
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Figure 27.3: Plots of Xt+1 versus Xt , for the lynx (left) and the simulation (right).
(See code online.) Note that even though the correlation between successive iterates
is next to zero for the simulation, there is clearly a lot of dependence.
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27.2.2 The Ergodic Theorem

With IID data, the ultimate basis of all our statistical inference is the law of large
numbers, which told us that

1

n

n
∑

i=1

Xi → E[X1] (27.3)

For complicated historical reasons, the corresponding result for time series is
called the ergodic theorem1. The most general and powerful versions of it are quite
formidable, and have very subtle proofs, but there is a simple version which gives the
flavor of them all, and is often useful enough.

27.2.2.1 The World’s Simplest Ergodic Theorem

Suppose Xt is weakly stationary, and that

∞
∑

h=0

|γ (h)|= γ (0)τ <∞ (27.4)

(Remember that γ (0) =Var
�

Xt
�

.) The quantity τ is called the correlation time, or
integrated autocorrelation time.

Now consider the average of the first n observations,

X n =
1

n

n
∑

t=1

Xt (27.5)

This time average is a random variable. Its expectation value is

E
�

X n

�

=
1

n

n
∑

t=1

E
�

Xt
�

= E[X1] (27.6)

1In the late 1800s, the physicist Ludwig Boltzmann needed a word to express the idea that if you took
an isolated system at constant energy and let it run, any one trajectory, continued long enough, would
be representative of the system as a whole. Being a highly-educated nineteenth century German-speaker,
Boltzmann knew far too much ancient Greek, so he called this the “ergodic property”, from ergon “energy,
work” and hodos “way, path”. The name stuck.
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because the mean is stationary. What about its variance?

Var
�

X n

�

= Var





1

n

n
∑

t=1

Xt



 (27.7)

=
1

n2





n
∑

t=1

Var
�

Xt
�

+ 2
n
∑

t=1

n
∑

s=t+1

Cov
�

Xt ,Xs
�



 (27.8)

=
1

n2



nVar[X1]+ 2
n
∑

t=1

n
∑

s=t+1

γ (s − t )



 (27.9)

≤
1

n2



nγ (0)+ 2
n
∑

t=1

n
∑

s=t+1

|γ (s − t )|


 (27.10)

≤
1

n2



nγ (0)+ 2
n
∑

t=1

n
∑

h=1

|γ (h)|


 (27.11)

≤
1

n2



nγ (0)+ 2
n
∑

t=1

∞
∑

h=1

|γ (h)|


 (27.12)

=
nγ (0)(1+ 2τ)

n2
(27.13)

=
γ (0)(1+ 2τ)

n
(27.14)

Eq. 27.9 uses stationarity again, and then Eq. 27.13 uses the assumption that the
correlation time τ is finite.

Since E
�

Xn

�

= E[X1], and Var
�

X n

�

→ 0, we have that Xn→ E[X1], exactly as
in the IID case. (“Time averages converge on expected values.”) In fact, we can say a
bit more. Remember Chebyshev’s inequality: for any random variable Z ,

Pr (|Z −E[Z] |> ε)≤
Var[Z]

ε2
(27.15)

so

Pr
�

|X n −E[X1] |> ε
�

≤
γ (0)(1+ 2τ)

nε2
(27.16)

which goes to zero as n grows for any given ε.
You may wonder whether the condition that

∑∞
h=0 |γ (h)|<∞ is as weak as pos-

sible. It turns out that it can in fact be weakened to just limn→∞
1
n

∑n
h=0 γ (h) = 0, as

indeed the proof above might suggest.

27.2.2.2 Rate of Convergence

If the Xt were all IID, or even just uncorrelated, we would have Var
�

X n

�

= γ (0)/n
exactly. Our bound on the variance is larger by a factor of (1+ 2τ), which reflects
the influence of the correlations. Said another way, we can more or less pretend
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that instead of having n correlated data points, we have n/(1+ 2τ) independent data
points, that n/(1+ 2τ) is our effective sample size2

Generally speaking, dependence between observations reduces the effective sam-
ple size, and the stronger the dependence, the greater the reduction. (For an extreme,
consider the situation where X1 is randomly drawn, but thereafter Xt+1 = Xt .) In
more complicated situations, finding the effective sample size is itself a tricky under-
taking, but it’s often got this general flavor.

27.2.2.3 Why Ergodicity Matters

The ergodic theorem is important, because it tells us that a single long time series
becomes representative of the whole data-generating process, just the same way that
a large IID sample becomes representative of the whole population or distribution.
We can therefore actually learn about the process from empirical data.

Strictly speaking, we have established that time-averages converge on expectations
only for Xt itself, not even for f (Xt ) where the function f is non-linear. It might be
that f (Xt ) doesn’t have a finite correlation time even though Xt does, or indeed vice
versa. This is annoying; we don’t want to have to go through the analysis of the last
section for every different function we might want to calculate.

When people say that the whole process is ergodic, they roughly speaking mean
that

1

n

n
∑

t=1

f (X t+k−1
t )→ E

�

f (X k
1 )
�

(27.17)

for any reasonable function f . This is (again very roughly) equivalent to

1

n

n
∑

t=1

Pr
�

X k
1 ∈A,X t+l−1

t ∈ B
�

→ Pr
�

X k
1 ∈A

�

Pr
�

X l
1 ∈ B

�

(27.18)

which is a kind of asymptotic independence-on-average3

If our data source is ergodic, then what Eq. 27.17 tells us is that sample averages
of any reasonable function are representative of expectation values, which is what we
need to be in business statistically. This in turn is basically implied by stationarity.4

What does this let us do?
2Some people like to define the correlation time as, in this notation, 1+ 2τ for just this reason.
3It’s worth sketching a less rough statement. Instead of working with Xt , work with the whole future

trajectory Yt = (Xt ,Xt+1,Xt+2, . . .). Now the dynamics, the rule which moves us into the future, can be
summed up in a very simple, and deterministic, operation T : Yt+1 = T Yt = (Xt+1,Xt+2,Xt+3, . . .). A
set of trajectories is invariant if it is left unchanged by T : for every y ∈ A, there is another y ′ in A where
T y ′ = y. A process is ergodic if every invariant set either has probability 0 or probability 1. What this
means is that (almost) all trajectories generated by an ergodic process belong to a single invariant set, and
they all wander from every part of that set to every other part — they are metrically transitive. (Because:
no smaller set with any probability is invariant.) Metric transitivity, in turn, is equivalent, assuming
stationarity, to n−1∑n−1

t=0 Pr (Y ∈A,T t Y ∈ B)→ Pr (Y ∈A)Pr (Y ∈ B). From metric transitivity follows
Birkhoff’s “individual” ergodic theorem, that n−1∑n−1

t=0 f (T t Y )→ E[ f (Y )], with probability 1. Since a
function of the trajectory can be a function of a block of length k, we get Eq. 27.17.

4Again, a sketch of a less rough statement. Use Y again for whole trajectories. Every stationary
distribution for Y can be written as a mixture of stationary and ergodic distributions, rather as we wrote
complicated distributions as mixtures of simple Gaussians in Chapter 20. (This is called the “ergodic
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27.3 Markov Models

For this section, we’ll assume that Xt comes from a stationary, ergodic time series.
So for any reasonable function f , the time-average of f (Xt ) converges on E[ f (X1)].
Among the “reasonable” functions are the indicators, so

1

n

n
∑

t=1

1A(Xt )→ Pr (X1 ∈A) (27.19)

Since this also applies to functions of blocks,

1

n

n
∑

t=1

1A,B (Xt ,Xt+1)→ Pr (X1 ∈A,X2 ∈ B) (27.20)

and so on. If we can learn joint and marginal probabilities, and we remember how to
divide, then we can learn conditional probabilities.

It turns out that pretty much any density estimation method which works for
IID data will also work for getting the marginal and conditional distributions of time
series (though, again, the effective sample size depends on how quickly dependence
decays). So if we want to know p(xt ), or p(xt+1|xt ), we can estimate it just as we
learned how to do in Chapter 16.

Now, the conditional pdf p(xt+1|xt ) always exists, and we can always estimate
it. But why stop just one step back into the past? Why not look at p(xt+1|xt , xt−1),
or for that matter p(xt+1|x t

t−999)? There are three reasons, in decreasing order of
pragmatism.

• Estimating p(xt+1|x t
t−999) means estimating a thousand-and-one-dimensional

distribution. The curse of dimensionality will crush us.

• Because of the decay of dependence, there shouldn’t be much difference, much
of the time, between p(xt+1|x t

t−999) and p(xt+1|x t
t−998), etc. Even if we could

go very far back into the past, it shouldn’t, usually, change our predictions very
much.

• Sometimes, a finite, short block of the past completely screens off the remote
past.

You will remember the Markov property from your previous probability classes:

Xt+1 |= X
t−1

1 |Xt (27.21)

decomposition” of the process.) We can think of this as first picking an ergodic process according to
some fixed distribution, and then generating Y from that process. Time averages computed along any one
trajectory thus converge according to Eq. 27.17. If we have only a single trajectory, it looks just like a
stationary and ergodic process. If we have multiple trajectories from the same source, each one may be
converging to a different ergodic component. It is common, and only rarely a problem, to assume that the
data source is not only stationary but also ergodic.
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When the Markov property holds, there is simply no point in looking at p(xt+1|xt , xt−1),
because it’s got to be just the same as p(xt+1|xt ). If the process isn’t a simple Markov
chain but has a higher-order Markov property,

Xt+1 |= X
t−k

1 |X t
t−k+1 (27.22)

then we never have to condition on more than the last k steps to learn all that there
is to know. The Markov property means that the current state screens off the future
from the past.

It is always an option to model Xt as a Markov process, or a higher-order Markov
process. If it isn’t exactly Markov, if there’s really some dependence between the past
and the future even given the current state, then we’re introducing some bias, but it
can be small, and dominated by the reduced variance of not having to worry about
higher-order dependencies.

27.3.1 Meaning of the Markov Property
The Markov property is a weakening of both being strictly IID and being strictly
deterministic.

That being Markov is weaker than being IID is obvious: an IID sequence satisfies
the Markov property, because everything is independent of everything else no matter
what we condition on.

In a deterministic dynamical system, on the other hand, we have Xt+1 = g (Xt )
for some fixed function g . Iterating this equation, the current state Xt fixes the
whole future trajectory Xt+1,Xt+2, . . .. In a Markov chain, we weaken this to Xt+1 =
g (Xt , Ut ), where the Ut are IID noise variables (which we can take to be uniform for
simplicity). The current state of a Markov chain doesn’t fix the exact future trajec-
tory, but it does fix the distribution over trajectories.

The real meaning of the Markov property, then, is about information flow: the
current state is the only channel through which the past can affect the future. [[TODO: Maximum likeli-

hood for Markov models]]
[[TODO: Variable length
Markov chains]]
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t x
1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 3928
1828 5943
1829 4950
. . .

⇒

lag0 lag1 lag2 lag3
871 585 321 269
1475 871 585 321
2821 1475 871 585
3928 2821 1475 871
5943 3928 2821 1475
4950 5943 3928 2821
. . .

Figure 27.4: Turning a time series (here, the beginning of lynx) into a regression-
suitable matrix.

design.matrix.from.ts <- function(ts,order) {
n <- length(ts)
x <- ts[(order+1):n]
for (lag in 1:order) {

x <- cbind(x,ts[(order+1-lag):(n-lag)])
}
colnames(x) <- c("lag0",paste("lag",1:order,sep=""))
return(as.data.frame(x))

}

Code Example 32: Example code for turning a time series into a design matrix,
suitable for regression.

27.4 Autoregressive Models

Instead of trying to estimate the whole conditional distribution of Xt , we can just
look at its conditional expectation. This is a regression problem, but since we are
regressing Xt on earlier values of the series, it’s called an autoregression:

E
h

Xt |X
t−1
t−p = x p

1

i

= r (x p
1 ) (27.23)

If we think the process is Markov of order p, then of course there is no point in
conditioning on more than p steps of the past when doing an autoregression. But
even if we don’t think the process is Markov, the same reasons which inclined us
towards Markov approximations also make limited-order autoregressions attractive.

Since this is a regression problem, we can employ all the tools we know for regres-
sion analysis: linear models, kernel regression, spline smoothing, additive models,
etc., mixtures of regressions, etc. Since we are regressing Xt on earlier values from
the same series, it is useful to have tools for turning a time series into a regression-style
design matrix (as in Figure 27.4); see Code Example 32.
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Suppose p = 1. Then we essentially want to draw regression curves through plots
like those in Figure 27.3. Figure 27.5 shows an example for the artificial series.

27.4.1 Autoregressions with Covariates

Nothing keeps us from adding a variable other than the past of Xt to the regression:

E
�

Xt+1|X
t
t−k+1,Z

�

(27.24)

or even another time series:

E
�

Xt+1|X
t
t−k+1,Z t

t−l+1

�

(27.25)

These are perfectly well-defined conditional expectations, and quite estimable in prin-
ciple. Of course, adding more variables to a regression means having to estimate
more, so again the curse of dimensionality comes up, but our methods are very much
the same as in the basic regression analyses.

27.4.2 Additive Autoregressions

As before, if we want some of the flexibility of non-parametric smoothing, without
the curse of dimensionality, we can try to approximate the conditional expectation
as an additive function:

E
h

Xt |X
t−1
t−p

i

≈ α0+
p
∑

j=1

g j (Xt− j ) (27.26)

Example: The lynx Let’s try fitting an additive model for the lynx. Code Example
33 shows some code for doing this. (Most of the work is re-shaping the time series
into a data frame, and then automatically generating the right formula for gam.) Let’s
try out p = 2.

lynx.aar2 <- aar(lynx,2)

This inherits everything we can do with a GAM, so we can do things like plot
the partial response functions (Figure 27.6), plot the fitted values against the actual
(Figure 27.7), etc. To get a sense of how well it can actually extrapolate, Figure 27.8
re-fits the model to just the first 80 data points, and then predicts the remaining 34.

27.4.3 Linear Autoregression

When people talk about autoregressive models, they usually (alas) just mean linear
autoregressions. There is almost never any justification in scientific theory for this
preference, but we can always ask for the best linear approximation to the true au-
toregression, if only because it’s fast to compute and fast to converge.
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plot(lag0 ~ lag1,data=design.matrix.from.ts(y,1),xlab=expression(y[t-1]),
ylab=expression(y[t]),pch=16)

abline(lm(lag0~lag1,data=design.matrix.from.ts(y,1)),col="red")
yaar1 <- aar(y,order=1)
points(y[-length(y)],fitted(yaar1),col="blue")

Figure 27.5: Plotting successive values of the artificial time series against each other,
along with the linear regression, and a spline curve (see below for the aar function,
which fits additive autoregressive models; with order=1, it just fits a spline.
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plot(lynx.aar2,pages=1)

Figure 27.6: Partial response functions for the second-order additive autoregression
model of the lynx. Notice that a high count last year predicts a higher count this
year, but a high count two years ago predicts a lower count this year. This is the sort
of alternation which will tend to drive oscillations.
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plot(lynx)
lines(1823:1934,fitted(lynx.aar2),lty="dashed")

Figure 27.7: Actual time series (solid line) and predicted values (dashed) for the
second-order additive autoregression model of the lynx. The match is quite good,
but of course every one of these points was used to learn the model, so it’s not quite
as impressive as all that. (Also, the occasional prediction of a negative number of
lynxes is less than ideal.)
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lynx.aar2b <- aar(lynx[1:80],2)
out.of.sample <- design.matrix.from.ts(lynx[-(1:78)],2)
lynx.preds <- predict(lynx.aar2b,newdata=out.of.sample)
plot(lynx)
lines(1823:1900,fitted(lynx.aar2b),lty="dashed")
lines(1901:1934,lynx.preds,col="grey")

Figure 27.8: Out-of-sample forecasting. The same model specification as before is
estimated on the first 80 years of the lynx data, then used to predict the remaining
34 years. Solid black line, data; dashed line, the in-sample prediction on the training
data; grey lines, predictions on the testing data. The RMS errors are 723 lynxes/year
in-sample, 922 lynxes/year out-of-sample.
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aar <- function(ts,order) {
stopifnot(require(mgcv))
fit <- gam(as.formula(auto.formula(order)),

data=design.matrix.from.ts(ts,order))
return(fit)

}

auto.formula <- function(order) {
inputs <- paste("s(lag",1:order,")",sep="",collapse="+")

form <- paste("lag0 ~ ",inputs)
return(form)

}

Code Example 33: Fitting an additive autoregression of arbitrary order to a time
series. See online for comments.

The analysis we did in Chapter 2 of how to find the optimal linear predictor car-
ries over with no change whatsoever. If we want to predict Xt as a linear combination
of the last k observations, Xt−1,Xt−2, . . .Xt−p , then the ideal coefficients β are

β=
�

Var
h

X t−1
t−p

i�−1
Cov

h

X t−1
t−p ,Xt

i

(27.27)

where Var
h

X t
t−p

i

is the variance-covariance matrix of (Xt−1, . . .Xt−p ) and similarly

Cov
h

X t−1
t−p ,Xt

i

is a vector of covariances. Assume stationarity, Var
�

Xt
�

is constant

in t , and so the common factor of the over-all variance goes away, and β could be
written entirely in terms of the correlation function ρ. Stationarity also lets us esti-
mate these covariances, by taking time-averages.

A huge amount of effort is given over to using linear AR models, which in my
opinion is out of all proportion to their utility — but very reflective of what was
computationally feasible up to about 1980. My experience is that results like Figure
27.9 is pretty typical.

27.4.3.1 “Unit Roots” and Stationary Solutions

Suppose we really believed a first-order linear autoregression,

Xt+1 = α+βXt + εt (27.28)

with εt some IID noise sequence. Let’s suppose that the mean is zero for simplicity,
so α= 0. Then

Xt+2 = β2Xt +βεt + εt+1 (27.29)

Xt+3 = β3Xt +β
2εt +βεt+1+ εt+2 , (27.30)

etc. If this is going to be stationary, it’d better be the case that what happened at
time t doesn’t go on to dominate what happens at all later times, but clearly that

11:36 Saturday 22nd November, 2014



515 27.4. AUTOREGRESSIVE MODELS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yt−1

y t

library(tseries)
yar8 <- arma(y,order=c(8,0))
points(y[-length(y)],fitted(yar8)[-1],col="red")

Figure 27.9: Adding the predictions of an eighth-order linear AR model (red dots)
to Figure 27.5. We will see the arma function in more detail next time; for now,
it’s enough to know that when the second component of its order argument is 0, it
estimates and fits a linear AR model.
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will happen if |β|> 1, whereas if |β|< 1, eventually all memory of Xt (and εt ) fades
away. The linear AR(1) model in fact can only produce stationary distributions when
|β|< 1.

For higher-order linear AR models, with parameters β1,β2, . . .βp , the corre-
sponding condition is that all the roots of the polynomial

p
∑

j=1

β j z j − 1 (27.31)

must be outside the unit circle. When this fails, when there is a “unit root”, the linear
AR model cannot generate a stationary process.

There is a fairly elaborate machinery for testing for unit roots, which is sometimes
also used to test for non-stationarity. It is not clear how much this really matters. A
non-stationary but truly linear AR model can certainly be estimated5; a linear AR
model can be non-stationary even if it has no unit roots6; and if the linear model is
just an approximation to a non-linear one, the unit-root criterion doesn’t apply to
the true model anyway.

27.4.4 Conditional Variance

Having estimated the conditional expectation, we can estimate the conditional vari-
ance Var

h

Xt |X t−1
t−p

i

just as we estimated other conditional variances, in Chapter 7.

Example: lynx The lynx series seems ripe for fitting conditional variance functions
— presumably when there are a few thousand lynxes, the noise is going to be larger
than when there are only a few hundred.

sq.res <- residuals(lynx.aar2)^2
lynx.condvar1 <- gam(sq.res ~ s(lynx[-(1:2)]))
lynx.condvar2 <- gam(sq.res ~ s(lag1)+s(lag2),

data=design.matrix.from.ts(lynx,2))

I have fit two different models for the conditional variance here, just because.
Figure 27.10 shows the data, and the predictions of the second-order additive AR
model, but with just the standard deviation bands corresponding to the first of these
two models; you can try making the analogous plot for lynx.condvar2.

27.4.5 Regression with Correlated Noise; Generalized Least Squares

Suppose we have an old-fashioned regression problem

Yt = r (Xt )+ εt (27.32)

5Because the correlation structure stays the same, even as the means and variances can change. Consider
Xt =Xt−1+ εt , with εt IID.

6Start it with X1 very far from the expected value.
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plot(lynx,ylim=c(-500,10000))
sd1 <- sqrt(fitted(lynx.condvar1))
lines(1823:1934,fitted(lynx.aar2)+2*sd1,col="grey")
lines(1823:1934,fitted(lynx.aar2)-2*sd1,col="grey")
lines(1823:1934,sd1,lty="dotted")

Figure 27.10: The lynx data (black line), together with the predictions of the additive
autoregression ±2 conditional standard deviations. The dotted line shows how the
conditional standard deviation changes over time; notice how it ticks upwards around
the big spikes in population.
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only now the noise terms εt are themselves a dependent time series. Ignoring this
dependence, and trying to estimate m by minimizing the mean squared error, is very
much like ignoring heteroskedasticity. (In fact, heteroskedastic εt are a special case.)
What we saw in Chapter 7 is that ignoring heteroskedasticity doesn’t lead to bias,
but it does mess up our understanding of the uncertainty of our estimates, and is
generally inefficient. The solution was to weight observations, with weights inversely
proportional to the variance of the noise.

With correlated noise, we do something very similar. Suppose we knew the co-
variance function γ (h) of the noise. From this , we could construct the variance-
covariance matrix Γ of the εt (since Γi j = γ (i − j ), of course).

We can use this as follows. Say that our guess about the regression function is m.
Stacking y1, y2, . . . yn into a matrix y as usual in regression, and likewise creating m(x),
the Gauss-Markov theorem (Appendix G) tells us that the most efficient estimate is
the solution to the generalized least squares problem,

bmGLS = argmin
m

1

n
(y−m(x))TΓ−1(y−m(x)) (27.33)

as opposed to just minimizing the mean-squared error,

bmOLS = argmin
m

1

n
(y−m(x))T (y−m(x)) (27.34)

Multiplying by the inverse of Γ appropriately discounts for observations which are
very noisy, and discounts for correlations between observations introduced by the
noise.7

This raises the question of how to get γ (h) in the first place. If we knew the true
regression function r , we could use the covariance of Yt − r (Xt ) across different t .
Since we don’t know r , but have only an estimate m̂, we can try alternating between
using a guess at γ to estimate m̂, and using m̂ to improve our guess at γ . We used this
sort of iterative approximation for weighted least squares, and it can work here, too.

7If you want to use a linear model for m, this can be carried through to an explicit modification of the
usual ordinary-least-squares estimate — Exercise 1.
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27.5 Bootstrapping Time Series

The big picture of bootstrapping doesn’t change: simulate a distribution which is
close to the true one, repeat our estimate (or test or whatever) on the simulation, and
then look at the distribution of this statistic over many simulations. The catch is that
the surrogate data from the simulation has to have the same sort of dependence as the
original time series. This means that simple resampling is just wrong (unless the data
are independent), and our simulations will have to be more complicated.

27.5.1 Parametric or Model-Based Bootstrap

Conceptually, the simplest situation is when we fit a full, generative model — some-
thing which we could step through to generate a new time series. If we are confident
in the model specification, then we can bootstrap by, in fact, simulating from the
fitted model. This is the parametric bootstrap we saw in Chapter 6.

27.5.2 Block Bootstraps

Simple resampling won’t work, because it destroys the dependence between succes-
sive values in the time series. There is, however, a clever trick which does work, and
is almost as simple. Take the full time series xn

1 and divide it up into overlapping
blocks of length k, so xk

1 , xk+1
2 , . . . xn

n−k+1
. Now draw m = n/k of these blocks with

replacement8, and set them down in order. Call the new time series x̃n
1 .

Within each block, we have preserved all of the dependence between observa-
tions. It’s true that successive observations are now completely independent, which
generally wasn’t true of the original data, so we’re introducing some inaccuracy, but
we’re certainly coming closer than just resampling individual observations (which
would be k = 1). Moreover, we can make this inaccuracy smaller and smaller by
letting k grow as n grows. One can show9 that the optimal k =O(n1/3); this gives a
growing number (O(n2/3)) of increasingly long blocks, capturing more and more of
the dependence. (We will consider how exactly to pick k in the next chapter.)

The block bootstrap scheme is extremely clever, and has led to a great many vari-
ants. Three in particular are worth mentioning.

1. In the circular block bootstrap (or circular bootstrap), we “wrap the time se-
ries around a circle”, so that it goes x1, x2, . . . xn1

, xn , x1, x2, . . .. We then sample
the n blocks of length k this gives us, rather than the merely n − k blocks of
the simple block bootstrap. This makes better use of the information we have
about dependence on distances < k.

2. In the block-of-blocks bootstrap, we first divide the series into blocks of length
k2, and then subdivide each of those into sub-blocks of length k1 < k2. To
generate a new series, we sample blocks with replacement, and then sample

8If n/k isn’t a whole number, round.
9I.e., I will not show.
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t x
1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 3928
1828 5943

⇒

lag2 lag1 lag0
269 321 585
321 585 871
585 871 1475
871 1475 2821
1475 2821 3928
2821 3928 5943

⇒

lag2 lag1 lag0
269 321 585
871 1475 2821
585 871 1475

⇒

t x̃
1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 585
1828 871

Figure 27.11: Scheme for block bootstrapping: turn the time series (here, the first
eight years of lynx) into blocks of consecutive values; randomly resample enough of
these blocks to get a series as long as the original; then string the blocks together in
order. See rblockboot online for code.

sub-blocks within each block with replacement. This gives a somewhat better
idea of longer-range dependence, though we have to pick two block-lengths.

3. In the stationary bootstrap, the length of each block is random, chosen from
a geometric distribution of mean k. Once we have chosen a sequence of block
lengths, we sample the appropriate blocks with replacement. The advantage
of this is that the ordinary block bootstrap doesn’t quite give us a stationary
time series. (The distribution of X k

k−1
is not the same as the distribution of

X k+1
k

.) Averaging over the random choices of block lengths, the stationary
bootstrap does. It tends to be slightly slower to converge that the block or
circular bootstrap, but there are some applications where the surrogate data
really needs to be strictly stationary.

27.5.3 Sieve Bootstrap

A compromise between model-based and non-parametric bootstraps is to use a sieve
bootstrap. This also simulates from models, but we don’t really believe in them;
rather, we just want them to be reasonable easy to fit and simulate, yet flexible enough
that they can capture a wide range of processes if we just give them enough capacity.
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plot(lynx)
lines(1821:1934, rblockboot(lynx,4),col="grey")

Figure 27.12: The lynx time series, and one run of resampling it with a block boot-
strap, block length = 4. (See online for the code to rblockboot.)
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We then (slowly) let them get more complicated as we get more data10. One popular
choice is to use linear AR( p) models, and let p grow with n — but there is nothing
special about linear AR models, other than that they are very easy to fit and simulate
from. Additive autoregressive models, for instance, would often work at least as well.

27.6 Trends and De-Trending
The sad fact is that a lot of important real time series are not even approximately
stationary. For instance, Figure 27.13 shows US national income per person (adjusted
for inflation) over the period from 1952 (when the data begins) until now. It is possible
that this is sample from a stationary process. But in that case, the correlation time is
evidently much longer than 50 years, on the order of centuries, and so the theoretical
stationarity is irrelevant for anyone but a very ambitious quantitative historian.

More sensibly, we should try to treat data like this as a non-stationary time series.
The conventional approach is o try to separate time series like this into a persistent
trend, and stationary fluctuations (or deviations) around the trend,

Yt = Xt +Zt (27.35)
series = fluctuations+ trend

Since we could add or subtract a constant to each Xt without changing whether they
are stationary, we’ll stipulate that E

�

Xt
�

= 0, so E
�

Yt
�

= E
�

Zt
�

. (In other sit-
uations, the decomposition might be multiplicative instead of additive, etc.) How
might we find such a decomposition?

If we have multiple independent realizations Yi ,t of the same process, say m of
them, and they all have the same trend Zt , then we can try to find the common trend
by averaging the time series:

Zt = E
�

Y·,t
�

≈
m
∑

i=1

Yi ,t (27.36)

Multiple time series with the same trend do exist, especially in the experimental sci-
ences. Yi ,t might be the measurement of some chemical in a reactor at time t in the i th

repetition of the experiment, and then it would make sense to average the Yi ,t to get
the common Zt trend, the average trajectory of the chemical concentration. One can
tell similar stories about experiments in biology or even psychology, though those
are complicated by the tendency of animals to get tired and to learn11.

For better or for worse, however, we have only one realization of the post-WWII
US economy, so we can’t average multiple runs of the experiment together. If we
have a theoretical model of the trend, we can try to fit that model. For instance,

10This is where the metaphor of the “sieve” comes in: the idea is that the mesh of the sieve gets finer and
finer, catching more and more subtle features of the data.

11Even if we do have multiple independent experimental runs, it is very important to get them aligned in
time, so that Yi ,t and Y j ,t refer to the same point in time relative to the start of the experiment; otherwise,
averaging them is just mush. It can also be important to ensure that the initial state, before the experiment,
is the same for every run.
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gdppc <- read.csv("gdp-pc.csv")
gdppc$y <- gdppc$y*1e6
plot(gdppc,log="y",type="l",ylab="GDP per capita")

Figure 27.13: US GDP per capita, constant dollars (consumer price index deflator).
Note logarithmic scale of vertical axis. (The values were initially recorded in the file
in millions of dollars per person per year, hence the correction.)
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some (simple) models of economic growth predict that series like the one in Figure
27.13 should, on average, grow at a steady exponential rate12. We could then estimate
Zt by fitting a model to Yt of the formβ0eβt , or even by doing a linear regression of
logYt on t . The fluctuations Xt are then taken to be the residuals of this model.

