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CHAPTER I

INTRODUCTION

Non—equilibrium flows are often described by inhomogeneous hyperbolic systems
of conservation laws, where the source terms cause a “relaxation” towards equilib-
rium. Such systems describe a wide variety of physical phenomena, such as gas flows
with relaxation! [37, 36, 8, 78, 20, 81, 82, 21, 65, 47, 48, 64, 42, 73, 5, 77, 12, 53, 52,
multiphase flow? [32, 51, 28, 75] and phase transitions [68], turbulence [30, 45], water
waves® [66], viscoelasticity? [60] and reactive flows® [9, 29, 50, 23]. Further, they
govern models for the kinetic theory of gases [17, 14, 7, 11, 33], and applications of
these methods to kinetic-based schemes for compressible flow [27, 58, 56, 57| and
rarefied—gas flows (including MHD and re—entry hypersonics) [25, 10, 13].

As is clear, such systems form an extremely important class of problems, and are
typically of the form

1
w,+f,=——s , (1.1)
T

where w, f, s are state, flux and source vectors respectively, and 7 is the relaxation

time of the problem (one can also look at a typical relaxation distance A = a1, where

lincluding thermo—chemical nonequilibrium such as vibrational relaxation, dissociation and re-
combination effects

Zwhich includes dusty gas flows

3where gravity balances river—bed friction

‘memory effects

Sincluding computational combustion



a is some characteristic velocity). This dissertation will be restricted to systems of
conservation laws with relaxation in the sense of Whitham [78, 79] and Liu [49], in
which an N x N hyperbolic system relaxes in the limit of 7 — 0 to an M x M
system (M < N). An additional restriction is that the equilibrium eigenvalues
satisfy Liu’s sub—characteristic condition [49, 79] (i.e., the equilibrium eigenvalues
interlace with the frozen ones). This is the stability condition [49, 79], a requirement
to obtain decaying (rather than growing) solutions. Alternatively, this condition can
be understood in terms of causality®.

Whitham’s work [78, 79] on the theory of linear relaxation systems has since been
extended to non—linear systems, using a prototypical 2 x 2 system. The stability of
this system (under the sub—characteristic condition) and that of its zero relaxation
limit (the time-asymptotic solution”) were proven in [49] and [18], respectively.

Relaxation systems are characterized by dispersive wave behavior® and the pres-
ence of multiple scales in the problem. The flow starts out at the frozen limit
(t/7 — 0) and relazes to the equilibrium limit (f/7 — oc). When at least one
of these scales is much smaller than the others, the problem is said to be stiff.

It is usually impossible to separate physical problems into non-stiff and stiff
regimes, especially for multiple relaxation times, mandating a solution to the full
relaxation system in all cases. For example, if there are two relaxation times, a
numerical time—step that fully resolves one of these relaxation times (not stiff) may
be inadequate to resolve the other (stiff). If the goal is to obtain microscale features

(reaction fronts, shock structures ete), then there is no substitute for resolution

SInitial disturbances travel with the propagation speeds of the full relaxation system, while later,
they travel with those of the reduced system; hence, a natural requirement is that the equilibrium
speeds be bounded by the frozen ones (for each pair), resulting in the interlace condition.

"The knowledge of the long-time asymptotics for the relaxation system have been recently
incorporated into a very successful numerical algorithm [41, 38, 15].

8Dispersive waves are those whose wavespeeds are functions of the wavenumber.



(i.e., time steps that fully resolve all time scales of the problem), and the resulting
computation would be necessarily in the non—stiff regime. If on the other hand,
macroscopic quantities are of primary interest, then it would be prudent to use
an under—resolved method that resolves such quantities but not relaxation zones or
layers. However, such under-resolved (stiff) methods, while potentially economical,
are hard to compute.

There are several approaches one could take. The first is to use a fully explicit
scheme, which has the advantages of simplicity and local data—dependencies (hence
parallelizable); however, since stability constrains the time step to be smaller than the
relaxation time, the computational cost is tremendous. The second option is to use
a fully implicit scheme, which eliminates the time step restrictions. But implicitness
causes global data—dependencies, rendering such schemes very hard to parallelize,
potentially a severe disadvantage when solving for flows around complex geometries.
Further, the gain in stability is partially offset by the loss of accuracy, a situation that
does not arise in ODE’s but does in the context of wave—propagation problems. A
third, and frequently used alternative, is operator splitting [67], in which the hydro-
dynamic and non—equilibrium equations are solved alternately. While this method
appears reasonable, it is probably not the best choice (simply because two physically
simultaneous effects are artificially converted into sequential effects). In fact, it has
been demonstrated in [55, 38] that such fractional-step methods reduce from second—
to first-order accuracy in the fluid dynamic limit (7 — 0), since the numerical ap-
proximation becomes an O(At) approximation to the equilibrium equation [38]. It
was also shown there that neither higher—order Runge-Kutta nor higher—order re-
construction alleviates this problem of reduced accuracy for split operator methods.

Thus, it is not the stability condition alone that makes this problem hard.



Since each of the above options has advantages as well as drawbacks, it is quite
likely that the ideal scheme would have a hybrid character — being local (hence
parallelizable) and yet not having the time step constrained by stability to be smaller
than the relaxation time. A promising variant that has such properties is the point—
implicit method [83], where the source term is treated implicitly (locally).

Studies focusing on numerical algorithm development for relaxation systems have
been many [31, 54, 55, 71], but only recently have good results been obtained for
the difficult fluid dynamic limit by Jin and Levermore [41], Jin [38] and Caflisch, Jin
and Russo [15]. It was shown there that poor results are achieved for under—resolved
methods if the physical asymptotics are not matched by the numerical schemes, e.g.,
in stiff cases, the numerical dissipation far overwhelms the physical dissipation. Fur-
ther, some schemes may even converge to non—physical solutions [38, 15]. Hence,
in [41], the physical asymptotics governing the relaxation systems are incorporated
into the numerical algorithm in a semi-discrete manner?. This is extended to the
fully—discrete case using Runge-Kutta methods coupled with a good integrator for
the stiff ODE’s, employing a method of lines approach [38, 15]. While the results
obtained by this approach are very good, the method development is quite involved,
requires some a priori knowledge of the asymptotics and appears to be computation-
ally expensive.

So what are the goals of this dissertation? The first aim is to establish a
physically-based systematic procedure to solve stiff relaxation systems. In contrast
to earlier work, the approach will be to devise fully—discrete, second-order accurate
schemes, that are reasonably accurate for a large range of At/7, Az /A, with results

allowed to degrade gracefully as the stiffness (under—resolution) increases. How-

9This is not the first instance of using the asymptotics in numerical schemes, these having been

applied in [44, 39, 43, 40].



ever, a natural requirement is that the method result in physical solutions (captured
shocks with correct propagation speeds and jumps), even for severely under—resolved
cases. The non-relaxable (pun intended) design constraints are to keep the scheme
simple, economical and parallelizable. Additionally, it would be desirable to have
stability governed by the CFL® condition based on the homogeneous system, and
sharp captured shocks.

The first step was to select an analytically tractable linear model that exhib-
ited most of the difficulties of realistic stiff relaxation systems. It was hoped that
this model would provide valuable analytical insight into such systems, perhaps also
clarifying the advantages and disadvantages of some of the current solution method-
ologies. To start with, the study was restricted to a shock—fitting framework with
a unity CFL number (Chapter II). This helped isolate errors related to discretiza-
tion and highlighted the fundamental problems associated with stiff source terms.
Chapter III describes how the method development of Chapter Il was extended to
non—characteristic meshes and shock capturing, using one of the most successful
methods for solving homogeneous non—linear conservation laws — the finite—volume
method. However, at this stage, the problem was still restricted to the linear case,
and an attempt was made to benchmark the results. Once satisfactory results were
achieved, the method was modified to account for non-linear effects (Chapter IV);
several test cases were attempted, which helped put the present work in perspective.
In Chapter V, a new method for the solution of viscous conservation laws is proposed,
that results from an inversion of the analysis performed and algorithms developed
in Chapters Il to IV. More realistic relaxation systems are solved in Chapter VI,

followed by some concluding remarks and suggestions for future work (Chapter VII).

10The CFL, or Courant-Freidrichs—Levy, condition is the stability condition — physically, it de-
mands that the numerical domain of dependence include the entire physical domain of dependence.



CHAPTER II

A MODEL FOR DISPERSIVE WAVES -
THE HYPERBOLIC HEAT EQUATIONS

The first step towards establishing a systematic methodology for solving relax-
ation systems was the selection of an appropriate model problem that exhibited the
difficulties of realistic systems of this type and yet was simple enough to permit a
detailed analysis. The aim during this stage was merely to determine whether meth-
ods currently in use were adequate. If they weren’t, to determine what modifications
(if any) would work, or else to design a new method to solve this class of problems.
Besides giving rise to dispersive wave behavior, the source terms present may also
be stiff', which leads to a trade-off between spatial /temporal under-resolution and
prohibitive computational expense.

There are several approaches one could take as discussed in Chapter 1. However,
all the schemes appear to represent tradeoffs, and this work represents a systematic
quest for a method that combines all the advantages without carrying around the
disadvantages. In the past, there have been several attempts, based on physical
principles or mathematical analysis of (often scalar) model problems, to incorporate

source terms into numerical procedures. However, the behavior uncovered in this

1Stiffness arises when the equilibration time of a non—equilibrium process is much smaller than
the flow residence time.



chapter — that of the coupling between different wave families caused by the source
term — can never be captured by scalar models. A brief description of the chosen
model — the Hyperbolic Heat Equations [62, 63] (also referred to as the Maxwell-
Cattaneo equations) — is given, followed by the design of numerical methods for
solving this system in the smooth region alone (i.e., shocks are not being captured
in this chapter). Further, in order to isolate errors due to the source alone, only
characteristic meshes are considered (i.e., all the cases are computed for a unity
CFL number based on the frozen wavespeed).

A brief derivation of the model, a linear 2 x 2 relaxation system, and its analytical
properties, is given in Section 2.1. A Riemann problem is presented in Section 2.2,
for which an exact solution exists (in closed form) for the heat flux in the smooth
region between the characteristics and for the exponential decay of the discontinu-
ities involved. The two simplest discretizations are shown in Section 2.3; however,
counter—intuitive numerical results obtained for these schemes motivated attempts
to improve on them. Lack of correlation between expectations of further experiments
and numerical results (Section 2.3.1), based on a large number of experiments, sug-
gested a fresh start using additional analytical information. In the process of devising
an optimal higher—order scheme, the reasons for the poor performance of the pure
method of characteristics have been uncovered (Section 2.4). Finally, more practical
higher—order schemes are presented (Section 2.5), wherein the key features of the op-
timal scheme are incorporated in a much simpler manner, and Section 2.6 provides
the reader with a brief summary of this chapter.

The work presented in this chapter has appeared in [62, 63]; while a comprehensive

overview follows, the interested reader is referred to [63] for more details.



2.1 The Hyperbolic Heat Equations

Consider the flow of heat in a uniform conducting bar. Conservation of energy
may be stated as

0t‘|‘€]x:0 .

where 6, ¢ are the temperature and heat flux respectively, and units have been chosen
to give a heat capacity of unity. Usually, one would now invoke Fourier’s law ¢ = —8,
(assuming units where the proportionality constant, the heat conductivity, is unity),

which would lead to the heat equation
025 = 01’1’

However, this gives the paradoxical result of an infinite propagation speed for a
diffusion problem. A convenient way around this is to assume a relaxation model [16,

72, 47], the simplest version of which is
T+ b =—q

and where 7 is a relaxation time. This leads to the Hyperbolic Heat Equations

(HHE’s), which are?

0)+q. = 0 | (2.3)
g + %Hx = -1 (2.4)
?The general form of the HHE’s is
v, = 0, (2.1)
v+ abuy = —%(v—aEu) : (2.2)

where ap (ag) are the frozen (equilibrium) wavespeeds [at which high (low) frequency waves travel].
In Section 5.1, a generalization of this system is analyzed, as well as its nonlinear analogue.



2.1.1 Dispersion

The dispersive character of these equations may be seen by considering solutions

of the form

=R expli(wt — &x)]| . (2.5)
which leads to the dispersion relationship
T — & =qw . (2.6)

For an initial value problem (which is of interest here), £ is a real wave number and
w is a complex frequency (w = wg + lwyr, I* = —1), whose real part is a frequency

and imaginary part is a damping rate. These relations can be easily solved to obtain

WR

== v (1_4552)% = o) . (2.7)
[11(1—45%)%] : (2.8)

[T

wiT =

[N

where a(£) is the wave speed and w;7 is the damping rate (the waves being damped

at a rate e77). In Figure 2.1, the wavespeed a(¢) [upper] and the damping rate

—WwrT

e [lower] are plotted against the non-dimensional wavenumber T3€.

For very high wavenumbers £, the propagation speed is the frozen characteristic

speed T >. For decreasing wavenumbers, the propagation speed is reduced, becoming

zero when ¢ = %T z, i.e., a vanishing equilibrium wavespeed at this wavenumber

(called the bifurcation point). For all wavenumbers in the range [%T_%,OO], the
waves are damped like e=%/?7,
When ¢ = 0, the problem reduces to 6, = 0, 7¢;+¢ = 0 [hence, 0(x) is an arbitrary

function of x alone, and ¢ = ¢(x)e~"/7]. Since these have solutions corresponding to

wrT = 0, 1 respectively, both branches of Equation 2.8 are relevant. The upper
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Figure 2.1: Analytic Dispersion Diagrams [wavespeed (Equation 2.7) and damp-
ing rate (Equation 2.8)] for the Hyperbolic (solid lines) and Parabolic
(dashed lines) Heat Equations.
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branch makes second-order contact with the dispersion relationship for the regular

heat equation, which is

wp=0 ; wT=E7 (2.9)
shown as dotted lines in Figure 2.1.

