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Abstract

The Body Centered Cubic (BCC) and Face Centered Cubic (FCC) lattices along with a

set of box splines for sampling and reconstruction of trivariate functions are proposed. The

BCC lattice is demonstrated to be the optimal choice of a pattern for generic sampling

purposes. While the FCC lattice is the second best choice for this purpose, both FCC and

BCC lattices significantly outperform the accuracy of the commonly-used Cartesian 3-D

lattice.

A set of box splines tailored to the geometry of the BCC and FCC lattices are proposed

for approximation of trivariate functions on these lattices. Furthermore, for efficient evalu-

ation, the explicit piecewise polynomial representation of the proposed box splines on the

BCC lattice are derived. This derivation can be generalized for other box splines to provide

efficient evaluation of box splines at arbitrary points.

Despite the common assumption on the superior computational performance of tensor-

product reconstruction, it is demonstrated that these non-separable box spline-based recon-

structions on the BCC and FCC lattices outperform their tensor-product counterparts on

the Cartesian lattice. In particular, the box spline-based reconstruction on the BCC lattice

is shown to be twice as efficient as the corresponding tensor-product B-spline solution on

the Cartesian lattice. Hence, we establish the fact that not only are these non-Cartesian lat-

tices attractive from the sampling-theory aspects, they also allow for efficient and superior

reconstruction algorithms.
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Chapter 1

Motivation

The omnipresence of the Cartesian lattice in a wide range of areas in computing science

is certainly indisputable. The simple structure of the Cartesian lattice and its separable

nature allows one to readily apply a tensor-product paradigm to many problems in a multi-

dimensional setting. The power of the dimensionality reduction will remain the major

reason that the Cartesian lattice will be the preferred tool in numerical algorithms. The

other attraction of the Cartesian lattice is that it simply exists in any dimension and often

tools and theory extend to problems in a higher dimensional setting in a trivial manner.

Attracted to the above mentioned luxuries, most researchers shy away from the over-

head of understanding and dealing with alternate structures that compete with the Cartesian

lattice. However, there is sufficient evidence showing that nature does not ignore the advan-

tages of employing these alternative structures. The goal of this chapter is to discuss some

instances where non-Cartesian lattices appear in nature and describe how these lattices help

us better model natural phenomena in the computational domain.

1.1 Non-Cartesian Lattices in Nature

Perhaps the most striking non-Cartesian example observed in nature is the structure of a

honeycomb 1 in Figure 1.1.2 The center of each cell lies on a hexagonal lattice whose Voronoi

cells (which are regular hexagons) are filled with honey and separated from each other by

1http://commons.wikimedia.org/wiki/Image:Honey_comb.jpg
2Permission is granted to copy, distribute and/or modify this and subsequent GNU Free Documentation

License images under the terms of the GNU Free Documentation License, Version 1.2 or any later version

1



CHAPTER 1. MOTIVATION 2

Figure 1.1: In a honeycomb each cell has an exact hexagonal shape. Image from wikipedia
by permission of the GNU Free Documentation License.

wax. There are two possible explanations for the curious hexagonal shape of honeycomb.

The first argument is based on the fact that, while tiling the 2-D plane, the hexagon covers

the biggest possible surface area for its perimeter length [64]. A circle would maximize

the containing surface area for its perimeter, but fails to fill the 2-D plane. Hence, for

constructing such a honeycomb, bees use the minimal amount of wax to cover the space;

therefore, they optimize the volume of the honey containers. A second plausible explanation

is that the bees put together the cells individually and they push as far as they can. This

argument is based on the fact that the hexagonal lattice allows for the optimal packing

of disks in 2-D. An argument in favor of the latter explanation is that the queen cells

which are constructed in isolation have irregular and lumpy shapes without any concern for

optimality [97]. It is likely that the honey bee constructs the honeycomb based on instinct,

and the prevailing theory of biology is that the appearance of such efficient shapes in nature

is a result of natural selection [114].

The hexagonal lattice is also observed in the anatomical structure of photo-receptors in

the central part of the fovea where the light is projected to the back of the human eyes

(Figure 1.2(a)). These photo-receptors act as a scanning device that samples the intensity

of the incoming light and generates an electrical signal that is sent to the brain for further

visual processing [46]. It is likely that the optimal placement of these photo-receptors has

published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled ”GNU Free Documentation License”,
see http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
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similar roots in the natural selection.

(a) (b)

Figure 1.2: (a) The photo-receptors in the fovea are optimally packed in a hexagonal fashion.
(b) The facets (mini eyes) in the eye of a fly are optimally packed on a hexagonal lattice.
Public domain images, courtesy of WebVision [46].

The hexagonal lattice is found in the structure of many insect eyes. Several species of

insects have many (≈ 700) mini-eyes called facets inside each eye (Figure 1.2(b)). These

facets are also densely packed in a hexagonal fashion [74]. One can argue that the arrange-

ment of the facets optimizes the resolution at which the insect’s eye perceives the visual

information. The hexagonal lattice appears in various other physical phenomena like in the

structure of superconductors and ice crystals in the snow flakes.

Non-Cartesian 3-D structures appear mostly in crystallography in the atomic structure

of crystals, elemental metals and minerals. The projection of crystal lattice structures

are obtained by studying the X-ray diffraction patterns through crystals [80]. The Body

Centered Cubic (BCC) lattice (see Section 1.1.2) is fairly common in nature. For instance,

the atomic structure of iron, chromium and tungsten are BCC lattices. Also the Face

Centered Cubic (FCC) lattice (see Section 1.1.2) appears in the structure of lead, aluminum,

copper and gold [113]. The Atomium monument in Brussels represents the BCC model of

an iron crystal’s unit cell.

As we will see in the following section, the FCC lattice has been shown to be the

densest pattern for spherical packing of atoms or spherical shapes. This dense packing is
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frequently observed in nature where an optimal arrangement of spherical objects is desired.

Figure 1.3: Pomegranate

seeds resemble a rhombic

dodecahedron [116]. Im-

age from wikipedia by per-

mission from the GNU Free

Documentation License.

For instance, the pomegranate seeds (see Figure 1.3) are

packed densely in an almost optimal FCC fashion. The jelly

around the seeds, on average, resembles the Voronoi cell of

the FCC lattice which is a rhombic dodecahedron [80] –image

courtesy of [116].

1.1.1 Discrete Geometry

The hexagonal lattice is the solution to several problems of

discrete geometry in 2-D. The optimal packing problem in

2-D which is the problem of finding the densest arrangement

of equally sized disks results in the hexagonal lattice as il-

lustrated in Figure 1.4(b,c). When compared to the regu-

lar Cartesian packing of disks (Figure 1.4(a)), the hexagonal

packing is about 14% more efficient. The hexagonal lattice

also allows one to cover the plane with equal sized disks while

maintaining the minimum area over the regions that two disks

overlap (i.e., covering problem); this configuration is illustrated in Figure 1.4(d)[17].

The problem of packing spheres in 3-D has its roots in the 16th century when an English

nobleman and seafarer, Sir Walter Raleigh, asked his mathematical assistant, Thomas Har-

riot, to develop a formula to count the number of cannon-balls stacked in his ships. Harriot

who was an accomplished mathematician and astronomer was able to solve that problem;

but he, curiously, pushed the question further to find the most efficient way to pack the

cannon-balls on the ship. The objective is to find an arrangement in which the cannon-balls

fill as large a portion of the space as possible. The proportion of the space filled by the

spheres is called the packing density. After contemplating the problem for a while, Harriot

decided to share this problem with one of the outstanding contemporary mathematicians,

physicists and astronomers of the time, Johannes Kepler.

Kepler studied this problem and concluded that the densest packing must happen in

sheets of 2-D hexagonally packed spheres laid on top of each other such that every sphere

on a sheet falls inside the dimple formed between three spheres in the lower level sheet. This

alternate sheet arrangement of spheres where each hexagonal sheet fills in the dimples of

the hexagonal sheet below it is called Hexagonal Close Packing (HCP). In 1611 Kepler
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(a) (b)

(c) (d)

Figure 1.4: (a) Cartesian close packing. (b) Hexagonal close packing takes smaller area.
The unit cells are outlined in black. (c) Hexagonal close packing of larger disks occupying
the same area as covered in (a). The area of the unit cell in (b) is ≈ 0.866 of (a) and (c). (d)
Covering the plane with hexagonally arranged disks minimizes the area in the overlapping
regions.
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conjectured that the HCP packing, whose density is about 74.05%, produces the optimal

packing of 3-D spheres in a book entitled “The Six-Cornered Snowflake” [93].

In 1881, the crystallographer, William Barlow, demonstrated that the FCC packing

(which is an atomic structure) achieves the same packing density as the HCP packing

does [93]. In fact, he demonstrated that FCC is a specific type of HCP packing (when

looking from a different angle) and there are infinitely many packings that match the same

packing density. The FCC packing would place a sphere on the corners of a cube and

additional spheres in the centers of each face. The illustration Barlow used to demonstrate

this similarity is re-drawn in Figure 1.5.

Figure 1.5: The Face Centered Cubic Packing with a cut-away view shows the hexagonal
arrangement of spheres from the diagonal viewpoint of the cube.

When stacking a layer of hexagonally packed spheres on top of another layer, every

sphere in the second layer fills a dimple formed by three of the spheres in the first layer.

Due to the hexagonally packed arrangement of the second layer, only half of the dimples of

the first layer are filled. Therefore, there are two choices for the second layer. We can call

the arrangement in the first layer (A) and the two choices in the second layer (B) and (C)
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as illustrated in Figure 1.6.

(a) AB (b) AC

Figure 1.6: Two different ways for the consecutive sheets of hexagonally packed spheres to
lie on top of each other.

It turns out that all possible arrangements of layers A, B and C achieves the same

packing density. In particular the alternating sheets described by ABAB . . . is the HCP that

Kepler studied and ABCABCABC . . . is the FCC packing mentioned above (Figure 1.7).

The attractiveness of the FCC packing is that the centers of the spheres form a discrete sub-

group of the Euclidean space that contains the origin, i.e., a point lattice (see Section 1.1.2).

However, the HCP points do not form a sub-group and hence do not form a lattice.

(a) An example of HCP for ABA (b) The FCC packing for ABC

Figure 1.7: HCP vs FCC packing
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The FCC packing is (perhaps not incidentally) the grocer’s method for piling up oranges,

apples and melons on a pyramid; also, the FCC lattice is a common arrangement for storing

cannon-balls; see Figure 1.8. It is important to note that the packing density, mentioned

above, is not defined over a finite domain, but is an asymptotic measure. For finite packings,

depending on the geometry of the boundary of the space, there are irregular packings that

attain the maximum density.

Kepler’s conjecture remained open for nearly 400 years. The difficulty in proving Kepler’s

conjecture was that, for finite domains, irregular packings outperform the regular ones;

however, extending these irregular packings significantly decreases their density. On the

other hand, the truth of Kepler’s conjecture suggests a special property of the Euclidean

geometry that regular packings outperform irregular packings in the limit. In 1831, Gauß

proved that the packing density of HCP attains the maximum possible packing density

among the regular packings [17]. This meant that if Kepler’s conjecture was to be disproved,

a more dense packing structure had to be found with an irregular pattern. Gauß’s result

was perhaps a disappointing result for disproving Kepler’s conjecture by counter-examples

since eliminating all possible irregular packings is intractable.

After Gauß’s observations, there was no progress on this problem for a while. David

Hilbert included Kepler’s conjecture in his list of unsolved problems in mathematics (Hilbert’s

18th problem). The situation turned more hopeful in 1953 when Fejes Tóth showed that

the search for disproving Kepler’s conjecture among all possible irregular patterns can be

reduced to a finite, but very large, number of cases. This was an important observation

since it offered the hope of enumerating all possible irregular packings in finite time. Fol-

lowing Tóth’s contribution, Thomas Hales determined that the maximum density of all

possible arrangements could be determined by minimizing a function of 150 variables. In

1998 Hales announced that he has completed the (computer-aided) proof and believes the

Kepler conjecture to be true [38].

Sphere packings in higher dimensions are of great interest to both geometers and en-

gineers with various applications such as coding theory and quantization theory [17]. One

curious lattice of interest in 24 dimensions is the Leech lattice that attains an unusually

high packing density and is used to design error-correcting codes [17] (codes whose bit-

representation is resistant to a few erroneous bit flips caused by the presence of noise in

communications).

The covering problem has similarly found great attention in geometry and has various
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Figure 1.8: Cannon-balls stacked in a face-centered-cubic lattice. (Arlington, Virginia.
Taken by Matthew B. Brady about 1863. Public Domain Image. Obtained from the Library
of Congress Image Collection.)

applications in Engineering. As mentioned earlier, the hexagonal lattice in 2-D is the solution

to the cover problem in 2-D. However, in 3-D the BCC lattice allows the best covering of

the 3-D space while allowing for the minimum possible overlap [17]. In conclusion, the

FCC lattice allows for the most efficient packing, while the BCC lattice allows for the best

covering of space with spheres.

1.1.2 Point Lattices

In this section we will briefly present selected topics in geometry of three-dimensional non-

Cartesian lattices of interest.

In geometry, a point lattice is a discrete subgroup of the Euclidean space that contains

the origin [80]. In other words, the set of points in a lattice is closed under addition and

negation. The discrete nature of a lattice implies that every lattice point has a neighborhood

in which it is the only lattice point. Such a neighborhood can be formally defined using

a Delaunay diagram and the corresponding Voronoi cell. The Voronoi cell (Wigner-Seitz

cell) of a lattice point comprises all Euclidean points for which that lattice point is a closest

one. Each lattice point has surroundings identical to those of all the other lattice points

hence one can refer to the Voronoi cell of a lattice without ambiguity [8].

In the context of close packings (i.e., configurations where spheres are touching each
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other), cubic lattices are of interest. The term ‘cubic’ refers to the fact that in a close

packing on a cubic lattice, one can find a unit cell that is a cube. A unit cell is a

parallelepiped that contains a minimal portion of the space such that the close packing is

obtained by periodic tiling with the unit cell.

There are three different types of cubic close packings: Cartesian Close (CC) packing,

Face Centered Cubic (FCC) packing, and Body Centered Cubic (BCC) packing.

The Voronoi cells of these lattices are a cube, a rhombic dodecahedron (Figure 1.9), and

a truncated octahedron (Figure 1.10), respectively. The FCC and BCC lattices are the

three-dimensional counterparts of the hexagonal lattice in 2-D.

x

y

z

Figure 1.9: The Voronoi cell of the FCC lattice is a rhombic dodecahedron. The blue
neighbors are at offsets of (±1,±1, 0), (±1, 0,±1) and (0,±1,±1). The green neighbors are
at offsets of (±2, 0, 0), (0,±2, 0) and (0, 0,±2).
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x

y

z

Figure 1.10: The Voronoi cell of the BCC lattice is a truncated octahedron. The blue
neighbors are at offsets of (±1,±1,±1). The green neighbors are at offsets of (±2, 0, 0),
(0,±2, 0) and (0, 0,±2).
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The FCC lattice is often referred to as the D3 lattice [17]. In fact, D3 belongs to a

general family of lattices, Dn, sometimes called checkerboard lattices. The checkerboard

property implies that the sum of the coordinates of the FCC lattice sites is always even.

Therefore, one can start with Z
3 and retain only points whose sum of coordinates are even.

The resulting FCC lattice has a density of 1/2 in the original Z
3 and therefore, its Voronoi

cell has a volume of 2. Alternatively, one can describe the FCC lattice as the points at the

corners of a cube in addition to the centers of the faces of the cube, hence the name Face

Centered Cubic.

The BCC lattice points are located at the corners of a cube with an additional sample

in the center of this cube. Therefore, the BCC lattice can be considered as two interleaving

Cartesian lattices where the vertices of the secondary Cartesian lattice are moved to the

center of the primary Cartesian cells. An alternative way of describing the BCC lattice as

a sub-lattice of the Cartesian lattice is to start with a Cartesian lattice (i.e., Z
3) and retain

only those points whose coordinates have identical parity. For an integer point in Z
3 to

belong to the BCC lattice, all three of x, y and z coordinates need to be odd or all three

need to be even. Therefore, the BCC lattice is a subgroup whose quotient group is of order

four3. Therefore, the BCC lattice is a sub-lattice of Z
3 whose density is 1/4 in Z

3; in other

words, the volume of the Voronoi cell of each lattice point is 4.

