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Abstract—In this paper, we introduce a novel independent com-
ponent analysis (ICA) algorithm, which is truly blind to the par-
ticular underlying distribution of the mixed signals. Using a non-
parametric kernel density estimation technique, the algorithm per-
forms simultaneously the estimation of the unknown probability
density functions of the source signals and the estimation of the un-
mixing matrix. Following the proposed approach, the blind signal
separation framework can be posed as a nonlinear optimization
problem, where a closed form expression of the cost function is
available, and only the elements of the unmixing matrix appear
as unknowns. We conducted a series of Monte Carlo simulations,
involving linear mixtures of various source signals with different
statistical characteristics and sample sizes. The new algorithm not
only consistently outperformed all state-of-the-art ICA methods,
but also demonstrated the following properties: 1) Only a flexible
model, capable of learning the source statistics, can consistently
achieve an accurate separation of all the mixed signals. 2) Adopting
a suitably designed optimization framework, it is possible to derive
a flexible ICA algorithm that matches the stability and conver-
gence properties of conventional algorithms. 3) A nonparametric
approach does not necessarily require large sample sizes in order
to outperform methods with fixed or partially adaptive contrast
functions.

Index Terms—Independent component analysis (ICA), kernel
density estimation, nonlinear optimization, nonparametric
methods.

1. INTRODUCTION

N recent years, Independent Component Analysis (ICA) al-

gorithms have proven successful in separating linear mix-
tures of independent source signals [1]-[12]. While most of
the existing implementations have been tested and compared
to each other using synthetic data, significant results on sepa-
rating real world mixtures of signals have been reported as well
[13]-[18]. Many existing methods rely on simple assumptions
on the source statistics and are characterized by well assessed
convergence and consistency properties [19]. When such hy-
potheses hold strictly or are only moderately violated, most con-
ventional ICA algorithms are capable of quickly and efficiently
achieve the desired source separation. However, such algorithms
can perform suboptimally or even fail to produce the desired
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source separation, when the assumed statistical model is inac-
curate [5].

A relevant example and a well-known ICA implementation
is Hyvirinen’s Fastlca [9], which requires the user to select a
contrast function according to the hypothetical (but unknown)
probability density functions (pdfs) of the sources to be re-
constructed. Such issues do not arise in the case of moment
based implementations of blind signal separation algorithm
(e.g., Cardoso’s Jade [20]). However, these approaches usually
rely exclusively on third or fourth order cross-cumulants in
order to measure independency, and represent just an approx-
imation of the mutual information minimization principle [6].
Clearly, when the separation of signals from real world data is
attempted, such constraints are highly undesirable.

Alternative methods that employ a more flexible model for
the pdf of the source signals have been introduced [21]-[23].
These methods usually consist of a parametric density estima-
tion technique that alternates with a cost function optimization
step in an iterative approximation framework. Although these
approaches tend to outperform standard algorithms in specific
cases (e.g., skewed sources), neither their convergence prop-
erties, nor their capability of modeling arbitrarily distributed
sources, have been fully assessed. The recent introduction
of kernel-based methods, such as Bach and Jordan’s [24],
demonstrate that finding a compromise between computational
complexity, performance and strong convergence properties
in a blind signal separation framework is still an open and
challenging problem.

In this paper, we recognize the importance of defining a signal
separation algorithm that is truly “blind” to the particular under-
lying distributions of the mixed signals, especially when real
world applications are sought. A novel nonparametric ICA al-
gorithm is introduced, which simultaneously estimates the un-
known probability density functions of the source signals and
the linear operator that allows the separation of the mixed sig-
nals (the so-called “unmixing matrix”). The resulting algorithm
is nonparametric, data-driven, and does not require the defini-
tion of a specific model for the density functions.