If we only have one time series (no replicates), and we don’t have a good theory
which tells us what the trend should be, we fall back on curve fitting. In other words,
we regress Yt on t , call the fitted values Zt , and call the residuals Xt . This is frankly
rests more on hope than on theorems. The hope is that the characteristic time-scale
for the fluctuations Xt (say, their correlation time τ) is short compared to the charac-
teristic time-scale for the trend Zt

13. Then if we average Yt over a band-width which
is large compared to τ, but small compared to the scale of Zt , we should get some-
thing which is mostly Zt — there won’t be too much bias from averaging, and the
fluctuations should mostly cancel out.

Once we have the fluctuations, and are reasonably satisfied that they’re stationary,
we can model them like any other stationary time series. Of course, to actually make
predictions, we need to extrapolate the trend, which is a harder business.

27.6.1 Forecasting Trends

The problem with making predictions when there is a substantial trend is that it is
usually hard to know how to continue or extrapolate the trend beyond the last data
point. If we are in the situation where we have multiple runs of the same process,
we can at least extrapolate up to the limits of the different runs. If we have an actual
model which tells us that the trend should follow a certain functional form, and
we’ve estimated that model, we can use it to extrapolate. But if we have found the
trend purely through curve-fitting, we have a problem.

Suppose that we’ve found the trend by spline smoothing, as in Figure 27.16. The
fitted spline model will cheerfully make predictions for the what the trend of GDP
per capita will be in, say, 2252, far outside the data. This will be a simple linear ex-
trapolation, because splines are always linear outside the data range (Chapter 8, p.
179). This is just because of the way splines are set up, not because linear extrapola-
tion is such a good idea. Had we used kernel regression, or any of many other ways
of fitting the curve, we’d get different extrapolations. People in 2252 could look back
and see whether the spline had fit well, or some other curve would have done better.
(But why would they want to?) Right now, if all we have is curve-fitting, we are in a
dubious position even as regards 2013, never mind 225214

12This is not quite what is claimed by Solow (1970), which you should read anyway if this kind of
question is at all interesting to you.

13I am being deliberately vague about what “the characteristic time scale of Zt ” means. Intuitively,
it’s the amount of time required for Zt to change substantially. You might think of it as something like
n−1∑n−1

t=1 1/|Zt+1−Zt |, if you promise not to treat that too seriously. Trying to get an exact statement of
what’s involved in identifying trends requires being very precise, and getting into topics at the intersection
of statistics and functional analysis which are beyond the scope of this class.

14Yet again, we hit a basic philosophical obstacle, which is the problem of induction. We have so far
evaded it, by assuming that we’re dealing with IID or a stationary probability distribution; these assump-
tions let us deductively extrapolate from past data to future observations, with more or less confidence.
(For more on this line of thought, see Hacking (2001); Spanos (2011); Gelman and Shalizi (2013).) If we
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gdppc.exp <- lm(log(y) ~ year,data=gdppc)
beta0 <- exp(coefficients(gdppc.exp)[1])
beta <- coefficients(gdppc.exp)[2]
curve(beta0*exp(beta*x),lty="dashed",add=TRUE)

Figure 27.14: As in Figure 27.13, but with an exponential trend fitted.
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plot(gdppc$year,residuals(gdppc.exp),xlab="year",
ylab="logged fluctuation around trend",type="l",lty="dashed")

Figure 27.15: The hopefully-stationary fluctuations around the exponential growth
trend in Figure 27.14. Note that these are log Yt

β̂0eβ̂t
, and so unitless.
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gdp.spline <- fitted(gam(y~s(year),data=gdppc))
lines(gdppc$year,gdp.spline,lty="dotted")

Figure 27.16: Figure 27.14, but with the addition of a spline curve for the time trend
(dotted line). This is, perhaps unsurprisingly, not all that different from the simple
exponential-growth trend.
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lines(gdppc$year,log(gdppc$y/gdp.spline),xlab="year",
ylab="logged fluctuations around trend",lty="dotted")

Figure 27.17: Adding the logged deviations from the spline trend (dotted) to Figure
27.15.
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27.6.2 Seasonal Components
Sometimes we know that time series contain components which repeat, pretty ex-
actly, over regular periods. These are called seasonal components, after the obvious
example of trends which cycle each year with the season. But they could cycle over
months, weeks, days, etc.

The decomposition of the process is thus

Yt =Xt +Zt + St (27.37)

where Xt handles the stationary fluctuations, Zt the long-term trends, and St the
repeating seasonal component.

If Zt = 0, or equivalently if we have a good estimate of it and can subtract it out,
we can find St by averaging over multiple cycles of the seasonal trend. Suppose that
we know the period of the cycle is T , and we can observe m = n/T full cycles. Then

St ≈
1

m

m−1
∑

j=0

Yt+ j T (27.38)

This works because, with Zt out of the picture, Yt = Xt + St , and St is periodic,
St = St+T . Averaging over multiple cycles, the stationary fluctuations tend to cancel
out (by the ergodic theorem), but the seasonal component does not.

For this trick to work, we need to know the period. If the true T = 355, but we
use T = 365 without thinking15, we can get mush.

We also need to know the over-all trend. Of course, if there are seasonal compo-
nents, we really ought to subtract them out before trying to find Zt . So we have yet
another vicious cycle, or, more optimistically, another case for iterative approxima-
tion.

27.6.3 Detrending by Differencing
Suppose that Yt has a linear time trend:

Yt =β0+βt +Xt (27.39)

with Xt stationary. Then if we take the difference between successive values of Yt ,
the trend goes away:

Yt −Yt−1 =β+Xt −Xt−1 (27.40)

Since Xt is stationary,β+Xt−Xt−1 is also stationary. Taking differences has removed
the trend.

Differencing will not only get rid of linear time trends. Suppose that

Zt = Zt−1+ εt (27.41)

assume a certain form or model for the trend, then again we can deduce future behavior on that basis. But
if we have neither probabilistic nor mechanistic assumptions, we are, to use a technical term, stuck with
induction. Whether there is some principle which might help — perhaps a form of Occam’s Razor (Kelly,
2007)? — is a nice question.

15Exercise: come up with an example of a time series where the periodicity should be 355 days.
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where the “innovations” or “shocks” εt are IID, and that

Yt = Zt +Xt (27.42)

with Xt stationary, and independent of the εt . It is easy to check that (i) Zt is not
stationary (Exercise 2), but that (ii) the first difference

Yt −Yt−1 = εt +Xt −Xt−1 (27.43)

is stationary. So differencing can get rid of trends which are built out of the summa-
tion of persistent random shocks.

This gives us another way of making a time series stationary: instead of trying to
model the time trend, take the difference between successive values, and see if that is
stationary. (The diff() function in R does this; see Figure 27.18.) If such “first dif-
ferences” don’t look stationary, take differences among differences, third differences,
etc., until you have something satisfying.

Notice that now we can continue to the trend: once we predict Yt+1−Yt , we add
it on to Yt (which we observed) to get Yt+1.

Differencing is like taking the discrete version of a derivative. It will eventually
get rid of trends if they correspond to curves (e.g., polynomials) with only finitely
many non-zero derivatives. It fails for trends which aren’t like that, like exponentials
or sinusoids, though you can hope that eventually the higher differences are small
enough that they don’t matter much.

27.6.4 Bootstrapping with Trends
All the bootstraps discussed in §27.5 work primarily for stationary time series. (Para-
metric bootstraps are an exception, since we could include trends in the model.) If
we have done extensive de-trending, the reasonable thing to do is to use a bootstrap
to generate a series of fluctuations, add it to the estimated trend, and then repeat the
whole analysis on the new, non-stationary surrogate series, including the de-trending.
This works on the same sort of principle as resampling residuals in regressions (§6.4,
especially 6.4.3).

27.7 Further Reading
Shumway and Stoffer (2000) is a good introduction to conventional time series anal-
ysis, covering R practicalities. Lindsey (2004) surveys a broader range of situations in
less depth; it is readable, but opinionated, and I don’t always agree with the opinions.
Fan and Yao (2003) is a deservedly-standard reference on nonparametric time series
models. The theoretical portions would be challenging for most readers of this book,
but the methodology isn’t, and it devotes about the right amount of space (no more
than a quarter of the book) to the usual linear-model theory.

The block bootstrap was introduced by Künsch (1989). Davison and Hinkley
(1997, §8.2) has a characteristically-clear treatment of the main flavors of bootstrap
for time series; Lahiri (2003) is a thorough but theoretical. Bühlmann (2002) is also
useful.
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plot(gdppc$year[-1],diff(log(gdppc$y)),type="l",xlab="year",
ylab="differenced log GDP per capita")

Figure 27.18: First differences of log GDP per capita, i.e., the year-to-year growth
rate of GDP per capita.
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The best introduction to stochastic processes I know of, by a very wide mar-
gin, is Grimmett and Stirzaker (1992). However, like most textbooks on stochastic
processes, it says next to nothing about how to use them as models of data. Two ex-
ceptions I can recommend are the old but insightful Bartlett (1955), and the excellent
Guttorp (1995).

The basic ergodic theorem in §27.2.2.1 follows a continuous-time argument in
Frisch (1995). My general treatment of ergodicity is heavily shaped by Gray (1988)
and Shields (1996).

In parallel to the treatment of time series by statisticians, physicists and mathe-
maticians developed their own tradition of time-series analysis (Packard et al., 1980),
where the basic models are not stochastic processes but deterministic, yet unstable,
dynamical systems. Perhaps the best treatment of this are Abarbanel (1996); Kantz
and Schreiber (2004). There are in fact very deep connections between this approach
and the question of why probability theory works in the first place (Ruelle, 1991),
but that’s not a subject for data analysis.

27.8 Exercises
1. In Eq. 27.33, assume that m(x) has to be a linear function, m(x) =β · x. Solve

for the optimalβ in terms of y, x, and Γ. This “generalized least squares” (GLS)
solution should reduce to ordinary least squares when Γ= σ2I.

2. If Zt = Zt−1+ εt , with εt IID, prove that Zt is not stationary. Hint: consider
Var
�

Zt
�

.
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Chapter 28

Time Series with Latent
Variables

[[To come]]
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Chapter 29

Longitudinal, Spatial and
Network Data

[[To come]]
[[Data arranged in space: spatial autocorrelation, spatial smoothing ("kriging";

also Kafadar 1996). Data arranged on a network; network smoothing. Multiple time
series: the distraction of "Granger causality" and the possibility of real causality.]]
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Part V

Data-Analysis Problem Sets
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All of the following problem sets have been used in class at least once. They are
arranged in an order approximately matching the order of the chapters, but many of
them draw on multiple chapters.
[[TODO: Create a special numbering scheme for these, rather than making them

chapters]]
[[TODO: Add references to the source papers]]
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Chapter 30

What’s That Got to Do with
the Price of Condos in
California?

AGENDA: As a warm-up and refresher in using linear regression to
explore relationships between variables, we will look at a large data set
on real estate prices.

The Census Bureau divides the country up into geographic regions, smaller than
counties, called “tracts” of a few thousand people each, and reports much of its data
at the level of tracts. This data set, drawn from the 2011 American Community
Survey, contains information on the housing stock and economic circumstances of
every tract in California and Pennsylvania. For each tract, the data file records a large
number of variables (not all of which will be used in this assignment):

• A geographic ID code, a code for the state, a code for the county, and a code
for the tract

• The population, latitude and longitude of the tract

• Its name

• The median value of the housing units in the tract

• The total number of units and the number of vacant units

• The median number of rooms per unit

• The mean number of people per household which owns its home, the mean
number of people per renting household

• The median and mean income of households (in dollars, from all sources)
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• The percentage of housing units built in 2005 or later; built in 2000–2004; built
in the 1990s; in the 1980s; in the 1970s; in the 1960s; in the 1950s; in the 1940s;
and in 1939 or earlier

• The percentage of housing units with 0 bedrooms; with 1 bedroom; with 2;
with 3; with 4; with 5 or more bedrooms

• The percentage of households which own their home, and the percentage which
rent

Remember that these are not values for individual houses or families, but summaries
of all of the houses and families in the tract.

The basic question here has to do with how the quality of the housing stock, the
income of the people, and the geography of the tract relate to house values in the
tract. We will look at several different linear models, and see if they have reasonable
interpretations, and/or make systematic errors.

1. (3 pts) Not all variables are available for all tracts. Remove the rows containing
NA values. All subsequent problems will be done on this cleaned data set.
Hint: Recipe 5.27.

(a) (1) How many tracts are eliminated?

(b) (1) How many people live in those tracts?

(c) (1) What happens to the summary statistics for median house value and
median income?

2. (7) House value and income

(a) (1) Linearly regress median house value on median household income.
Report the intercept and the coefficient (to reasonable precision), and ex-
plain what they mean.

(b) (2) Regress median house value on mean household income. Report the
intercept and the coefficient (to reasonable precision), and explain what
they mean. Why are the coefficients for two different measure of house-
hold income different?

(c) (4) Regress median house value on both mean and median household
income. Report the estimates, and interpret the coefficients, as before.
Does this interpretation seem reasonable? Explain.

3. (10) Regress median house value on median income, mean income, popula-
tion, number of housing units, number of vacant units, percentage of owners,
median number of rooms, mean household size of homeowners, and mean
household size of renters. Report all the estimated coefficients and their stan-
dard errors to reasonable precision, and explain what they mean. Why are the
coefficients on income different from in the previous models?
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4. (5) Which three variables are most important, in this model, for predicting
house values? Explain your reasoning for deciding on this. Hint: make sure
your answers wouldn’t change if we changed the units of measurement for the
predictor variables.

5. (20) Checking residuals for the model from problem 3.

(a) (5) Make a Q −Q plot of the regression residuals.

(b) (5) Make scatter-plots of the regression residuals against each of the predic-
tor variables, and add kernel smoother curves (as in Chapter 1). Describe
any patterns you see. (A very rough rule of thumb is that the bandwidth
should be about σn−1/5, where σ is the standard deviation of the predic-
tor variable and n is the sample size.)

(c) (5) Make scatter-plots of the squared residuals against each of the predictor
variables, and add kernel smoother curves. Describe any patterns you see.

(d) (5) Explain, using these plots, whether the residuals appear Gaussian and
independent of the predictors.

6. (12) Fit the model from 3 to data from California alone, and again to data from
Pennsylvania alone.

(a) (5) Report the two sets of coefficients and standard errors. Explain whether
or not it is plausible that the true coefficients are really equally.

(b) (2) What are the square root of the mean squared error (RMSEs) of the
Pennsylvania and California coefficients, on their own data?

(c) (5) Use the California coefficients to predict the Pennsylvania data. What
is the RMSE? What is the correlation between the California coefficients’
predictions for Pennsylvania, and the Pennsylvania coefficients’ predic-
tions? Hint: Recipe 11.18.

7. (10) Make a map of median house values. The vertical coordinate should be
latitude, the horizontal coordinate should be longitude, and the house value
should be indicated either by the color of the points (Hint: recipe 10.23), or by
using a third dimension in a perspective plot. Describe the patterns that you
see.

8. (10) Make a map of the regression residuals for the model from problem 3.
Are they randomly scattered over space, or are there regions where the model
systematically over- or under- predicts? Are there regions where the errors are
unusually large in both directions? (You might also want to make a map of the
absolute value of the residuals.) — If you cannot make a map, you can still get
partial credit for scatter-plots of residuals against latitude and longitude.

9. (8) Fit a linear regression with all the variables from problem 3, as well as lat-
itude and longitude. Report the new coefficients and their standard errors.
What do the coefficients on latitude and longitude mean? How important are
latitude and longitude in this new model?
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10. (5) Make a map of the regression residuals for the new model from problem
9. Compare and contrast it with the map of the residuals from the previous
model. Are the new residuals spatially uniform, or are there patterns?

11. (10) Regress the log of median house value on the same variables as in problem
9. Which model more accurately predicts housing prices? How can you tell?
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Chapter 31

The Advantages of
Backwardness

Many theories of economic growth say that it’s easier for poor countries to grow
faster than rich countries — “catching up”, or the “advantages of backwardness”. One
argument for this is that poor countries can grow by copying existing, successful tech-
nologies and ways of doing business from rich ones. But rich countries are already
using those technologies, so they can only grow by finding new ones, and copying
is faster than innovation. So, all else being equal, poor countries should grow faster
than rich ones. One way to check this is to look at how growth rates are related to
other economic variables.

Our data for examining this will be taken from the “Penn World Table” (http://
pwt.econ.upenn.edu/php_site/pwt_index.php), for selected countries and years.
The data file is penn-select.csv on the class website. Each row of this table gives,
for a given country and a five-year period, the starting year, the initial population of
the country, the initial gross domestic product (GDP)1 per capita (adjusted for infla-
tion and local purchasing power), the average annual growth rate of GDP over that
period, the average population growth rate, the average percentage of GDP devoted
to investment, and the average percentage ratio of trade (imports plus exports) to
GDP2.

We will use the np package on CRAN to do kernel regression.3 Install it, and load
the data file penn-select.csv (link on the class website).

1. (5 points) Fit a linear model of gdp.growth on log(gdp). What is the coeffi-
cient? What does it suggest about catching-up?

1Annual gross domestic product is the total value of all goods and services produced in the country in
a given year. It has some pathologies — an earthquake which breaks everyone’s windows could increase
GDP by the value of the repairs — but it’s a standard measure of economic output.

2The Penn tables call this variable “openness”. It can be bigger than 100, if, for instance, a country
re-exports lots of its imports.

3In addition to the examples in Chapter 4 of the notes, the package has good help files, and a tutorial at
http://www.jstatsoft.org/v27/i05.
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2. (5 points) Fit a linear model of gdp.growth on log(gdp), pop.growth, invest
and trade. What is the coefficient on log(gdp)? What does it suggest about
catching-up?

3. (5 points) It is sometimes suggested that the catching-up effect only works for
countries which are open to trade with, and learning from, more-developed
economies. Add an interaction between log(gdp) and trade to the model
from Problem 2. What are the relevant coefficients? What do they suggest
about catching-up?

4. (15 points) Use data-set splitting, as in Chapter 3 of the notes, to decide which
of these three linear models predicts best. (You can adapt the code from that
chapter or write your own.) Which one is the winner?

5. (15 points) The npreg function in the np package does kernel regression. By
default, it uses a combination of cross-validation and sophisticated but very
slow optimization to pick the best bandwidth. In this problem, we will force
it to use fixed bandwidths, and do the cross-validation ourselves.

penn.0.1 <- npreg(gdp.growth~log(gdp),bws=0.1,data=penn)

does a kernel regression of growth on log(gdp), using the default kernel (which
is Gaussian) and bandwidth 0.1. (You don’t have to call the data penn.) You
can run fitted, predict, etc., on the output of npreg just as you can on the
output of lm. (There are more examples of using npreg in Chapter 4.)

The code at the end of this assignment (also online) uses five-fold cross-validation
to estimate the mean-squared error for the six bandwidths 0.05,0.1,0.2,0.3,0.4,0.5.
Use it to create a plot of cross-validated MSE versus bandwidth. Add to the
same plot the in-sample MSEs of those six bandwidths on the whole data. What
bandwidth predicts best?

6. (10 points) Make a scatterplot of log(gdp) versus growth. Add the line for
the linear model from problem 1. Add the fitted values for the kernel curve
with the best bandwidth (according to the previous problem). What does this
suggest about catching up?

(There are at least two ways to get the fitted values for the kernel regression,
using fitted or predict.)

7. (5 points) npreg will also do kernel regressions with multiple input variables.
This time, use the built-in bandwidth selector:

penn.npr <- npreg(gdp.growth ~ log(gdp) + pop.growth + invest
+ trade, data=penn, tol=0.1, ftol=0.1)

(The last two arguments tell the bandwidth selector not to try very hard to
optimize; it may still take several minutes.) What are the selected bandwidths?
(Use summary.)
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8. (5 points) Explain why we cannot add an interaction between log(gdp) and
trade to the nonparametric regression from the previous problem.

9. (15 points) Sub-divide the data into points where the initial GDP per capita
is ≤ $700 and those where it is above. For each data point, use the kernel
regression from problem 7 to predict the change in growth-rate from a 10%
decrease in initial GDP (not a 10% decrease in log-GDP). Report the averages
over the initially-poorer and the initially-richer data points. Describe what this
suggests about catching up.

Hints: use predict() with partially-modified data; do not estimate another
regression with artificially-lowered initial GDPs; make sure you are changing
initial GDP by 10%, and not changing the log of GDP by 10%.

10. (10 points) To chose between the best linear model (as picked by you in prob-
lem 4) and the kernel regression from problem 7, use cross-validation again.
Modify the code provided to use five-fold cross-validation to get CV MSEs for
both the linear regression and for the nonparametric regression (with auto-
matic bandwidth selection). Which predicts better?

11. (10 points) Based on your analysis, does the data support the idea of catching
up, undermine it, support its happening under certain conditions, or provide
no evidence either way? (As always, explain your answers.)
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# Compare predictive ability of different bandwidths using k-fold CV
# Inputs: number of folds, vector of bandwidths, dataframe
# Presumes: data frame contains variables called "gdp.growth" and "gdp"
# Output: vector of cross-validated MSEs for the different bandwidths
# The default bandwidths here are NOT good ones for other problems

cv.growth.folds <- function(nfolds=5, bandwidths=c(0.05,(1:5)/10), df=penn) {
require(np)
case.folds <- rep(1:nfolds,length.out=nrow(df))

# divide the cases as evenly as possible
case.folds <- sample(case.folds) # randomly permute the order
fold.mses <- matrix(0,nrow=nfolds,ncol=length(bandwidths))
colnames(fold.mses) = as.character(bandwidths)

# By naming the columns, we’ll won’t have to keep track of which bandwidth
# is in which position

for (fold in 1:nfolds) {
# What are the training cases and what are the test cases?
train <- df[case.folds!=fold,]
test <- df[case.folds==fold,]
for (bw in bandwidths) {

# Fit to the training set
# First create a "bandwidth object" with the fixed bandwidth
current.npr.bw <- npregbw(gdp.growth ~ log(gdp), data=train, bws=bw,

bandwidth.compute=FALSE)
# Now actually use it to create the kernel regression
current.npr <- npreg(bws=current.npr.bw)
# Predict on the test set
predictions <- predict(current.npr, newdata=test)
# What’s the mean-squared error?
fold.mses[fold,paste(bw)] <- mean((test$gdp.growth - predictions)^2)
# Using paste() here lets us access the column with the right name...

}
}
# Average the MSEs
bandwidths.cv.mses <- colMeans(fold.mses)
return(bandwidths.cv.mses)

}
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Chapter 32

The Size of a Cat’s Heart

[[Modified from "Practical" 1
in Davison and Hinkley (1997,
§6.8, pp. 321–322). TODO:
See if different enough to use]]

The goal of this homework is to practice using bootstrapping to quantify the uncer-
tainty in regression models.

The data set cats in the library MASS contains measurements of the total body
weight for 47 female and 97 male adult cats, as well as the weights of their hearts. The
medical rationale for this experiment was that the dosage of many heart medicines
needs to be calibrated to the mass of the heart, and so one wants to know how to
predict that from the total body weight.

Load the data, and check the loading, as follows:

> library(MASS)
> data(cats)
> summary(cats)
Sex Bwt Hwt
F:47 Min. :2.000 Min. : 6.30
M:97 1st Qu.:2.300 1st Qu.: 8.95

Median :2.700 Median :10.10
Mean :2.724 Mean :10.63
3rd Qu.:3.025 3rd Qu.:12.12
Max. :3.900 Max. :20.50

Body weights (Bwt) are in kilograms, and heart weights (Hwt) are in grams — a cat’s
heart is not actually bigger than its entire body.

The goal here is to provide an accurate estimate of the weight of a cat’s heart
from its body weight, including some measure of uncertainty, and to assess whether
the prediction should take account of the cat’s sex. [[TODO: Fix references to

text]]
1. (5 points) Use lm to linearly regress heart weight on body weight, without

using sex as a predictor variable, and ensuring that the regression line goes
through the origin. (That is, forcing the intercept to be zero.) Report the
estimated coefficient, the standard errors given by R, and the corresponding
95% confidence interval (using a t -distribution).
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Extra Credit: (5 points) Why is it reasonable to force the intercept to be zero
in this case?

2. (5 points) Plot the distribution of residuals from the model you fit in Problem
1. Does it look Gaussian? (Explain.)

Extra credit (5 points): Suggest a formal test of the hypothesis that the residuals
are Gaussian. Is the departure from a Gaussian distribution significant at the
5% level? At the 1% level?

3. (5 points) Using lm, fit a linear regression model for heart weight, in which
body weight interacts with Sex. Again, ensure that the regression lines for
both females and males go through the origin. How many coefficients should
there be? Report the estimated coefficients, the standard errors calculated by
lm, and the corresponding 95% confidence intervals.

4. Testing the significance of a model expansion

(a) (5 points) Describe, briefly and in your own words, a method for formally
testing the hypothesis that adding Sex as a predictor in the model, as in
Problem 3, does not significantly improve over the model you fit in Prob-
lem 1. Clearly state the assumptions underlying the test. (Here a “formal
test” means one where you calculate both a test statistic and a p-value for
the test statistic under the null distribution, e.g., the “Partial F -test” you
learned in 36-401.)

(b) (5 points) Apply this test to the cats data and the models from Problems
1 and 3. What is the value of your test statistic? Is the difference significant
at the 5% level?

5. We now compare the measures of uncertainty from problem 1, which are calcu-
lated assuming Gaussian and homoskedastic noise, with the measures obtained
by bootstrapping the data points. Hint: Look at section 4.1 of the notes for
[[lecture 8]].

(a) (5 points) Write a function resample.cats, to resample the data points
in cats. It should take no arguments, but produce a new data frame with
the same column names as cats. Check that it is working properly by
running summary(resample.cats()) and confirming that the result is
close to that of summary(cats).

(b) (5 points) Write a function fit.cats.1 to re-estimate the coefficient of
the model from Problem 1 on a new data frame. It should take a data
frame as an argument, estimate the same model as in Problem 1, and
return the value of the regression coefficient (a single number, not the
whole regression object). Check that it works by confirming that fit.cats.1(cats)
gives the same number as the regression coefficient you got in Problem 1.

(c) (5 points) Using your functions resample.cats and fit.cats.1 from
Problems 3a and 3b, write a function cats.1.se to find the bootstrap
standard error for the coefficient in this linear model. The function should
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take the number of bootstrap replicates, and return the estimated stan-
dard error. What standard error do you find with 100 replicates? With
1000?

(d) (5 points) Using your functions resample.cats and fit.cats.1 from
Problems 3a and 3b, write a function cats.1.cis to find confidence in-
tervals for the coefficient in this model. The function should take as argu-
ments the number of bootstrap replicates and one minus the confidence
level. It should return the upper and lower confidence limits. What 95%
confidence interval do you get with 100 replicates? With 1000 replicates?

(e) (5 points) How do your results in (5c) and (5d) compare to those from
(1)? Based on your findings in (2), which set of error estimates seems
more trustworthy?

6. Cross-validation on a model expansion

(a) (5 points) Explain, briefly and in your own words, how to use cross-
validation to tell whether including Sex in the model improves its ability
to generalize.

(b) (5 points) Check, using five-fold cross-validation, whether adding Sex to
the model improves it.

(c) (5 points) Can you say whether the cross-validation comparison is signif-
icant at the 5% level?

7. Bootstrap testing of a model expansion.

(a) (5 points) Write a function to simulate new data sets from the model you
fit in Problem 1 by re-sampling the residuals. The function should take
no arguments, but return a data frame with columns Sex, Bwt and Mwt.
(Hint: Look at section 4.3 of the notes for [[lecture 8]].

(b) (10 points) Write a function to calculate the test statistic from your hy-
pothesis test in Problem 4. The input should be a data frame, which you
can assume has the columns Sex, Bwt and Hwt, and the output should
be the value of the statistic. Check your function by seeing that it gives
the right value of the test statistic when applied to the original cats data
frame, i.e., the one you calculated in Problem 4b. Hint: Look at Code
Example 8 in the notes for lecture 8.

(c) (10 points) Using the simulator from (7a) and the test statistic calculator
from (7b), find a bootstrap p-value for the significance of adding Sex as
a predictor. Use at least 500 replicates. Is it significant at the 5% level?
Hint: Look at [[Code Example 8]] in the notes for [[lecture 8]].

8. (10 points) A veterinarian wants to know whether they should adjust for a cat’s
sex when calibrating how much heart medicine to administer. Based on your
findings in problems 4, 6 and 7, what would you recommend, and why?
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Chapter 33

Nice Demo City, but Will It
Scale?

[[TODO: Integrate the two
versions of this problem set,
perhaps by just picking one]]

33.1 Version 1
This version was used as a take-
home exam, hence less scaf-
folding; flag as such in the
guide to the problems

33.1.1 Background
It has been known for a long time that larger cities tend to be more economically pro-
ductive than smaller ones. That is, the economic output per person of a city or other

[[TODO: Yank references
from Preface to Urban Eco-
nomics]]

settlement (Y ) tends to increase with the population (N ). Recently, there has been
some controversy over the exact form of the relationship, and over its explanation.

In particular, it has been claimed1 that urban incomes show “power-law scaling”,
meaning that

Y ≈ y0N a

for some constant y0 > 0 (the same across cities) and some scaling exponent a > 0 (the
same across cities). Equivalently2,

logY ≈ c + a logN

The scientists who first postulated power law scaling for urban economies thought
that the tendency for bigger cities to be more productive was largely due to what
are called “increasing returns to scale”3, which would be stronger in larger cities.
Additionally, having more people around, and more different sorts of people around,
could lead to exchanges of ideas and so to new and better ways of doing business.
According to this view, the primary determinant of a city’s economy is simply its
size, and larger cities are just “scaled up” versions of smaller ones.

