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Abstract

Identification of people from gait captured on video has
become a challenge problem in computer vision. However,
there is not a baseline algorithm or standard dataset for
measuring, or determining what factors affect performance.
In fact, the conditions under which the problem is “solv-
able” are not understood or characterized. This paper de-
scribes a large set of video sequences (about 300 GB of
data related to 452 sequences from 74 subjects) acquired
to investigate important dimensions of this problem, such
as variations due to viewpoint, footwear, and walking sur-
face. We introduce the HumanID challenge problem. The
challenge problem contains a set of experiments of increas-
ing difficulty, a baseline algorithm, and its performance on
the challenge problem. Our results suggest that differences
in footwear or walking surface type between the gallery
and probe video sequence are factors that affect perfor-
mance. The data set, the source code for the baseline al-
gorithm, and UNIX scripts to reproduce the basic results
reported here are available to the research community at
http://marathon.csee.usf.edu/GaitBaseline/

1. Introduction

Identifying humans from their gait is currently an ex-
tremely active area of computer vision (e.g., [1, 2, 3, 6, 7, 5,
4]). To assist the advancement of gait analysis, we introduce
the HumanID challenge problem. We describe the data col-
lected to support the challenge problem, provide a baseline
algorithm to solve the challenge problem, and present a set
of challenge experiments of increasing levels of difficulty.
The challenge problem is designed to address the follow-
ing questions: (1) Under what conditions is gait recogni-
tion solvable? (2) What variations in a person’s walk affect
performance? (3) What directions appear promising for im-
proving the performance of gait recognition? The answer

to these questions cannot be provided by the performance
figures of one algorithm on a small proprietary database.
Rather, the answer will come from detailed analysis of per-
formance statistics of multiple algorithms on a large com-
mon data set. This is the framework that the HumanID gait
challenge problem provides.

The key to the success of the challenge problem is the
database of video sequences collected to support it. The
database defines the characteristics and difficulty of the
problem(s). The ideal challenge problem includes sub-
problems that span a range of characteristics and difficul-
ties. These ranges are included in HumanID gait challenge
problem because of the number of conditions under which
a person’s gait is collected, the number of individuals in the
database, and the fact that all sequences are taken outside.
The database used in the challenge problem is the largest
available to date in terms of number of people, number of
video sequences, and conditions under which a person’s gait
is observed. The database consists of 74 individuals, with
each individual collected in up to 16 conditions. All the
data is collected outside, reflecting the added complications
of shadows from sunlight, moving background, and moving
shadows due to cloud cover.

The baseline algorithm provides a base for measuring
improvement in performance. The infrastructure tools pro-
vide the ground work for further investigation. The tools
include the scripts for running small and large experiments,
processing from intermediate steps, and methods for de-
tailed performance analysis. The small and large experi-
ments will provide a variety of levels for researchers to start
investigating gait recognition. The availability of interme-
diate results will allow researchers to focus on different as-
pects of the problem. For example, the availability of the
silhouette sequences means that a researcher can focus on
the recognition part of problem. At the same time, another
researcher could focus on the segmentation part of the prob-
lem. The analysis tools will provide a basis for determining
under what conditions the problem is solvable, identifying
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the underlying reasons for these conditions, and pointing to
future directions for research and investigation.

The HumanID gait challenge problem touches on the fol-
lowing computer vision problems: matching and comparing
temporal signatures, figure and background segmentation,
modeling human motion and dynamics, and occlusion.

Not all of these aspects are included in the baseline al-
gorithm or will be included in every solution. However,
improvements in performance over the baseline will touch
upon some of these areas. The connection with the chal-
lenge problem could serve as bases for developing and im-
proving algorithms in these areas. In addition, the challenge
problem can provide a means for measuring the impact of
improvements in algorithms from these areas as on a well-
defined problem.

2. Data Acquisition

The main goals of the data collection were to acquire
data on a larger number of subjects than analyzed in cur-
rent papers on gait analysis, and to acquire data on a given
subject under varied conditions. Each subject walked coun-
terclockwise around each of two similar size and shape el-
liptical courses. The basic setup is illustrated in Fig. 2.
The elliptical courses were approximately 15 meters on the
major axis and 5 meters on the minor axis. Both courses
were outdoors. One course was laid out on a flat con-
crete walking surface. The other was laid out on typical

grass lawn surface. Each course was viewed by two cam-
eras, whose lines of sight were not parallel, but verged, so
that the whole ellipse was just visible from the two cam-
eras. When the persons walked along the rear portion of the
ellipse, their view was only approximately fronto-parallel.
Although data from one full elliptical circuit for each con-
dition is available, we present the challenge experiments
on the data from the rear portion of the ellipse. The gait
video data was collected at the University of South Florida
on May 21 and 22, 2001.

