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CHAPTER IINTRODUCTIONNon{equilibrium ows are often described by inhomogeneous hyperbolic systemsof conservation laws, where the source terms cause a \relaxation" towards equilib-rium. Such systems describe a wide variety of physical phenomena, such as gas owswith relaxation1 [37, 36, 8, 78, 20, 81, 82, 21, 65, 47, 48, 64, 42, 73, 5, 77, 12, 53, 52],multiphase ow2 [32, 51, 28, 75] and phase transitions [68], turbulence [30, 45], waterwaves3 [66], viscoelasticity4 [60] and reactive ows5 [9, 29, 50, 23]. Further, theygovern models for the kinetic theory of gases [17, 14, 7, 11, 33], and applications ofthese methods to kinetic{based schemes for compressible ow [27, 58, 56, 57] andrare�ed{gas ows (including MHD and re{entry hypersonics) [25, 10, 13].As is clear, such systems form an extremely important class of problems, and aretypically of the form wt + fx = �1� s ; (1.1)where w; f ; s are state, ux and source vectors respectively, and � is the relaxationtime of the problem (one can also look at a typical relaxation distance � = a� , where1including thermo{chemical nonequilibrium such as vibrational relaxation, dissociation and re-combination e�ects2which includes dusty gas ows3where gravity balances river{bed friction4memory e�ects5including computational combustion 1



2a is some characteristic velocity). This dissertation will be restricted to systems ofconservation laws with relaxation in the sense of Whitham [78, 79] and Liu [49], inwhich an N � N hyperbolic system relaxes in the limit of � ! 0 to an M � Msystem (M < N). An additional restriction is that the equilibrium eigenvaluessatisfy Liu's sub{characteristic condition [49, 79] (i.e., the equilibrium eigenvaluesinterlace with the frozen ones). This is the stability condition [49, 79], a requirementto obtain decaying (rather than growing) solutions. Alternatively, this condition canbe understood in terms of causality6.Whitham's work [78, 79] on the theory of linear relaxation systems has since beenextended to non{linear systems, using a prototypical 2 � 2 system. The stability ofthis system (under the sub{characteristic condition) and that of its zero relaxationlimit (the time{asymptotic solution7) were proven in [49] and [18], respectively.Relaxation systems are characterized by dispersive wave behavior8 and the pres-ence of multiple scales in the problem. The ow starts out at the frozen limit(t=� ! 0) and relaxes to the equilibrium limit (t=� ! 1). When at least oneof these scales is much smaller than the others, the problem is said to be sti�.It is usually impossible to separate physical problems into non{sti� and sti�regimes, especially for multiple relaxation times, mandating a solution to the fullrelaxation system in all cases. For example, if there are two relaxation times, anumerical time{step that fully resolves one of these relaxation times (not sti�) maybe inadequate to resolve the other (sti�). If the goal is to obtain microscale features(reaction fronts, shock structures etc), then there is no substitute for resolution6Initial disturbances travel with the propagation speeds of the full relaxation system, while later,they travel with those of the reduced system; hence, a natural requirement is that the equilibriumspeeds be bounded by the frozen ones (for each pair), resulting in the interlace condition.7The knowledge of the long{time asymptotics for the relaxation system have been recentlyincorporated into a very successful numerical algorithm [41, 38, 15].8Dispersive waves are those whose wavespeeds are functions of the wavenumber.



3(i.e., time steps that fully resolve all time scales of the problem), and the resultingcomputation would be necessarily in the non{sti� regime. If on the other hand,macroscopic quantities are of primary interest, then it would be prudent to usean under{resolved method that resolves such quantities but not relaxation zones orlayers. However, such under{resolved (sti�) methods, while potentially economical,are hard to compute.There are several approaches one could take. The �rst is to use a fully explicitscheme, which has the advantages of simplicity and local data{dependencies (henceparallelizable); however, since stability constrains the time step to be smaller than therelaxation time, the computational cost is tremendous. The second option is to usea fully implicit scheme, which eliminates the time step restrictions. But implicitnesscauses global data{dependencies, rendering such schemes very hard to parallelize,potentially a severe disadvantage when solving for ows around complex geometries.Further, the gain in stability is partially o�set by the loss of accuracy, a situation thatdoes not arise in ODE's but does in the context of wave{propagation problems. Athird, and frequently used alternative, is operator splitting [67], in which the hydro-dynamic and non{equilibrium equations are solved alternately. While this methodappears reasonable, it is probably not the best choice (simply because two physicallysimultaneous e�ects are arti�cially converted into sequential e�ects). In fact, it hasbeen demonstrated in [55, 38] that such fractional{step methods reduce from second{to �rst{order accuracy in the uid dynamic limit (� ! 0), since the numerical ap-proximation becomes an O(�t) approximation to the equilibrium equation [38]. Itwas also shown there that neither higher{order Runge{Kutta nor higher{order re-construction alleviates this problem of reduced accuracy for split operator methods.Thus, it is not the stability condition alone that makes this problem hard.



4Since each of the above options has advantages as well as drawbacks, it is quitelikely that the ideal scheme would have a hybrid character { being local (henceparallelizable) and yet not having the time step constrained by stability to be smallerthan the relaxation time. A promising variant that has such properties is the point{implicit method [83], where the source term is treated implicitly (locally).Studies focusing on numerical algorithm development for relaxation systems havebeen many [31, 54, 55, 71], but only recently have good results been obtained forthe di�cult uid dynamic limit by Jin and Levermore [41], Jin [38] and Caisch, Jinand Russo [15]. It was shown there that poor results are achieved for under{resolvedmethods if the physical asymptotics are not matched by the numerical schemes, e.g.,in sti� cases, the numerical dissipation far overwhelms the physical dissipation. Fur-ther, some schemes may even converge to non{physical solutions [38, 15]. Hence,in [41], the physical asymptotics governing the relaxation systems are incorporatedinto the numerical algorithm in a semi{discrete manner9. This is extended to thefully{discrete case using Runge{Kutta methods coupled with a good integrator forthe sti� ODE's, employing a method of lines approach [38, 15]. While the resultsobtained by this approach are very good, the method development is quite involved,requires some a priori knowledge of the asymptotics and appears to be computation-ally expensive.So what are the goals of this dissertation? The �rst aim is to establish aphysically{based systematic procedure to solve sti� relaxation systems. In contrastto earlier work, the approach will be to devise fully{discrete, second{order accurateschemes, that are reasonably accurate for a large range of �t=� , �x=�, with resultsallowed to degrade gracefully as the sti�ness (under{resolution) increases. How-9This is not the �rst instance of using the asymptotics in numerical schemes, these having beenapplied in [44, 39, 43, 40].



5ever, a natural requirement is that the method result in physical solutions (capturedshocks with correct propagation speeds and jumps), even for severely under{resolvedcases. The non{relaxable (pun intended) design constraints are to keep the schemesimple, economical and parallelizable. Additionally, it would be desirable to havestability governed by the CFL10 condition based on the homogeneous system, andsharp captured shocks.The �rst step was to select an analytically tractable linear model that exhib-ited most of the di�culties of realistic sti� relaxation systems. It was hoped thatthis model would provide valuable analytical insight into such systems, perhaps alsoclarifying the advantages and disadvantages of some of the current solution method-ologies. To start with, the study was restricted to a shock{�tting framework witha unity CFL number (Chapter II). This helped isolate errors related to discretiza-tion and highlighted the fundamental problems associated with sti� source terms.Chapter III describes how the method development of Chapter II was extended tonon{characteristic meshes and shock capturing, using one of the most successfulmethods for solving homogeneous non{linear conservation laws { the �nite{volumemethod. However, at this stage, the problem was still restricted to the linear case,and an attempt was made to benchmark the results. Once satisfactory results wereachieved, the method was modi�ed to account for non{linear e�ects (Chapter IV);several test cases were attempted, which helped put the present work in perspective.In Chapter V, a new method for the solution of viscous conservation laws is proposed,that results from an inversion of the analysis performed and algorithms developedin Chapters II to IV. More realistic relaxation systems are solved in Chapter VI,followed by some concluding remarks and suggestions for future work (Chapter VII).10The CFL, or Courant{Freidrichs{Levy, condition is the stability condition { physically, it de-mands that the numerical domain of dependence include the entire physical domain of dependence.



CHAPTER IIA MODEL FOR DISPERSIVE WAVES {THE HYPERBOLIC HEAT EQUATIONSThe �rst step towards establishing a systematic methodology for solving relax-ation systems was the selection of an appropriate model problem that exhibited thedi�culties of realistic systems of this type and yet was simple enough to permit adetailed analysis. The aim during this stage was merely to determine whether meth-ods currently in use were adequate. If they weren't, to determine what modi�cations(if any) would work, or else to design a new method to solve this class of problems.Besides giving rise to dispersive wave behavior, the source terms present may alsobe sti�1, which leads to a trade{o� between spatial/temporal under{resolution andprohibitive computational expense.There are several approaches one could take as discussed in Chapter I. However,all the schemes appear to represent tradeo�s, and this work represents a systematicquest for a method that combines all the advantages without carrying around thedisadvantages. In the past, there have been several attempts, based on physicalprinciples or mathematical analysis of (often scalar) model problems, to incorporatesource terms into numerical procedures. However, the behavior uncovered in this1Sti�ness arises when the equilibration time of a non{equilibrium process is much smaller thanthe ow residence time. 6



7chapter { that of the coupling between di�erent wave families caused by the sourceterm { can never be captured by scalar models. A brief description of the chosenmodel { the Hyperbolic Heat Equations [62, 63] (also referred to as the Maxwell{Cattaneo equations) { is given, followed by the design of numerical methods forsolving this system in the smooth region alone (i.e., shocks are not being capturedin this chapter). Further, in order to isolate errors due to the source alone, onlycharacteristic meshes are considered (i.e., all the cases are computed for a unityCFL number based on the frozen wavespeed).A brief derivation of the model, a linear 2�2 relaxation system, and its analyticalproperties, is given in Section 2.1. A Riemann problem is presented in Section 2.2,for which an exact solution exists (in closed form) for the heat ux in the smoothregion between the characteristics and for the exponential decay of the discontinu-ities involved. The two simplest discretizations are shown in Section 2.3; however,counter{intuitive numerical results obtained for these schemes motivated attemptsto improve on them. Lack of correlation between expectations of further experimentsand numerical results (Section 2.3.1), based on a large number of experiments, sug-gested a fresh start using additional analytical information. In the process of devisingan optimal higher{order scheme, the reasons for the poor performance of the puremethod of characteristics have been uncovered (Section 2.4). Finally, more practicalhigher{order schemes are presented (Section 2.5), wherein the key features of the op-timal scheme are incorporated in a much simpler manner, and Section 2.6 providesthe reader with a brief summary of this chapter.The work presented in this chapter has appeared in [62, 63]; while a comprehensiveoverview follows, the interested reader is referred to [63] for more details.



82.1 The Hyperbolic Heat EquationsConsider the ow of heat in a uniform conducting bar. Conservation of energymay be stated as �t + qx = 0 ;where �; q are the temperature and heat ux respectively, and units have been chosento give a heat capacity of unity. Usually, one would now invoke Fourier's law q = ��x(assuming units where the proportionality constant, the heat conductivity, is unity),which would lead to the heat equation�t = �xx :However, this gives the paradoxical result of an in�nite propagation speed for adi�usion problem. A convenient way around this is to assume a relaxation model [16,72, 47], the simplest version of which is�qt + �x = �q ;and where � is a relaxation time. This leads to the Hyperbolic Heat Equations(HHE's), which are2 �t + qx = 0 ; (2.3)qt + 1� �x = � q� : (2.4)2The general form of the HHE's isut + vx = 0 ; (2.1)vt + a2Fux = �1� (v � aEu) ; (2.2)where aF (aE ) are the frozen (equilibrium) wavespeeds [at which high (low) frequency waves travel].In Section 5.1, a generalization of this system is analyzed, as well as its nonlinear analogue.



92.1.1 DispersionThe dispersive character of these equations may be seen by considering solutionsof the form 0BB@ �q 1CCA = R26640BB@ TQ 1CCA exp[i(!t� �x)]3775 : (2.5)which leads to the dispersion relationship�!2 � �2 = i! : (2.6)For an initial value problem (which is of interest here), � is a real wave number and! is a complex frequency (! = !R + I!I , I2 = �1), whose real part is a frequencyand imaginary part is a damping rate. These relations can be easily solved to obtain!R� = �� 12  1� 14��2!12 � a(�) ; (2.7)!I� = 12 �1� �1� 4�2�� 12 � ; (2.8)where a(�) is the wave speed and !I� is the damping rate (the waves being dampedat a rate e�!I�). In Figure 2.1, the wavespeed a(�) [upper] and the damping ratee�!I� [lower] are plotted against the non-dimensional wavenumber � 12 �.For very high wavenumbers �, the propagation speed is the frozen characteristicspeed �� 12 . For decreasing wavenumbers, the propagation speed is reduced, becomingzero when � = 12�� 12 , i.e., a vanishing equilibrium wavespeed at this wavenumber(called the bifurcation point). For all wavenumbers in the range [12�� 12 ;1], thewaves are damped like e�t=2�.When � = 0, the problem reduces to �t = 0, �qt+q = 0 [hence, �(x) is an arbitraryfunction of x alone, and q = q(x)e�t=�]. Since these have solutions corresponding to!I� = 0, 1 respectively, both branches of Equation 2.8 are relevant. The upper
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Figure 2.1: Analytic Dispersion Diagrams [wavespeed (Equation 2.7) and damp-ing rate (Equation 2.8)] for the Hyperbolic (solid lines) and Parabolic(dashed lines) Heat Equations.