1By Geoffrey West and collaborators; there’s a good video online of Prof. West giving a talk about the
work at a TED conference, if you’re interested.

2Why is it equivalent, and how is c related to y0?
3This is when the cost of producing the same item, with the same factory, employees, etc., is lower

when the volume being produced is high, perhaps because the system runs more efficiently, or each sale
has to recover a smaller share of the fixed cost of setting up the factory. A constant sale price minus lower
costs equals higher profits.
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An alternative explanation is that different industries have different levels of in-
come per worker, and that some industries tend to be concentrated in larger cities
and others in smaller towns. Large cities tend especially to be the places where one
finds highly skilled providers of very specialized services, though their services are
used, often indirectly, more or less everywhere4. In this view, the association be-
tween the population of cities and their economic productivity is due to the kind
of industries that go with being big cities, not some effect of size as such. There is
no reason, according to this “urban hierarchy” view, why the relationship between
per-capita income Y and urban population N should be a power law. In fact, the
urban-hierarchy model doesn’t even specify a particular functional relationship be-
tween how much of a city’s economy comes from high-value industries and the city’s
income, just that the relationship is increasing.

Note that neither the power-law nor the urban-hierarchy model predicts Gaussian
distributions.

In this exam, you will assess the evidence for power law scaling, and whether the
“urban hierarchy” idea can explain the relationship between income and population.

33.1.2 Data

For data-collection purposes, urban regions of the United States are divided into
several hundred “Metropolitan Statistical Areas” based on patterns of residence and
commuting; these cut across the boundaries of legal cities and even states. In the
last decade, the U.S. Bureau of Economic Analysis has begun to estimate “gross
metropolitan products” for these areas — the equivalent of gross national product,
but for each metropolitan area. (See Homework 2 for the definition of “gross na-
tional product”.) Our data set contains the following variables, derived from the
BEA:

• the name of each metropolitan area;

• its per-capita gross metropolitan product, in dollars (Y );

• its population (N );

• the share of its economy derived from finance (as a fraction between 0 and 1);

• the share of “professional and technical services”;

• the share of “information, communication and technology” (ICT);

• and the share of “management of firms and enterprises”.

Note that the last four columns have some missing values (NAs), since the BEA does
not release those figures when doing so would disclose sensitive information about
individual companies.

4There are probably few, if any, electrochemical engineers who design liquid crystal displays working
in Altoona, PA, but everyone there who buys a cellphone indirectly pays for the time and training of such
engineers who live elsewhere.
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33.1.3 Tasks and Questions
You are to write a report assessing the (1) whether the power-law scaling model ac-
curately represents the relationship between urban population and urban per-capita
income; (2) whether, as the “urban hierarchy” idea implies, the relationship can be
explained away by controlling for which industries are found in which cities; and (3)
whether the power-law scaling or the urban-hierarchy idea provides a better model of
urban economies.

Your report should have the following sections: an introduction, laying out the
questions being investigated and the approach taken; a description of the data; de-
tailed analyses; and conclusions. Your report should deal with at least the following
specific points:

• The estimation of the scaling exponent a from the data, including its uncer-
tainty5;

• An estimate of the out-of-sample error of the power-law-scaling model;

• An examination of that model’s residuals;

• A comparison of that model to non-parametric models of the size-income rela-
tionship (including, but not limited to, out-of-sample errors);

• Whether larger cities tend to have higher shares of the four high-value indus-
tries measured in the data set, and if so, what the size-industry relationship
is;

• Whether cities with higher shares for those industries have higher incomes, and
if so, what the industry-income relationship is;

• Whether, and in what sense, the income-industry relationships can explain the
size-income relationship;

• How missing values were handled, and why;

• Appropriate quantifications of uncertainty for all estimates and hypothesis
tests.

Adequately dealing with these points may, of course, lead to others.

33.2 Version 2

33.2.1
[[This version was a pair of
homework assignments, so the
points add up to 200]]

For data-collection purposes, urban areas of the United States are divided into several
hundred “Metropolitan Statistical Areas” based on patterns of residence and commut-
ing; these cut across the boundaries of legal cities and even states. In the last decade,
the U.S. Bureau of Economic Analysis has begun to estimate “gross metropolitan

5Hint: You should get a value in the range (0,0.5).
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products” for these areas — the equivalent of gross national product, but for each
metropolitan area. (See Homework 2 for the definition of “gross national product”.)
Even more recently, it has been claimed that these gross metropolitan products show
a simple quantitative regularity, called “supra-linear power-law scaling”. If Y is the
gross metropolitan product in dollars, and N is the number of people in the city,
then, the claim goes,

Y ≈ cN b (33.1)

where the exponent b > 1 and the scale factor c > 0. This homework will use the
tools built so far to test this hypothesis.

1. (15 points) A metropolitan area’s gross per capita product is y = Y /N . Show
that if Eq. 33.1 holds, then

log y ≈β0+β1 logN

How are β0 and β1 related to c and b ?

2. (15 points) The data files gmp_2006.csv and pcgmp_2006.csv on the class
website contain the total gross metropolitan product (Y ) in millions of dollars,
and the per capita gross metropolitan product (y) in dollars, for all metropoli-
tan areas in the US in 2006. Read them in and use them to calculate the
metropolitan populations (N ). If it’s done correctly, then running summary
on the population figures should give

Min. 1st Qu. Median Mean 3rd Qu. Max.
54980 135600 231500 680900 530900 18850000

(Your exact results may differ very slightly because of rounding and display
settings.) What is the variance of log y?

3. (20 points) Estimating the power-law scaling model. Use lm to linearly regress log
per capita product, log y, on log population, logN . How does estimating this
statistical model relate to Equation 33.1? What are the estimated coefficients?
Are they compatible with the idea of supra-linear scaling? What is the mean
squared error for log y?

4. (15 points) Plot per capita product y against N , along with the fitted power-law
relationship from problem 3. (Be careful about logs!)

5. (15 points) Fit a non-parametric smoother to log y and logN . (You can use
kernel regression, a spline, or any other non-parametric smoother.) What is
the mean squared error for log y? Describe, in words, how this curve compares
to the power-law model from problem 3.

6. (20 points) Using the method from [[lecture 10, section 1]], test whether the
power-law relationship is correctly specified. What is the p-value? What do
you conclude about the validity of the power-law model, based not just on this
problem but the previous ones as well?
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33.2.2

We continue to investigate the relationship between how big cities are, and how eco-
nomically productive they are. The scientists who first postulated power laws for
urban economies thought that the tendency for bigger cities to be more productive
was largely due to what are called “increasing returns to scale”6, which would be big-
ger in larger cities. Additionally, having more people around, and more different
sorts of people around, could lead to exchanges of ideas and so to new and better
ways of doing business.

An alternative explanation is that different industries have different levels of in-
come per worker, and that some industries tend to be concentrated in larger cities and
others in smaller towns. Large cities tend especially to be the places where one finds
highly skilled providers of very specialized services, though their services are used,
often indirectly, more or less everywhere7. In this view, the association between the
population of cities and their economic productivity is due to the kind of industries
that go with being big cities, not some effect of size as such.

In this exam, you will do a fairly simple test of these two explanations.

33.2.2.1 Data

A data file has been e-mailed to you at your Andrew account. It is a comma-separated
text file (CSV), containing the following columns, in order, for each metropolitan
area:

• the name of the metropolitan area;

• its per-capita gross metropolitan product (in dollars)

• its population;

• the share of its economy derived from finance (as a fraction between 0 and 1);

• the share of “professional and technical services”;

• the share of “information, communication and technology” (ICT);

• and the share of “management of firms and enterprises”.

The first three columns you saw in the last homework. The last four columns came
from the same source. However, those columns have some missing values (NAs), since
the Bureau of Economic Analysis does not release the data when doing so would
disclose sensitive information about individual companies.

6This is when the cost of producing the same item, with the same factory, employees, etc., is lower
when the volume being produced is high, perhaps because the system runs more efficiently, or each sale
has to recover a smaller share of the fixed cost of setting up the factory. A constant sale price minus lower
costs equals higher profits.

7There are probably very few electrochemical engineers who design liquid crystal displays in Altoona,
but everyone there who buys a cellphone indirectly pays for the time and training of such engineers who
live elsewhere.
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33.2.3 Problems
1. More specialist service industries in bigger cities?

(a) (2 points) For each of the four industries, create a scatter-plot of the share
of that industries in the economy as a function of population. If a city is
missing a value for an industry, omit it from that plot.

(b) (5 points) Add a nonparametric smoothing curve to each plot. Use ker-
nel regression, local linear regression, a smoothing spline, etc., as you
wish, but make sure that you use cross-validation to adapt the amount of
smoothing to the roughness of the data.

(c) (3 points) Describe the patterns made by these plots. In particular, do
larger cities have more of these industries?

2. Higher productivity from specialist service industries?

(a) (2 points) For each of the four industries, create a scatter-plot of per-capita
GMP as a function of the share of that industry in the city’s economy. If
a city is missing a value for an industry, omit it from the plot.

(b) (5 points) Add a nonparametric smoothing curve to each plot. (Use the
same smoothing method you did for problem 1.)

(c) (3 points) Describe the patterns made by these plots. In particular, do
cities which are more dependent on these industries have higher produc-
tivity?

3. Are bigger cities more productive, controlling for industry shares? Using the gam
function from the mgcv package, fit the semi-parametric log-additive model

ln y = α0+ b lnN +
4
∑

j=1

f j (x j )+ ε

where y is per-capita GMP, N is population, and x1 through x4 are the shares
of the four industries.

(a) (5 points) Explain how this model is related to, but different than, the
power-law scaling model from the last homework. Which terms in the
model are parametric, and which are non-parametric?

(b) (2 points point) What R command did you use to fit this?

(c) (2 points) Report your estimated values for α0, b , and the residual stan-
dard error.

(d) (6 points) Provide plots of each of the four partial response functions f j .
Compare them to the plots from question 2 — do they suggest the same
relationships between industry shares and the level of productivity, and if
not, how do they differ? Hint: help(plot.gam,package="mgcv")

(e) (5 points) Do the residuals seem to have a Gaussian distribution? (Justify
your answer.)
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(f) (5 points) Running summary on your fitted model will produce output
which includes approximate standard errors and p-values for the para-
metric terms, assuming homoskedastic Gaussian noise. What standard
error and p-value does it report for b ? Is that term significant? Do you
think you can trust those calculations in this case?

4. Predictive comparisons

(a) (5 points) Take the fitted power-law scaling model from the last home-
work. (If you were unable to complete that homework, follow the solu-
tions.) For each city, compute the predicted change in ln y from increasing
that city’s population by 10%. Report the average change over all cities.

(b) (5 points) Repeat this calculation, for the cities where complete data is
available, for the model you fit in Problem 3, assuming that only popula-
tion changes.

(c) (5 points) Do the two models seem to lead to different conclusions about
the effect of population on productivity? Explain

5. Model comparisons

(a) (3 points) What is the in-sample mean squared error, for ln y, of the addi-
tive model you fit in Problem 3? How much smaller is it than the linear
(power law) model from the last homework? Explain why the additive
model should always have a smaller in-sample error than the linear model.

(b) (11 points) Describe, concisely and in your own words, a technique for
determining whether the additive model from Problem 3 is better able to
generalize than the pure power law model. Explain why this technique
should be reliable here. (You are free to use a method from 36-401, if you
can explain why it is applicable.)

(c) (11 points) Implement this comparison and report your results. Which
model is favored?

6. Evaluation

(a) (10 points) Based on what you have done so far, does it seem that city size
directly effects productivity? Specifically, if an American city wanted to
increase its per-capita economic output, should it try to increase popula-
tion, or change its industries?

(b) (5 points) Suggest additional data, models or comparisons which could
improve your analysis.
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Chapter 34

Diabetes

Diabetes is a family of diseases where the body does not metabolize sugar properly.
Ordinarily, metabolism of blood sugar is regulated by a protein called insulin. In
type I, the body stops producing enough insulin; in type II diabetes, the body stops
responding to insulin1. While they are related, the treatments are very different:
type I diabetics need regular injections of insulin, and benefit from treatments which
increase the body’s production of insulin; these are of no use for type II diabetes.2

C-peptide is a protein which is produced along with insulin, but is easier to mea-
sure, and provides an accurate proxy for their blood insulin levels. Our data set
contains information about 43 patients with type I diabetes: their age when they
were first diagnosed with diabetes, the logarithm of their C-peptide concentration
(in picomoles per milliliter), and base.deficit, a measure of how acid their blood
is compared to normal controls3. The questions of immediate interest are about pre-
dicting c-peptide levels from age and base-deficit. The questions of ultimate interest
are about what can be done to increase insulin levels for patients suffering from type
I diabetes.

1. (10 total) Fit an additive model,

ŷAM (age,base.deficit) = α+ f1(age)+ f2(base.deficit)

with c-peptide level as the response.

(a) (5) Plot and describe your estimates of the partial response functions f1
and f2.

1Type I and type II diabetes used to be called “juvenile” and “adult-onset”, respectively. While it is true
that most people who become diabetic as children have type I, and that type II tends to develop later in
life, there are plenty exceptions in both directions. (I know someone whose type I diabetes first manifested
in his mid-30s, on his honeymoon.)

2If you need to know more, there are much better sources than Wikipedia, such as the National Dia-
betes Information Clearninghouse, run by the National Institutes of Health.

3There are several reasons why this was of interest. One is that diabetes can lead to a metabolic con-
dition called ketoacidosis, when the body, starved for sugars, starts breaking down proteins, with waste-
products that make the blood acid (and give the breath a sweet, fruity smell); this can also occur with
starvation, or extreme alcoholism.
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(b) (5) Plot the predicted surface ŷAM (age,base.deficit). (Contour, heatmap
and wireframe plots are all acceptable. Make sure the axes are labeled with
variable names as well as numerical units.)

2. (15 total) Conditional predictions

(a) (10) Plot the predicted c-peptide level for a five-year-old patient against
base.deficit level, letting base.deficit run over the whole observed
range, i.e., plot

ŷAM (5,base.deficit)

as a function of base.deficit.

(b) (2) Add to this plot two more lines, showing the predicted c-peptide level
as a function of base-deficit for patients aged 10 and 12 years.

(c) (3) Are the three lines for the three ages parallel to each other? Should
they be?

3. (10 total) Kernel model

(a) (5) Fit a kernel regression jointly to age and base.deficit. Plot the pre-
dicted surface ŷKM (age,base.deficit). Describe the surface and com-
pare it to the surface for the additive model.

(b) (5) Plot predicted c-peptide levels as functions of base-deficit for patients
aged 5, 10 and 12 years, as in Problem 2. Are the three lines for the three
different ages parallel to each other? Should they be?

4. (25 total) Model comparison Should we use a strictly additive model here, or
should we allow for an interaction between age and base.deficit?

(a) (8) Describe a procedure which could be used to decide between these
options.

(b) (4) Explain in what sense the model picked by this procedure ought to be
better than the one it doesn’t pick.

(c) (5) Explain why this procedure reliably picks the better model.

(d) (8) Apply the procedure to the data and report the result.

5. (25 total) Predicting response to changes

(a) (5) On average, by how much would increasing the age of each patient by
1 year change their c-peptide levels? Answer in terms of the model you
picked in Problem 4, and assume patients’ base.deficit levels remain
unchanged.

(b) (5) On average, by how much would increasing base.deficit by one
tenth of a standard deviation (i.e., moving it towards zero) change the c-
peptide level? Again, answer in terms of the model you picked in Problem
4, and assume that patients’ ages remain unchanged.
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(c) (5) Calculate standard errors for both of these average predicted changes.
Be sure to explain both the method you used to find the standard errors,
and why that method is appropriate to this problem.

(d) (5) Calculate a standard error for the difference in these average predicted
changes.

(e) (5) If these two changes are equally easy to bring about, which one would
be better? (Assume that higher c-peptide levels are better, generally, than
lower ones.) How sure should you be of this answer? What would it
mean to increase the patients’ ages?

6. (15) Summarize your analysis in one page of prose. Refer to your work on
earlier problems for details, but try, as much as you can, to be clear to someone
who had not taken 402, or even 401.

Based on the data set presented
on p. 304 of Hastie and Tib-
shirani’s Generalized Additive
Models, but re-typed by me
since it’s not online. Also
based on the analysis for inter-
actions in the last chapter of
Hart’s Nonparametric Smooth-
ing and Lack-of-Fit Tests
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Chapter 35

Fair’s Affairs

In 1969, the magazine Psychology Today did a survey of its readers that included ques-
tions about (among other things) how often the respondents had had extra-marital
sex in the previous twelve months. In 1978 the economist Ray C. Fair used this data
to develop a “theory of extramarital affairs” (Fair, 1978)1, with the idea that people
optimize a trade-off between working, spending time with their spouse, and spending
time with a “paramour”. The model and data have become very well known (there
are at least a hundred later papers and books which reference it), and is available as
Affairs in the package AER on CRAN.

The variable affairs records the answer to “How often did you engage in extra-
marital sexual intercourse during the past year”, with values of “once a month”, or
more frequently, all coded as 12. Other variables are sex, age, how many years the
respondent had been married2, whether they had children, how religious they were
(on a scale of 1–5), their level of education, how much prestige their occupation had
(on a scale of 1–7), and how happy they were with their marriage (on a scale of 1–5).

1. (30 points) Two specifications

(a) (15 points) Using logistic regression, fit a model for the number of times
respondents said they had extramarital sex during the previous year. De-
scribe, in words, the predictions of the model. Which variables are signif-
icant predictors?

(b) (15 points) Repeat (1a), but use logistic regression to fit a model for whether
respondents said they had extramarital sex at all during the previous year.

2. (10 points) Are the same variables significant in both models in problem 1? Do
they have the same signs in both models? Should the models match in this way?
Explain.

3. (20 points) Comparing predictions

1This paper also used a similar survey of readers of Redbook in 1974, not part of this data set.
2Prof. Fair removed respondents who had never married, or had married more than once.
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(a) (5 points) For each person in the data set, calculate the predicted proba-
bility, under both models, that they did not have an affair.

(b) (10 points) Plot these against each other. Describe the plot in words.

(c) (5 points) Do the models agree with each other in their predictions? Should
they? Explain.

4. (20 points) Calibration

(a) (2 points) Consider all the people for whom the predicted probability of
an affair, according to the model from problem (1a), is less than 10%.
What fraction of them report having affairs?

(b) (3 points) Repeat this calculation for predicted probabilities between 10%
and 20%, 20% and 30%, etc. Plot the actual frequencies against the pre-
dicted probabilities.

(c) (5 points) Make a similar plot for the other model. (You can combine the
plots, if the result is clear.)

(d) (10 points) For which model do the predictions seem to match the data
best? Explain with reference to your plots.

5. (10 points) Download Fair’s paper and read Table I (p. 53). Does it make sense
to use a linear response for all of the variables (as in problem 1 above), or would
it be better to treat some variables as categorical? Explain.

6. (10 points) Evaluation

(a) (5 points) Do either of these models seem to provide an adequate descrip-
tion of the data? (Explain.) If not, what else could one try?

(b) (5 points) Is it reasonable to use this data to develop theories about con-
temporary behavior? Explain.
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Chapter 36

How the North American
Paleofauna Got a Crook in Its
Regression Line

Our problem set this week concerns an important question for evolutionary biology
and paleontology. It has been argued that larger organisms tend to have selective ad-
vantage over smaller ones of the same species, but larger bodies demand more special-
ized internal structure, more “division of labor”, than small ones, indirectly driving
the evolution of increased biological complexity (Bonner, 1988). To evaluate this, it
is important to know whether species tend to get larger over evolutionary time, and,
if so, to characterize this accurately.

Our data set this week is taken from the North American Mammalian Paleofau-
nal Database, which contains information on the typical body mass of about 2000
living and extinct species of mammals native to North America. (You can find it
on the website, http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/04/nampd.
csv.) Specifically, the columns of the data give: the scientific name of the species;
the natural logarithm of its typical body mass (measured in grams); the natural log-
arithm of the mass of its ancestor (in grams); how long ago it first appeared in the
fossil record (in millions of years); and how recently it last appeared (in millions of
years; an NA in this column indicates the species is still alive). We will model how
the change body mass is related to the body mass of the ancestral species. In particu-
lar, paleontologists have suggested that the correct model relating change in log mass
to ancestral log mass should be piece-wise linear: a downward-sloping line for small
ancestral log masses, and flat for larger ancestral masses. In this problem set, you will
fit that model, and examine its predictions.

1. (10) Basics

(a) (5) Load the data. Create a vector which gives each species’ change in
log body mass from its ancestor, and add it to the data frame as a new
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column. Explain, in your own words, what it would mean for a species
to have a value of +0.7 in this column. Check that this column has NA
values in the correct places. Explain how you know that those are the
correct places. Remove all the rows with NA values for the change in log
mass, and use this cleaned version of the data for all subsequent parts of
the assignment.

(b) (5) Plot the change in log body mass versus ancestral log body mass. De-
scribe the plot briefly.

2. (10) Linear model

(a) (2) Linearly regress the change in log body mass on the ancestral log body
mass. Report the coefficients to reasonable precision.

(b) (3) Create a new figure which is the scatter-plot from problem 1b, plus
your fitted regression line.

(c) (5) Based on the estimates 2a and the plot from 2b, does this model sup-
port or undermine the idea that new species tend to be larger than their
ancestors? Explain.

3. (15) Piecewise linear model

(a) (5) The piece-wise linear model predicts the following mean response as a
function of the input x:

ŷ(x) =
�

a+ b x if x ≤ d
c if x ≥ d

Assuming that this is continuous at d , solve for a in terms of b , c and d .
Explain why, in this application, it is reasonable to assume continuity.

(b) (10) Write a function in R, called1 deac, that takes in a vector of numbers
x, and three parameters b, c, and d, and returns the prediction of the
model at each value of x.
Check that your deac function is working properly by seeing that when
b =−1, c = 0.05 and d = 2, giving x=c(1,1.5,3) outputs

[1] 1.05 0.55 0.05

Plot deac, with those parameters, as x goes over the range (0,4). Does it
look right?
Hints: ifelse for writing deac, curve for plotting.

4. (15) Because deac varies nonlinearly with parameter d , we cannot estimate it
by linear regression. However, we can still estimate the parameters by least
squares. To do this, we need to write a function, make a starting guess about
the parameters, and use the built-in optimization function optim (see recipe

1From the initials of the scientists who proposed this model; they didn’t give it a name.
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13.2 in The R Cookbook).2. The following function fits the model to a data set
by numerically minimizing the sum of squared errors:

my.start <- c(b=-1,c=0.2,d=10)
fit.a.deac <- function(data,start=my.start) {

sse <- function(par) {
preds <- deac(data$ln_old_mass,par[1],par[2],par[3])
sum((data$delta_ln_mass - preds)^2)

}
fit <- optim(par=start,fn=sse,method="Nelder-Mead")
coefficients <- fit$par
fitted <- deac(data$ln_old_mass,coefficients[1],coefficients[2],

coefficients[3])
residuals <- data$delta_ln_mass - fitted
mse <- mean(residuals^2)
return(list(coefficients=coefficients,fitted=fitted,residuals=residuals,

mse=mse,data=data))
}

(See online for the commented version; you’ll want to source that, rather than
typing this in and adding original errors.)

(a) (7) Explain what the inner function, sse, does.

(b) (8) What sort of output does fit.a.deac give — a vector, a list, an array,
what? What do the various components of the output represent, in terms
of the statistical problem?

5. (15) Starting positions The code given above looks for a vector of initial param-
eters called my.start, if no other starting point is supplied. The line before
the function makes up some values for my.start; they are bad ones. We will
see in a later problem set that a reasonable guess for d is about 5.

(a) (5) Use this more-reasonable value of d to get a rough guess for c by taking
the average change in log mass over all animals whose ancestral log mass
exceeds d . Explain why this is a reasonable way to guess at c .

(b) (5) Get a rough guess for b by linearly regressing the change in log mass
on ancestral log mass for animals where the ancestral log mass is less than
d . Explain why this is a reasonable way to guess at b .

(c) (5) Re-define my.start to contain your improved guesses for b , c and d .
Run fit.a.deac to get a fitted model, which you should call nampd.deac.
Plot the fitted values as a function of log ancestral mass on a scatter-plot
of change in log mass versus log ancestral mass.

2R has a built-in function, nls, for such “nonlinear least-squares” estimation, working more like lm.
Unfortunately, nls can be flaky when the model doesn’t have continuous derivatives, which is the case
here. Besides, writing your own code builds character.
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6. (20) Bootstrapping will continue until morale improves. Use resampling of resid-
uals, not cases, in both parts. Note: You can use the same resampled data-frames
for both parts of this problem, but it needs more clever programming. 1000
bootstrap replicates takes 1–2 minutes on my computer.

(a) (10) Find bootstrap standard errors, and 95% confidence intervals, for the
parameters b , c and d . Report all these quantities.

(b) (10) Find 95% bootstrap confidence bands for the fitted curve, and add
them to your plot from problem 5c.

7. (15) Linear vs. Piecewise Linear One way to compare two models is to see which
one can predict the other’s parameter values. We will compare the simple lin-
ear model from problem 2a with the piecewise linear model deac model from
problem 5c.

(a) (5) Simulate the fitted deac model, using resampling of residuals, and es-
timate the linear model on the simulation. What coefficients do you esti-
mate? Are they compatible with the ones you estimated from the data?

(b) (5) Simulate the fitted linear model, using resampling of residuals, and
estimate the deac model on the simulation. What coefficients do you
get? Are they compatible with the ones you estimated from the data?

(c) (5) Use five-fold cross-validation to compare the linear model from prob-
lem to the piecewise-linear deac model. Which one predicts mass changes
better?
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Chapter 37

How the Hyracotherium Got
Its Mass

AGENDA: Using nonparametric smoothing to check parametric mod-
els; more practice with simple simulations and function-writing.

We continue to work with the fossil data set from §36. As mentioned there, some
paleontologists have suggested that the right curve relating change in log mass to an-
cestral log mass should be piece-wise linear and homoskedastic: a downward-sloping
line for small ancestral log masses, flat for larger ancestral masses, and constant con-
ditional variance:

Y =
�

a+ b x + ε if x ≤ d
c + ε if x ≥ d

E[ε|x] = 0
Var[ε|x] = σ2

In the last problem set, you fit that model; in this one, you will see whether the data
support non-linear corrections.

You will first need to load the data from the other problem set, and add the col-
umn of change in log mass to the data frame.

The mgcv package is recommended for the additive model in Problem 5. Earlier
problems call for spline smoothing, and can be done with either the smooth.spline
function or with the gam function.

1. (10) Plotting the Parametric Model

(a) (5) Make a scatter-plot showing the change in log mass as a function of the
log ancestral mass.

(b) (5) Add the estimated piecewise linear model from homework 4. You may
refer to the solutions for code and parameter estimates, but must explain,
in your own words, any code you borrow from there.
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2. (25) Residual inspections

(a) (5) Calculate the residuals of the estimated piecewise linear model and
plot them against the log ancestral mass. Describe any patterns to the
plot in words; you should address whether the model systematically over-
or under- predicts in certain ranges of ancestral mass, but there may be
other important features.

(b) (5) The column first_appear_Mya lists how many millions of years ago
each species first appeared. Plot the residuals against this variable; de-
scribe any patterns.

(c) (5) Plot the squared residuals against the log ancestral mass. Add a smooth-
ing spline. Explain whether the scatter-plot and the spline show evidence
of heteroskedasticity.

(d) (5) Plot the squared residuals against date of first appearance and add a
smoothing spline. Explain whether the scatter-plot and the spline show
evidence of heteroskedasticity.

(e) (5) Plot the histogram of the residuals (not the squared residuals). Are
they Gaussian? Should they be, under the model?

3. (10) A nonparametric alternative

(a) (7) Fit a spline regression of the change in log mass against log ancestral
mass. Plot this spline on the same graph as the data and the estimated
piece-wise linear model. Compare, in words, the shape of the spline to
that of the parametric model.

(b) (3) Find the in-sample root-mean-square error of both the parametric model
and the smoothing spline. Which fits better?

4. (20) Testing parametric forms

(a) (3) Write a function to fit the smoothing spline to a data set. Check that
it works by making sure it gives the right answer on the original data.

(b) (2) Write a function to calculate the MSE of a fitted smoothing spline.
Check that it works by making sure it gives the right answer on the orig-
inal data.

(c) (5) Write a function to take in a data set and return the difference in MSEs
between the parametric model and the smoothing spline. Check that it
works by making sure it gives the right answer on the original data.

(d) (5) Write a function to simulate from the estimated piecewise-linear model
by resampling the residuals. You can borrow from the solutions to home-
work 4, but must explain, in your own words, how that code works. How
can you check that the simulation works?

(e) (5) Combine your functions to draw 1000 samples from the distribution
of this test statistic, under the null hypothesis that the parametric model
is right. What is the p-value of this test of the null hypothesis?
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5. (25) Additional Variables The piecewise linear model implicitly assumes that
the relationship between ancestral mass and change in mass is the same at all
times. An alternative is that this relationship has itself evolved.

(a) (5) Estimate an additive model which regresses the change in log mass
against the log ancestral mass and the date of first appearance. Plot the
two partial response functions, and describe, in words, the shape of the
curves. Compare the shape of the partial response function for log ances-
tral mass to the spline curve from Problem 3a.

(b) (4) Does the estimated additive model support or undermine the idea that
the relationship between ancestral mass and descendant mass is invariant
over time? Explain.

(c) (1) What is the in-sample root-mean-square error of the additive model?

