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ABSTRACT

In this paper, we consider the problem of how to represent
the locations of Internet hosts in a Cartesian coordinate sys-
tem to facilitate estimate of the network distance between
two arbitrary Internet hosts. We envision an infrastructure
that consists of beacon nodes and provides the service of es-
timating network distance between two hosts without direct
delay measurement. We show that the principal component
analysis (PCA) technique can effectively extract topologi-
cal information from delay measurements between beacon
hosts. Based on PCA, we devise a transformation method
that projects the distance data space into a new coordinate
system of (much) smaller dimensions. The transformation
retains as much topological information as possible and yet
enables end hosts to easily determine their locations in the
coordinate system. The resulting new coordinate system is
termed as the Internet Coordinate System (ICS). As com-
pared to existing work (e.g., IDMaps [1] and GNP [2]), ICS
incurs smaller computation overhead in calculating the co-
ordinates of hosts and smaller measurement overhead (re-
quired for end hosts to measure their distances to beacon
hosts). Finally, we show via experimentation with real-life
data sets that ICS is robust and accurate, regardless of the
number of beacon nodes (as long as it exceeds certain thresh-
old) and the complexity of network topology.
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1. INTRODUCTION

Discovery of Internet topology has many advantages for
design and deployment of topology sensitive network ser-
vices and applications, such as nearby server selection, over-
lay network construction, routing path construction, and
peer-to-peer computing. The knowledge of network topol-
ogy enables each host in these systems to make better deci-
sions by exploiting its topological relations with other hosts.
For example, in peer-to-peer file sharing services such as
Napster, Gnutellar, and eDonkey, a client can download
shared files from a peer that is closer to itself, if the topology
information is available. Among several categories of ap-
proaches to infer network topology, the measurement based
approach may be the most promising, whereby the net-
work topology is constructed by end-to-end measurement
of network properties, such as bandwidth, round-trip time,
and packet loss rate. In this paper, we focus on topology
construction based on end-to-end delay (round-trip time)
measurement, and use the term ”network distance” for the
round-trip time between two hosts.

The primary goal of constructing network topology is to
enable estimation of the network distance between arbitrary
hosts without direct measurement between these hosts. Sev-
eral approaches have been proposed among which IDMaps
[1] and GNP [2] may have received the most attention. Both
assume a common architecture that consists of a small num-
ber of well-positioned infrastructure nodes (called beacon
nodes in this paper). Every beacon node measures its dis-
tances to all the other beacon nodes and uses these measure-
ment results to infer the network topology. A host estimates
its distance to the other ordinary hosts by measuring its dis-
tances to beacon nodes (rather than to the other hosts). A



host benefits from using this architecture, as it needs only to
perform a small number of measurements and will be able to
infer its network distance to a large number of hosts (such
as servers).

One important issue in realizing these measurement archi-
tectures is how to represent the location of a host. IDMaps
and Hotz’s triangulation [3, 4], for example, uses the original
distances to beacon nodes to represent the location of a host,
while GNP [2] transforms the original distance data space
into a Cartesian coordinate system and uses coordinates in
the coordinate system to represent the location. As will be
discussed in Section 3, the major advantage of representing
network distances in a coordinate system is that it enables
extraction of topological information from the measured net-
work distance data. As a result, the accuracy in estimating
the distance between two arbitrary hosts will be improved
especially in the case that the number of beacon nodes is
small. To construct a new coordinate system, GNP formu-
lates an optimization problem that minimizes the difference
between the measured network distance in the distance data
space and the Euclidean distance in a Cartesian coordinate
system, and applies the Simplex Downhill method to solve
the minimization problem. In spite of its many advantages,
as will be elaborated on in Section 3, GNP does not guar-
antee that a host has a unique coordinate in a Cartesian
coordinate system. Depending on the initial value used in
the Simplex Downhill method, a single host may have dif-
ferent coordinates.

In this paper, we present a new Coordinate system called
the Internet Coordinate System (ICS). The distances from
a host to beacon nodes are expressed as a distance vector,
where the dimension of the distance vector is equal to the
number of beacon nodes. As each beacon node defines an
axis in the distance data space, the bases may be corre-
lated. We apply the principal component analysis (PCA)
to projects the distance data space into a new, uncorre-
lated and orthogonal Cartesian coordinate system of (much)
smaller dimensions. The linear transformation essentially
extracts topology information from delay measurements be-
tween beacon nodes and retains it in a new coordinate sys-
tem. By taking the first several principal components (ob-
tained in PCA) as the bases, we can construct the Cartesian
coordinate system of smaller dimensions while retaining as
much topology information as possible.

Based on the PCA-derived Cartesian coordinate system,
we then propose a method to estimate the network distance
between arbitrary hosts on the Internet. The network dis-
tances between beacon nodes are first analyzed to retrieve
the principal components. The first several components are
scaled by a factor (such that the Euclidean distances in the
new coordinate system approximate the measured distances)
and used as the new bases in the coordinate system. The
coordinate of a host is then determined by multiplying its
original distance vector to (a subset of) beacon nodes with
the linear transformation matrix. As compared to GNP,
ICS is computationally efficient because it only requires lin-
ear algebra operations. In addition, the location of a host
is uniquely determined in the coordinate system. Another
advantage of ICS is that it incurs smaller measurement over-
head, as it does not require a host to make delay measure-
ment to all the beacon nodes. Instead, a host may measure
its distances only to a subset of beacon nodes. This is es-
pecially desirable in the case that some of the beacon nodes

are not available (due to transient network partition and/or
node failure). Finally, we show via Internet experimentation
with real-life data sets that ICS is robust and accurate, re-
gardless of the number of beacon nodes (as long as it exceeds
certain threshold) and the complexity of network topology.