11branch makes second-order contact with the dispersion relationship for the regularheat equation, which is !R = 0 ; !I� = �2� ; (2.9)shown as dotted lines in Figure 2.1.2.1.2 Characteristic EquationsIntroducing characteristic coordinates� = t+ � 12x ; � = t� � 12x ; (2.10)transforms the HHE's to�� + � 12 �q� + q2� � = 0 along dxdt = ��1=2 ; (2.11)�� � � 12 �q� + q2� � = 0 along dxdt = ���1=2 ; (2.12)which are the characteristic equations for the HHE's. Unfortunately, it is not possibleto integrate these equations and obtain Riemann invariants, as can be done withlinear homogeneous systems. Thus, a numerical method of characteristics is nolonger an exact method.As usual, the solution admits discontinuities that lie along characteristic paths,and it is easy to show that the jump relationships are those of the homogeneousproblem (i.e., across a jump in the �-direction, �� = � 12�q, while across a jump inthe �-direction, �� = �� 12�q).2.2 A Riemann Problem and its Exact SolutionA natural problem to pose in connection with the hyperbolic model of heat con-duction is that of two semi-in�nite rods, having temperatures �L, �R, brought into



12
�10 0 10�30
3

x
q t = 1t = 2t = 3t = 4t = 5t = 6t = 7t = 8t = 9t = 10

Figure 2.2: Exact solution to the Riemann Problem for the heat ow q, with thesmooth region given by Equation 2.13, shown for several times. Theinitial condition is a jump in � and q = 0.
O - x6t����������� Q

x = �� 12 t
AAAAAAAAAAKPx = ��� 12 t� = �Lq = 0 � = �Rq = 0Figure 2.3: Schematic of the Riemann problem of Section 2.2, where OP and OQ arethe frozen characteristics along which the (decaying) jumps propagate,and POQ is the region in which a solution is sought.



13contact at t = 0. The analytical solution is shown in Figure 2.2, where the exponen-tial decay of the jumps along the characteristics is clearly observed.The solution for q in the region POQ (see Figure 2.3), is [63, 74]q(�; �) =  �L � �R2� 12 ! exp �� + �4� ! I00@s ��4� 21A=  �L � �R2� 12 ! exp�� t2� � I00@st2 � �x24� 2 1A ; (2.13)where I0 is the modi�ed Bessel function of order zero. Note that the discontinuitiesdecay at a rate e�t=2� .2.3 Simple Discretizations and Numerical Results
����������������r B�dxdt = ��� 12AAAAAAAAAA AAAAAKrM rA �dxdt = �� 12 rP

Figure 2.4: Stencil for the Method of Characteristics, where AP , BP are the char-acteristics and P is the point being computed. Note that no informationfrom the point between A;B is used, resulting in odd{even decoupling.The two simplest discretizations are the Point Implicit (PI) and the OperatorSplitting (OPS) methods. Based on the characteristic stencil shown in Figure 2.4,both result in solutions of the form�P =  �A + �B2 !+ � 122 X(k)(qA � qB) ; (2.14)qP = Z(k)�qA + qB2 �+ �� 122 Y (k)(�A � �B) ; (2.15)



14where the functional parameter k is the sti�ness factor de�ned byt=� = 3t=� = 6t=� = 10t=� = 30t=� = 60t=� = 100t=� = 300t=� = 600t=� = 1000Table 2.1: This table describes the symbols and line styles used for plotting numericalresults. They correspond to di�erent times at which the solution errorsin q and � have been plotted versus the sti�ness factor k.k = 12 �t� : (2.16)To obtain the PI scheme, the Equations 2.11 and 2.12 are integrated along thecharacteristics. The source term is evaluated along each characteristic separately,by taking the value halfway between the ends of the characteristic. These midpointvalues are obtained via a linear interpolation, i.e.,q�; � = 12 (qP + qA;B) ;which leads to coe�cientsX = 1 � k ; Y = (1 + k)�1 ; Z = (1 � k)(1 + k)�1 : (2.17)This scheme has been applied to practical problems in [80], although k < 1 for allcases there (not sti�). For k > 1, however, the coe�cient Z does not look promising.



15On the other hand, the operator splitting method circumvents the problem of thesource term by splitting the solution procedure into two parts { a damping stage (L1)due to the source term alone, followed by a solution of the homogeneous problem(L2), using the sequence of operations L1 L2 L2 L1 [67] for second{order accuracy3.This leads to coe�cientsX = e�k ; Y = e�k ; Z = e�2k ; (2.18)which look far more promising, because the coe�cients appear to reect appropriatedecay rates. Indeed, Z(k) = e�2k corresponds to the decay rate of the ordinarydi�erential equation, and X(k) = Y (k) = e�k corresponds to the decay rate ofthe characteristic discontinuities (Equation 2.13, [79]4). However, contrary to thisreasoning, observe the results in Figures 2.5 and 2.6, where the PI scheme clearlyoutperforms the OPS scheme by up to 4 orders of magnitude when k is large. Notethat both schemes are second{order accurate (and roughly equivalent) if k is small.For k of order unity, the PI scheme is still second{order. For k large, the PI schemeis a little less than second{order accurate, but the OPS scheme degrades to O(1)(similar to the observations in [55, 38]).Next, several attempts were made to improve on these methods, based on ra-tional constraints. One which was thought to be important was \conservation" (inthe sense described in Appendix A). The PI scheme, although it convincingly out-3While L2 L1 L1 L2 is equivalent for second{order accuracy [67], it has been shown in [38] thatthe L1 L2 L2 L1 ordering is more appropriate when solving relaxation systems. This is because useof an under{resolved method (where spatial or temporal scales are such that �x > � or �t > � ) doesnot resolve the initial layer. The e�ect of this layer is to project the data onto a local equilibrium.Since this layer is not resolved by the numerical scheme, its e�ect much somehow be built into thealgorithm. This is important, because when such a step is missing, numerical methods can resultin spurious solutions. An implicit step projects the initial data onto a local equilibrium [38]; thus,the damping step must be the �rst one in split{operator methods. Note, however, that the resultsof [55, 38] show that Strang splitting [67] reverts to �rst order accuracy in the uid dynamic limit(� ! 0), as the scheme becomes an O(�t) approximation to the equilibrium system.4In the general (linear) case, the decay rate of the discontinuities is e��k, where � is a constantdependent on the frozen and equilibrium wavespeeds.
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Figure 2.5: L2 norm of the solution error in q and � vs the sti�ness factor k for thePI (Point Implicit) scheme (see Table 2.1 for a key to lines and symbols).The solid line has a slope of 2.
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Figure 2.6: L2 norm of the solution error in q and � vs the sti�ness factor k for theOPS (Operator Splitting) scheme (see Table 2.1 for a key to lines andsymbols). The solid line has a slope of 2.
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Figure 2.7: L2 norm of the solution error in q and � vs the sti�ness factor k for thePI� (Point Implicit with implicitness factor) scheme (see Table 2.1 for akey to lines and symbols). The solid line has a slope of 2.



19performs the OPS scheme, does not have this property. Is a modi�cation to thePI scheme possible that would satisfy Equation A.1? This line of inquiry led to ageneralization of the PI scheme, which will be denoted as the PI� scheme, where �is the degree of implicitness5. Again, Equations 2.11 and 2.12 are integrated alongthe characteristics. However, the source term is now approximated as6q�; � = �qP + (1 � �)qA;B ;which leads toX = 1 � 2k(1 � �) ; Y = (1 + 2k�)�1 ; Z = "1 � 2k(1 � �)1 + 2k� # : (2.19)The choice of � remains. This is determined by enforcing \conservation" and isderived in Appendix A to be � = 11� e�2k � 12k : (2.20)Note that in the non{sti� limit (k ! 0), � = 12 (which is simply the PI scheme).However, in the limit of k ! 1; � " 1 (which is fully implicit). Numerical resultsfor this scheme are shown in Figure 2.7. Surprisingly, the PI scheme performs betterthan the PI� scheme7, although the latter is somewhat better than the OPS scheme,and approaches the OPS scheme for large k.Based on numerical experiments, the success or failure of these methods seemedto correlate with the discrete dispersion relationships, which are discussed next.5By degree of implicitness, we mean that the scheme has a hybrid character, being partly explicitand partly implicit. In one limit (� = 0), it is fully explicit while in the other (� = 1) it is fullyimplicit. For all 0 < � < 1, it has some \degree" of implicitness. Note that in the context of themethod of characteristics, the work required to solve the pair of characteristic equations remainsconstant (in the linear case).6The source term is being evaluated at some point tn + ��t, where � 2 [0; 1] along the charac-teristics. Since � is normalized, it can be considered to represent a point along the time axis, sincethe normalized distance along the characteristic is the same as that along the time axis.7It will be shown in later chapters that conservation becomes far more important in the contextof under{resolved methods for nonlinear relaxation systems.



202.3.1 Discrete Dispersion RelationshipsWriting Equation 2.5 in discrete form as0BB@ �q 1CCAnj = R26640BB@ TQ 1CCA exp[i(!n�t� �j�x)]3775 ; (2.21)and using Equations 2.14 and 2.15 givesdet �������� exp(i!�t)� cos(��x) �i� 12X(k) sin(��x)�i�� 12Y (k) sin(��x) exp(i!�t)� Z(k) cos(��x) �������� = 0 ;which can be simpli�ed to giveexp(i!�t) = (1 + Z(k)) cos(��x)� [(1� Z(k))2 cos2(��x)� 4X(k)Y (k) sin2(��x)] 122 ;(2.22)which is the discrete dispersion relationship for the method of characteristics. Notethat only those wavenumbers for which ��x � 12� can be resolved. The factor 12arises because the stencil for the method of characteristics decouples odd and evenpoints (see Figure 2.4). For this maximum frequency,exp(i!�t) = �i[X(k)Y (k)] 12and hence, if XY is positive, !R�t = �12� ;which gives the wavespeed a(�max) = ��x�t = ��� 12 . If XY is negative, then!R = 0 :Thus, for any method of characteristics, the highest wavenumber observable on themesh is either stationary or propagated at the frozen speed. Figure 2.8 shows theDiscrete Dispersion plots for the PI scheme for several values of k. Each plot is



21
-1

-0.5

0

0.5

1 o

o

o

o

oooooooooo

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

oo
oo

oo

oo

oooooo

0 0.5 1 21� 12� -
a(�)6

e�!I�6
0 0.5 1 21

Figure 2.8: Propagating speeds and damping ratios for the PI (Point Implicit)method. k = 0:25, 0:5, 1:25, 2:5, 5:0, 12:5, 50
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Figure 2.9: Propagating speeds and damping ratios for the OPS (Operator Split)scheme. k = 0:25, 0:5, 1:25, 2:5, 5:0, 12:5, 50
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24terminated at the right by a symbol located at the maximum wavenumber for thatvalue of k, derived from 12� = �max�x= �max�t� 12= 2k� 12 �max ;� 12 �max = �4k :In the upper plot of Figure 2.8 (wavespeed), it is seen that these symbols lie eitheron the axis or on the upper and lower limits as predicted. The diagrams as a wholeclosely follow the analytical behavior. In the lower plot (damping) there is goodagreement only for the upper lobe at large k but moderate agreement everywhereelse.In Figure 2.9, which shows the analogous plots for the OPS scheme, the situa-tion is reversed. For small k, damping levels are very good; however, as k increases,the high wavenumbers are rather heavily damped, which may manifest itself as dis-sipation in a numerical scheme. But the wavespeeds are poorly approximated bythis scheme, with stationary waves being incorrectly propagated at the grid speed�x=�t. Given this erroneous wave propagation, it is natural to expect these wavesto be highly damped, as is clearly observable from Figure 2.9.Interestingly enough, the PI� scheme follows in the footsteps of the OPS schemefor moderate sti�ness (Figure 2.10), propagating all waves (including stationary ones)at the grid speed while damping them quite heavily. However, for large sti�ness, itdoes capture the stationary wave behavior and reduces the damping to modest levels.Thus, the e�ects of incorrect wave propagation and damping levels are quite closelylinked.



25The problem of false wave propagation can be dealt with, to a large extent,by enforcing that transition between propagating and stationary waves occur atthe correct wavenumber (called the bifurcation point). From Equation 2.22, thebifurcation occurs for tan2(��x) = (1� Z(k))24X(k)Y (k) : (2.23)Since bifurcation should actually take place at ��x = 12�� 12�x = k (see Sec-tion 2.1.1), enforcing the condition
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6k 0 0.5 1 21Figure 2.11: Splitting into damped and propagating modes according to the analyticsolution, or the method of characteristics for the PI, OPS, PI�, CB andTOPT schemes (1� Z(k))24X(k)Y (k) = tan2(k) (2.24)ensures bifurcation at the correct wavenumber. The actual wavenumbers at whichbifurcation occurs (for the schemes discussed so far) is plotted in Figure 2.11.Several other \reasonable" constraints are possible, such as enforcing correctdamping rates for the highest wavenumbers (Z = e�2k) or requiring that the scheme



26be derivable from some pair of characteristic equations (Z = X � Y ). Imposing somepair of constraints then leads to di�erent schemes. One such pair that looked promis-ing was what will be called the CB scheme (CB enforces conservation and correctbifurcation), given by Z(k) = e�2k ; (2.25)X(k)Y (k) = (1� e�2k)24 tan2 k for k < �=2 (assume X = Y ) : (2.26)At the end of the day, it was found, surprisingly enough, that the simple PI schemewas awfully hard to beat [see Figure 2.12, which also includes the CB scheme].Further, this �gure shows that the various schemes can di�er by more than twoorders of accuracy in their root mean square errors. That is, even though all theschemes are formally second{order accurate, the error constants di�er enormously.This lack of correlation between expectations based on desirable properties enforcedand numerical results obtained led to the belief that there was more to this problemthan met the eye.Why is it that none of the method of characteristic schemes are a signi�cantimprovement over the simple PI scheme? And is the method of characteristics, in itspure form, even appropriate for dispersive wave problems? These lines of questioningled to the work in the next section, where the availability of an exact solution inintegral form spotlights the missing feature in all the schemes tried so far.2.4 Coupled Characteristics and the Optimum SchemeIntegrating around the circuit given in Figure 2.13[left] results in the governingintegral equations (derived in [63]), which are�P = 12e�k(�A + �B) + � 122 Z BA (
� �
t)�dx � � 122 Z BA 
qxdx; (2.27)
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Figure 2.12: L2 norm of the solution error in � vs the sti�ness factor k for severaldecoupled schemes at t=� = 10. The solid line has a slope of 2.