The FCC and BCC lattice points can be generated by integer linear combinations of the

columns of their generating matrices:

BCC =









1 −1 −1

−1 1 −1

−1 −1 1









, FCC =









0 1 1

1 0 1

1 1 0









. (1.1)

It is fairly obvious to note that for a particular lattice there are many generating matri-

ces [104]. The span of all of these different generating matrices yields the same set of points,

but the integer coordinates of points are different for each choice of a generating matrix.

Different choices of generating matrices yield different fundamental regions in the lattice–

the parallelepiped formed by the basis vectors (columns) of the generating matrix [32, 105].

Since the Voronoi cell of these lattices tile the 3-D space, cube, truncated octahedron

and rhombic dodecahedron are called space filling polyhedra. In 3-D, there are only

3Looking at the (x, y, z) coordinates mod 2, there are 8 different combinations and we are interested in
only two: (0, 0, 0) and (1, 1, 1).
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five (combinatorially) different types of polyhedra that have this nice property. The other

two are the hexagonal prism and the elongated rhombic dodecahedron. These polyhedra

are sometimes referred to as Fedorov’s parallelohedra [80]. It is a curious fact that all of

x

y

z

x

y

z

(a) (b)

Figure 1.11: (a) Elongated rhombic dodecahedron is a space filling zonotope with five zones.
(b) Hexagonal prism is a space filling zonotope with four zones. Edges belonging to one of
the zones of these zonotopes have been colored green.

these polyhedra are (the support of) shadows (projections) of higher-dimensional hyper-

cubes down to 3-D. Polytopes that are the support of the projection of higher dimensional

hypercubes are called zonotopes. A zonotope is a polytope where both itself as well as its

facets exhibit point symmetry with respect to their centers (e.g., a rectangle is symmetric

with respect to its center, but a triangle is not). A three-dimensional zonotope is often

referred to as zonohedron. It turns out that a polyhedron is a zonohedron if and only if

its faces are (center) symmetric [112]. The set of edges of a zonohedron can be partitioned

into zones in such a way that all edges in one zone are parallel [40]. The edges in one zone

of a zonohedron construct a “belt”-like structure around the polyhedron. For instance, the

elongated rhombic dodecahedron is a five zone zonohedron, one of which has been illustrated

with green color in Figure 1.11(a). A zonohedron can be specified by a representative vector

from each zone. These representative vectors can, in turn, be used to construct a projection

matrix that yields the polyhedron from the corresponding higher dimensional hypercube.

The dimension of the hypercube is simply the number of zones in a zonohedron.

With this knowledge one can easily verify that the cube is the identity projection of
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a 3-D cube, rhombic dodecahedron and hexagonal prism are different projections of a 4-D

tesseract, elongated rhombic dodecahedron is a projection of a 5-D hypercube and truncated

octahedron is a projection of a 6-D hypercube.

1.2 Non-Cartesian Lattices in Visual Computing

Motivated by attractive features of the hexagonal lattice and its employment in biological

visual systems, researchers in image processing and computer vision have tried to exploit

the hexagonal lattice in acquisition, processing and visualization algorithms.

The beginnings of digital image processing are usually traced back to the 1960s when it

was motivated by the need to enhance lunar surface images transmitted by Ranger 7 [64].

Even though in the early stages the Cartesian lattice was studied heavily, McCormick con-

sidered a hexagonal lattice (in addition to the Cartesian lattice) for a thinning algorithm to

process digital images and detect nuclear particles in bubble chamber experiments [60].

It was Petersen [72] who realized the attractive property of the hexagonal lattice for

sampling functions whose support in the Fourier domain is bounded (i.e., band-limited).

In fact, he showed that the hexagonal lattice is the optimal pattern for sampling (isotropi-

cally) band-limited functions. Given an isotropic and band-limited spectrum of the original

function, one can properly sample that function on a hexagonal lattice with only 86% of

the number of samples one would require for a proper sampling on the Cartesian lattice.

Further details on this subject are discussed in Section 2.2.1.

1.2.1 Acquisition

Motivated by the optimal sampling property of the hexagonal sampling lattice, there has

been interest in exploiting this optimality and increase the “information” captured by the

samples taken on the hexagonal lattice in sensor arrays. One (perhaps misleading) approach

is to sample images on the regular Cartesian lattice with generic hardware and then adopt

a resampling scheme [64]. However, during the resampling process no information can be

injected to the captured data and such re-sampled hexagonal data will contain no more

information than was originally captured.

Staunton [85, 84] has been an advocate for building custom hardware for acquiring

hexagonal images. He designed a pipeline to introduce a delay to alternate rows of video
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images for hexagonal acquisition. Also, general purpose sensors have been proposed in [41].

However, the progress in this field has not been enough compared to the Cartesian pipeline.

The attractive features of 3-D optimal sampling demonstrate tremendous potential to

be exploited in medical scanning devices such as Magnetic Resonance Imaging (MRI); this

is discussed in the work of Ehrhardt [29]. This technique can be used to reduce scan

time, data throughput, and data storage requirements while maintaining resolution or to

improve resolution while maintaining scan time. It is worthwhile to mention that while it

is reasonably easy to modify the k-space trajectories to collect MRI samples on the BCC or

FCC lattices, adjusting the impulse response (excitation function) for proper anti-aliasing

is the challenging part. Similarly, a simple phase shift in k-space to introduce a shift in

the space domain does not provide an optimal BCC sampling. The optimality of the BCC

lattice allows one to capture about 30% more information given that the same number of

samples are taken on a Cartesian lattice. Similarly, for tomographic reconstruction, Matej

and Lewitt considered the optimal sampling properties of the BCC lattice and developed

a tomographic reconstruction method based on radial basis functions [54, 55]. A good

exposition of the methodology for Positron Emission Tomography (PET) they developed

can be found in a technical report [43].

In computed tomography, the notion of ’interlaced lattice’ has been explored and proved

to significantly improve the quality of reconstruction [19, 27]. Cormack [19], suggested

that one can improve the quality of tomography by almost 50% if the interlaced lattice

was chosen for reconstruction purposes. While the interlaced lattice bears resemblance to

the hexagonal lattice, for a given identical angular and distance discretization resolution,

it matches the hexagonal lattice exactly. Rattey and Lindgren pushed this idea further

and explored optimally sampling the 2-D Radon Transform (RT) plane [76]. In this work,

the information on the RT plane is considered as a bivariate function (as opposed to the

traditional univariate parameterization) and the optimal hexagonal sampling is applied on

that function. The advantages of using the interlaced lattice are explained by means of

Fourier analysis in works by Faridani [33, 34, 35, 52].

Wells et al. [110] also advocate the use of the hexagonal sampling pattern in practical

CT applications. They state that conventional CT scanners are not making the best use of

the available data if they are not using some scheme that approximates hexagonal sampling,

but are using a scheme equivalent to Cartesian sampling. “It seems that one ought to get

the maximum spatial resolution from the number of samples acquired as the CT scanning
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and image reconstruction are expensive enough in time and dollars without unnecessarily

throwing resolution away” [110]. The mentioned framework and simulation studies and

experiments for typical first generation scanners have been described in Suparta’s PhD

thesis [92].

Unser et al. used the BCC lattice for measuring their proposed volumetric spectral

signal to noise ratio (VSSNR) model for assessment of 3-D reconstructions of biological

macromolecules by transmission electron microscopy [101]. They used the BCC lattice

points to approximate the VSSNR by a radial basis function based on generalized Kaiser-

Bessel window functions.

1.2.2 Other Applications

The hexagonal lattice has also found interest in the mathematical morphology domain

thanks to the elegant notion of neighborhood on each lattice point. In a 2-D Cartesian

lattice, there are two distinct sets of neighbors in the immediate neighborhood of each

lattice point. There are four closest neighbors whose Voronoi cells share a face with the

Voronoi cell of the center lattice point (face-connected: green arrows in Figure 1.12(a)).

There are also four more neighbors whose Voronoi cells share a vertex with the Voronoi cell

of the center point (vertex-connected: blue arrows in Figure 1.12(a)). In many computer

vision applications a face-connected or a vertex-connected neighborhood (or their union) is

arbitrarily chosen as the neighborhood. However, in the case of a hexagonal lattice a total

of six face-connected neighbors completely separate the center point from the rest of the

lattice (see Figure 1.12(b)). This distinction allows one to distinguish a foreground image

from its background in a more sensible fashion.

Besides the improved notion of neighborhood, for creating isotropic structural elements

in morphology, it is desirable to have the richest group of rotations possible. In 2-D, the

hexagonal lattice’s Voronoi cell (hexagon) provides a better element than the simple square

of the Cartesian lattice. Motivated by these advantages Meyer developed the corresponding

morphological operators on FCC and BCC lattices [63]. The improved notion of neighbor-

hood is also desirable in certain finite element modeling applications [65].

The improved isotropy of neighbors in FCC and BCC lattices makes their voxel rep-

resentations (i.e., their Voronoi cells) more suitable to rotations than the cubic voxels on

the Cartesian lattice. This property proves useful to the discrete representation of shapes

and their skeletons [87]. In a distance transform (DT), each picture element in an object is
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(a) (b)

Figure 1.12: (a) A Cartesian lattice point, face+vertex connectivity. (b) The hexagonal
lattice point, face connectivity.

labeled with the distance to the closest element in the background. DTs are very useful tools

in many types of image analysis, from simple noise removal to advanced shape recognition.

Results concerning weighted DTs and Euclidean DTs on the FCC and BCC lattices have

been studied [89, 88].

Miller [65] examined the advantages of non-Cartesian lattices for estimating the perime-

ter (in 2-D) and surface area (in 3-D) of piecewise smooth objects sampled on Cartesian and

non-Cartesian lattices. The estimation process uses local counting methods on the elements

(i.e., pixels or voxels) where each element’s area on the boundary is locally calculated and

accumulated in the total boundary of the discretized object. In local counting methods the

hexagonal lattice is demonstrated to provide a better perimeter estimation than the com-

monly used 2-D Cartesian lattice. In 3-D it is shown that for surfaces of random orientation

with a uniform distribution, the expected error of surface area estimates is significantly

smaller for the FCC and BCC lattices than for the standard Cartesian lattice. The com-

petition between FCC and BCC is in favor of BCC for the lowest mean error in estimating

the area while FCC has the much smaller maximum error. This work demonstrates that

FCC and BCC lattices can be exploited in various fields like medical imaging where area

estimation of tissues or tumors is a challenging and important task. Similarly, in the man-

ufacturing world, the improved surface area estimation by non-Cartesian lattices is useful

for computing the flux of physical quantities across or along a surface such as shear stress,
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heat or electromagnetic fields or wind resistance.

Half-toning is a technique for producing the illusion of continuous tone in binary display

devices (such as laser printers) through a random placement of pixels. Hexagonal patterns

have also been proposed for half-toning [86, 100, 44]; however, the blue noise dithering

method proposed by Ulichney [99] ironically showed that only on a rectangular sampling

lattice it is possible to isolate pixels at all gray-levels. The issue with the hexagonal lattice

pattern was that the minority pixels begin to cluster when the gray-level value (normalized

to [0, 1]) tends to 1/2. Because of this issue Ulichney concluded that the hexagonal lattice

can not support blue-noise [99]. Only recently Lau and Ulichney resolved the paradoxical

result mentioned and showed that the hexagonal lattice is actually the preferred choice for

stochastic dithering [50].

Sun et al. [91] demonstrated that a finite difference approximation of gradients can be

obtained with a hexagonal stencil that involves a point and six of its neighbors. This seven

point stencil achieves a fourth order approximation while a Cartesian finite difference stencil

of the same approximation order requires the full nine-point neighborhood. It is worthwhile

to mention that even though [91] considers this approximation only in 2-D on a hexagonal

lattice, they refer to the hexagonal lattice as a face centered cubic lattice.

Tian [98] showed that the hexagonal lattice can help improving the estimates of the

direction-of-arrival (DOA) of a signal on an antenna array. The estimate they found exhibits

good thresholding and is close to the Cramer-Rao bound above threshold.

As we have seen in this chapter, the non-Cartesian lattices demonstrate potential in

various applications specifically in the visual computing domain. In the following chapter

we study the behavior of Cartesian and non-Cartesian lattices in sampling theory. We will

demonstrate the theoretical advantages of using non-Cartesian lattices for sampling and

reconstruction of functions – a common task in image processing, computer graphics and

visualization.



Chapter 2

Sampling and Reconstruction of

Functions

In this chapter, the basics of sampling theory is presented. The sampling and reconstruction

theory, in the univariate and multivariate settings, is reviewed along with its implications

in signal processing. We begin with the definition of the Fourier transform, f̂ : R→ C of a

function f : R→ C in L2

f̂(ω) =

∫

f(x) exp (−iωx) dx. (2.1)

The Fourier transform extends to the multivariate setting by tensor-product:

f̂(ω) =

∫

f(x) exp (−iωTx) dx, (2.2)

for f̂ , f : R
n → C.

2.1 Uniform Univariate Sampling and Reconstruction

In signal processing sampling a continuous-domain function can be modeled as a multipli-

cation with a comb (shah) function ∐∐T where the samples are TZ [70]. Since the comb

function is a distribution, its multiplication with a regular function is defined as:

∫

∐∐T f(x) dx =
∑

k∈Z

f(Tk) (2.3)

19
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Sampling the function f with ∐∐T brings about replication of the spectrum on a lattice

with period 1/T in the Fourier domain; this phenomenon can be justified using the Pois-

son sum formula [7]. Since the Fourier transform (in the distributional sense) of a comb

function is another comb function with reciprocal scale, one can demonstrate the mentioned

replication phenomena as a convolution with the dual comb function [6]:

∐∐T f ←→ 1

T
∐∐ 2π

T

∗ f̂ (2.4)

Here ↔ denotes a Fourier transform pair.

2.1.1 Reconstruction in the Space of Band-Limited Functions

Traditionally, the subspace D of L2 whose elements have a Fourier transform with bounded

support (i.e., band-limited functions) was considered for the purpose of sampling and recon-

struction. Whittaker [111] demonstrated the countable basis for the space of band-limited

functions by representing a function by its cardinal series. Although the reconstruction

based on the cardinal series was known to mathematicians as early as Borel [61], establish-

ing the separable nature of this band-limited function space was Whittaker’s contribution.

Shannon [81] then realized the potential of this representation for communication theory and

signal processing. Assuming a space B(−π,π) of functions whose Fourier transform is only

nonzero on the open interval (−π, π), the classical result claims that a function f ∈ B(−π,π)

is completely determined by its ordinates:

f(x) =
∑

k∈Z

f(k) sinc (2π(x− k)) (2.5)

where sinc(t) = sin(t/2)/(t/2) and f(k) are the samples (ordinates) of the function f on

integers. The supremum frequency of π allowed in the spectrum of functions in B(−π,π) is

called the Nyquist frequency. A function can be completely recovered by samples taken at

intervals inversely proportional to the Nyquist frequency of its spectrum [70]. If a function’s

spectrum has wider support, the Nyquist frequency is higher and the sampling interval

needed to recover the function from its samples is smaller.

While Shannon’s result provides an extremely useful reconstruction formula that has a

wide range of applications, it has several shortcomings:

1. Due to the Riemann-Lebesgue lemma the Fourier transform of many functions, in-

cluding elements of L1 or L2, decay to zero as the frequency increases, hence the
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traditionally popular choice of band-limited functions as a space of approximation

is not a bad idea; however, the band-limited assumption in the strict sense is typi-

cally not met. There is a large class of functions for modeling real phenomena that

are not band-limited; for such functions, the representation on the right hand side

of Equation (2.5) could turn erroneous and invalid. In practice, a pre-filtering step

is applied before sampling where the original function’s spectrum is filtered so that

all frequencies outside of the safe range of (−π, π) are removed. This pre-filtering is

ideally implemented by convolving the original function with a sinc function before

sampling.