The theoretical framework for the method we are proposing
is derived in Section II, after a brief review of the conventional
ICA separation principle, based on the minimization of the mu-
tual information between the reconstructed signals. The key is-
sues related to the actual algorithmic implementation of the pro-
posed technique are addressed in Section III. In particular, the
problem of local versus global convergence is investigated, and
conditions ensuring the convergence of the proposed algorithm
to the global optimum are suggested, for the case of mixtures
of two signals. An extensive set of simulation experiments were
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conducted in order to demonstrate the performance improve-
ment obtained with the proposed technique, when compared to
other state-of-the-art ICA algorithms (Section IV).

II. JOINT ESTIMATION OF THE UNMIXING MATRIX AND OF THE
DISTRIBUTION OF THE SOURCE SIGNALS

A. ICA Model and Separation Principle

The conventional generative model is assumed, where N in-
dependent and stationary source signals si,..., sy are mixed
by an unknown, full-rank mixing matrix A (size N x N), re-
sulting in a set of mixtures given by x = As. The reconstruction
of the original sources is attempted through a linear projection
of the type y = Wx (W is also N x N), with the assumption
that at the most one of the sources has a Gaussian density [1].
The basic principle behind most ICA frameworks is the mini-
mization of the mutual information between the reconstructed
signals [25], that is

Wopy = argmin I(y1, ..., yn)- (D
This principle is characterized by having the minimum asymp-
totic variance, as shown by Donoho in [26], and it is also
equivalent to the maximum likelihood (ML) principle when the
source distributions are known [5], [27]. Using basic informa-

tion theory equalities [28], expression (1) can be written as

N
r%ivn{; H(y;) — log |det W| — H(x)}. )

Since the term H(x) is a constant with respect to W, the
objective function is reduced to

N
L(W) =" H(y;) — log | det W| 3)
’L—IAT
= — > Eflogpy.(wix)] —log|det W|  (4)
=1

where w; is the sth row of the matrix W.

B. Nonparametric Kernel Density Estimation

In order to evaluate the marginal entropies H(y;) in (3), a
model for the distribution of the unknown signals is required.
In a quite effective way, Cardoso shows in [5], that incorrect
assumptions on such distributions can result in poor estima-
tion performance, sometimes in a complete failure to obtain the
source separation.

To tackle this issue, we propose a nonparametric model,
where the probability density functions p,, are directly esti-
mated from the data using a kernel density estimation technique
[29], [30]. The proposed approach allows a direct evaluation of
the cost function and its derivatives, thus lifting the requirement
of separating the optimization step from the step involving the
re-estimation of the score functions, as in [21] or [23]. Given a
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batch of sample data of size M, the marginal distribution of an
arbitrary reconstructed signal is approximated as follows:

yl_ m .
Dy, (Vi —Mhz¢< ) i=1,...,N

where h is the kernel bandwidth and ¢ is the Gaussian kernel

(&)

A1

o 7u2/2 6
U)=——F— .
P(u) Tor (6)
The kernel centroids Y;,, are equal to
N
Yim = Wix(m) = Z wianm (7)
n=1

where x("™) is the mth column of the mixture matrix X . This es-
timator is asymptotically unbiased and efficient, and it is shown
to converge to the true pdf under several measures. Moreover,
it is a continuous and differentiable function of the elements of
the unmixing matrix W, with its gradient being given by

M
1 i — WiX(m)
V(yi) = Mh2 Z X(m)(yi — Wix(m))qs <UT) '
m=1

®)
Using the kernel expansion of the source distributions, we can
derive a closed form expression for the pdf estimate of the one-
dimensional (1-D) reconstructed signals, evaluated at the data
points as

k) _ x(m)
Py (wix®) = Mhz (—X)> ©

C. Objective Function Derivation

The expectation in (4) can be approximated by its ergodic
average, as follows:

2

N M
ZZ 0g py, (wix®)) —log|det W| (10)
=1 k=1

resulting in the following cost function definition

L(W)=—Lo(W) — log | det W| (11)
where Lo(W) is obtained by replacing the marginal pdfs p,,

with their kernel density estimates




BOSCOLO et al.: ICA BASED ON NONPARAMETRIC DENSITY ESTIMATION

The overall optimization problem can thus be posed as

N M w; ) —x(m))
i e ()
— log | det W| (13)
stlwill=1,i=1,..., N (14)