����������rA AAAAAAAAAA rBrPrM ����������rA AAAAAAAAAA rBrPrMAAAAArF �����rGFigure 2.13: Stencil for the Coupled Method of Characteristics (OPT) [left] and thatfor the Simple Coupled Schemes (PC(S)) [right].



28qP = 12e�k(qA + qB)� � 122 Z BA 
tqdx� �� 122 Z BA 
�xdx; (2.28)where 
 is the Riemann function [74]
(�; �) = exp � � �1 + � � �14� ! I00@s(� � �1)(� � �1)4� 2 1A : (2.29)To create a numerical method requires evaluation of the integrals. The function 
(and hence its derivative 
t) is of course known exactly, but the functions � and qneed to be approximated, and will be represented as polynomials given byu(x) = 12(uA+uB)+ x4k� 12 (uB�uA)+ x2 � 4k2�8k2� (uA�2uM+uB)+O(�x3); (2.30)ux(x) = (uB � uA)4k� 12 + x4k2� (uA � 2uM + uB) +O(�x2); (2.31)where a quadratic variation in u has been assumed, and u is either q or �. The fullydiscrete solution is [63]�P = 12(�A + �B) + � 124k (1 � e�2k)(qA � qB)+ 14k2 (e�2k � 1 + 2k � 2k2)(�A � 2�M + �B) ; (2.32)qP = e�2k2 (qA + qB) + �� 124k (1 � e�2k)(�A � �B)� 14k2 [e�2k(1 + 2k + 2k2)� 1](qA � 2qM + qB) : (2.33)Note that Equations 2.32 and 2.33 are not of the form of Equations 2.14 and 2.15,having an extra term that involves the middle point M . This is the key observationhere { this method (which is near{optimal) couples the characteristics via this mid-dle point. What this means is that the source term provides a mechanism for theinteraction of the wave families, which shows up in the discrete solution as the terminvolving the middle point M (see Equations 2.32 and 2.33). In short, the solutionat P depends on the entire length of the initial line between the characteristics, i.e.,



29between A and B, including M). The entire spatio{temporal region PAMB (Fig-ure 2.13) is a region of wave interaction (of the two wave families) due to the sourceterm.The second{di�erence terms are in each case of order k�x2. An analysis ofthe truncation error indicates that their inclusion yields a scheme with third{orderaccuracy, whereas a scheme that excludes them is second-order at best.Numerical solutions shown in Figure 2.14 are clearly far superior to those achievedby either the PI or the OPS schemes (and also much better than their second-ordercousins shown in Figure 2.12). This scheme, which will be designated as the Opti-mum (OPT) scheme, is third{order accurate, and demonstrates that this coupling ofcharacteristics is crucial. As a test, this system was \decoupled" by neglecting thelast term in each of the above equations. This then gives the appearance of a methodof characteristics similar to the PI and OPS schemes (we call the resulting schemethe TOPT or Truncated Optimum scheme). However, these cannot be decomposedinto a characteristic pair (XY 6= Z), indicating some coupling of the characteristicsis already involved. But the results (Figure 2.15) clearly show that the scheme hasreverted to being a second{order one, similar to OPS. This similarity is also observedin the discrete dispersion plot (Figure 2.17, although there is a slight improvementfor large k in the damping rates).2.5 Simpli�ed Coupled SchemesIn Section 2.4, it was shown that superior results could be achieved for the HHE's;however, that scheme was built upon the knowledge of an exact solution, which isobviously not a practical solution approach for general problems. In this section,a new method (based on the stencil shown in Figure 2.13[right]) is described, that
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Figure 2.14: L2 norm of the solution error in q and � vs the sti�ness factor k for theOPT (Optimum) scheme (see Table 2.1 for a key to lines and symbols).The solid line has a slope of 3.
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Figure 2.15: L2 norm of the solution error in q and � vs the sti�ness factor k for theTOPT (Truncated Optimum) scheme (see Table 2.1 for a key to linesand symbols). The solid line has a slope of 2.
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Figure 2.16: Propagating speeds and damping ratios for the OPT (Optimum)scheme. k = 0:25, 0:5, 1:25, 2:5, 5:0, 12:5, 50
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Figure 2.17: Propagating speeds and damping ratios for the TOPT (Truncated Op-timum) scheme. k = 0:25, 0:5, 1:25, 2:5, 5:0, 12:5, 50



34is close to optimal and yet is not dependent on any such knowledge (see [63] for adetailed derivation of this method).Begin with the characteristic equations in conservation forme�=2��� + � 12 hq � e�=2�i� = 0 ; (2.34)e�=2��� � � 12 hq � e�=2�i� = 0 ; (2.35)and then integrate these by parts along the characteristics to get[�P � �Ae�2k] + � 12 [qP � qAe�2k] = 1� Z 0��t et=��(t)dt ; (2.36)[�P � �Be�2k]� � 12 [qP � qBe�2k] = 1� Z 0��t et=��(t)dt : (2.37)These are still exact, but now the integrals on the right hand side are approxi-mated by assuming a polynomial variation in �(t) (along the characteristics). Forthe case of a quadratic (the only case detailed here), three points are needed. FromFigure 2.13[right], it is observed that the states at the feet of the characteristics(points A;B) are known. The values at the head are being computed (point P ).However, solutions for the points midway along each characteristic (points F;G) arestill needed; these are estimated by the PI method (note that AMF; MBG formcharacteristic stencils), which now provides a simple mechanism to couple the char-acteristics [since the values at F and G (and hence at P as well) involve the middlepoint M ]. The hope was that merely incorporating this coupling, even in this sim-plistic fashion, would lead to second{order accuracy in both space and time. Whensolving relaxation systems, a point to note is that the information propagating alongthe characteristics is also exponentially damped [79] (see Equation 2.13), leadingto rapid temporal variation. It is this feature that must be captured by successfulhigher{order schemes.



35The �nal, fully discrete solution for this two{step method may be rewritten inthe form�P =  �A + �B2 !+ � 122 (qA � qB) " (2 + k + k2)e�2k � 2 + 3k � k23k � 2 + (2 + k)e�2k #+ " 1 � k � (1 + k)e�2k3k � 2 + (2 + k)e�2k # (�A � 2�M + �B) ; (2.38)qP = �qA + qB2 � e�2k + � 122 (�A � �B) "1 � e�2k2k #+(k � 2)4k2 h1 � k � (1 + k)e�2ki (qA � 2qM + qB) ; (2.39)which is a (clumsy) rearrangement that facilitates a comparison with the OPTscheme. Like the OPT scheme, this method is third{order accurate, and the co-e�cients in the equations are comparable to the OPT scheme (in terms of Taylorseries expansions for small k as well as asymptotic limits). The solution plots shownin Figure 2.18 demonstrate the accuracy (and viability) of this scheme. Note thatwhen the OPS scheme was used instead of the PI scheme (in the predictor stage),the results were found to degrade in accuracy (they became more di�usive), as washypothesized in Section 2.3. This led to the conclusion that the OPS scheme is in-ferior to the PI scheme, both on its own as well as when used in conjunction withanother scheme, in the sense that it has larger dissipation8 (even though the formalorder of accuracy is not a�ected in either case).2.6 Discussion of ResultsA simple model has been studied in which dispersive wave behavior is causedby a source term. Computing cases where this term is also sti� has been the focushere, and the solution method was restricted to characteristic meshes (� = 1). Quitesurprisingly, the popular operator splitting (OPS) method was found to be inferior to8Recall the results of [55, 38] and the reduction of accuracy of Strang splitting for sti� problems.
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Figure 2.18: L2 norm of the solution error in q and � vs the sti�ness factor k for thePC(S) (Predictor-Corrector (Simpson)) scheme (see Table 2.1 for a keyto lines and symbols). The solid line has a slope of 3.



37a simple point{implicit (PI) method. A modi�ed PI scheme, the PI� scheme, was alsodeveloped, which had the \conservation" properties discussed in Appendix A [whichwill be seen to be crucial when solving nonlinear relaxation systems (Chapter IV)].Further, this PI scheme was very hard to improve upon. It was also shown thatany pure method of characteristics is at best second order accurate (for smooth owand non{sti� problems on characteristic meshes) because it fails to account for thecoupling of the wave families; moreover, the root{mean{square errors for di�erent(method of characteristic) schemes (all of which are second{order accurate) werefound to vary by more than two orders of magnitude (Figure 2.12).The work described in this chapter has had a fairly limited aim { to \merely"design and implement an accurate solution algorithm for the smooth part of themodel problem, even when the source term is sti�. However, the solution processproved to be non{trivial and quite illuminating. Note that since the model problemwas linear, the method of characteristics would have been exact in the absence of thesource term. Likewise, if only the source term had been present, it would have hadled to a (trivial) ordinary di�erential equation, with an exponential solution and the(unimpressive) OPS scheme solves both these sub{problems exactly. Thus the source(no pun intended) of di�culties that arose were primarily due to the interaction ofthese two simple problems. In addition, by restricting this study to the smooth partof the ow on characteristic meshes, errors attributable to the discretization alonehave been successfully isolated.Similar to the observations of [55, 38], it was observed that the OPS schemebecame less accurate as the uid dynamic limit was approached (� ! 0). However,an advantage of the OPS scheme is that if the damping step is the �rst step, themethod naturally projects the solution into equilibrium at each time step, which



38mimics the initial layer for under{resolved methods and pushes the solution to thecorrect asymptotic limit (see [38] for details).Finally, these results clearly demonstrate that even if coupling of wave familiesis incorporated in a simple manner, the results improve dramatically, and accuratesolutions can be obtained even in cases where the time step and mesh spacing are twoorders larger than the relaxation time. This provides good impetus for the next stage{ the development of �nite volume shock capturing schemes on non{characteristicmeshes (that have this coupling mechanism built in) to solve non{equilibrium ows{ the subject of the next chapter.



CHAPTER IIICHARACTERISTIC{BASED FINITE{VOLUMESCHEMES FOR LINEAR 2� 2 RELAXATIONSYSTEMSIn Chapter II, it was shown that a scheme analogous to the optimum (OPT)scheme [63] probably represents the best that can be achieved (without expandingthe stencil); however, since it relied heavily on analytical information (which is un-likely to be obtainable except in very special cases), it is not a practical approach.But a class of schemes that showed promise were the 2{stage Predictor{Correctorformulations (Section 2.5), producing results rivaling those obtained by the OPTscheme. Construction of such schemes is fairly simple and does not require anyanalytical information. However, the PCS scheme does require an estimate of thesolution halfway through the time step. This predictor stage serves to couple1 thecharacteristics in space and time, and facilitates a second{order integration alongthe characteristics. Generalization of the PI scheme to include a parameter � (thedegree of implicitness) led to the PI� scheme2, where the value of the source termis computed at some point (tn + ��t) in time (using a linear interpolation between1The predictor stage involves the middle point, therefore inuencing the update and incorporat-ing coupling.2Note that this virtual point does not cause coupling by itself; it simply represents an e�ort tocompute the source term more accurately than the PI scheme by building in the e�ect of sti�ness.39



40the endpoint values), and � is a function of the sti�ness factor k and determined byconservation (Appendix A).Looking ahead, the eventual goal of this project is to solve non{linear systemswith sti� relaxation terms. A natural framework for solving non{linear homogeneoussystems is the �nite{volume method [46]. Thus, in this chapter, an attempt will bemade to come up with a good fully{discrete �nite{volume formulation for solvingthe general linear 2 � 2 system shown in Chapter II.The discretization of the domain is detailed in Section 3.1. This is followed bythe reconstruction stage described in Section 3.2, where our choice is the PiecewiseParabolic Method (PPM) of Colella and Woodward [24]. Recall that use of a higher{order reconstruction does not in itself lead to higher accuracy for sti� problems (inthe uid dynamic limit) [38]. Rather, this choice of reconstruction was thought to bean economical way to improve results while using the simple PI� scheme to obtainpredictor estimates in a characteristic tracing step (Section 3.3). The crucial uxcomputation step is described in Section 3.4, where a simple strategy is presentedto accurately compute the ux, followed by a brief description of the update (Sec-tion 3.5). For simplicity of form as well as economy of computation, a point implicitupdate is chosen. Finally, the implementation of boundary conditions is describedin Section 3.6, followed by the presentation of some numerical results in Section 3.7.3.1 The DiscretizationSpatially, the domain is divided into cells, which are restricted in this dissertationto be of uniform width �x (Figure 3.1). However, the formulation can be extendedquite readily to non{uniform meshes, such as those that arise in adaptive{grid com-putations [6, 26, 59]. In the �nite{volume formulation, the cell averaged value in cell



41j at time level tn (wnj ), de�ned by
vv vjj � 1 j + 1 tntn+1tn+�3tn+�2tn+�1vv v

j � 1=2 j + 1=2sss�������� ��������� @@@@@@@@@@@@@@@@@ �������� ��������� @@@@@@@@@@@@@@@@@sssFigure 3.1: Schematic of the discretization, showing the cells (integers), the interfaces(half{integers), and the Gauss points (tn+�k) along the interface. Themesh size is �x = xj+1=2 � xj�1=2 and �t = tn+1 � tn.wnj = 1�x Z xj+1=2xj�1=2 w (x; tn) � dx ;is known. The aim is to compute these solution vectors at the new time level tn+1,(i.e., wn+1j , which will be denoted by wj).The general form of the governing equations, written in conservation form, arewt + fx = �1� s ;where w = (u; v)T , f = [v; p(u)]T and s = [0; v � g(u)]T , and where it is assumed (inthis chapter) that p(u) = a2Fu and g(u) = aEu. Integrating this system of equationsover the cell j (Figure 3.1) giveswj = wj � �t�x hFj+1=2 � Fj�1=2i� 1� Z tn+1tn sj(t)dt ;Fj+1=2 = 1�t Z tn+1tn fj+1=2(t)dt ;sj = 1�x Z xj+1=2xj�1=2 s (x; tn) � dx :Here, Fj+1=2 is the time{averaged numerical ux through the (j+1=2) interface andsj is the cell{averaged value of the source vector.