2.1.2 Characteristic Equations

Introducing characteristic coordinates

(=t+r12e ; n=t—r7121 (2.10)
transforms the HHE’s to
Oc + 73 (qg + i) =0 along de = 771/2 (2.11)
27 dt ’
1 q dx _
0, — 12 (q77 + ;) =0 along =T vz (2.12)

which are the characteristic equations for the HHE’s. Unfortunately, it is not possible
to integrate these equations and obtain Riemann invariants, as can be done with
linear homogeneous systems. Thus, a numerical method of characteristics is no
longer an exact method.

As usual, the solution admits discontinuities that lie along characteristic paths,
and it is easy to show that the jump relationships are those of the homogeneous
problem (i.e., across a jump in the (-direction, Af = T%Aq, while across a jump in

the n-direction, Af = —T%Aq).
2.2 A Riemann Problem and its Exact Solution

A natural problem to pose in connection with the hyperbolic model of heat con-

duction is that of two semi-infinite rods, having temperatures 0, g, brought into
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Figure 2.2: Exact solution to the Riemann Problem for the heat flow ¢, with the
smooth region given by Equation 2.13, shown for several times. The
initial condition is a jump in § and ¢ = 0.

r=—7 21 T =7 21
P t 9
(9—(9L 0:0]%
q = q =
T
@)

Figure 2.3: Schematic of the Riemann problem of Section 2.2, where OP and O(Q) are
the frozen characteristics along which the (decaying) jumps propagate,
and POQ) is the region in which a solution is sought.
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contact at £ = 0. The analytical solution is shown in Figure 2.2, where the exponen-
tial decay of the jumps along the characteristics is clearly observed.

The solution for ¢ in the region POQ) (see Figure 2.3), is [63, 74]
(0L —0r C+n [ (n
Q(Cv 77) - ( 27_% ) exp (_ s ]0 472
(9L — GR ( t ) 12 — 122
= —— [ —_— 2.1
( 973 ) P 2r) " 472 ’ (2.13)

where [ is the modified Bessel function of order zero. Note that the discontinuities

decay at a rate e~/?7.

2.3 Simple Discretizations and Numerical Results

A M B

Figure 2.4: Stencil for the Method of Characteristics, where AP, BP are the char-
acteristics and P is the point being computed. Note that no information
from the point between A, B is used, resulting in odd—even decoupling.

The two simplest discretizations are the Point Implicit (PI) and the Operator
Splitting (OPS) methods. Based on the characteristic stencil shown in Figure 2.4,

both result in solutions of the form

p = (M) X0 - (2.1

1
2

= 20 (B + T ()04 —0m) (2.15)
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where the functional parameter k is the stiffness factor defined by

o — o t/T=3
oo t/T=6
A n t/T =10
o t/T =30
x----x t/T =060
o —o t/T =100
ot =300
%t =600
s — = t/7 =1000

Table 2.1: This table describes the symbols and line styles used for plotting numerical
results. They correspond to different times at which the solution errors
in ¢ and # have been plotted versus the stiffness factor k.

1A

k= —— 2.1
2T ( 6)

To obtain the PI scheme, the Equations 2.11 and 2.12 are integrated along the
characteristics. The source term is evaluated along each characteristic separately,
by taking the value haltway between the ends of the characteristic. These midpoint

values are obtained via a linear interpolation, i.e.,

g, n =5 (qp +qaB)

(NN

which leads to coeflicients
X=1-Fk ; Y:(l—l—k)_1 ; Z:(l—k)(l—l—k)_l . (2.17)

This scheme has been applied to practical problems in [80], although £ < 1 for all

cases there (not stiff). For k& > 1, however, the coefficient Z does not look promising.
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On the other hand, the operator splitting method circumvents the problem of the
source term by splitting the solution procedure into two parts — a damping stage (1)
due to the source term alone, followed by a solution of the homogeneous problem
(Lq), using the sequence of operations Ly Ly Ly Ly [67] for second—order accuracy®.

This leads to coefficients
X=e¢t* ; Y=e¢t . Z=¢2 (2.18)

which look far more promising, because the coefficients appear to reflect appropriate
decay rates. Indeed, Z(k) = ¢~ corresponds to the decay rate of the ordinary
differential equation, and X (k) = Y (k) = e7* corresponds to the decay rate of
the characteristic discontinuities (Equation 2.13, [79]*). However, contrary to this
reasoning, observe the results in Figures 2.5 and 2.6, where the PI scheme clearly
outperforms the OPS scheme by up to 4 orders of magnitude when k is large. Note
that both schemes are second-order accurate (and roughly equivalent) if & is small.
For k of order unity, the PI scheme is still second—order. For k large, the PI scheme
is a little less than second-order accurate, but the OPS scheme degrades to O(1)
(similar to the observations in [55, 38]).

Next, several attempts were made to improve on these methods, based on ra-

tional constraints. One which was thought to be important was “conservation” (in

the sense described in Appendix A). The PI scheme, although it convincingly out-

3While Ly Ly Ly Ls is equivalent for second-order accuracy [67], it has been shown in [38] that
the Ly Ly Ls Ly ordering is more appropriate when solving relaxation systems. This is because use
of an under—resolved method (where spatial or temporal scales are such that Az > X or At > 7) does
not resolve the initial layer. The effect of this layer is to project the data onto a local equilibrium.
Since this layer is not resolved by the numerical scheme, its effect much somehow be built into the
algorithm. This is important, because when such a step is missing, numerical methods can result
in spurious solutions. An implicit step projects the initial data onto a local equilibrium [38]; thus,
the damping step must be the first one in split-operator methods. Note, however, that the results
of [55, 38] show that Strang splitting [67] reverts to first order accuracy in the fluid dynamic limit
(7 — 0), as the scheme becomes an O(At) approximation to the equilibrium system.

“In the general (linear) case, the decay rate of the discontinuities is e~** where « is a constant
dependent on the frozen and equilibrium wavespeeds.
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Figure 2.5: Ly norm of the solution error in ¢ and 6 vs the stiffness factor k for the
PI (Point Implicit) scheme (see Table 2.1 for a key to lines and symbols).
The solid line has a slope of 2.
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Figure 2.6: Ly norm of the solution error in ¢ and 6 vs the stiffness factor k for the
OPS (Operator Splitting) scheme (see Table 2.1 for a key to lines and
symbols). The solid line has a slope of 2.
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Figure 2.7: Ly norm of the solution error in ¢ and # vs the stiffness factor k for the
PI, (Point Implicit with implicitness factor) scheme (see Table 2.1 for a
key to lines and symbols). The solid line has a slope of 2.
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performs the OPS scheme, does not have this property. Is a modification to the
PI scheme possible that would satisfy Equation A.17 This line of inquiry led to a
generalization of the PI scheme, which will be denoted as the PI, scheme, where p
is the degree of implicitness®. Again, Equations 2.11 and 2.12 are integrated along

the characteristics. However, the source term is now approximated as®

g, n = pgp + (1 — p)qam

which leads to

X=1-2k(1—p) ; Y =(1+42k)" ; Z:[%;k;#)] . (2.19)

The choice of p remains. This is determined by enforcing “conservation” and is

derived in Appendix A to be

1 1

i
Note that in the non-stiff limit (¥ — 0), g = £ (which is simply the PI scheme).
However, in the limit of & — oo, T 1 (which is fully implicit). Numerical results
for this scheme are shown in Figure 2.7. Surprisingly, the PI scheme performs better
than the PI, scheme”, although the latter is somewhat better than the OPS scheme,
and approaches the OPS scheme for large k.

Based on numerical experiments, the success or failure of these methods seemed

to correlate with the discrete dispersion relationships, which are discussed next.

>By degree of implicitness, we mean that the scheme has a hybrid character, being partly explicit
and partly implicit. In one limit (¢ = 0), it is fully explicit while in the other (p = 1) it is fully
implicit. For all 0 < pu < 1, it has some “degree” of implicitness. Note that in the context of the
method of characteristics, the work required to solve the pair of characteristic equations remains
constant (in the linear case).

SThe source term is being evaluated at some point ¢,, + pAt, where p € [0, 1] along the charac-
teristics. Since p i1s normalized, 1t can be considered to represent a point along the time axis, since
the normalized distance along the characteristic is the same as that along the time axis.

It will be shown in later chapters that conservation becomes far more important in the context
of under—resolved methods for nonlinear relaxation systems.
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2.3.1 Discrete Dispersion Relationships

Writing Equation 2.5 in discrete form as

n

0 T
=R explt(wnAt — £jAz)]| (2.21)

q) . Q
J
and using Equations 2.14 and 2.15 gives

exp(iwAt) — cos(EAx itz X (k) sin(£Az
ot p(iwAt) (€Ax) (k)sin(¢{Az) _

—iT_%Y(k) sin(éAx)  exp(iwAt) — Z(k) cos(EAx)

Y

which can be simplified to give

(14 Z(k))cos((Ax) £ [(1 — Z(k))? cos?(EAx) — 4X (k)Y (k) sinz(fA:L')]%

exp(iwAt) = 5

(2.22)
which is the discrete dispersion relationship for the method of characteristics. Note

that only those wavenumbers for which Az < %7‘(’ can be resolved. The factor %

arises because the stencil for the method of characteristics decouples odd and even

points (see Figure 2.4). For this maximum frequency,

N[

exp(iwAt) = H[ X (k)Y (k)]

and hence, if XY is positive,

1
wrAt = :|:§7r ,

which gives the wavespeed a(&az) = :I:% =475, If XY is negative, then
WR = 0

Thus, for any method of characteristics, the highest wavenumber observable on the
mesh is either stationary or propagated at the frozen speed. Figure 2.8 shows the

Discrete Dispersion plots for the PI scheme for several values of k. Each plot is
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Figure 2.8: Propagating speeds and damping ratios for the PI (Point Implicit)
method. k£ =0.25, 0.5, 1.25, 2.5, 5.0, 12.5, 50
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Figure 2.9: Propagating speeds and damping ratios for the OPS (Operator Split)
scheme. k£ = 0.25, 0.5, 1.25, 2.5, 5.0, 12.5, 50
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Figure 2.10: Propagating speeds and damping ratios for the PI, scheme. k£ = 0.25,
0.5, 1.25, 2.5, 5.0, 12.5, 25, 50
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terminated at the right by a symbol located at the maximum wavenumber for that

value of k, derived from

1
571' = Enardx
At
- fmax_l
T2
= 2%t
1 ™
7 =
T fmax 4k

In the upper plot of Figure 2.8 (wavespeed), it is seen that these symbols lie either
on the axis or on the upper and lower limits as predicted. The diagrams as a whole
closely follow the analytical behavior. In the lower plot (damping) there is good
agreement only for the upper lobe at large & but moderate agreement everywhere
else.

In Figure 2.9, which shows the analogous plots for the OPS scheme, the situa-
tion is reversed. For small k, damping levels are very good; however, as k increases,
the high wavenumbers are rather heavily damped, which may manifest itself as dis-
sipation in a numerical scheme. But the wavespeeds are poorly approximated by
this scheme, with stationary waves being incorrectly propagated at the grid speed
Az /At. Given this erroneous wave propagation, it is natural to expect these waves
to be highly damped, as is clearly observable from Figure 2.9.

Interestingly enough, the PI, scheme follows in the footsteps of the OPS scheme
for moderate stiffness (Figure 2.10), propagating all waves (including stationary ones)
at the grid speed while damping them quite heavily. However, for large stiffness, it
does capture the stationary wave behavior and reduces the damping to modest levels.

Thus, the effects of incorrect wave propagation and damping levels are quite closely

linked.
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The problem of false wave propagation can be dealt with, to a large extent,
by enforcing that transition between propagating and stationary waves occur at
the correct wavenumber (called the bifurcation point). From Equation 2.22, the

bifurcation occurs for

tanQ(fA:L') = 7(1 — Z(k))°

T OUX(B)Y (k) (223)

Since bifurcation should actually take place at Az = %T_%Al' = k (see Sec-

tion 2.1.1), enforcing the condition

3
\l ToPT
250 1
2l OPS, PI,
k 15}
Limiting Hyperbola
1t . CB / PDE
05- PI
0 T T
0 0.5 1 200

=
[y
Iy

Figure 2.11: Splitting into damped and propagating modes according to the analytic
solution, or the method of characteristics for the PI, OPS, PI,, CB and
TOPT schemes

(1= Z(k))*

W = tan®(k) (2.24)

ensures bifurcation at the correct wavenumber. The actual wavenumbers at which

bifurcation occurs (for the schemes discussed so far) is plotted in Figure 2.11.
Several other “reasonable” constraints are possible, such as enforcing correct

Qk)

damping rates for the highest wavenumbers (7 = e=*%) or requiring that the scheme
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be derivable from some pair of characteristic equations (7 = X - Y'). Imposing some
pair of constraints then leads to different schemes. One such pair that looked promis-
ing was what will be called the CB scheme (CB enforces conservation and correct
bifurcation), given by

Z(k)=e2* | (2.25)

(1 o e—2k>2

XY (k) = =57

for k<x/2 (assume X =Y) . (2.26)

At the end of the day, it was found, surprisingly enough, that the simple PI scheme
was awfully hard to beat [see Figure 2.12, which also includes the CB scheme].
Further, this figure shows that the various schemes can differ by more than two
orders of accuracy in their root mean square errors. That is, even though all the
schemes are formally second-order accurate, the error constants differ enormously.
This lack of correlation between expectations based on desirable properties enforced
and numerical results obtained led to the belief that there was more to this problem
than met the eye.