The rest of the paper is organized as follows. In Section 2,
we provide the preliminary material and define a distance
coordinate system using linear algebra. In Section 3, we give
a summary of related work in the literature and motivate the
need for a new Coordinate system. In Sections 4-5, we first
introduce PCA and then propose the ICS architecture that
enables construction of network topology in a coordinate
system. Following that, we present in Section 6 experimental
results, and conclude the paper in Section 7.

2. PRELIMINARY

The network topology can be modeled in a coordinate
system based on the delay measured between hosts on the
Internet. Each host measures the network distance (i.e., the
round trip delay) to the other hosts using ping or tracer-
oute. Under the assumption that there exist m hosts, a
host H; has a distance vector d; as its coordinate in an m-
dimensional system:

di = [di1, ..., dim]", (1)

where d;; is the network distance measured by the i" host
to the jth host and d;; = 0. In general, d;; # d;; because
forward and reverse paths may have different characteristics.
The overall system is represented by an m-by-m distance
matrix D, whose i*" column is the coordinate of host H;:

D=[d,... dm]. (2)

Here D is a non-symmetric square matrix with zero diagonal
entries. This representation is quite simple and intuitive,
but contains too much redundant information as every host
defines its own dimension in the coordinate system. In this
paper, we will study how to represent network distances
between hosts in a coordinate system of the least possible
dimension, while retaining as much topological information
as possible.

In a coordinate system, the generalized distance metric [6]
is defined as

Ly(ds, dj) = (Z |dir — djk|p> iy ®3)
k=1

Some of the most important metrics are the Manhattan dis-
tance L1, the Euclidean distance L2, and the Chebyshev
distance L. It has been shown that L., can be expressed
as

Loo(di7dj) = plLH;o Lp(di7dj) = m]?x |dlk — djkl‘

3. RELATED WORK

3.1 Methods in the distance data space

Several methods have been proposed to estimate the dis-
tance between hosts on the Internet. These methods envi-
sion an infrastructure in which servers (beacon nodes) mea-
sure network distances between one another, and a client
h; (ordinary host) infers its distance to some other host h;
based on that distance information between servers. Hotz



defined, for a host A, a distance vector do = [da1, .. ., dam]T
[3], where dq; is the measured distance to the i beacon
node for ¢ € {1,...,m} and m is the number of beacon
nodes. Then, the network distance L between hosts A and
B was shown to be bound by:

max |da; — dpi| < L < min(dai + dbi). (4)

Note that the lower bound is the Chebyshev distance be-
tween the two vectors, d, and dp. Hotz also showed that the
average of the upper and lower bounds generally gives a bet-
ter estimation of the distance than each bound. Guyton et
al. later applied Hotz’s triangulation to distance calculation
for locating nearby servers on the Internet [4].

A global architecture for estimating Internet host dis-
tances, called the Internet Distance Map Service IDMaps,
was first proposed by Francis et al. [1]. The architecture
separates beacon nodes (called tracers) that collect and dis-
tribute distance information from clients that use the dis-
tance map. Each tracer measures the distances to IP address
prefixes (APs) that are close to itself. A client first deter-
mines its own AP and the autonomous system (AS) the AP
is connected to. The client then runs a spanning-tree al-
gorithm over the distance information gathered by tracers
to find the shortest distance between its AS and the AS
that the AP of the destination belongs to. This distance is
taken as the estimated distance. Methods of this type (i.e.,
methods that represent network distances in a distance data
space) neither analyze delay measurements nor infer network
topology. Consequently, their performance depends heavily
on the number and placement of beacon nodes. If the num-
ber of beacon nodes is small, the measurement performance
may not be good.

In order to extract topological information, Ratnasamy et
al. [7] proposed a binning scheme. A bin is defined as the list
of beacon nodes in the order of increasing delay. The bin of a
host indicates the relative distances to all the beacon nodes.
For example, if the bin of a host is ”b,b.by”, beacon node b,
is the closest to the host, and b is the farthest to the host.
The authors applied the binning scheme to the problems
of constructing overlay networks and selecting servers. In
the binning scheme, a host joins an overlay network node or
selects a server whose bin is most similar to its own bin.

3.2 Methods that use the Cartesian coordinate

system

Ng et al. proposed a Cartesian coordinate-based approach,
called Global Networking Positioning (GNP) [2]. Instead of
using the original network distances, GNP represents the
location of each host in a N-dimensional Cartesian coordi-
nate system, where N is the number of beacon nodes. The
coordinate of a host is the distances from itself to the bea-
con nodes, and the distance between two hosts is calculated
as the Euclidean distance in the Cartesian coordinate. The
major advantage of representing network distances in a co-
ordinate system is to extract topological information from
the measured network distances. As a result, the accuracy in
estimating the distance between two arbitrary hosts will be
improved especially in the case that the number of beacon
nodes is small.