423.2 The ReconstructionThe Piecewise Parabolic Method (PPM) of Colella and Woodward [24], based onone of the advection schemes (Scheme V) in [69], is used to generate the quadraticreconstruction in each cell, under the assumption of a uniform mesh. To start with,the cell{averaged values wj for each cell are known. Let the (quadratic) variationwithin the cell (Figure 3.1) be given byw(x) = wLj + x� hc1j + c2j(1 � x�)i ; (3.1)x� = x� xj�1=2�x ; xj�1=2 � x � xj+1=2 : (3.2)Here, x� is a normalized distance within the cell, such that x� 2 [0; 1], while x is thespatial running coordinate for the complete domain. The cell j is bounded by thexj�1=2 interfaces, with wLj ;wRj being the reconstructed values at the left (j � 1=2)and right (j + 1=2) interfaces (of cell j) as x� !#0; "1, respectively. De�nec1j = wRj �wLj ; (3.3)c2j = 6 �wj � 12 �wLj +wRj�� ; (3.4)where these coe�cients are related to the slope and the curvature of the reconstruc-tion within the cell, being fully determined once wLj ;wRj are known. Further, de�newj+1=2 = 12 (wj +wj+1) + 16 (�wj � �wj+1) ; (3.5)�wj = 12 (wj+1 �wj�1) ; (3.6)



43which is modi�ed by the \discontinuity sharpening" mechanism of [24] using8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
if (wj+1 �wj) (wj �wj�1) > 0then�wj = min(j�wjj ; 2jwj �wj�1j ; 2jwj �wj+1j )else �wj = 0 : (3.7)Now, assign this value of wj+1=2 (with the modi�ed �wj) to wRj and wLj+1 , i.e.,wRj = wj+1=2 ; wLj+1 = wj+1=2 : (3.8)To ensure monotonicity of this reconstruction, modify wRj ;wLj as8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

if �wRj �wj� �wj �wLj� � 0thenwLj = wj ; wRj = wjelse if�wRj �wLj� hwj � 12 �wLj +wRj�i > 16 �wRj �wLj�2thenwLj = 3wj � 2wRjelse if�16 �wRj �wLj�2 > �wRj �wLj� hwj � 12 �wLj +wRj�ithenwRj = 3wj � 2wLj
: (3.9)



44In the actual implementation, boundary conditions are enforced on each of theseintermediate variables at each step. The sequence of computation is: compute �wj(Equation 3.6), modify it using Equation 3.7, obtain the face values wj+1=2 (Equa-tion 3.5) and assign these to wRj and wLj+1 , enforce monotonicity (Equation 3.9)and �nally compute the coe�cients c1j and c2j (Equations 3.3, 3.4). At the endof this stage, the desired quadratic (PPM) reconstruction is fully determined (sincewLj ; wRj ; c1j ; c2j are now known in each cell).3.3 The Characteristic Tracing StepTo evaluate the uxes at the interfaces, trace the characteristics back from thepoint to be computed (on the interface) to the initial line (tn), where the recon-structed data is now available (Figure 3.1). These values are input to the PI� for-mulation, which uses the method of characteristics to estimate the state quantitiesat the interface.Since the study in this chapter is limited to the linear case, there is no ambiguityregarding the wavespeed because aF is constant (note that aF is the only sensiblewavespeed on which to base a method of characteristics). The locations in the cell,i.e., the x�'s at which the reconstructed values are needed (for the 2 � 2 case) arex�Lj = 1� aF�t�x �t� = 1 � ��t� ; (3.10)x�Rj = 1� x�Lj : (3.11)Here, �t� is the time at which the solution on the interface is desired, normalizedby the time step, i.e.,�t� = �t�t ; �t 2 [0;�t] ; �t� 2 [0; 1] ;



45(e.g., if the solution at tn+1=2 is needed, then �t� = 12). Note that in order to computea solution at the (j + 1=2) interface, the values at x�Lj and x�Rj+1 are needed.The implementation is fairly simple: for each cell, compute x�Lj and x�Rj , knowingwhich the state vector at these points, i.e., w(x�Lj), w(x�Rj), can be obtained fromthe PPM reconstruction. Since the points x�Lj , x�Rj+1 and xn+�t�j+1=2 form a characteristicstencil, the value wn+�t�j+1=2 can be easily computed using the PI� scheme, where thedegree of implicitness is given by� = 11� e�2k� � 12k� ; � 2 [12 ; 1] ;and k� = �t�2� is the sti�ness factor for this fraction of the time step.One can now integrate along the (frozen) characteristics and solve for uP ; vP togetuP = 12 [u�A + u�B + (v�A � v�B) =aF � 2 (1� �) k� (v�A � g�A � v�B + g�B) =aF ] ;g�P = g(uP ) ;vP = 12(1+2k��) [v�A + v�B + aF (u�A � u�B) � 2k� (1� �) (v�A � g�A + v�B � g�B) + 4k��g�P ] :Note that the source terms have been point{implicitly incorporated in the aboveexpressions.3.4 The Flux ComputationThe simplest approximation to the ux is to compute the values uP ; vP (as de�nedin Section 3.3) at the (n+ 1=2) time level and de�neFj+1=2 = f �wn+1=2j+1=2 � : (3.12)However, this proves to be too di�usive even for very slightly non{linear problems.Recall that, especially in the case where the problem is sti�, the source term causes



46very rapid (exponential) variation of the solution along the interface. Thus, it isvery likely that an estimate that merely takes the value obtained at the (n + 1=2)time{level to represent the average value on the interface will be quite inaccurate.At this stage, a mechanism to compute an approximate value for w at any tem-poral location along the interface was available, which led to the following obviousquestion: given this computing mechanism, is there a simple and economical way toobtain a more accurate solution for the interface ux? This is strongly desired, sincethe (simple) PI� scheme is used to obtain estimates along the interface. A strategythat suggested itself was to calculate the ux integral using Gaussian quadratures.Some testing on a function composed of a product of a polynomial and an exponen-tial led to the empirical conclusion that a three point quadrature is su�cient, whichis what will be used in all the examples that follow.3.4.1 The Gaussian QuadratureIn order to use Gaussian quadratures to evaluate the interface uxFj+1=2 = 1�t Z �t0 fj+1=2(t)dt ;the limits of integration must be renormalized to be [�1; 1], which leads toFj+1=2 = 12 Z 1�1 fj+1=2(�)d� = 12 k=KXk=1 wkfj+1=2(�k) ;�k = 12 (�t�k +�t) = �t2 (1 + �k) :Here, �k and wk are the location and weight of the kth Gauss point, for a K pointquadrature (these are given for the 3 point quadrature in Appendix B; also see [1]),while the �k are the temporal locations at which the state variables wn+�kj+1=2 arecomputed in order to obtain the uxes fj+1=2(�k) = f �wn+�kj+1=2�.



473.5 The Update StepFor stability, this step must be at least partially implicit. However, if it hada predetermined (�xed) degree of implicitness, then one could choose a su�cientlylarge value of the sti�ness factor, which could result in the scheme becoming unstable.Thus, for simplicity, this step is assumed to be point implicit (but with � = 1).Interestingly enough, a more sophisticated update using the values at tn, tn+1=2 andtn+1 (to form a quadratic) failed as the uid dynamic limit was approached. It isquite plausible that the reason was insu�cient \implicitness" (as reasoned above)for the time step chosen. Thus, the choice of update is primarily for simplicity andunconditional stability (at least for this particular step).The equations studied so far have had the formut + h(u)x = 0 ;vt + p(u)x = �1� [v � g(u)] ;where the second equation was the only non{homogeneous one and linear in v. Theupdate, then, is simplyuj = uj � �t�x �Hj+1=2;m �Hj�1=2;m� ;vj = 11 + 2k �vj � �t�x �Pj+1=2 � Pj�1=2�+ 2kg(uj)� ;where H;P are the numerically computed values of the uxes h; p.For equations of this form, even if h; g; p are nonlinear, it doesn't a�ect the updateprocedure, since v is linear and the updated value of u is already available for use inthe computation of the source term g. However, there are conceivable cases wheresuch a form is not available; it will be seen in later chapters that such cases revivethe notion that CFD is often more an art than an exact science.



483.6 Boundary ConditionsThe computational domain consists of cells 1 through J in the interior, with0; J + 1 being the boundary (ghost) cells. The boundary conditions used in thischapter are easily imposed on a variable z as follows.3.6.1 Reecting Boundaryz0 = z1 ; zJ+1 = zJ :3.6.2 Periodic Boundaryz0 = zJ ; zJ+1 = z1 :3.7 Numerical ResultsIn order to test this algorithm, a case recently presented by Jin and Levermore [41]is attempted. The system being solved isut + vx = 0vt + ux = � 1� [v � g(u)] ; (3.13)where g(u) = 0, with initial conditionsu(t = 0) = 2 + sin(�x)v(t = 0) = �0:1 ; x 2 [0; 2] ; (3.14)and a relaxation time � = 0:01. The boundary conditions are periodic. Solutionsare shown in Figure 3.2 for discretizations in the intermediate3 [dx = 0:0125 � O(� )]and thick4 [dx = 0:125 � O(� )] regimes, for a Courant (CFL) number � = 0:5,at t = 2 (note that the results in [41] were for semi{discrete schemes and used a3The intermediate regime is where the spatial mesh size is of the same order as the relaxationlength [dx � O(�uchar)].4The thick regime is one where the spatial mesh size fails to resolve the relaxation length scales[dx� O(�uchar)].



49time{step �t� � ). The \exact" solution is a �ne{mesh solution (dx = 0:001), thatfully resolves the relaxation time, computed at a Courant number of unity. Thenumerical results for the current method are clearly seen to be excellent, and arecompetitive with those shown in [41] (even though the present results are temporallymore severely under{resolved).
0 21
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Figure 3.2: Solution to the Jin-Levermore linear case (Equation 3.13), for discretiza-tions in the intermediate [dx = 0:0125 � O(� ), left �gure (+)] and thick[dx = 0:125 >> O(� ), right �gure (+)] regimes at � = 0:5 superposedonto the \exact" solution [dx = 0:001, � = 1 (solid line)].3.8 The Next StepsIn Chapter II, several key features inuencing the success of numerical algorithmswere identi�ed. First, the numerical scheme must couple the wave families. Second,operator{split schemes lose accuracy for large sti�ness (see [55, 38]). Third, theunder{resolved scheme must project the initial data onto a local equilibrium at eachtime step [38]. This mimics the (unresolved) initial layer and ensures passage from



50the relaxation system to the equilibrium system. Since the PI� scheme approaches afully point implicit scheme (� = 1) in the uid dynamic limit, it asymptotes to thecorrect behavior (an implicit step automatically enforces this projection condition).These insights were incorporated into the �nite volume method developed in thischapter. Speci�cally, use of a predictor stage similar to that used in Chapter IIleads to estimates along the interface. These estimated states are then used inGaussian quadratures and help to capture the temporal variation of the ux, leadingto accurate (ux) computations. In this predictor stage, the PI� scheme is used,rather than an OPS based scheme [which was shown to be less accurate for thelinear case in Chapter II]. One may well question the use of the PI� scheme overthe PI scheme (since the PI scheme was seen in Chapter II to be far superior). Forthe case tested here, there were no visible di�erences between the results from thePI and PI� schemes (to eyeball norm5) for relaxation times up to 10�6. It will beshown in Chapter IV, however, that for the nonlinear cases, there is a substantialdi�erence between the two.The reconstruction within each cell is quadratic (similar to the OPT scheme),based on the PPM formulation [24]. The update is taken to be point implicit, butwith � = 1 (its attraction being its simplicity and unconditional stability). Theresulting scheme is clearly seen to perform very well. Having accomplished the goalsfor this chapter, the next logical step is to extend this method to solve non{linearrelaxation systems, which is the subject of the next chapter.5The eyeball norm is a comparison of two plots by holding them together against a light source.