2. It is difficult to use the reconstruction in Equation (2.5) since the sinc function has

infinite support and decays very slowly. For instance a pointwise evaluation is a non-

local operation and the value of the function at any point x is affected by many

f(k)’s. It is common practice [70] to choose a windowed or truncated sinc where the

sinc function is dampened to concentrate its energy in a windowed support. However,

these techniques ruin the good approximation capabilities of the sinc function [103].

3. From the point of view of applications, it is rarely possible to obtain exact samples

f(k) of a function f . Instead, a sampling device usually has a point-spread function

which effectively samples a weighted local average of the function [2].

These problems in sampling and reconstruction on the space of band-limited functions de-

mands a more general framework where one could model non-band-limited functions and

reconstruct functions efficiently and accurately. The concept of sampling and reconstruc-

tion in shift-invariant spaces remedies these problems. A good review of shift-invariant

spaces can be found in [103, 2] and the references therein. The sampling and reconstruc-

tion in shift-invariant spaces can be viewed as an abstraction of Shannon’s result where the

restriction of band-limited space is removed with a more general space [103].

2.1.2 Sampling and Reconstruction in Shift-Invariant Spaces

If we consider X to be a Hilbert space equipped with the norm induced from the common

inner product, 〈f, g〉 =
∫

f(x)g(x) dx, the pre-filtering step can be viewed as an orthogonal

projection of an element in X onto the space of band-limited functions D. Therefore,

Shannon’s result can be viewed as the “best approximation” of an arbitrary element of X
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in the space of band-limited functions. To observe this relationship, we first note that the

shifts of the sinc function form an orthonormal set [39]: {ϕk = sinc (2π(· − k))} for k ∈ Z

since 〈ϕm, ϕn〉 = δm−n where δ is the Kronecker delta function. By Whittaker’s result in

Equation (2.5), this set forms an orthonormal basis for D. Therefore, an element f ∈ X

can be projected onto D using the dual basis to {ϕk}. But since {ϕk} is an orthonormal

basis, the elements of the dual basis are again shifted sinc functions. Therefore the best

approximation of f is achieved by the coefficients ck = 〈f, ϕk〉 and f̃ =
∑

k∈Z
ckϕk. Due to

the property of the sinc function that sinc (2πk) = δk, we have f̃(k) = ck; it turns out that

the coefficients ck can also be viewed through sampling the function that is the convolution

of the original f with the sinc function. This convolution is the ideal pre-filtering step that

band-limits the spectrum of f :

ck = 〈f, ϕk〉 =

∫

f(x) sinc (2π(x− k))dx = (f ∗ sinc)(k) = f̃(k).

The original Shannon’s theorem follows from the case that f ∈ D, in which case we have

f = f̃ and ck = f(k).

The theory of sampling and reconstruction in shift-invariant spaces builds on using

different choices of basis functions than the sinc function. Again, usually a single function

ϕ determines the entire procedure and is called the generating function; the weighted sum

of the integer shifts ϕk = ϕ(· − k) by a sequence, c ∈ ℓ2, forms the approximation space

D(ϕ) [2]. The choice of ϕ can be guided by the fact that we desire a function with compact

support. Moreover, the shifts of ϕ should form a linearly independent set of functions.

A function f ∈ X is approximated by f̃ in the space D(ϕ) which is determined by its

coefficient series c ∈ ℓ2, i.e.,

f̃ =
∑

k∈Z

ckϕk.

These coefficients are not necessarily the samples of f but are obtained by some series of

other linear functionals acting on f . It is desirable to have a stable representation, which

means that small changes in the coefficients should result in small changes in f̃ . Also, we

like to have a unique representation of f ; in other words we would like to be able to define

f̃ unambiguously. Ideally, an orthonormal basis satisfies all of these requirements; however

orthonormality is sometimes a prohibitively strong restriction. The next best constraint to

enforce is the Riesz criterion for the generating set [23]. For {ϕk} to be a Riesz basis, there
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should exist two positive and finite constants C1 and C2 such that for every sequence of

coefficients c ∈ ℓ2:

C1‖c‖2 ≤ ‖f̃‖2 ≤ C2‖c‖2 (2.6)

The lower bound inequality implies the linear independence of the set {ϕk} since
∑

k∈Z
ckϕk =

0 implies c = 0. The linear independence, in turn, implies the uniqueness of the representa-

tion. The upper bound inequality ensures that the approximation is still square integrable

and D(ϕ) is a subset of L2.

In order to find the best approximation to f from the space D(ϕ) we need to find

the orthogonal projector that projects f to D(ϕ). Since we do not necessarily have an

orthonormal basis for the approximation space anymore, we need to find the dual basis

{ϕ′
k} to build the orthogonal projector to D(ϕ). The dual basis satisfies the biorthogonality

property: 〈ϕm, ϕ′
n〉 = δm−n. The best approximation then comes from:

f̃ =
∑

k∈Z

〈

f, ϕ′
k

〉

ϕk

We note that the coefficients ck = 〈f, ϕ′
k〉 are no longer exact sample values of the original

function, but are the scalars obtained from the sequence of functionals {〈·, ϕ′
k〉}k∈Z.

If f happens to be in D(ϕ) it is possible to recover f exactly. However, for a general

element of X the exact recovery is not possible and hence one settles on the best approxi-

mation in D(ϕ). Therefore, another criterion to be considered when designing or comparing

generator functions is the best approximation their corresponding shift-invariant spaces can

achieve. This leads to the concept of approximation power.

Since a typical choice of the generating function is one with a compact support, one can

try to refine the space of approximation by scaling the generating function and accordingly

the shifts by T . Therefore, an element in a space generated by the dilated ϕT = ϕ(·/T ) has

the form:

f̃T =
∑

k∈TZ

ckϕ
T
k .

We also note that the density of coefficients also changes since they are now counted by

TZ. By choosing T < 1 we increase the “sampling” density and have a finer approximation

to the function f and the choice of T > 1 leads to a coarser approximation of f . For a
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generator function ϕ to be acceptable for approximation it has to be able to approximate

any element of X arbitrarily closely:

lim
T→0
‖f − f̃T ‖ = 0.

2.1.3 Approximation Power and the Strang-Fix Result

When it comes to choosing a generating function over another it makes sense to compare

the rate at which the best approximation in their corresponding spaces converge. One of

the most common measures for comparing approximation power of generating functions is

developed by Strang and Fix [90]. Their result allows to predict the rate at which dilates of

the space of a generating function approximates differentiable functions. In the Strang-Fix

theory a generating function ϕ with a compact support (or an inverse polynomial decay)

has approximation power of L if [90, 102]:

1. {ϕk} for k ∈ Z forms a Riesz basis.

2. ϕ̂(0) = 1 and ϕ̂(ω) behaves like (ω− 2πk)L around all aliasing frequencies ω = 2πk

where k 6= 0, k ∈ Z,

where ϕ̂ is the Fourier transform of ϕ. If f is a function whose Lth derivative exists and is

of finite energy, then the error in the best approximation of f in a dilated space generated

by ϕ decays as fast as TL:

inf
f̃T∈D(ϕT )

‖f − f̃T ‖ ≤ CϕTL‖f (L)‖,

where the constant Cϕ is independent of f . The number of zero crossings at aliasing fre-

quencies was also studied in the wavelet theory as they predict the approximation power of

a wavelet decomposition [102].

The Strang-Fix result can be considered as the computational alternative to the concept

of Nyquist frequency in the traditional Shannon theory. The error, generally, is not zero

but can be made arbitrary small given a fine “sampling” interval of T .

Splines are a general class of approximation spaces where the function f is approximated

by a piecewise polynomial function [26]. Given a uniform sequence of knots or seam points,

the class of basis splines (B-splines) span this space. Under this assumption B-splines

act as the generators of the shift-invariant space. Different orders of B-splines can be
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obtained by successive convolutions of the first order B-spline (the indicator function of the

sampling interval) with itself. One can design B-splines of arbitrarily high smoothness and

approximation power.

2.2 Multidimensional Regular Sampling

While, in the univariate setting, the choice of uniform sampling can only be controlled by

the sampling distance T , in the multivariate setting, there is a greater freedom in choosing

the sampling pattern. A great introduction to multidimensional signal processing can be

found in Dudgeon and Mersereau [28] and Vaidyanathan [104].

In the multidimensional case there are more choices for uniform distribution of points

and it becomes a matter of regular tiling. The obvious choices in 2-D are the Cartesian

lattice and the hexagonal lattice for sampling. A general point lattice for sampling is the

integer span of the columns of the sampling matrix M . Associated with every full rank

lattice is a dual (reciprocal [28] or polar [11]) lattice whose generator matrix, M−T, is the

inverse transpose of the original lattice matrix M (see Figure 2.1).

The very same terminology as defined in Section 2.1 can be extended into the generic

multivariate setting. Here one can introduce a comb function, ∐∐M, with its spikes at

the lattice points MZ
n [28]. The (distributional) Fourier transform of this comb function

involves the dual lattice:

∐∐M ←→
1

|det M |∐∐2πM−T

When sampling a multivariate function on a lattice generated by M , the effect in the

Fourier domain is the replication of the spectrum on the dual lattice [28] (scaled by 2π).

∐∐Mf ←→ 1

|detM |∐∐2πM−T ∗ f̂

The corresponding multidimensional Poisson sum formula [7] for continuous functions in

L1 whose Fourier transform decays (with a rate faster than inverse linearly) in this case

becomes:

∑

k∈Zn

f(Mk) =
1

|det M |
∑

k′∈Zn

f̂(2πM−Tk′).

Since the spectrum is replicated in the Fourier domain according to the dual lattice, the

Voronoi cell of the dual lattice is where the main spectrum lies. The Voronoi cell of the dual
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Figure 2.1: (a) A 2-D lattice with sampling matrix M = [u, v]. (b)The dual lattice described
by M−T = [u′, v′]. (c) The Voronoi cell of the lattice. (d) The Brillouin zone: the Voronoi
cell of the dual lattice.
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lattice is sometimes referred to as the Brillouin zone [80]. The boundary of the Brillouin

zone can be considered as the multidimensional version of the Nyquist frequency. Therefore,

the multivariate version of Shannon’s sampling theorem holds when the spectrum of the

signal to be sampled on the lattice M does not contain frequencies outside the Brillouin

zone (i.e., the Voronoi cell of the dual lattice).

Therefore, the (canonical) ideal interpolation function on the lattice M is defined

as the inverse Fourier transform of the indicator function of the Brillouin zone:

sincM ←→ χM−T (2.7)

where χM denotes the indicator function of the Voronoi cell of a lattice M at the origin.

Claim: Lattice-shifts of sincM on the lattice, M , form an orthogonal system.

Proof. We first note that a shift in the space domain amounts to a phase shift in the Fourier

domain. Therefore:

sincM (· − k)←→ exp (−ik·)χM−T

Moreover, the multidimensional Fourier basis is an orthonormal system:

〈exp(−ik1·), exp(−ik2·)〉 = δk1−k2 (2.8)

We resort to Plancherel’s theorem (Fourier transform preserves angles) for lattice-shifted

sincM functions:

〈sincM(· −Mk1), sincM(· −Mk2)〉

=
〈

exp (−iMk1·)χM−T , exp (−iMk2·)χM−T

〉

(2.9)

Since χM−T is the Voronoi cell of the dual lattice, its periodic replication with respect to

dual lattice shifts of 2πM−Tk tiles the space. Similarly the phase shifts are also periodic

with the same period:

exp
(

−i(Mk) · (ω + 2πM−Tk′)
)

= exp (−i(Mk) · ω) · exp
(

−2πi(Mk) · (M−Tk′)
)

= exp (−i(Mk) · ω) · exp
(

−2πikTMTM−Tk′)

= exp (−i(Mk) · ω) · exp
(

−2πikTk′)

= exp (−i(Mk) · ω)
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since kTk′ ∈ Z.

Therefore, the inner product in Equation (2.8) is the sum of individual tiles in Equa-

tion (2.9) (which are identical to each other). For different lattice shifts (Mk1 6= Mk2),

the inner product over the whole domain (Equation (2.8)) is zero, therefore, the individual

tiles in Equation (2.9) must be zero. Therefore, sincM shifted to different lattice sites are

orthogonal.

When Mk1 = Mk2 the value of Equation (2.9) simplifies to the volume of the Brillouin

zone, and it equals 1 if |detM | = 1. Then we have:

〈sincM(· −Mk1), sincM(· −Mk2)〉 = δMk1−Mk2 . (2.10)

The orthonormality of the sincM system defined readily extends the univariate sampling

and ideal interpolation theory to the multivariate case.

2.2.1 Why Are Hexagonal and BCC Lattices Optimal?

The optimality of the hexagonal lattice in sampling theory can be explained by the uncer-

tainty principle. As mentioned earlier, when a function is sampled in the space domain,

its spectrum is replicated in the Fourier domain on a lattice with reciprocal density of the

sampling set.

When a function is sampled coarser than the Nyquist rate, the replicates of the spectrum

overlap in the Fourier domain and lead to the so called aliasing effect. Too dense of a

sampling leads to excessive and unnecessary amounts of data; this phenomenon is attributed

to a sparse replication of replicates of the spectrum. The best sampling rate is achieved

when the spectrum of the function is packed as dense as possible (in the Fourier domain)

without overlap. Figure 2.2 illustrates the uncertainty principle in the univariate case.

Petersen and Middleton [72] developed the multidimensional version of the sampling

theorem of Whittaker and Shannon. They further noticed that for isotropic functions (i.e.,

functions with roughly low-pass isotropic spectrum) the optimal sampling rate in the mul-

tidimensional setting, can be obtained by the dense (hyper-) sphere packing arrangement

which optimally packs the replicates of the spectrum in the Fourier domain. Such a dense

packing of the replicates in the Fourier domain provides the notion of an optimal sampling

lattice as the dual lattice to the dense sphere packing lattice.
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Coarsely Sampled Densely Sampled Optimally Sampled

Figure 2.2: Uncertainty principle in the univariate setting. First row: sampling a function in
the space domain. Second row: replication of the spectrum in the Fourier domain. The first
column illustrates aliasing, the second column is dense sampling with too many unnecessary
samples, the third column is the ideal sampling rate.

rC

rH
rH

Figure 2.3: A square and a hexagon with unit area corresponding to the Brillouin zone of
Cartesian and hexagonal sampling. The area of inscribing disk to a square is about 14%
less than the area of the inscribing disk to the hexagon.

Since the density of hexagonally packing disks in 2-D is roughly 14% more than the

regular Cartesian, one can retain roughly 14% more wave-number frequency information

in the spectrum of the function without introducing aliasing [72] (see Figure 2.4). For

a sampling scheme with unit sampling density (one sample per unit area), the area of

the Brillouin zone is 1. For Cartesian sampling, the Brillouin zone is a square of unit

area 1 and for the comparable hexagonal sampling it is a hexagon with unit area. For an

isotropic sampling, one needs to band-limit the function to the radius of inscribing radius

of the Brillouin zone. While the inscribing radius for the aforesaid square is rC = .5,

the inscribing radius for the corresponding hexagon is rH ≈ .537 (see Figure 2.3). This

larger radius allows for inclusion of roughly 14% more information in the spectrum without

introducing any aliasing since
r2
C

r2
H

≈ .866.

The optimal packing of spheres in 3-D is obtained by FCC packing whose packing density

is 74.05%. In comparison to the packing density of the Cartesian lattice (52.3%), the FCC
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(a) Cartesian replication (b) Hexagonal replication

(c) Hex: Fewer samples (d) Hex: More information

Figure 2.4: (a) Cartesian replication of the spectrum versus (b) Hexagonal replication with
the same sampling density in space domain. (c) One could represent the same spectrum with
tighter replication in the Fourier domain, therefore sparser sampling in the space domain.
(d) One could add extra wave-number information (in the highlighted region) and still avoid
aliasing.