Two optimization problems have been considered in GNP
in order to obtain the coordinates of beacon nodes and hosts
in the Cartesian coordinate system. The first problem ob-
tains the coordinates of beacon nodes in GNP by minimizing

the difference between the measured distance and the com-
puted distance of any pair of beacon nodes in the Cartesian
coordinate system:

J = z (CL] — Lz(di,dj))2 ) (5)

0,3

where cL-j is the measured distance between the it* and jth
beacon nodes, and d; is the coordinate of the i*" beacon
node in the Cartesian coordinate system. The second opti-
mization problem determines the coordinate of an ordinary
host H by minimizing the following cost function:

o= (Jhi — La(di, dh))27 (6)

K3

where d~hz is the measured distance between host H and the
it* beacon nodes, and dj is the coordinate of the host H.
GNP tackles both optimization problems using the Simplex
Downbhill method [8]. Unfortunately, the Simplex Downhill
method only gives a local minimum that is close to the start-
ing value and does not guarantee that the result is unique
in the case that the cost functions are not (strictly) con-
vex. (The cost functions expressed in Egs. (5) and (6) are
not strictly convex.) It is stated in [2] that the first opti-
mization problem may have an infinite number of solutions,
and any solution is sufficient. This implies that the Simplex
Downhill method is used to find one of the local minima. If
the solution to the first optimization problem is a good ap-
proximation of a global minimum, the coordinates of beacon
nodes thus calculated suffice in the first problem. A host in
GNP may have different coordinates depending on the start-
ing values used in the Simplex Downhill method. However,
this is not the case in the second optimization problem. The
fact that ordinary hosts may have non-unique coordinates
may lead to estimation inaccuracy. We demonstrate the
problem in the following example.

ExXAMPLE 1. Problem with GNP: Consider four hosts,
two of which are located in one autonomous system (AS),
and the other two in another AS. Also assume (for demon-
stration purpose) that the distance between two hosts in the
same AS is 1 while the distance between two hosts in differ-
ent ASs is 8. Then the topology can be expressed using the
following distance matrix D:

01 3 3
10 3 3
D_3301
33 10

The first cost function Ji in two-dimensional coordinate sys-
tem is

J1 =
(1,9)=(1,2),(3,4)

+
(4,7)=(1,3),(1,4),(2,3),(2,4)

We solve the optimization problem using the ’fminsearch’
function in Matlab, which implements the Simpler Down-
hill method, with the starting values, di = [0,0]%, d =
1,17, d3 = [-1,-1]F, and d} = [0,0)F. The coordinates
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Figure 1: The cost function for the coordinate of an
ordinary host in Example 1

of the beacon modes calculated with this set of starting val-
ues are di = [0.4433,2.0048]7, d» = [1.2262,1.4248]7, d3 =
[—0.5137, —0.9240]", and di = [—1.2966, —0.3440]". Note
that Lz(dl,dz) = 09743 =~ 1, Lz(dl,dg) = 3.0812 ~ 3 and
so on.

Now assume that a host H measures its distances to four
beacon nodes, and obtains a distance vector dp = [1,4,1, 4]T.
The second cost function Jz in the second optimization prob-
lem becomes

Jo = Z 1-— Z(dik_dhk)z

i=1,3 k=1

2

2

2
+ 4 — Z(dm — dni)?

i=2,4 k=1

Figure 1 depicts the cost function J2 with respect to dp1 and
dp2. The cost function has two local minima at (1.2866, -
0.9130) and (-1.3571, 1.9938). Therefore, dp, can be either
[1.2866, —0.9130]" or [—1.3571,1.9938]7 depending on the
starting values of the Simplex Downhill method. If the start-
ing value is (1,-1), the Simplex Downhill method renders the
former local minimum (1.2866, -0.9130). This implies that
GNP does not guarantee a unique mapping from the original
distance vector to the Cartesian coordinate.

Our proposed approach, ICS, shares the similarity with
GNP in that it also represents locations of hosts in the
Cartesian coordinate system instead of a distance data space,
and consequently, can extract topological information from
measured network distances. ICS, however, provides a unique
mapping from the distance data space to the Cartesian co-
ordinate system (and thus yields a more accurate represen-
tation). In addition, it has the following advantages:

e With the use of principal component analysis (PCA),
a host can calculate its coordinates by means of basic
linear algebra such as the singular value decomposi-
tion and matrix multiplication. The computational
overhead is reduced.
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Figure 2: Example of the principal component anal-
ysis

e Unlike all the other previous work, a host does not have
to measure its distance to all the beacon nodes, but can
determine its coordinate by measuring the distances
to a subset of beacon nodes. The message overhead is
reduced.

It has come to our attention that Tang et al. also ap-
plied principal component analysis to project distance mea-
surements into a Cartesian coordinate system with smaller
dimensions [5]. The authors considered the coordinate of
a host in the coordinate system as the distances to virtual
landmarks while the coordinate in the distance data space
represents the distances to actual beacon nodes (landmarks).
However, unlike GNP and ICS, the Euclidean distance be-
tween two hosts in this scheme does not approximate the
real round trip time but reflects the relative proximity. For
the sake of scalability, the authors also devised a coordinate
exchanging method among multiple coordinate systems.

4. PRINCIPALCOMPONENT ANALYSIS (PCA)

We analyze the distance matrix D in Eq. (2) to extract
topological information in a coordinate system. In the previ-
ous example of four hosts, the dimension of the distance ma-
trix D is four. As hosts in the same AS are very close to each
other, the distance can be represented in a two-dimensional
space by projecting their coordinates into two-dimensional
space. The dimensionality depends not on the dimension m
of the distance matrix D but on the network topology, and
can be much smaller than m.

We apply principal component analysis (PCA) [9, 11, 12]
to reduce the dimension of the distance matrix while re-
taining as much topological information as possible. In a
nutshell, PCA transforms a data set that consists of a large
number of (possibly) correlated variables to a new set of un-
correlated variables, principal components, which can char-
acterize the network topology. The principal components
are ordered so that the first several components have the
most important features of the original variables. The k'"
principal component is interpreted as the direction of max-
imizing the variation of projections of measured distance
data while orthogonal to the first (k — 1)** principal com-
ponents [11].