CHAPTER IVTHE TRANSITION TO FINITE-VOLUMESCHEMES FOR NON{LINEAR 2� 2RELAXATION SYSTEMSA successful method was designed in Chapter III to solve sti� relaxation systems,but with one severe limitation { all the cases considered so far have been linear. Inthis chapter, the challenging \non{linear" journey is begun, but again limited to2� 2 relaxation systems of the formwt + fx = 1� s ;where w; f ; s are state, ux and source vectors respectively, and � is the relaxationtime of the problem.The �rst complication is that the characteristics are no longer straight lines, sincewavespeeds are now functions of state variables. Further, such systems admit shocksand rarefactions, which need to be captured. Since the goal is to develop a systematicmethodology, the aim is to solve successively harder problems, incorporating previousinsights into solution procedures developed at each subsequent stage.In this chapter, therefore, it is demonstrated how the algorithm detailed in Chap-ter III can be modi�ed to account for the non{linearity of the problem. Speci�-cally, the discretization, reconstruction, ux computation and update stages are un-51



52changed, while the characteristic tracing step needs to be modi�ed, and the changesare detailed in Section 4.1. Finally, numerical results for the proposed scheme arepresented in Section 4.2, and are compared against the best results available in theliterature at this time [41, 38, 15].4.1 A Modi�ed Characteristic Tracing StepThe �rst question that arises is: how does one determine the frozen wavespeeds atthe interface? Since it must be some average value based on the states on either sideof the interface, three simple averages were considered. These were the arithmetic[uavg = 12(uL + uR)], geometric [uavg = (uL � uR)1=2], and Roe [61] (uavg = ûRoe)averages1. However, the numerical results were unchanged (to eyeball norm); hence,for simplicity and economy, the arithmetic mean has been used for all subsequentcases in this dissertation.For the system ut + vx = 0 ;vt + p(u)x = �1� [v � g(u)] ;the eigenvalues are �1;2 = � [pu(u)]1=2, resulting in an averaged wavespeed âFâF = 12(aL + aR) ; a� = [p0(u�)]1=2 ; � = L;R :Following Section 3.3, the traced{back characteristics intersect the initial line atx�Lj = 1 � âF�t�x �t� = 1� ��t� ; (4.1)x�Rj+1 = 1 � x�Lj : (4.2)1Note that the Roe{average is based on data at time tn. Thus, Roe{averaging in the conventionalsense is not adequate for solving sti� relaxation systems, since it assumes the ux doesn't varytemporally; in standard procedures, the source term is evaluated as sj = s(wj) in the update.



53Given these locations, the reconstructed values are easily obtained, and now the PI�scheme is used to obtain the (method of characteristics) solution at the Gauss pointsalong the interface.The next modi�cation is that since the wavespeed is no longer a constant, thetime step must be computed at each time iteration to ensure that the CFL condition(based on the convection terms alone) is satis�ed. This is a simple function callaccomplished by �rst computing the maximumeigenvalue in the entire computationaldomain n[pu(u)]1=2omax, and then setting the time step as�t = ��xn[pu(u)]1=2omax :Note that in the Gaussian quadrature (ux computation) loop, one could base thefrozen wavespeed on the \average" state computed at the previous Gauss point [i.e.,use âF (wL; wR) for the �rst Gauss point, âF (wGauss1) for the second Gauss point,and so on], but this was found to make no di�erence (to eyeball norm) and hencewas not pursued further.4.2 Test CasesRecently, results have been presented for a wide range of problems with sti� sourceterms [41, 38], some of which are used here as benchmark tests for the proposed algo-rithm. The novelty of the approach in [41, 38] is that the physical asymptotics havebeen built into the numerical scheme (see Section 5.2), essentially using semi{discreteschemes (in the fully discrete context, Runge{Kutta schemes with a good temporalintegrator for sti� ODE's are used, coupled with the semi{discrete formulation). Incontrast, the method proposed here is a fully{discrete one that relies primarily on



54accurate ux computation. The system being solved iswt + fx = �1� s ; (4.3)where w = (u; v)T , f = [v; p(u)]T and s = [0; v � g(u)]T .Note that a further complication can arise depending on the choice of initialdata: if v = g(u) at t = 0, the initial data is initially in local equilibrium; however,if this is not true (as in most of the cases presented here), an initial layer forms andunder{resolving this layer can cause spurious or incorrect solutions [15].4.2.1 The Weakly Non{Linear Test CaseHere, the variables of Equation 4.3 are p(u) = �u�2 �hence aF = h 2u3 i1=2�, g(u) =0:01 (u� 2)2, and � = 0:01. The (non{equilibrium) initial conditions areu(0; x) = 2 + sin(�x) ; v(0; x) = �0:01 ;and the boundary conditions are periodic.Results were presented in [41] in the thick regime [dx = 0:1]. The standardscheme2 (with no built{in information about the asymptotics) was shown to be highlydi�usive, but the scheme proposed in [41] (with the asymptotic information incorpo-rated) gave very good results. However, in the intermediate regime (dx = 0:01), theresults of [41] were actually worse than those for the unmodi�ed schemes3.Numerical results from the scheme proposed here are presented at a time t = 10for the thick regime [dx = 0:1, Figure 4.1 (left)] as well as for the intermediate regime[dx = 0:01, Figure 4.1 (right)], and superposed onto the \exact" (�ne{mesh) solution2In a standard scheme, the source term is approximated by s(wj) and some higher{order recon-struction is used to evaluate the uxes, e.g., MUSCL [70] or PPM [24]. These do not incorporateasymptotic information, and the Riemann solver does not account for the source term. In [71], thesource term actually inuences the input states of the Riemann solver.3In a more recent paper [15], results with uniform convergence have been achieved, but a specialinitial layer �x is required for the under{resolved scheme.



55(solid line, dx = 0:001). The present results (Figure 4.1) are seen to be superior tothose of [41], with no visible shortcoming in the intermediate regime.Note that when this test case was run in the thick regime using the PI scheme(PI� with � = 12), the results deteriorated as the uid dynamic limit was approached,and blew up around � = 5:5 10�5. This was the �rst indication that conservationwas critical, and our hunch from Chapter II paid o�.
0 12:3

3:0
xu 0 12:3

3:0
xu

Figure 4.1: Solution to the Weakly Non{linear case [41] (also see Section 4.2.1), fordiscretizations in the thick [dx = 0:1 >> O(� ), left �gure (o)] and in-termediate [dx = 0:01 � O(� ), right �gure (+)] regimes at � = 0:9superposed onto the exact solution [dx = 0:001 (solid line)].4.2.2 The Strongly Non{Linear Test CaseHere, the variables of Equation 4.3 are p(u) = u+ 12u2 haF = (1 + u)1=2i, g(u) =12u2, and � = 0:01. The (non{equilibrium) initial conditions areu(0; x) = 8>><>>: 1 �1 < x < 0:20:2 0:2 < x < 1 ; v(0; x) = 0 ;



56
0 10:1

1:1
xu

Figure 4.2: Solution to the Strongly Non{linear case [41] (also see Section 4.2.2) inthe intermediate regime [dx = 0:02 � O(� ), (+)] at � = 0:5 superposedonto the \exact" solution [dx = 0:001 (solid line)].with reecting boundary conditions. The solution is plotted in Figure 4.2 at t = 0:5.The results in [41] in the intermediate regime (dx = 0:02) were slightly worsethan those of the unmodi�ed schemes. Results from the proposed algorithm in theintermediate regime (dx = 0:02), superposed onto the \exact" solution (solid line,dx = 0:001), are shown in Figure 4.2, and are better than those in [41].Again, the PI scheme was run on this case with a relaxation time � = 10�4, whilevarying the mesh size �x. With increasing mesh size, the results deteriorated rapidly,blowing up for �x > 0:0175 (approximately). This demonstrated clearly that as theuid dynamic limit is approached, the simple PI scheme which was so successful onthe linear case, degrades rapidly, and actually blows up. The results presented inSection 4.2.3 for severely under{resolved ows clearly demonstrate the robustness ofthe PI� scheme (which enforces conservation in the sense of Appendix A).



574.2.3 Two Cases with Very Large Sti�nessThe examples in Section 4.2.1 and 4.2.2 were for non{linear relaxation systems,but were not severely under{resolved for the cases run. Here, two cases are attemptedwhere the temporal (spatial) under{resolution is of the order of one (�fty) million.Initial Data in Local EquilibriumFor this case, the variables of Equation 4.3 are p(u) = u+ 12u2 haF = (1 + u)1=2i,g(u) = 12u2. Smooth, equilibrium initial datau(0; x) = 1 + 0:2 sin(8�x) ; v(0; x) = 12u(0; x)2is speci�ed, so as not to generate an initial layer. The numerical solution (+) isplotted in Figure 4.3 (left) at a time t = 0:3 with periodic boundary conditions, anda relaxation time � = 10�10 [dx = 0:01, � = 0:03, �t=� � 2 � 106] and superposedonto the \exact" solution [(solid line with dx = 0:001), which is nothing but thesolution to Burger's equation with this initial data]. The results [Figure 4.3 (left)]are clearly seen to be very good, with better peak recovery and sharper shocks thanobtained in [38]. However, there is some visible distortion of the pro�les near thepeaks, due to the severity of the under{resolution. Also note that the relaxationtime in the current study is two orders of magnitude smaller than that used in [38].Recall that the design philosophy being followed here is to keep the method simpleand economical, but to allow the results to degrade smoothly for large sti�ness;however, any method designed was still required (naturally) to yield the correctphysical solutions (correct shock jumps and speeds), even for severely under{resolvedow. It is estimated that the current method is at least an order of magnitude cheaperto compute than the scheme developed in [15]4.4The algorithm proposed in [15] is based on the method of lines, and consists of a second{order



58Initial Data Not in Local EquilibriumIn Figure 4.3 [right], the strongly non{linear case from Section 4.2.2 is presentedagain, but with � = 10�10, dx = 0:01; � = 0:03;�t=� � 2 � 106. The numericalsolution (+) is superposed onto the exact (analytical) solution (solid line), which is asingle shock moving to the right with a speed of 0.6. There is a small overshoot (lessthan 2% of the jump); however, the solution is clearly the physical one having thecorrect shock speed and jump. And for such drastic under{resolution, the (slight)overshoot is a small price to pay for the (large) gain in computational economy.
0 10:8

1:2
xu 0 10:1

1:1
xu

Figure 4.3: Solution to the very sti� (and strongly non{linear) cases [38] (also seeSection 4.2.3). Here, dx = 0:01; � = 10�10; � = 0:03;�t=� > 106Left Figure: Initial data in local equilibrium, numerical solution (+) su-perposed onto the \exact" solution [solid line with dx = 0:001], t = 0:3.Right Figure: Initial data not in local equilibrium, numerical solution(+) superposed onto the exact (propagating shock) solution [solid line],t = 0:5.Runge{Kutta Godunov splitting scheme. This combines two explicit steps for the convection terms(using a second{order MUSCL formulation) and three implicit steps for the source terms. If theseimplicit steps are done iteratively, the expense would increase proportional to the sti�ness.



594.3 A Brief Status ReportIn Chapter III, a �nite volume algorithm to solve sti� linear 2 � 2 relaxationsystems was developed, which incorporated the key features of successful numericalschemes (which were obtained in Chapter II). Surprisingly, the method required veryminor changes to account for nonlinearity. The most signi�cant modi�cation was dueto the wavespeed no longer being a constant, which led to the need for an \averaged"wavespeed at the interface. Seeing no di�erence between arithmetic, geometric andRoe averaging for the cases shown here, simplicity and economy dictated the selectionof arithmetic averaging.Further, this variation in wavespeed modi�ed the time step computation in orderto satisfy the CFL condition (based on the convection terms alone), which was a sim-ple modi�cation. Now, the algorithmwas ready for benchmarking. Fortunately, therewere several test cases available [41, 38]; being the best results currently available,they were the natural choice for any comparisons. Note that the results in [41, 38]were compared against �ne{mesh computations and hence are assumed to be correctand accurate solutions.The current results are found to be at least competitive with, and often betterthan, those shown in [41, 38]. Signi�cantly, this has been achieved at a small fractionof the cost (as mentioned already in Section 4.2.3).In this Chapter, the practical importance of the PI� scheme, and the conservationcondition it enforces, was shown for the �rst time. For the linear cases, there wasno di�erence between the PI and PI� schemes to eyeball norm; however, from thenonlinear cases attempted in this chapter, it is clear that the unmodi�ed PI schemeis unsuitable for solving nonlinear relaxation systems.



60Another interesting study was on how coarsening or re�ning in space or timea�ects the results. This was done for the two very sti� cases studied in Section 4.2.3,centered around the conditions used there. In the case of the single shock shown inFigure 4.3 [right], temporal re�nement was more critical than spatial re�nement (i.e.,spatial re�nement or coarsening a�ected the overshoot only slightly, while temporalre�nement caused much larger changes). However, in the case of the smooth initialconditions (case shown in Figure 4.3 [left], the reverse was true (i.e., spatial under{resolution caused much more severe peak loss than temporal under{resolution). Thisindicates that the macroscale features must �rst be spatially resolved; after this,temporal resolution becomes critical.The next step is to extend this algorithm to more complex problems and demon-strate the feasibility of the method. However, a brief excursion will be taken here.The results of the previous chapters coupled with the analysis shown in [41, 38]suggested a new application of the work done so far { a reinterpretation of viscousconservation laws as (possibly sti�) relaxation systems, which is described in thenext chapter.