Why is it that none of the method of characteristic schemes are a significant
improvement over the simple PI scheme? And is the method of characteristics, in its
pure form, even appropriate for dispersive wave problems? These lines of questioning
led to the work in the next section, where the availability of an exact solution in

integral form spotlights the missing feature in all the schemes tried so far.

2.4 Coupled Characteristics and the Optimum Scheme

Integrating around the circuit given in Figure 2.13[left] results in the governing

integral equations (derived in [63]), which are

R s (B Q 73 (B
0 = 5™ (04 + 08) + 7/,4 (22— Q)0de — 7/,4 Qg de, (2.27)

T
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Figure 2.12: Ly norm of the solution error in é vs the stiffness factor k£ for several
decoupled schemes at t/7 = 10. The solid line has a slope of 2.

Figure 2.13: Stencil for the Coupled Method of Characteristics (OPT) [left] and that
for the Simple Coupled Schemes (PC(S)) [right].
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= Lk a4 gn) T%/Bﬂd T%/ngd (2.28)
QP—2€ da T 4B 2 4 tqax 5 J4 x0T, .

where € is the Riemann function [74]

Q(C,m) = exp (C — CIIT" - "1) Io (wc — CZ)T(Z — "1)) . (2.29)

To create a numerical method requires evaluation of the integrals. The function 2

(and hence its derivative €2;) is of course known exactly, but the functions 6 and ¢

need to be approximated, and will be represented as polynomials given by

1 z x? — 4k%r
ule) = luatup)+ oo lun —wa) + —gm —(ua—2un +up) + O(AL), (2:30)
up —u Z
ug(r) = ( ikT% a) T (wa = 2uns + up) + O(Aa?), (2.31)

where a quadratic variation in u has been assumed, and u is either ¢ or #. The fully

discrete solution is [63]

1

1 2
Op = S(0at08)+ (1 =)0 —ap)

4k
+$(6‘2’“ — 1+ 2k —2k*)(04 — 200 + 05) (2.32)
e 2k 7'_%
gp = (g1t qn)+ (1= e7*)(04 — bp)
1
— e+ 2+ 287) — (04 — 200 +q8) - (2.33)

Note that Equations 2.32 and 2.33 are not of the form of Equations 2.14 and 2.15,
having an extra term that involves the middle point M. This is the key observation
here — this method (which is near—optimal) couples the characteristics via this mid-
dle point. What this means is that the source term provides a mechanism for the
interaction of the wave families, which shows up in the discrete solution as the term
involving the middle point M (see Equations 2.32 and 2.33). In short, the solution

at P depends on the entire length of the initial line between the characteristics, i.e.,
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between A and B, including M). The entire spatio-temporal region PAM B (Fig-
ure 2.13) is a region of wave interaction (of the two wave families) due to the source
term.

The second-difference terms are in each case of order kAz?. An analysis of
the truncation error indicates that their inclusion yields a scheme with third-order
accuracy, whereas a scheme that excludes them is second-order at best.

Numerical solutions shown in Figure 2.14 are clearly far superior to those achieved
by either the PI or the OPS schemes (and also much better than their second-order
cousins shown in Figure 2.12). This scheme, which will be designated as the Opti-
mum (OPT) scheme, is third-order accurate, and demonstrates that this coupling of
characteristics is crucial. As a test, this system was “decoupled” by neglecting the
last term in each of the above equations. This then gives the appearance of a method
of characteristics similar to the PI and OPS schemes (we call the resulting scheme
the TOPT or Truncated Optimum scheme). However, these cannot be decomposed
into a characteristic pair (XY # 7), indicating some coupling of the characteristics
is already involved. But the results (Figure 2.15) clearly show that the scheme has
reverted to being a second—order one, similar to OPS. This similarity is also observed
in the discrete dispersion plot (Figure 2.17, although there is a slight improvement

for large k in the damping rates).

2.5 Simplified Coupled Schemes

In Section 2.4, it was shown that superior results could be achieved for the HHE’s;
however, that scheme was built upon the knowledge of an exact solution, which is
obviously not a practical solution approach for general problems. In this section,

a new method (based on the stencil shown in Figure 2.13[right]) is described, that
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Figure 2.14: Ly norm of the solution error in ¢ and € vs the stiffness factor k for the
OPT (Optimum) scheme (see Table 2.1 for a key to lines and symbols).
The solid line has a slope of 3.
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Figure 2.15: Ly norm of the solution error in ¢ and 0 vs the stiffness factor & for the
TOPT (Truncated Optimum) scheme (see Table 2.1 for a key to lines
and symbols). The solid line has a slope of 2.
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Figure 2.16: Propagating speeds and damping ratios for the OPT (Optimum)
scheme. k£ = 0.25, 0.5, 1.25, 2.5, 5.0, 12.5, 50
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is close to optimal and yet is not dependent on any such knowledge (see [63] for a
detailed derivation of this method).

Begin with the characteristic equations in conservation form

eC/QTeg 473 [q eC/ZT]C =0 , (2.34)
e”/%en — 72 [q : e”/%] =0 , (2.35)
7
and then integrate these by parts along the characteristics to get
1 L o
[0p — 0ae™*] + 72[gp — qae™] = —/ cTo()dt (2.36)
T J-At
1 L o
[0p — Ope=2] — r3[gp — qpe=2] = = / STo(tydt . (2.37)
T J-At

These are still exact, but now the integrals on the right hand side are approxi-
mated by assuming a polynomial variation in #(¢) (along the characteristics). For
the case of a quadratic (the only case detailed here), three points are needed. From
Figure 2.13[right], it is observed that the states at the feet of the characteristics
(points A, B) are known. The values at the head are being computed (point P).
However, solutions for the points midway along each characteristic (points F, () are
still needed; these are estimated by the PI method (note that AMF, M BG form
characteristic stencils), which now provides a simple mechanism to couple the char-
acteristics [since the values at F and G (and hence at P as well) involve the middle
point M]. The hope was that merely incorporating this coupling, even in this sim-
plistic fashion, would lead to second—order accuracy in both space and time. When
solving relaxation systems, a point to note is that the information propagating along
the characteristics is also exponentially damped [79] (see Equation 2.13), leading
to rapid temporal variation. It is this feature that must be captured by successful

higher—order schemes.
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The final, fully discrete solution for this two-step method may be rewritten in

the form

0p =

04+05\ 72 (24 k4 ke 2 — 243k — k2
( 2 )Jr?(q“‘_q’g)l 3k—2+ (2+ k) 2 ]
l—k—(l—l—k)e_zk
l3k—2—|—(2—|—k)e‘2k

i =2k

w = (CZA;QB)G—%_I_%(GA_&B)[l 22 ]
(k —2)

4k

] (04 — 200 +05) (2.38)

_|_

1=k = (1 +k)e™] (qa—2qu + q8) (2.39)

which is a (clumsy) rearrangement that facilitates a comparison with the OPT
scheme. Like the OPT scheme, this method is third—order accurate, and the co-
efficients in the equations are comparable to the OPT scheme (in terms of Taylor
series expansions for small & as well as asymptotic limits). The solution plots shown
in Figure 2.18 demonstrate the accuracy (and viability) of this scheme. Note that
when the OPS scheme was used instead of the PI scheme (in the predictor stage),
the results were found to degrade in accuracy (they became more diffusive), as was
hypothesized in Section 2.3. This led to the conclusion that the OPS scheme is in-
ferior to the PI scheme, both on its own as well as when used in conjunction with
another scheme, in the sense that it has larger dissipation® (even though the formal

order of accuracy is not affected in either case).

2.6 Discussion of Results

A simple model has been studied in which dispersive wave behavior is caused
by a source term. Computing cases where this term is also stiff has been the focus
here, and the solution method was restricted to characteristic meshes (v = 1). Quite

surprisingly, the popular operator splitting (OPS) method was found to be inferior to

8Recall the results of [55, 38] and the reduction of accuracy of Strang splitting for stiff problems.
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a simple point—implicit (PI) method. A modified PI scheme, the PI, scheme, was also
developed, which had the “conservation” properties discussed in Appendix A [which
will be seen to be crucial when solving nonlinear relaxation systems (Chapter IV)].
Further, this PI scheme was very hard to improve upon. It was also shown that
any pure method of characteristics is at best second order accurate (for smooth flow
and non-stiff problems on characteristic meshes) because it fails to account for the
coupling of the wave families; moreover, the root—-mean—square errors for different
(method of characteristic) schemes (all of which are second-order accurate) were
found to vary by more than two orders of magnitude (Figure 2.12).

The work described in this chapter has had a fairly limited aim — to “merely”
design and implement an accurate solution algorithm for the smooth part of the
model problem, even when the source term is stiff. However, the solution process
proved to be non—trivial and quite illuminating. Note that since the model problem
was linear, the method of characteristics would have been exact in the absence of the
source term. Likewise, if only the source term had been present, it would have had
led to a (trivial) ordinary differential equation, with an exponential solution and the
(unimpressive) OPS scheme solves both these sub—problems exactly. Thus the source
(no pun intended) of difficulties that arose were primarily due to the interaction of
these two simple problems. In addition, by restricting this study to the smooth part
of the flow on characteristic meshes, errors attributable to the discretization alone
have been successtully isolated.

Similar to the observations of [55, 38], it was observed that the OPS scheme
became less accurate as the fluid dynamic limit was approached (7 — 0). However,
an advantage of the OPS scheme is that if the damping step is the first step, the

method naturally projects the solution into equilibrium at each time step, which
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mimics the initial layer for under-resolved methods and pushes the solution to the
correct asymptotic limit (see [38] for details).

Finally, these results clearly demonstrate that even if coupling of wave families
is incorporated in a simple manner, the results improve dramatically, and accurate
solutions can be obtained even in cases where the time step and mesh spacing are two
orders larger than the relaxation time. This provides good impetus for the next stage
— the development of finite volume shock capturing schemes on non—characteristic
meshes (that have this coupling mechanism built in) to solve non—equilibrium flows

— the subject of the next chapter.



CHAPTER III

CHARACTERISTIC-BASED FINITE-VOLUME
SCHEMES FOR LINEAR 2 x 2 RELAXATION
SYSTEMS

In Chapter II, it was shown that a scheme analogous to the optimum (OPT)
scheme [63] probably represents the best that can be achieved (without expanding
the stencil); however, since it relied heavily on analytical information (which is un-
likely to be obtainable except in very special cases), it is not a practical approach.
But a class of schemes that showed promise were the 2—stage Predictor—Corrector
formulations (Section 2.5), producing results rivaling those obtained by the OPT
scheme. Construction of such schemes is fairly simple and does not require any
analytical information. However, the PCS scheme does require an estimate of the
solution halfway through the time step. This predictor stage serves to couple! the
characteristics in space and time, and facilitates a second—order integration along
the characteristics. Generalization of the PI scheme to include a parameter p (the
degree of implicitness) led to the PI, scheme® where the value of the source term

is computed at some point (¢, + pAt) in time (using a linear interpolation between

!The predictor stage involves the middle point, therefore influencing the update and incorporat-
ing coupling.

ZNote that this virtual point does not cause coupling by itself; it simply represents an effort to
compute the source term more accurately than the PI scheme by building in the effect of stiffness.

39
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the endpoint values), and g is a function of the stiffness factor k& and determined by
conservation (Appendix A).

Looking ahead, the eventual goal of this project is to solve non—linear systems
with stiff relaxation terms. A natural framework for solving non—linear homogeneous
systems is the finite-volume method [46]. Thus, in this chapter, an attempt will be
made to come up with a good fully—discrete finite—volume formulation for solving
the general linear 2 x 2 system shown in Chapter II.

The discretization of the domain is detailed in Section 3.1. This is followed by
the reconstruction stage described in Section 3.2, where our choice is the Piecewise
Parabolic Method (PPM) of Colella and Woodward [24]. Recall that use of a higher—
order reconstruction does not in itself lead to higher accuracy for stiff problems (in
the fluid dynamic limit) [38]. Rather, this choice of reconstruction was thought to be
an economical way to improve results while using the simple PI,, scheme to obtain
predictor estimates in a characteristic tracing step (Section 3.3). The crucial flux
computation step is described in Section 3.4, where a simple strategy is presented
to accurately compute the flux, followed by a brief description of the update (Sec-
tion 3.5). For simplicity of form as well as economy of computation, a point implicit
update is chosen. Finally, the implementation of boundary conditions is described

in Section 3.6, followed by the presentation of some numerical results in Section 3.7.

3.1 The Discretization

Spatially, the domain is divided into cells, which are restricted in this dissertation
to be of uniform width Az (Figure 3.1). However, the formulation can be extended
quite readily to non—uniform meshes, such as those that arise in adaptive—grid com-

putations [6, 26, 59]. In the finite-volume formulation, the cell averaged value in cell
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J at time level £, (w7), defined by

—e @ *— 7fn—l—l

7fn—l—oq

7fn—l—ozg

N N

Jg—1 J—1/2 J j+1/2 J+1

Figure 3.1: Schematic of the discretization, showing the cells (integers), the interfaces
(half-integers), and the Gauss points (f,44,) along the interface. The
mesh size is Ax = 2,41/ — Tj_1/2 and At = 1,41 — 1.

1 /%+1/2
n
W= — w(z.t,) dx

j Az Jo, 1 ( ) n) )

is known. The aim is to compute these solution vectors at the new time level ¢,.4,
(i.e., W?-H, which will be denoted by w).