The cameras were consumer-grade Canon Optura (for
the concrete surface) and Optura PI (for the grass surface)
cameras.2 These are progressive-scan, single-CCD cam-
eras capturing 30 frames per second with a shutter speed
of 1/250 second and with auto-focus left on as all subjects
were essentially at infinity. The cameras stream compressed
digital video to DV tape at 25 Mbits per second by apply-
ing 4:1:1 chrominance sub-sampling and quantization, and
lossy intra-frame adaptive quantization of DCT coefficients.

Subjects were asked to read and sign an IRB-approved
consent form when they arrived for the scheduled data ac-
quisition. Information recorded in addition to the video in-
cludes sex (75% male), age (19 to 54 yrs), height (1.47 m
to 1.91 m), weight (43.1 kg to 122.6 kg), foot dominance
(mostly right), type of shoes (sneakers, sandal, etc.), and
heel height. Subjects were asked to bring a second pair of
shoes, so that they could walk the two ellipses a second time
in a different pair of shoes. A little over half of the subjects
walked in two different shoe types. In addition, subjects
were also asked to walk the ellipses carrying briefcase of
known weight (approximately 6 kilograms). Most subjects
did walk both carrying and not-carrying the briefcase. Thus
there are as many as sixteen video sequences for each sub-
ject: (grass / concrete) x (two cameras, L and R) x (shoe A
/ shoe B) x (briefcase / no briefcase). The current release of
the database doesnot include the briefcase carrying condi-
tion, which would have doubled the size of the database to
about 600 GB. The briefcase sequences would be part of a
future release. Table 1 shows the number of sequences for
each combination of conditions in the present database.

The imagery was recovered from tape offline. The cam-
era is accessed over its IEEE 1394 Firewire interface using
Pinnacle’s micro DV 300 PC board. The result is a stand-
alone video file stored using Sony’s DV-specific “dvsd”
codec in a Microsoft AVI wrapper. This capture from tape
does not re-compress and is not additionally lossy. Finally
the imagery is transcoded from DV to 24-bit RGB using the
Sony decoder and the result is written as PPM files, one file
per frame (720x480 PPM file). This representation trades3

Commercial equipment is identified in this work in order to adequately
specify or describe the subject matter. In no case does such identification
imply recommendation or endorsement by the National Institute of Stan-
dards and Technology, nor does it imply that the equipment identified is
necessarily the best available for this purpose.
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Surface Concrete (C) Grass (G)
Shoe A B A B

Left Camera 70 44 71 41
Right Camera 70 44 71 41

off storage efficiency for ease of access. The final sequences
contain each subject walking several laps of the course. For
the gait database we clipped those frames from the last such
lap. Sample frames from one sequence appear in Figure 1.
These three frames come from the left camera on the grass
surface, without the subject carrying the briefcase. This par-
ticular sequence is 712 frames in length. Please note that
although the database contains frames from one whole lap,
the results in this paper are on frames from the rear or back
portion (see middle image in Fig. 1). The subject’s size
in these frames from the rear portion is approximately 100
pixels in height, and 25 to 50 pixels in width.

Because two cameras were used during data acquisition
the data is subsequently synchronized by manually align-
ing the two sequences by inspection of action in successive
frames. Given that the cameras do not accept an external
trigger, this human-in-the-loop method gives synchroniza-
tion to no better than 1/15 second. The data should support
some level of stereo analysis, although that is not attempted
in this paper.

3. Baseline Algorithm

The baseline algorithm, which was designed to be sim-
ple and fast, is composed of three parts. The first part semi-
automatically defines bounding boxes around the moving
person in each frame of a sequence. Using a Java-based
GUI, we manually outline bounding boxes in the starting,
middle, and ending frames of the sequence. The bound-
ing boxes for the intermediate frames are linearly interpo-

lated from these manual ones. Specifically, the locations
of the upper-left and the bottom-right corners are interpo-
lated. This approximation strategy works well for cases
where there is nearly fronto-parallel, constant velocity mo-
tion, which is true for the experiments reported in this paper.
The second and the third parts of the algorithm are silhou-
ette extraction and computation of the similarity measure,
which are explained in detail in the next two subsections.

f8g4h<gHi8j4k4l�mNn�o�pPp-orq�s%p-t$u?v�p$jwmNx
We extract the motion silhouette in each frame by back-

ground subtraction, but only within the semi-manually de-
fined bounding boxes. In the first pass through a sequence,
we compute the background statistics of the RGB values at
each image location,y{z<|~}�� , using pixel values outside the
manually defined bounding boxes and all the image frames
in the sequence. We compute the mean�?��y�z;|~}�� and the
covariances���Hy{�%|^�<� of the RGB values at each pixel lo-
cation. Fig. 3 shows an example of the estimated mean
background image and the associated variances of the RGB
channels. Note that the variances are significantly higher in
the regions corresponding to the bushes and the grass than
other regions.