Given the sample data x(*), k = 1,..., M, the objective (13)
is a nonlinear function of the elements of the matrix W. The
additional constraints (14) are introduced in order to restrict the
space of possible solutions of the problem to a finite set. Clearly,
if a matrix Wy is optimal according to (1), so is any other ma-
trix obtained from W by rescaling or permuting its rows. The
constraints (14) remove the degree of freedom given by the mag-
nitude of the sources, thus limiting the solution space to all pos-
sible permutations of the reconstructed signals (a finite set).

Although it is not strictly required in the proposed algorithm,
we can assume that the mixture data has been centered and
sphered prior to attempting the reconstruction [30], thus the
problem is reduced to the estimation of an orthogonal matrix
[10]. Such preprocessing of the mixture data allows a further
simplification in the design of the kernel density estimator, since
all the reconstructed signals can be assumed to be zero-mean
and unit variance random variables, due to the constraint (14).
Therefore, the optimal value of the parameter h, which controls
the smoothness of the functional, is uniquely a function of the
sample size (h = 1.06 M~/%, [29]). Simulation experiments
reported in Section IV show a relative insensitivity of the algo-
rithm’s performance for variations up to +50% from the optimal
value of the bandwidth parameter.

III. OPTIMIZATION AND GLOBAL CONVERGENCE ISSUES

A. Optimization Algorithm

The objective (13) is a smooth nonlinear function of the ele-
ments w;; of the unmixing matrix W. Its gradient can be com-
puted from (8), as follows:

VL(W) = — VLy(W) — Vlog | det(W)]
= —VL(W)— (WT) ™. (15)
If we define the following quantity:
(k) — x(m))
A W; (X X
Zi(k,m)= (— Z% ik — Xjm) (16)
we can compute the components of V Ly(W) as
M 9Zi(k,m)
OLo(W M E: o, O [Zik,m)]
m=1 17
awu kz:: a7

E: ¢ [Zi(k,m)]
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M
M 21 (Xjk — Xjm) Zi(k,m)¢[Z;(k, m)]
=~ Z - M
= he & 61k m)]
(18)
since
8Zt(k/m) . Xk — X'm
8’U)ij o ’ h ’ ’ (19)

The constraints (14) can be enforced by operating the substitu-
tion

....,N. (20)

Using the transformation (20), the matrix W can be written as
W = D~'W, with

[l 0
D= : (21)
0 [[wxll
thus W = DW. Then
N ~
log |det W| = —Zlog”vﬁ” + log | det W|. (22)
i=1
The derivatives with respect to w;; are thus computed as
d(log | det W) Wi <1
. =~ (V)] 23)
o, e T LV
When W is orthogonal (W~! = WT), we have
(WT)—I — —I(WT)—I — D—?W (24)

and the coefficients of the gradient (23) are all equal to zero.
Therefore, as expected, the second term of the cost function (3)
will no longer enter the optimization procedure when the ma-
trix W is orthogonal. Applying the substitution as in (20), the
components of V Lo(W) can be computed as

w” ME sy [Zi(k,m)]
m=1
where
%]‘]m) - % (Xjk — Xjm — Zi(k-?m)wij) (26)
¢ [Zith,m)] = = Zih,m) ¢ [ Zi(k,m) 27)
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TABLE 1
MAIN STEPS OF THE NONPARAMETRIC ICA ALGORITHM

NON-PARAMETRIC ICA

Initialize W, o, B
Initialize the Hessian estimate H := I
repeat
1. Compute the search direction: V := —H -V L(W)
2. Backtracking: compute the step size
pi=1
while L(W + uV) > L(W) + auVL(W)TV
wi=Bu
3. Update H=1
4. Update W: W := W + uV

until \/—VTVL(W) < € (stopping criterion)

and, analogously to (16), Zi(k, m) is defined as

_ ar; (x(K) — x(m)
Tl 22X

S| =

N
> i (Xjk = Xjm) (28)
j=1

and ||w;|| is arbitrarily chosen equal to one.