CHAPTER 2. SAMPLING AND RECONSTRUCTION OF FUNCTIONS 31

replication of the spectrum has to lose about 30% of the information in its Voronoi cell for

an alias-free sampling on the Cartesian lattice. Therefore, the dual to the FCC lattice, the

BCC lattice, is considered the best generic sampling pattern in 3-D. For a unit sampling

density, the volume of Voronoi cells in the Fourier domain is 1. The Brillouin zone of the

BCC lattice is a rhombic dodecahedron with unit volume and the Brillouin zone of the

corresponding Cartesian lattice is a cube of unit volume. As tabulated in Table A.1 in

appendix A, the radius of the inscribing sphere of the rhombic dodecahedron is rB = .561

while the corresponding radius of a cube is rC = .5. Therefore, the ratio between the volume

of the inscribing spheres is
r3
C

r3
B

≈ .708. Hence, one can capture potentially up to 30% more

information in the spectrum of the BCC sampling lattice.

For the non-ideal band-limited cases, one can argue that optimal sampling still does

a better job of capturing the spectrum of the function. Based on the assumption of de-

caying magnitude of the Fourier transform of the function one can argue that the optimal

sampling strategy captures wave-modes with higher magnitudes than what Cartesian sam-

pling captures. This is illustrated in Figure 2.5. In this figure, the darker bands indicate a

higher magnitude of the Fourier transform of the function at lower wave-numbers, while the

lighter bands indicate lower magnitudes at higher wave-numbers. The red band indicates

the Brillouin zone of Cartesian sampling and the blue hexagon indicates the Brillouin zone of

hexagonal sampling. The red band includes high wave-numbers hence low-magnitude areas

at its corners. One can argue that the hexagon has covered the “more important” frequen-

cies since it covers wave-numbers that are closer to the origin. One can quantitatively show

that the integral of squared distances of points to the center is smaller for a hexagon than

the corresponding square [17]. Therefore, the hexagon covers frequencies that are in general

closer to the center. Based on the assumption of decay of magnitude in Fourier transform,

one can conclude that the hexagonal region captures the “more important” frequencies than

the Cartesian region.
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Figure 2.5: Red band indicates the Brillouin zone of a Cartesian sampling while the blue
band indicates the Brillouin zone of the corresponding hexagonal sampling. The areas of
the red square and the blue hexagon are the same. Since the sum (integral) of distances to
the origin is smaller in the hexagonal region, “more” of the frequencies closer to the origin
are covered in the hexagonal case.

2.3 Multivariate Reconstruction

Reconstruction from sampled data refers to the procedure of interpolating or approximating

the underlying continuous-domain function. In this section we will see the ideal interpolation

function for reconstructing in the space of band-limited functions sampled on the BCC

lattice. As mentioned earlier, the ideal interpolation function has an unbounded support and

is not suitable for computational applications. Therefore, we will focus on the reconstruction

functions with bounded support.

2.3.1 Ideal Interpolation on the BCC Lattice

As we have illustrated before, the spectrum of a function sampled by a lattice M , is con-

tained in the Voronoi cell of the dual lattice, i.e., the Brillouin zone. The canonical ideal

interpolating function we defined, sincM, has a Fourier transform which is the indicator

function of the Brillouin zone of the lattice M . In this section, we shall derive, explicitly,

the ideal interpolation function on the BCC lattice, described in Equation (1.1): sincBCC.

The Brillouin zone of the BCC lattice is a rhombic dodecahedron; i.e., the Voronoi

cell of the FCC lattice. In order to construct a function whose Fourier transform is the
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indicator function of the rhombic dodecahedron, we note that the rhombic dodecahedron

can be cloven into four 3-D parallelepipeds as illustrated in Figure 2.6. This decomposition

process can be visualized by moving the four parallelepipeds along the vectors ξ1, ξ2, ξ3 and

ξ4 illustrated in the figure:

ξ1 =









1/2

−1/2

−1/2









, ξ2 =









−1/2

1/2

−1/2









, ξ3 =









−1/2

−1/2

1/2









, ξ4 =









1/2

1/2

1/2









.

Note that
∑4

k=1 ξk = 0. We further note that the parallelepiped that is moving along ξ1 is

formed at the origin, by vectors −ξ2,−ξ3 and −ξ4, similar to the other three parallelepipeds.

Therefore, one can construct sincBCC by superposition of four functions whose Fourier

transforms are the indicator functions of the parallelepipeds illustrated in Figure 2.6. To

derive such functions, we first note that 1−exp (ix)
ix ←→ χ[0,1)(ω); therefore, by tensor-product,

one can construct the indicator function of the unit cube in the frequency domain. Let χ(ω)

denote the indicator function of the unit cube ([0, 1)3) in the frequency domain, and S(x)

for x = (x, y, z), its Fourier pair:

S(x) :=
1− exp (ix)

ix

1− exp (iy)

iy

1− exp (iz)

iz
←→ χ(ω).

Recall that sinc (t) = sin (t/2)
(t/2) . Since 1−exp (ix)

ix = − exp (ix/2) sinc (x), we have

S(x) = − exp (i(x + y + z)/2) sinc (x) sinc (y) sinc (z).

We need to transform the unit cube to the parallelepiped formed by the above mentioned

vectors. For transforming the unit cube to the parallelepiped formed by the above vectors,

we introduce the matrix Ξ = [ξ1ξ2ξ3ξ4] and the operation Ξ\ξ1 = [ξ2ξ3ξ4]. Then the

indicator function of the parallelepiped formed by −ξ2,−ξ3 and −ξ4 is χ
(

− (Ξ\ξ1)
−1

ω
)

.

If Q is an invertible matrix, we know that f(Qx)←→ f̂((Q−1)Tω)/|det Q|. Hence we have:

S
(

− (Ξ\ξ1)
T

x
)

←→ χ
(

− (Ξ\ξ1)
−1

ω
)

/(
1

2
)

where S
(

− (Ξ\ξ1)
T

x
)

= exp (−i/2 (ξT
2x + ξT

3x + ξT
4x)) sinc (ξT

2x) sinc (ξT
3x) sinc (ξT

4x). Since
∑4

k=1 ξk = 0, we have:

S
(

− (Ξ\ξ1)
T

x
)

= exp (i/2ξT
1x) sinc (ξT

2x) sinc (ξT
3x) sinc (ξT

4x).
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Figure 2.6: A rhombic dodecahedron can be divided into four 3-D parallelepipeds.
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Now, we can write the sincBCC as the superposition of S-functions:

sincBCC (x) =
1

2

4
∑

k=1

S
(

− (Ξ\ξk)
T

x
)

. (2.11)

Since the rhombic dodecahedron has point symmetry with respect to the origin, it makes

sense for the sincBCC to be a real valued function; therefore, we consider the conjugate S

of the function S and subtract it from S:

S
(

− (Ξ\ξ1)
T

x
)

− S
(

− (Ξ\ξ1)
T

x
)

=2i sin (ξT
1x/2) sinc (ξT

2x) sinc (ξT
3x) sinc (ξT

4x)

=iξT
1x

4
∏

m=1

sinc (ξT
mx).

Adding the four terms of sincBCC, we get:

sincBCC (x)− sincBCC(x) =
1

2

4
∑

k=1

(

iξT
kx

4
∏

m=1

sinc (ξT
mx)

)

=
1

2
i

(

4
∏

m=1

sinc (ξT
mx)

)

4
∑

k=1

ξT
kx

=0,

since
∑4

k=1 ξk = 0. Therefore, we have the explicit real valued function sincBCC:

sincBCC (x) =
1

2

4
∑

k=1



cos

(

ξT
kx

2

)

∏

m6=k

sinc (ξT
mx)



. (2.12)

It is interesting to note that any zonotope can be decomposed into parallelopipeds (see [24,

I.53]). Therefore, similar to the above derivation, sinc functions for other lattices can be

explicitly derived using such decompositions.

2.3.2 Finite Multivariate Reconstruction

Traditionally, the design of reconstruction filters is a rich area in signal processing. This

approach is discrete-to-discrete and thus provides estimates of the function values on another

regular sampling lattice. Typically, constraints in the frequency domain are used to guide the

filter design process (e.g., [9, 70, 79]). On the other hand, in shift-invariant approximation

spaces, one considers spaces that are generated with a finite (small) set of continuous-domain
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functions (i.e., generators, or ‘kernel’ in the image processing domain). This model allows to

recover/reconstruct a function with best error norms within a space of choice. Space domain

analysis of functions such as smoothness and numerical accuracy (approximation order)

guide the process of designing reconstruction schemes in graphics and image processing

domains [66, 68, 77].

These well-known solutions are 1-D, and for image processing and volume rendering they

are extended to multiple dimensions through a separable extension (often called tensor-

product approach) or through a spherical extension (e.g., McClellan transformation [56],

or Radial Functions). The problem of these extensions is that they do not deal well with

the multi-dimensional nature and geometry of the sampling lattice, in particular for non-

Cartesian lattices [94]. The separable extension, clearly, is only satisfactory for the Cartesian

lattice, for which the lattice’s Nyquist region coincides with the kernel’s low-pass region in

the frequency domain. The spherical extension, however, has difficulties imposing zero-

crossing in the frequency domain at the dual-lattice points, which is crucial to guarantee

approximation order and polynomial reproduction.

In the field of approximation theory there has been a great deal of effort on approximating

multivariate functions. In particular, Birkhoff and de Boor discuss multivariate splines that

are tensor-products of one dimensional splines [3, 5, 4].

In the tensor-product approach, when approximating a function over a rectangular do-

main in R
n, splines are constructed as a tensor-product of splines of degree s in any of the

variables and the tensor-product is of total degree ns. Zwart [117] considered a different

family of multivariate splines which aren’t necessarily a tensor-product, but rather they are

piecewise polynomial functions where each piece is a polynomial of total degree s. The well

known Zwart-Powell element was one of the example splines where the reconstruction kernel

is not a tensor-product of univariate splines. Rather it has non-degenerate partitions and

on each partition it is a polynomial of second degree. This element gained popularity as

an example of a nontrivial bivariate box spline [24]. Powell also devised the correspond-

ing subdivision scheme to reconstruct functions with continuous first derivatives that was

widely used for contour drawing programs [73]. The significance of the ZP element is that

it achieves a C1 smooth reconstruction with only a polynomial of degree two in 2-D. A

tensor-product solution can only do the job with a polynomial of degree four. Hence the

ZP element stands out among the low degree splines that achieve the maximal smoothness.

Another interesting example in 2-D is the class of “hex-splines”, which form a B-spline
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family for hexagonally sampled data [109]. The first-order hex-spline is defined as the

indicator function of the Voronoi cell and is thus non-separable. Higher-order hex-splines are

defined in terms of successive convolutions of the first-order function. Analytical formulae

are available both in the frequency and the spatial domains.

In volume graphics, optimality of BCC sampling has been explored by Theußl et al. [95].

They applied the spherical extension of reconstruction filters, which resulted in rather blurry

and unsatisfying results. Different ad-hoc approaches were studied for reconstruction and

derivative reconstruction on the BCC lattice, with mixed results [94]. Also, iso-surface

extraction on the optimal sampling lattice has been studied with inconclusive results [10].

Recently, Csébfalvi [21] demonstrated a reconstruction using a Gaussian kernel and the

principle of generalized interpolation of Thévenaz et al. [96]. While this method provides an

isotropic solution, it does not guarantee approximation order. It is also a numerical scheme

without any closed form solution for the interpolation kernel.

McCool [57, 58, 59] has explored the use of polyhedral splines in computer graphics. In

his work, the flexiblity of polyhedral splines (tailored to the geometry of the domain) are

exploited for accurate (anti-aliased) computation of integrals involved during the rendering

process.

2.3.3 Box Splines

Box splines offer a mathematically elegant framework for constructing a class of multi-

dimensional elements with flexible shape and support that can be non-separable in a natural

way. The general topic of box splines is rather intricate and a general survey of results on

the topic has been gathered in [24]. In the next chapters we present a set of trivariate box

splines with proper geometry for reconstruction on the BCC and FCC lattices. Here, we

begin by briefly introducing box splines and state their properties that will be useful in our

discussions.

Definitions and Properties of Box Splines

A box spline is characterized by a set of direction vectors that indicate its construction by

successive convolution of line segments along these vectors. The linear combination of shifts

of a box spline generates a spline whose smoothness and ability to approximate continuous

functions also depend on these direction vectors. Notationally, the direction vectors are
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usually gathered in a matrix; i.e., a box spline in R
s is specified by n ≥ s vectors in R

s that

are columns of its matrix Ξ = [ξ1, ξ2, . . . , ξn]. The support of the box spline is all points

x ∈ R
s such that x = Ξt where t ∈ R

n and 0 ≤ tk ≤ 1 for 1 ≤ k ≤ n. In other words,

the support of a box spline is the image of the corresponding unit cube or ‘box’ under its

matrix Ξ.

The simplest box spline is constructed by n = s vectors and is the (area-normalized)

characteristic function of its support:

MΞ(x) =







1
|detΞ| where x = Ξt and t ∈ [0, 1)n

0 otherwise.
(2.13)

Clearly, the box spline from Equation (2.13) is discontinuous at the boundary of its support.

Its 1-D version is the box function that is simply the indicator function for the interval [0, 1).

For the general case n > s, the box splines are defined recursively:

M[Ξ,ξ](x) =

∫ 1

0
MΞ(x− tξ)dt. (2.14)

This inductive definition implies that starting from the base case as in Equation (2.13) the

indicator function is smeared along the additional direction vector. Hence, the convolution

of two box splines is yet another box spline:

MΞ1 ∗MΞ2(x) = M[Ξ1,Ξ2](x). (2.15)

A box spline is a piecewise polynomial of degree at most n − s. Moreover, let ρ be the

minimal number of vectors such that, if they were removed from Ξ, the remaining vectors

would not span R
s. Then MΞ ∈ Cρ−2, where Cn is the space of n-times continuously

differentiable functions. The Fourier transform of a box spline is:

M̂Ξ(ω) =
∏

ξ∈Ξ

1− exp(−iξTω)

iξTω
(2.16)

where i =
√
−1 as usual. In 2-D, the simplest box spline is specified by:

Ξ0 =
[

ξ1 ξ2

]

=

[

1 0

0 1

]

,

which is the indicator function of the unit square [0, 1)2.
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Figure 2.7: Construction of the linear element and the Zwart-Powell element from the
simplest box spline.

Adding a direction vector of ξ3 = [1 1]T to Ξ0 smears the unit square across its diagonal.

This is illustrated in Figure 2.7. As the basic box spline is a constant function on the unit

square, the result of smearing it along the diagonal produces a linear box spline that is

represented by [Ξ0, ξ3]. The support of this box spline is illustrated in Figure 2.7(b). This

box spline is a bivariate piecewise polynomial of degree one. This box spline generates a

C0 spline function space, as ρ = 2. Adding one more direction vector to the above box

spline produces a quadratic box spline. The choice of ξ4 = [−1 1]T produces a symmetric

octagonal shape as the support of this quadratic box spline which is known as the Zwart-

Powell (ZP) element. The process of this convolution is illustrated in Figure 2.7(c). The

ZP element contains bivariate polynomials that are only of second degree, yet it achieves a

C1 reconstruction in 2-D (ρ = 3).



Chapter 3

Box Spline Reconstruction on the

BCC Lattice

In this chapter, we present accurate and efficient reconstruction methods for the BCC lattice.

Such reconstructions have been sought by the volume graphics community [95, 94, 10] to

better exploit the theoretical advantages of the BCC lattice. Several contributions are

proposed:

• We establish a four-direction box spline that is geometrically tailored to the BCC

lattice in Section 3.1. The linear box spline is a 3-D piecewise linear function. Higher-

order versions are obtained by successive convolutions. This way, we can choose the

required smoothness and approximation power.

• We explicitly characterize the polynomial pieces defining these box splines, which is

detailed in Section 3.2. Our characterization method is general (for any number of

repetitions) and leads to polynomial expressions that can be implemented to evaluate

the box spline at arbitrary points. Specifically, we derive the explicit expressions for

the C0 and C2 members of our family of BCC-box-splines, since they are the most

relevant for the practitioner in the graphics and visualization domain.

• We demonstrate that our box splines (for C0 and C2 continuity) on the BCC lattice

are computationally twice as efficient as tensor-product B-splines on the Cartesian

lattice (for comparable smoothness and the same sampling density); see Table 3.1.