EXAMPLE 2. Figure 2 gives an example of performing PCA
for two correlated variables, x1 and x2. With the use of



PCA, we obtain two principal components, pci and pca.
As shown in Fig. 2, the first principal component pc1 rep-
resents the direction of the mazimum variance. The one-
dimensional linear representation is calculated by projecting
the original data onto pci.

These principal components can be obtained by singular
value decomposition (SVD). The singular value decomposi-
tion of D in Eq. (2) is obtained by

D = U-Ww-V", (7)
01
g2

Om

where U and V' are column and row orthogonal matrices, and
oi’s are the singular values of D in the decreasing order (i.e.,
a; > 0j if i < j). Note that DTD = (UWVT)T(UWVT) =
V(WTW)VT. This means that the eigenvectors of D' D
make up V with the associated (real nonnegative) eigen-
values of the diagonal of W”W [10]. Similarly, DD =
UT(WWT)U. The columns of the m x m matrix U =
[u1,...,um | are the principal components and become the
orthogonal basis of the new subspace. By using the first n
columns of U denoted by U,,, we project the m-dimensional
space into a new n-dimensional space:

ci:UE-di:[ul, ..,’LLn]T-di. (8)

ExXAMPLE 3. Consider the four hosts with the following
distance matrixz D.

01 3 3
10 3 3
D= 3 3 01
33 10

We can obtain the singular value decomposition.

O |
_?_?751 9 0 0 0
- L L 9

U= %12\/5 17W=0700
-3 3 0 - 0010
_1r 1 0 1 0 0 01
2 2 V2

The original distance vector of the first host is di = [0,1,3,3]7.

With the use of Eq. (8), we can calculate the coordinate of
the first host in a two-dimensional coordinate system as

0
- S R R R 1 _z
a=Uydi = i i 12 12] 3 :{ 52}
T2 T2 2 2 2
3
Stmilarly c1 = ¢c2 = —%,%]T and c3 = ¢4 = [—%,—% ]T.
Note that PCA assigns the same coordinate to the two hosts

in the same AS. Whenn =4, Uy = U, ¢1 = [-7,5, —/2,0],
C2 = [—77 57 \/57 0]7 3 = [_77 —57 07 \/5]7 and ¢y = [—77 _57 07
—/2]. In this case (m=n), the mapping c; = U” - d; is iso-
metric (i.e., L2(ds, d;) = La(cs, ¢j)), and thus the two spaces
spanned by d;’s and c;’s are the same from the perspective
of geometry.

4.1 Dimensionality

One important issue that should be addressed in rep-
resenting network distances in a n-dimensional coordinate

Table 1: Average proximity in original geometry

space D
Metric | NPD (m = 33) | NLANR (m = 113)
Ly 5.818 6.964
Lo 6.545 6.495
Loo 12.151 5.504

system is how to determine the adequate degree, n, of di-
mensions in the coordinate system. Generally this prob-
lem of determining the number of principal components has
not been extensively studied, and is usually application-
dependent [13]. One of the commonly adopted criteria is the
cumulative percentage of variation that the selected princi-
pal components contribute [9]. The percentage, tx, of vari-
ation accounted for by the first k principal components is
defined by

k
> j=193

237;1 o
Usually a cut-off value, t* of cumulative percentage of varia-
tion is pre-determined, and n is determined to be the small-
est integer such that ¢, > t*. In the previous example, t; =

50%, to = 89%, t3 = 94 %, and t4 = 100 %. If t* is set to
80 %, then we have n = 2.

4.2 Experimental Results

To investigate whether or not PCA can be used to repre-
sent the network distances on the Internet in a coordinate
system of smaller dimensions and yet still retain as much
topological information as possible, we apply PCA to two
real-life data sets:

tr = 100 x (9)

e NPD-Routes-2 data set [14]: contains Internet route
measurements obtained by traceroute. The measure-
ments were made between 33 Internet hosts in the Net-
work Probe Daemon (NPD) framework from Novem-
ber 3, 1995, to December 21, 1995. We obtain the
distance matrix D in Eq. (2) by taking (for each pair
of hosts) the minimum value of measured round trip
times (RTTs) in order to filter out queuing delay.

e NLANR: contains the RT'T, packet loss, topology, and
on-demand throughput measurements made under the
Active Measurement Project (AMP) at National Labo-
ratory for Applied Network Research (NLANR). More
than 100 AMP monitors are used to make the measure-
ments [15]. The round trip times between all the mon-
itors are measured every minute, and are processed
once a day. We use one of the NLANR RTT data
sets measured between 113 AMP monitors on April 9,
2003.

We first compare different distance metrics with respect
to their quality of representing topological information. We
use three distance metrics, L1, L2, and L in Eq. (3). We
calculate for each host the distances Li, L2, and Lo to
all the other hosts, and determine its closest host based on
the distance calculated in the coordinate system. As the
”closest” host calculated under the various distance metrics
may not be the actual closest host, we define the notion of
proximity to measure the quality of representing topological
information. If the host calculated to be the closest is the
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closest, the proximity is set to 1. Similarly, if the host cal-
culated to be the closest turns out to be the k" closest, the
proximity is k. We average, for each distance metric used,
the proximity over all the hosts.

Table 1 gives the average proximity in the original distance
space, whose dimension is m = 33 and 113 for the NPD and
NLANR data sets, respectively. In the NPD data set, L1
gives the best performance — the host calculated to be the
closest is the 5.818'" closest host averagely. In the NLANR
data set, Lo gives the best performance. These results show
that the accuracy of representing topological information
in a distance data space depends heavily on the distance
metric.