A natural choice for the optimization algorithm is the
quasi-Newton (QN) method [31], [32], which provides a good
compromise between fast convergence, and computational
payload. A backtracking technique is adopted for the selection
of the step size. The main steps of the proposed nonparametric
ICA algorithm are shown in Table I. The backtracking routine
ensures convergence to the closest minimum [33], even when
the objective function is not convex.

B. Analysis of the Extrema of the Cost Function for N = 2
Sources

A well-known result in blind signal separation is that,
given the assumption of linear and instantaneous mixing, the
unmixing matrix is unique up to scaling and permutations [1].
Conventionally, the unmixing operator is estimated by mini-
mizing a cost function derived from the mutual information
measure (1). Although the global minimum of (1) is known
to yield the desired source separation, no proof is available to
show that such a function has no local minima. On the other
hand, because of the uniqueness of the separation matrix (up
to permutations and scaling), proved by Comon in [1], conver-
gence to any solution other than the global would result in a
failure to separate the source signals. As it was recently pointed
out in [34] and [35], this specific issue is often overlooked in
other ICA frameworks, where, instead, the main concern is
whether convergence to a local minimum is obtained at all for
an arbitrary initial guess [36].

The problem can be studied in detail in the case of mixtures
of N = 2 sources. In this case, the unmixing matrix W can
be parametrized as follows (including implicitly the unit norm
constraints on the rows of W)

_ |:COS 01

sin 91
cos By ] (29)

sin 6 2
With a slight abuse of notation we can write the cost function as

L(61,62) = h(61) + h(62) — log | det(W)] (30)
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1/ tan(62 — 6;)

1.385F
1.38F
0 0.5 1 1.5 2 25 3
0
Fig. 1. Graphical interpretation of the conditions on the extrema of the cost

function (34). The curve 1/ tan(8, — ) is plotted for a fixed value of 65 (not
to scale).

0%h(61)/063

Fig. 2. The nature of an extremum of the objective function is shown as
a function of the second-order partial derivatives of the entropies of the two
reconstructed sources (for f; — 8; = const.).

where log | det(W)| = log | sin(f — 61)
as

, and h(6;) is defined

}L(Hi)éH(ygiL Yo, = cosb;xy +sinb;ze, i =1,2. (31)
Without loss of generality, we can assume the mixing matrix to
be the 2 x 2 identity matrix, so that x; = sy and z5 = s5. The
extrema of cost function (30) must, then, satisfy the following
conditions

Oh(61) 1

=0 2
(991 tan(ﬂz — 91) ’ (3 )

Oh(0s) 1 B
90y tan(fy — 6,) =0 (33)

or, equivalently

Oh(B2)  Oh(61) 1

802 o (991 o tan(02 — 01) ' (34)
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Fig. 3. Mixtures of a sub-Gaussian signal and a super-Gaussian signal. (a) The
figure shows a plot of the entropy of a generic reconstructed source as a function
of the parameter 6. For these particular mixtures of unimodal sub-Gaussian
and super-Gaussian sources, the entropy function does not present any spurious
local minima. (b) The overall cost function L(1¥) is plotted as a function of
(61, 62). The plot clearly shows the set of four equivalent minima, corresponding
to permutations or change of sign of the rows of the unmixing matrix.