Based on these results, in Section 3.3, we conclude that BCC lattice sampling can be

40
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more attractive not only on a theoretical level, but also in practical settings.

The simplest interpolation kernel on any lattice is the indicator function of the Voronoi

cell of the lattice. The corresponding interpolation scheme is the generalization of the so-

called nearest neighbor interpolation. The Voronoi cell of the Cartesian lattice is a cube

and the Voronoi cell of the BCC lattice is a truncated octahedron as shown in Figure 3.1(a).

Let χBCC indicate the indicator function of the truncated octahedron, the Voronoi cell of

the BCC lattice described by Equation (1.1). This interpolation kernel is normalized to:

∫

χBCC(x)dx = |detBCC| = 4, (3.1)

so that the energy between the discrete/continuous model is consistent. This is due to the

fact that the sampling density of the BCC lattice described by Equation (1.1) is 1
4 samples

per unit volume.

More sophisticated reconstruction kernels involve information from the neighboring points

of a given lattice point. We are also interested in the cell formed by the immediate neighbors

of a lattice point. The first neighbors of a lattice point are defined via the Delaunay tetrahe-

dralization of the lattice; a point q is a first neighbor of p if their respective Voronoi cells

share a (non-degenerate) face. The first neighbors cell is the polyhedron whose vertices

are the first neighbors. Again, this cell is the same for all points on the lattice.

For example, by this definition there are six first neighbors of a point in a Cartesian

lattice; the first neighbors cell for the Cartesian lattice is the octahedron. For the BCC

lattice there are fourteen first neighbors for each lattice point. The first neighbor cell is a

rhombic dodecahedron as depicted in Figure 3.1(b).

3.1 Four-Direction Box Spline on BCC

The construction of box splines dedicated to the BCC lattice is guided by the fact that the

rhombic dodecahedron (the first neighbors cell of the BCC lattice, see Figure 3.1(b)) is the

3-D shadow of a 4-D hypercube (tesseract) along its antipodal axis. This construction is a

generalization of the 2-D linear box spline with hexagonal support, which can be obtained

by projecting a 3-D cube along its antipodal axis; see Figure 3.2(b).
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(a) (b)

Figure 3.1: (a) The Voronoi cell of the BCC lattice is the truncated octahedron. (b) The
first neighbors cell is a rhombic dodecahedron.

3.1.1 A Geometric Construction

Integrating a constant tesseract along its antipodal axis yields a function that has a rhombic

dodecahedron support (see Figure 3.1(b)), has its maximum value at the center and has a

linear falloff towards the fourteen first-neighbor vertices. Since it arises from the projection

of a higher dimensional box, this function serves as the linear box spline interpolation kernel

on the BCC lattice.

Let B denote the box function. The characteristic function of the unit tesseract is given

by a tensor-product of four B functions on each axis. By projecting the unit tesseract, one

obtains a rhombic dodecahedron whose geometric scale is only half of the first-neighbors

cell of the BCC lattice described by Equation (1.1). In this BCC lattice, with integer lattice

coordinates, the first-neighbors cell is scaled such that the blue edges of Figure 3.1(b) are

of length two. Therefore, we scale the geometry of the unit tesseract by two and normalize

by its hyper-volume:

T (x, y, z, w) :=
1

16
B(x/2)B(y/2)B(z/2)B(w/2). (3.2)

Let v = (2, 2, 2, 2) := [2, 2, 2, 2]T denote a vector along the antipodal axis. In order to project
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(a) (b)

Figure 3.2: (a) 1-D linear box spline (triangle function). (b) 2-D linear hexagonal box spline.

along this axis, it is convenient to rotate it so that it aligns with the w axis:

R =
1

2
[ρ1ρ2ρ3ρ4] =

1

2















1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

1 1 1 1















. (3.3)

This rotation matrix transforms v to (0, 0, 0, 4). Also by examining Equation (3.3), one can

see that each vertex of the rotated tesseract, when projected along the w axis, will coincide

with the origin or one of the vertices of the rhombic dodecahedron: (±1,±1,±1), (±2, 0, 0),

(0,±2, 0), (0, 0,±2) or (0, 0, 0). Let x = (x, y, z, w); now the linear box spline is given by

LRD(x, y, z) =
1

16

∫

T (R−1x) dw.

Substituting in Equation (3.2) we get

LRD(x, y, z) =
1

16

∫ 4
∏

k=1

B(
1

4
ρT

kx) dw. (3.4)

Note that the value at the origin is LRD(0, 0, 0) = 1/4 (see [24, II.8]). This is due to the fact

that the box splines are normalized to
∫

LRD(x)dx = 1, whereas the sampling density of

the BCC lattice (1
4) demands a kernel whose integral is 4 (see Equation (3.1)). Therefore,

in order to preserve the energy in the discrete/continuous model we employ the box splines

scaled by 4 on the BCC lattice. This scaling ensures that the value of the linear box spline

at the center is 1 and zero at all other lattice sites. Hence the linear box spline constitutes

a linear interpolator on the BCC lattice.
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3.1.2 Fourier Transform

If the direction matrix of a box spline is known, the distributional definition of box splines

easily leads to their frequency domain representation. Here we present a geometric derivation

of the Fourier transform of our box spline.

From the projection-based construction of the rhombic dodecahedron discussed earlier,

we can derive the Fourier transform of the linear box spline function described by Equa-

tion (3.4). From Equation (3.2), it is evident that the Fourier transform of the characteristic

function of the tesseract is given by the tensor-product:

T̂ (ωx, ωy, ωz, ωw) =
1− exp (−i2ωx)

i2ωx

1− exp (−i2ωy)

i2ωy

1− exp (−i2ωz)

i2ωz

1− exp (−i2ωw)

i2ωw

since 1
2 B(x/2) ←→ 1−exp (−i2ω)

i2ω . We continue to use ←→ to indicate a Fourier transform

pair.

By the Fourier slice-projection theorem, projecting a function along a certain direction

in the spatial domain amounts to slicing its Fourier transform perpendicular to the direction

of projection. This slice runs through the origin. Again, we make use of the rotation (3.3)

to align the projection axis with the w axis. Thus in the frequency domain we take the slice

ωw = 0.

It is convenient to introduce the 3× 4 matrix

Ξ = [ξ1ξ2ξ3ξ4] =









1 −1 −1 1

−1 1 −1 1

−1 −1 1 1









(3.5)

given by the first three rows of the rotation matrix R of Equation (3.3). The reason for

omitting the last row is that we are taking a slice ωw = 0 orthogonal to the fourth axis at

the origin. The Fourier transform of the linear box spline can now be written as

L̂RD(ωx, ωy, ωz) =
4
∏

k=1

1− exp (−iξT
kω)

iξT
kω

where ω = (ωx, ωy, ωz). The space domain function LRD corresponds to the box spline MΞ;

we will use this box spline symbol from now on. The Fourier transform of this box spline is

then:

M̂Ξ(ω) =
4
∏

k=1

1− exp (−iξT
kω)

iξT
kω

. (3.6)
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Figure 3.3: The support of the box spline represented by Ξ is a rhombic dodecahedron
formed by the four direction vectors in Ξ.

Since any three of the vectors in Ξ span R
3, at least two vectors need to be removed from Ξ

so the remaining vectors do not span, therefore ρ = 2. Hence this box spline is guaranteed

to produce a C0 reconstruction. We can verify the vanishing moments (zero crossings) of

the frequency response at the aliasing frequencies on the FCC lattice points. We first note

that
∑4

k=1 ξk = 0; therefore, the center of the box spline MΞ is at the origin [24] and the

Fourier transform can be written as:

M̂Ξ(ω) =
4
∏

k=1

sinc (ξT
kω).

Recall that sinc (t) = sin(t/2)
t/2 . This re-formulation provides a more convenient form to verify

zero crossings. Due to the checkerboard property (see Section 1.1.2), for every FCC lattice

point the sum of its coordinates is always even. Since the FCC lattice dual to the BCC

lattice of our discussion is scaled by π (according to Equation (1.1)), for ω on the FCC

lattice, ξT
4ω = (ωx + ωy + ωz) = 2πk for some k ∈ Z; therefore, sinc (ξT

4ω) = 0 on all of the

aliasing frequencies. Since ξT
4ω = −ξT

1ω−ξT
2ω−ξT

3ω, at least one of the ξT
mω for m = 1, 2, 3

needs to also be an even multiple of π since the sum of three odd multiples of π can not

be an even multiple. For such k we have sinc (ξT
kω) = 0; therefore, there is a zero of order

at least two at each aliasing frequency, yielding a C0 kernel whose approximation power is

two on the BCC lattice [90]. This smoothness and approximation power parallels that of
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the trilinear B-spline interpolation on the Cartesian lattice.

3.1.3 Higher-Order Box Splines

The number of vanishing moments can be doubled by convolving the linear box spline with

itself. Hence the resulting reconstruction kernel will have twice the approximation power on

the BCC lattice due to the Strang-Fix result [90]. As noted before, the resulting box spline

can then be represented by Ξ[2] := [Ξ,Ξ] where every direction vector is duplicated.

An equivalent method of deriving this function would be to convolve the constant func-

tion on the tesseract with itself and project the resulting distribution along a diagonal axis

(this commutation of convolution and projection is easy to understand in terms of the cor-

responding operators in the frequency domain – see Section 3.1.2). Convolving the constant

function on the tesseract with itself results in another function supported on a tesseract

which is the tensor-product of four 1-D triangle (linear B-spline) functions. Let Λ denote

the triangle function. Then the convolution yields

T c(x, y, z, w) =
1

16
Λ(

1

2
x) Λ(

1

2
y) Λ(

1

2
z) Λ(

1

2
w). (3.7)

Following the same 4-D rotation as in the previous section, we obtain a space domain

representation of the new box spline:

CRD(x, y, z) =
1

16

∫ 4
∏

k=1

Λ(
1

4
ρT

kx) dw. (3.8)

Similar to the linear case, we use the matrix Ξ[2] to represent this properly scaled box spline.

Since convolution in the space domain amounts to a multiplication in the frequency domain,

we use Equation (3.6) to derive the Fourier transform of the new box spline:

M̂
Ξ

[2](ω) = M̂2
Ξ(ω) =

4
∏

k=1

(

1− exp (−iξT
kω)

iξT
kω

)2

. (3.9)

We can see that the number of vanishing moments of this box spline are doubled when com-

pared to the linear kernel. This implies that this box spline has fourth order approximation

power on the BCC lattice [90]. The eight directions (counting multiplicities) of this box

spline Ξ[2] are duplicates of the original four directions. Consequently, the minimum number

of directions that one needs to remove from Ξ[2] so that the remaining vectors do not span

R
3 is ρ = 4; hence, weighted shifts of this box spline are guaranteed to produce C2 continu-

ous reconstructions with fourth order approximation. This smoothness and approximation



CHAPTER 3. BOX SPLINE RECONSTRUCTION ON THE BCC LATTICE 47

power parallels that of the tricubic B-spline reconstruction on the Cartesian lattice; for this

reason we have referred to M
Ξ

[2] , as the ‘cubic’ box spline in [30]. However, since there are

eight directions, this trivariate box spline is composed of quintic polynomials. Therefore, in

accordance with [24], we will call this box spline a quintic box spline.

As we noted earlier MΞ is of second order approximation power on the BCC lattice.

The (n − 1)-fold convolution of the linear kernel with itself, denoted by M
Ξ

[n] , will have

approximation power of 2n on the BCC lattice. These box splines would produce C2n−2

reconstructions.

3.1.4 Support

The support of MΞ is a rhombic dodecahedron as shown in Figure 3.3. The support of

M
Ξ

[n] is the Minkowski sum of n rhombic dodecahedra. Since a rhombic dodecahedron is a

convex and symmetric polyhedron (with respect to its center), its Minkowski addition with

itself will have the same shape, scaled by two. In general the support of M
Ξ

[n] would be a

rhombic dodecahedron scaled by n [115].

The volume of the support of the box spline MΞ as depicted in Figure 3.3 is 16.

Therefore, for a point x in general position, 16 points from Z
3 intersect the support of

MΞ(· − x) [24, II.15]. Since only 1/4 of these points belong to the BCC lattice, only 4 BCC

points fall inside the support of MΞ(· − x). Similarly, the support of M
Ξ

[2] is a rhombic

dodecahedron whose direction vectors are scaled by two. Therefore, its volume is 128 which

implies that only 32 BCC points fall inside the support of M
Ξ

[2](· − x).

This fact implies that a C0 reconstruction with a second order approximation power on

BCC only needs 4 data points1, while for this smoothness and accuracy on the Cartesian

lattice, trilinear interpolation requires a neighborhood of 2×2×2 = 8 data points. Similarly,

a C2 reconstruction with a fourth order approximation on BCC only needs 32 data points,

while for this smoothness and accuracy on the Cartesian lattice, tricubic B-spline requires

a neighborhood of 4 × 4 × 4 = 64 data points. Hence, as we will see in Section 3.3, the

computational cost of BCC reconstruction is significantly lower than a similar reconstruction

on the Cartesian lattice with an equivalent sampling density.

1The four points in the linear interpolant construct a barycentric interpolation on the tetrahedron they
form.
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3.1.5 Quasi-interpolation

Considering the shifts of a box spline, a function is represented by a sequence ck ∈ ℓ2 and

the reconstruction follows from:

f̃ =
∑

k

ckMΞ(· − k).

The number of zero crossings (at the aliasing frequencies) of the Fourier transform of a

box spline establishes the approximation order of the box spline space. The approximation

order guarantees that upon dilating the box spline space the approximation error converges

to zero with a rate determined by the approximation order.

When it comes to the choice of a representation, ck, taking the sample values of the

underlying function is the most convenient choice which is modeled by the point-evaluation

(Dirac’s delta) functional (ck = δk(f) = fk). This approach is often employed in image

processing and visualization applications [66, 53] since the sample values are the input to

the system. The resulting reconstructions are approximating (i.e., not interpolating) when

the tricubic B-spline and the quintic box spline are used. Even though their spline spaces are

capable of providing a fourth order approximation, these schemes do not necessarily achieve

the best approximation order that is attainable by representations from the orthogonal

projectors.

The approximation order of the box spline space can be realized by a quasi-interpolation

scheme [24, III]. A quasi-interpolant Q is a linear map into the box spline space of the form

Qλf(x) :=
∑

k

MΞ(x− k)λf(·+ k),

where λ is a continuous linear functional with a bounded (and small) support. If Qλ

reproduces all polynomials of degrees less than r (i.e., Qλp = p for any p ∈ Π<r), then the

approximation order of the scheme based on Qλ is shown to be r [24, Proposition III.4].

Here we follow the general recipe presented in [24, III] to build a generic functional for

the quintic box spline. The objective is to find a continuous linear functional λ such that

the corresponding quasi-interpolant reproduces all polynomials Π<4 since the approximation

order of the quintic box spline space is 4.

The functional λ is constructed from the values (at zero) of a series of polynomials ga,b,c
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that are mapped to (normalized) monomials (i.e., Marsden identity) by the box spline:

[[x]](a,b,c) =
∑

k

MΞ(x− k)ga,b,c(k)

with the trivariate normalized power function [[x]](a,b,c) := xa

a!
yb

b!
zc

c! . Since the degree of the

polynomials to be reproduced is one less than the approximation power, for the quintic box

spline we consider only ga,b,c such that a + b + c < 4.

The functional λ that attains the desired approximation order is derived by [24, III.13]:

λ := f 7→
∑

(a,b,c)

ga,b,c(0)(D(a,b,c)f)(0). (3.10)

Here D(a,b,c) indicates a tensor-product differential operator. For convenience, one can work

with a ‘mesh function’ c(a, b, c) := ga,b,c(0). Then according to [24, III.34], we have:

c(a, b, c) = [[−iD]](a,b,c) 1

M̂Ξ(ω)
|ω=0.