The general form of the governing equations, written in conservation form, are
w,+f,=—s |,
T

where w = (u,v)T, f = [v,p(u)]T and s = [0,v — g(u)]T, and where it is assumed (in
this chapter) that p(u) = afu and g(u) = agu. Integrating this system of equations

over the cell j (Figure 3.1) gives

] At 1 tnt1
w =w,; — Ar [F]‘+1/2 - Fj—1/2] - _/t s;(t)dt

T

1 trt1
Fii1 = E/t fip12(t)dt

1 Tjt1/2
S, = — s(x,t,) dx
b= s

Here, F 11/ is the time-averaged numerical flux through the (7 4 1/2) interface and

s; is the cell-averaged value of the source vector.
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3.2 The Reconstruction

The Piecewise Parabolic Method (PPM) of Colella and Woodward [24], based on
one of the advection schemes (Scheme V) in [69], is used to generate the quadratic
reconstruction in each cell, under the assumption of a uniform mesh. To start with,
the cell-averaged values w; for each cell are known. Let the (quadratic) variation

within the cell (Figure 3.1) be given by

w(z) =wp, +2" o, + oo, (1—27)] (3.1)

R
x* = T‘;l/z R :ﬁ]‘_l/z S X S $j+1/2 . (32)

Here, 2 is a normalized distance within the cell, such that «* € [0, 1], while x is the
spatial running coordinate for the complete domain. The cell j is bounded by the
T j71/2 interfaces, with wp,, wg, being the reconstructed values at the left (j —1/2)

and right (j + 1/2) interfaces (of cell j) as @* — [0, T1, respectively. Define

Clj = WRJ — WLJ 5 (33)
1
C, = 6 [W]' — 5 (WLJ + WRJ)] , (34)

where these coefficients are related to the slope and the curvature of the reconstruc-

tion within the cell, being fully determined once wp, wg, are known. Further, define

1 1
Witz = 5 (Wi W) + 2 (0W) — 6Wjna) (3.5)
1
ow; = (Wi —Wj1) (3.6)

2
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which is modified by the “discontinuity sharpening” mechanism of [24] using

if

(Wis1 — w;) (W; —wj—1) >0
then

ow; = min(|ow;], 2[w; — W], 2[w; — wjia])
else

ow; = 0

Now, assign this value of w; 1/, (with the modified éw;) to wg, and wr,,,

WR, = Wjit1/2 ) WLt = Wit1)/2

To ensure monotonicity of this reconstruction, modify wg , wy, as

if

(o, —) (=) <
then

Wi, =W, , Wgr =W,
else if

(i, = w, ) [ws = & (w, 4w )| > 3w, —w,)’
then

wr, = 3w, — 2wp,
else if

L (wr, - WL])2 > (wr, —wi,) [w; — & (Wi, +wa))]
then

Wr, = 3W; — 2wy,

(3.7)

i.€.,

(3.8)

(3.9)
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In the actual implementation, boundary conditions are enforced on each of these
intermediate variables at each step. The sequence of computation is: compute dw;
(Equation 3.6), modify it using Equation 3.7, obtain the face values w;y1/2 (Equa-

tion 3.5) and assign these to wg, and wp, ,, enforce monotonicity (Equation 3.9)

J+17?
and finally compute the coeflicients ¢, and ¢y, (Equations 3.3, 3.4). At the end
of this stage, the desired quadratic (PPM) reconstruction is fully determined (since

Wi, WR,, C1,, C2;, are now known in each cell).
3.3 The Characteristic Tracing Step

To evaluate the fluxes at the interfaces, trace the characteristics back from the
point to be computed (on the interface) to the initial line (¢,), where the recon-
structed data is now available (Figure 3.1). These values are input to the PI, for-
mulation, which uses the method of characteristics to estimate the state quantities
at the interface.

Since the study in this chapter is limited to the linear case, there is no ambiguity
regarding the wavespeed because ap is constant (note that ap is the only sensible
wavespeed on which to base a method of characteristics). The locations in the cell,

i.e., the ©*’s at which the reconstructed values are needed (for the 2 x 2 case) are

CLFAt

X

TR, = l—ap, . (3.11)

AF = 1—vAlF (3.10)

* —
J}LJ — 1_

Here, At* is the time at which the solution on the interface is desired, normalized

by the time step, i.e.,

A" = —

6t Atl - A 1
VB e [0,At] e [0,1]
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(e.g., if the solution at £, /9 is needed, then At* = %) Note that in order to compute
a solution at the (j +1/2) interface, the values at 27 and 2%, are needed.

The implementation is fairly simple: for each cell, compute 7, and TR, knowing
which the state vector at these points, i.e., W(l‘z]), W(:L'EJ), can be obtained from

the PPM reconstruction. Since the points L7 TR and x?j_’ﬁg form a characteristic

n+At*

P12 can be easily computed using the PI, scheme, where the

stencil, the value w
degree of implicitness is given by

B 1 1 et
lu_ 1—6_2k* Qk* 9 /u 27 9

and k* = AZ—I;* is the stiffness factor for this fraction of the time step.

One can now integrate along the (frozen) characteristics and solve for up,vp to

get

up = L[y g+ (v — o) fap —2(1 — p) kT (v — g5 —vE +a5) Jar]

gp = glup)

oP = gy VA 0B ar (ulh —up) = 2k (1 — p) (v — g4 + v — g5) + 4k ngp]

Note that the source terms have been point-implicitly incorporated in the above

expressions.

3.4 The Flux Computation

The simplest approximation to the flux is to compute the values up, vp (as defined

in Section 3.3) at the (n 4 1/2) time level and define

Fiip=f (wjjf//j) . (3.12)

However, this proves to be too diffusive even for very slightly non-linear problems.

Recall that, especially in the case where the problem is stiff, the source term causes
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very rapid (exponential) variation of the solution along the interface. Thus, it is
very likely that an estimate that merely takes the value obtained at the (n + 1/2)
time—level to represent the average value on the interface will be quite inaccurate.
At this stage, a mechanism to compute an approximate value for w at any tem-
poral location along the interface was available, which led to the following obvious
question: given this computing mechanism, is there a simple and economical way to
obtain a more accurate solution for the interface flux? This is strongly desired, since
the (simple) PI, scheme is used to obtain estimates along the interface. A strategy
that suggested itself was to calculate the flux integral using Gaussian quadratures.
Some testing on a function composed of a product of a polynomial and an exponen-
tial led to the empirical conclusion that a three point quadrature is sufficient, which

is what will be used in all the examples that follow.

3.4.1 The Gaussian Quadrature

In order to use Gaussian quadratures to evaluate the interface flux

1 At
Fjﬂ/?zﬂ/o fii12(t)dt

the limits of integration must be renormalized to be [—1, 1], which leads to

1 k=K
]+1/2 = 2/ +1/2 dae = = Z wyf +1/2 Oék )
1 At
ar = 5 (Al + Aty = — (14 &)

Here, £, and wj, are the location and weight of the & Gauss point, for a K point

quadrature (these are given for the 3 point quadrature in Appendix B; also see [1]),

n4og

while the aj are the temporal locations at which the state variables Wil

are

n+ak)

computed in order to obtain the fluxes f; /() =f (Wj+1/2 .
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3.5 The Update Step

For stability, this step must be at least partially implicit. However, if it had
a predetermined (fixed) degree of implicitness, then one could choose a sufficiently
large value of the stiffness factor, which could result in the scheme becoming unstable.
Thus, for simplicity, this step is assumed to be point implicit (but with g = 1).
Interestingly enough, a more sophisticated update using the values at #,, ¢4/, and
toy1 (to form a quadratic) failed as the fluid dynamic limit was approached. It is
quite plausible that the reason was insufficient “implicitness” (as reasoned above)
for the time step chosen. Thus, the choice of update is primarily for simplicity and
unconditional stability (at least for this particular step).

The equations studied so far have had the form
ur+ h(u)y, = 0
vy + p(u)x = —;[U - g(u)] 5

where the second equation was the only non-homogeneous one and linear in v. The

update, then, is simply

: At
ul = U; — E (H]‘_|_1/27m - Hj—1/2,m) ’
, 1 At ‘
v = m |:U] — E (Pj-|-1/2 - Pj—l/?) + Zkg(u])] ?

where H, P are the numerically computed values of the fluxes A, p.

For equations of this form, even if &, g, p are nonlinear, it doesn’t affect the update
procedure, since v is linear and the updated value of u is already available for use in
the computation of the source term ¢g. However, there are conceivable cases where
such a form is not available; it will be seen in later chapters that such cases revive

the notion that CFD is often more an art than an exact science.
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3.6 Boundary Conditions

The computational domain consists of cells 1 through J in the interior, with
0, 4+ 1 being the boundary (ghost) cells. The boundary conditions used in this

chapter are easily imposed on a variable z as follows.
3.6.1 Reflecting Boundary

Zo = 21 ; ZJ+1 = ZJ
3.6.2 Periodic Boundary

Zo = ZJ ; 41 = A1
3.7 Numerical Results

In order to test this algorithm, a case recently presented by Jin and Levermore [41]

is attempted. The system being solved is

ut+v, = 0
, (3.13)
vt u, = —iv— g(u)]
where g(u) = 0, with initial conditions
u(t=0) = 2+sin(ra)
N (3.14)

o(t=0) = —0.1
and a relaxation time 7 = 0.01. The boundary conditions are periodic. Solutions
are shown in Figure 3.2 for discretizations in the intermediate® [dz = 0.0125 ~ O(1)]
and thick? [dz = 0.125 > O(1)] regimes, for a Courant (CFL) number v = 0.5,

at t = 2 (note that the results in [41] were for semi-discrete schemes and used a

3The intermediate regime is where the spatial mesh size is of the same order as the relaxation
length [de ~ O(Tuchar)]-
*The thick regime is one where the spatial mesh size fails to resolve the relaxation length scales

[dz > O(Tuchar)]-



49

time—step At < 7). The “exact” solution is a fine-mesh solution (dx = 0.001), that
fully resolves the relaxation time, computed at a Courant number of unity. The
numerical results for the current method are clearly seen to be excellent, and are
competitive with those shown in [41] (even though the present results are temporally

more severely under-resolved).

Figure 3.2: Solution to the Jin-Levermore linear case (Equation 3.13), for discretiza-
tions in the intermediate [dx = 0.0125 ~ O(7), left figure (4)] and thick
[dx = 0.125 >> O(7), right figure (+)] regimes at v = 0.5 superposed
onto the “exact” solution [dax = 0.001, v = 1 (solid line)].

3.8 The Next Steps

In Chapter 11, several key features influencing the success of numerical algorithms
were identified. First, the numerical scheme must couple the wave families. Second,
operator—split schemes lose accuracy for large stiffness (see [55, 38]). Third, the
under-resolved scheme must project the initial data onto a local equilibrium at each

time step [38]. This mimics the (unresolved) initial layer and ensures passage from



30

the relaxation system to the equilibrium system. Since the PI, scheme approaches a
fully point implicit scheme (g = 1) in the fluid dynamic limit, it asymptotes to the
correct behavior (an implicit step automatically enforces this projection condition).

These insights were incorporated into the finite volume method developed in this
chapter. Specifically, use of a predictor stage similar to that used in Chapter II
leads to estimates along the interface. These estimated states are then used in
Gaussian quadratures and help to capture the temporal variation of the flux, leading
to accurate (flux) computations. In this predictor stage, the PI, scheme is used,
rather than an OPS based scheme [which was shown to be less accurate for the
linear case in Chapter 1I]. One may well question the use of the PI, scheme over
the PI scheme (since the PI scheme was seen in Chapter 11 to be far superior). For
the case tested here, there were no visible differences between the results from the
PI and PI, schemes (to eyeball norm?®) for relaxation times up to 107°. It will be
shown in Chapter IV, however, that for the nonlinear cases, there is a substantial
difference between the two.

The reconstruction within each cell is quadratic (similar to the OPT scheme),
based on the PPM formulation [24]. The update is taken to be point implicit, but
with ¢ = 1 (its attraction being its simplicity and unconditional stability). The
resulting scheme is clearly seen to perform very well. Having accomplished the goals
for this chapter, the next logical step is to extend this method to solve non—linear

relaxation systems, which is the subject of the next chapter.

>The eyeball norm is a comparison of two plots by holding them together against a light source.



CHAPTER IV

THE TRANSITION TO FINITE-VOLUME
SCHEMES FOR NON-LINEAR 2 x 2
RELAXATION SYSTEMS

A successful method was designed in Chapter 111 to solve stiff relaxation systems,
but with one severe limitation — all the cases considered so far have been linear. In
this chapter, the challenging “non—linear” journey is begun, but again limited to

2 x 2 relaxation systems of the form
w,+f,=-s ,
-

where w, f, s are state, flux and source vectors respectively, and 7 is the relaxation
time of the problem.

The first complication is that the characteristics are no longer straight lines, since
wavespeeds are now functions of state variables. Further, such systems admit shocks
and rarefactions, which need to be captured. Since the goal is to develop a systematic
methodology, the aim is to solve successively harder problems, incorporating previous
insights into solution procedures developed at each subsequent stage.

In this chapter, therefore, it is demonstrated how the algorithm detailed in Chap-
ter III can be modified to account for the non-linearity of the problem. Specifi-

cally, the discretization, reconstruction, flux computation and update stages are un-

51
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changed, while the characteristic tracing step needs to be modified, and the changes
are detailed in Section 4.1. Finally, numerical results for the proposed scheme are

presented in Section 4.2, and are compared against the best results available in the

literature at this time [41, 38, 15].