These conditions are graphically illustrated in Fig. 1. In order
to characterize the nature of these extrema, we can compute the
Hessian of (30), obtaining

[aZ_L] B L1 { 1 _1}
062 ij_ 0 % Sin2(92—61) -1 1

(35)
The minima of the cost function (30) are found in correspon-
dence of values of (1, 65) that satisfy the first-order conditions
(34), and simultaneously ensure that the Hessian (35) is positive
semidefinite, which requires that (see Fig. 2)

0?h(61)  9*h(02) L 2 >0
03 03 sin?(fy — 6)
(36)
0?h(61) 9*h(6) 1 0?h(61)  92h(62) >0
0?2 003 sin?(fy—6,) < 0?2 03 >_ )

M

I /

i ” i i
Y ey
A M AN i
) ’ﬂ ‘”m‘ i AN m

” / ‘”W///////////?f;mﬂ,f; \ \\\\\\\\\'{I;/”’,‘!ff"l”
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(®

Fig.4. Mixtures of two natural images. (a) The entropy function is plotted as a
function of 8 > . In this case, the entropy presents several spurious local minima,
which do not correspond to independent sources. Attempting the separation
using a deflationary approach could result in a failure to reconstruct the original
sources. (b) The overall cost function L(TV) is plotted as a function of (61, 62),
with a set of four equivalent global minima clearly appearing. The objective
function is free from the spurious local minima encountered when observing
the entropy function alone. At least in this case, the only values of #, > that
satisfy (34) are either (equivalent) global minima, or saddle points.

It can be easily verified that the cost function (30) is even and
periodic both in #; and #- with period 27, and that the conditions
(34) through (37) are satisfied, in particular, when 6; = nr/2
(n € 2), 0y = 61 & 7/2, resulting in the source separation.

As an example, consider the mixture of a super-Gaussian
(k4 = 1.0) and a sub-Gaussian source (k4 = —1.0), both uni-
modal. The entropy of an arbitrary linear projection of the mix-
tures is shown in Fig. 3(a) as a function of 6; » (the function
is symmetric with respect to the vertical axis). Clearly, in this
simple example the entropy function has only minima corre-
sponding to the optimal solutions (61 2 = 0, £/2), which sat-
isfy conditions (34) and (37). Because of the independence of
the sources, the minima appear spaced by 7 /2, and correspond
to the global optima of the overall cost function [see Fig. 3(b)].

The situation is quite different in the case of mixtures
of sources characterized by a multimodal probability density
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TABLE 1I
DISTRIBUTION OF THE SYNTHETIC SOURCES USED IN THE FIRST SIMULATION EXPERIMENT (SEE [38] FOR A DESCRIPTION OF THE DISTRIBUTIONS
GENERATED WITH THE POWER METHOD)

Source# Source type Skewness Kurtosis Pdf plot
1 Power Exponential Distribution (o= 2.0) 0.0 -0.8
2 Power Exponential Distribution (a= 0.6) 0.0 2.2
3 Power Method Distribution (b = 1.112,¢ = 0.174,d = —0.050) 0.75 0.0 /\
4 Power Method Distribution (b = 0.936, c = 0.268,d = —0.004) 1.50 3.0 k
5 Normal Distribution 0.0 0.0 A -
6 Rayleigh Distribution (8= 1) 0.631 0.245 :

function. An interesting example is given by mixtures of
natural images, where each pixel is considered as a sample
drawn from a distribution. This type of sources, in fact,
tend to have a distribution that is “heavily” multimodal. In
Fig. 4(a), the entropy of a generic projection of a mixture
of two images' is plotted as a function of . Although
the entropy function shows minima at the optimal points
(61,2 = 0,%7/2), several spurious local minima appear in
other locations. However, at least in this example, these minima
do not satisfy the conditions in (34), and do not appear in the
overall cost function, which, once again, has a unique set of
equivalent global minima [cf. Fig. 4(b)]. The independence
of the sources, in fact, imposes a special structure on the
cost function, with the extrema of the entropy appearing in
correspondence of orthogonal rows of the matrix W (a well
known fact in the ICA theory). Other local spurious minima
do not appear in the overall cost function because they do
not satisfy the first-order constraints (34). Nevertheless, it is
still an open problem to identify the class of distributions
for which this property holds in general, as well as to show
whether the same property applies for mixtures of N > 2
sources.