Computing the values of c(a, b, c) for a+b+c < 4 is rather complicated since the derivatives

of 1/M̂Ξ are quite involved. One can resort to symbolic computing packages like Maple

for computing the derivatives. In Maple, one can easily define 1/M̂Ξ and take derivatives;

however, when it comes to evaluating the derivative at zero, evaluation fails due to the

presence of zeros in the numerator and the denominator. Therefore, taking the limit of the

resulting expression when ω → 0 is the alternative to produce correct values. However,

when the matrix Ξ of the box spline has many columns (such as the case for the quintic

box spline), this limiting procedure becomes complex and Maple fails to respond. Since the

limit exists, one can construct a univariate expression out of the resulting expression (after

taking the derivatives) by setting ωx = ωy = ωz. This approach simplifies the derivative

expression and the limit to zero is then easily taken by Maple.

For the quintic box spline the non-zero elements of c are c(0, 0, 0) = 1 and c(2, 0, 0) =

c(0, 2, 0) = c(0, 0, 2) = −1/3. Therefore, the generic quasi-interpolation functional is:

λ
Ξ

[2] := f 7→ f(0)− 1

3

(

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)f

)

(0). (3.11)

Even though the mechanics of the polynomial reproduction is developed for Cartesian shifts

of a box spline, the BCC shifts of a box spline can similarly be treated using the invertible

linear transformation P := BCC−1 applied to Ξ and the argument of the box spline (i.e.,
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using MΞ = |detP |MPΞ(P ·)). Since the stability of the scheme does not change the

approximation order holds under this linear transformation.

The matrix of directions for the tricubic B-spline is I [4] where I is the identity 3 × 3

matrix. The corresponding generic functional for the quasi-interpolation with the tricubic

B-spline is:

λ
I[4] := f 7→ f(0)− 1

6

(

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)f

)

(0). (3.12)

3.2 Explicit Piecewise Polynomial Representation

The previous section defined the four-direction box spline on the BCC lattice and showed

some of its main properties derived from its Fourier transform. However, a literal imple-

mentation of Equation (3.4) and Equation (3.8), as we implemented in [30], turned out to

be extremely inefficient (especially in the case of the quintic box spline). Hence, although

theoretically exciting, these splines were not useful in a practical setting. To make them

practical for computer graphics and visualization applications, we derive a piecewise polyno-

mial representation that allows an extremely fast evaluation as desired for these applications.

The most commonly used generic method for evaluating box splines at arbitrary points

is through de Boor-Höllig recurrence relation [24]. Unfortunately, in reconstructions for

rendering in the trivariate setting, the recursive evaluation of box splines is computation-

ally inefficient and prone to numerical instabilities [25]. Kobbelt addresses the instability

issues by delaying the evaluation of the discontinuous step function until the latest stages

of recursion [45]. Even though the numerical inaccuracies of the recursive algorithm can

be minimized, to make box splines practical in the field of volume graphics (e.g., volume

rendering), the computational complexity of their evaluation needs to be significantly re-

duced. While the use of box splines in surface subdivision in graphics demands evaluations

of a box spline on a fixed mesh, in the volume rendering domain one needs to evaluate a

box spline at arbitrary points. For traditional B-splines, the explicit piecewise polynomial

representation is commonly used for fast evaluation; therefore, we introduce a piecewise

polynomial representation for the proposed box splines in Section 3.2.

Chui and Lai [12] proposed a method to derive the polynomial pieces of three- and four-

direction bivariate box splines in Bézier form. Even though one can convert the Bézier form

to the power form, the generalization of this method to the trivariate setting is not straight

forward.
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In [22], Dæhlen proposes an algorithm to evaluate a four-direction box spline on a fixed

mesh shifted to an arbitrary position. Somewhat similar to our evaluation method, he relies

on the relation of box splines to Dahmen’s cone splines (truncated power functions). In

Dæhlen’s method, evaluation of truncated power functions is still based on a recurrence

relation and is based on the connection with simplex splines. In our case, however, we

derive the explicit polynomial representation of the truncated power function in Section 3.2.

This representation provides us with the exact evaluation of box splines free of numerical

inaccuracies since we avoid any recurrence relations. Furthermore, similar to the piecewise

polynomial evaluation methods of B-splines, our method exploits the symmetries in the

support of the box spline to further reduce computational cost (see Section 3.2.5).

3.2.1 Preliminaries and Outline of Derivation

In the following discussion, the symbol ∇ξ denotes a (directional) backward-difference op-

erator and is defined by: ∇ξf(x) = f(x) − f(x − ξ). For a matrix of directions, Ξ, the

difference operator is defined as successive applications of difference operators along each

direction in Ξ: ∇Ξ =
∏

ξ∈Ξ
∇ξ. The corresponding differential operator is denoted by DΞ.

A Green’s function of a differential operator is a function g that satisfies Dg = δ where δ

denotes Dirac’s delta (generalized) function. The Fourier transform of δ in the distributional

sense is the constant function 1.

Box splines, similar to B-splines, are piecewise polynomial functions with bounded sup-

port. In this section we will see that the box spline MΞ can be derived by applying the

backward-difference operator, ∇Ξ, to a single function GΞ which is a Green’s function for

the differential operator DΞ corresponding to ∇Ξ.

The essential idea in our derivation is to closely analyze the numerator and denominator

of the Fourier transform of box splines (as in Equation (3.6)). The numerator corresponds

to the box spline’s difference operator in the space domain, which is defined as

∇Ξ ←→
∏

ξ∈Ξ

1− exp (−iξTω). (3.13)

In Section 3.2.2, we will derive the difference coefficients, and their respective positions in

3-D, as a discrete series for the backward-difference operator of our box splines.

Using distribution theory, we can identify the remaining part of Equation (3.6) as the
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Fourier transform of GΞ in space domain, since

DΞ ←→
∏

ξ∈Ξ

iξTω, and GΞ ←→
∏

ξ∈Ξ

1

iξTω
.

If this differential operator DΞ is applied to its Green’s function GΞ, Dirac’s delta is ob-

tained. However, if we apply the corresponding backward-difference operator to the Green’s

function, the box splines are obtained:

MΞ(x) = ∇ΞGΞ(x).

We will show in Section 3.2.3 that the function GΞ is constructed by superpositions and lin-

ear transformations of a tensor-product of (two-sided) signed monomials: xk sgn (x). In Sec-

tion 3.2.4 we will see that we can also derive box splines by applying the difference operators

on their truncated powers, TΞ. Truncated powers are very similar to GΞ but instead of the

two-sided signed monomials, they are constructed from one-sided monomials:

(x)k
+ =







xk if x ≥ 0,

0 if x < 0.
(3.14)

(x)k
− is also defined as (x)k

− = xk − (x)k
+. Since one-sided monomials are supported on

half-spaces, they are more convenient than Green’s functions in derivations.

Four-direction box splines of general higher degrees are obtained by (n− 1)-fold convo-

lutions of the linear box spline with itself, which amounts to:

M
Ξ

[n](x) = ∇
Ξ

[n]T
Ξ

[n](x). (3.15)

These box splines are represented in the frequency domain by:

M̂
Ξ

[n](ω) = M̂n
Ξ(ω) =

1

i4n

4
∏

k=1

(1− exp (−iξT
kω))n

(ξT
kω)n

.

For notational convenience we introduce the scalar variables:

zk := exp (−iξT
kω)

wk := ξT
kω.

(3.16)

This notation allows to write the Fourier transforms of higher degree box splines more

compactly as:

M̂n
Ξ(ω) =

4
∏

k=1

(1− zk)
n

wn
k

.
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Furthermore, we note that due to the fact that
∑4

k=1 ξk = 0 in Ξ,
∑4

k=1 wk = 0 and
∏4

k=1 zk = 1.

3.2.2 Difference Operator

The backward-difference operator can be represented as a filter. Its coefficients weight the

Green’s function that is shifted to the various lattice points, as in Equation (3.15). The Z-

domain representation of the difference operator allows for an easy polynomial representation

of this discrete series:

∇n
Ξ(z) =

4
∏

k=1

(1− zk)
n. (3.17)

Expanding this equation for the linear box spline n = 1, and using the fact that
∏4

k=1 zk = 1,

we get:

∇Ξ(z) =2− (z1 + z2 + z3 + z4)

+ (z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4)

− (z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4).

(3.18)

For a more compact notation, we adopt a slightly different multinomial notation where the

power operation on 4-tuples Z = (z1, z2, z3, z4) by α = (α1, α2, α3, α4) is defined as:

Zα =
1

p(α)

∑

(β1,...,β4)∈perm(α1,...,α4)

zβ1
1 zβ2

2 zβ3
3 zβ4

4 (3.19)

where perm (α) is the set of all permutations of α and p(α) counts the number of permuta-

tions of repeated values in α. This is to avoid counting duplicate terms of the polynomial.

For instance if the value of α1 is repeated in α r1 times and the value of α2 is repeated r2

times, then p(α) = r1!r2!. In this notation, the difference operator coefficients are repre-

sented as:

∇Ξ(z) = 2− Z(1,0,0,0) + Z(1,1,0,0) − Z(1,1,1,0).

Note that since z−1
1 = z2z3z4, both Z(1,0,0,0) and Z(1,1,1,0) denote the same set of monomials

which contain exactly one lattice vector. Geometrically, one can visualize the coefficients

being 2 at the origin, −1 on all BCC lattice points reachable by exactly one lattice vector

(positive or negative) and +1 on lattice points that can be reached by exactly two lattice
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Figure 3.4: (a) Coefficients for the difference operator of the linear box spline. (b) Coeffi-
cients for the difference operator of the quintic box spline. For simplicity of illustration only
one of the parallelepipeds constituting the rhombic dodecahedron has been drawn with all
of its internal vertices.
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vectors. This is shown in Figure 3.4(a). Similarly the difference operator coefficients for the

quintic box spline n = 2 can be derived from Equation (3.17) in the compact form as:

∇2
Ξ(z) =18− 10Z(1,0,0,0) + 8Z(1,1,0,0) + 4Z(2,1,1,0)

− 2Z(2,1,0,0) + Z(2,0,0,0) + Z(2,2,0,0).
(3.20)

These coefficients are on BCC lattice points on a rhombic dodecahedron with twice as large

a neighborhood than that of the linear box spline case and are displayed in Figure 3.4(b).

3.2.3 Green’s Function

We now describe a procedure to derive the space domain representation of the Green’s

functions of our box splines. We make use of the wk variables introduced in Equation (3.16):

ĜΞ(ω) =
4
∏

k=1

1

ξT
kω

=
4
∏

k=1

1

wk
.

The objective is to re-write ĜΞ into a number of terms, each of which contains only three

of the four wk variables. Such a three-variable expression can then be written as a linear

transformation of a trivariate function whose inverse Fourier transform can be obtained

by a tensor-product. The general idea is to exploit the relation w1 + w2 + w3 = −w4 to

reduce the number of variables in the denominator and obtain a sum of terms with one less

variable. This helps to eliminate any fourth variable with the help of the proper numerator

and consequently we introduce new terms in the expression while increasing the power of w4.

This procedure is the frequency domain reasoning of the spatial domain recursive structure

of the box splines. We can always apply this procedure since whenever the number of

directions n is greater than the dimension of the space s, the additional directions of the

box spline can be written as the linear combination of the s linearly independent vectors.

The ĜΞ of the linear box spline can be re-written as:

ĜΞ(ω) =
1

w1w2w3w4
= −

w1+w2+w3
w4

w1w2w3w4

=
−1

w2
4w1w2w3

× (w1 + w2 + w3).

While the general Green’s function of the nth box spline is Ĝ
Ξ

[n] = (ĜΞ)n, for the linear

box spline we have n = 1:

ĜΞ(ω) =
−1

w2
4

(

1

w1w2
+

1

w1w3
+

1

w2w3

)

. (3.21)
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Similarly the quintic box spline’s Green’s function is obtained by n = 2:

Ĝ
Ξ

[2](ω) = Ĝ2
Ξ(ω) =

1

w4
4

(

1

w2
1w

2
2

+
1

w2
1w

2
3

+
1

w2
2w

2
3

)

+

−2

w5
4

(

1

w2
1w3

+
1

w2
1w2

+
1

w2
2w3

+
1

w2
2w1

+
1

w2
3w1

+
1

w2
3w2

)

+

6

w6
4

(

1

w2w3
+

1

w1w3
+

1

w1w2

)

.

(3.22)

Now we can move back to using the frequency variables ω = (ωx, ωy, ωz). We first define

these building-block functions:

ρ̂1(ωx, ωy, ωz) =
−1

ωxωyω2
z

ρ̂2(ωx, ωy, ωz) =
1

ω2
xω2

yω
4
z

− 2

(

1

ω2
xωy

+
1

ωxω2
y

)

1

ω5
z

+
6

ωxωyω6
z

.

(3.23)

These functions are useful since the ĜΞ of our box splines are essentially linear transforma-

tions (e.g., (w1, w2, w4) = ΞT

{1,2,4}ω) and superpositions of these building-block functions:

ĜΞ(ω) =ρ̂1(Ξ
T

{1,2,4}ω) + ρ̂1(Ξ
T

{1,3,4}ω) + ρ̂1(Ξ
T

{2,3,4}ω)

Ĝ
Ξ

[2](ω) =ρ̂2(Ξ
T

{1,2,4}ω) + ρ̂2(Ξ
T

{1,3,4}ω) + ρ̂2(Ξ
T

{2,3,4}ω).

Here the subscript {i, j, k} indicates the matrix formed by the i, j and kth columns of Ξ.

We now derive the inverse Fourier transform of these building-block functions. First, we

recognize that the Fourier inverse of 1/(iω)k is the two-sided monomial [6]:

(x)k
sgn

k!
:=

1

2

xk sgn(x)

k!
←→ 1

(iω)k+1
. (3.24)

We can derive the space domain representation of our building-block functions as a tensor-

product inverse Fourier transform of equations in (3.23):

ρ1(x, y, z) =− (x)0sgn(y)0sgn(z)sgn

ρ2(x, y, z) =
1

3!
(x)sgn(y)sgn(z)3sgn+

−2

4!

[

(x)sgn(y)0sgn + (x)0sgn(y)sgn
]

(z)4sgn+

6

5!
(x)0sgn(y)0sgn(z)5sgn.

(3.25)
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If Q is an invertible matrix, we know that f(Qx) ←→ f̂((Q−1)Tω)/|det Q|. Therefore,

we can write the space domain representation of the Green’s function of these box splines

as:

GΞ(x) =
1

4

(

ρ1(Ξ
−1
{1,2,4}x) + ρ1(Ξ

−1
{1,3,4}x) + ρ1(Ξ

−1
{2,3,4}x)

)

G
Ξ

[2](x) =
1

4

(

ρ2(Ξ
−1
{1,2,4}x) + ρ2(Ξ

−1
{1,3,4}x) + ρ2(Ξ

−1
{2,3,4}x)

)

(3.26)

where x = (x, y, z) and |detΞ−1
{1,2,4}| = |detΞ−1

{1,3,4}| = |detΞ−1
{2,3,4}| = 1/4.

3.2.4 Truncated Power

Recall that the Green’s functions were constructed from the two-sided signed monomials

(i.e., of the form xk sgn (x)) in equations (3.25). The differential operator DΞ, when applied

on these signed monomials, transformed in equations in (3.26), results in a δ function. Con-

sequently, this differential operator annihilates all polynomials of degree ≤ k encountered in

the signed polynomials in the Green’s function. Similarly the backward-difference operator

annihilates all of these polynomials [24, I.32].

Since box splines are obtained by applying the difference operator on the Green’s func-

tion, we can add or subtract any polynomials up to degree k found in the Green’s function.

Therefore, the box spline can also be obtained by applying the difference operator to a

Green’s function that is obtained from 1
2(xk sgn (x)− xk) = −(x)k

− or 1
2(xk sgn (x) + xk) =

(x)k
+. The contributions from adding or subtracting xk are eliminated since the difference

operator annihilates the polynomials made of xk. The advantage of working with these one-

sided monomials is that they are supported on half-spaces; whereas the support of Green’s

functions in Equation (3.26) is the entire space.

Therefore, we redefine the building-block functions, by using (x)k
+, (y)k

+ and −(z)k
−:

τ1(x, y, z) =(x)0+(y)0+(z)−

τ2(x, y, z) =
−1

3!
(x)+(y)+(z)3−+

2

4!

[

(x)+(y)0+ + (x)0+(y)+
]

(z)4−+

−6

5!
(x)0+(y)0+(z)5−.