4.1 A Modified Characteristic Tracing Step

The first question that arises is: how does one determine the frozen wavespeeds at
the interface? Since it must be some average value based on the states on either side
of the interface, three simple averages were considered. These were the arithmetic
[Uavg = %(uL + ug)], geometric [uaye = (ug - uR)l/z], and Roe [61] (tayy = URoe)
averages'. However, the numerical results were unchanged (to eyeball norm); hence,
for simplicity and economy, the arithmetic mean has been used for all subsequent
cases in this dissertation.

For the system

ur4+v, = 0 |

v+ plu)e = —;[v—g(u)] :

. 1
ir=glap+ap) 3 a=[pPw)]? ; «=LR

Following Section 3.3, the traced—back characteristics intersect the initial line at

xy, = 1- o AtY = 1 —vAt* (4.1)
Th,, = l-—ap, . (4.2)

!Note that the Roe—average is based on data at timet,. Thus, Roe—averaging in the conventional
sense 1s not adequate for solving stiff relaxation systems, since it assumes the flux doesn’t vary
temporally; in standard procedures, the source term is evaluated as s; = s(w;) in the update.
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Given these locations, the reconstructed values are easily obtained, and now the PI,
scheme is used to obtain the (method of characteristics) solution at the Gauss points
along the interface.

The next modification is that since the wavespeed is no longer a constant, the
time step must be computed at each time iteration to ensure that the CFL condition
(based on the convection terms alone) is satisfied. This is a simple function call
accomplished by first computing the maximum eigenvalue in the entire computational

domain {[pu(u)]lm} , and then setting the time step as

max

vAzx
Al =
{[pu(w)]'?}

Note that in the Gaussian quadrature (flux computation) loop, one could base the

max

frozen wavespeed on the “average” state computed at the previous Gauss point [i.e.,
use ap(wp, wg) for the first Gauss point, dp(Wgauss, ) for the second Gauss point,
and so on], but this was found to make no difference (to eyeball norm) and hence

was not pursued further.

4.2 Test Cases

Recently, results have been presented for a wide range of problems with stiff source
terms [41, 38], some of which are used here as benchmark tests for the proposed algo-
rithm. The novelty of the approach in [41, 38] is that the physical asymptotics have
been built into the numerical scheme (see Section 5.2), essentially using semi—discrete
schemes (in the fully discrete context, Runge-Kutta schemes with a good temporal
integrator for stiff ODE’s are used, coupled with the semi-discrete formulation). In

contrast, the method proposed here is a fully—discrete one that relies primarily on
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accurate flux computation. The system being solved is
1
w,+f,=——s |, (4.3)
T

where w = (u,v)T, f = [v,p(u)]T and s = [0,v — g(u)]T.

Note that a further complication can arise depending on the choice of initial
data: if v = g(u) at t = 0, the initial data is initially in local equilibrium; however,
if this is not true (as in most of the cases presented here), an initial layer forms and

under—resolving this layer can cause spurious or incorrect solutions [15].

4.2.1 The Weakly Non—Linear Test Case

Here, the variables of Equation 4.3 are p(u) = —u™? (hence ap = [%]1/2) yg(u) =

0.01 (v — 2)*, and 7 = 0.01. The (non-equilibrium) initial conditions are
u(0,2) =2 +sin(rx) , v(0,2)=-0.01 ,

and the boundary conditions are periodic.

Results were presented in [41] in the thick regime [dx = 0.1]. The standard
scheme? (with no built—in information about the asymptotics) was shown to be highly
diffusive, but the scheme proposed in [41] (with the asymptotic information incorpo-
rated) gave very good results. However, in the intermediate regime (dz = 0.01), the
results of [41] were actually worse than those for the unmodified schemes®.

Numerical results from the scheme proposed here are presented at a time ¢t = 10

for the thick regime [da = 0.1, Figure 4.1 (left)] as well as for the intermediate regime

[dx = 0.01, Figure 4.1 (right)], and superposed onto the “exact” (fine-mesh) solution

’In a standard scheme, the source term is approximated by s(w;) and some higher—order recon-
struction is used to evaluate the fluxes, e.g., MUSCL [70] or PPM [24]. These do not incorporate
asymptotic information, and the Riemann solver does not account for the source term. In [71], the
source term actually influences the input states of the Riemann solver.

3In a more recent paper [15], results with uniform convergence have been achieved, but a special
initial layer fix is required for the under—resolved scheme.
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(solid line, dx = 0.001). The present results (Figure 4.1) are seen to be superior to
those of [41], with no visible shortcoming in the intermediate regime.

Note that when this test case was run in the thick regime using the PI scheme
(PI, with pp = %), the results deteriorated as the fluid dynamic limit was approached,
and blew up around 7 = 5.5 107°. This was the first indication that conservation

was critical, and our hunch from Chapter II paid off.

3.0 3.0
u A u A
23 T T T T T 23 T T T T T
0 T 1 0 T 1

Figure 4.1: Solution to the Weakly Non-linear case [41] (also see Section 4.2.1), for
discretizations in the thick [de = 0.1 >> O(7), left figure (0)] and in-
termediate [de = 0.01 ~ O(7), right figure (4)] regimes at v = 0.9
superposed onto the exact solution [dx = 0.001 (solid line)].

4.2.2 The Strongly Non—Linear Test Case

Here, the variables of Equation 4.3 are p(u) = u + 1u” [aF =(1+ u)lm], g(u) =

1u?, and 7 = 0.01. The (non-equilibrium) initial conditions are

1 -1 <ax<0.2
u(0,2) = , v(0,2)=0
0.2 02<x<l
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1.1

01 I T j; T T

Figure 4.2: Solution to the Strongly Non-linear case [41] (also see Section 4.2.2) in
the intermediate regime [dx = 0.02 ~ O(7), (4)] at v = 0.5 superposed
onto the “exact” solution [dax = 0.001 (solid line)].

with reflecting boundary conditions. The solution is plotted in Figure 4.2 at ¢ = 0.5.
The results in [41] in the intermediate regime (dx = 0.02) were slightly worse
than those of the unmodified schemes. Results from the proposed algorithm in the
intermediate regime (dx = 0.02), superposed onto the “exact” solution (solid line,
dx = 0.001), are shown in Figure 4.2, and are better than those in [41].

Again, the PI scheme was run on this case with a relaxation time 7 = 10™*, while
varying the mesh size Ax. With increasing mesh size, the results deteriorated rapidly,
blowing up for Ax > 0.0175 (approximately). This demonstrated clearly that as the
fluid dynamic limit is approached, the simple PI scheme which was so successful on
the linear case, degrades rapidly, and actually blows up. The results presented in
Section 4.2.3 for severely under—resolved flows clearly demonstrate the robustness of

the PI, scheme (which enforces conservation in the sense of Appendix A).
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4.2.3 Two Cases with Very Large Stiffness

The examples in Section 4.2.1 and 4.2.2 were for non-linear relaxation systems,
but were not severely under-resolved for the cases run. Here, two cases are attempted

where the temporal (spatial) under—resolution is of the order of one (fifty) million.

Initial Data in Local Equilibrium

Y

For this case, the variables of Equation 4.3 are p(u) = v + u? [aF =(1+ u)lm]

g(u) = su*. Smooth, equilibrium initial data
: 1 2
u(0,2) =1+40.2sin(87x) , wv(0,2)= §u(0,:1;)

is specified, so as not to generate an initial layer. The numerical solution (4) is
plotted in Figure 4.3 (left) at a time ¢ = 0.3 with periodic boundary conditions, and
a relaxation time 7 = 107'° [dx = 0.01, v = 0.03, At/7 ~ 2-10°] and superposed
onto the “exact” solution [(solid line with dz = 0.001), which is nothing but the
solution to Burger’s equation with this initial data]. The results [Figure 4.3 (left)]
are clearly seen to be very good, with better peak recovery and sharper shocks than
obtained in [38]. However, there is some visible distortion of the profiles near the
peaks, due to the severity of the under-resolution. Also note that the relaxation
time in the current study is two orders of magnitude smaller than that used in [38].

Recall that the design philosophy being followed here is to keep the method simple
and economical, but to allow the results to degrade smoothly for large stiffness;
however, any method designed was still required (naturally) to yield the correct
physical solutions (correct shock jumps and speeds), even for severely under—resolved
flow. It is estimated that the current method is at least an order of magnitude cheaper

to compute than the scheme developed in [15]*.

4The algorithm proposed in [15] is based on the method of lines, and consists of a second—order
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Initial Data Not in Local Equilibrium

In Figure 4.3 [right], the strongly non-linear case from Section 4.2.2 is presented
again, but with 7 = 107'% dx = 0.01,v = 0.03,A¢/7 ~ 2-10°% The numerical
solution (4) is superposed onto the exact (analytical) solution (solid line), which is a
single shock moving to the right with a speed of 0.6. There is a small overshoot (less
than 2% of the jump); however, the solution is clearly the physical one having the
correct shock speed and jump. And for such drastic under—resolution, the (slight)

overshoot is a small price to pay for the (large) gain in computational economy.

1.2 1.1
Al A 4
| | | I s
| | | |
. \‘ \‘ | | . ]
| | \‘ \‘
| | I I
] L \ \ \ _
\ ‘\ | !
U A U
- | | -
| | 1 |
I | | |
| | 1 ! | |
S |
0-8 1 1 1 T 1 0-1 1 1 1 T T
0 T 1 0 T 1

Figure 4.3: Solution to the very stiff (and strongly non-linear) cases [38] (also see
Section 4.2.3). Here, dz = 0.01,7 = 107'°, v = 0.03, At/7 > 10°

Left Figure: Initial data in local equilibrium, numerical solution (4) su-
perposed onto the “exact” solution [solid line with dx = 0.001], ¢t = 0.3.

Right Figure: Initial data not in local equilibrium, numerical solution

(4) superposed onto the exact (propagating shock) solution [solid line],
t =0.5.

Runge-Kutta Godunov splitting scheme. This combines two explicit steps for the convection terms
(using a second-order MUSCL formulation) and three implicit steps for the source terms. If these
implicit steps are done iteratively, the expense would increase proportional to the stiffness.
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4.3 A Brief Status Report

In Chapter III, a finite volume algorithm to solve stiff linear 2 x 2 relaxation
systems was developed, which incorporated the key features of successtul numerical
schemes (which were obtained in Chapter II). Surprisingly, the method required very
minor changes to account for nonlinearity. The most significant modification was due
to the wavespeed no longer being a constant, which led to the need for an “averaged”
wavespeed at the interface. Seeing no difference between arithmetic, geometric and
Roe averaging for the cases shown here, simplicity and economy dictated the selection
of arithmetic averaging.

Further, this variation in wavespeed modified the time step computation in order
to satisfy the CFL condition (based on the convection terms alone), which was a sim-
ple modification. Now, the algorithm was ready for benchmarking. Fortunately, there
were several test cases available [41, 38]; being the best results currently available,
they were the natural choice for any comparisons. Note that the results in [41, 38]
were compared against fine—mesh computations and hence are assumed to be correct
and accurate solutions.

The current results are found to be at least competitive with, and often better
than, those shown in [41, 38]. Significantly, this has been achieved at a small fraction
of the cost (as mentioned already in Section 4.2.3).

In this Chapter, the practical importance of the PI, scheme, and the conservation
condition it enforces, was shown for the first time. For the linear cases, there was
no difference between the PI and PI, schemes to eyeball norm; however, from the
nonlinear cases attempted in this chapter, it is clear that the unmodified PI scheme

is unsuitable for solving nonlinear relaxation systems.
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Another interesting study was on how coarsening or refining in space or time
affects the results. This was done for the two very stiff cases studied in Section 4.2.3,
centered around the conditions used there. In the case of the single shock shown in
Figure 4.3 [right], temporal refinement was more critical than spatial refinement (i.e.,
spatial refinement or coarsening affected the overshoot only slightly, while temporal
refinement caused much larger changes). However, in the case of the smooth initial
conditions (case shown in Figure 4.3 [left], the reverse was true (i.e., spatial under—
resolution caused much more severe peak loss than temporal under—resolution). This
indicates that the macroscale features must first be spatially resolved; after this,
temporal resolution becomes critical.

The next step is to extend this algorithm to more complex problems and demon-
strate the feasibility of the method. However, a brief excursion will be taken here.
The results of the previous chapters coupled with the analysis shown in [41, 38]
suggested a new application of the work done so far — a reinterpretation of viscous
conservation laws as (possibly stiff) relaxation systems, which is described in the

next chapter.



CHAPTER V

SOLUTIONS TO VISCOUS CONSERVATION
LAWS VIA EQUIVALENT RELAXATION
SYSTEMS

In this chapter, a new approach to solve viscous conservation laws is proposed
(preliminary results on this subject appeared in [3]). While this may not seem to be
relevant in the context of this thesis, it can be viewed as an interesting application
of the methods developed in earlier chapters.

But first, what are the difficulties associated with viscous conservation laws? To
use the parlance of relaxation systems, the primary issue is that of stiffness. Consider

the simplest possible case, the scalar advection—diffusion equation
Uy + AUy = €Uy (5.1)

where ¢ is the advection speed. As the coefficient of viscosity (€) approaches zero, the
equation becomes stiff. This stiffness is usually quantified by the numerical Peclet
number Pea = aAx/e (where Ax is the mesh size). Now if we consider the simplest

nonlinear example, the viscous Burger’s equation

2
uy + (%) = €Upy (5.2)

the problem becomes harder. Our eventual goal is to develop an algorithm to tackle

nonlinear systems of viscous conservation laws (e.g., the Navier—Stokes equations).

61
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In typical numerical computations of such systems of equations, a first step is often
a Roe—type linearization for the convection terms; thus, the building blocks of the
solution algorithm are scalar equations (since the linearized system is diagonalizable),
and this chapter will be limited to the successful solution of Equations 5.1 and 5.2.