(d) (10) Explain what you would have to change from your code in Problem
4 to test the piecewise-linear model against the additive model, and what
pieces of code could stay the same.

(e) (5) Write the new code called for by Problem 5d and run the test. What
is the p-value?

6. (10) Is the piecewise-linear, homoskedastic parametric model an acceptable rep-
resentation of the data? Justify your answer by referring to your work above.
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Chapter 38

How the Recent Mammals Got
Their Size Distribution

All of this is shameless ripped
off from http://arxiv.org/
abs/0901.0251 but Aaron
said it was OK

Problem sets 36 and 37 used regression to study how the typical mass of (mammalian)
species changes over evolution: on average new species are heavier than their ances-
tors, especially if the ancestor was very small, but with a wide variation. If we com-
bine this with the facts that new species branch off from old ones, and that sometimes
species go extinct without leaving descendants, we get a model for how the distribu-
tion of body masses changes over time. It’s not feasible to say much about this model
mathematically, but we can simulate it, and check the simulated distribution against
the real distribution of body masses today.

The objects in this model are species, each described by its typical mass. (We
assume that this does not change over the lifespan of the species.) Each species can
produce new species, who mass is related to that of its ancestor according to our
previously-learned regression model, or go extinct. As time goes on, the distribution
of body masses will fluctuate randomly, but should do so around a steady, character-
istic distribution.

More specifically, each species i has a mass Xi , which is required to be between
xmin, the smallest possible mass for a mammal, and xmax, the largest possible mass. At
each point in time, one current species A is uniformly selected to evolve into exactly
two new species. Each descendant has a mass XD which depends on the mass of its
ancestor, XA, according to the regression model, plus independent noise:

logXD = logXA+Z +
�

a+ b logXA if logXA≤ d
c if logXA≥ d (38.1)

where Z ∼N (0,σ2). Continuity means that a = c − b d ; we also need to impose the
constraints that xmin ≤XD ≤ xmax.

Species become extinct with a probability that depends on their body mass,

pe (x) =βxρ (38.2)
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Unless otherwise specified, you should use σ2 = 0.63; xmin = 1.8 grams and
xmax = 1015 grams; ρ = 0.025; β = 1/5000; and the values of b , c and d from the
solutions to Homework 4.

1. (10) Write a function, rdeac.1, which takes as inputs a single ancestral mass
XA (not logXA), the parametersb , c , d and σ2, and the limits xmin and xmax. It
should generate a candidate value for XD (not logXD ) from Eq. 38.1 and return
it if it is between the limits, otherwise it should discard the candidate value and
try again.

(a) (2) Set XA to 40 grams and check, by simulating many times, that the out-
put is always between xmin and xmax, even when those values are brought
close to 40 grams.

(b) (8) Simulate a single XD value for 100 values of XA evenly spaced between
1 and 100 grams. Treat this as real data and re-estimate the parameters b ,
c and d according to the methods of Homework 4; are they reasonably
close to those in the simulation?

2. (10) Write a function, rdeac, which takes the same inputs as rdeac.1 plus
an integer n, and returns a vector containing n independent draws from this
distribution. We will test this with n = 2, but your code must be more general
for full credit.

(a) (4) Check, by simulating, that the first component of the returned vector
has the same marginal distribution as the output of rdeac.1.

(b) (4) Check that the second component of the returned vector has the same
marginal distribution as the first component.

(c) (2) Check that the two components are uncorrelated.

3. (10) Write a function, speciate, which takes the same arguments as rdeac.1,
except that XA is replaced by a vector of ancestral masses. The function should
select one entry from the vector to be XA, and generate two independent values
of XD from it. One of these should replace the entry for XA, and the other
should be added to the end of the vector.

(a) (2) Check, by simulating, the output always has one more entry than the
input vector of masses, no matter how long the input is.

(b) (8) If the input has length n, check that n− 1 of the entries in the output
match the input.

4. (15) Write a function, extinct.probs, which takes as inputs a vector of species
masses, an exponent ρ, and a baseline-rate β, and returns the extinction prob-
ability for each species, according to Eq. 38.2.

(a) (1) Check that if the input masses are 2 grams and 2500 grams, with the
default parameters the output probabilities ≈ 2.0× 10−4 and 2.4× 10−4

respectively.
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(b) (2) Check that if ρ = 0, then the output probabilities are always β, no
matter what the masses are.

(c) (2) Check that if there input masses are all equal, then the output proba-
bilities are all the same, no matter what ρ and β are.

(d) (10) Write a function, extinction, which takes a vector of species masses,
ρ and β, and returns a possibly-shorter vector which removes the masses
of species which have been selected for extinction. Hint: What does
rbinom(n,size=1,prob=p) do when p is a vector of length n?

5. (15) Evolve!

(a) (5) Write a function, evolve.1, which takes as inputs a vector of species
masses, b , c , d , σ2, xmin, xmax, ρ andβ, and first does one speciation step,
then one round of extinction, and returns the resulting vector of species
masses.

(b) (5) Write a function, evolve, which takes the same inputs at evolve.1,
plus an integer t , and iterates evolve.1 t times.

(c) (5) How do you know that your functions are working properly?

6. (15) Re-running history

(a) (5) Run evolve starting from a single species with a mass of 40 grams for
t = 2× 105 steps. Save the output vector of species masses as y1. Plot the
density of y1.

(b) (5) Repeat the last step to get a different vector y2. Does it have the same
distribution as y1? How can you tell?

(c) (5) Change the initial mass to 1000 grams and get a vector of final masses
y3. How does its distribution differ from that of y1?

7. (25) The data file MOM_data_full.txt gives the masses of a large (and represen-
tative) sample of currently-living species of mammals. The column mass gives
the mass in grams; the columns species, genus, family, order and code are
identifiers for the particular species, which do not matter to us. Finally, the
column land is 1 for species which live on land and 0 for those which live in
the water.

(a) (5) Load the data and plot the density of masses for land species.

(b) (10) Describe, in words, how the distribution of current species masses
compares to that produced by the simulation model in y1.

(c) (10) Use the relative distribution method from Chapter 17 to compare
the actual distribution to the distribution of y1. Describe the results and
what they say about how the data differ from the model.
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Chapter 39

Red Brain, Blue Brain

The data set n90_pol.csv contains information on 90 university students who par-
ticipated in a psychological experiment designed to look for relationships between
the size of different regions of the brain and political views. The variables amygdala
and acc indicate the volume of two particular brain regions knwon to be involved in
emotions and decision-making, the amygdala and the anterior cingulate cortex; more
exactly, these are residuals from the predicted volume, after adjusting for height, sex,
and similar body-type variables. The variable orientation gives the subjects’ loca-
tions on a five-point scale from 1 (very conservative) to 5 (very liberal). orientation
is an ordinal but not a metric variable, so scores of 1 and 2 are not necessarily as far
apart as scores of 2 and 3.[[TODO: Fix point totals

as off after hybridizing ver-
sions]] 1. (35) Predicting brain sizes from political views

(a) (5) Ignoring the fact that orientation is an ordinal variable, what is
the correlation between it and the volume of the amygdala? Between
orientation and the volume of the ACC?

(b) (5) Using case resampling, give 95% bootstrap confidence intervals for
these correlations.

(c) (5) The function rank, applied to a data vector, returns the vector of
ranks, where 1 indicates the smallest value, 2 the next-smallest, etc. What
are the correlations between the ranks of orientation and the ranks f
amygdala? Between orientation and acc? Hint: What does cor(x,y,method="spearman")
do?

(d) (5) Using case resampling, give 95% bootstrap confidence intervals for the
rank correlations.

(e) (15) Using npcdens, plot the condition density of the volume of the
amygdala as a function of political orientation. Do the same for the vol-
ume of the ACC. Make sure that in both cases you are treating orientation
as an ordinal variable. You will be graded on how easy your plots are to
read.
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2. (10) Creating a binary response variable

(a) (2) Create a vector, conservative, which is 1 when the subject has orientation
≤ 2, and 0 otherwise.

(b) (3) Explain why the cut-off was put at an orientation score of 2 (as
opposed to some other cut-off).

(c) (4) Check that your conservative vector has the proper values, without
manually examining all 90 entries.

(d) (1) Add conservative to your data frame. (Creating a new data frame
with a new name will only get you partial credit.)

3. (10) Logistic regression

(a) (5) Fit a logistic regression of conservative (not orientation) on amygdala
and acc. Report the coefficients to no more than three significant digits.
Explain what the coefficients mean.

(b) (5) Using case resampling, give bootstrap standard errors and 95% confi-
dence intervals for the coefficients. Was the restriction to three significant
digits reasonable?

4. (10) Generalized additive model. Fit a generalized additive model for conservative
on amygdala and acc. (Be sure to smooth both the input variables.) Make sure
you are using a logistic link function. Report the intercept with reasonable
precision. Plot the partial response functions, and explain what they mean (be
careful!).

5. (15) Kernel conditional probability estimation

(a) (5) Using npcdens, find the conditional probability of conservative
given amygdala and acc. Make sure npcdens treats conservative as
a categorical variable and not a continuous one. Report the bandwidths.

(b) (5) Plot the estimated conditional probability that conservative is 1,
with acc set to its median value and amygdala running over the range
[−0.07,0.09]. (The plotting range for amygdala exceeds the range of val-
ues found in the data.) Hint: your code will need to provide values for
acc, for amygdala and for conservative (why?).

(c) (5) Plot the estimated conditional probability that conservative is 1,
with amygdala set to its median value and acc running over the range
[−0.04,0.06]. (This plotting range also requires extrapolating outside the
data.)

6. Probability surfaces (15) For each of the three models, create a plot showing the
estimated probability that conservative is 1, given amygdala or acc. The
range for amygdala should be [−0.07,0.09], and the range for acc should be
[−0.04,0.06]. Compare and contrast the three plots.
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Contour, wireframe and heatmap/level-plot plots are all acceptable, but all ac-
cess must be clearly labeled with numerical scales, and, if you use color, there
must be a color key.

Hint: use predict; be careful that you are predicting the right thing.

7. Calibration (15) Make calibration plots for each of the three models, as in
[[chapter 13]] of the notes. Which models (if any) seem reasonably calibrated?
Explain with reference to your plots.

8. Classification (10) The models from problems 3–5 predict probabilities for conservative.
If we have to make a point prediction of whether someone is conservative or
not, we should predict 1 if the probability is ≥ 0.5 and 0 otherwise. Find such
predictions for each subject, under each of the three models. What fraction of
subjects are mis-classified? What fraction would be mis-classified by “predict-
ing” that none of them are conservative?

9. (10) Summing up Explain what you can conclude from this data about the re-
lationship between brain anatomy and political orientation. Refer to your an-
swers to earlier problems.
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Chapter 40

Patterns of Exchange

There are many variables which influence the rate at which one currency is exchanged
against another: changes in interest rates, changes in inflation rates, changes in coun-
try’s trade balances, the actions of speculators and central banks, etc.1 Often these
variables act in almost the same way at the same time in countries which occupy sim-
ilar positions in the global economy, so we might expect substantial correlation in
movements of exchange rates. This suggests that it might be useful to try to reduce
the large number of exchange rates to a smaller number of components.

The data set for this week, fx.csv on the class website, contains the sequence of
exchange rates, against the Swiss franc2, of some commercially important and widely
traded currencies: the US dollar, the Japanese yen, the Euro, and nineteen others.
The data set runs from early 1995 to early 2010, with dates given as row names3. We
will use principal components to analyze these exchange rate histories.

1. Exploration and basic understanding (10 points) Load the data file. It should
have 3779 rows (trading days) and 22 columns (currencies).

(a) (3 points) The column names are abbreviated three-letter codes standing
for currencies. What are the names of the countries and of the currencies?
(Hint: use a search engine and/or the library.)

(b) (2 points) The exchange rate of dollars to yen on 28 February 2003 was
approximately 118.22 yen to the dollar. Explain how to calculate this
from the data. (Hint: The data give exchange rates for both in terms of
Swiss francs.)

(c) (5 points) Produce basic numerical or graphical summaries for each cur-
rency. Do they seem to have the same range and distribution? Should
they?

1See Barry Eichengreen’s Globalizing Capital: A History of the International Monetary System (Prince-
ton University Press, 1996) for an excellent introduction and history.

2We could give prices for all the currencies in terms of any one of them, and it won’t matter which
one is the “numeraire”. This week’s data is a cleaned-up part of FXRatesCHF from the fxregime package,
whose authors are Swiss.

3For the first few years of the data, the “Euro” is really the old German deutsche mark.
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2. Data transformation (10 points) Economic theory for exchange rates is mostly
about changes to rates, and in fact mostly about the proportional changes, as
measured by log rt

rt−1
.

(a) (5 points) Create a new data frame where each column gives the logarith-
mic change in the exchange rate for the corresponding currency in the
original data. Hint: use diff and apply.

(b) (5 points) Produce the same sort of summaries for currencies as in prob-
lem 1c. Are they now more similar to one another, or less?

3. Covariance matrix (20 points)

(a) (8 points) Calculate the matrix of covariances between changes in ex-
change rates. This should be a 22× 22 matrix. Provide it as a table, with
at most three decimal places for each entry.

(b) (8 points) Make a visual display of the matrix, using grey-scale, contour
plots, color, or a perspective plot. Make sure the result is clearly legible
when printed.

(c) (4 points) Are there any groups of currencies which seem particularly
strongly correlated?

4. PCA (25 points)

(a) (4 points) Perform PCA on the transpose of the rate-of-change data frame,
so that countries are rows and dates are columns. (Hint: use the t()
function.) Include your code.

(b) (8 points) Make a plot of how much variance is account for by the first
k components, for k from 1 to 22. How much variance do the first two
components, taken together, retain? How many components are needed
to capture 50% of the variance? To capture 90%?

(c) (9 points) Make a figure where the three-letter symbol for each currency is
plotted according to the currency’s score on the first two principal com-
ponents. Hint: see examples in the notes for the lecture on PCA.

(d) (4 points) Describe any clusters or patterns you see in the plot from the
previous part. Do these match the strongly correlated currencies from
the previous question? Should they?

5. Examining the components (15 points)

(a) (5 points) Plot the sequence of weights (or “rotation”) for the first prin-
cipal component. Using the row names of the data set, and the axis
command, add regularly spaced dates to the horizontal axis.

(b) (5 points) Can you relate this time series to major economic events since
1995?

(c) (5 points) Repeat parts (a) and (b) for the second principal component.
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6. Reconstruction error (10 points)

(a) (2 points) Plot the logarithmic changes for the US dollar as a function of
time (with dates as in part (a) of the previous problem).

(b) (3 points) Plot the approximation to the dollar’s history based on the first
three principal components. Describe the similarities and differences.

(c) (5 points) Calculate the mean squared error between the actual history of
the dollar and the approximation based on the first q principal compo-
nents, for q from 1 to 22.

EXTRA CREDIT (20 points): Fit a factor analysis model. Use hypothesis testing
to determine the number of factors. Produce a figure like that of problem 5a for the
leading factor. Comment on how it resembles or differs from the figure in 5a.
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Chapter 41

Is This Assignment Really
Necessary?

The dataframe mathmarks in the library SMPracticals1 contains scores for 88 uni-
versity students in five mathematical subjects: vectors, algebra, analysis, statistics,
and mechanics. All subjects were scored out of 100 points. We will use multivariate
methods to explore how this data, and the relationships between the variables.

When asked to report numbers, give only two significant figures (not decimal
places!) unless told otherwise.

1. (5) What is the sample correlation matrix among the grades?

2. (5) Find the least-squares coefficients for predicting the grade in statistics as a
linear combination of the other four grades. What is the (in-sample) root-mean-
squared error of this regression?

3. (10) Fit a factor model with one common factor, using factanal. Report the
factor loadings and the uniquenesses, and explain what the numbers mean.

4. (10) Calculate the correlation matrix among the grades implied by the factor
model. Why is it not the same as the sample correlation matrix? How does it
differ?

5. (5) Calculate the covariance matrix implied by the factor model. How does it
compare to the sample covariance matrix?

6. (10) Calculate the coefficients for predicting the grade in statistics as a linear
combination of the other four grades, under the factor model. What is the
(in-sample) root-mean-squared error? Hint: §14.2.2.

7. (5) The factanal function reports a test which compares the factor model to
an unrestricted multivariate Gaussian. What is the p-value of this test, and
what does it tell you about how well the factor model fits?

1You can also get the data file from http://statwww.epfl.ch/davison/SM/.
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8. (10) Under the factor model, each variable should have a Gaussian distribution.
Check this for each of the five grades, using ddst.norm.test, and describe
your results.

9. (10) Using mvnormalmixEM from the mixtools package, fit a multivariate Gaus-
sian mixture model with two components. Report the mean vector of each
Gaussian, its covariance matrix, and the two mixing weights.

10. Mixture of Gaussians vs. factor model (30 total)

(a) (10) Write a function to draw n vectors from a mixture of two multi-
variate Gaussians. Hint: select a random Gaussian (how?) and then call
rmvnorm.

(b) (5) Write a function which takes a data frame, fits a one-factor model to
it, and returns the p-value. Check that it works by making sure it gives
the same answer as what you got in Problem 7

(c) (10) Repeatedly simulate data sets of size 88 from the two-Gaussian mix-
ture you fit in problem 9. What fraction of them fit a one-factor model at
least as well as the data?

(d) (5) What can you conclude about whether to prefer a one-factor or two-
mixture model for this data?
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Chapter 42

Mystery Multivariate Analysis

[[TODO: Put the data set on
the website]] 1. Initial exploration (15 points)

(a) (4 points) Check whether the marginal distribution for each variable is
Gaussian; both graphical and quantitative tests are acceptable.

(b) (5 points) Explain what the test you used in problem 1a does, and why it
works.

(c) (3 points) Explain a different procedure that you could have used.

(d) (3 points) Explain why making a scatter-plot of variable values against
row numbers would not let you check whether a distribution is Gaussian.

2. A joint distribution (15 points)

(a) (4 points) Using npudens from the np package, or any similar function,
make a kernel density estimate of the joint distribution of X.1 and X.10.
Plot it; contour, color or perspective plots are all acceptable.

(b) (5 points) Fit a two-dimensional Gaussian to the same data, and plot it in
the same way.

(c) (1 point) Plot the difference between the non-parametric and parametric
density estimates. Comment.

(d) (5 points) Could you use the same procedure as in Problem 1 to check
that the joint distribution is Gaussian? If so, explain how to modify it
and why it still works. If not, explain why it cannot be adjusted, and
describe a different procedure which you could use. EXTRA CREDIT (10
points): implement your test and report your results.

3. Principal components (15 points)

(a) (10 points) Find the first five principal components. Make a plot of these
components. The horizontal axis should run over the integers from 1 to
10, the vertical axis should run from −1 to +1, and the points should
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indicate the projection of the components on to the corresponding ob-
servable variables. Put all five components in the same plot, using color
or line style to distinguish them. (Alternately, use a three-dimensional
plot.) Make sure the results come through clearly when printed. Com-
ment on any patterns you see in the components. Grading will reflect
how much visual clarity you can give this plot.

(b) (5 points) Plot the amount of variance retained by the first q components
vs. q , for up to 10 components.

4. Factor analysis (15 points)

(a) (5 points) Fit a factor model with one factor. Plot the factor loadings of
the ten observable variables, as in the previous problem. Does this match
the first principal component? Should it?

(b) (5 points) Fit a two-factor model, and plot the loadings of both factors.
Has the first factor changed? If so, what does this mean? If not, is this
a coincidence, or should the first factor never change when other factors
are added?

(c) (5 points) Plot the amount of variance retained by the first q factors vs.
q , for up to 5 factors. Does this match the variance plot for PCA (up to
five components)? Should it?

5. Factor model selection (20 points)

(a) (7 points) Describe how to use the log likelihood ratio to select the num-
ber of factors.

(b) (3 points) Of the models fit in the previous question, which one is favored
by the log likelihood ratio test?

(c) (7 points) Describe a way to test whether the discrepancy between your
selected factor model and the data is significant.

(d) (3 points) Is the discrepancy significant?

6. Mystery R (20 points)

myfunction <- function(x, t=100, eps=1e-2/sqrt(nrow(x))) {
stopifnot(require(mixtools),is.array(x))
n <- nrow(x)
w <- rep(c(0,1),length.out=n)
w <- sample(w)
del <- Inf
i <- 0
while ((del > eps) && (i < t)) {
i <- i+1
l1 <- mean(abs(w))
l2 <- 1 - l1
m1 <- apply(x,2,weighted.mean,w=w)
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m2 <- apply(x,2,weighted.mean,w=(1-w))
s1 <- cov.wt(x,wt=w)$cov
s2 <- cov.wt(x,wt=(1-w))$cov
p1 <- dmvnorm(x,m1,s1)
p2 <- dmvnorm(x,m2,s2)
wn <- l1*p1/(l1*p1+l2*p2)
del <- max(abs(wn-w))
w <- wn

}
return(list(m1=m1,m2=m2,s1=s1,s2=s2,l1=l1,l2=l2,w=w,t=i,del=del))

}

(a) (6 points) Explain what this function does. What are the inputs? What
are the outputs?

(b) (6 points) Explain what each line does.

(c) (4 points) Is the abs necessary in the second line of the while loop? Is it
necessary in the next-to-last line of the while loop?

(d) (4 points) Run this function on your data. Describe the results.

7. Mixtures (EXTRA CREDIT, 50 points) Install the mixtools package from CRAN,
and read sections 1, 2, and 6.1 of the paper describing it by Benaglia et al.
(http://www.jstatsoft.org/v32/i06).

• (10 points) Using mvnormalmixEM(), fit Gaussian mixture models to your
data, varying the number of clusters or mixture components from 2 to 6.
Plot the likelihood as a function of the number of clusters.
Hint: The default settings for maxit and epsilon will take forever; more
reasonable ones here would be maxit=100 and epsilon=1e-1. Explain,
in your write-up, what these settings mean. Fitting the model with seven
clusters might then still take up to an hour on a slow machine.

• (10 points) Describe how the boot.comp function works.

• (10 points) Use boot.comp to select the number of components to use.
Hint: You will want to use fewer than the default number of bootstrap
replicates, and also pass along the fitting arguments. Even so, this may
take a very long time.

• (10 points) Describe a way to decide whether to use this selected mix-
ture model, or the factor model you selected earlier, and explain why this
comparison should be reliable.

• (10 points) Implement your comparison. Which model is favored?
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Chapter 43

Separated at Birth

In many species of plants and animals, the genetic causes of bodily traits or behav-
ior can be studied by breeding, or experimentally creating, organisms with specific
genetic characteristics, and comparing different “strains” or “lines” which differ only
in their genes, in known ways. This is not allowed for people1. To try to get around
this, researchers in psychology and medicine have used what are called “twin de-
signs”, which compare identical twins raised together to identical twins raised apart,
hoping to indirectly isolate genetic influences on aspects of the body (e.g., height,
weight, cholesterol) or behavior (e.g., extroversion, school grades, voting, belief in
astrology)2. This problem set will use graphical causal models to examine the basis
of such studies. [[TODO: Include a data set,

obviously — KR might have
one?]]

Unless specifically noted otherwise, you can assume that all variables are contin-
uous, with mean zero, and each variable is a sum of its causal parents plus noise. You
can assume that the noise term is independent and mean-zero for each variable, but
you cannot assume that they all have the same variance; write the noise variance for
X as σ2

X .
Figures 43.1 shows the models which are usually assumed in such studies, for

identical twins raised together and identical twins raised apart. The letters on the
arrows are the names of the path coefficients.

1. Paths and equations (10)

(a) (4) For the models in Figure 43.1, write the equation for the trait of twin
A in terms of its causal parents, the path coefficients, and the noise.

(b) (1) How must these equations be changed for twin B?

(c) (5) Explain why we can assume the path coefficients a and b are both
always 1.

1Even if it was ethical, it wouldn’t be very practical, because it takes so long to raise a new generation.
2All of these are traits which have actually been studied with twin designs. [[TODO: References]]
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2. Genetic component of variance (25) The heritability of a trait is the fraction of
its total variance which is genetically caused3. We will focus on the genetically-
caused component of variance, i.e., the numerator of the heritability.

(a) (4) Find the variances of the trait of twin A in both models, in terms of
the path coefficients and the variances of its causal parents.

(b) (1) Find the variances of the trait of twin B in both models.

(c) (5) Find the covariances between twin A and twin B in both models.

(d) (5) Find the variance of the genes in terms of the observable variances and
covariances. (You may have to compare twins raised together to twins
raised apart.)

(e) (5) Find an expression for the family-environment variance, in terms of
the variances and covariances of the observable variables.

(f) (5) Can you find the heritability from the previous results? If so, what is
it? If not, what else would you need to know?

3. Not separated that far (20) Twins “raised apart” are placed in families through
the same process at the same time; in many documented cases they end up
living with relatives of their parents, and sometimes grow up in the same town,
attending the same schools. This is referred to as a community effect: see
Figure 43.2.

(a) (5) Find the variances of the twins’ traits in the new models, in terms of
the variances of the traits causal parents and the path coefficients. Explain
why the path coefficients can all be taken to be 1.

(b) (5) Find the covariance between twins raised together and the covariance
between twins raised apart in the new models.

(c) (5) Is your expression from Problem 2d still equal to the variance of the
genes? If not, how would using the sample covariance between twins
raised apart lead to a biased estimate of genetic variance?

(d) (5) Is your expression from Problem 2e still equal to the family-environment
variance? If not, how would using the sample version of your expression
lead to a biased estimate?

4. Family proxies (20) Suppose we can imperfectly measure family environment.

(a) (5) Modify the models in Figure 43.2 to include an observable variable
which measures each family environment. Call its path coefficient m.

(b) (5) Does conditioning on the shared genes and the measurements of fam-
ily environments d-separate the twins when they are raised apart? Does it
d-separate them when they are raised together? (Show your work.)

3There is also a “narrow” heritability, which has to do with genetic causation which adds up across
genes without interactions; we won’t try to deal with that.
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b

Figure 43.1: Standard models for twins raised together (left) and twins raised apart
(right). Variables in boxes are observable, variables in ellipses are latent. Letters on
edges indicate path coefficients.

(c) (10) Conditional on the measurements of family environments, find the
variances and covariances of twins raised together and twins raised apart.
For this problem only, you may assume all variables are Gaussian, if that
helps. Hint: Chapter 14. [[TODO: More scaffolding

here, this is where many stu-
dents got lost]]5. Not separated before birth (25) Twins share the same environment for nine months

(or so) before birth. This is called the maternal environment or maternal ef-
fect.

(a) (5) Draw graphical models including the maternal effect for both twins
raised together and twins raised apart.

(b) (5) Find the variances of the twins’ traits in the new models, in terms of
the variances of the traits causal parents and the path coefficients. Explain
why the path coefficients can all be taken to be 1.

(c) (5) Find the covariance between twins raised together and the covariance
between twins raised apart in the new models.

(d) (5) Is your expression from Problem 2d still equal to the variance of the
genes? If not, how would using the sample covariance between twins
raised apart lead to a biased estimate of genetic variance?

(e) (5) Is your expression from Problem 2e still equal to the variance of the
family environment? If not, how would using the sample version of your
expression lead to a biased estimate?
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Figure 43.2: Models for twins raised together and apart, incorporating community
effects.
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Chapter 44

Brought to You by the Letters
D, A and G

The file sesame.csv contains data on an experiment which sought to learn whether
regularly watching Sesame Street caused an increase in cognitive skills, at least on av-
erage. The experiment consisted of randomly selecting some children, the treated,
and encouraging them to watch the show, while others received no such encourage-
ment. The children were tested before and after the experimental period on a range
of cognitive skills. (Table 44.1 lists the variables.)

For questions that ask you to write code or manipulate data, include the relevant
commands in the body of your answer.

1. Data manipulation (5) For each of the skills variables, find the difference be-
tween pre-test and post-test scores, and add the corresponding column to the
data frame. Name these columns deltabody, deltalet, etc. Describe and
run a check that the values in these columns are at least approximately right
(without examining them all).

2. Naive comparison (5 total)

(a) (2) Find the mean deltalet scores for children who were regular watch-
ers, and for children who were not regular watchers.

(b) (3) What must be assumed for the difference between these means to be a
sound estimate of the average causal effect of switching from not watching
to regularly watching Sesame Street? Is that plausible? Suggest a way the
assumption could be tested.

3. “Holding all else constant” (20 total)

(a) (5) Linearly regress the change in reading scores on regular watching, and
all other variables except id, viewcat, and the post-tests. (Be careful
of which variables are categorical.) Report the coefficients to reasonable
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precision. You will lose points for unjustified precision. Hint: R’s default
is definitely to report to unjustified precision.

(b) (5) What would someone who had only taken 401 report as the average
effect of making a child become a regular watcher of Sesame Street?

(c) (5) Explain why id, viewcat, and the post variables had to be left out of
the regression. (The reasons need not all be the same.)

(d) (5) What would we have to assume for this to be a sound estimate of the
average causal effect? Is that plausible?

4. (20 total) Consider the graphical model in Figure 44.1.

(a) (10) Find a set of variables which satisfies the back-door criterion for esti-
mating the effect of regular watching on deltalet.

(b) (5) Linearly regress deltalet on regular and the variables you selected
in 4a. What is the corresponding estimate of the average effect of causing
a child to become a regular watcher?

(c) (5) Do a kernel regression for the same variables. (Be careful about which
variables are categorical.) Find the corresponding estimate of the average
effect of causing a child to become a regular watcher.

5. (25 total) Consider the graphical model in Figure 44.2.

(a) (5) There is at least one set of variables which meets the back-door crite-
rion in Figure 44.2 which did not meet it in Figure 44.1. Find such a set,
and explain why it meets the criterion in the new graph, but did not meet
it in the old one.