CHAPTER VSOLUTIONS TO VISCOUS CONSERVATIONLAWS VIA EQUIVALENT RELAXATIONSYSTEMSIn this chapter, a new approach to solve viscous conservation laws is proposed(preliminary results on this subject appeared in [3]). While this may not seem to berelevant in the context of this thesis, it can be viewed as an interesting applicationof the methods developed in earlier chapters.But �rst, what are the di�culties associated with viscous conservation laws? Touse the parlance of relaxation systems, the primary issue is that of sti�ness. Considerthe simplest possible case, the scalar advection{di�usion equationut + aux = �uxx ; (5.1)where a is the advection speed. As the coe�cient of viscosity (�) approaches zero, theequation becomes sti�. This sti�ness is usually quanti�ed by the numerical Pecletnumber Pe� = a�x=� (where �x is the mesh size). Now if we consider the simplestnonlinear example, the viscous Burger's equationut +  u22 !x = �uxx ; (5.2)the problem becomes harder. Our eventual goal is to develop an algorithm to tacklenonlinear systems of viscous conservation laws (e.g., the Navier{Stokes equations).61



62In typical numerical computations of such systems of equations, a �rst step is oftena Roe{type linearization for the convection terms; thus, the building blocks of thesolution algorithm are scalar equations (since the linearized system is diagonalizable),and this chapter will be limited to the successful solution of Equations 5.1 and 5.2.There are two primary di�culties with viscous conservation laws. First, theissue of sti�ness, as mentioned above. For example, the standard numerical schemefor Equation 5.11 has a Pe� limit of 2, which is extremely restrictive. A frequentremedy is the use of implicit schemes, but that leads to non{local algorithms, whichare di�cult to parallelize (an issue that gains importance as we move on to systemsof equations and realistic problems). Second, a crucial di�culty arises in the contextof adaptive Cartesian{grid methods for the Navier{Stokes equations [22]. Thesemethods are being increasingly used to solve complex ows (such as Euler [6, 26, 59]and MHD [35] ows, among others), and are thought to hold immense promise evenfor viscous ows (once these problem issues are resolved). Hence, they provide astrong motivation for this work. It was shown in [22] that for such methods, thehigher{order (viscous) terms led to an unavoidable loss of accuracy at high Reynoldsnumbers when the grid was non{smooth, a problem that became particularly acuteat cut cells. This led to an impasse, with no obvious remedy. The hope is that theseproblems may be circumvented by the use of the algorithm proposed here.A brief description of the general form of nonlinear 2 � 2 relaxation systems isgiven in Section 5.1, followed by an asymptotic analysis in Section 5.2, showing thatthe relaxation system is asymptotically equivalent to a scalar conservation law withviscosity. The idea is then to invert this analysis by �nding, and using our algorithmsto solve, a relaxation system whose solutions are asymptotically close to those of the1upwind (central) di�erencing for the convection (di�usion) terms



63conservation law (Section 5.3). Finally, in Section 5.4, several linear and nonlineartest cases are presented, compared against a rival method [76] and analytic solutions.5.1 The General Form of the 2� 2 Relaxation SystemAll the cases run in Chapters III and IV fell under a general canonical form. Thiswas simply the p�system with a source termut + vx = 0 ; (5.3)vt + [p(u)]x = �1� [v � g(u)] ; (5.4)which has eigenvalues aF = � [p0(u)]1=2 ; aE = g0(u) :In Section 5.2.1, we will see that the system is stable under Liu's sub{characteristiccondition [49] � aF � aE � aF ) jaEj � aF : (5.5)5.1.1 The Linear CaseEquations 5.3 and 5.4 can easily be specialized to the linear case, in which p(u) =a2Fu, g(u) = aEu, leading to the systemut + vx = 0 ; (5.6)vt + [a2Fu]x = �1� [v � aEu] ; (5.7)with frozen (equilibrium) eigenvalues aF (aE) satisfying Liu's sub{characteristic con-dition (Equation 5.5). Setting aF = ��1=2, aE = 0 recovers the HHE's (of Chapter II).



645.2 Asymptotic Analysis of the Nonlinear 2 � 2 SystemStart with the general 2�2 system (Equations 5.3 and 5.4). De�ne x� = x=�; t� =t=� , which eliminates the relaxation time from explicitly appearing in these equations.The resulting equations, dropping the (*) superscript, areut + vx = 0 ; (5.8)vt + [p(u)]x = � [v � g(u)] : (5.9)Now, let v = g(u) + v1 ; (5.10)where it is assumed that v1 (a low frequency component) is small and that its deriva-tives (i.e., v1t; v1x) are even smaller [19]. Then,vt = [g(u)]t = g0(u) � ut ; (5.11)vx = [g(u)]x = g0(u) � ux ; (5.12)and Equations 5.9 and 5.10 givev1 = �vt � [p(u)]x ; where [p(u)]x = p0(u) � ux : (5.13)Substituting Equation 5.12 into Equation 5.8 givesut = �vx = �g0(u) � ux ;which is substituted into the expression for vt (Equation 5.11) to getvt = g0(u) � ut = � [g0(u)]2 ux :This can be substituted into Equation 5.13 to give an expression for v1(u), which isv1 = �vt � [p(u)]x = [g0(u)]2 ux � [p(u)]x = n[g0(u)]2 � p0(u)oux :



65Thus, Equation 5.10 becomesv = g(u) + v1 = g(u) + n[g0(u)]2 � p0(u)oux ; (5.14)which can be substituted into Equation 5.8 to giveut + vx = 0 ) ut + [g(u)]x = hnp0(u)� [g0(u)]2ouxix : (5.15)Equations 5.14 and 5.15 are the desired asymptotic equations.Recall that these equations are in transformed variable space t=�; x=� ; however,we can (trivially) back-transform them into into the original coordinates to obtainv = g(u) + � n[g0(u)]2 � p0(u)oux ; (5.16)ut + [g(u)]x = � hnp0(u)� [g0(u)]2ouxix : (5.17)5.2.1 The Linear CaseThis asymptotic analysis is easily specialized to the general linear case. Settingp = a2Fu; g = aEu in Equations 5.16 and 5.17 givesv = aEu+ � ha2E � a2F iux ; (5.18)ut + aEux = � ha2F � a2Eiuxx : (5.19)Note that Equation 5.19 has stable solutions only if Equation 5.5 is satis�ed (this canbe interpreted as the RHS representing positive dissipation which leads to decayingsolutions, or alternatively, as satisfying causality [79]).The Hyperbolic Heat EquationsFor the case of the HHE's (aF = ��1=2; aE = 0), the result is a little di�erent,because the frozen wavespeeds are a function of � . Proceeding as in Section 5.2 givesv = �ux + �uxxx ; (5.20)ut = uxx � �uxxxx : (5.21)



66Recently [41, 38, 15], schemes have been developed that solve relaxation systemsby building in this asymptotic information. Here, however, these relations are beingused to better design methods to solve viscous conservation laws.5.3 A Solution Algorithm for Viscous Conservation LawsNotice that for the general 2 � 2 case (Equations 5.3 and 5.4), the long{timeasymptotics were given by Equations 5.16 and 5.17. Equation 5.17 is clearly seen toresemble the viscous Burger's equation, for appropriate choices of g and p.Recall the derivation of the HHE's, as seen from the following (slightly di�erent)perspective. Start with the heat equation �t = �xx. To get rid of the higher{orderderivative from this equation, set q = ��x ; (5.22)resulting in �t = �qx ) �t + qx = 0 ;which is nothing but Equation 2.3. Next, write a relaxation equation for q asqt = �1� (q � qeq) :But, qeq = ��x (from Equation 5.22), which givesqt = �1� (q + �x) ) qt + 1� �x = � q� ;which is precisely Equation 2.4.A two{step method is proposed here that uses the two preceding ideas (asymp-totics and removal of higher{order derivatives) as building blocks. Consider a general22the ux g(u) is not speci�ed as yet



67scalar viscous conservation law given byut + [g(u)]x = �uxx : (5.23)The �rst step is to transform this equation into a 2� 2 relaxation system, similar tothe derivation of the HHE's. De�ne a new variable v such thatut + vx = 0 ) v = g(u)� �ux : (5.24)Now, write a relaxation equation for v (as done in [63] and above, for the HHE's) asvt = �1� (v � veq) ;where veq = g(u) � �ux and � is a parameter that will be determined by stability.This gives vt + �� ux = �1� (v � g) : (5.25)Thus, our transformed system can be written in the form of Equations 5.3 and 5.4,with p = �u=� . We know (from Section 5.2) that the asymptotics for this relaxationsystem are given by Equation 5.17, which needs to be matched to the conservationlaw (Equation 5.23). Thus,� np0(u)� [g0(u)]2o = � ) p = Z � �� + (g0)2� du : (5.26)Finally, the relaxation system that solves the desired conservation law (Equation 5.23)is given by Equations 5.3 and 5.4, with p(u) given by Equation 5.26.For the viscous Burger's equation,g(u) = 12u2 ; p(u) = �� u+ 13u3 ;while for the advection{di�usion equationg(u) = au ; p(u) = � �� + a2�u :



68Note that for stability, [g0]2 � �=� ) � � �[g0]2 ;which is Liu's sub{characteristic condition [49] and gives the restriction on � . In theactual implementation, � is chosen to be a little smaller (approximately 70%) thanthis maximum allowable value.Next, some cases are presented for the advection{di�usion equation and the vis-cous Burger's equation, and are compared against analytical solutions.5.4 Test Cases5.4.1 A Linear Case: The Advection{Di�usion EquationSome results for the advection{di�usion equation were recently presented in [76],using viscous traveling waves as a building block in the solution algorithm. This is anexpensive algorithm; however, the results achieved are very good. The present for-mulation, which uses a transformation of the viscous conservation law to a relaxationsystem, results in a very e�cient algorithm. Solutions for four test cases are presentedin Figure 5.1, where the solid line is the analytical solution and the symbols (+) arethe computed results. In each case, the boundary conditions are [u�1 = 4; u+1 = 2].The equation speci�c (c; �) and computation speci�c (�; dx; �; t) data are given onthe plots themselves, as are the sti�ness factors and the Peclet numbers.The exact solution with these boundary conditions is well known, beingu(x; t) = A+B � erf " x2(� t)1=2# ;A = �u�1 + u+12 � ; B = �u�1 � u+12 � :The error function has been evaluated using a polynomial approximation [1].



69In the �rst three cases (presented in [76]), sti�ness factors and Peclet numbersare quite modest and the numerical results are seen to be in good agreement withanalytical ones and competitive with those in [76]. The last case has a large Pecletnumber (Pe� = 1000): although there is a (barely perceptible) overshoot, the resultsare very good. Notice that the case with Pe� = 0 is nothing but the heat equation(�t = ��xx), being solved after the transformation to the relaxation system (thoughthis system is not the same as the HHE's), which helps to tie up all the work doneso far (in this dissertation). It shows that the heat equation could have been solvedin this manner, since the proposed �nite{volume schemes work equally well on theoriginal problem of heat conduction.5.4.2 A Nonlinear Case: The Viscous Burger's EquationHere, a nonlinear viscous conservation law { the viscous Burger's equation { istransformed into a relaxation system and solved. Once again, comparative resultsare available from [76], where viscous traveling waves were used.Numerical results (+) are presented in Figure 5.2, superposed onto the analyticalsolution (solid line). The boundary conditions are [u�1 = 2; u+1 = �1], whichresults in a shock moving to the right at a speed s = 12 .The analytical solution for this shock case is well known to beu(x; t) = A�B � tanh "B(x�At)2� # ;A = �u�1 + u+12 � ; B = �u�1 � u+12 � :The case on Figure 5.2 [left], which has a moderate sti�ness factor and Pecletnumber, is competitive with [76]. On Figure 5.2 [right], a case with a large Pecletnumber (Pe� = 5000) is solved. In both cases, the numerical solutions match theanalytical result very well.
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Figure 5.1: Solution (+) to the test cases presented in [76] [u�1 = 4; u+1 = 2],superposed onto the analytical solution (solid line). In each of these,we're solving Equation 5.1 after converting it into a relaxation system.
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xu Pe = 5000k � 0:75

Figure 5.2: Solution (+) to the test cases presented in [76] [u�1 = 2; u+1 = �1],superposed onto the analytical solution (solid line). In each of these,we're solving Equation 5.2 after converting it into a relaxation system.5.5 Discussion of ResultsThe goal of this chapter was to develop methods to solve linear and nonlinearviscous conservation laws. It was shown how a scalar viscous conservation law couldbe transformed into an equivalent relaxation system, and how this system could thenbe solved by the methods developed in earlier chapters. Once the convection termsare diagonalized (a standard procedure), the equations decouple and the scalar lawsbecome the canonical forms. In terms of obtaining the relaxation system, a littlecare was needed, making sure that the asymptotics of the system matched those ofthe conservation law being solved.Of course, this entire procedure assumed that sti� relaxation systems (such asEquations 5.3 and 5.4) could be solved accurately. This was justi�ed by the promisingresults shown in Chapters II to IV, as well as those in [41, 38, 15]. But would this



72method even work? Several cases were shown in Section 5.4 for the advection{di�usion equation and for the viscous Burger's equation. In each case, the numericalcomputations were in good agreement with analytical solutions (and competitivewith a rival method [76]), even for relatively large Peclet numbers (103 to 104).Moreover, this accuracy has been achieved at a very low cost, since the solver for therelaxation system is a very simple one (as developed so far in Chapters II to IV).One might ask what has been gained in this exercise. At �rst sight, it appears thatthe viscosity sti�ness has merely been replaced by the relaxation sti�ness. However,there are several advantages to this approach. First, a second{order system hasbeen transformed into a �rst{order one, which eliminates the problem of evaluatingsecond derivatives on irregular grids [22]. Second, the sti�ness is solely due to thesource term, which is local; thus, the algorithm is only locally implicit and thereforeparallelizable. Further, a practical advantage is that the solver for relaxation systemshas not been speci�ed { it can be chosen by the user. Finally, note that the time{step is now governed by the convection term alone. These advantages, coupled withthe results shown already, indicate that the proposed approach is a viable one forsolving scalar viscous conservation laws, and should extend quite readily to the caseof practical systems, both for steady and unsteady applications.