For pixels within the bounding box of each frame, we
compute the Mahanalobis distance of the pixel value from
the estimated mean background value. Any pixel with this
distance above an user specified threshold�����'��� (= 4, in
the experiments here) is declared to be a foreground pixel.
We have found that if we smooth the difference image us-
ing a 9 by 9 pyramidal averaging filter, the resultant silhou-
ette has smooth boundaries. On the difference thresholded
image we perform two post processing steps to extract the
normalized silhouette. First, we detect small regions, i.e.
less than�"�$�Q��� (= 200, in the experiments here) pixels, by
connected component labeling and delete them. Second,
we scale the remaining foreground region so that its length
is 128 pixels so as to occupy the whole length of the 128
by 88 pixels sized output silhouette frame. This scaling of-
fers some amount of scale invariance and facilitates the fast
computation of the similarity measure.
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Let the probe and the gallery silhouette sequences be

denoted by ¬;­¯® °P¬?­±y~²[�'|�³�³R³'|´¬?­±ySµ_��¶ and ¬<· ®°I¬<·´yB²���|¸³�³�³R|�¬<·�yw�6��¶ , respectively. We first partition
the probe sequence into disjoint subsequences of� (=
30, in the experiments here) contiguous frames each,
such that each subsequence contains roughly one stride.
Let the ¹ -th probe subsequence be denoted by¬;­\º¡®°I¬ ­ yS¹���|�³R³�³R|�¬ ­ yw¹8»F�6��¶ . We then correlate each of these
subsequences with the gallery sequence

CorryS¬;­\º�|�¬<·O�'y�¼S�8® ½¾¿^À 2 FrameSimy
¬?­±yS¹e»£Á���|�¬;·�y�¼ »£Á��~�
(1)

The similarity is chosen to be the median value of the max-
imum correlation of the gallery sequence with each of these
probe subsequences. The strategy for breaking up the probe
sequence into subsequences allows us to address the case

��� ��	 
4�CÂ?�?JH&�
4���C���9>9&(#�	(�-�����G!B

�������I�
when we have segmentation errors in some contiguous sets
of frames due to some background artifact or localized mo-
tion in the background.

SimyS¬;­*|�¬<·O��® MedianÃ�Ä(Å�ÆIÇÈ Corry4¬?­\º�|�¬;·O�'yw¼w�
É (2)

At the core of the above computation is, of course, the need
to compute the similarity between two silhouette frames,
FrameSimyS¬;­±y{ÊB��|�¬;·"yQÁ��^� , which we simply compute to be
the ratio of the number of pixels in their intersection to their
union. Thus, if we denote the number of foreground pixels
in silhouette¬ by Numy4¬;� then we have,

FrameSimyS¬;­Yy{ÊB�'|�¬<·�yËÁ$�^��® NumyS¬;­Yy{ÊB�?Ì�¬;·"yQÁ��^�
NumyS¬ ­ y{ÊB�?Í�¬ · yQÁ��^� (3)

f8g{f8g±Î�u?t$u;¦§o p�o�t$Ï
There is no calibration requirement. However, the algo-

rithm does have three parameters that need to be chosen.
The first parameter,�����'��� , is used to threshold the Ma-
hanalobis distance. Since this distance measure is normal-
ized by the covariances, the choice of the threshold tends
not to be sensitive to the particular image. We chose it to
be 4. The second parameter,� ���Ë��� , is used to delete small
regions and fill in small holes in the thresholded difference
image. We chose it to be 200 pixels. The third parameter,� , is the size of each subsequence obtained by partition-
ing the probe sequence. We chose it to be 30, which is ap-
proximately the number of frames for one walk stride. We
decided on these chosen values for the thresholds based on
visual assessment of the silhouettes from 7 sequences for 3
subjects.

4. Challenge Experiments

In this section we put forward a set of challenge tasks or
experiments, of increasing hardness, in gait based recogni-
tion and establish a baseline performance for each of them.
We structure the challenge tasks in terms of gallery and
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Exp. Probe Difference