Next we study the (in)effectiveness of using PCA to repre-
sent network distances. Figure 3 gives the average proximity
with respect to the number of principal components for the
NPD and NLANR data sets. As shown in Fig. 3 (a), when
the number of principal components is greater than 3, the
proximity is almost the same as that in the original distance
data space. This means that the topological information is
effectively represented in a 3-dimensional space instead of
in a 33-dimensional space. Another important observation
is that the average proximity in the new coordinate system
of smaller dimensions remains the same regardless of the
distance metric used. The reason that the proximity is in-
dependent of the distance metric is due to the fact that PCA
finds a set of uncorrelated bases to represent the topological
information. A similar trend can be observed in Fig. 3 (b)
in which the proximity is almost the same as that in the
original distance data space when the number of principal
components is larger than 10.

Figure 4 plots the eigenvalues and their corresponding cu-
mulative percentage of variation. The largest eigenvalues are
4760.0 and 7787.3, respectively, for the NPD and NLANR
data sets. If we set a cut-off threshold of t* = 80 %, the
smallest value of n that achieves the threshold for each data
set is, respectively, 9 and 7. In this case, o9 = 354.7, and
the average proximity is 6.54 for the NPD data set, and o7
= 325.2 and the average proximity is 7.49 for the NLANR
data set.

In summary, we show in this section that the Internet dis-
tance can be modeled, with the use of PCA, in a Cartesian
space that uses a (smaller) set of uncorrelated bases. More-
over, we show that the new coordinate system is less suscep-
tible to the distance metrics used in representing topological
information.

5. INTERNET COORDINATE SYSTEM
5.1 Overview

We first present a basic architecture for the Internet co-
ordinate system (ICS). As mentioned in Section 1, the ob-
jectives of ICS are i) to infer the network topology based on
delay measurement and ii) to estimate the distance between
hosts without direct measurement. Succinctly, the archi-
tecture for ICS consists of a number of beacon nodes, that
collect and analyze distance information. Figure 5 gives an
example architecture of ICS with five beacon nodes. Bea-
con nodes periodically measure round trip times (RTTs) to
other beacon nodes and construct a coordinate system. The
coordinates of beacon nodes are then calculated, with the
use of PCA, based on the measured RTT data among five
beacon nodes. We will elaborate on how to calculate the
coordinates of beacon nodes in Section 5.2.

An ordinary host determines its own location in ICS by
measuring its delays to either the entire or partial set of
beacon nodes and obtains a distance vector. As exempli-
fied in Fig. 5, host 1 measures its distance to five beacon
nodes, and obtains a five-dimensional distance vector. The
location of the host in ICS is then calculated by multiply-
ing the distance vector with a transformation matrix. (We
will elaborate on how the transformation matrix is derived
and distributed in Section 5.3.) After calculating its own
coordinate, host 1 may report its coordinate to a DNS-like
server that keeps coordinates of ordinary hosts. To estimate
the network distance to some other host without direct mea-
surement, host 1 may query this DNS-like server which can
then easily determine the estimated distance as long the co-
ordinate of the other host is kept. In the same manner, host
1 can also infer which host is closer to itself.

5.2 Calculating the Coordinates of Beacon Nodes

We construct the Internet Coordinate system based on
the measured network distances between m beacon nodes.
PCA presented in Section 4 is applied to reduce the distance
data space to a new coordinate system of (much) smaller
dimensions.

Each beacon node measures its distances to the other bea-
con nodes, and obtains a m-dimensional distance vector d;
in Eq. (1), of which the 5" element d;; is the measured
distance to the j* beacon node. An administrative node,
which can be elected among beacon nodes, aggregates the
distance vectors of all the beacon nodes, and obtains the
distance matrix D in Eq. (2). Then, the distance matrix is
decomposed into three matrices U, W, and V in Eq. (7).
Using the first n principal components, the coordinate of
a beacon node is calculated as ¢; = Upd; in Eq. (8). As
shown in Section 4.2, this coordinate preserves topological
information.

As the distance between two beacon nodes calculated in
the coordinate system may not be the same as the actual
measured distances. For instance, La(c1,¢3) = 5 # 3 when
n = 2 in Example 1. To use the coordinates for distance es-
timation, we apply a simple linear operation, ¢; = ac; + 3 so
as to minimize the discrepancy between the distance repre-
sented in the coordinate system and the measured distance.
As a translation operation does not affect the distance be-
tween two coordinates, we only consider the scaling opera-
tion with a scaling factor «, i.e., 6 = 0. The optimal scaling
factor a*(n) that minimizes the discrepancy between the
Euclidean distance in the new coordinate system of dimen-
sion n and the measured delay, i.e., L2(G;,¢;) = d;; for all
tand j € {1,...,m}, can be determined by minimizing the
following objective function J(«):

J(e) = ZZ(LQ(aCi7aCj) - dij)? (10)

whose positive solution, «*, is simply

> 20y dijLa(ei, ¢5)
T ST Laleing)?
The transformation matrix U, from a distance vector in

the distance data space to the coordinate in ICS is then
defined as

_ Ty digli
On = o ()0, = 20 205 disli

a’(n)

(11)
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Figure 5: An example architecture for the proposed Internet coordinate system (five beacon nodes and three

ordinary hosts).

where l;; = Lo(Uld;, UL d;) and U, = [u1,...,us]. The
transformation matrix is obtained from the distance matrix
D between beacon nodes and its singular value decomposi-
tion. The coordinates of beacon nodes are then calculated
as ¢ = UXd; for alli € {1,...,m}.