(b) (5) Explain whether or not the set of control variables you found in 4a
still works in the new graph.

(c) (5) Linearly regress deltalet on regular and the variables you selected
in 5a. What is the corresponding estimate of the average causal effect of
causing a child to become a regular watcher?

(d) (5) Do a kernel regression for the same variables. (Be careful about which
variables are categorical.) Find the corresponding estimate of the average
effect of causing a child to become a regular watcher.

(e) (5) Find a pair of variables which are conditionally (or marginally) inde-
pendent in Figure 44.1 but are not in Figure 44.2, and vice versa. Explain
why. Note: Both the conditioned and conditioning variables must be ob-
served; the point is to find something which could be checked with the
data.

(f) (Extra credit: 5) Test whether either of the two conditional independence
relations from 5e hold in the data.

6. Instrumental encouragement (25 total) Some children were randomly selected
for encouragement to watch Sesame Street. This is encoded in the variable
encour.
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(a) (5) Explain why encour is a valid instrument in Figure 44.1. (You may
need to also control for some other variables.)

(b) (5) Explain why encour is a valid instrument in Figure 44.2. (You may
need to also control for some other variables.)

(c) (5) Describe a DAG in which encour would not be a valid instrument.

(d) (5) Use the two-stage least-squares method to estimate the average effect
of causing a child to become a regular watcher.
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id subject ID number
site categorical; social background

1: Disadvantaged inner-city children, 3–5 yr old
2: Advantaged suburban children, 4 yr old
3: Advantaged rural children, various ages
4: Disadvantaged rural children
5: Disadvantaged Spanish-speaking children

sex male=1, female=2
age in months
setting categorical; whether show was watched at home (1) or school (2)
viewcat categorical; frequency of viewing Sesame Street

1: watched < 1/wk
2: watched 1−−2/wk
3: watched 3−−5/wk
4: watched > 5/wk

regular 0: watched < 1/wk, 1: watched ≥ 1/wk
encour encouraged to watch = 1, not encouraged=0
peabody mental age, according to the Peabody Picture Vocabulary test

(to measure vocabulary knowledge)
prelet, postlet pre-experiment and post-experiment scores on knowledge of letters
prebody, postbody pre-test and post-test on body parts
preform, postform pre-test and post-test on geometric forms
prenumb, postnumb tests on numbers
prerelat, postrelat tests on relational terms
preclasf, postclasf pre-test and post-test on classification skills

(“one of these things is not like the others”)
(“one of these things just doesn’t belong”)

Table 44.1: Variables in the sesame data file. The pre- and post- experiment test
scores are integers, but can be treated as continuous.
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Figure 44.1: First DAG.
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Figure 44.2: Second DAG.
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Chapter 45

Estimating with DAGs

This homework will illustrate some of the advantages of using a known DAG struc-
ture. You will need to read the lectures on graphical models carefully in order to do
it.

Figure 45.1 is an elaboration of the graph used in lectures. All problems refer to
it, unless otherwise specified.

The file fake-smoke.csv contains some (synthetic) data, for use in problem 5.

1. Parents and children (10 points)

(a) (5 points) For each variable in the model, list its parents; or, if it has no
parents, say so.

(b) (5 points) For each variable in the model, list its children. (Some variables
have no children.)

2. Joint distributions and factorization (10 points) Using the graph, list the smallest
collection of marginal and conditional distributions which must be estimated
in order to get the joint distribution of all variables.

3. Associations (20 points) Should there be a positive association, a negative as-
sociation, or no association between the following variables? Explain with
reference to the graph. (2 points each)

(a) Yellowing of teeth and cancer?

(b) Yellowing of teeth and cancer, controlling for smoking?

(c) Yellowing of teeth and cancer, controlling for occupational prestige?

(d) Yellowing of teeth and cancer, controlling for smoking and exposure to
asbestos?

(e) Smoking and cancer, controlling for the amount of tar in the lungs?

(f) Asbestos and cancer, controlling for cellular damage?

(g) Smoking and cancer, controlling for asbestos?
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+

-

Figure 45.1: Graphical model for use in all problems, except part of the last. Signs on
arrows indicate the sign of the associations (not necessarily linear) between parents
and children.
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(h) Smoking and asbestos, controlling for cellular damage?

(i) Tar in lungs and cancer, controlling for asbestos, smoking, and yellowing
of teeth?

(j) Smoking and cancer, controlling for asbestos and occupational prestige?

4. Using conditional independence to specify regressions (40 points)

(a) (10 points) We wish to know the conditional risk of cancer given smok-
ing. What other variables should be controlled for? Which other variables
do not need to be controlled for?

(b) (10 points) Using the fake-smoke.csv data from the class website, fit a
logistic regression model for the risk of cancer given the level of smoking,
controlling for any appropriate covariates.

(c) (10 points) Using the same data set, fit another logistic regression for the
risk of cancer using all the covariates. What does this say about the rela-
tionship between smoking and cancer? Why is this different than what is
implied by the model in 4b?

(d) (5 points) A medical insurance company needs to predict the risk of can-
cer among customers in order to set rates. Should it use the model from
4b or the one from 4c? Why? (Assume, for the sake of the problem,
that the training data and the insurance customers are both representative
samples of the general population.)

(e) (5 points) A doctor wants to advise their patients about what actions to
take to reduce their risk of cancer. Should they use the model from 4b or
4c? Why?

5. (20 points) Consider the alternative graph in Figure 45.2.

(a) (10 points) Repeat problem 3 with the new graph. Clearly indicate in
your response which associations differ for the two DAGs.

(b) (10 points) Suggest an experiment, or an observational analysis, which
could let us check which structure was right; explain, in terms of the
graphs.

6. (10 points) EXTRA CREDIT: Which DAG did the example data come from?
How can you tell?
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Figure 45.2: An alternative DAG for the same variables.
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Chapter 46

Use and Abuse of Conditioning

1. (30 points) Refer to figure [[1]] in Problem Set 45.

(a) (5 points) Using the back door criterion, describe a way to estimate the
causal effect of smoking on cancer.

(b) (5 points) Using the front door criterion, describe a different way to esti-
mate the causal effect of smoking on cancer.

(c) (5 points) Is there a way to use instrumental variables to estimate the
causal effect of smoking on cancer in this model? Explain.

(d) (5 points) Using your back-door identification strategy and the data file
from last time, estimate Pr (cance r = 1|d o(s moki n g = 1.5)).

(e) (5 points) Repeat this using your front-door identification strategy.

(f) (5 points) Do your two estimates of the casual effect match? Explain.

2. (25 points) Take the model in Figure 46.1. Suppose that X ∼ N (0,1), Y =
αX + ε and Z =β1X +β2Y +η, where ε and η are mean-zero Gaussian noise
with common variance σ2. Set this up in R and regress Y twice, once on X
alone and once on X and Z . Can you find any values of the parameters where
the coefficient of X in the second regression is even approximately equal to α?
(It’s possible to solve this problem exactly through linear algebra instead.)

3. (25 points) Take the model in Figure 46.2 and parameterize it as follows: U ∼
N (0,1), X = α1U + ε, Z = βX + η, Y = γZ + α2U + ξ , where ε,η,ξ are
independent Gaussian noises with mean zero and common variance σ2. If you
regress Y on Z , what coefficient do you get, on average? If you regress Y on
Z and X ? If you do a back-door adjustment for X ? (Approach this either
analytically or through simulation, as you like.)

4. (20 points) Continuing in the set-up of the previous problem, what coefficient
do you get for X when you regress Y on Z and X ? Now compare this to the
front-door adjustment for the effect of X on Y .
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X Y

Z

Figure 46.1: DAG for problem 2.

X Z Y

U

Figure 46.2: DAG for problems 3 and 4.
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Chapter 47

What Makes the Union Strong?

Finding the factors which control the frequency and severity of strikes by organized
workers is an important problem in economics, sociology and political science1.
Our data set, http://www.stat.cmu.edu/~cshalizi/uADA/12/hw/06/strikes.
csv, kindly provided by a distinguished specialist in the field, contains information
about the incidence of strikes, and several variables which are plausibly related to
that, for 18 developed (OECD) countries during 1951–1985:

• Country name

• Year

• Strike volume, defined as “days [of work] lost due to industrial disputes per
1000 wage salary earners”

• Unemployment rate (percentage)

• Inflation rate (consumer prices, percentage)

• “parliamentary representation of social democratic and labor parties”. (For the
United States, this is the fraction of Congressional seats held by the Democratic
Party.)

• A measure of the centralization of the leadership in that country’s union move-
ment, on a scale of 0 to 12.

• Union density, the fraction of salary earners belonging to a union (only avail-
able from 1960).

Note that some variables are missing (NA) for some cases. [[TODO: Fix point assign-
ments]]

1Or it used to be, anyway.
2This measure really should be a constant for each country over the period, but having a variable with

only 8 levels is trouble for the spline smoother used in Problem 3, so a very small amount of artificial noise
(±0.005 at most) has been added to each value.
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1. Estimate a linear model to predict strike volume in terms of all of the other
variables, except country and year.

(a) Report the coefficients, with 90% (not 95%) confidence intervals calcu-
lated according to

i. (2) The standard formulas
ii. (9) Resampling of the residuals

iii. (9) Resampling of the cases

Do not use more digits than you can justify.

(b) (10) Describe the meaning of the coefficients qualitatively. (I.e., do not
write “A one unit change in foo produces a change of bar units in strike
volume” over and over.)

(c) (5) Rank the predictor variables from most to least important, with “im-
portance” measured by the magnitude of the predicted change to strike
volume in response to a 1% relative change of the predictor away from its
mean value.

(d) (5) Rank the predictor variables from most to least important in terms of
predicted response to a 1 standard deviation change in the variable.

(e) (5) Do the two rankings agree? Should they? Which one seems more
reasonable for this problem?

2. Some theories suggest that English-speaking countries have legal and political
institutions which make strikes operate differently than in other industrialized
countries. Figure out which countries in the data set are primarily English-
speaking, create an indicator (dummy) variable for whether a case belongs to
one of those countries, and add it to the data set.

(a) (5) Fit a linear model in which the predictors from Problem 1 interact
with the English-using variable. Report the new coefficients (to reason-
able precision)

(b) (5) Explain how (if at all) this model differs qualitatively from the model
in Problem 1.

(c) (5) Use five-fold cross-validation to compare this model to the model in
Problem 1. Which one does better?

3. Fit an additive model for strike volume as a smooth function of all the variables
except country and year.

(a) (5) Plot all the partial response functions. Do they agree qualitatively
with the conclusions you drew from the model in Problem 1?

(b) (5) Consider increasing each of the predictor variables by 1% from its
mean, leaving the other variables alone. Rank the predictors according to
the magnitude of this model’s predicted change in strike volume. Would
the ranking be the same for a 1% decrease? Hint: use predict and a data
frame with artificial data.
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(c) (5) Consider increasing each of the predictor variables by one standard
deviation from its mean, leaving the other variables alone. Rank the pre-
dictors according to the magnitude of this model’s predicted change in
strike volume.

(d) (5) Discuss the contrast (if any) between these rankings, and the corre-
sponding ones for the linear model.

4. (10) Use the methods of Chapter 10 to test whether the linear model from
Problem 1 is well-specified against an additive alternative.

5. Continuing past the training data

(a) (2) What were the values of unemployment, inflation, union density, and
left.parliament for the United States in 2009? Hint: You can get most
of these from the last The Statistical Abstract of the United States.

(b) (4) Assuming the union centralization variable for the US in 2009 was
0, what strike volume was predicted by (i) the model from problem 1,
(ii) the English-is-different model from problem 2, and (iii) the additive
model from problem 3?

(c) (4) The actual strike volume for the United States in 2009 was 0.8. Is this
plausible under any of the models? Hint: How much do you expect actual
values to differ from predicted values?

6. (a) (5) Use pc() from pcalg to obtain a graph, assuming all relations between
variables are linear. Report the causal parents (if any) and children (if any)
of every variable. If the algorithm is unable to orient one or more of
the edges, report this, and in later parts of this problem, consider all the
graphs which result from different possible orientations.
Note: See http://bactra.org/weblog/914.html for help with installing
pcalg. The most troublesome component is the Rgraphviz package. If
you are unable to get Rgraphviz to work, you can still extract the in-
formation from the fitted model returned by pc: if that’s pc.fit, then
pc.fit@graph@edgeL is the “edge list” of the graph, listing, for each
node, the nodes it has arrows to. With this information, you can make
your own picture of the DAG.

(b) (10) Linearly model each variable as a function of its parents. Report
the coefficients (to reasonable precision), the standard deviation of the
regression noise (ditto), and 95% confidence intervals for all of these, as
determined by bootstrapping the residuals.

(c) (10 total) You should find that strike volume and union density are not
connected, but that there is at least one directed path linking them —
either density is an ancestor of strike volume, or the other way around.

i. (5) Find the expected change in the descendant from a one-standard-
deviation increase in the ancestor above its mean value.
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ii. (5) Linearly regress the descendant on all the other variables, includ-
ing the ancestor. According to this regression, what is the expected
change in the descendant, when the ancestor increases one SD above
its mean value and all other variables are at their mean values?

(d) (15 total) Check the linearity assumption for each variable which has a
parent. (Putting in interactions and/or quadratic terms is inadequate and
will result in only partial credit at best.)

i. (5) Describe your method, and why it should work.
ii. (5) Report the p-value for each case, to reasonable precision.

iii. (5) What is your over-all judgment about whether it is reasonable to
model each endogenous variable as linearly related to its parents? If
you need more information than just p-values to reach a decision,
describe it.

(e) (10) Discuss the over-all adequacy of the model, on both statistical grounds
(goodness-of-fit, appropriateness of modeling assumptions, etc.) and sub-
stantive, scientific ones (whether it makes sense, given what is known
about the processes involved).
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Chapter 48

An Insufficiently Random
Walk Down Wall Street

[[TODO: Brad DeLong (!)
points out by e-mail that one
should really define returns
here as log ((Pt+1+Dt+1)/Pt ),
where D is the dividend series
— prices aren’t the only thing
that matters with the S&P!
Obtain a historical dividend
series, or a dividend-adjusted
price series.]]

In this assignment, you will work with a data set of historical values for the S&
P 500 stock index, which also features in the notes. You will need to download
SPhistory.short.csv from the class website. This data set records the actual prices
of the index, say Pt on day t , but in finance we actually care about the returns, Pt

Pt−1
,

or about the logarithmic returns,

Rt = log
Pt

Pt−1

since we care more about whether we’re making 1% on our investment than $1 per
share. In this assignment, “returns” always means “logarithmic returns”.

Problems 2 and 3 are about estimating the first percentile of the return distribu-
tion, Q(0.01), under various assumptions. The returns will be larger than this 99%
of the time, so Q(0.01) gives an idea of how bad the bad performance will be, which
is useful for planning. Note that a calendar year contains about 250 trading days, and
so should average two or three days when returns are even worse than Q(0.01). Prob-
lems 4 and 5 are about predicting future returns from historical returns, and the un-
certainty in this. Doing all the bootstrapping for problem 5 may be time-consuming,
and should not be left to the last minute.

1. (5) Load the data file, take the last column (containing the daily closing price),
and calculate the logarithmic returns. Note that the file is in reverse chrono-
logical order (newest first). When you are done, if everything worked right,
running summary on the returns series should give

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.094700 -0.006440 0.000467 -0.000064 0.006310 0.110000

Hint: help(rev) and Recipe 14.8 in The R Cookbook.
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2. In finance, it is common to model daily returns as independent Gaussian vari-
ables.

(a) (5) Find the mean and standard deviation of the returns. What is Q(0.01)
of the corresponding Gaussian distribution? Hint: qnorm.

(b) (5) Write an expression which will generate a series of independent Gaus-
sian values of the same length as the returns, with the mean and standard
deviation you found in 2a. Check that the mean and standard deviation
of the output is approximately right, and that their histogram looks like a
bell-curve.

(c) (10) Write a function which takes in a data vector, calculates its mean and
standard deviation, and returns Q(0.01) according to the corresponding
Gaussian distribution. Check that it works by seeing that it matches what
the answer you got in 2a when run on the actual returns.

(d) (10) Using the code you wrote in 2b and 2c, find a 95% confidence in-
terval for Q(0.01) from 2a. Hint: Look at the examples in the notes of
parametric bootstrapping.

(e) (5 points) What is the first percentile of the data? Is it within the confi-
dence interval you found in 2d? Hint: quantile.

3. (a) (5) Use hist to plot the histogram of returns. Also plot, on the same
graph, the probability density function of the Gaussian distribution you
fit in problem 2a. Comment on their differences.

(b) (5) Write a function to resample the returns; it should generate a different
random vector of the sample length as the data every time it is run. Check
that running summary on these vectors produces results close to those on
the data. Hint: Look at the examples in the notes of resampling.

(c) (5) Write a function to calculate Q(0.01) from an arbitrary vector, without
assuming a Gaussian distribution. Check that it works by seeing that its
answer, when run on the real data, matches what you found in 2e.

(d) (10) Using the code you wrote in 3b and 3c, find a 95% confidence interval
for Q(0.01). Compare this to your answer in 2d. Which is more believ-
able, and why? Hint: Look at the examples in the notes of non-parametric
bootstrapping.

4. (10) Using npreg, fit a kernel regression of Rt+1, tomorrow’s returns, on Rt ,
today’s returns. (Use the automatic bandwidth selector.) Report the selected
bandwidth and the in-sample mean-squared error. Make a scatter-plot with Rt
on the horizontal axis and Rt+1 on the vertical axis, and add the estimated
kernel regression function. Comment on the shape of the curve. Hints: Make
a data frame with Rt as one column and Rt+1 as another column. Also, see
examples in the notes of plotting fitted models from npreg.

5. (25) Uncertainty in the kernel regression
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(a) (5) Write a function which resamples (Rt , Rt+1) pairs from the returns se-
ries, and produces a new data frame of the same size as the original. Check
that it works by running summary on it, and seeing that both columns ap-
proximately match the summaries of the data. Hint: look at the examples
of resampling cases for regression in the notes.

(b) (10) Write a function which takes a data frame with appropriately-named
columns, and runs a kernel regression of Rt+1 on Rt . It should return fit-
ted values at 30 evenly-spaced values of Rt which span its observed range.

(c) (10) Using your code from 5a and 5b, add 95% confidence bands for the
kernel regression to your plot from problem 4. Hint: See the examples of
plotting bootstrapped nonparametric regressions in the notes.

[[TODO: Integrate this ver-
sion with the one above]]

1. (5 points) Load the data file, take the last column (containing the daily closing
price), and calculate the logarithmic returns. Note that the file is in reverse
chronological order (newest first). When you are done, if everything worked
right, running summary on the returns series should give

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.094700 -0.006440 0.000467 -0.000064 0.006310 0.110000

Hint: Read the notes for 1 February.

2. In many applications in finance, it is common to model daily returns as inde-
pendent Gaussian variables. [[TODO: Clarify "best-

fitting" means maximum
likelihood. Separate into
two sentences. Clarify using
qnorm.]]

(a) (5 points) Find the mean and standard deviation of the best-fitting Gaus-
sian, and the Q(0.01) it implies.

[[TODO: Insisting on a list
here and in the next part was a
mistake, in the future just say
2 arguments]]

(b) (5 points) Write a function which simulates a data set of the same size
as the real data, using the independent Gaussian model you fit in (2a),
and returns a list, with components named mean and sd, containing the
parameter values estimated from the simulation output.

(c) (5 points) Write a function which takes as arguments a list with compo-
nents named mean and sd, and returns the first percentile of the corre-
sponding Gaussian distribution. Check that it works by verifying that
when run with mean 5 and sd 2, it returns 0.347. Hint: Look at the ex-
amples in the notes of parametric bootstrapping.

(d) (10 points) Using the code you wrote in (2b) and (2c), find a 95% confi-
dence interval for Q(0.01) from (2a). Hint: Look at the examples in the
notes of parametric bootstrapping. [[TODO: Clarify using quan-

tile here.]](e) (5 points) What is the first percentile of the data? Is it within the confi-
dence interval you found in (2d)?
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3. (a) (5 points) Use density(), or any other suitable non-parametric density
estimator, to plot the distribution of returns. Also plot, on the same
graph, the Gaussian distribution you fit in problem 2. Comment on their
differences.

(b) (10 points) Write a function to re-sample the returns, and calculate Q(0.01)
on each surrogate data set. Use this to find a 95% confidence interval for
Q(0.01). Hint: Look at the examples in the notes of non-parametric boot-
strapping.

4. (15 points) In an autoregressive model, the measurement at time t is regressed
on the measurement at time t − 1, Xt = φ0 +φ1Xt−1 + εt . Use lm to fit an
autoregressive model to the returns. Give the estimates of φ0, φ1 and Var[ε],
and try to interpret what they mean. Also give the reported standard error for
cφ1.

5. Hint: Look at the examples in the notes of re-sampling regression residuals.[[TODO: Be explicit that it
needs to return a vector of
values, say of controllable
length]]

(a) (5 points) Write a function which re-samples the residuals of the autore-
gressive model from (4). Check that the mean and standard deviation of
its output are close to those of the residuals.

[[TODO: Clarify initial value
should be same as that from
real data. Clarify arguments
and return value.]]

(b) (15 points) Write a function which simulates the autoregressive model you
fit in (4), with noise provided by the function you wrote for (5a).

(c) (5 points) Write a function which takes a time series, fits an autoregressive
model, and returns the estimate ofφ1. Check that it works by seeing that
when it’s give the data, the output matches what you found in (4).

(d) (10 points) Using the function you wrote in (5c), and the simulator you
wrote in (5b), find the bootstrap standard error for cφ1. Does it match
what lm reported in (4)?

Note: If you cannot solve (5b), you can get full credit for (5d) using the built-in function
arima.sim instead, but make sure that the distribution of innovations or noise comes
from the function you wrote in (5a). If you cannot solve (5a), you can get full credit for
(5b) and (5d) by providing suitable Gaussian noise.
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Chapter 49

Macroeconomic Forecasting

The data set http://www.stat.cmu.edu/~cshalizi/uADA/13/exams/3/macro.csv
on the class website contains five standard macroeconomic time series for the United
States, from the beginning of 1948 to the beginning of 2010: total national income or
GDP; value of goods consumed; investment spending; hours worked; and output per
hour worked for all non-financial firms. (Some of these series are in inflation-adjusted
dollars, some of them are in hours, and some of them are indexes where a particular
date has been set as 100 and others are expressed relative to that.) All variables are
measured “quarterly”, i.e., four times a year.

Most macroeconomic forecasting models do not concern themselves directly with
these values, but only with the logged fluctuations around their long-run trends.

For full credit on the modeling questions, you must use models which go beyond
those available in 401, or you must use appropriate methods to show that linear model
are justified here.

It is first necessary to remove trends; macroeconomists traditionally do this with
the following function.

hpfilter <- function(y, w=1600){
eye = diag(length(y))
d = diff(eye,d=2)
ybar = solve(eye + w*crossprod(d), y)
yhat = log(y) - log(ybar)
return(list(fluctuation=yhat,trend=ybar))

}

1. (10) Create five plots, showing each of the variables and its trend (as returned
by hpfilter) as functions of time. Use a logged scale for the vertical axis.
Report R2, with and without logging, for each of the five trends.

2. (10) Plot the logged fluctuations around trend (as returned by hpfilter) for
each of the five variables. Does it make sense to compare these fluctuations
across variables? Do the fluctuations look stationary? — After this problem,
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references to the variables always mean their logged fluctuations around their
trends.

3. (10) Are the variables Gaussian? (You can do better than looking at a his-
togram.)

4. (20) For the first four variables (GDP, consumption, investment, hours worked),
fit an additive regression of each variable on the values of all four at the previous
time-step. Use only data up to, but not including, 2005 (“the training period”).
Report the mean squared error on the training data (to reasonable precision),
and include plots of the partial response functions. Describe, in words, what
the partial response functions say about the relations between these variables.

5. (20 total) Using the circular block bootstrap, with blocks of length 24, generate
new time series which are as long as the training data.

(a) (4) Write a function to calculate the mean squared errors of the fitted mod-
els from Problem 4, on a time series. (Each of the four variables should
have its own MSE.) Check that it works by making sure that it gives the
right answer for the training data.

(b) (6) Report the mean MSEs, and the standard error of these means, from
enough bootstrap replicates that the standard errors are no more than
10% of the means.

(c) (10) What do you need to assume for the numbers from 5b to be good
estimates of the generalization error of this model?

6. (20 total) “Real” (as opposed to “monetary”) business cycle theories hold that
fluctuations in macroeconomic variables are ultimately caused by exogenous
“real shocks”, especially changes to productivity. The productivity variable in
macro.csv is a measurement of this variable, which, according to these theo-
ries, should be exogenous. The other variables, in such theories, are endoge-
nous.

(a) (10) Fit an model for each of the four endogenous variables, as an additive
function of the endogenous variables in the previous quarter, and produc-
tivity for the previous four quarters. Report the MSEs and include plots
of the partial response functions. Compare the plots to those in Problem
4.

(b) (4) Describe a method which could be used to decide whether including
productivity in this way really improves predictive performance. Discuss
the assumptions of the method, and why you think they apply here.

(c) (6) Implement your method. For which variables does including produc-
tivity actually help? How confident are you of this conclusion?

7. (10 total) Now consider the period 2005–2010. What are the mean squared
errors, on this data, of

(a) (4) Predicting according to the additive model from Problem 4?

11:36 Saturday 22nd November, 2014



607

(b) (4) Predicting according to the additive model from Problem 6?

(c) (2) Predicting the mean of each variable, as estimated from the training
period?

8. (5, extra credit) Explain how what hpfilter does is related to spline smooth-
ing.
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Chapter 50

Debt Needs Time for What It
Kills to Grow In

An important and controversial question in macroeconomics and political economy
is whether high levels of government debt causes the economy to grow more slowly
or even shrink. There are several plausible-sounding reasons why it might1; some
economists claim that there is a threshold level of debt, perhaps around 90% of GDP,
above which growth rates plummet.

Against this, there are other reasons why high levels of debt might not cause
growth to slow, at least not always2. In particular, since “high levels of government
debt” are defined relative to the size of the economy, as a high ratio of debt to GDP,
slow growth itself might cause higher levels of government debt.

This week’s data set contains information on GDP and government debt for a
selection of countries since World War II. For each country and year, we should have
the GDP (nominal, i.e., not adjusted for inflation or differences in exchange rates)
and the size of government debt (also nominal). Unfortunately, one or both values
may be missing for some countries in some years.

1. (10) The data set contains a variable, growth, which is the annual growth rate
in real (inflation-adjusted) GDP for each country and year. It also contains a
variable, ratio which is the ratio of government debt to GDP. Make a scatter-
plot with growth on the vertical axis and ratio on the horizontal. Describe
the patterns you see, if any.

1High levels of government borrowing might “crowd out” investing in the private sector, by using
up available savings and/or raising the interest rates at which businesses can borrow; capitalists might
anticipate that the debt will either be paid off through high taxes or discharged through inflation, and
prefer to spend their money on luxuries now, rather than invest and see the investment go away later; high
levels of debt might lead to lower confidence that the government generally knows what it’s doing, making
investment seem too risky; etc.

2A depressed economy has unused resources, so government employment needn’t lead to crowding
out; the things government spends money on (roads, schools, hospitals, basic research, honest markets)
increase the value of private investments; governments which can borrow large sums are receiving a market
endorsement of their willingness and ability to pay their debts; etc.
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2. (15) Run a nonparametric regression of growth on ratio, and plot the result-
ing curve. Describe and interpret the curve. Does it suggest an abrupt slowing
of growth above some threshold level of debt?

3. (10) Since changes in government debt levels might take some time to affect
economic growth, we would like to compare growth in year t + 1 to ratio in
year t . Create a new variable, growth.lead1, which records for each coun-
try/year the next year’s GDP growth, with NAs in the right places when it is
not available. Describe, in words, how your code works. Add growth.lead1
to the data frame.

Hints: Make sure that you do not confuse growth rates from different countries
(so that, e.g., the last year for Austria gets a growth rate from Belgium). You
may find Recipes 14.7 (and 6.6) from The R Cookbook helpful.

4. (10) Plot growth.lead1 against ratio, and do a nonparametric regression of
the former on the latter. Describe the results, and compare them to those of
Problem 2.

5. (15) Economic growth rates tend to be rather persistent over time within coun-
tries. Estimate an additive model where growth.lead1 is predicted from growth
and ratio. Is the partial response to the previous year’s growth nearly linear?
Should it be? Compare the partial response function for debt to the curves
from problems 2 and 4.

6. (10) Create a new variable, growth.lag1, which represents the previous year’s
growth rate (with NAs in appropriate places), and add it to the data set. Plot it
against ratio and fit a nonparametric regression. Does ratio do a better job
of predicting growth or growth.lag1?

7. (15) Estimate an additive model in which the current year’s ratio is predicted
by last year’s ratio, last year’s growth, and the current year’s growth. (You
may have to create a new column.) Describe the partial response functions,
and whether any predictor variables could be dropped.

8. (15) Explain what we would have to assume for the model in Problem 5 to
give us an unconfounded estimate of the causal effect of government debt on
future economic growth; be as specific as possible. (You may want to draw
some DAGs, and include them in your write-up.) Comment on how plausible
those assumptions are, and on what might go wrong if the assumptions fail.
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Appendices

610

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/


11:36 Saturday 22nd November, 2014
Copyright c©Cosma Rohilla Shalizi; do not distribution without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Appendix A

Reminders from Linear
Algebra

[[TODO: Actually write; some chunks of this are in various chap-
ters]]

This appendix is in no way a replacement for actually learning linear algebra; it’s
only intended for actual reminders and quick reference.