(3.27)

Note that the support of these building block functions is on points x ∈ R
3 such that
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x, y > 0 and z < 0. We further derive the truncated power functions:

TΞ(x) =
1

4

(

τ1(Ξ
−1
{1,2,4}x) + τ1(Ξ

−1
{1,3,4}x) + τ1(Ξ

−1
{2,3,4}x)

)

T
Ξ

[2](x) =
1

4

(

τ2(Ξ
−1
{1,2,4}x) + τ2(Ξ

−1
{1,3,4}x) + τ2(Ξ

−1
{2,3,4}x)

)

.

(3.28)

The crucial point here is that the values of truncated power functions at any point x, are

affected only by one of the three terms on the right hand sides of the above equations. To see

this fact recall that τ1(x, y, z) and τ2(x, y, z) are non-zero only when x, y > 0 and z < 0. The

support of each building-block function is transformed in Equation (3.28) to cones formed

by columns of Ξ (e.g., the support of τ1(Ξ
−1
{1,2,4}x) is all points x = Ξ{1,2,4} (t1, t2, t3) for

t1, t2 > 0 and t3 < 0). The support of the building-block functions is transformed as:

Ξ−1
{1,2,4}x =

1

2
(x− z, y − z, x + y)

Ξ−1
{1,3,4}x =

1

2
(x− y, z − y, x + z)

Ξ−1
{2,3,4}x =

1

2
(y − x, z − x, y + z) .

(3.29)

Therefore, the support of τ1(Ξ
−1
{1,2,4}x) is the cone that is the intersection of the half-spaces

determined by x − z > 0, y − z > 0 and x + y < 0. Similarly, the support of τ1(Ξ
−1
{1,3,4}x)

is the cone that is the intersection of the half-spaces determined by x − y > 0, z − y > 0

and x + z < 0. Since y − z < 0 and z − y < 0 are disjoint, the support of τ1(Ξ
−1
{1,2,4}x) and

τ1(Ξ
−1
{1,3,4}x) are disjoint. Therefore, the supports of each building-block function trans-

formed in Equations (3.28) are non-overlapping.

The support of the truncated power functions of the box splines is the union of each

cone formed by the matrices of the equations in (3.28). The support of each transformed

building-block function along with the support of the truncated power of the box splines

is shown in Figure 3.5. The red arrows indicate the half-spaces in the support. Therefore,

one can verify that the support of the truncated power functions is the union of half-spaces

determined by x + y < 0, x + z < 0 and y + z < 0.

Since the supports of the transformed τ functions are non-overlapping, at any point

x only one of the three transformed τ ’s contribute to the value of the truncated power.

For x to be within the support of one of the transformed τ functions its first and second

components of the transformed vector need to be positive while the third component needs

to be negative. Under this assumption the last component of each vector of the right hand

side of Equation (3.29) is the sum of the two largest values out of x, y and z. And the
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Figure 3.5: The support of the truncated power function is the cone formed by the three
directions in Ξ{1,2,3}. This volume is a disjoint union of support of three τ functions each

transformed by Ξ−1
{1,2,4}, Ξ−1

{1,3,4} and Ξ−1
{2,3,4}. Note the support of the τ functions contains

the negative octant of space.
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other two components in each set is the difference of the largest and the middle value from

the minimum of the three. We also notice that these basic building-block functions are

symmetric with respect to the first and second components of the position vector x of their

argument (see Equation (3.25)). For example when τ is transformed by Ξ−1
{1,2,4}, its support

is determined by the region specified by x > z, y > z and x+y < 0. Using these observations

we can write the truncated power in terms of only one basic building-block function:

TΞ(x, y, z) =
1

4
τ1(

1

2
(x̃− z̃),

1

2
(ỹ − z̃),

1

2
(x̃ + ỹ)) (3.30)

T
Ξ

[2](x, y, z) =
1

4
τ2(

1

2
(x̃− z̃),

1

2
(ỹ − z̃),

1

2
(x̃ + ỹ)) (3.31)

where

x̃ = max (x, y, z) , ỹ = mid (x, y, z) and z̃ = min (x, y, z). (3.32)

3.2.5 Efficient Evaluation

Having obtained the explicit form of the truncated power, we shall apply the difference op-

erator derived in Section 3.2.2 to T
Ξ

[n] in order to obtain M
Ξ

[n] . This operation indicated as

in Equation (3.15) can be implemented as a convolution of the backward-difference operator

sequence with the truncated power. In this section we exploit the symmetries in the support

of these box splines and find a region for efficient evaluation of this convolution.

Region of evaluation: 1-D example

To better understand the procedure we use to derive the polynomial pieces of the box spline,

we first illustrate this procedure in 1-D for a linear B-spline (Ξ = [1 − 1]). In this case, the

Green’s function is −1
2x sgn (x) and the truncated power is : T (x) = (x)−. The difference

operator is represented in the Z-domain by ∇(z) = −z−1 + 2 − z. The linear B-spline is

obtained by the following convolution:

Λ(x) = −T (x + 1) + 2T (x)− T (x− 1).

The process of this convolution is illustrated in Figure 3.6. In this figure (a) shows the

truncated power (x)−, (b) shows the difference operator coefficients, (c) the result of the

convolution shown by overlaying the truncated powers at their respective difference operator

sites and (d) shows the resulting B-spline. In Figure 3.6(d) the red band indicates the regions
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of the x axis that are affected by the convolution site at 1, the green band indicates the

region that is affected by the convolution site at 0 and the blue band indicates the region

that is affected by the convolution site at −1. The symmetry of the support of the linear

B-spline suggests an efficient evaluation in the interval of [0, 1] where only one convolution

site contributes to the values of the B-spline in this region.

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

(a) (b) (c) (d)

Figure 3.6: Convolution of the truncated power (x)− with the difference operator, a 1-D
example. (a) the truncated power (x)−. (b) the discrete difference operator coefficients. (c)
the convolution by overlaying the truncated power functions. (d) the resulting convolution
yields the linear B-spline. The red band indicates the region that is affected by the convolu-
tion site at +1, the green band indicates the region that is affected by the convolution site
at 0 and the blue band indicates the region that is affected by the convolution site at −1.

Therefore, for an efficient evaluation of the linear B-spline we would map any point in

[−1, 1], the support of the B-spline, to the interval [0, 1] using the symmetry of its support.

Once this mapping is performed, the B-spline can be computed by evaluation of the trun-

cated power shifted only to the sites that affect this region. In the case of the linear B-spline

there is only one site that affects this region which is T (x− 1).

Region of evaluation: trivariate case

Since our trivariate box splines are obtained through a projection along the antipodal axis of

a tesseract they exhibit the symmetries present in their polyhedral support which is a rhom-

bic dodecahedron. We exploit the symmetries present within the rhombic dodecahedron to

achieve an efficient evaluation method for the linear and quintic box splines.

First, we observe that a rhombic dodecahedron can be decomposed into four non-

overlapping parallelepipeds in two different ways. For a rhombic dodecahedron formed by

the vectors in Ξ as in Figure 3.3, one can construct four parallelepipeds each formed by three

of the four vectors from Ξ. Alternatively, one can choose the negative directions from −Ξ to
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decompose the rhombic dodecahedron into four parallelepipeds (see Figure 2.6). Therefore,

we can confine the evaluation region to one of these parallelepipeds and the evaluation at

the other points can be inferred by symmetry.

The support of TΞ (or T
Ξ

[2]) is the positive cone of Ξ{1,2,3} as in Figure 3.5. A minimal

number of convolution sites contribute to the value of the box spline in the parallelepiped

which is cornered at the origin and formed by −ξ1,−ξ2 and −ξ3. This parallelepiped

contains the positive octant of R
3 and is shown by blue edges in Figure 3.7. Similarly for

the quintic box spline, a minimal number of convolution sites contribute to the parallelepiped

formed by −2ξ1,−2ξ2 and −2ξ3 which is shown in Figure 3.8.

Linear Box Spline

The operation of the difference operator on the truncated power is a sum of truncated

power functions shifted and weighted according to the difference operator sites as in Fig-

ure 3.4(a). As the support of the truncated power is limited to the cone of the direction

vectors in Ξ{1,2,3}, only one of the terms of the convolution contributes to the value of

MΞ in the parallelepiped that we deal with; this term is the one obtained from shifting

the TΞ to (1, 1, 1) and multiplying by −1, the difference operator coefficient at this point

(Figure 3.4(a)). None of the other difference operator sites affect this region of interest, as

shown in Figure 3.7. Therefore, a point in the parallelepiped of focus is characterized by

(x, y, z) = −Ξ{1,2,3} (t1, t2, t3) where 0 ≤ t1, t2, t3 < 1. Using the min/mid/max variables

introduced in Equation (3.32) we have:

MΞ(x, y, z) =(−1)TΞ(x− 1, y − 1, z − 1)

=− 1

4
τ1

(

1

2
(x̃− 1− (z̃ − 1)),

1

2
(ỹ − 1− (z̃ − 1)),

1

2
(x̃− 1 + ỹ − 1)

)

=− 1

8
(x̃ + ỹ − 2)

=
1

4

(

1− 1

2
(max (x, y, z) + mid (x, y, z))

)

,

(3.33)

which agrees with the geometric simplification we derived in [30] normalized according to

the sampling density of the BCC lattice described by Equation (1.1).

Quintic Box Spline

The same procedure as for the linear box spline can be used. The difference operator for

the quintic box spline is shown in Figure 3.4(b). The support of the truncated power is
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-ξ1

-ξ2

-ξ3

z

y

x

Figure 3.7: When computing the operation of the difference operator on the truncated
power, only one term which shifts the truncated power to (1, 1, 1) affects the parallelepiped
of interest formed by −Ξ{1,2,3}. The support of the truncated powers shifted to the other
sites, do not intersect this parallelepiped.



CHAPTER 3. BOX SPLINE RECONSTRUCTION ON THE BCC LATTICE 64

limited to the cone of the direction vectors in Ξ{1,2,3} such that only eight of the terms

of the convolution contribute to the value of M
Ξ

[2] in the parallelepiped that we focus on

(see Figure 3.8). As we saw in Section 3.1.4 the size of the support of the quintic box spline

is doubled from that of the linear box spline; therefore, the parallelepiped of focus is now

eight times the size of the corresponding one in the linear box spline case. Therefore for

a point in the parallelepiped of focus characterized by (x, y, z) = −Ξ{1,2,3} (t1, t2, t3) where

0 ≤ t1, t2, t3 < 2, we have:

M
Ξ

[2](x, y, z) = T
Ξ

[2](x− 2, y − 2, z − 2)

− 10T
Ξ

[2](x− 1, y − 1, z − 1)− 2T
Ξ

[2](x− 3, y − 1, z − 1)

− 2T
Ξ

[2](x− 1, y − 3, z − 1)− 2T
Ξ

[2](x− 1, y − 1, z − 3)

+ 4T
Ξ

[2](x− 2, y − 2, z) + 4T
Ξ

[2](x− 2, y, z − 2)

+ 4T
Ξ

[2](x, y − 2, z − 2)

where T
Ξ

[2] is defined as in Equation (3.31). The shifts in the above equation are shifts to

the difference operator sites which are the colored nodes in Figure 3.8.

Using the symmetries of the rhombic dodecahedron we can confine the evaluation region

to a tetrahedron that has a vertex at the origin and its apex is a quarter of one face of

the original parallelepiped since these faces are rhomboids and have four-fold symmetry.

The rhomboid face of the parallelepiped of our focus lies in the plane specified by x +

y = 4 in Figure 3.9. Out of four possible choices, we pick this tetrahedron so that it

completely lies in the positive octant. This region is specified by its four bounding planes:

x + y < 4, x > y, y > z and z > 0. This tetrahedron is indicated by the dark tetrahedron

in Figure 3.9. It is partitioned into four regions formed by the intersections with four of

the eight sub-parallelepipeds that constitute the original parallelepiped of focus. These sub-

parallelepipeds are highlighted in green in Figure 3.10. These four regions are identified

by:

R1 :x + y < 2; R2 :x + y > 2, x + z < 2;

R3 :x + z > 2, y + z < 2; R4 :y + z > 2.

These regions are determined by posing the restriction of being in the dark tetrahedron of

focus which is specified by x > y > z > 0 and each of the four sub-parallelepipeds that

intersect this tetrahedron. These sub-parallelepipeds are specified by −Ξ{1,2,3}t where the



CHAPTER 3. BOX SPLINE RECONSTRUCTION ON THE BCC LATTICE 65

-2ξ1

-2ξ2

-2ξ3

z

y

x

Figure 3.8: When computing the convolution of the difference operator and the truncated
power, only eight terms of the convolution affect the parallelepiped of interest formed by
−2Ξ{1,2,3}. The support of the truncated power shifted to each site is the cone indicated by
the gray region. The support of the truncated power shifted to the other convolution sites,
does not intersect this parallelepiped.
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-2ξ1

-2ξ2

-2ξ3

y

z

x

Figure 3.9: The region specified by x + y < 4 and x > y > z > 0 is indicated with the dark
tetrahedron. This tetrahedron is formed by connecting the origin to the face which is the
triangle that is one quarter of the rhombic face of the original rhombic dodecahedron.
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sub-parallelepiped of region R1 is specified by 0 ≤ t1, t2, t3 < 1; the sub-parallelepiped of

region R2 is specified by 0 ≤ t1, t2 < 1 and 1 ≤ t3 < 2; the sub-parallelepiped of region

R3 is specified by 0 ≤ t1 < 1 and 1 ≤ t2, t3 < 2 and the sub-parallelepiped of region R4 is

specified by 1 ≤ t1, t2, t3 < 2.

In each of these regions, shown in Figure 3.10, the box spline will be represented as a sep-

arate polynomial. The region R1 is affected by all of the eight difference operator sites in the

parallelepiped of focus. Region R2 is affected only by four sites at (3, 1, 1) , (2, 2, 2) , (1, 3, 1)

and (2, 2, 0). Region R3 is affected by two sites at (3, 1, 1) and (2, 2, 2). Finally, region R4 is

affected only by (2, 2, 2). Therefore, we simplify the polynomials in each region separately.

Using constants α := 1/3840, β := 1/1920 and γ := 1/960 we have:

Region R1, M
Ξ

[2](x, y, z) =

α(x + y − 4)3(−3xy − 5z2 + 2x + 2y + 20z + x2 + y2 − 24)

+β(x + z − 2)3(x2 − 9x− 3xz + 10y − 5y2 + 14 + 11z + z2)

+β(y + z − 2)3(46− 30x− z − y + 3zy + 5x2 − y2 − z2)

−γ(x + y − 2)3(x2 + x− 3xy − 5z2 + y2 + y − 6).

(3.34)

Region R2, M
Ξ

[2](x, y, z) =

α(x + y − 4)3(−3xy − 5z2 + 2x + 2y + 20z + x2 + y2 − 24)

−β(x + z − 2)3(−z2 − 11z + 3xz − 14 + 5y2 + 9x− 10y − x2)

−β(y + z − 2)3(−46 + z + 30x + y − 3zy − 5x2 + y2 + z2).

(3.35)

Region R3: This region as shown in Figure 3.10 is not a simple tetrahedron with homo-

geneous regions with respect to the site located at (3, 1, 1). When the truncated power is

centered at this site, two of the three components constituting the truncated power (see Fig-

ure 3.5) intersect this region. Therefore, there are two sub-cases for the contribution of the

truncated power centered at (3, 1, 1). But the contribution from (2, 2, 2) remains homoge-

neous as only one of the three components of the truncated power (see Figure 3.5) contributes

to this region:

Region R3A{x− z > 2}, M
Ξ

[2](x, y, z) =

α(x + y − 4)3(−x2 + 8x + 3xy − y2 + 5z2 − 16− 12y). (3.36)
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z
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R1 : x + y < 2 R2 : x + y > 2, x + z < 2

y

z

x

y

z

x

R3 : x + z > 2, y + z < 2 R4 : y + z > 2

Figure 3.10: Different regions of the evaluation domain are the intersection of sub-
parallelepipeds (highlighted in green) and the tetrahedron in focus (black edges). The
box spline is a homogeneous polynomial in each region.
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Region R3B{x− z < 2}, M
Ξ

[2](x, y, z) =

α(x + y − 4)3(−3xy − 5z2 + 2x + 2y + 20z + x2 + y2 − 24)

−β(y + z − 2)3(30x + z − 46− 3yz + y − 5x2 + y2 + z2).
(3.37)

Region R4, M
Ξ

[2](x, y, z) =

α(x + y − 4)3(−3xy − 5z2 + 2x + 2y + 20z + x2 + y2 − 24). (3.38)

Therefore a fast evaluation of the box spline can be obtained for any (x, y, z) by first

transforming it to the tetrahedron of focus (the dark tetrahedron in Figure 3.9) by taking

(x, y, z) = (|x|, |y|, |z|) and then sorting (x, y, z) = (max (x, y, z), mid (x, y, z), min (x, y, z)).