IV. SIMULATION EXPERIMENTS

A set of simulation experiments was conducted in order to
investigate the performance of the proposed nonparametric
method. The blind separation was attempted with each of
the following algorithms: the Extended InfoMax ICA [7],
Fastlca [9], Jade [6], two so-called source adaptive methods,
the Pearson model ICA [21] and the EGLD model ICA [37],
Kernel-ICA [24] and the proposed approach?. The algorithms
were all downloaded from the web sites of the respective
authors, and in the case of Fastlca, all the available contrast
functions were tested, both in deflationary mode (sources
extracted one at the time), and in simultaneous separation mode

IThe images can be downloaded at http://www.ee.ucla.edu/~riccardo/ICA/im-
ages.

2The nonparametric ICA algorithm can be downloaded at http:/www.
ee.ucla.edu/~riccardo/ICA/npica.tar.gz.

(all the sources separated simultaneously). Both versions of
Kernel-ICA, KCCA and KGV, were tested in all the simula-
tions.

A. Mixtures of Sources With Various Distributions

Inafirstexperiment, 1000 realizations of six different sources,
distributed as shown in Table II, were independently generated,
with sample sizes ranging between 500 and 5000, and mixed
with randomly generated, full-rank (condition number < 10)
mixing matrices, noiselessly.

The separation performance was evaluated in terms
of median signal-to-interference ratio (SIR), defined as
101log; (Zi\le 52 /M (G — sm)z) (dB), where s is
the original signal and § is the reconstructed signal. The
“interfering” components of the reconstructed signal are
by definition those that are due to sources other than the
one we are attempting to separate. The results of this first
experiment are shown in Fig. 5 and they clearly show
the performance gain obtained with the nonparametric ICA
algorithm. On the average, the gauss score function, when
used in the simultaneous separation mode, resulted in the
best overall performance for Fastlca, and it is the only one
reported for this first experiment. In general, SIR levels
below the 8-10 dB threshold are indicative of a failure in
obtaining the desired source separation.

Although the gain is more consistent in the case of skewed
sources (Source #3,#4, and #6), the separation improvement
is substantial also for conventional sub-Gaussian and super-
Gaussian sources (Source#1 and #2). Although KernelICA-KGV
appears to somehow match the performance of the proposed
method, nonparametric ICA still retains a performance gain
of over 5 dB on average. It is interesting to notice that,
although the “source-adaptive” algorithms tend to outperform
more conventional ICA methods in the case of nonsymmetric
sources, they are often surpassed by traditional algorithms
for symmetric ones.

The proposed technique delivers a consistent separation
improvement for different sample sizes. In particular, the
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Fig. 5. First simulation experiment. The results of attempting the separation of the six different sources listed in Table II are shown for various
ICA algorithms (averaged over 1000 Monte Carlo simulations). The accuracy of the separation is measured in terms of median log SIR, defined as
101og, (N, 92,/ Y _ (82 — $m)?) (dB), where s is the original signal and § is the reconstructed signal.

algorithm appears to be capable of learning the source statistics
even when the sample size is very small (e.g., 500 samples),

therefore showing promising adaptive properties.

B. Skewed Sources

In a second simulation experiment, the specific sensitivity of

each algorithm to the source skewness was investigated. Using
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TABLE III
THE SEPARATION PERFORMANCE IN TERMS OF MEDIAN SIR, AS WELL AS 25
AND 75 PERCENTILES, IS SHOWN FOR MIXTURES OF FOUR SKEWED SOURCES
(AVERAGED OVER THE SOURCES), FOR VARIOUS ICA ALGORITHMS