There are two primary difficulties with viscous conservation laws. First, the
issue of stiffness, as mentioned above. For example, the standard numerical scheme
for Equation 5.1' has a Pea limit of 2, which is extremely restrictive. A frequent
remedy is the use of implicit schemes, but that leads to non—local algorithms, which
are difficult to parallelize (an issue that gains importance as we move on to systems
of equations and realistic problems). Second, a crucial difficulty arises in the context
of adaptive Cartesian—grid methods for the Navier—Stokes equations [22]. These
methods are being increasingly used to solve complex flows (such as Euler [6, 26, 59]
and MHD [35] flows, among others), and are thought to hold immense promise even
for viscous flows (once these problem issues are resolved). Hence, they provide a
strong motivation for this work. It was shown in [22] that for such methods, the
higher—order (viscous) terms led to an unavoidable loss of accuracy at high Reynolds
numbers when the grid was non—smooth, a problem that became particularly acute
at cut cells. This led to an impasse, with no obvious remedy. The hope is that these
problems may be circumvented by the use of the algorithm proposed here.

A brief description of the general form of nonlinear 2 x 2 relaxation systems is
given in Section 5.1, followed by an asymptotic analysis in Section 5.2, showing that
the relaxation system is asymptotically equivalent to a scalar conservation law with
viscosity. The idea is then to invert this analysis by finding, and using our algorithms

to solve, a relaxation system whose solutions are asymptotically close to those of the

Lupwind (central) differencing for the convection (diffusion) terms
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conservation law (Section 5.3). Finally, in Section 5.4, several linear and nonlinear

test cases are presented, compared against a rival method [76] and analytic solutions.

5.1 The General Form of the 2 x 2 Relaxation System

All the cases run in Chapters I1I and IV fell under a general canonical form. This

was simply the p—system with a source term

ur v, = 0 | (5.3)

vt )l = ——[o—gl)] (5.4)

which has eigenvalues

ar = F W] . ap=d(u)

In Section 5.2.1, we will see that the system is stable under Liu’s sub—characteristic
condition [49]

—ar <ag < ap = |CLE| <ap . (55)

5.1.1 The Linear Case

Equations 5.3 and 5.4 can easily be specialized to the linear case, in which p(u) =
atu, g(u) = agu, leading to the system

u v, = 0 (5.6)

v + latu), = —=[v—agu] (5.7)

with frozen (equilibrium) eigenvalues ar (ag) satisfying Liu’s sub—characteristic con-

dition (Equation 5.5). Setting ar = 7~/2, ap = 0 recovers the HHE’s (of Chapter II).
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5.2 Asymptotic Analysis of the Nonlinear 2 x 2 System

Start with the general 2 x 2 system (Equations 5.3 and 5.4). Define a* = /7, t* =
t /7, which eliminates the relaxation time from explicitly appearing in these equations.

The resulting equations, dropping the (*) superscript, are

wtv, = 0 (5.8)
vt [p(u)le = —[v—g(u)] . (5.9)

Now, let
v=g(u)+uv (5.10)

where it is assumed that vy (a low frequency component) is small and that its deriva-

tives (i.e., v1;,v1,) are even smaller [19]. Then,

v o= bWl = g (5.11)

v = L], = o . (5.12)

and Equations 5.9 and 5.10 give

vi=—v—[pw)], . where [p(w)], = (W) v, - (5.13)

Substituting Equation 5.12 into Equation 5.8 gives

This can be substituted into Equation 5.13 to give an expression for vy(u), which is

vy = —v— [p(u)], = [gl(u)]2 uy — [p(v)l, = {[g’(u)]2 —p’(u)}ux
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Thus, Equation 5.10 becomes

v=gl)+or = g +{ld@-p@lu (5.14)

which can be substituted into Equation 5.8 to give

wtve = 0 = w+lgw),=[{pw -’ . (515

Equations 5.14 and 5.15 are the desired asymptotic equations.
Recall that these equations are in transformed variable space t/7,x/7; however,

we can (trivially) back-transform them into into the original coordinates to obtain

vo= g+ {ld@]’ - p(w}u. . (5.16)
wtlgw)], = 7 [{p)-@P}u (5.17)

5.2.1 The Linear Case

This asymptotic analysis is easily specialized to the general linear case. Setting
p = a%u, g = agu in Equations 5.16 and 5.17 gives

Vo= CLEU—I-T[G%—G%] Uy (5.18)

u; +agu, = T [a% — a%] Upy (5.19)
Note that Equation 5.19 has stable solutions only if Equation 5.5 is satisfied (this can

be interpreted as the RHS representing positive dissipation which leads to decaying

solutions, or alternatively, as satisfying causality [79]).

The Hyperbolic Heat Equations

For the case of the HHE’s (ap = 772, ap = 0), the result is a little different,

because the frozen wavespeeds are a function of 7. Proceeding as in Section 5.2 gives

Vo= —Up ot TUper (5.20)

Uy = Upy — TUpppe - (5.21)
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Recently [41, 38, 15], schemes have been developed that solve relaxation systems
by building in this asymptotic information. Here, however, these relations are being

used to better design methods to solve viscous conservation laws.

5.3 A Solution Algorithm for Viscous Conservation Laws

Notice that for the general 2 x 2 case (Equations 5.3 and 5.4), the long-time
asymptotics were given by Equations 5.16 and 5.17. Equation 5.17 is clearly seen to
resemble the viscous Burger’s equation, for appropriate choices of g and p.

Recall the derivation of the HHE’s, as seen from the following (slightly different)
perspective. Start with the heat equation 6; = 6,,. To get rid of the higher—order

derivative from this equation, set
g=-0, (5.22)

resulting in

et:_Qw = et—l'qu:O 5

which is nothing but Equation 2.3. Next, write a relaxation equation for ¢ as

1
G = _; (q - Qeq)

But, ¢eq = —0, (from Equation 5.22), which gives

1 1
(Q‘I’el’) = Qt—l'_ex:_g 3
T T

¢ =—=
.

which is precisely Equation 2.4.
A two-step method is proposed here that uses the two preceding ideas (asymp-

totics and removal of higher—order derivatives) as building blocks. Consider a general?

2the flux g(u) is not specified as yet
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scalar viscous conservation law given by

ur + [g(u)]e = €ty . (5.23)

The first step is to transform this equation into a 2 x 2 relaxation system, similar to

the derivation of the HHE’s. Define a new variable v such that
U +v, =0 = v=g(u) —euy . (5.24)

Now, write a relaxation equation for v (as done in [63] and above, for the HHE’s) as

1
vp=——(V— Veq)
T

where veq = ¢g(u) — eu, and 7 is a parameter that will be determined by stability.
This gives

€

1
Vit —uy, = ——(v—yg) . (5.25)

T T
Thus, our transformed system can be written in the form of Equations 5.3 and 5.4,
with p = eu/7. We know (from Section 5.2) that the asymptotics for this relaxation

system are given by Equation 5.17, which needs to be matched to the conservation

law (Equation 5.23). Thus,

P -t =e = p= [[Sra . (520)

-
Finally, the relaxation system that solves the desired conservation law (Equation 5.23)
is given by Equations 5.3 and 5.4, with p(u) given by Equation 5.26.

For the viscous Burger’s equation,
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Note that for stability,

G <e¢/r = 1<

A
which is Liu’s sub—characteristic condition [49] and gives the restriction on 7. In the
actual implementation, 7 is chosen to be a little smaller (approximately 70%) than
this maximum allowable value.

Next, some cases are presented for the advection—diffusion equation and the vis-

cous Burger’s equation, and are compared against analytical solutions.

5.4 Test Cases

5.4.1 A Linear Case: The Advection—Diffusion Equation

Some results for the advection—diffusion equation were recently presented in [76],
using viscous traveling waves as a building block in the solution algorithm. This is an
expensive algorithm; however, the results achieved are very good. The present for-
mulation, which uses a transformation of the viscous conservation law to a relaxation
system, results in a very efficient algorithm. Solutions for four test cases are presented
in Figure 5.1, where the solid line is the analytical solution and the symbols (+) are
the computed results. In each case, the boundary conditions are [u_., = 4, uy., = 2].
The equation specific (¢, €) and computation specific (7, dz, v, t) data are given on
the plots themselves, as are the stiffness factors and the Peclet numbers.

The exact solution with these boundary conditions is well known, being

x
u(:l;,t):A—l—Berf [W] 5

A: (u—oo—l'u-l—oo) : B: (u—oo_u—l—oo)
2 2

The error function has been evaluated using a polynomial approximation [1].
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In the first three cases (presented in [76]), stiffness factors and Peclet numbers
are quite modest and the numerical results are seen to be in good agreement with
analytical ones and competitive with those in [76]. The last case has a large Peclet
number (Pea = 1000): although there is a (barely perceptible) overshoot, the results
are very good. Notice that the case with Pea = 0 is nothing but the heat equation
(0; = €0,,), being solved after the transformation to the relaxation system (though
this system is not the same as the HHE’s), which helps to tie up all the work done
so far (in this dissertation). It shows that the heat equation could have been solved
in this manner, since the proposed finite-volume schemes work equally well on the

original problem of heat conduction.

5.4.2 A Nonlinear Case: The Viscous Burger’s Equation

Here, a nonlinear viscous conservation law — the viscous Burger’s equation — is
transformed into a relaxation system and solved. Once again, comparative results
are available from [76], where viscous traveling waves were used.

Numerical results (4) are presented in Figure 5.2, superposed onto the analytical
solution (solid line). The boundary conditions are [u_o, = 2,u4o = —1], which
results in a shock moving to the right at a speed s = %

The analytical solution for this shock case is well known to be

u(z,t) = A— B-tanh l%] 7

A: (u—oo—l'u-l—oo) ’ B: (u—oo_u—l—oo)
2 2

The case on Figure 5.2 [left], which has a moderate stiffness factor and Peclet
number, is competitive with [76]. On Figure 5.2 [right], a case with a large Peclet
number (Pea = 5000) is solved. In both cases, the numerical solutions match the

analytical result very well.
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Figure 5.1: Solution (+) to the test cases presented in [76] [u_so = 4, Ut = 2],
superposed onto the analytical solution (solid line). In each of these,
we're solving Equation 5.1 after converting it into a relaxation system.



71

2.5 2.5
Pe~ 2.4 Pe = 5000
k=3 ko~ 0.75
U A U A
_1.5 1 1 1 1 1 _1.5 1 1 1 1 1
0.25 ¢ 125 0.25 v 1.25
Figure 5.2: Solution (+) to the test cases presented in [76] [u—oe = 2,Ut00 = —1],

superposed onto the analytical solution (solid line). In each of these,
we're solving Equation 5.2 after converting it into a relaxation system.

5.5 Discussion of Results

The goal of this chapter was to develop methods to solve linear and nonlinear
viscous conservation laws. It was shown how a scalar viscous conservation law could
be transformed into an equivalent relaxation system, and how this system could then
be solved by the methods developed in earlier chapters. Once the convection terms
are diagonalized (a standard procedure), the equations decouple and the scalar laws
become the canonical forms. In terms of obtaining the relaxation system, a little
care was needed, making sure that the asymptotics of the system matched those of
the conservation law being solved.

Of course, this entire procedure assumed that stiff relaxation systems (such as
Equations 5.3 and 5.4) could be solved accurately. This was justified by the promising

results shown in Chapters Il to IV, as well as those in [41, 38, 15]. But would this
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method even work? Several cases were shown in Section 5.4 for the advection—
diffusion equation and for the viscous Burger’s equation. In each case, the numerical
computations were in good agreement with analytical solutions (and competitive
with a rival method [76]), even for relatively large Peclet numbers (10° to 10%).
Moreover, this accuracy has been achieved at a very low cost, since the solver for the
relaxation system is a very simple one (as developed so far in Chapters II to IV).
One might ask what has been gained in this exercise. At first sight, it appears that
the viscosity stiffness has merely been replaced by the relaxation stiffness. However,
there are several advantages to this approach. First, a second-order system has
been transformed into a first-order one, which eliminates the problem of evaluating
second derivatives on irregular grids [22]. Second, the stiffness is solely due to the
source term, which is local; thus, the algorithm is only locally implicit and therefore
parallelizable. Further, a practical advantage is that the solver for relaxation systems
has not been specified — it can be chosen by the user. Finally, note that the time—
step is now governed by the convection term alone. These advantages, coupled with
the results shown already, indicate that the proposed approach is a viable one for
solving scalar viscous conservation laws, and should extend quite readily to the case

of practical systems, both for steady and unsteady applications.



CHAPTER VI

SOME REALISTIC APPLICATIONS

In this chapter, the methodology developed in earlier chapters will be extended to
solve (model) problems that are closer to reality. The Broadwell model is considered
first (Section 6.1), followed by the Euler equations with Heat Transfer (Section 6.2).
Finally, a simple example from higher—order moment—closure formulations (which are
currently of interest for rarefied—gas dynamics calculations) — the one-dimensional
10-moment model — is attempted (Section 6.3). The present method is demonstrated

to be a viable alternative, even when the the shock structure is not resolved spatially.

6.1 The Broadwell Model

The Broadwell model [11] is a simplified model of the Boltzmann equations, and
is a first step towards more complex discrete velocity kinetic gas models of fluid flow.
It describes the gas composed of discrete velocities (four and six in two— and three—
dimensions), governed by a binary collision law and limited to spatial variations in

one direction only. The evolution equation for the one dimensional solutions is [38]
Wy —I_ fx = ——S8 9
-

where w = (hy, ho,h_ )T, £ = (hy,0,h_)T, s = (¢,—q,¢q)" are the state, flux

and source vectors respectively, 7 is the relaxation distance (mean free path), and

73
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q = hyh_ — (ho)? is a measure of departure from equilibrium (in characteristic co-
ordinates). The state vector w denotes the mass densities of the gas particles with
speeds (1,0, —1) respectively, in space and time (x,t). These equations are already
in diagonal (characteristic) form.