In summary, the procedure taken to calculate the coordi-
nates of beacon nodes is as follows:

(S1) Every beacon node measures the round trip times to
the other beacon nodes periodically.

(S2) An administrative node aggregates the delay informa-
tion and obtains the distance matrix in Eq. (2).

(S3) The administrative node applies PCA in Eq. (7) to
the distance matrix.

(S4) The administrative node determines the dimension of
the coordinate system using the cumulative percentage
of variation defined in Eq. (9) (with a pre-determined
threshold value).

(S5) The administrative node calculates the transformation
matrix in Eq. (12) from Eq. (8) and Eq. (11).

Note that the administrative node may be replicated (per-
haps in a hierarchical manner) to enhance fault tolerance
and availability. This subject is outside the scope of this
paper, but is warrant of further investigation.

EXAMPLE 4. Assume that the four hosts in Example 1
are beacon nodes. When n = 2, ¢c; = ¢a = [—3.5,2.5] and
c3 = ca = [—3.5,—-2.5]T. By Eq. (11), the scaling factor o
is 0.6, and the transformation matriz Us is

g, — [ —03 —03 —03 —03 5
27| -03 -03 03 03

Therefore, €1 = ¢ = [—2.1,1.5] and ¢35 = ¢4 = [—2.1,—1.5].
The distances between two hosts in different ASs is exactly

3. Whenn=4, a = 0.5927, [/2(517 52) = LQ(Eg7 54) = 0.8383,
and Lo (El, 53) = Lo (El, 54) =1L (Ez, 53) =1L (Ez, 54) = 3.0224.

5.3 Determining The Coordinate of A Host

The procedure that a host takes to determine its coordi-
nate in ICS is as follows: A host

(H1) Obtains the list of beacon nodes and the transforma-
tion matrix (Eq. (12)) from the administrative node.

(H2) Measures the round trip times to all the beacon nodes
using ping or traceroute. (We will discuss how to re-
duce the number of measurements in Section 5.4.)

(H3) Calculates the coordinate by multiplying the mea-
sured distance vector with the transformation matrix.

In (H2), a host A obtains an m-dimensional distance vec-
tor

lo = [laty -y lam]”, (13)

where [,; denotes the delay measured between host A and
the #** beacon node. Then in (H3) the coordinate, z,, of
host A is calculated with the transformation matrix U,, in
Eq. (12) as

2o =U, “la. (14)

EXAMPLE 5. A host A measures its round trip times to
the four beacon nodes in Example 4. Assume that host A is
closer to the AS where the first two beacon nodes reside, and
obtains a distance vector of lo = [1,1,4,4)7. By Eq. (14),
zo = [-3,1.8]T. In the case of n = 2, the estimated dis-
tances between host A and beacon modes are L2(¢1,%a) =
Lz(Ez,l’a) = 0.94 and Lz(Eg,:Ea) = L2(54,:Ea) = 3.42. On
the other hand, assume that host B is far from all four beacon
nodes, and obtains a distance vector of I, = [10, 10,10, 10]”.
In this case, xp, = [—12,0]%, and Lo2(Gi,xy) = 10.01 for
i=1,...,4.



5.4 Reducing The Number of Measurements

To discover accurately the topology of the Internet, a suf-
ficient number of beacon nodes should be judiciously placed
on the Internet. (Note that PCA is able to extract essential
topological information from a set of (perhaps correlated)
delay measurements. However, it does not preclude the im-
portant task of placing beacon nodes properly on the Inter-
net so as to represent the network topology accurately.) On
the other hand, for scalability reason, it is not desirable that
a client has to measure its round trip times to all the beacon
nodes. To reduce the measurement overhead incurred by a
host, it would be desirable that a host measures the distance
from itself to a subset of beacon nodes. This also allows ICS
to operate even in the case that some of the beacon nodes
are not available (due to transient network partition and/or
node failure).

By Eq. (14), the transformation matrix (Eq. (12)) and the
original distance vector (Eq. (13)) are needed to calculate
the coordinate of a host. The transformation matrix is fixed
in ICS once it is calculated by the administrative node. If
host A makes delay measurements only to a subset, N, of
beacon nodes, the missing elements in l,, i.e., lai, i € N,
have to be inferred. We present the following two methods:

(M1) Host A randomly chooses k beacon nodes (k < m)
and measures its distances to this subset, A/, of beacon
nodes. (In our experiments, we will investigate the
effect of k£ on the estimation performance.) Instead
of calculating the coordinate by itself, host A then
transmits the distance vector [, with m — k missing
elements to the administrative node. For each missing
element lq; in o, the administrative (i) selects, among
all the beacon nodes that are in A/, a beacon node (say
the j*" beacon node) that is closest to the i*" beacon
node, (ii) replaces the missing element lq; with lo;, and
(iii) calculates the coordinate on the behalf of host A.

(M2) The administrative node can specify, for host A, a
list of specific beacon nodes to which host A should
make delay measurements. The rationale is that if two
beacon nodes are close enough, host A does not have
to measures its distances to both beacon nodes. In
order to find k£ groups each of which consists of beacon
nodes that are close to one another, the administrative
node applies a hierarchical clustering technique [16] to
the distance matrix, and selects the median beacon
node for each cluster. The administrative node then
sends host A a list of k¥ median beacon nodes and a
list of k clusters, with the i'" median beacon node
corresponding to the i*" cluster. Host .4 measures its
distances only to the k median beacon nodes, and uses
the distance to the i** median beacon node as that to
the other beacon nodes in the same cluster.