ALGORITHM SIR 25% 75%
Extended InfoMax 3.81 2.89 5.90
Jade 4.28 3.03 6.38

Fastlca (’skew’) 18.94 16.04 22.32
Pearson ICA 14.97 11.40 19.52
EGLD ICA 16.73 12.76 21.21
Kernel-ICA (KCCA) 16.93 13.89 20.54
Kernel-ICA (KGV) 21.64 17.86 25.10
Non-Parametric ICA 23.40 18.91 27.19

the method described in [38], we generated samples drawn from
four different sources, which are characterized by a very small
kurtosis (Jx4| < 0.2), and skewness ranging between 0.0 and
0.75. The experiment was conducted mixing all four sources
with randomly generated mixing matrices, using 100 indepen-
dent realizations of the signals, each consisting of 2000 samples.
The results obtained with the various ICA algorithms are sum-
marized in Table III. The proposed method shows a noticeable
performance improvement, confirming its capability of mod-
eling arbitrarily distributed sources. Although FastICA resulted
in the third highest median SIR, its performance is somehow bi-
ased by the choice of the score function skew, which assumes
some a priori knowledge about the nature of the mixed signals.

C. Convergence Properties

The convergence properties of the algorithms were empiri-
cally tested in a third simulation experiment. The goal was to
measure the approximate number of data samples required by
each method to achieve a median SIR of at least 20 dB. For
this purpose, we created mixtures of four independent sources
with a super-Gaussian (k4 ~ 2.2) symmetric pdf and we aver-
aged the separation results over 100 simulations, for different
sample sizes. The choice of standard super-Gaussian sources
guarantees that the experiment is unbiased, since all ICA algo-
rithms under evaluation are capable of separating this type of
signals accurately. Our results show that the proposed method
is able to achieve the required quality of separation (20 dB me-
dian SIR) with only 750 samples, performance matched by Ker-
nellCA-KGV. FastICA resulted in the second-best performance
(1000 samples), when the score function was suitably chosen
(in this case gauss).

D. Bandwidth Parameter Sensitivity

The sensitivity of the algorithm to the choice of the band-
width parameter 4 in (5) was evaluated following the experi-
mental setting used in the first simulation (sources generated ac-
cording to Table II). In a series of Monte Carlo simulations, the
bandwidth parameter was allowed to vary up to 50% from the
optimal value, computed as a function of the sample size. The
results displayed in Fig. 6 show the obtained median SIR aver-
aged across the six sources, for a sample size equal to 1000. The
experiment seems to suggest that the separation performance is
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Fig. 6. The figure shows the results of a set of simulation experiments
aiming at evaluating the sensitivity of the proposed technique to the choice of
the bandwidth parameter h. The error bars span between the 25 and the 75
percentiles of the SIR. This experiment seems to suggest that variations of the
parameter up to £50% from the estimated optimal value do not considerably
affect the separation performance.

relatively insensitive to the particular choice of this parameter
in a broad range of values.

E. Algorithmic Complexity

The introduction of a technique enabling the simultaneous es-
timation of the unmixing matrix and of the unknown pdfs of the
sources is inevitably accompanied by an increase in its com-
putational complexity. Regardless of the actual optimization al-
gorithm, a brute force implementation of the proposed nonpara-
metric method would require an amount of floating point opera-
tions proportional to O(M? N) to evaluate the cost function and
O(M?N?) to compute its derivatives, where IV is the number of
sources and M is the sample size. This compares unfavorably
with fixed score function algorithms like Fastlca whose com-
putational complexity is O(MN) and O(M N?), respectively,
especially when the number of samples M is very large.

On the other hand, fast density estimation techniques based
on the FFT algorithm can be developed, based on the obser-
vation that evaluating a density estimate is equivalent to com-
puting the convolution of an unevenly sampled sequence with a
Gaussian kernel [29]. At the core of the proposed nonparametric
method for ICA stands a fast density estimation algorithm of
this type, which can perform the evaluation of the cost function
and of its derivatives in a time proportional to O(M log, M N)
and O(M log, M N?), respectively, thus minimizing the addi-
tional payload required to achieve the increased separation per-
formance and reliability. Table IV shows a detailed breakdown
of the computational complexity of each step of the nonpara-
metric ICA algorithm.