The fluid dynamic (conserved) variables density (p) and momentum (m), as well

as a third (new) variable z are defined in terms of these mass densities as
p:h+—|—2h0—|—h_ 5 m:h+—h_ 5 Z:h+—|—h_ 5 (61)
resulting in the conserved variable form of the Broadwell model
1
w,+f,=——s |, (6.2)
T

where w = (p,m, 2)T, £ = (m,z,m)’, s = (0,0,Q)7 are the state, flux and source
vectors respectively, 7 is the relaxation distance (mean free path), and @) = %(2/}2 —
p* —m?) is the departure from equilibrium (in conserved variable space)®.

The reverse transformation, from fluid dynamic variables to the mass density

variables, is trivial, given by
1 1
h+:§(m‘|‘2) , ho=5(p—2) h—:§(2—m)

In equilibrium,

Q=0 = z= = g(l—l—lﬁ)

The characteristic equations can be integrated using the PI, scheme to give

(m+z)p—(m+2)a = =2k[pQp+ (1 —p)Qa] (6.3)
(p=2)p—(p—2)v = klpQp+ (1 —p)Qu] (6.4)
(z=m)p— (2 —m)p = —2k[pQp+ (1 —p)Qp] . (6.5)

!Note that ¢ and @ are (naturally) related, with @ = 24.
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Solving the acoustic equations (6.3 and 6.5) simultaneously gives

mp = Slmatza) — (s = m) + K1 0(Qs — Qa) (6.6)

Zp = %(mA + 24) + %(ZB —mp) = 2kpQp — K1 —p)(Qa +Qp) . (6.7)

The crucial change from previous examples is that there are now three character-
istics, which complicates the solution process. Note that in order to compute the
interface flux , mp and zp are the only variables needed. While mp has been explic-
itly obtained above (in terms of available data), zp requires (in addition to the values
at t,,) information at the interface at the previous time level (which itself would need
to be approximated using the values on either side). Further, elimination of the
nonlinear dependencies on the values at the new time level would require an expen-
sive and messy iterative solution procedure, contrary to the simple and economical
approximation desired. Recall that it was shown in [38] that the numerical scheme
must project the solution onto a local Maxwellian (equilibrium) at each time step?,
in order to achieve physical results; further, this must be the first step in a multi-step
process (to have the same effect in under—resolved methods as the initial layer).
Observing the difficulty in obtaining an explicit solution, and noting this equilib-
rium requirement, a natural approximation to make is to assume that equilibrium
is achieved at the newly computed point (i.e., Qp = 0). This provides a convenient
way to circumvent the difficulty while enforcing the equilibrium condition. Thus,
this approximation serves two purposes: first, it avoids the iterative procedure that
would have been necessary to solve the pair of nonlinear simultaneous equations,
and second, it projects the solution to a local equilibrium as has been shown to be

necessary to obtain physical solutions.

’In the case of under-resolved schemes, this mimics the initial layer. Further, the projection
onto equilibrium at each time step ensures passage from the relaxation system to the equilibrium
system.
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After incorporating these minor changes, the current scheme was ready for bench-
marking. Several test cases for the Broadwell model have been presented in [38, 15].
Figure 6.1 shows the results for the first case (initial data as well as all parameters
are given on the figure itself), where the plots show the conserved variables (p, m, z)
as well as (2 — zeq). The results obtained here are clearly very good, and the captured
shocks are crisp (narrower than those in [38]). The quantity (z —zeq), which measures
the departure from a true equilibrium flow, is non-zero in the non—uniform parts of
the solution. In [38]), it was proved that for that scheme, the departure would be
O(71), which appears to be true for the present method also, although the numerical
values here are even smaller.

Figure 6.2 shows four more test cases, which are compared to those in [15], with
each plot showing the conserved variables (p,m,z). Figure 6.2 [left, top] is a case
in the frozen regime (dx,dt < 7), where the pure method of characteristics would
be expected to do well (and does [15]). Figure 6.2 [right, top], the initial layer is
severely under—resolved (thick regime), and schemes that do not mimic this layer
(by projecting the solution onto a Maxwellian at each time step) are likely to have a
glitch and may even converge to spurious solutions. Recall that the current scheme
does not use any sort of initial-layer fix (unlike the method in [15]%); however, it
clearly gives the correct solution although with a small initial layer effect. Figure 6.2
[left, bottom] shows a case in the intermediate regime (dx,dt ~ 7), resulting in an
initial layer which is physical. Unfortunately, the numerical results exaggerate the
layer a little. Finally, Figure 6.2 [right, bottom] shows a Riemann problem in the

thick regime with a shock and a rarefaction, both of which are very nicely captured.

3A fix was required in [15] since their first step did not project the data onto a local equilibrium.
The fix is to use, for the first time step, a first—order scheme that does possess this projection
property and use a Richardson extrapolation to recover second—order accuracy.
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Figure 6.1: Solutions for the conserved variables density p, momentum m, z, as well
as a departure from equilibrium parameter z — z.q are plotted for the
Broadwell model (Equation 6.2), which may be compared to the results
in [38]. Initial data for the states w = (p,m, 2)T are [wy, = (1,0, 1)7,
wr = (0.2,0,1)T], the relaxation distance is 7 = 107%, and the solutions
are computed using a mesh size of dz = 0.005 and a CFL number of
v = 0.5, and shown at a final time ¢ = 0.25.
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Figure 6.2: Solutions for the conserved variables density p (4), momentum m (o)
and z (©) are plotted for the Broadwell model (Equation 6.2) for four
different initial conditions, all of which may be compared to the results
in [15]. Each solution is plotted at a final time ¢ = 0.5, and computed
with a CFL number v = 0.5. The data used, the relaxation distance 7
and the mesh size dz are given below.

Initial data A: wz = (1,1, 1)T, wg = (1,0.13962, )T, 2 < 0.2.
Initial data B: wy, = (1,0, 1)T, wgp = (0.2,0, )T, 2 > 0.2,
Left Top: Initial data A, 7 =1, de = 0.01.

Right Top: Initial data A, 7 = 1078, da = 0.01.
Left Bottom: Initial data A, 7 = 0.02, dz = 0.02.
Right Bottom: Initial data B, 7 = 107%, dz = 0.01.
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In fact, the present method results in sharper shocks than the scheme presented

in [15].

6.2 The Euler Equations with Heat Transfer

In this model, the Euler equations for gas dynamics are coupled with a simplified
heat transfer rate equation [55, 38], where the one dimensional flow of gas is assumed

to be in contact with a constant temperature bath. The evolution equations are
1
wi+f,=——s |, (6.8)
T

where w = (p, pu, pE)T, £ = (pu, pu?+p, pul )T, s = [0,0, p(T —Tp)]* are the state,
flux and source vectors respectively, 7 is the relaxation time, £ = e+ %uz is the total
specific energy, e is the specific internal energy, and H = E 4 p/p is the total specific

enthalpy. The closure equation is the usual y—gas law

p:(’}/_l)pe )

where p is the pressure of the gas. The specific internal energy is defined as

R

e=c¢lT ; c¢,=—— |,

where R is the gas constant, v = ¢,/¢, = 1.4 is the ratio of specific heats, and c¢,,
¢, are the specific heats of the gas. The equilibrium limit for Equation 6.8 is simply
the isothermal Euler equations.

Here, a special case
=1 = R=~v-1=04 |,
is chosen, and the temperature of the bath is set at

T():l
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The simplest manner in which to obtain the characteristics equations is to work
with the primitive variable formulation. The transformed equations can be easily
obtained (with a little algebra), being of the form of Equation 6.8, but with w =

(Pauap)T7 s =1[0,0,(y — Dp(T — TO)]T and

u p 0

JOF
AZQ—W: 0 u 1/p
0 vp w

The (frozen) eigenvalues of this system are
1/2
Ap=u—c¢, u, u+ec ; c:(ﬁ) ,

and the matrix of left eigenvectors is

0 pec —1

The characteristic equations, obtained by pre-multiplying Equation 6.8 by L, are

pedu —dp = —4k(y — D)p(T —Tp) along A1, (6.9)
dp—dp = —4k(~y —1)p(T — Tp) along Ay, (6.10)
pedu+dp = 4k(y — D)p(T —To) along As (6.11)

where the eigenvalues are numbered from smallest to largest.

Solving the acoustic equations (6.9 and 6.11) simultaneously gives

o () () Bt
op (PA ;pB) + fsé(“z“; “E) | k@ + 2601 = 0)(Qa+ Qs) - (613)
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Again, the projection onto equilibrium is enforced by assuming that )p = 0 in the
above equation (as was done for the Broadwell model). The density can now be

computed as

A

G a2 a

p=pm— lﬁ(up - UA)] + l(p“‘ _pM)] + lA‘k(l —lQazQu)) gy
Note that for the Euler equations, we cannot say a priori which characteristics are
positive or negative. Thus, the characteristic tracing step now includes the additional
computation of the characteristic velocities (and directions). Now, the characteristics
are traced back to the initial line, but take into account (via simple bookkeeping)
whether the characteristic intersects the cell to the left or right of the interface (at
the initial time level t,,).

To test the accuracy of the present method, the case shown in [38] is attempted,
with numerical results shown in Figure 6.3 for the primitive variables (p, u, p) and for
the departure from equilibrium: (£ — Ep). The initial data as well as other relevant
parameters are shown on the figure itself. The solution has a left rarefaction and a
right shock. The computation is in the thick regime (severe spatial and temporal
under—resolution). A comparison of the solutions obtained here against those shown
in [38] clearly demonstrates the accuracy of the present method. There are no over-
shoots at the tail of the rarefaction and the captured shock is extremely sharp (3
cells, as opposed to about 6 in [38], which is easily seen from the plot of E — Ey).
Further, this departure from equilibrium is again O(7) in the current method, far
smaller than in [38].

The experience gained from the last two sections provided the confidence to

attempt a case of particular interest to the CFD group at Michigan® - that of rarefied—

4The group at the W. M. Keck Foundation Laboratory for CFD at The University of Michigan—
Ann Arbor.
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gas dynamics and the higher-order moment-closure models [34, 13]. The simplest

(practical) model is the 1-D 10-moment model, which is attempted next.

6.3 Higher—-Order Moment—Closure Models: An Example
from the One—Dimensional 10-Moment Equations

The 10-Moment model [13], specialized to the one-dimensional case, is
1
w,+f,=——s . (6.15)
T

w = (p, pu, puP+p,2)", £ = (pu, pu+p, pu’ +3up,uz)’, s = (0,0, 2(p—2), 5(z—p)]"
being the state, flux and source vectors respectively, and 7 being the relaxation time.

The notation here is slightly different notation from [13], the correspondence being
U=Up | P=Pre ; 2= Pon

Observe that the equations in this form do not reduce to the correct equilibrium
limit as 7 — 0 (the one-dimensional Euler equations). This is because although
there are several ways to write the energy equation (via linear transformations of
Equation 6.15), only one reduces to the Euler limit as 7 — 0. This form is obtained by
adding the third and twice the fourth equations (of Equation 6.15), which eliminates
the source term in the resulting equation. The modified equations are of the form
of Equation 6.15, but with w = (p, pu, pu® + p + 2z, 2)T, £ = (pu, pu® + p, pu® +
Bup 4 2uz,uz)’, s =[0,0,0,%(z — p)]’. The system is now in the form of Liu’s [49]
relaxation system, and does go to the correct Euler limit as 7 — 0.

The equations in primitive variable form are given by Equation 6.15, but with
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Figure 6.3: Solutions for the primitive variables density p, velocity w, pressure p,
as well as departure from equilibrium F — FEy are plotted for the Euler
equations with heat transfer (Equation 6.8), which may be compared
to the results in [38]. Initial data for the states w = (p, pu, pE)T are
[wr, = (1,0, )T, wr = (0.2,0,0.2)T], the relaxation time is 7 = 1075,
and the solutions are computed using a mesh size of dr = 0.005 and a
CFL number of v = 0.5, and shown at a final time ¢ = 0.3.
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0 3pb* 0 u

where the sound speeds and the (frozen) eigenvalues are

1/2 - 1/2
a:(}—?) : b:(—) D M=u—V3a, u, u, u+V3a

p p

The matrix of left eigenvectors is

6a 6a2
A 8_F B 1 0 —# 0
AL VT S

0 \/50 1 0

leading to the characteristic equations

2dt
dp = V3padu = —Z—=(p—2)
T
2dt
dp —3a2dp = —Z(p—
p — 3a’dp s p=2)
dt [ (267 2
bdp —3a*dz = —— [(ﬂ) (p—z)] ,
T 3
2dt
dp = V3padu = —Z—=(p—2)
T

which are integrated along the characteristics using the PI, scheme to give

8

pp —ps — V3pia(up — up) = —gk (1Qp + (1 —p)Q8] (6.16)

b v =3 — ) = ke + (1 - wQu] (6.17)

Flpp — pa) = 32(p — 2v) = — 5k (20 4+ 30) Qe + (1 - 0Qu] (619
8

pp — pa + V3pa(up —us) = —gk (1Qp + (1 —p)Qa] . (6.19)
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The acoustic equations (6.16 and 6.19) can be trivially solved for up, pp giving

I (uA—I—uB)_I_ 1
r 2 2v/3pé

Sh1 - n)(@Qa - s)]

P4 —PB —

pa-t b+ VBpi(s = us) — Sk 20Qp + (1= 1)(Qa + Q)]

1
PP =75

As was done in Sections 6.1 and 6.2, the term involving (Jp is dropped to enforce

equilibrium. Knowing up, pp, p and z can be computed at the new time level (P) as

pr = patt g [~ par  VBjalur — ) + SR~ 0(@u — Q8]

3a?