The performance of the above two partial measurement
methods depends heavily on how well the missing elements
in [, are represented. In order to improve the performance,
instead of directly using the network distance measured to
the closest/median beacon node, we can use Hotz’s trian-
gulation method (Section 3). As a beacon node B that is
not in N has already measured its distances to other bea-
con nodes, the distance between the host and node B can
be estimated by Hotz’s triangulation method.

6. EMPIRICAL STUDY

To validate the effectiveness of ICS in inferring the Inter-
net topology, we conduct experiments using both an empir-
ical data set (NLANR) [14] and a synthetic data set (GT-
ITM) [17]. As discussed in Section 4.2, the NLANR data
set contains real delay data measured by ping. The GT-
ITM data set, on the other hand, is obtained by the GT-
ITM topology generator [17] and the ns-2 simulator [18].
The quality of a coordinate system can be affected by sev-
eral factors such as the number and distribution of beacon
nodes and the complexity of the network topology. With the
use of the GT-ITM topology generator, we are able to study
ICS under a wide variety of network topologies, and inves-
tigate the effect of network topology on the performance of
1CS.

For each data set, we randomly select m beacon nodes
(3 < m < 30). If beacon nodes are well distributed or se-
lected with respect to certain clustering criterion, the perfor-
mance is expected to be better, as was done in [2]. However,
as beacon nodes may not be practically placed at any desir-
able location on the Internet, we believe it is more reasonable
to include all the beacon nodes available on the Internet, but
provide a method to enable a host to only measure its dis-
tances to a subset of beacon nodes. As such, we assume that
beacon nodes are randomly selected in these experiments.

We compare ICS against with IDMaps, Hotz’s triangula-
tion, and GNP with respect to the estimation error £ defined
as

Z |di; — L(i, j)|

g = — =

o di]‘
i,j€{1,...,H}

where H is the number of hosts in the data sets, Jij is the
measured distance, and L(7, j) is the estimated distance be-
tween the i** and j** hosts. IDMaps, Hotz’s triangulation,
GNP, and ICS are implemented as follows:

e IDMaps: Suppose hosts A and B are close to the 7"
and the j'" beacon nodes (called tracers in IDMaps),
respectively. The corresponding distances are denoted
as dq; and dp;. Then the estimated distance is das +
db;{ +d;j, where d;; is the distance between the it" and
3" beacon nodes.

e Hotz’s triangulation: With Eq. (4), we calculate three
Hotz’s distances, i.e., the lower bound (denoted as 1b),
the upper bound (denoted as ub), and the average of
the two bounds (denoted as avg).

e GNP: We solve the two optimization problems mini-
mizing Ji in Eq. (5) and J2 in Eq. (6) using the 'fmin-
search’ function in Matlab (which implements the Sim-
plex Downbhill method). We vary the dimension of the
coordinate system from n = 2 to 10, and report only
the most representative results.

e ICS: We evaluate both the full and partial measure-
ment methods using the same range of the coordi-
nate dimension as in GNP. In the partial measurement
method, the number of measurements by a host is set
to be k = n, 2n, and 3n, where n is the dimension of the
coordinate system. Method (M1) is used as the partial
measurement method, and the missing elements in the
distance vector I, of host A are estimated by Hotz’s
triangulation (as was discussed in the last paragraph
of Section 5).



6.1 Results for the NLANR data

Figure 6 (a) gives the estimation errors of IDMaps and
Hotz’s triangulation. The error obtained by IDMaps is quite
large, but gradually decreases from 1.32 at m = 3 to 0.40
at m = 30. As the estimate is calculated by the sum of the
three distances da; +dp; +d;j, if the two beacon nodes are on
the shortest path, the estimate well approximates the net-
work distance. This accounts for the fact that the estimate
becomes more accurate as m increases. The upper bound
of Hotz’s triangulation exhibits the same trend as IDMaps.
As m increases, the probability that the beacon nodes are
on the shortest path between two hosts also increases. The
lower bound is quite accurate when m is small. However, the
estimation error increases as m increases. Consistent with
the findings in [4], the average of the two bounds renders a
more accurate estimate of the network distance, and is less
susceptible to the number of beacon nodes.

Figure 6 (b) gives the estimation errors of GNP, ICS with
the full measurement method, and Hotz’s triangulation with
the average of the two bounds. GNP performs better than
Hotz’s triangulation when the number of beacon nodes is
small (m < 15). However, its estimation error increases as
m increases, and becomes almost the same as that of Hotz’s
triangulation. This is probably due to the fact that a local
minimum (rather than a global minimum) is selected in the
optimization problems. Consider, for example, the case that
there exist twenty beacon nodes and the dimension of the co-
ordinate system is five. The cost function J; is minimized in
a hundred-dimensional vector space, i.e., the number of vari-
ables in the coordinates of beacon nodes is 100. In general,
an optimization problem of high dimensions easily converges
to a local minimum, which in turn leads to inaccuracy in the
coordinates of hosts, as explained in Section 3.2. ICS gives
the best performance. In most cases, it incurs lower estima-
tion errors than IDMaps. It gives the same performance as
GNP when m < 15 and better performance when m > 15.
Here, we select the dimension of the coordinate system to
be five as the improvement is marginal when n > 5 as shown
in the next figures.

Figure 7 depicts the effect of the dimension of the coor-
dinate system on the performance of ICS ((a)) and GNP
((b)). The estimation error of ICS is the largest when the
dimension of the coordinate system is two (n = 2), improves
as the network topology is represented in higher dimensional
space (n > 2), but the improvement levels off when n > 6.
The estimation error of GNP is the smallest when n = 4,
and is even slightly better than that of ICS in the range of
5 < m < 16. Note also that the estimation error of GNP
when n = 6 is much larger than that when n = 4. This
is again due to the reason that the number of variables in-
creases as n increases, and shows that the accuracy of GNP
depends on the selection of the dimension of the coordinate
system (i.e., the number of beacon nodes).