A.1 Eigenvalues and Eigenvectors of Matrices

A.1.1 Singular Value Decomposition
A.1.1.1 Eigenvalues and Eigenfunctions of Operators

A.2 Special Matrices
[[Symmetric, positive (semi-) definite, orthogonal]]

A.3 Orthonormal Bases

A.3.1 Bases for Vectors

A.3.2 Bases for Function Spaces
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Appendix B

Big O and Little o Notation

It is often useful to talk about the rate at which some function changes as its argument
grows (or shrinks), without worrying to much about the detailed form. This is what
the O(·) and o(·) notation lets us do.

A function f (n) is “of constant order”, or “of order 1” when there exists some
non-zero constant c such that

f (n)

c
→ 1 (B.1)

as n→∞; equivalently, since c is a constant, f (n)→ c as n→∞. It doesn’t matter
how big or how small c is, just so long as there is some such constant. We then write

f (n) =O(1) (B.2)

and say that “the proportionality constant c gets absorbed into the big O”. For
example, if f (n) = 37, then f (n) =O(1). But if g (n) = 37(1− 2

n ), then g (n) =O(1)
also.

The other orders are defined recursively. Saying

g (n) =O( f (n)) (B.3)

means
g (n)

f (n)
=O(1) (B.4)

or
g (n)

f (n)
→ c (B.5)

as n → ∞ — that is to say, g (n) is “of the same order” as f (n), and they “grow
at the same rate”, or “shrink at the same rate”. For example, a quadratic function
a1n2 + a2n + a3 = O(n2), no matter what the coefficients are. On the other hand,
b1n−2+ b2n−1 is O(n−1).
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Big-O means “is of the same order as”. The corresponding little-o means “is ul-
timately smaller than”: f (n) = o(1) means that f (n)/c → 0 for any constant c . Re-
cursively, g (n) = o( f (n)) means g (n)/ f (n) = o(1), or g (n)/ f (n)→ 0. We also read
g (n) = o( f (n)) as “g (n) is ultimately negligible compared to f (n)”.

There are some rules for arithmetic with big-O symbols:

• If g (n) =O( f (n)), then c g (n) =O( f (n)) for any constant c .

• If g1(n) and g2(n) are both O( f (n)), then so is g1(n)+ g2(n).

• If g1(n) =O( f (n)) but g2(n) = o( f (n)), then g1(n)+ g2(n) =O( f (n)).

• If g (n) =O( f (n)), and f (n) = o(h(n)), then g (n) = o(h(n)).

These are not all of the rules, but they’re enough for most purposes.
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Appendix C

Taylor Expansions

[[TODO: write appendix!]]
[[What a Taylor series is]]
A function whose Taylor series converges everywhere is analytic.
[[Error of truncating a Taylor series at a given order]]
[[Taylor series in more than one dimension]][[TODO: Replace with a

copyright-free picture, or get
permission]]
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Figure C.1: Sound advice when stuck on almost any problem in statistical theory.
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Appendix D

Optimization Theory

[[TODO: Multiple sections either need to be written from the be-
ginning, or seriously re-written]]

D.1 Basic Concepts of Optimization

[[Optima, local and global, relation to 2nd derivatives, transformations, importance
of convexity]]

D.2 Estimation by Optimization
[[TODO: Very rough draft,
re-work for notational consis-
tency, tone, etc.]]

The basic ideas underlying asymptotic estimation theory are very simple; most pre-
sentations rather cloud the basics, because they include lots of detailed conditions
needed to show rigorously that everything works.

We have a statistical model, which tells us, for each sample size n, the probability
that the observations X1,X2, . . .Xn ≡ X1:n will take on any particular value x1:n , or
the probability density if the observables are continuous. This model contains some
unknown parameters, bundled up into a single object θ, which we need to calculate
those probabilities. That is, the model’s probabilities are m(x1:n ;θ), not just m(x1:n).
Because this is just baby stats., we’ll say that there are only a finite number of un-
known parameters, which don’t change with n, so θ ∈ Rd . Finally, we have a loss
function, which tells us how badly the model’s predictions fail to align with the data:

λn(x1:n , m(·;θ)) (D.1)

For instance, each Xi might really be a (Ui ,Vi ) pair, and we try to predict Vi from
Ui , with loss being mean-weighted-squared error:

λn =
1

n

n
∑

i=1

�

vi −Eθ
�

Vi |Ui = ui
��2

Varθ
�

Vi |Ui = ui
� (D.2)
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(If I don’t subscript expectations E[·] and variances Var[·] with θ, I mean that
they should be taken under the true, data-generating distribution, whatever that
might be. With the subscript, calculate assuming that the m(·;θ) distribution is
right.)

Or we might look at the negative mean log likelihood,

λn =−
1

n

n
∑

i=1

log m(xi |x1:i−1;θ) (D.3)

Being simple folk, we try to estimate θ by minimizing the loss:

bθn = argmin
θ

λn (D.4)

We would like to know what happens to this estimate as n grows. To do this, we
will make two assumptions, which put us at the mercy of two sets of gods.

The first assumption is about what happens to the loss functions. λn depends
both on the parameter we plug in and on the data we happen to see. The later is
random, so the loss at any one θ is really a random quantity, Λn(θ) = λn(X1:n ,θ).
Our first assumption is that these random losses tend towards non-random limits:
for each θ,

Λn(θ)→ `(θ) (D.5)

where ` is a deterministic function of θ (and nothing else). It doesn’t particularly
matter to the argument why this is happening, though we might have our suspicions1,
just that it is. This is an appeal to the gods of stochastic convergence.

Our second assumption is that we always have a unique interior minimum with
a positive-definite Hessian: with probability 1,

∇Λn(bθn) = 0 (D.6)

∇∇Λn(bθn) > 0 (D.7)

(All gradients and other derviatives will be with respect to θ; the dimensionality of x
is irrelevant.)

Moreover, we assume that the limiting loss function ` also has a nice, unique
interior minimum at some point θ∗, the minimizer of the limiting, noise-free loss:

θ∗ = argmin
θ

` (D.8)

∇`(θ∗) = 0 (D.9)
∇∇`(θ∗) > 0 (D.10)

Since the Hessians will be important, I will abbreviate∇∇Λn(bθn) by Hn (notice that
it’s a random variable), and∇∇`(θ∗) by j (notice that it’s not random).

1“In fact, all epistemologic value of the theory of the probability is based on this: that large-scale
random phenomena in their collective action create strict, nonrandom regularity” — Gnedenko and Kol-
mogorov (1954, p. 1).

11:36 Saturday 22nd November, 2014



D.2. ESTIMATION BY OPTIMIZATION 618

source("pareto.R")
# for pareto.R, which includes rpareto() and pareto.loglike(), see
# http://www.santafe.edu/~aaronc/powerlaws/pli-R-v0.0.3-2007-07-25.tgz

# Generate 10^6 samples from a Pareto distribution with exponent 1.5
# Note that Var(X) = infinity because exponent < 2

x <- rpareto(1e6,threshold=1,exponent=1.5)
# Define the negative mean log-likelihood function on the first n samples
lambda.once <- function(n,theta) {

-(1/n)*pareto.loglike(x[1:n],threshold=1,exponent=theta)
}
# Vectorize over theta for plotting
lambda <- Vectorize(lambda.once)
# Start with curve based on first ten samples
curve(lambda(n=10,theta=x),from=1,to=10,xlab=expression(theta),ylab="")
# Add curved based on first 10^3
curve(lambda(n=1000,theta=x),add=TRUE,lty="dashed")
# Add curved based on first 10^5
curve(lambda(n=1e5,theta=x),add=TRUE,lty="dotted")
# Add curve for the infinite-sample limit

# Uses E[log(X)]=2 from knowledge of the Pareto
curve(x*2 - log(x-1),add=TRUE,col="blue")
# Decorate with a legend
legend("bottomright",legend=c("n=1e1","n=1e3","n=1e5","limit"),

lty=c("solid","dashed","dotted","solid"),
col=c("black","black","black","blue"))

Code Example 34: Code for Figure D.1.

These assumptions about the minima, and the derivatives at the minima, place us
at the mercy of the gods of optimization.

To see that these assumptions are not empty, here’s an example. Suppose that
our models are Pareto distributions for x ≥ 1, m(x;θ) = (θ− 1)x−θ. Then λn(θ) =
θlog xn− log (θ− 1), where log xn = n−1∑n

i=1 log xi , the sample mean of the log val-
ues. From the law of large numbers, `(θ) = θE[logX ]− log (θ− 1). To show the
convergence, Figure D.1 plots λ10, λ1000 and λ105 for a particular random sample, and
the corresponding `. I chose this example in part because the Pareto distribution is
heavy tailed, and I actually generated data from a parameter value where the vari-
ance of X is infinite (or undefined, for purists). The objective functions, however,
converge just fine.

With these assumptions made, we use what is about the only mathematical device
employed in statistical theory at this level, which is a Taylor expansion. Specifically,
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Figure D.1: Convergence of objective functions, here, negative average log-
likelihoods. Note that the limiting, n = ∞ objective function (solid blue line) is
extremely close to what we see at n = 105 already. See Code Example 34 for code.
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we expand the gradient∇Λn around θ∗:

∇Λn(bθn) = 0 (D.11)

≈ ∇Λn(θ
∗)+Hn(bθn −θ

∗) (D.12)
bθn = θ∗−H−1

n ∇Λn(θ
∗) (D.13)

The first term on the right hand side, θ∗, is the population/ensemble/true mini-
mizer of the loss. If we had ` rather than just Λn , we’d get that for the location of the
minimum. But since we see ` corrupted by noise, we need to include the extra term
−H−1

n ∇Λn(θ
∗). The Hessian Hn tells us how sharply curvedΛn is near its minimum;

the bigger this is, the easier, all else being equal, to find the location of the minimum.
The other factor, ∇Λn(θ

∗), indicates how much noise there is — not so much in the
function being minimized, as in its gradient, since after all∇`(θ∗) = 0. We would like
bθn → θ∗, so we have to convince ourselves that the rest is asymptotically negligible,
that H−1

n ∇Λn(θ
∗) = o(1).

Start with the Hessian. Hn is the matrix of second derivatives of a random func-
tion:

Hn(bθn) =∇∇Λn(bθn) (D.14)

Since Λn→ `, it would be reasonable to hope that

Hn(bθn)→∇∇`(bθn) = j(bθn) (D.15)

We’ll assume that everything is nice ("regular") enough to let us "exchange dif-
ferentiation and limits" in this way. Since Hn(bθn) is tending to j(bθn), it follows that
Hn = O(1), and consequently H−1

n = O(1) by continuity. With more words: since
Λn is tending towards `, the curvature of the former is tending towards the curvature
of the latter. But this means that the inverse curvature is also stabilizing.

Our hope then has to be the noise-in-the-gradient factor, ∇Λn(θ
∗). Remember

again that
∇`(θ∗) = 0 (D.16)

and that Λn → `. So if, again, we can exchange taking derivatives and taking limits,
we do indeed have

∇Λn(θ
∗)→ 0 (D.17)

and we’re done. More precisely, we’ve established consistency:

bθn→ θ∗ (D.18)

Of course it’s not enough just to know that an estimate will converge, one also
wants to know something about the uncertainty in the estimate. Here things are
mostly driven by the fluctuations in the noise-in-the-gradient term. We’ve said that
∇Λn(θ

∗) = o(1); to say anything more about the uncertainty in bθn , we need to posit
more. It is very common to be able to establish that ∇Λn(θ

∗) = O(1/
p

n), often
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because Λn is some sort of sample- or time- average, as in my examples above, and so
an ergodic theorem applies. In that case, because H−1

n =O(1), we have

bθn −θ
∗ =O(1/

p
n) (D.19)

If we can go further, and find

Var
�

∇Λn(θ
∗)
�

= kn (D.20)

then we can get a variance for bθn , using propagation of error:

Var
h

bθn

i

= Var
h

bθn −θ
∗
i

(D.21)

= Var
�

−H−1
n ∇Λn(θ

∗)
�

(D.22)

≈ j−1(θ∗)Var
�

∇Λn(θ
∗)
�

j−1(θ∗) (D.23)

= j−1kn j−1 (D.24)

the infamous<strong>sandwich covariance matrix</strong>. If∇Λn(θ
∗) =O(1/

p
n),

then we should have nkn→ k, for a limiting variance k. Then nVar
h

bθn

i

→ j−1kj−1.

Of course we don’t know j(θ∗), because that involves the parameter we’re trying
to find, but we can estimate it by j(bθn), or even by H−1

n (
bθn). That still leaves getting

an estimate of kn . If Λn is an average over the xi , as in my initial examples, then we
can often use the variance of the gradients at each data point as an estimate of kn . In
other circumstances, we might actually have to think.

Finally, if ∇Λn(θ
∗) is asymptotically Gaussian, because it’s governed by a cen-

tral limit theorem, then so is bθn , and we can use Gaussians for hypothesis testing,
confidence regions, etc.

A case where we can short-circuit a lot of thinking is when the model is correctly
specified, so that the data-generating distribution is m(·;θ∗), and the loss function
is the negative mean log-likelihood. (That is, we are maximizing the likelihood.)
Then the negative of the limiting Hessian j is the Fisher information. More impor-
tantly, under reasonable conditions, one can show that j= k, that the variance of the
gradient is exactly the limiting negative Hessian. Then the variance of the estimate
simplifies to just j−1. This turns out to actually be the best variance you can hope for,
at least with unbiased estimators (the Cramér-Rao inequality). But the bulk of the
analysis doesn’t depend on the fact that we’re estimating by maximum likelihood; it
goes the same way for minimizing any well-behaved objective function.

Now, there are a lot of steps here where I am being very loose. (To begin with: In
what sense is the random function Λn converging on `, and does it have to converge
everywhere, or just in a neighborhood of θ∗?) That is, I am arguing like a physi-
cist. Turning this sketch into a rigorous argument is the burden of good books on
asymptotic statistics. But this is the core. It does not require the use of likelihood, or
correctly specified models, or independent data, just that the loss function we min-
imize be converging, in a well-behaved way, to a function which is nicely behaved
around its minimum.
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[[Further reading: Barndorff-Nielsen and Cox (1995); Geyer (2013); Huber (1967);
van der Vaart (1998)]]

D.2.1 Aside: The Akaike Information Criterion

[[appendix to come, from other notes]]

D.3 Constrained Optimization

Suppose we want to minimize2 a function L(u, v) of two variables u and v. (It could
be more, but this will illustrate the pattern.) Ordinarily, we know exactly what to
do: we take the derivatives of L with respect to u and to v, and solve for the u∗, v∗

which makes the derivatives equal to zero, i.e., solve the system of equations

∂ L

∂ u
= 0 (D.25)

∂ L

∂ v
= 0 (D.26)

If necessary, we take the second derivative matrix of L and check that it is positive.
Suppose however that we want to impose a constraint on u and v, to demand

that they satisfy some condition which we can express as an equation, g (u, v) = c .
The old, unconstrained minimum u∗, v∗ generally will not satisfy the constraint, so
there will be a different, constrained minimum, say û, v̂. How do we find it?

We could attempt to use the constraint to eliminate either u or v — take the
equation g (u, v) = c and solve for u as a function of v, say u = h(v, c). Then
L(u, v) = L(h(v, c), v), and we can minimize this over v, using the chain rule:

d L

d v
=
∂ L

∂ v
+
∂ L

∂ u

∂ h

∂ v
(D.27)

which we then set to zero and solve for v. Except in quite rare cases, this is messy.

D.4 Lagrange Multipliers

A superior alternative is the method of Lagrange multipliers. We introduce a new
variable λ, the Lagrange multiplier, and a new objective function, the Lagrangian,

L (u, v,λ) = L(u, v)+λ(g (u, v)− c) (D.28)

2Maximizing L is of course just minimizing −L.
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which we minimize with respect to λ, u and v and λ. That is, we solve

∂L
∂ λ

= 0 (D.29)

∂L
∂ u

= 0 (D.30)

∂L
∂ v

= 0 (D.31)

Notice that minimize L with respect to λ always gives us back the constraint equa-
tion, because ∂L

∂ λ
= g (u, v)−c . Moreover, when the constraint is satisfied,L (u, v,λ) =

L(u, v). Taken together, these facts mean that the û, v̂ we get from the unconstrained
minimization of L is equal to what we would find from the constrained minimiza-
tion of L. We have encoded the constraint into the Lagrangian.

Practically, the value of this is that we know how to solve unconstrained opti-
mization problems. The derivative with respect to λ yields, as I said, the constraint
equation. The other derivatives are however yields

∂L
∂ u

=
∂ L

∂ u
+λ

∂ g

∂ u
(D.32)

∂L
∂ v

=
∂ L

∂ v
+λ

∂ g

∂ v
(D.33)

Together with the constraint, this gives us as many equations as unknowns, so a
solution exists.

If λ= 0, then the constraint doesn’t matter — we could just as well have ignored
it. When λ 6= 0, the size (and sign) of the constraint tells us about how it affects the
value of the objective function at the minimum. The value of the objective function L
at the constrained minimum is bigger than at the unconstrained minimum, L(û, v̂)>
L(u∗, v∗). Changing the level of constraint c changes how big this gap is. As we saw,
L (û, v̂) = L(û, v̂), so we can see how much influence the level of the constraint on
the value of the objective function by taking the derivative ofL with respect to c ,

∂ L

∂ c
=−λ (D.34)

That is, at the constrained minimum, increasing the constraint level from c to c +δ,
with δ very small, would change the value of the objective function by −λδ. (Note
that λmight be negative.) This makes λ the “price”, in units of L, which we would be
willing to pay for a marginal increase in c — what economists would call the shadow
price3.

If there is more than one constraint equation, then we just introduce more mul-
tipliers, and more terms, into the Lagrangian. Each multiplier corresponds to a dif-
ferent constraint. The size of each multiplier indicates how much lower the objective
function L could be if we relaxed that constraint — the set of shadow prices.

3In economics, shadow prices are internal to each decision maker, and depend on their values and
resources; they are distinct from market prices, which depend on exchange and are common to all decision
makers.
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What about inequality constraints, g (u, v) ≤ c? Well, either the unconstrained
minimum exists in that set, in which case we don’t need to worry about it, or it does
not, in which case the constraint is “binding”, and we can treat this as an equality
constraint4.

D.5 Penalized Optimization
So much for constrained optimization; how does this relate to penalties? Well, once
we fix λ, the (u, v) which minimizes the full Lagrangian

L(u, v)+λg (u, v)+λc (D.35)

has to be the same as the one which minimizes

L(u, v)+λg (u, v) (D.36)

This is a penalized optimization problem. Changing the magnitude of the penalty λ
corresponds to changing the level c of the constraint. Conversely, if we start with
a penalized problem, it implicitly corresponds to a constraint on the value of the
penalty function g (u, v). So, generally speaking, constrained optimization corre-
sponds to penalized optimization, and vice versa.

D.6 Mini-Example: Constrained Linear Regression
To make this more concrete, let’s tackle a simple one-variable statistical optimization
problem, namely univariate regression through the origin, with a constraint on the
slope. That is, we have the statistical model

Y =βX + ε (D.37)

where ε is noise, and X and Y are both scalars. We want to estimate the optimal
value of the slopeβ, but subject to the constraint that it not be too large, sayβ2 < c .
The unconstrained optimization problem is just least squares, i.e.,

L(β) =
1

n

n
∑

i=1

(yi − b xi )
2 (D.38)

Call the unconstrained optimum β̂:

β̂= argmin
β

L(β) (D.39)

As was said above in §D.5, there are really only two cases. Either the uncon-
strained optimum is inside the constraint set, i.e.„ β̂2 < c , or it isn’t, in which case

4A full and precise statement of this idea is the Karush-Kuhn-Tucker theorem of optimization, which
you can look up.
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we can treat the inequality constraint like an equality. So we write out the Lagrangian

L (β,λ) =
1

n

n
∑

i=1

(yi −βxi )
2+λ(β2− c) (D.40)

and we optimize:

∂L
∂ λ

= 0 (D.41)

∂L
∂ β

= 0 (D.42)

(D.43)

The first of these just gives us the constraint back again,

β̃2 = c (D.44)

writing β̃ for the constrained optimum. The second equation is

1

n

n
∑

i=1

2(yi − β̃xi )(−xi )+ 2λβ̃= 0 (D.45)

(If it weren’t for the λ term, we’d just solve for the slope and get, as usual, β̂ =
∑n

i=1 xi yi
∑n

i=1 x2
i

.) Now we have two unknowns, β̃ and λ, and two equations. Let’s solve for

λ. The equation β̃2 = c can also be written β̃ =
p

c sgn β̃, so, plugging in to Eq.
D.45,

0 =
2

n

n
∑

i=1

xi yi −
p

c sgn β̃
2

n

n
∑

i=1

x2
i +λ

p
c sgn β̃ (D.46)

λ =
2
n

∑n
i=1 xi yi − c sgn β̃ 2

n

∑n
i=1 x2

i
p

c sgn β̃
(D.47)

The only thing left to figure out then is sgn β̃, but this just has to be the same as
sgn β̂. (Why?)

To illustrate, I generate 100 observations from the model in Eq. D.37, with the
true β = 4, X uniformly distributed on [−1,1], and ε having a t distribution with
2 degrees of freedom (Figure D.2. Figure D.3 shows the MSE as a function of β,
i.e., the L(β) of Eq. D.38. If

p
c is smaller than β̂ ≈ 3.95, then the constraint is

active and λ is non-zero. Figure D.4 plots λ against c from Eq. D.47. Notice how, as
the constraint comes closer and closer to including the unconstrained optimum, the
Lagrange multiplier λ becomes closer and closer to 0, finally crossing when c = β̂2 ≈
15.6.
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x <- runif(n=100,min=-1,max=1)
beta.true <- 4
y <- beta.true*x + rt(n=100,df=2)
plot(y~x)
abline(0,beta.true,col="grey")
abline(lm(y~x),lty=2)

Figure D.2: Example for constrained regression. Dots are data points, the grey line is
the true regression line, and the dashed line is the ordinary least squares fit through
the origin, without a constraint on the slope.
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demo.mse <- function(b) { return(mean((y-b*x)^2)) }
curve(Vectorize(demo.mse)(x),from=0,to=10,xlab=expression(beta),ylab="MSE")
rug(x=beta.true,side=1,col="grey")

Figure D.3: Mean squared error as a function of β. The grey tick marks the true
β= 4; the minimum of the curve is at β̂= 3.95.
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lambda.from.c <- function(c) {
return((2*mean(x*y) - sqrt(c)*2*mean(x^2))/sqrt(c))

}
curve(lambda.from.c(x),from=0,to=15.7,xlab="c",

ylab=expression(lambda))

Figure D.4: Calculation of λ as a function of the constraint level c , according to Eq.
D.47 and the data in Figure D.2.
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Turned around, we could fix λ and try to solve the penalized optimization prob-
lem

β̃ = argmin
β
L (β,λ) (D.48)

= argmin
β

1

n

n
∑

i=1

(yi −βxi )
2+λβ2 (D.49)

Taking the derivative with respect to β,

0 =
∂L
∂ β

(D.50)

0 =
1

n

n
∑

i=1

2(yi − β̃xi )(−xi )+ 2λβ̃ (D.51)

β̃ =
1
n

∑n
i=1 xi yi

λ+ 1
n

∑n
i=1 x2

i

(D.52)

which is of course just Eq. D.45 again. Figure D.5 shows how β̃ changes with λ,
while Figure D.6.1 shows how β̃2 depends on λ. The fact that Figure D.6.1 shows the
same curve as Figure D.4 only turned on its side reflects the general correspondence
between penalized and constrained optimization.

D.6.1 Statistical Remark: “Ridge Regression” and “The Lasso”
The idea of penalizing or constraining the coefficients of a linear regression model can
be extended to having more than one coefficient. The general case, with p covariates,
is that one penalizes the sum of the squared coefficients, β2

1 + . . .+β2
p , which of

course is just the squared length of the coefficient vector, ‖β‖2. This is called ridge
regression (Hoerl and Kennard, 1970), and yields the estimates

β̃= (xT x+λI)−1xT y (D.53)

where I is the p × p identity matrix. Instead of penalizing or constraining the sum
of squared coefficients, we could penalized or constrain the sum of the absolute val-
ues of the coefficients, |β1|+ |β2|+ . . .+ |βp |, abbreviated ‖β‖1. This is called the
lasso (Tibshirani, 1996). It doesn’t have a nice formula like Eq. D.53, but it can be
computed efficiently.

Examining Eq. D.53 should convince you that β̃ is generally smaller than the
unpenalized estimate β̂. (This may be easier to see from Eq. D.52.) The same is true
for the lasso penalty. Both are examples of shrinkage estimators, called that because
the usual estimate is “shrunk” towards the null model of an all-0 parameter vector.
This introduces a bias, but it also reduces the variance. Shrinkage estimators are
rarely very helpful in situations like the simulation example above, where the number
of observations n (here = 100) is large compared to the number of parameters to
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estimate p (here = 1), but they can be very handy when n is close to p, and p >
n, ordinary least squares is useless, but shrinkage estimators can still work. (Ridge
regression in particular can be handy in the face of collinearity, even when p � n.)
While the lasso is a bit harder to deal with mathematically and computationally than
is ridge regression, it has the nice property of shrinking small coefficients to zero
exactly, so that they drop out of the problem; this is especially helpful when there are
really only a few predictor variables that matter, but you don’t know which.

For much more on the lasso, ridge regression, shrinkage, etc., see Hastie et al.
(2009).
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beta.from.lambda <- function(l) {
return(mean(x*y)/(l+mean(x^2)))

}
curve(beta.from.lambda(x),from=0,to=6,
xlab=expression(lambda),ylab=expression(tilde(beta)))

Figure D.5: The penalized estimation of the regression slope, as a function of the
strength of the penalty λ.
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curve(beta.from.lambda(x)^2,from=0,to=6,
xlab=expression(lambda),ylab=expression(tilde(beta)^2))
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Appendix E

Optimization Methods

[[Approximations; time-error trade-offs]]

E.1 Optimization with First- and Second- Derivatives

E.1.1 Gradient Descent
Our starting point:

f (x)≈ f (x0)+
1

2
(x − x0)

T H (x0)(x − x0)

and
∇ f (x)≈H (x0)(x − x0)

So

f (x −λ∇ f ) ≈ f (x0)+
1

2
(x −λ∇ f − x0)

T H (x0)(x −λ∇ f − x0) (E.1)

= f (x0)− (λ∇ f )T H (x0)(x − x0)+
1

2
λ2∇ f T H (x0)∇ f (E.2)

= f (x0)−λ(x − x0)
T H T (x0)H (x0)(x − x0)+

1

2
λ2(x − x0)

T H T (x0)H (x0)H (x0)(x − x0)(E.3)

The coefficient of λ is > 0 as is that of λ2, but the terms are O(λ) and O(λ2), respec-
tively.

If λ is small enough, we improve by taking one gradient step:

‖x −λ∇ f − x0‖
2 = 〈x −λH (x − x0)− x0, x −λH (x − x0)− x0〉 (E.4)
= 〈x − x0, x − x0〉− 2λ〈H (x − x0), x − x0〉+λ

2〈H (x − x0, H (x − x0)〉(E.5)

which is an over-all negative change if λ is small enough. But then we might need to
take many steps.
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E.1.2 Newton’s Method
[[TODO: Smooth out writing
for current location, as origi-
nally taken from Chapter 12]]

There are a huge number of methods for numerical optimization; we can’t cover all
bases, and there is no magical method which will always work better than anything
else. However, there are some methods which work very well on an awful lot of the
problems which keep coming up, and it’s worth spending a moment to sketch how
they work. One of the most ancient yet important of them is Newton’s method (alias
“Newton-Raphson”).

Let’s start with the simplest case of minimizing a function of one scalar variable,
say f (β). We want to find the location of the global minimum, β∗. We suppose that
f is smooth, and that β∗ is a regular interior minimum, meaning that the derivative
atβ∗ is zero and the second derivative is positive. Near the minimum we could make
a Taylor expansion:

f (β)≈ f (β∗)+
1

2
(β−β∗)2

d 2 f

dβ2

�

�

�

�

�

β=β∗
(E.6)

(We can see here that the second derivative has to be positive to ensure that f (β) >
f (β∗).) In words, f (β) is close to quadratic near the minimum.

Newton’s method uses this fact, and minimizes a quadratic approximation to the
function we are really interested in. (In other words, Newton’s method is to replace
the problem we want to solve, with a problem which we can solve.) Guess an ini-
tial point β(0). If this is close to the minimum, we can take a second order Taylor
expansion around β(0) and it will still be accurate:

f (β)≈ f (β(0))+ (β−β(0))
d f

d w

�

�

�

�

�

β=β(0)
+

1

2

�

β−β(0)
�2 d 2 f

d w2

�

�

�

�

�

β=β(0)
(E.7)

Now it’s easy to minimize the right-hand side of equation E.7. Let’s abbreviate the
derivatives, because they get tiresome to keep writing out: d f

d w

�

�

�

β=β(0)
= f ′(β(0)),

d 2 f
d w2

�

�

�

β=β(0)
= f ′′(β(0)). We just take the derivative with respect to β, and set it equal

to zero at a point we’ll call β(1):

0 = f ′(β(0))+
1

2
f ′′(β(0))2(β(1)−β(0)) (E.8)

β(1) = β(0)−
f ′(β(0))

f ′′(β(0))
(E.9)

The value β(1) should be a better guess at the minimum β∗ than the initial one β(0)

was. So if we use it to make a quadratic approximation to f , we’ll get a better ap-
proximation, and so we can iterate this procedure, minimizing one approximation
and then using that to get a new approximation:

β(n+1) =β(n)−
f ′(β(n))

f ′′(β(n))
(E.10)
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Notice that the true minimum β∗ is a fixed point of equation E.10: if we happen to
land on it, we’ll stay there (since f ′(β∗) = 0). We won’t show it, but it can be proved
that if β(0) is close enough to β∗, then β(n)→ β∗, and that in general |β(n)−β∗| =
O(n−2), a very rapid rate of convergence. (Doubling the number of iterations we use
doesn’t reduce the error by a factor of two, but by a factor of four.)