CHAPTER VISOME REALISTIC APPLICATIONSIn this chapter, the methodology developed in earlier chapters will be extended tosolve (model) problems that are closer to reality. The Broadwell model is considered�rst (Section 6.1), followed by the Euler equations with Heat Transfer (Section 6.2).Finally, a simple example from higher{order moment{closure formulations (which arecurrently of interest for rare�ed{gas dynamics calculations) { the one{dimensional10{moment model { is attempted (Section 6.3). The present method is demonstratedto be a viable alternative, even when the the shock structure is not resolved spatially.6.1 The Broadwell ModelThe Broadwell model [11] is a simpli�ed model of the Boltzmann equations, andis a �rst step towards more complex discrete velocity kinetic gas models of uid ow.It describes the gas composed of discrete velocities (four and six in two{ and three{dimensions), governed by a binary collision law and limited to spatial variations inone direction only. The evolution equation for the one dimensional solutions is [38]wt + fx = �1� s ;where w = (h+; h0; h�)T ; f = (h+; 0; h�)T ; s = (q;�q; q)T are the state, uxand source vectors respectively, � is the relaxation distance (mean free path), and73



74q = h+h� � (h0)2 is a measure of departure from equilibrium (in characteristic co-ordinates). The state vector w denotes the mass densities of the gas particles withspeeds (1; 0;�1) respectively, in space and time (x; t). These equations are alreadyin diagonal (characteristic) form.The uid dynamic (conserved) variables density (�) and momentum (m), as wellas a third (new) variable z are de�ned in terms of these mass densities as� = h+ + 2h0 + h� ; m = h+ � h� ; z = h+ + h� ; (6.1)resulting in the conserved variable form of the Broadwell modelwt + fx = �1� s ; (6.2)where w = (�;m; z)T ; f = (m; z;m)T ; s = (0; 0; Q)T are the state, ux and sourcevectors respectively, � is the relaxation distance (mean free path), and Q = 12(2�z ��2 �m2) is the departure from equilibrium (in conserved variable space)1.The reverse transformation, from uid dynamic variables to the mass densityvariables, is trivial, given byh+ = 12(m+ z) ; h0 = 12(� � z) ; h� = 12(z �m) :In equilibrium, Q � 0 ) z = �2 +m22� = �2 �1 + u2� :The characteristic equations can be integrated using the PI� scheme to give(m+ z)P � (m+ z)A = �2k [�QP + (1 � �)QA] ; (6.3)(� � z)P � (�� z)M = k [�QP + (1 � �)QM ] ; (6.4)(z �m)P � (z �m)B = �2k [�QP + (1 � �)QB] : (6.5)1Note that q and Q are (naturally) related, with Q = 2q.



75Solving the acoustic equations (6.3 and 6.5) simultaneously givesmP = 12(mA + zA) � 12(zB �mB) + k(1� �)(QB �QA) ; (6.6)zP = 12(mA + zA) + 12(zB �mB)� 2k�QP � k(1 � �)(QA +QB) : (6.7)The crucial change from previous examples is that there are now three character-istics, which complicates the solution process. Note that in order to compute theinterface ux , mP and zP are the only variables needed. While mP has been explic-itly obtained above (in terms of available data), zP requires (in addition to the valuesat tn) information at the interface at the previous time level (which itself would needto be approximated using the values on either side). Further, elimination of thenonlinear dependencies on the values at the new time level would require an expen-sive and messy iterative solution procedure, contrary to the simple and economicalapproximation desired. Recall that it was shown in [38] that the numerical schememust project the solution onto a local Maxwellian (equilibrium) at each time step2,in order to achieve physical results; further, this must be the �rst step in a multi{stepprocess (to have the same e�ect in under{resolved methods as the initial layer).Observing the di�culty in obtaining an explicit solution, and noting this equilib-rium requirement, a natural approximation to make is to assume that equilibriumis achieved at the newly computed point (i.e., QP = 0). This provides a convenientway to circumvent the di�culty while enforcing the equilibrium condition. Thus,this approximation serves two purposes: �rst, it avoids the iterative procedure thatwould have been necessary to solve the pair of nonlinear simultaneous equations,and second, it projects the solution to a local equilibrium as has been shown to benecessary to obtain physical solutions.2In the case of under{resolved schemes, this mimics the initial layer. Further, the projectiononto equilibrium at each time step ensures passage from the relaxation system to the equilibriumsystem.



76After incorporating these minor changes, the current scheme was ready for bench-marking. Several test cases for the Broadwell model have been presented in [38, 15].Figure 6.1 shows the results for the �rst case (initial data as well as all parametersare given on the �gure itself), where the plots show the conserved variables (�;m; z)as well as (z�zeq). The results obtained here are clearly very good, and the capturedshocks are crisp (narrower than those in [38]). The quantity (z�zeq), which measuresthe departure from a true equilibrium ow, is non{zero in the non{uniform parts ofthe solution. In [38]), it was proved that for that scheme, the departure would beO(� ), which appears to be true for the present method also, although the numericalvalues here are even smaller.Figure 6.2 shows four more test cases, which are compared to those in [15], witheach plot showing the conserved variables (�;m; z). Figure 6.2 [left, top] is a casein the frozen regime (dx; dt � � ), where the pure method of characteristics wouldbe expected to do well (and does [15]). Figure 6.2 [right, top], the initial layer isseverely under{resolved (thick regime), and schemes that do not mimic this layer(by projecting the solution onto a Maxwellian at each time step) are likely to have aglitch and may even converge to spurious solutions. Recall that the current schemedoes not use any sort of initial{layer �x (unlike the method in [15]3); however, itclearly gives the correct solution although with a small initial layer e�ect. Figure 6.2[left, bottom] shows a case in the intermediate regime (dx; dt � � ), resulting in aninitial layer which is physical. Unfortunately, the numerical results exaggerate thelayer a little. Finally, Figure 6.2 [right, bottom] shows a Riemann problem in thethick regime with a shock and a rarefaction, both of which are very nicely captured.3A �x was required in [15] since their �rst step did not project the data onto a local equilibrium.The �x is to use, for the �rst time step, a �rst{order scheme that does possess this projectionproperty and use a Richardson extrapolation to recover second{order accuracy.
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Figure 6.1: Solutions for the conserved variables density �, momentumm, z, as wellas a departure from equilibrium parameter z � zeq are plotted for theBroadwell model (Equation 6.2), which may be compared to the resultsin [38]. Initial data for the states w = (�;m; z)T are [wL = (1; 0; 1)T ,wR = (0:2; 0; 1)T ], the relaxation distance is � = 10�8, and the solutionsare computed using a mesh size of dx = 0:005 and a CFL number of� = 0:5, and shown at a �nal time t = 0:25.
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79In fact, the present method results in sharper shocks than the scheme presentedin [15].6.2 The Euler Equations with Heat TransferIn this model, the Euler equations for gas dynamics are coupled with a simpli�edheat transfer rate equation [55, 38], where the one dimensional ow of gas is assumedto be in contact with a constant temperature bath. The evolution equations arewt + fx = �1� s ; (6.8)where w = (�; �u; �E)T ; f = (�u; �u2+p; �uH)T ; s = [0; 0; �(T �T0)]T are the state,ux and source vectors respectively, � is the relaxation time, E = e+ 12u2 is the totalspeci�c energy, e is the speci�c internal energy, and H = E+p=� is the total speci�centhalpy. The closure equation is the usual �gas lawp = ( � 1)�e ;where p is the pressure of the gas. The speci�c internal energy is de�ned ase = cvT ; cv = R � 1 ;where R is the gas constant,  = cp=cv = 1:4 is the ratio of speci�c heats, and cp,cv are the speci�c heats of the gas. The equilibrium limit for Equation 6.8 is simplythe isothermal Euler equations.Here, a special case cv = 1 ) R =  � 1 = 0:4 ;is chosen, and the temperature of the bath is set atT0 = 1 :



80The simplest manner in which to obtain the characteristics equations is to workwith the primitive variable formulation. The transformed equations can be easilyobtained (with a little algebra), being of the form of Equation 6.8, but with w =(�; u; p)T ; s = [0; 0; ( � 1)�(T � T0)]T andA = @F@w = 0BBBBBBB@ u � 00 u 1=�0 p u 1CCCCCCCA :The (frozen) eigenvalues of this system are�F = u� c; u; u+ c ; c =  p� !1=2 ;and the matrix of left eigenvectors isL = 0BBBBBBB@ 0 �c �1c2 0 �10 �c 1 1CCCCCCCA :The characteristic equations, obtained by pre{multiplying Equation 6.8 by L, are�̂ĉdu � dp = �4k( � 1)�(T � T0) along �1; (6.9)ĉ2d� � dp = �4k( � 1)�(T � T0) along �2 ; (6.10)�̂ĉdu+ dp = 4k( � 1)�(T � T0) along �3 ; (6.11)where the eigenvalues are numbered from smallest to largest.Solving the acoustic equations (6.9 and 6.11) simultaneously givesuP = �uA + uB2 �+  pA � pB2�̂ĉ !+ 2k(1 � �)(QA �QB)�̂ĉ ; (6.12)pP = �pA + pB2 �+ �̂ĉ(uA � uB)2 + 4k�QP + 2k(1 � �)(QA +QB) : (6.13)



81Again, the projection onto equilibrium is enforced by assuming that QP = 0 in theabove equation (as was done for the Broadwell model). The density can now becomputed as� = �M � " �̂(uP � uA)â # + "(pA � pM )â2 #+ "4k(1 � �)(QA �QM)â2 # : (6.14)Note that for the Euler equations, we cannot say a priori which characteristics arepositive or negative. Thus, the characteristic tracing step now includes the additionalcomputation of the characteristic velocities (and directions). Now, the characteristicsare traced back to the initial line, but take into account (via simple bookkeeping)whether the characteristic intersects the cell to the left or right of the interface (atthe initial time level tn).To test the accuracy of the present method, the case shown in [38] is attempted,with numerical results shown in Figure 6.3 for the primitive variables (�; u; p) and forthe departure from equilibrium: (E �E0). The initial data as well as other relevantparameters are shown on the �gure itself. The solution has a left rarefaction and aright shock. The computation is in the thick regime (severe spatial and temporalunder{resolution). A comparison of the solutions obtained here against those shownin [38] clearly demonstrates the accuracy of the present method. There are no over-shoots at the tail of the rarefaction and the captured shock is extremely sharp (3cells, as opposed to about 6 in [38], which is easily seen from the plot of E � E0).Further, this departure from equilibrium is again O(� ) in the current method, farsmaller than in [38].The experience gained from the last two sections provided the con�dence toattempt a case of particular interest to the CFD group at Michigan4 { that of rare�ed{4The group at the W. M. Keck Foundation Laboratory for CFD at The University of Michigan{Ann Arbor.



82gas dynamics and the higher{order moment{closure models [34, 13]. The simplest(practical) model is the 1{D 10{moment model, which is attempted next.6.3 Higher{Order Moment{Closure Models: An Examplefrom the One{Dimensional 10{Moment EquationsThe 10{Moment model [13], specialized to the one{dimensional case, iswt + fx = �1� s : (6.15)w = (�; �u; �u2+p; z)T ; f = (�u; �u2+p; �u3+3up; uz)T ; s = [0; 0; 23(p�z); 13(z�p)]Tbeing the state, ux and source vectors respectively, and � being the relaxation time.The notation here is slightly di�erent notation from [13], the correspondence beingu � ux ; p � pxx ; z � pnn :Observe that the equations in this form do not reduce to the correct equilibriumlimit as � ! 0 (the one{dimensional Euler equations). This is because althoughthere are several ways to write the energy equation (via linear transformations ofEquation 6.15), only one reduces to the Euler limit as � ! 0. This form is obtained byadding the third and twice the fourth equations (of Equation 6.15), which eliminatesthe source term in the resulting equation. The modi�ed equations are of the formof Equation 6.15, but with w = (�; �u; �u2 + p + 2z; z)T ; f = (�u; �u2 + p; �u3 +3up + 2uz; uz)T ; s = [0; 0; 0; 13(z � p)]T . The system is now in the form of Liu's [49]relaxation system, and does go to the correct Euler limit as � ! 0.The equations in primitive variable form are given by Equation 6.15, but with
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Figure 6.3: Solutions for the primitive variables density �, velocity u, pressure p,as well as departure from equilibrium E � E0 are plotted for the Eulerequations with heat transfer (Equation 6.8), which may be comparedto the results in [38]. Initial data for the states w = (�; �u; �E)T are[wL = (1; 0; 1)T , wR = (0:2; 0; 0:2)T ], the relaxation time is � = 10�8,and the solutions are computed using a mesh size of dx = 0:005 and aCFL number of � = 0:5, and shown at a �nal time t = 0:3.