A (G, A, L)[71] View
B (G, B, R)[41] Shoe
C (G, B, L)[41] Shoe, View
D (C, A, R)[70] Surface
E (C, B, R)[44] Surface, Shoe
F (C, A, L)[70] Surface, View
G (C, B, L)[44] Surface, Shoe, View

probe sets, patterned after the FERET evaluations [8], of
varying degrees of differences between them in terms of the
covariates. Among the four possible covariates, we have so
far studied three of them: walking surface, shoe type, and
viewpoint. The weight carrying cases are reserved for fu-
ture exploration, since it is probably the hardest covariate
to handle at this point. The USF-NIST data allows for 2
possible values for each of the three covariates, which are:
concrete (C) or grass (G) walking surfaces, two shoe types
(A and B), and left (L) and right (R) camera viewpoints.
Based on the values of these covariates we can divide the
dataset into 8 possible subsets:° (G, A, L), (G, A, R), (G,
B, L), (G, B, R), (C, A, L), (C, A, R), (C, B, L), (C, B, R)¶ . Since not every subject was imaged under every possible
combination of factors, the sizes of these sets are different
(Table 1). We choose one of the large subsets (G, A, R),
i.e. (Grass, Shoe Type A, Right Camera), as the gallery set.
The rest of the subsets are probe sets, differing in various
ways from the gallery. The structure of the challenge ex-
periments is listed in Table 2. More specifically, the gallery
and probe sets consist of the frames from the back portion of
the elliptical path, where the motion of the subject is mostly
fronto-parallel. Detailed specifications of the gallery and
probe sets in terms of the exact frame numbers are available
at the website mentioned in the abstract.

For each experiment, we compute the similarity of each
probe sequence with each gallery sequence. Following the
pattern of the FERET evaluations, we measure performance
for both identification and verification scenarios, using cu-
mulative match characteristics (CMCs) and receiver operat-
ing characteristics (ROCs).

5. Baseline Performance

Fig. 5 plots the CMCs and ROCs of the 7 challenge ex-
periments. Table 3 lists some of the key performance indi-
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cators, namely, the identification rate (à<á ) at rank 1, the ver-
ification rate (à%â ) for a false alarm rate of 10%, and the area
under the ROC (AUC). There are several observations to be
made. First, the identification ranges from 10% to 73% at
rank 1, which improves to a range from 45% to 88% at rank
5, which is approximately 7% of the gallery set size. In
terms of ROC performances, the detection rates range from
34% to 82% for a false alarm rate of 10%. These are very
encouraging performances given the simplistic nature of the
baseline algorithm. It is to be expected that more sophisti-
cated algorithms will result in much better performances,
for which there is much room.

Second, both the identification rates, as seen in the
CMCs, and the detection rates, as seen in the ROCs, fall
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Exp. Difference à á à â AUC

A View 73% 82% 0.90
B Shoe 66% 76% 0.88
C Shoe, View 56% 54% 0.82
D Surface 30% 48% 0.81
E Surface, Shoe 29% 48% 0.82
F Surface, View 18% 41% 0.74
G Surface, Shoe, View 10% 34% 0.77

as one goes from experiment A to G. This offers a natural
ranking of the experiments in terms of their challenge na-
ture, i.e. the situation in experiment A, where the difference
between probe and gallery is just the viewpoint, is easier to
solve than that in experiment G, where the probe is different
in terms of all the three covariates.

Third, among the three covariates, view point variation
seems to have the least impact and surface type has the most
impact based on the drop in the identification rate due to
each of these covariates. Apart from the effect of the in-
dividual covariates on performance, there also seem to be
interactions between their effects. For instance, shoe type
(Experiment B) seems to impact performance more than
viewpoint (Experiment A) but viewpoint change along with
surface change (Experiment F) impacts performance more
than shoe type change along with surface change (Experi-
ment E). More detailed statistical studies on larger data sets
are needed to quantify these interactions.

6. Conclusions and Discussion

The HumanID gait challenge problem is a valuable and
important computer vision problem. Any reasonably gen-
eral solution will have to address the difficult problems of
segmentation and occlusion.

The HumanID gait challenge problem dataset is large
and challenging, with subsets representing a range of in-
creasingly difficult problems. The baseline algorithm per-
formance varies from 73% on the simplest case to 10%
and 30% on the hardest experiments. The full release of
the dataset will be quadrapole the current size, incorporat-
ing time and carrying condition and so expanding the range
of covariates to be explored. The infrastructure developed
around this challenge problem should greatly expand and
facilitate research in the area of recognition using gait anal-
ysis. Researchers wishing to work on a new algorithm will
not have to invest the substantial start-up costs of acquiring

a dataset large enough to lend credibility to their results.
The varied levels of size and difficulty of problems will
allow researchers to enter the research stream in this area
at different levels of algorithmic sophistication. Also, the
availability of intermediate results will facilitate researchers
being able to focus on one sub-problem of the overall prob-
lem.

We expect that the availability of this dataset and base-
line algorithm will greatly facilitate the reliable evaluation
of new algorithms, and make it easier for new researchers
to explore their own gait analysis algorithms. Researchers
may also be motivated to explore other issues. For example,
the problem of automated motion-based segmentation is im-
portant and this dataset presents an opportunity to measure
the practical impact of advances in this area.
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