Let’s put this together in an algorithm.

my.newton = function(f,f.prime,f.prime2,beta0,tolerance=1e-3,max.iter=50) {
beta = beta0
old.f = f(beta)
iterations = 0
made.changes = TRUE
while(made.changes & (iterations < max.iter)) {
iterations <- iterations +1
made.changes <- FALSE
new.beta = beta - f.prime(beta)/f.prime2(beta)
new.f = f(new.beta)
relative.change = abs(new.f - old.f)/old.f -1
made.changes = (relative.changes > tolerance)
beta = new.beta
old.f = new.f
}
if (made.changes) {
warning("Newton’s method terminated before convergence")

}
return(list(minimum=beta,value=f(beta),deriv=f.prime(beta),

deriv2=f.prime2(beta),iterations=iterations,
converged=!made.changes))

}

The first three arguments here have to all be functions. The fourth argument is our
initial guess for the minimum,β(0). The last arguments keep Newton’s method from
cycling forever: tolerance tells it to stop when the function stops changing very
much (the relative difference between f (β(n)) and f (β(n+1)) is small), and max.iter
tells it to never do more than a certain number of steps no matter what. The return
value includes the estmated minimum, the value of the function there, and some
diagnostics — the derivative should be very small, the second derivative should be
positive, etc.

You may have noticed some potential problems — what if we land on a point
where f ′′ is zero? What if f (β(n+1)) > f (β(n))? Etc. There are ways of handling
these issues, and more, which are incorporated into real optimization algorithms
from numerical analysis — such as the optim function in R; I strongly recommend
you use that, or something like that, rather than trying to roll your own optimization
code.1

1optim actually is a wrapper for several different optimization methods; method=BFGS selects a New-
tonian method; BFGS is an acronym for the names of the algorithm’s inventors.

11:36 Saturday 22nd November, 2014



E.2. DERIVATIVE-FREE OPTIMIZATION TECHNIQUES 636

E.1.2.1 Newton’s Method in More than One Dimension

Suppose that the objective f is a function of multiple arguments, f (β1,β2, . . .βp ).
Let’s bundle the parameters into a single vector, w. Then the Newton update is

β(n+1) =β(n)−H−1(β(n))∇ f (β(n)) (E.11)

where∇ f is the gradient of f , its vector of partial derivatives [∂ f /∂ β1,∂ f /∂ β2, . . .∂ f /∂ βp],
and H is the Hessian of f , its matrix of second partial derivatives, Hi j = ∂

2 f /∂ βi∂ β j .
Calculating H and ∇ f isn’t usually very time-consuming, but taking the inverse

of H is, unless it happens to be a diagonal matrix. This leads to various quasi-Newton
methods, which either approximate H by a diagonal matrix, or take a proper inverse
of H only rarely (maybe just once), and then try to update an estimate of H−1(β(n))
as β(n) changes.
[[Yet another set of Newton’s method notes for meger]]
Newton’s method: “reverse the polarity flow!” We know ∇ f (x) and ∇2 f (x),

though we don’t know H (x0).

f (x0)≈ f (x)+ 〈(x0− x),∇ f (x)〉+
1

2
〈x0− x, H (x)(x0− x)〉

Since∇ f (x0) = 0,∇ f (x)+H (x)(x0− x) = 0. Thus

∇ f (x) = −H (x)(x0− x) (E.12)
−H−1(x)∇ f (x) = x0− x (E.13)

x −H−1(x)∇ f (x) = 0 (E.14)

Newton’s method: try it, and keep repeating if it doesn’t work. It’s exact for
quadratic functions, and for others,

‖x − x0−H−1∇ f (x)‖2 = ‖x − x0‖
2− 2〈xx0, H−1(x)∇ f (x)〉+ ‖H−1∇ f (x)‖2

The negative term is O(‖∇ f (x)‖), while the positive one is O(‖∇ f (x)‖2), so the
former is guaranteed to dominate if we start close enough to the optimum.[[TODO: Decide how much

of this is needed past Newton’s
method]] E.1.3 Stochastic Approximation

[[Appendix to come: stochastic gradient descent, stochastic Newton’s method]]

E.2 Derivative-Free Optimization Techniques
[[Appendix to come: simplex method; simulated annealing; evolutionary searches]]

E.3 Methods for Constraints
[[“Method of multipliers” a.k.a. augmented Lagrangian, interior point methods]]
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Appendix F

Where the χ 2 Null
Distribution for the
Likelihood-Ratio Test Comes
From

Here is a very hand-wavy explanation for Eq. 2.34. We’re assuming that the true
parameter value, call it θ, lies in the restricted class of models ω. So there are q
components to θ which matter, and the other p − q are fixed by the constraints
defining ω. To simplify the book-keeping, let’s say those constraints are all that the
extra parameters are zero, so θ= (θ1,θ2, . . .θq , 0, . . . 0), with p − q zeroes at the end.

The restricted MLE bθ obeys the constraints, so

bθ= (bθ1, bθ2, . . . bθq , 0, . . . 0) (F.1)

The unrestricted MLE does not have to obey the constraints, so it’s

bΘ= (bΘ1, bΘ2, . . . bΘq , bΘq+1, . . . bΘp ) (F.2)

Because both MLEs are consistent, we know that bθi → θi , bΘi → θi if 1≤ i ≤ q , and
that bΘi → 0 if q + 1≤ i ≤ p.

Very roughly speaking, it’s the last extra terms which end up making L(bΘ) larger
than L(bθ). Each of them tends towards a mean-zero Gaussian whose variance is
O(1/n), but their impact on the log-likelihood depends on the square of their sizes,
and the square of a mean-zero Gaussian has a χ 2 distribution with one degree of free-
dom. A whole bunch of factors cancel out, leaving us with a sum of p−q independent
χ 2

1 variables, which has a χ 2
p−q distribution.

In slightly more detail, we know that L(bΘ)≥ L(bθ), because the former is a maxi-
mum over a larger space than the latter. Let’s try to see how big the difference is by
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doing a Taylor expansion around bΘ, which we’ll take out to second order.

L(bθ) ≈ L(bΘ)+
p
∑

i=1

(bΘi − bθi )

 

∂ L

∂ θi

�

�

�

�

�

bΘ

!

+
1

2

p
∑

i=1

p
∑

j=1

(bΘi − bθi )

 

∂ 2L

∂ θi∂ θ j

�

�

�

�

�

bΘ

!

(bΘ j − bθ j )

= L(bΘ)+
1

2

p
∑

i=1

p
∑

j=1

(bΘi − bθi )

 

∂ 2L

∂ θi∂ θ j

�

�

�

�

�

bΘ

!

(bΘ j − bθ j ) (F.3)

All the first-order terms go away, because bΘ is a maximum of the likelihood, and so
the first derivatves are all zero there. Now we’re left with the second-order terms.
Writing all the partials out repeatedly gets tiresome, so abbreviate ∂ 2L/∂ θi∂ θ j as
L,i j .

To simplify the book-keeping, suppose that the second-derivative matrix, or Hes-
sian, is diagonal. (This should seem like a swindle, but we get the same conclusion
without this supposition, only we need to use a lot more algebra — we diagonalize
the Hessian by an orthogonal transformation.) That is, suppose L,i j = 0 unless i = j .
Now we can write

L(bΘ)− L(bθ) ≈ −
1

2

p
∑

i=1

(bΘi − bθi )
2L,i i (F.4)

2
h

L(bΘ)− L(bθ)
i

≈ −
q
∑

i=1

(bΘi − bθi )
2L,i i −

p
∑

i=q+1

(bΘi )
2L,i i (F.5)

At this point, we need a fact about the asymptotic distribution of maximum likeli-
hood estimates: they’re generally Gaussian, centered around the true value, and with
a shrinking variance that depends on the Hessian evaluated at the true parameter
value; this is called the Fisher information, F or I . (Call it F .) If the Hessian is
diagonal, then we can say that

bΘi   N (θi ,−1/nFi i ) (F.6)
bθi   N (θ1,−1/nFi i ) 1≤ i ≤ q (F.7)
bθi = 0 q + 1≤ i ≤ p (F.8)

Also, (1/n)L,i i →−Fi i .
Putting all this together, we see that each term in the second summation in Eq.

F.5 is (to abuse notation a little)

−1

nFi i
(N (0,1))2L,i i → χ 2

1 (F.9)

so the whole second summation has a χ 2
p−q distribution1. The first summation,

meanwhile, goes to zero because bΘi and bθi are actually strongly correlated, so their

1Thanks to Xiaoran Yan for catching a typo in a previous version here.
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difference is O(1/n), and their difference squared is O(1/n2). Since L,i i is only O(n),
that summation drops out.

A somewhat less hand-wavy version of the argument uses the fact that the MLE is
really a vector, with a multivariate normal distribution which depends on the inverse
of the Fisher information matrix:

bΘ N (θ, (1/n)F −1) (F.10)

Then, at the cost of more linear algebra, we don’t have to assume that the Hessian is
diagonal.

11:36 Saturday 22nd November, 2014



11:36 Saturday 22nd November, 2014
Copyright c©Cosma Rohilla Shalizi; do not distribution without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Appendix G

Proof of the Gauss-Markov
Theorem

We want to prove that, when we are doing weighted least squares for linear regres-
sion, the best choice of weights wi = 1/σ2

xi
. We have already established that WLS

is unbiased (Eq. 7.8), so “best” here means minimizing the variance. We have also
already established that

bβW LS = h(w)y (G.1)

where the matrix h(w) is

h(w) = (xT wx)−1xT w (G.2)

It would be natural to try to write out the variance as a function of the weights
w, set the derivative equal to zero, and solve. This is tricky, partly because we need
to make sure that all the weights are positive and add up to one, but mostly because
of the matrix inversion in the definition of h. A slightly indirect approach is actually
much easier.

Write w0 for the inverse-variance weight matrix, and h0 for the hat matrix we get
with those weights. Then for any other choice of weights, we have h(w) = h0 + c.
Since we know WLS estimates are all unbiased, we must have

(h0+ c)xβ=β (G.3)

but using the inverse-variance weights is a particular WLS estimate so

h0xβ=β (G.4)

and so we can deduce that
cx= 0 (G.5)

from unbiasedness.
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Now consider the covariance matrix of the estimates, Var
h

β̃
i

. This will be

Var[(h0+ c)Y], which we can expand:

Var
h

β̃
i

= Var[(h0+ c)Y] (G.6)

= (h0+ c)Var[Y ] (h0+ c)T (G.7)

= (h0+ c)w0
−1(h0+ c)T (G.8)

= h0w0
−1h0

T + cw0
−1h0

T +h0w0
−1cT + cw0

−1cT (G.9)

= (xT w0x)−1xT w0w0
−1w0x(xT w0x)−1 (G.10)

+cw0
−1w0x(xT w0x)−1

+(xT w0x)−1xT w0w0
−1cT

+cw0
−1cT

= (xT w0x)−1xT w0x(xT w0x)−1 (G.11)

+cx(xT w0x)−1+(xT w0x)−1xT cT

+cw0
−1cT

= (xT w0x)−1+ cw0
−1cT (G.12)

where in the last step we use the fact that cx = 0 (and so xT cT = 0T = 0). Since
cw0

−1cT ≥ 0, we see that the variance is minimized by setting c = 0, and using the
inverse variance weights.

Notes:

1. The proof actually works when comparing the inverse-variance weights to any
other linear, unbiased estimator; WLS with different weights is just a special
case.

2. If all the variances are equal, then we’ve proved the optimality of OLS.

3. We can write the WLS problem as that of minimizing (y− xβ)T w(y− xβ).
If we allow w to be a non-diagonal, but still positive-definite, matrix, then we
have the generalized least squares problem. This is appropriate when there
are correlations between the noise terms at different observations, i.e., when
Cov

�

εi ,ε j

�

6= 0 even though i 6= j . In this case, the proof is easily adapted to
show that the optimal weight matrix w is the inverse of the noise covariance
matrix.
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Appendix H

Rudimentary Graph Theory

A graph G is built out of a set of nodes or vertices, and edges or links connecting
them. The edges can either be directed or undirected. A graph with undirected edges,
or an undirected graph, represents a symmetric binary relation among the nodes.
For instance, in a social network, the nodes might be people, and the relationship
might be “spends time with”. A graph with directed edges, or arrows, is called a
directed graph or digraph1, and represents an asymmetric relation among the nodes.
To continue the social example, the arrows might mean “admires”, pointing from the
admirer to the object of admiration. If the relationship is reciprocal, that is indicated
by drawing a pair of arrows between the nodes, one in each direction (as between A
and B in Figure H.1).

A directed path from node V1 to node V2 is a sequence of edges, beginning at
V1 and ending at V2, which is connected and which follows the orientation of the
edges at each step. An undirected path is a sequence of connected edges ignoring
orientation. (Every path in an undirected graph is undirected.) If there is a directed
path from V1 to V2 and from V2 to V1, then those two nodes are strongly connected.
(In Figure H.1, A and C are strongly connected, but A and D are not.) If there are
undirected paths in both directions, they are weakly connected. (A and D are weakly
connected.) Strong connection implies weak connection. (EXERCISE: Prove this.)
We also stipulate that every node is strongly connected to itself.

Strong connection is an equivalence relation, i.e., it is reflective, symmetric and
transitive. (EXERCISE: Prove this.) Weak connection is also an equivalence relation.
(EXERCISE: Prove this.) Therefore, a graph can be divided into non-overlapping
strongly connected components, consisting of maximal sets of nodes which are all
strongly connected to each other. (In Figure H.1, A, B and C form one strongly
connected component, and D and E form components with just one node.) It can
also be divided into weakly connected components, maximal sets of nodes which are
all weakly connected to each other. (There is only one weakly connected component
in the graph. If either of the edges into D were removed, there would be two weakly
connected components.)

1Or, more rarely, a Guthrie diagram.
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A

B

C

D

E

Figure H.1: Example for illustrating the concepts of graph theory.
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A cycle is a directed path from a node to itself. The existence of two distinct
nodes which are strongly connected to each other implies the existence of a cycle,
and vice versa. A directed graph without cycles is called acyclic. Said another way,
an acyclic graph is one where all the strongly connected components consist of indi-
vidual nodes. The weakly connected components can however contain an unlimited
number of nodes.

In a directed acyclic graph, or DAG, it is common to refer to the nodes connected
by an edge as “parent” and “child” (so that the arrow runs from the parent to the
child). If there is a directed path from V1 to V2, then V1 is the ancestor of V2, which
is the descendant of V1. In the jargon, the ancestor/descendant relation is the tran-
sitive closure of the parent/child relation.
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Appendix I

Pseudo-code for the SGS
Algorithm

I.1 Pseudo-code for the SGS Algorithm

When you see a loop, assume that it gets entered at least once. “Replace” in the
sub-functions always refers to the input graph.

SGS = function(set of variables V) {
bG = colliders(prune( complete undirected graph on V))
until ( bG ==G′) {

bG =G′

G′ = orient( bG)
}
return( bG)

}

prune = function(G) {
for each A,B ∈V {

for each S ⊆V \ {A,B} {
if A |= B |S { G =G \ (A−B) }

}
}
return(G)

}

collliders = function(G) {
for each (A−B) ∈G {

for each (B −C ) ∈G {
if (A−C ) 6∈G {
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collision = TRUE
for each S ⊂ B ∩V \ {A,C } {

if A |= C |S { collision = FALSE }
}
if (collision) { replace (A−B) with (A→ B), (B −C ) with (B←C ) }

}
}

}
return(G)

}

orient = function(G) {
if ((A→ B) ∈G & (B −C ) ∈G & (A−C ) 6∈G) { replace (B −C ) with (B→C ) }
if ((directed path from A to B)∈G & (A−B) ∈G) { replace (A−B) with (A→ B) }
return(G)

}

I.2 Pseudo-code for the PC Algorithm
[[To come]]
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Appendix J

Information Theory

[[TODO: write appendix, drawing in material about information theory, relative
entropy/Kullback-Leibler divergence, and expected log-likelihood currently scattered
across chapters in trees, density estimation, and EM]]
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Appendix K

Writing R Functions

The ability to read, understand, modify and write simple pieces of code is an essential
skill for modern data analysis. Lots of high-quality software already exists for specific
purposes, which you can and should use, but statisticians need to grasp how such soft-
ware works, tweak it to suit their needs, recombine existing pieces of code, and when
needed create their own tools. Someone who just knows how to run canned routines
is not a data analyst but a technician who tends a machine they do not understand.

Fortunately, writing code is not actually very hard, especially not in R. All it
demands is the discipline to think logically, and the patience to practice. This chapter
tries to illustrate what’s involved, starting from the very beginning. It is redundant
for many students, but included through popular demand.

K.1 Functions
Programming in R is organized around functions. You all know what a mathemat-
ical function is, like log x or φ(z) or sinθ: it is a rule which takes some inputs and
delivers a definite output. A function in R, like a mathematical function, takes zero
or more inputs, also called arguments, and returns an output. The output is arrived
at by going through a series of calculations, based on the input, which we specify
in the body of the function. As the computer follows our instructions, it may do
other things to the system; these are called side-effects. (The most common sort of
side-effect, in R, is probably making or updating a plot on the screen.) The basic
declaration or definition of a function looks like so:

my.function <- function(argument.1, argument.2, ...) {
# clever manipulations of arguments
return(the.return.value)

}

Strictly speaking, we often don’t need the return() command; without it, the func-
tion will return the last thing it evaluated. But it’s usually clearer, and never hurts, to
be explicit.
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We write functions because we often find ourselves going through the same se-
quence of steps at the command line, perhaps with small variations. It saves mental
effort on our part to take that sequence and bind it together into an integrated pro-
cedure, the function, so that then we can think about the function as a whole, rather
than the individual steps. It also reduces error, because, by invoking the same func-
tion every time, we don’t have to worry about missing a step, or wondering whether
we forgot to change the third step to be consistent with the second, and so on.

K.2 First Example: Pareto Quantiles
Let me give a really concrete example. In Chapter 6, I mentioned the Pareto distri-
bution, which has the probability density function

f (x;α, x0) =

(

α−1
x0

�

x
x0

�−α
x ≥ x0

0 x < x0

(K.1)

Consequently, the CDF is

F (x;α, x0) = 1−
�

x

x0

�−α+1

(K.2)

and the quantile function is

Q(p;α, x0) = x0(1− p)−
1
α−1 (K.3)

Say I want to find the median of a Pareto distribution with α = 2.34 and x0 =
6× 108. I can do that:

> 6e8 * (1-0.5)^(-1/(2.33-1))
[1] 1010391288

If I decide I want the 40th percentile of the same distribution, I can do that:

> 6e8 * (1-0.4)^(-1/(2.33-1))
[1] 880957225

If I decide to raise the exponent to 2.5, lower the threshold to 1× 106, and ask about
the 92nd percentile, I can do that, too:

> 1e6 * (1-0.92)^(-1/(2.5-1))
[1] 5386087

But doing this all by hand gets quite tiresome, and at some point I’m going to
mess up and write when I meant ˆ. I’ll write a function to do this for me, and so that
there is only one place for me to make a mistake:

qpareto.1 <- function(p, exponent, threshold) {
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}
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The name of the function is what goes on the left of the assignment <-, with the dec-
laration (beginning function) on the right. (I called this qpareto.1 to distinguish it
from later modifications.) The three terms in the parenthesis after function are the
arguments to qpareto — the inputs it has to work with. The body of the function
is just like some R code we would type into the command line, after assigning values
to the arguments. The very last line tells the function, explicitly, what its output or
return value should be. Here, of course, the body of the function calculates the pth
quantile of the Pareto distribution with the exponent and threshold we ask for.

When I enter the code above, defining qpareto.1, into the command line, R just
accepts it without outputting anything. It thinks of this as assigning certain value
to the name qpareto.1, and it doesn’t produce outputs for assignments when they
succeed, just as if I’d said alpha <- 2.5.

All that successfully creating a function means, however, is that we didn’t make
a huge error in the syntax. We should still check that it works, by invoking the
function with values of the arguments where we know, by other means, what the
output should be. I just calculated three quantiles of Pareto distributions above, so
let’s see if we can reproduce them.

> qpareto.1(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
> qpareto.1(p=0.4,exponent=2.33,threshold=6e8)
[1] 880957225
> qpareto.1(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087

So, our first function seems to work successfully.

K.3 Functions Which Call Functions

If we examine other quantile functions (e.g., qnorm), we see that most of them take
an argument called lower.tail, which controls whether p is a probability from the
lower tail or the upper tail. qpareto.1 implicitly assumes that it’s the lower tail, but
let’s add the ability to change this.

qpareto.2 <- function(p, exponent, threshold, lower.tail=TRUE) {
if(lower.tail==FALSE) {

p <- 1-p
}
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

When, in a function declaration, an argument is followed by = and an expression,
the expression sets the default value of the argument, the one which will be used
unless explicitly over-ridden. The default value of lower.tail is TRUE, so, unless it
is explicitly set to false, we will assume p is a probability counted from −∞ on up.
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The if command is a control structure — if the condition in parenthesis is true,
then the commands in the following braces will be executed; if not, not. Since lower
tail probabilities plus upper tail probabilities must add to one, if we are given an
upper tail probability, we just find the lower tail probability and proceed as before.

Let’s try it:

> qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
> qpareto.2(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
> qpareto.2(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087
> qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=FALSE)
[1] 1010391288
> qpareto.2(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162

First: the answer qpareto.2 gives with lower.tail explicitly set to true matches
what we already got from qpareto.1. Second and third: the default value for lower.tail
works, and it works for two different values of the other arguments. Fourth and fifth:
setting lower.tail to FALSE works properly (since the 50th percentile is the same
from above or from below, but the 92nd percentile is different, and smaller from
above than from below).

The function qpareto.2 is equivalent to this:

qpareto.3 <- function(p, exponent, threshold, lower.tail=TRUE) {
if(lower.tail==FALSE) {
p <- 1-p

}
q <- qpareto.1(p, exponent, threshold)
return(q)

}

When R tries to execute this, it will look for a function named qpareto.1 in the
workspace. If we have already defined such a function, then R will execute it, with the
arguments we have provided, and q will become whatever is returned by qpareto.1.
When we give R the above function definition for qpareto.3, it does not check
whether qpareto.1 exists — it only has to be there at run time. If qpareto.1
changes, then the behavior of qpareto.3 will change with it, without our having
to redefine qpareto.3.

This is extremely useful. It means that we can take our programming problem and
sub-divide it into smaller tasks efficiently. If I made a mistake in writing qpareto.1,
when I fix it, qpareto.3 automatically gets fixed as well — along with any other
function which calls qpareto.1, or qpareto.3 for that matter. If I discover a more
efficient way to calculate the quantiles and modify qpareto.1, the improvements are
likewise passed along to everything else. But when I write qpareto.3, I don’t have to
worry about how qpareto.1 works, I can just assume it does what I need somehow.
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K.3.1 Sanity-Checking Arguments
It is good practice, though not strictly necessary, to write functions which check that
their arguments make sense before going through possibly long and complicated cal-
culations. For the Pareto quantile function, for instance, p must be in [0,1], the
exponent α must be at least 1, and the threshold x0 must be positive, or else the
mathematical function just doesn’t make sense.

Here is how to check all these requirements:

qpareto.4 <- function(p, exponent, threshold, lower.tail=TRUE) {
stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
q <- qpareto.3(p,exponent,threshold,lower.tail)
return(q)

}

The function stopifnot halts the execution of the function, with an error message, if
all of its arguments do not evaluate to TRUE. If all those conditions are met, however,
R just goes on to the next command, which here happens to be running qpareto.3.
Of course, I could have written the checks on the arguments directly into the latter.

Let’s see this in action:

> qpareto.4(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
> qpareto.4(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162
> qpareto.4(p=1.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
Error: p <= 1 is not TRUE
> qpareto.4(p=-0.02,exponent=2.5,threshold=1e6,lower.tail=FALSE)
Error: p >= 0 is not TRUE
> qpareto.4(p=0.92,exponent=0.5,threshold=1e6,lower.tail=FALSE)
Error: exponent > 1 is not TRUE
> qpareto.4(p=0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)
Error: threshold > 0 is not TRUE
> qpareto.4(p=-0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)
Error: p >= 0 is not TRUE

The first two lines give the same results as our earlier functions — as they should,
because all the arguments are in the valid range. The third, fourth, fifth and sixth lines
all show that qpareto.4 stops with an error message when one of the conditions in
the stopifnot is violated. Notice that the error message says which condition was
violated. The seventh line shows one limitation of this: the arguments violate two
conditions, but stopifnot’s error message will only mention the first one. (What is
the other violation?)

K.4 Layering Functions and Debugging
Functions can call functions which call functions, and so on indefinitely. To illus-
trate, I’ll write a function which generates Pareto-distributed random numbers, using
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the “quantile transform” method from Lecture 7. This, remember, is to generate a
uniform random number U on [0,1], and produce Q(U ), with Q being the quantile
function of the desired distribution.

The first version contains a deliberate bug, which I will show how to track
down and fix.

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=rnorm(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Notice that this calls qpareto.4, which calls qpareto.3, which calls qpareto.1.
Let’s this out:

> rpareto(10)
Error in exponent > 1 : ’exponent’ is missing

This is a puzzling error message — the expression exponent > 1 never appears in
rpareto! The error is coming from further down the chain of execution. We can
see where it happens by using the traceback() function, which gives the chain of
function calls leading to the latest error:

> rpareto(10)
Error in exponent > 1 : ’exponent’ is missing
> traceback()
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold)
1: rpareto(10)

traceback() outputs the sequence of function calls leading up to the error in reverse
order, so that the last line, numbered 1, is what we actually entered on the command
line. This tells us that the error is happening when qpareto.4 tries to check the
arguments to the quantile function. And the reason it is happening is that we are not
providing qpareto.4 with any value of exponent. And the reason that is happening
is that we didn’t give rpareto any value of exponent as an explicit argument when
we called it, and our definition didn’t set a default.

Let’s try this again.

> rpareto(n=10,exponent=2.5,threshold=1)
Error: p <= 1 is not TRUE
> traceback()
4: stop(paste(ch, " is not ", if (length(r) > 1L) "all ", "TRUE",

sep = ""), call. = FALSE)
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold)
1: rpareto(n = 10, exponent = 2.5, threshold = 1)
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This is progress! The stopifnot in qpareto.4 is at least able to evaluate all the
conditions — it just happens that one of them is false. (The line 4 here comes from
the internal workings of stopifnot.) The problem, then, is that qpareto.4 is being
passed a negative value of p. This tells us that the problem is coming from the part of
rpareto.1 which sets p. Looking at that,

p = rnorm(1)

the culprit is obvious: I stupidly wrote rnorm, which generates a Gaussian random
number, when I meant to write runif, which generates a uniform random number.1

The obvious fix is just to replace rnorm with runif

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {

x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)
}
return(x)

}

Let’s see if this is enough to fix things, or if I have any other errors:

> rpareto(n=10,exponent=2.5,threshold=1)
[1] 1.000736 2.764087 2.775880 1.058910 1.061712 2.142950 4.220731
[8] 1.496793 3.004766 1.194545

This function at least produces numerical return values rather than errors! Are they
the right values?

We can’t expect a random number generator to always give the same results, so
I can’t cross-check this function against direct calculation, the way I could check
qpareto.1. (Actually, one way to check a random number generator is to make
sure it doesn’t give identical results when run twice!) It’s at least encouraging that all
the numbers are above threshold, but that’s not much of a test. However, since this
is a random number generator, if I use it to produce a lot of random numbers, the
quantiles of the output should be close to the theoretical quantiles, which I do know
how to calculate.

> r <- rpareto(n=1e4,exponent=2.5,threshold=1)
> qpareto.4(p=0.5,exponent=2.5,threshold=1)
[1] 1.587401
> quantile(r,0.5)

50%
1.598253
> qpareto.4(p=0.1,exponent=2.5,threshold=1)
[1] 1.072766
> quantile(r,0.1)

10%
1I actually made this exact mistake the first time I wrote the function, back in 2004.
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1.072972
> qpareto.4(p=0.9,exponent=2.5,threshold=1)
[1] 4.641589
> quantile(r,0.9)

90%
4.526464

This looks pretty good. Figure K.1 shows a plot comparing all the theoretical per-
centiles to the simulated ones, confirming that we didn’t just get lucky with choosing
particular percentiles above.

K.4.1 More on Debugging

Everyone who writes their own code spends a lot of time debugging2. There are some
guidelines for making it easier and less painful.

Characterize the Bug We’ve got a bug when the code we’ve written won’t do
what we want. To fix this, it helps a lot to know exactly what error we’re seeing.
The first step to this is to make the error reproducible. Can we always get the error
when re-running the same code and values? If we start the same code in a clean copy
of R, does the same thing happen? Once we can reproduce the error, we map its
boundaries. How much can we change the inputs and get the same error? A different
error? For what inputs (if any) does the bug go away? How big is the error?

Localize the Bug The problem may be a diffuse all-pervading wrongness, but often
it’s a lot more localized, to a few lines or even just one line of code; it helps to know
where! We have seen some tools for localizing the bug above: traceback() and
stopifnot(). Another very helpful one is to add print statements, so that our
function gives us messages about the progress of its calculations, selected variables,
etc., as it goes; the warning command can be used to much the same effect3.

Fix the Bug Once you know what’s going wrong and where it’s going wrong, it’s
often not too hard to spot the error, either one of syntax (say = vs. ==) or logic. Try
a fix and see if it makes it better. Do the inputs which gave you the bugs before now
work properly? Are you getting different errors?