84w = (�; u; p; z)T ; s = [0; 0; 23(p� z); 13(z � p)]T andA = @F@w = 0BBBBBBBBBBB@ u � 0 00 u 1=� 00 3�a2 u 00 3�b2 0 u 1CCCCCCCCCCCA ;where the sound speeds and the (frozen) eigenvalues area =  p�!1=2 ; b =  z�!1=2 ; �k = u�p3a; u; u; u+p3a :The matrix of left eigenvectors isA = @F@w = 0BBBBBBBBBBB@ 0 �p3�6a 16a2 01 0 � 13a2 00 0 � b23a2 10 p3�6a 16a2 0 1CCCCCCCCCCCA ;leading to the characteristic equationsdp �p3�adu = �2dt3� (p � z) ;dp � 3a2d� = �2dt3� (p � z) ;b2dp� 3a2dz = �dt� " 2b2 + 3a23 ! (p� z)# ;dp �p3�adu = �2dt3� (p � z) ;which are integrated along the characteristics using the PI� scheme to givepP � pB �p3�̂â(uP � uB) = �83k [�QP + (1 � �)QB] ; (6.16)pP � pM � 3â2(�P � �M ) = �83k [�QP + (1 � �)QM ] ; (6.17)b̂2(pP � pM )� 3â2(zP � zM) = �43k �2b2 + 3a2� [�QP + (1� �)QM ] ;(6.18)pP � pA +p3�̂â(uP � uA) = �83k [�QP + (1 � �)QA] : (6.19)



85The acoustic equations (6.16 and 6.19) can be trivially solved for uP , pP givinguP = �uA + uB2 �+ 12p3�̂â �pA � pB � 83k(1� �)(QA �QB)� ;pP = 12 �pA + pB +p3�̂â(uA � uB)� 83k f2�QP + (1� �)(QA +QB)g� :As was done in Sections 6.1 and 6.2, the term involving QP is dropped to enforceequilibrium. Knowing uP ; pP , � and z can be computed at the new time level (P ) as�P = �M + 13â2 �pB � pM +p3�̂â(uP � uB) + 83k(1 � �)(QM �QB)� ;zP = zM + 16â2 n2b̂2(pP � pM )� (2b̂2 + 3â2) hpP � pA +p3�̂â(uP � uA)i�83k(2b̂2 + 3â2)(1� �)(QA �QM )� :Since this is a rather new area of research, there are very few test cases available. Theonly one attempted here is a steady solution of the shock structure [13]. Althoughthis is not the best case for comparison (since it is a steady problem), it shouldprovide some idea of how the current method would perform on relatively unknownequations. The initial conditions correspond to a steady (equilibrium) shock, withthe data given on the �gure itself.Two cases are considered: in the �rst, conditions similar to those in [13] are used(non{sti� regime). In the second, a very small relaxation time is used (uid dynamiclimit). Both cases are run with absorbing boundary conditions.The results should be analogous to a comparison of Navier Stokes to Euler so-lutions respectively. In Figures 6.4 and 6.5, we present the results of our numericalexperiments, and see that in the non{sti� regime, our solutions essentially reproducethose of [13] with less spatial resolution. However, in the sti� case, the results lookremarkably like those observed in [2, 4], where slowly moving discontinuities left atrail of oscillations. In this case, one would not expect this phenomenon, since the
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Figure 6.4: Solutions for the density �, plotted for the 10{moment equations (Equa-tion 6.15), which may be compared to the results in [13]. Initial datafor the left state wL = (�; u; p; z)T = (53;M; 1; 1)T , where M is the Machnumber: M = 1:1 (top left), M = 1:35 (bottom left), M = 2 (top right)and M = 5 (bottom right). The relaxation time is � = 1, and the solu-tions are computed using a mesh size of dx = 1 (except the �gure on thebottom right, which uses dx = 0:5) and a CFL number of � = 0:5. Allsolutions are shown at a �nal time t = 100.
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Figure 6.5: Solutions for the density �, plotted for the 10{moment equations (Equa-tion 6.15), which may be compared to the results in [13]. Initial datafor the left state wL = (�; u; p; z)T = (53;M; 1; 1)T , where M is the Machnumber: M = 1:1 (top left), M = 1:35 (bottom left), M = 2 (top right)and M = 5 (bottom right). The relaxation time is � = 10�10, and thesolutions are computed using a mesh size of dx = 1 (except the �gure onthe bottom right, which uses dx = 0:5) and a CFL number of � = 0:5.All solutions are shown at a �nal time t = 100.



88shock is stationary. However, it is the equilibrium shock that is stationary while afrozen{characteristic method is used; no matter how sti� the test case, the solutionwill relax to equilibrium (by some �nite amount), resulting in a numerical shock thatis not stationary. Thus, it is quite conceivable that the post{shock phenomenon isback from the crypt [4]5.

5In [4], it was shown why post{shock oscillations were generated by slowly moving shock waves.



CHAPTER VIICONCLUSIONS AND FUTURE WORKThe primary goal of this study was to establish a systematic procedure for solv-ing sti� relaxation systems, which has been achieved. The strategy was to startwith the simplest possible (model) problem and extend the solution methodology tosuccessively harder, and more realistic, problems.In Chapter II, a linear 2�2 relaxation model was solved by the method of charac-teristics. Chapter III described its extension to a �nite volume formulation, capableof capturing shocks and satisfying the weak form of the conservation laws (i.e., theintegral form). This was further extended in Chapter IV to account for nonlineare�ects (the work so far being limited to the 2�2 case). Finally, in Chapter VI, morecomplex realistic applications were considered. A large number of test{cases wererun, most of which have been directly compared to current methods [38, 15, 76]. Itwas found that the present method is at least competitive with the best solutionalgorithms currently available. Further, using the analysis and methods developedhere, a new approach for solving viscous conservation laws was proposed (Chap-ter V), which was demonstrated to be a viable alternative to current methods withseveral added advantages. The most signi�cant gains were the conversion of thehigher{order system to a �rst{order system, which eliminates the problem of accu-89



90racy (in computing higher{derivatives) when solving viscous equations on irregularmeshes [22]1. Further, the time{step was dependent on the convection terms alone,and good solutions could be achieved at low cost even for high Peclet numbers.The method developed is fully discrete, second{order accurate, and performswell even for severely under{resolved calculations (sti�ness of one billion). Since it isonly point{implicit, it is simple, parallelizable and economical in computational anddevelopmental cost. Moreover, it is very easy to adapt even to relaxation systemsfor which very little analytical information is available. Furthermore, the capturedshocks are typically far narrower than with rival schemes [41, 38, 15], and the CFL(stability) condition is that of the homogeneous system.The proposed method is a generalization of the point implicit scheme [83], and isstable even for large sti�ness (uid dynamic limit). It does not su�er from the loss ofaccuracy that is commonly noticed with Strang{splitting in this limit [55, 38]. Basedon early lessons, a coupling mechanism is built into the scheme, so that the numericsmimic the physics by letting the wave families interact in the entire spatio{temporalregion bounded by the initial line and the domain of dependence. Although it has notbeen proven, the method very likely projects the data onto an equilibrium solution,since none of the cases attempted so far have led to blow{up or spurious solutions(and it has been shown that lack of this projection property leads to these pitfalls). Inthe limit of in�nite sti�ness, the PI� scheme asymptotically approaches the fully pointimplicit scheme, which automatically satis�es this projection property [38]. Notethat while there is no initial{layer �x in the method presented here, the only placewhere a spurious layer is visible is in the nonlinear Broadwell model (Chapter VI). Asuccessful method for the linear problem, the PI scheme, failed in the nonlinear sti�1This still leaves the issue of resolution [22].



91cases. It is conjectured that this was due to the method not having the conservationproperty2. For the 10{moment equations, the under{resolved method gave rise tooscillations but these were typically less than 1% of the shock jump for a sti�nessof the order of a billion, which is asymptotically the worst case. While the shock inthis problem is stationary (based on equilibrium wavespeeds), it is the full relaxationsystem that is being solved. Therefore, there is a �nite relaxation e�ect even for themost severely under{resolved case, which may lead to a creeping motion of the shock.Slowly{moving shocks also plague Euler solvers (Euler equations being the uid{dynamic limit of the 10{moment model), and have been studied in detail recently [4].However, the present results are no worse than Euler results obtained by conventionalsolvers [4].The success of the present approach lies in its ability to compute the uxes moreaccurately. This is done by using a characteristic tracing step to obtain states atGauss points along the interface, with the ux integral being approximated by Gaus-sian quadratures. The characteristic tracing step incorporates the inuence of thesource terms in a simple manner, leading to a good approximation to the time{varying uxes. It is seen to be a natural generalization of the Piecewise SteadyApproximation (which has been advocated for non{sti� source terms by several re-searchers, e.g., [71]). Although only a constant mesh size is used, the scheme wouldreadily extend to adaptive{grid methods.This work also answers the question posed earlier by several researchers (e.g., [55,41]: which uxes and wavespeeds, frozen or equilibrium, are the correct ones to usefor such computations? It is natural to expect the frozen (equilibrium) uxes and2Note that, intuitively, one would evaluate the source term halfway between the ends of thecharacteristics for accuracy in the non{sti� cases, while evaluating it at the new time level in thelimit of in�nite sti�ness. These limits are attained quite naturally by the PI� scheme, using thisconservation property.



92wavespeeds to be the correct ones in the respective limits, but the ambiguity in thetransition has led to much speculation. The characteristic{based algorithm presentedhere goes quite naturally from the frozen to the equilibrium limit, but never makesuse of equilibrium wavespeeds (i.e., only uses frozen characteristics).Under{resolved schemes have been shown to be prone to two further shortcom-ings [38]: �rst, the generation of spurious initial layers when the initial data arenot in local equilibrium, and second, the convergence of the scheme to the wrong(unphysical) solution with (possibly) incorrect shock speeds and jumps. The resultspresented here adequately demonstrate the robustness of the proposed scheme. Ithas the correct long{time behavior with both spatial and temporal under{resolution,and the results do not degrade in the intermediate regime. Further, the solutionsare always the physical ones, having the correct shock speeds and jumps, withoutgenerating noticeable (erroneous) initial layers.In terms of future work, there are several possibilities. First, an attempt needsto be made to extend this methodology to multi{dimensions. This could be done ina reasonably straightforward manner if dimensional splitting was acceptable. Thereare two possible ways to use dimensional splitting: �rst, to use Strang{type splittingfor the two directional operators, and second, to solve a one{dimensional problemat each of the four interfaces (which may be better). If, however, the accuracy doesreduce to �rst{order, the extension could be much harder than anticipated and adimensional coupling would need to be sought. It is also not clear how the methodcould be adapted to genuinely multi{dimensional approaches.Recall that the 10{moment model was successfully solved for small sti�ness, andreasonable estimates were obtained in the uid{dynamic limit. This suggests a sec-ond promising avenue to explore would be to extend this procedure to solve the more



93complex higher{order moment{closure models. In addition, the two{temperaturemodel of the Euler equations with heat transfer was very similar (at �rst sight) tomodels in computational combustion, indicating that numerical combustion may bea third potential area of impact for the current methodology.A fourth, and extremely promising avenue to explore, would be to attempt to usethe new formulation for viscous conservation laws (of Chapter V) to solve the equiva-lent of the full Navier{Stokes equations, and to compare the algorithm e�ciency andaccuracy with contemporary methods. Solutions to unsteady problems may be hard,since the correct asymptotics would need to be determined. However, for steadyproblems, whether or not the asymptotics are correct doesn't matter. Moreover, theadvantage of being able to compute higher{Peclet{number ows than conventionalmethods would speed convergence to steady state, and this is possibly the singlemost promising area of application.
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95APPENDIX ATHE PI� SCHEMEIt is easy to show that for any set of linear equationsut + (A � u)x = P � u ;where A, P are constant matrices, a \conservative" form can be obtained as(e�Ptu)t + (e�PtA � u)x = 0 ;where e�Pt is a matrix exponential. For the HHE's, it is simplye�Pt = diag(1; e�t=� ) ;resulting in the conservation conditionZ(k) = e�2k ; (A.1)where z(k) is one of the coe�cients that appear in the method of characteristics(see Section 2.3). What is desired here is a closed{form solution for the \best" placeat which to evaluate the source term in the context of a point{implicit method ofcharacteristics, the PI� scheme (Equation 2.19). This is determined by satisfyingconservation in the above sense for a constant state �w = (��; �q)T , the constraint forwhich is Z = [1� 2k(1 � �)](1 + 2k�)�1 = exp(�2k) :



96This is easily solved for � to give� = 11� e�2k � 12k ; (A.2)which can be expanded in a Taylor series around k = 0 to get� = 12 + k6 � k390 + k5945 +O(k6) ; (A.3)and asymptotes to �(k !1) = "1 : (A.4)The same analysis holds for the general form of the linear 2 � 2 system, and wouldhold true for any linear system [check].From this, two very simple, but nevertheless illuminating, conclusions can bedrawn. First, in the limit of k ! 0 (i.e., in the limit of vanishing sti�ness), � = 0:5(the PI scheme, where the source term is evaluated midway along each characteristic).Second, as the sti�ness increases, the above analysis suggests evaluating the sourceterm increasingly closer to the new time level until in the limit of k ! 1, � = 1(the fully implicit scheme).



97APPENDIX BThe GAUSS POINTS AND WEIGHTSThe interface ux that was to be approximated by Gaussian quadratures was(Section 3.4.1)Fj+1=2 = 12 Z 1�1 fj+1=2(�)d� = 12 k=KXk=1 wkfj+1=2(�k) ;where �k = 12 (�t�k +�t) = �t2 (1 + �k) :Here, �k and wk are the location and weight of the kth Gauss point, for a K pointquadrature, which are given below for the 3 point quadrature [1].3 point quadrature: locations and weights�1 = �0:774596669241483�2 = 0:�3 = ��1w1 = 0:555555555555556w2 = 0:888888888888889w3 = w1
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ABSTRACTEXPLICIT CHARACTERISTIC{BASED HIGH{RESOLUTION ALGORITHMSFOR HYPERBOLIC CONSERVATION LAWS WITH STIFF SOURCE TERMSbyMohit AroraChairman: Philip L. RoeA new algorithm for the numerical solution of sti� hyperbolic relaxation sys-tems is presented. It is an extremely simple characteristic{based, fully{discrete,explicit, second{order scheme that is computationally inexpensive. It is accurate inthe non{sti� (rare�ed) regime, and maintains its accuracy for moderate sti�ness andunder{resolution. As the under{resolution becomes more severe, the results grace-fully deteriorate, and even in the uid dynamic limit, it appears to give the physicalsolution (i.e., correct shock jumps and locations), although under{resolution doesintroduce errors. Results are presented for a variety of linear and nonlinear testcases, most of which are compared to current literature. In all cases, the presentresults are at least competitive with the best available solutions, and often surpassrival approaches. Moreover, a fresh approach is proposed for the solution of viscousconservation laws via a transformation to a relaxation system, which becomes sti�



1as the Peclet number (P�) increases. This has the potential of eliminating the errorsarising from higher{order di�erencing on irregular meshes, a severe problem in carte-sian adaptive{grid methods. In short, since the method is robust, economical andresults in physical solutions (even in the uid dynamic limit), it is a viable methodfor computing under{resolved ows.