Figure 8 gives the results of ICS with the use of partial
measurement method. The number of measurements made
by a host is now proportional to the coordinate dimension,
i.e. kK = min(n,m) in (a) and k = min(2n,m) in (b). As
shown in Fig. 8 (a), when n = 6, a client measures its
distances to six beacon nodes regardless of m, and the av-
erage of the estimation errors is increased by 30.2 % (from
0.34489 in Fig. 7 (a) to 0.46692). When the number of
measurements is increased twice in Fig. 8 (b), the average
of the estimation errors is increased by 19.7 % in the case

of n = 6. An interesting result is that the estimation error
does not become larger even when m is large (e.g, m > 15).
This is because the coordinate system obtained with the use
of more beacon nodes is more accurate.

6.2 Results for the GT-ITM data

We now investigate the effect of the level of topology com-
plexity on the distance estimation. As mentioned in [17],
the GT-ITM topology generator can be used to create three
types of graphs: flat random graphs, hierarchical graphs,
and transit-stub graphs. We generate two-level and three-
level hierarchical graphs with 400 nodes. Note that each
graph has the same number of nodes, but three-level hierar-
chical graphs represent more complex network topologies.

Figure 9 (a) and (b) depict the performance of IDMaps,
Hotz’s triangulation, GNP, and ICS under the two-level hi-
erarchical topology. As shown in Fig. 9 (a), methods that
represent network topology in a distance data space give
large estimation errors when the number of beacon nodes
m is small, and their performance gradually improves as m
increases. Among IDMaps and the three versions of Hotz’s
triangulation, the lower bound of Hotz’s triangulation gives
the best performance. As shown in Figure 9 (b), between
the two coordinate-system-based approaches, GNP renders
large estimation errors, and the errors increase as m in-
creases. The estimation error of ICS, on the other hand,
is 0.30 at m = 5, decreases as m increases, and becomes
0.17 at m = 30.

As shown in Fig. 9 (¢) and (d), all the approaches, except
ICS, give larger estimation errors under three-level hierar-
chical topologies. In particular, the performance of GNP
becomes worse. ICS gives almost the same performance as
in two-level hierarchical topologies. This result shows that
PCA which ICS is built upon can effectively extract topolog-
ical information than the minimization optimization of cost
functions J; and Jz in Eq. (5) and Eq. (6) used in GNP.

Figure 10 depicts the effect of the coordinate dimension
on the performance of ICS with the full and partial measure-
ment methods. The number of measurements made in the
partial measurement method is set to k = 2n. Under all the
cases, as the coordinate dimension n increases, the estima-
tion errors decrease. As shown in Fig. 10 (a), there is virtu-
ally no performance improvement when n > 3, which implies
that a three-dimensional coordinate space is sufficient to rep-
resent the two-level hierarchical topology. However, when
the partial measurement method is applied, the estimation
error increases from 0.209 to 0.407 in the case of n = 3
(94.7%). This means that even though a three-dimensional
space is sufficient to represent the network topology, the
number of measurements required should be larger than six
in order to determine the coordinates of hosts accurately.
When the number of measurements is twelve (k = 12) in
the six-dimensional space, the estimation errors increase by
32.9% (from 0.188 to 0.250). As shown in Fig. 10 (c), the
estimate made by ICS is quite accurate under the three-level
hierarchical topology, and the errors decrease as n increases.
As expected as shown in Fig. 10 (d), the estimation errors
are larger when partial measurement is used.

In summary, IDMaps and the upper bound of Hotz’s tri-
angulation are inaccurate for small values of m, but yield
better performance as m increases. In contrast, the lower
bound of Hotz’s triangulation is accurate for small values of
m for the NLANR and GT-ITM data sets, and the errors
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become larger for the NLANR data set as m increases. As
compared with the two bounds of Hotz’s triangulation, the
average of the two bounds is less sensitive to the number of
beacon nodes. GNP can estimate distances accurately only
when the number of variables in the optimization problems
is small, i.e, the numbers of the beacon nodes and the coor-
dinate dimension are small. ICS provides accurate estimates
under most cases, regardless of the number of beacon nodes,
the coordinate dimension, and the level of topology complex-
ity. ICS with the partial measurement method reduces the
number of measurements, while its accuracy is not signifi-
cantly degraded when the number of beacon nodes and the
coordinate dimension are large.

7. CONCLUSION

In this paper, we present a new Coordinate system called
the Internet Coordinate System (ICS). We show that the
principal component analysis (PCA) technique can effec-
tively extract topological information from delay measure-
ments between beacon hosts. Based on PCA, we devise a
transformation method that projects the distance data space
into a new coordinate system of (much) smaller dimensions.
The transformation retains as much topological information
as possible and yet enables end hosts to easily determine
their locations in the coordinate system. We show via ex-
periments using both real measured and synthetic data sets
that ICS can make accurate and robust estimates of net-
work distances between end hosts, regardless of the number
of beacon nodes and the level of network topology complex-
ity. Finally, we also show the number of measurements made
by a host can be reduced without much loss of accuracy.

We have identified several research avenues. In particu-
lar, we will investigate several clustering algorithms to be
used by the administrative node in the partial measurement
method (M2) so as to facilitate selection of median beacon
nodes. We will also study in whether or not, and to what ex-
tent, placement of beacon nodes has a significant impact on
the PCA-derived coordinate system in measuring network
distances.
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