K.5 Automating Repetition and Passing Arguments
The match between the theoretical quantiles and the simulated ones in Figure K.1 is
close, but it’s not perfect. On the one hand, this might indicate some subtle mistake.
On the other hand, it might just be random sampling noise — rpareto is supposed

2Those who don’t write their own code but use computers anyway spend a lot of time putting up with
other people’s bugs.

3Real software engineers look down on this, in favor of more sophisticated tools, like interactive de-
buggers. They have something of a point, but that’s usually over-kill for the purposes of this class.
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simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)

Figure K.1: Theoretical percentiles of the Pareto distribution with α = 2.5, x0 = 1,
and empirical percentiles from a sample of 104 values simulated from it with the
rpareto function. (The solid line is the x = y diagonal, for visual reference.)
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to be a random number generator, after all. We could check this by seeing whether
we get different deviations around the line with different runs of rpareto, or if on
the contrary they all pull in the same direction. We could just make many plots by
hand, the way we made that plot by hand, but since we’re doing almost exactly the
same thing many times, let’s write a function.

pareto.sim.vs.theory <- function() {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles)

}

This doesn’t return anything. All it does is draw a new sample from the same Pareto
distribution as before, re-calculate the simulated percentiles, and add them to an exist-
ing plot — this is an example of a side-effect. Notice also that the function presumes
that theoretical.percentiles already exists. (The theoretical percentiles won’t
need to change from one simulation draw to the next, so it makes sense to only cal-
culate them once.)

Figure K.2 shows how we can use it to produce multiple simulation runs. We can
see that, looking over many simulation runs, the quantiles seem to be too large about
as often, and as much, as they are too low, which is reassuring.

One thing which that figure doesn’t do is let us trace the connections between
points from the same simulation. More generally, we can’t modify the plotting prop-
erties, which is kind of annoying. This is easily fixed modifying the function to pass
along arguments:

pareto.sim.vs.theory <- function(...) {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Putting the ellipses (...) in the argument list means that we can give pareto.sim.vs.theory.2
an arbitrary collection of arguments, but with the expectation that it will pass them
along unchanged to some other function that it will call with ... — here, that’s the
points function. Figure K.3 shows how we can use this, by passing along graph-
ical arguments to points — in particular, telling it to connect the points by lines
(type="b"), varying the shape of the points (pch=i) and the line style (lty=i).

These figures are reasonably convincing that nothing is going seriously wrong
with the simulation for these parameter values. To check other parameter settings,
again, I could repeat all these steps by hand, or I could write another function:

check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {
# One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
# Set up plotting window, but don’t put anything in it:
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simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {

pareto.sim.vs.theory()
}

Figure K.2: Comparing multiple simulated quantile values to the theoretical quan-
tiles.
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simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {
pareto.sim.vs.theory(pch=i,type="b",lty=i)

}

Figure K.3: As Figure K.2, but using the ability to pass along arguments to a sub-
sidiary function to distinguish separate simulation runs.
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plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),
# No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
# Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

# Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {

pareto.sim.vs.theory(n=n,exponent=exponent,threshold=threshold,
pch=i,type="b",lty=i)

}
}

Defining this will work just fine, but it won’t work properly until we re-defined
pareto.sim.vs.theory to take the arguments n, exponent and threshold.4

It seems like a simple modification of the old definition should do the trick:

pareto.sim.vs.theory <- function(n,exponent,threshold,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

After defining this, the checker function seems to work fine. The following com-
mands produce the plot in Figure K.4, which looks very like the manually-created
one. (Random noise means it won’t be exactly the same.) Putting in the default
arguments explicitly gives the same results (not shown).

> check.rpareto()
> check.rpareto(n=1e4,exponent=2.5,threshold=1)

Unfortunately, changing the arguments reveals a bug (Figure K.5). Notice that
the vertical coordinates of the points, coming from the simulation, look like they
have about the same range as the theoretical quantiles, used to lay out the plotting
window. But the horizontal coordinates are all pretty much the same (on a scale of
tens of billions, anyway). What’s going on?

The horizontal coordinates for the points being plotted are set in pareto.sim.vs.theory.3:

points(theoretical.percentiles,simulated.percentiles,...)

Where does this function get theoretical.percentiles from? Since the vari-
able isn’t assigned inside the function, R tries to figure it out from context. Since
pareto.sim.vs.theory was defined on the command line, the context R uses to in-
terpret it is the global workspace — where there is, in fact, a variable called theoretical.percentiles,
which I set by hand for the previous plots. So the plotted theoretical quantiles are all

4Try running check.rpareto(), follows by warnings().
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Figure K.4: Automating the checking of rpareto.
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Figure K.5: A bug in check.rpareto.
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too small in Figure K.5, because they’re for a distribution with a much lower thresh-
old.

Didn’t check.rpareto assign is own value to theoretical.percentiles, which
it used to set the plot boundaries? Yes, but that assignment only applied in the context
of the function. Assignments inside a function have limited scope, they leave values in
the broader context alone. Try this:

> x <- 7
> x
[1] 7
> square <- function(y) { x <- y^2; return(x) }
> square(7)
[1] 49
> x
[1] 7

The function square assigns x to be the square of its argument. This assignment
holds within the scope of the function, as we can see from the fact that the returned
value is always the square of the argument, and not what we assigned x to be in the
global, command-line context. However, this does not over-write that global value,
as the last line shows.5

There are two ways to fix this problem. One is to re-define pareto.sim.vs.theory
to calculate the theoretical quantiles:

pareto.sim.vs.theory <- function(n,exponent,threshold,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,

threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

This will work (try running check.rpareto(1e4,2.33,9e8) now), but it’s very re-
dundant — every time we call this, we’re recalculating the same percentiles, which
we already calculated in check.rpareto. A cleaner solution is to make the vec-
tor of theoretical percentiles an argument to pareto.sim.vs.theory, and change
check.rpareto to provide it.

check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {
# One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,
threshold=threshold)

# Set up plotting window, but don’t put anything in it:
plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),

5There are techniques by which functions can change assignments outside of their scope. They are
tricky, rare, and best avoided except by those who really know what they are doing. (If you think you do,
you are probably wrong.)
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# No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
# Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

# Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {

pareto.sim.vs.theory.4(n=n,exponent=exponent,threshold=threshold,
theoretical.percentiles=theoretical.percentiles,
pch=i,type="b",lty=i)

}
}

pareto.sim.vs.theory <- function(n,exponent,threshold,
theoretical.percentiles,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Figure K.6 shows that this succeeds.
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Figure K.6: Using the corrected simulation checker.
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K.6 Avoiding Iteration: Manipulating Objects
Let’s go back to the declaration of rpareto, which I repeat here, unchanged, for
convenience:

rpareto <- function(n,exponent,threshold) {
x <- vector(length=n)
for (i in 1:n) {

x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)
}
return(x)

}

We’ve confirmed that this works, but it involves explicit iteration in the form of
the for loop. Because of the way R carries out iteration6, it is slow, and better avoided
when possible. Many of the utility functions in R, like replicate, are designed to
avoid explicit iteration. We could re-write rpareto using replicate, for example:

rpareto <- function(n,exponent,threshold) {
x <- replicate(n,qpareto.4(p=runif(1),exponent=exponent,threshold=threshold))
return(x)

}

(The outstanding use of replicate is when we want to repeat the same random
experiment many times — there are examples in the notes for Chapters 6.)

An every clearer alternative makes use of the way R automatically vectorizes
arithmetic:

rpareto <- function(n,exponent,threshold) {
x <- qpareto.4(p=runif(n),exponent=exponent,threshold=threshold)
return(x)

}

This feeds qpareto.4 a vector of quantiles p, of length n, which in turn gets passed
along to qpareto.1, which finally tries to evaluate

threshold*((1-p)^(-1/(exponent-1)))

With p being a vector, R hopes that threshold and exponent are also vectors, and
of the same length, so that it evaluate this arithmetic expression component-wise. If
exponent and threshold are shorter, it will “recycle” their values, in order, until
it has vectors equal in length to p. In particular, if exponent and threshold have
length 1, it will repeat both of them length(p) times, and then evaluate everything
component by component. (See the “Introduction to R” manual for more on this
“recycling rule”.) The quantile functions we have defined inherit this ability to re-
cycle, without any special work on our part. The final version of rpareto we have
written is not only faster, it is clearer and easier to read. It focuses our attention on
what is being done, and not on the mechanics of doing it.

6Roughly speaking, it ends up having to create and destroy a whole copy of everything which gets
changed in the course of one pass around the iteration loop, which can involve lots of memory and time.
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Figure K.7: The Huber loss function ψ (black) versus the squared error loss (grey).

K.6.1 ifelse and which

Sometimes we want to do different things to different parts of a vector (or larger
structure) depending on its values. For instance, in robust regression one often re-
places the squared error loss with what’s called the Huber loss7,

ψ(x) =
�

x2 if |x| ≤ 1
2|x| − 1 if |x|> 1 (K.4)

which isn’t so vulnerable to outliers, as in Figure K.7.
We might code this up like so:

huber <- function(x) {
n <- length(x)
y <- vector(n)
for (i in 1:n) {
if (abs(x) =< 1) {

y[i] <- x[i]^2
} else {
y[i] <- 2*abs(x[i])-1

}
}
return(y)

}
7One applies this not to the residuals directly, but to residuals divided by some robust measure of

dispersion.
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This is not very easy follow. R provides a very useful function, ifelse, which lets
us apply a binary test, and then draw from either of two calculations. Using it, we
re-write huber like so:

huber <- function(x) {
return(ifelse(abs(x) =< 1, x^2, 2*abs(x)-1))

}

The first argument needs to produce a vector of TRUE/FALSE values; the second
argument provides the outputs for the TRUE positions, the third the outputs for
the FALSE positions. Here all three are expressions involving the same variable, but
that’s not essential.

Another useful device is the which function, whose argument is a vector of TRUE/FALSE
values, returning a vector of the indices where the argument is TRUE, e.g.,

incomplete.cases <- which(is.na(cholesterol))

would give us the positions at which the vector cholesterol had NA values. This is
equivalent to

incomplete.cases <- c()
for (i in 1:length(cholesterol)) {

if (is.na(cholesterol[i])) {
incomplete.cases <- c(incomplete.cases,i)

}
}

K.6.2 apply and Its Variants
Particularly useful ways of avoiding iteration come from the function apply, and the
closely related sapply and lapply functions. We saw apply in Chapter 6:

x <- replicate(10,rpareto(100,2.5,1))
apply(x,2,quantile,probs=0.9)

Each call to rpareto inside the replicate creates a vector of length 100. Replicate
then stacks these, as columns, into an array. The apply function applies the same
function to each row or column of the array, depending on whether its second argu-
ment is 1 (rows) or 2 (columns). So this will find the 90th percentile of each of the 10
random-number draws, and give that back to us as a vector.

array only works for arrays, matrices and data frames (and works on them by
treating them as arrays). If we want to apply the same function to every element of a
vector or list, we use lapply. This gives us back a list, which can be inconvenient:

> y <- c(0.9,0.99,0.999,0.99999)
> lapply(y,qpareto.4,exponent=2.5,threshold=1)
[[1]]
[1] 4.641589
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[[2]]
[1] 21.54435

[[3]]
[1] 100

[[4]]
[1] 2154.435

The function sapply works like lapply, but tries to simplify its output down to a
vector or array:

> sapply(y,qpareto.4,exponent=2.5,threshold=1)
[1] 4.641589 21.544347 100.000000 2154.434690

With this function, this is equivalent to qpareto.4(y,exponent=2.5,threshold=1),
but sapply can take considerably more complicated functions:

# Suppose we have models lm.1 and lm.2 hanging around
some.models <- list(model.1=lm.1, model.2=lm.2)
# Extract all the coefficients from all the models
sapply(some.models,coefficients)

sapply has a simplify argument, which defaults to TRUE; setting it to FALSE
turns off the simplification. replicate actually has the same argument. Usually,
simplifying the output of replicate is a good thing, but it can weirdness when
what’s being replicated is a complicated value itself.

For instance, here’s a little bit of bootstrapping regression models, using the fossil-
animal data set from homework 3.

resample <- function(x) { sample(x,size=length(x),replace=TRUE) }
nampd.lm.subset <- function(s) {
lm(delta_ln_mass ~ ln_old_mass,data=nampd,subset=s)

}
boot.models.1 <- replicate(10,nampd.lm.subset(resample(1:nrow(nampd))))

Working with boot.models.1 is going to be very hard, because it wants to be an
array, but isn’t quite, and is generally very confused. (Try it!) Instead do it this way:

boot.models.2 <- replicate(10,nampd.lm.subset(resample(1:nrow(nampd))),
simplify=FALSE)

boot.models.2 is simply a list with 10 elements, each one of which is an lm-style
model. Now it’s easy extract information about any particular one, or use sapply:

> sapply(boot.models.2,coefficients)
[,1] [,2] [,3] [,4]

(Intercept) 0.21613522 0.092359537 0.184610989 0.15530334
ln_old_mass -0.01379554 -0.002729451 -0.007396701 -0.01078759
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[,5] [,6] [,7] [,8]
(Intercept) 0.124932040 0.115330144 0.192097575 0.0880172496
ln_old_mass -0.003754933 -0.007362125 -0.008486858 0.0008434435

[,9] [,10]
(Intercept) 0.17065043 0.207331222
ln_old_mass -0.01430204 -0.009881709

K.7 More Complicated Return Values
So far, all the functions we have written have returned either a single value, or a sim-
ple vector, or nothing at all. The built-in functions return much more complicated
things, like matrices, data frames, or lists, and we can too.

To illustrate, let’s switch gears away from the Pareto distribution, and think about
the Gaussian for a change. As you know, if we have data x1, x2, . . . xn and we want
to fit a Gaussian distribution to them by maximizing the likelihood, the best-fitting
Gaussian has mean

µ̂=
1

n

n
∑

i=1

xi (K.5)

which is just the sample mean, and variance

σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)
2 (K.6)

which differs from the usual way of defining the sample variance by having a factor
of n in the denominator, instead of n − 1. Let’s write a function which takes in a
vector of data points and returns the maximum-likelihood parameter estimates for a
Gaussian.

gaussian.mle <- function(x) {
n <- length(x)
mean.est <- mean(x)
var.est <- var(x)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

There is one argument, which is the vector of data. To be cautious, I should probably
check that it is a vector of numbers, but skip that to be clear here. The first line
figures out how many data points we have. The second takes the mean. The third
finds the estimated variance — the definition of the built-in var function uses n − 1
in its denominator, so I scale it down by the appropriate factor8. The fourth line
creates a list, called est, with two components, named mean and sd, since those are
the names R likes to use for the parameters of Gaussians. The first component is

8Clearly, if n is large, n−1
n = 1− 1/n will be very close to one, but why not be precise?
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our estimated mean, and the second is the standard deviation corresponding to our
estimated variance9. Finally, the function returns the list.

As always, it’s a good idea to check the function on a case where we know the
answer.

> x <- 1:10
> mean(x)
[1] 5.5
> var(x) * (9/10)
[1] 8.25
> sqrt(var(x) * (9/10))
[1] 2.872281
> gaussian.mle(x)
$mean
[1] 5.5

$sd
[1] 2.872281

K.8 Re-Writing Your Code: An Extended Example

Suppose we want to find a standard error for the median of a Gaussian distribution.
We know, somehow, that the mean of the Gaussian is 3, the standard deviation is 2,
and the sample size is one hundred. If we do

x <- rnorm(n=100,mean=3,sd=2)

we’ll get a draw from that distribution in x. If we do

x <- rnorm(n=100,mean=3,sd=2)
median(x)

we’ll calculate the median on one random draw. Following the general idea of boot-
strapping we can approximate the standard error of the median by repeating this
many times and taking the standard deviation. We’ll do this by explicitly iterating,
so we need to set up a vector to store our intermediate results first.

medians <- vector(length=100)
for (i in 1:100) {
x <- rnorm(n=100,mean=3,sd=2)
medians[i] <- median(x)

}
se.in.median <- sd(medians)

9If n is large,
q

n−1
n =

q

1− 1
n ≈ 1− 1

2n (using the binomial theorem in the last step). For reasonable
data sets, the error of just using sd(x) would have been small — but why have it at all?
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Well, how do we know that 100 replicates is enough to get a good approximation?
We’d need to run this a couple of times, typing it in or at least pasting it in many
times. Instead, we can write a function which just gives everything we’ve done a
single name. (I’ll add comments as I go on.)

# Inputs: None; everything is hard-coded
# Output: the standard error in the median
find.se.in.median <- function() {

# Set up a vector to store the simulated medians
medians <- vector(length=100)
# Do the simulation 100 times
for (i in 1:100) {

x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate the median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

If we decide that 100 replicates isn’t enough and we want 1000, we need to change
this function. We could just change the first two appearances of “100” to “1000”, but
we have to catch all of them; we have to remember that the 100 in rnorm is there for
a different reason and leave it alone; and if we later decide that actually 500 replicates
would be enough, we have to do everything all over again.

It is easier, safer, clearer and more flexible to abstract a little and add an argument
to the function, which is the number of replicates. I’ll add comments as I go.

# Inputs: Number of bootstrap replicates B
# Output: the standard error in the median
find.se.in.median <- function(B) {

# Set up a vector to store the simulated medians
medians <- vector(length=B)
# Do the simulation B times
for (i in 1:B) {

x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

Now suppose we want to find the standard error of the median for an exponential
distribution with rate 2 and sample size 37. We could write another function,

find.se.in.median.exp <- function(B) {
# Set up a vector to store the simulated medians
medians <- vector(length=B)
# Do the simulation B times
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for (i in 1:B) {
x <- rexp(n=37,rate=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

but it is wasteful to define two functions which do almost the same job. It’s not just
inelegant; it invites mistakes, it’s harder to read (imagine coming back to this in two
weeks — was there a big reason why we had two separate functions here?), and it’s
harder to improve. We need to abstract a bit more.

We could put in some kind of switch which would simulate from either of these
two distributions, maybe like this:

# Inputs: number of replicates (B)
# flag for whether to use a normal or an exponential (use.norm)

# Output: The standard error in the median
find.se.in.median <- function(B,use.norm=TRUE) {
medians <- vector(length=B)
for (i in 1:B) {
if (use.norm) {

x <- rnorm(100,3,2)
} else {
x <- rexp(37,2)

}
medians[i] <- median(x)

}
se.in.median <- sd(medians)
return(se.in.median)

}

but why just these two? If we wanted any other distribution whatsoever, plainly all
we’d have to do is change how x is simulated. So we really want to be able to give a
simulator to the function as an argument.

Fortunately, in R you can give one function as an argument to another, so we’d
do something like this.

# Inputs: Number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produce a vector of
# numbers

# Output: The standard error in the media
find.se.in.median <- function(B,simulator) {
median <- vector(length=B)
for (i in 1:B) {
x <- simulator()
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medians[i[ <- median(x)
}
se.in.median <- sd(medians)
return(se.in.medians)

}

Now to repeat our original calculations, we define a simulator function:

# Inputs: None
# Output: ten draws from the mean 3, s.d. 2 Gaussian
simulator.1 <- function() {

return(rnorm(10,3,2))
}

If we now call

find.se.in.median(B=100,simulator=simulator.1)

then every time find.se.in.median goes through the for loop, it will call simulator.1,
which in turn will produce the right random numbers. If we also define

# Inputs: None
# Output: 37 draws from the rate 2 exponential
simulator.2 <- function() {

return(rexp(37,2))
}

then to find the standard error in the median of this, we just call

find.se.in.median(B=100,simulator=simulator.2)

This same approach works if we want to sample from a much more complicated
distribution. If we fit a locally-linear kernel regression to the Old Faithful data, and
want a standard error in the median of the predicted waiting times, with noise coming
from resampling cases, we would do something like this for the simulator

# Inputs: None
# Output: The fitted waiting times of a bootstrapped kernel smooth from the

# geyser data
simulator.3 <- function() {

if (!exists("geyser")) {
require(MASS)
data(geyser)

}
n <- nrow(geyser)
resampled.rows <- sample(1:n,size=n,replace=TRUE)
geyser.r <- geyser[resampled.rows,]
fit <- npreg(waiting~duration,data=geyser.r,regtype="ll")
waiting.times <- npreg$mean
return(waiting.times)

}
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and then this for to find the standard error in the median:

find.se.in.median(B=100,simulator=simulator.3)

By breaking up the task this way, if we encounter errors or just general trou-
ble when we run that last command, it is easier to localize the problem. We can
check whether find.se.in.median seems to work properly with other simulator
functions. (For instance, we might write a “simulator” that either does rep(10,1) or
rep(10,-1) with equal probability, since then we can work out what the standard er-
ror of the median ought to be.) We can also check whether simulator.3 is working
properly, and finally whether there is some issue with putting them together, say that
the output from the simulator is not quite in a format that find.se.in.median can
handle. If we just have one big ball of code, it is much harder to read, to understand,
to debug, and to improe.

To turn to that last point, one of the things R does poorly is explicit iteration
with for loops. As mentioned above, it’s generally better to replace such loops with
“vectorized” functions, which do the iteration using fast code outside of R. One
of these, especially for this situation, is the function replicate. We can re-write
find.se.in.median using it:

# Inputs: number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers

# Outputs: Standard error in the median of the output of simulator
find.se.in.median <- function(B,simulator) {
medians <- replicate(B,median(simulator()))
se.in.median <- sd(medians)
return(se.in.median)

}

Again: shorter, faster, and easier to understand (if you know what replicate does).
Also, because we are telling this what simulation function to use, and writing those
functions separately, we do not have to change any of our simulators. They don’t
care how find.se.in.median works. In fact, they don’t care that there is any such
function — they could be used as components in many other functions which can also
process their outputs. So long as these interfaces are maintained, the inner workings
of the functions are irrelevant to each other.

Suppose for instance that we want not the standard error of the median, but the
interquartile range of the median — the median is after all a “robust”, outlier-resistant
measure of the central tendency, and the IQR is likewise a robust measure of disper-
sion. This is now easy:

# Inputs: number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers

# Outputs: Interquartile range of the median of the output of simulator
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find.iqr.of.median <- function(B,simulator) {
medians <- replicate(B,median(simulator()))
iqr.of.median <- IQR(medians)
return(iqr.of.median)

}

Or for that matter the good old standard error of the mean:

# Inputs: number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers

# Outputs: Standard error of the mean of the output of simulator
find.se.of.mean <- function(B,simulator) {

means <- replicate(B,mean(simulator()))
se.of.mean <- sd(means)
return(se.of.mean)

}

These last few examples suggest that we could abstract even further, by swapping
in and out different estimators (like median and mean) and different summarizing
functions (like se or IQR).

# Inputs: number of replicates (B)
# Simulator function (simulator)
# Estimator function (estimator)
# Sample summarizer function (summarizer)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers
# estimator is a function that takes a vector of numbers and produces one
# output
# summarizer takes a vector of outputs from estimator

# Outputs: Summary of the simulated distribution of estimates
summarize.sampling.dist.of.estimates <- function(B,simulator,estimator,

summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

The name is too long, of course, so we should replace it with something catchier:

bootstrap <- function(B,simulator,estimator,summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

Our very first example is equivalent to

bootstrap(B=100,simulator=simulator.1,estimator=median,summarizer=sd)

11:36 Saturday 22nd November, 2014



677 K.9. GENERAL ADVICE ON PROGRAMMING

bootstrap is just two lines: one simulates and re-estimates, the other summarizes
the re-estimates. This is the essence of what we are trying to do, and is logically
distinct from the details of particular simulators, estimators and summaries.

We started with a particular special case and generalized it. The alternative route
is to start with a very general framework — here, writing bootstrap — and then
figure out what lower-level functions we would need to make it work in a the case
at hand, writing them if necessary. (We need to write a simulator, but someone’s
already written median for us.) Getting the first stage right involves a certain amount
of reflection on how to solve the problem — it’s rather like the strategy of doing
a “show that” math problem by starting from the desired conclusion and working
backwards.

It is still somewhat clunky to have to write a new function every time we want to
change the settings in the simulation, but this has gone on long enough.

K.9 General Advice on Programming
Programming is an act of communication: with the computer, of course, but also
with your co-workers, and with yourself in the future10. Clear and effective commu-
nication is a valuable skill in itself; it also tends to make it easier to do the job, and to
make debugging easier.

K.9.1 Comment your code
Comments lengthen your file, but they make it immensely easier for other people
to understand. (“Other people” includes your future self; there are few experiences
more frustrating than coming back to a program after a break only to wonder what
you were thinking.) Comments should say what each part of the code does, and how
it does it. The “what” is more important; you can change the “how” more often and
more easily.

Every function (or subroutine, etc.) should have comments at the beginning say-
ing:

• what it does;

• what all its inputs are (in order);

• what it requires of the inputs and the state of the system (“presumes”);

• what side-effects it may have (e.g., “plots histogram of residuals”);

• what all its outputs are (in order)

Listing what other functions or routines the function calls (“dependencies”) is op-
tional; this can be useful, but it’s easy to let it get out of date.

You should treat “Thou shalt comment thy code” as a commandment which
Moses brought down from Mt. Sinai, written on stone by a fiery Hand.

10And, in this class, with your graders.
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K.9.2 Use meaningful names

Unlike some older languages, R lets you give variables and functions names of essen-
tially arbitrary length and form. So give them meaningful names. Writing loglikelihood,
or even loglike, instead of L makes your code a little longer, but generally a lot
clearer, and it runs just the same.

This rule is lower down in the list because there are exceptions and qualifications.
If your code is tightly associated to a mathematical paper, or to a field where certain
symbols are conventionally bound to certain variables, you may as well use those
names (e.g., call the probability of success in a binomial p). You should, however,
explain what those symbols are in your comments. In fact, since what you regard
as a meaningful name may be obscure to others (e.g., those grading your work), you
should use comments to explain variables in any case. Finally, it’s OK to use single-
letter variable names for counters in loops (but see the advice on iteration below).

K.9.3 Check whether your program works

It’s not a enough — in fact it’s very little — to have a program which runs and gives
you some output. It needs to be the right output. You should therefore construct
tests, which are things that the correct program should be able to do, but an incorrect
program should not. This means that:

• you need to be able to check whether the output is right;

• your tests should be reasonably severe, so that it’s hard for an incorrect pro-
gram to pass them;

• your tests should help you figure out what isn’t working;

• you should think hard about programming the test, so it checks whether the
output is right, and you can easily repeat the test as many times as you need.

Try to write tests for the component functions, as well as the program as a whole.
That way you can see where failures are. Also, it’s easier to figure out what the right
answers should be for small parts of the problem than the whole.

Try to write tests as very small function which call the component you’re testing
with controlled input values. For instance, we tested qpareto by looking at what it
returned for selected arguments with manually carrying out the computation. With
statistical procedures, tests can look at average or distributional results — we saw an
example of this with checking rpareto.

Of course, unless you are very clever, or the problem is very simple, a program
could pass all your tests and still be wrong, but a program which fails your tests is
definitely not right.

(Some people would actually advise writing your tests before writing any actual
functions. They have their reasons but I think that’s overkill for this class.)
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K.9.4 Avoid writing the same thing twice
Many data-analysis tasks involve doing the same thing multiple times, either as iter-
ation, or to slightly different pieces of data, or with some parameters adjusted, etc.
Try to avoid writing two pieces of code to do the same job. If you find yourself copy-
ing the same piece of code into two places in your program, look into writing one
function, and calling it twice.

Doing this means that there is only one place to make a mistake, rather than
many. It also means that when you fix your mistake, you only have one piece of code
to correct, rather than many. (Even if you don’t make a mistake, you can always
make improvements, and then there’s only one piece of code you have to work on.)
It also leads to shorter, more comprehensible and more adaptable code.

K.9.5 Start from the beginning and break it down
When you have a big problem, start by thinking about what you want your program
to do. Then figure out a set of slightly smaller steps which, put together, would
accomplish that. Then take each of those steps and break them down into yet smaller
ones. Keep going until the pieces you’re left with are so small that you can see how to
do each of them with only a few lines of code. Then write the code for the smallest
bits, check it, once it works write the code for the next larger bits, and so on.

In slogan form:

• Think before you write.

• What first, then how.

• Design from the top down, code from the bottom up.

(Not everyone likes to design code this way, and it’s not in the written-in-stone-
atop-Sinai category, but there are many much worse ways to start.)

K.9.6 Break your code into many short, meaningful functions
Since you have broken your programming problem into many small pieces, try to
make each piece a short function. (In other languages you might make them subrou-
tines or methods, but in R they should be functions.)

Each function should achieve a single coherent task — its function, if you will.
The division of code into functions should respect this division of the problem into
sub-problems. More exactly, the way you break your code into functions is how you
have divided your problem.

Each function should be short, generally less than a page of print-out. The func-
tion should do one single meaningful thing. (Do not just break the calculation into
arbitrary thirty-line chunks and call each one a function.) These functions should
generally be separate, not nested one inside the other.

Using functions has many advantages:

• you can re-use the same code many times, either at different places in this pro-
gram or in other programs
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• the rest of your code only has to care about the inputs and outputs to the
function (its interfaces), not about the internal machinery that turns inputs
into outputs. This makes it easier to design the rest of the program, and it
means you can change that machinery without having to re-design the rest of
the program.

• it makes your code easier to test (see below), to debug, and to understand.

Of course, every function should be commented, as described above.

K.10 Further Reading
Matloff (2011) is a good introduction to programming for total novices using R.
Braun and Murdoch (2008) has more on statistical calculations and related topics,
but can also work as an introduction for absolute beginners. Adler (2009) is an intro-
duction to R for those with some prior knowledge of other programming languages.
Chambers (2008) is excellent for anyone who wants to be serious about programming
in R.
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