The median CPU time required to run the various ICA al-
gorithms is shown in Fig. 7(a) for a fixed number of sources
(N = 6) and a variable number of samples and in Fig. 7(b) for a
fixed number of samples (M = 1000) and a variable number of
sources?. Clearly, fixed contrast function or moment based ICA

3The simulations were all performed under MATLAB; v.6.3, on a Dual Pentium
IV 1.8 Ghz PC with 512 Mbytes of RAM, running Red Hat Linux v7.2.
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TABLE IV
DETAILED ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF
NON-PARAMETRIC ICA AS A FUNCTION OF THE NUMBER OF SOURCES
(IN) AND THE NUMBER OF SAMPLES (M)

ROUTINE COMPLEXITY
(a) Compute search direction O(N?)
(b) Backtracking routine
Cost function evaluation (‘EstimateObjFFT’)
1. Data rebinning O(NM)
2. FFT of re-binned data O(N M log, M)
3. FFTs multiplication O(NM)
4. Inverse FFT of pdf estimate O(NMlog, M)
5. Rebinning and entropy evaluation O(NM)
(c) Gradient computation ( ‘EstimateGradFFT’)
1. Data rebinning O(N?M)
2. FFT of re-binned data O(N2M logy M)
3. FFTs multiplication O(N?M)
4. Inverse FFT of pdf derivative estimates O(N?M log, M)
5. Rebinning and gradient evaluation O(N?M)
(d) Inverse Hessian update O(N?)
(e) Convergence criterion evaluation O(NM)

Overall computational complexity: O(N? + N?M log, M)
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Fig. 7. The running time in terms of CPU seconds is shown for various ICA

algorithms, for a fixed number of sources (6) and variable number of samples (a)
and for a fixed number of samples (1000) and variable number of sources (b).
The methods capable of source adaptation are in general computationally more
expensive, as the improved separation performance is paid in terms of running
time.
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Fig. 8. Large scale simulation. The median SIR (dB) achieved by
nonparametric ICA is shown for the separation of a number of sources varying
between 12 and 24 (averaged over the reconstructed signals), and a fixed
number of samples (M = 1000).

algorithms are in general significantly faster than source adap-
tive methods. Although nonparametric ICA is among the algo-
rithms characterized by a higher computational complexity, it is
interesting to notice that it is on average one order of magnitude
faster than Kernel-ICA.

F. Large Scale Problems

In a separate simulation, we investigated the properties of
the proposed method for large scale problems. This was ac-
complished by creating mixtures of 12 up to 24 signals, ran-
domly chosen among a set of sources, whose distributions in-
cluded both unimodal and bimodal pdfs. The separation results
obtained over 100 Monte Carlo simulations (Fig. 8) demon-
strate nonparametric ICA’s capability of seamlessly handling
large size problems. The decrease in median SIR which accom-
panies the increase in the problem size can be explained by
considering that, while the sample size is kept constant (M =
1000 samples), the number of parameters that needs to be esti-
mated (N (N — 1)/2) increases approximately as the square of
the number of sources. For example, the unmixing matrix has
a total of 66 unique elements when N = 12, that number in-
creasing to 276 for N = 24 sources.

In terms of convergence properties, we noticed only a mar-
ginal increase in the number of Newton steps required to achieve
the desired separation accuracy, with the relative CPU time re-
quired to complete the routine closely matching the asymptotic
computational complexity analysis described in Table I'V.

V. CONCLUSION

A novel nonparametric independent component analysis al-
gorithm was introduced. The proposed method is truly blind to
the particular distribution of the original sources, and does not
require the selection of optimal working parameters, or suitable
nonlinearities to act as contrast functions. The algorithm out-
performed state-of-the-art ICA techniques in several simulation
experiments, with different types of mixtures. The capability of
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modeling sources with arbitrary distribution, combined with the
good convergence properties for small sample sizes, make the
proposed approach a particularly attractive alternative to current
ICA algorithms, especially for the analysis of real-world mix-

tures.
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