1. . . .
P {252(}?13 — pur) — (20° + 34%) [pP — pa + V3pa(up — UA)] -

Zp = ZM+

6
gk(%? +3a%)(1 — p)(Qa — QM)]

Since this is a rather new area of research, there are very few test cases available. The
only one attempted here is a steady solution of the shock structure [13]. Although
this is not the best case for comparison (since it is a steady problem), it should
provide some idea of how the current method would perform on relatively unknown
equations. The initial conditions correspond to a steady (equilibrium) shock, with
the data given on the figure itself.

Two cases are considered: in the first, conditions similar to those in [13] are used
(non—stiff regime). In the second, a very small relaxation time is used (fluid dynamic
limit). Both cases are run with absorbing boundary conditions.

The results should be analogous to a comparison of Navier Stokes to Euler so-
lutions respectively. In Figures 6.4 and 6.5, we present the results of our numerical
experiments, and see that in the non—stiff regime, our solutions essentially reproduce
those of [13] with less spatial resolution. However, in the stiff case, the results look
remarkably like those observed in [2, 4], where slowly moving discontinuities left a

trail of oscillations. In this case, one would not expect this phenomenon, since the
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Figure 6.4: Solutions for the density p, plotted for the 10-moment equations (Equa-
tion 6.15), which may be compared to the results in [13]. Initial data
for the left state wy, = (p,u,p,z)" = (3, M,1,1)", where M is the Mach
number: M = 1.1 (top left), M = 1.35 (bottom left), M = 2 (top right)
and M =5 (bottom right). The relaxation time is 7 = 1, and the solu-
tions are computed using a mesh size of do = 1 (except the figure on the
bottom right, which uses dz = 0.5) and a CFL number of v = 0.5. All

solutions are shown at a final time ¢ = 100.
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Figure 6.5: Solutions for the density p, plotted for the 10-moment equations (Equa-
tion 6.15), which may be compared to the results in [13]. Initial data
for the left state wy, = (p,u,p,z)" = (3, M,1,1)", where M is the Mach
number: M = 1.1 (top left), M = 1.35 (bottom left), M = 2 (top right)
and M =5 (bottom right). The relaxation time is 7 = 107'°, and the
solutions are computed using a mesh size of do = 1 (except the figure on
the bottom right, which uses dz = 0.5) and a CFL number of v = 0.5.

All solutions are shown at a final time ¢ = 100.
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shock is stationary. However, it is the equilibrium shock that is stationary while a
frozen—characteristic method is used; no matter how stiff the test case, the solution
will relaz to equilibrium (by some finite amount), resulting in a numerical shock that
is not stationary. Thus, it is quite conceivable that the post-shock phenomenon is

back from the crypt [4]°.

°In [4], it was shown why post—shock oscillations were generated by slowly moving shock waves.



CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The primary goal of this study was to establish a systematic procedure for solv-
ing stiff relaxation systems, which has been achieved. The strategy was to start
with the simplest possible (model) problem and extend the solution methodology to
successively harder, and more realistic, problems.

In Chapter II, a linear 2 x 2 relaxation model was solved by the method of charac-
teristics. Chapter III described its extension to a finite volume formulation, capable
of capturing shocks and satisfying the weak form of the conservation laws (i.e., the
integral form). This was further extended in Chapter IV to account for nonlinear
effects (the work so far being limited to the 2 x 2 case). Finally, in Chapter VI, more
complex realistic applications were considered. A large number of test—cases were
run, most of which have been directly compared to current methods [38, 15, 76]. It
was found that the present method is at least competitive with the best solution
algorithms currently available. Further, using the analysis and methods developed
here, a new approach for solving viscous conservation laws was proposed (Chap-
ter V), which was demonstrated to be a viable alternative to current methods with
several added advantages. The most significant gains were the conversion of the

higher—order system to a first—order system, which eliminates the problem of accu-

89
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racy (in computing higher—derivatives) when solving viscous equations on irregular
meshes [22]'. Further, the time-step was dependent on the convection terms alone,
and good solutions could be achieved at low cost even for high Peclet numbers.

The method developed is fully discrete, second-order accurate, and performs
well even for severely under—resolved calculations (stiffness of one billion). Since it is
only point—implicit, it is simple, parallelizable and economical in computational and
developmental cost. Moreover, it is very easy to adapt even to relaxation systems
for which very little analytical information is available. Furthermore, the captured
shocks are typically far narrower than with rival schemes [41, 38, 15], and the CFL
(stability) condition is that of the homogeneous system.

The proposed method is a generalization of the point implicit scheme [83], and is
stable even for large stiffness (fluid dynamic limit). It does not suffer from the loss of
accuracy that is commonly noticed with Strang-splitting in this limit [55, 38]. Based
on early lessons, a coupling mechanism is built into the scheme, so that the numerics
mimic the physics by letting the wave families interact in the entire spatio-temporal
region bounded by the initial line and the domain of dependence. Although it has not
been proven, the method very likely projects the data onto an equilibrium solution,
since none of the cases attempted so far have led to blow—up or spurious solutions
(and it has been shown that lack of this projection property leads to these pitfalls). In
the limit of infinite stiffness, the PI, scheme asymptotically approaches the fully point
implicit scheme, which automatically satisfies this projection property [38]. Note
that while there is no initial-layer fix in the method presented here, the only place
where a spurious layer is visible is in the nonlinear Broadwell model (Chapter VI). A

successful method for the linear problem, the PI scheme, failed in the nonlinear stiff

1 This still leaves the issue of resolution [22].
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cases. It is conjectured that this was due to the method not having the conservation
property?. For the 10-moment equations, the under-resolved method gave rise to
oscillations but these were typically less than 1% of the shock jump for a stiffness
of the order of a billion, which is asymptotically the worst case. While the shock in
this problem is stationary (based on equilibrium wavespeeds), it is the full relaxation
system that is being solved. Therefore, there is a finite relaxation effect even for the
most severely under—resolved case, which may lead to a creeping motion of the shock.
Slowly—moving shocks also plague Euler solvers (FEuler equations being the fluid—
dynamic limit of the 10-moment model), and have been studied in detail recently [4].
However, the present results are no worse than Euler results obtained by conventional
solvers [4].

The success of the present approach lies in its ability to compute the fluxes more
accurately. This is done by using a characteristic tracing step to obtain states at
Gauss points along the interface, with the flux integral being approximated by Gaus-
sian quadratures. The characteristic tracing step incorporates the influence of the
source terms in a simple manner, leading to a good approximation to the time—
varying fluxes. It is seen to be a natural generalization of the Piecewise Steady
Approximation (which has been advocated for non—stiff source terms by several re-
searchers, e.g., [T1]). Although only a constant mesh size is used, the scheme would
readily extend to adaptive—grid methods.

This work also answers the question posed earlier by several researchers (e.g., [55,
41]: which fluxes and wavespeeds, frozen or equilibrium, are the correct ones to use

for such computations? It is natural to expect the frozen (equilibrium) fluxes and

ZNote that, intuitively, one would evaluate the source term halfway between the ends of the
characteristics for accuracy in the non—stiff cases, while evaluating it at the new time level in the
limit of infinite stiffness. These limits are attained quite naturally by the PI, scheme, using this
conservation property.
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wavespeeds to be the correct ones in the respective limits, but the ambiguity in the
transition has led to much speculation. The characteristic—based algorithm presented
here goes quite naturally from the frozen to the equilibrium limit, but never makes
use of equilibrium wavespeeds (i.e., only uses frozen characteristics).

Under—resolved schemes have been shown to be prone to two further shortcom-
ings [38]: first, the generation of spurious initial layers when the initial data are
not in local equilibrium, and second, the convergence of the scheme to the wrong
(unphysical) solution with (possibly) incorrect shock speeds and jumps. The results
presented here adequately demonstrate the robustness of the proposed scheme. It
has the correct long—time behavior with both spatial and temporal under-resolution,
and the results do not degrade in the intermediate regime. Further, the solutions
are always the physical ones, having the correct shock speeds and jumps, without
generating noticeable (erroneous) initial layers.

In terms of future work, there are several possibilities. First, an attempt needs
to be made to extend this methodology to multi—-dimensions. This could be done in
a reasonably straightforward manner if dimensional splitting was acceptable. There
are two possible ways to use dimensional splitting: first, to use Strang—type splitting
for the two directional operators, and second, to solve a one-dimensional problem
at each of the four interfaces (which may be better). If, however, the accuracy does
reduce to first-order, the extension could be much harder than anticipated and a
dimensional coupling would need to be sought. It is also not clear how the method
could be adapted to genuinely multi-dimensional approaches.

Recall that the 10-moment model was successtully solved for small stiffness, and
reasonable estimates were obtained in the fluid—dynamic limit. This suggests a sec-

ond promising avenue to explore would be to extend this procedure to solve the more
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complex higher—order moment—closure models. In addition, the two—temperature
model of the Euler equations with heat transfer was very similar (at first sight) to
models in computational combustion, indicating that numerical combustion may be
a third potential area of impact for the current methodology.

A fourth, and extremely promising avenue to explore, would be to attempt to use
the new formulation for viscous conservation laws (of Chapter V) to solve the equiva-
lent of the full Navier—Stokes equations, and to compare the algorithm efficiency and
accuracy with contemporary methods. Solutions to unsteady problems may be hard,
since the correct asymptotics would need to be determined. However, for steady
problems, whether or not the asymptotics are correct doesn’t matter. Moreover, the
advantage of being able to compute higher—Peclet-number flows than conventional
methods would speed convergence to steady state, and this is possibly the single

most promising area of application.
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APPENDIX A

THE P1, SCHEME

It is easy to show that for any set of linear equations
w+(A-u),=P-u ,
where A, P are constant matrices, a “conservative” form can be obtained as

(e Pu); + (e PPA u), =0

P

where ¢™" is a matrix exponential. For the HHE’s, it is simply

e P! = diag(1, e_t/T) \
resulting in the conservation condition
Z(k)y =% | (A.1)

where z(k) is one of the coefficients that appear in the method of characteristics
(see Section 2.3). What is desired here is a closed—form solution for the “best” place
at which to evaluate the source term in the context of a point-implicit method of
characteristics, the PI, scheme (Equation 2.19). This is determined by satisfying
conservation in the above sense for a constant state w = (6, ¢)7, the constraint for
which is

7 o= [ =2k(1 —w](1+2ku)™" = exp(—2k)
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This is easily solved for p to give

1 1

F= o2k~ 9

which can be expanded in a Taylor series around k = 0 to get

1k kB
— -y _E L 6
=515 50 oy O

and asymptotes to

p(k —o0) = T1

(A.2)

(A.3)

(A4)

The same analysis holds for the general form of the linear 2 x 2 system, and would

hold true for any linear system [check].

From this, two very simple, but nevertheless illuminating, conclusions can be

drawn. First, in the limit of & — 0 (i.e., in the limit of vanishing stiffness), 4 = 0.5

(the PIscheme, where the source term is evaluated midway along each characteristic).

Second, as the stiffness increases, the above analysis suggests evaluating the source

term increasingly closer to the new time level until in the limit of ¥ — oo, p =1

(the fully implicit scheme).
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APPENDIX B

The GAUSS POINTS AND WEIGHTS

The interface flux that was to be approximated by Gaussian quadratures was
(Section 3.4.1)

1 1 1 k=K
Fivi2 = §/lfj+1/2(a)d@ = 5 > wifipap(ar)
- k=1

where

(At A1) = 5L (1+6)

A =

[N

Here, £, and wj, are the location and weight of the & Gauss point, for a K point

quadrature, which are given below for the 3 point quadrature [1].

3 point quadrature: locations and weights

& = —0.774596669241483
& = 0.
53 = _51

wy = 0.553553553555556

0.883383388883839

5
I

w3 = U
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ABSTRACT

EXPLICIT CHARACTERISTIC-BASED HIGH-RESOLUTION ALGORITHMS

FOR HYPERBOLIC CONSERVATION LAWS WITH STIFF SOURCE TERMS

by

Mohit Arora

Chairman: Philip L. Roe

A new algorithm for the numerical solution of stiff hyperbolic relaxation sys-
tems is presented. It is an extremely simple characteristic-based, fully—discrete,
explicit, second—order scheme that is computationally inexpensive. It is accurate in
the non—stiff (rarefied) regime, and maintains its accuracy for moderate stiffness and
under—resolution. As the under-resolution becomes more severe, the results grace-
fully deteriorate, and even in the fluid dynamic limit, it appears to give the physical
solution (i.e., correct shock jumps and locations), although under—resolution does
introduce errors. Results are presented for a variety of linear and nonlinear test
cases, most of which are compared to current literature. In all cases, the present
results are at least competitive with the best available solutions, and often surpass
rival approaches. Moreover, a fresh approach is proposed for the solution of viscous

conservation laws via a transformation to a relaxation system, which becomes stiff



as the Peclet number (Px) increases. This has the potential of eliminating the errors
arising from higher—order differencing on irregular meshes, a severe problem in carte-
sian adaptive—grid methods. In short, since the method is robust, economical and
results in physical solutions (even in the fluid dynamic limit), it is a viable method

for computing under—resolved flows.