Once these transforms are performed, we can test for the appropriate of the above five

regions and the polynomial form can be evaluated. We also note that due to the explicit

piecewise polynomial form above, and the relatively small support of these polynomial re-

gions, our evaluation is numerically stable.

As a summary we include the pseudo-code for the evaluation of the quintic box spline

referring to the regions above.

function qu i n t i c b ox sp l i n e (x , y , z )

% The following two lines transform the point x,y,z to the

% corresponding point in the focus region in Figure 3.9

x = abs ( x ) ; y = abs ( y ) ; z = abs ( z ) ;

sort x , y , z in decreasing order

% If this point is outside the rhombic dodecahedron’s face

% which is on the plane (x+y)=4, we are outside of the support

i f ( ( x+y) >4) return 0 ;

i f ( ( x+y) <2) % Region R1

return M
Ξ

[2]
R1

(x , y , z) as in Equation (3.34) ;

else i f ( ( x+z ) <2) % Region R2

return M
Ξ

[2]
R2

(x , y , z) as in Equation (3.35) ;

else i f ( ( y+z ) <2) % Region R3

i f ( ( x−z ) >2) % Region R3A

return M
Ξ

[2]
R3A

(x , y , z) as in Equation (3.36) ;
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else % Region R3B

return M
Ξ

[2]
R3B

(x , y , z) as in Equation (3.37) ;

else % Region R4

return M
Ξ

[2]
R4

(x , y , z) as in Equation (3.38) ;

end

3.3 Reconstruction Results

In this section we describe our experimental results and compare the BCC sampling scheme

to the traditional Cartesian sampling on volumetric datasets.

In order to examine the reconstruction schemes discussed in this paper, we have imple-

mented a ray-caster to render images from the Cartesian and the BCC sampled volumetric

datasets.

We have chosen the synthetic dataset (Figure 3.11) first proposed in [53] as a benchmark

for our comparisons. The function was sampled at the resolution of 41 × 41 × 41 on the

Cartesian lattice and at an almost2 equivalent sampling on the BCC lattice of 32× 32× 64.

The images in Figure 3.12 are rendered using the quintic box spline on the BCC sampled

datasets and the tricubic B-spline on the Cartesian sampled datasets. The analytical func-

tion was rendered by evaluating the actual function proposed in [53]. The images in the

second row in Figure 3.12 document the corresponding error images that are obtained of

the angular error that occurred in estimating the normal by central differencing on the re-

constructed function. Although direct reconstruction of the normal is possible by using the

analytical gradient of the reconstruction kernel, we chose central differencing with a rela-

tively small step (.1 of the sampling step) on the reconstructed function to approximate the

true gradient. Central differencing is commonly the method of choice in the visualization

domain and there is no reason to believe that it performs any better or worse than taking

the analytical derivative of the reconstruction kernel [67]. The gray value of 255 (white)

denotes an angular error of .3 radians between the computed normal and the exact normal.

2Since a finite sampling of a volume can not produce the exact same number of samples for the BCC and
Cartesian sampling patterns, for our discrete resolutions, we chose the resolutions conservatively in favor of
the Cartesian sampling. Therefore, the actual sampling density in the Cartesian sampled datasets is slightly
higher than the BCC sampling density.
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Figure 3.11: The ML dataset: An image of the explicit function introduced by
Marschner [53].

The superiority of the BCC sampling is apparent by comparing the images in Fig-

ure 3.12(a) and Figure 3.12(b) as these are obtained from an equivalent sampling density

over the volume. While the lobes are mainly preserved in the BCC case, they are more

smoothed out in the case of Cartesian sampling. This is also confirmed by their correspond-

ing error images in the second row of Figure 3.12.

We also examined the quasi-interpolation scheme developed in Section 3.1.5 with the

ML dataset. In particular, we employed the linear functional developed in Equation (3.11)

for the quintic box spline and the functional in Equation (3.12) for the tricubic B-spline.

The resulting reconstructions shown in Figure 3.13 still favor the BCC sampling and recon-

struction scheme as the error image is significantly darker for the BCC pipeline.

Physical objects or body tissues are scanned and reconstructed on the Cartesian lattice.

There are filtering steps involved in scanning and reconstruction that tune the data according

to the Cartesian sampling so the spectrum of the captured data is anti-aliased with respect to

the geometry of the Cartesian lattice. To perform anti-aliasing before sampling on the BCC

lattice, one needs to consider the Nyquist region of BCC sampling which is the Voronoi cell

of its reciprocal lattice. Therefore, the ultimate test of the BCC reconstruction on real-life

datasets can not be performed until there are true BCC sampling scanners available.

Nevertheless, we constructed comparable BCC and Cartesian datasets by merely sub-

sampling a fairly densely sampled Cartesian dataset. Cartesian sampled data can be down-

sampled onto a BCC lattice by retaining Cartesian points whose x, y, z coordinates are all

odd or all even. Such a BCC lattice has a quarter of the sampling density of the original
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(a) Cartesian (b) BCC

Figure 3.12: The Marschner-Lobb dataset. (a) Sampled on the Cartesian lattice at the
resolution of 41× 41× 41. (b) Sampled on the BCC lattice at the resolution of 32× 32× 64.
The first row illustrates the volume rendering of the sampled data using the tricubic B-spline
on the Cartesian and our quintic box spline on the BCC dataset. The second row illustrates
the corresponding angular errors in estimating the gradient on the iso-surface from the
reconstruction process. An angular error of .3 radians is mapped to white. The darker error
image of the BCC data confirms smaller errors and more accurate reconstruction in the
BCC pipeline.
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(a) Cartesian (b) BCC

Figure 3.13: Quasi-interpolation on the ML dataset. (a) Sampled using the functional
in Equation (3.12) on the Cartesian lattice at the resolution of 41 × 41 × 41. (b) Sampled
using the functional in Equation (3.11) on the BCC lattice at the resolution of 32× 32× 64.
The first row illustrates the volume rendering of the sampled data using the tricubic B-spline
on the Cartesian and our quintic box spline on the BCC dataset. The second row illustrates
the corresponding angular errors in estimating the gradient on the iso-surface from the
reconstruction process. An angular error of .3 radians is mapped to white. The darker error
image of the BCC data confirms smaller errors and more accurate reconstruction.



CHAPTER 3. BOX SPLINE RECONSTRUCTION ON THE BCC LATTICE 74

dataset. For obtaining an almost equivalent subsampling ratio into a lower resolution Carte-

sian dataset, we choose a rational subsampling scheme where each dimension of the original

Cartesian dataset is subsampled by 63/100 since (63/100)3 = 0.250047 ≈ 1/4. To achieve

this subsampling, we first upsampled by zero-padding in the frequency domain by a factor of

63. Then a subsampling of the rate 1/100 yields the properly subsampled Cartesian volume.

As a first practical dataset, we took the Boston Teapot dataset. The original dataset

has a resolution of 162× 162× 113. The subsampled Cartesian volume has a resolution of

103 × 103 × 72 and the subsampled BCC volume has a resolution of 81× 81 × 113. These

volumes were rendered using the tricubic B-spline on the Cartesian lattice and the quintic

box spline on the BCC lattice in Figure 3.14. These images demonstrate the superiority of

the BCC sampling scheme since the Cartesian undersampled dataset developed cracks on

the surface of the teapot lid, while the BCC undersampled dataset maintains the original

content much better. We also examined the above pipeline on the carp fish dataset. The

original dataset has a resolution of 256 × 256 × 256. The subsampled Cartesian volume

has a resolution of 140 × 140 × 140 and the subsampled BCC volume has a resolution of

111× 111× 222. These volumes were rendered using the tricubic B-spline on the Cartesian

lattice and the quintic box spline on the BCC lattice in Figure 3.15. Again, these results

show the superiority of the BCC sampling scheme since the Cartesian undersampled dataset

misses the fish tail and most of the bones.

In [30] we have discussed the issues pertaining to linear type interpolation. While in the

Cartesian volumes they demonstrate grid-aligned artifacts, in BCC they display girdering

artifacts [10]. The result of linear box spline on the BCC and trilinear B-spline interpolation

on the Cartesian lattice are demonstrated in Figure 3.16. In this figure, the girdering

artifacts are prominent in the teapot surface, and the trilinear reconstruction provides a

more satisfying reconstruction. However, in the carp dataset, it is apparent that the linear

box spline has preserved the fine details of the fish bone more accurately than the trilinear

interpolant. Similarly, the ML dataset was tested with the trilinear B-spline on the Cartesian

lattice versus, the linear box spline on the BCC lattice in Figure 3.17. Here we note that the

error image of the BCC lattice is darker and hence the gradient estimation is more accurate

in this case. The presence of the girdering effect [10] in the linear box spline solution creates

artifacts on the surface of the ML dataset; these artifacts are less noticeable in the Cartesian

reconstruction with trilinear B-spline.

We have also approximated the mean square error existing in the volumes subsampled
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Figure 3.14: The Boston teapot dataset. First row: The original Cartesian sampled dataset
with 2, 965K samples reconstructed with the tricubic B-spline. Second Row: Undersampled
on the Cartesian lattice with 763K samples reconstructed with the tricubic B-spline. Third
Row: Undersampled on the BCC lattice with 741K samples reconstructed with the quintic
box spline.
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(a)

(b) (c)

Figure 3.15: The carp fish dataset. (a) The original Cartesian sampled dataset with 16, 777K
samples reconstructed with the tricubic B-spline. (b) Undersampled on the Cartesian lattice
with 2, 744K samples reconstructed with the tricubic B-spline. (c) Undersampled on the
BCC lattice with 2, 735K samples reconstructed with the quintic box spline.
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Cartesian BCC

Figure 3.16: Trilinear B-spline versus linear box spline reconstructions. The linear type
reconstruction of volumes in Figure 3.14 and Figure 3.15.
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(a) Cartesian (b) BCC

Figure 3.17: The Marschner-Lobb dataset. (a) Sampled on the Cartesian lattice at the
resolution of 41× 41× 41. (b) Sampled on the BCC lattice at the resolution of 32× 32× 64.
The first row illustrates the volume rendering of the sampled data using the trilinear B-
spline on the Cartesian and our linear box spline on the BCC dataset. The second row
illustrates the corresponding angular errors in estimating the gradient on the iso-surface
from the reconstruction process. An angular error of .3 radians is mapped to white.
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on BCC and Cartesian lattices. The error calculation was carried out by a random sampling

of the error and summing over these random points to approximate the error integral. These

experiments also confirmed that the BCC subsampling is more accurate than the comparable

Cartesian subsampling since the error of the Cartesian subsampled volume matched that of

the BCC volume with only about 70% of the number of samples. Further, we have examined

the visual quality of the rendered images and found empirical evidence that a BCC sampled

volume with roughly about 70% of the number of samples of a Cartesian volume produces

equivalent visual quality [62].

Computational Cost The computational cost of the reconstruction is mainly due to

computing the convolution of the data values and the continuous-domain box spline kernel.

For trilinear and tricubic B-spline reconstructions on the Cartesian lattice, a neighbor-

hood of 2×2×2 = 8 and 4×4×4 = 64 points fall inside the support of the kernels, respec-

tively. Therefore, eight terms of the convolution in the case of the trilinear and sixty-four

terms in the case of the tricubic B-spline need to be computed. Computing the convolution

weights involves evaluating a third degree trivariate polynomial for trilinear while a ninth

degree trivariate polynomial needs to be evaluated for the tricubic B-spline. However, due

to the tensor-product structure of these kernels, the third degree polynomial, in the case

of the trilinear interpolation, factors into a product of three first degree univariate polyno-

mials. Similarly, the ninth degree trivariate polynomial of the cubic B-spline factors into a

product of three third degree univariate polynomials.

For linear and quintic box spline reconstructions on the BCC lattice, a neighborhood

of 4 and 32 points falls inside the support of the kernels, respectively. Therefore, only four

terms of the convolution in the case of linear and thirty two terms in the case of the quintic

box spline need to be computed. Computing the convolution weights involves evaluating

a first degree trivariate polynomial for the linear box spline while a fifth degree trivariate

polynomial needs to be evaluated for the quintic box spline. However, due to the structure

of the quintic box spline, the fifth degree polynomial is factored into the product of a third

degree polynomial and a second degree polynomial as Equation (3.25) can be factored in

terms of the z variable. All of the polynomial pieces of the quintic box spline listed in

Section 3.2.5 are in the form of this building block function.

Our experiments also support these predictions as the Cartesian dataset in Figure 3.12(a)

was rendered in 122.69 seconds while the BCC dataset in Figure 3.12(b) was rendered in
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Table 3.1: Rendering Times. C0 and C2 indicate the linear and quintic box splines on the
BCC lattice and the trilinear and tricubic B-splines on the Cartesian lattice respectively.

Marschner-Lobb Carp Teapot
C0 C2 C0 C2 C0 C2

BCC 11.99 63.75 33.85 184.33 29.05 150.45
Cartesian 21.49 122.69 60.08 363.62 50.27 294.55

Speedup 1.79 1.92 1.77 1.97 1.73 1.96

63.75 seconds. These images were computed at a resolution of 500×500 on a dual processor

(Dual Core AMD Opteron 280) machine running Linux with a GCC compiler (4.0.2). A

similar rendition using trilinear interpolation on the Cartesian image took 21.49 seconds

while the linear box spline on the BCC took 11.99 seconds. Similar timing differences were

observed on the real-life datasets; the timings for these reconstructions are summarized

in Table 3.1. We note that for C0 reconstructions, the speedups are less than a factor of

two. Since the computational cost of the linear interpolation is relatively light, a smaller

portion of the rendering time is consumed by the reconstruction step; hence, twice a speedup

in reconstruction plays a slightly less significant role in the rendering time.



Chapter 4

Other Trivariate Box Splines

In this chapter, we will see a set of box splines that are suitable for reconstruction on the

FCC and Cartesian lattices. We will state their properties when used in reconstruction and

motivate their applications and advantages in a practical setting.

The box splines presented in this chapter were evaluated on a discretized domain and

stored on an array in an offline stage. The explicit piecewise polynomial representation of

these box splines is subject of future research. We believe the main principle of the method

employed in Section 3.2 can be applied for efficient evaluation of these box splines. The

discretized approximation to the continuous-domain box splines are used as a lookup table

for reconstruction in the rendering pipeline. The use of pre-computed discretized kernels

is not uncommon in the field of volume rendering (e.g., most hardware-based rendering al-

gorithms [69, 37]). McCool [57] has also used discretized box splines for efficient splatting

during the volume rendering process. In our experiments, a resolution of 50 points per unit

interval ([0, 1]) of the support of the box spline (on each axis) was sufficient for discretiz-

ing the box spline’s domain. Higher resolutions did not improve the visual quality of the

rendered images.

4.1 Box Spline Reconstruction on the FCC Lattice

While the BCC lattice is the lattice of choice for generic sampling pipelines (see Sec-

tion 2.2.1), among the Cartesian, FCC and BCC lattices, the FCC lattice is the second

best choice for this purpose. This is due to its second best ranking when it comes to the

volume of the inscribed sphere to its Brillouin zone (see Appendix A). Moreover, when it

81
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comes to generic sampling pipelines in the presence of aliasing, the FCC sampling allows

for the least aliasing in the spectrum of the sampled function. This is due to the fact that

its dual BCC lattice covers the 3-D space with the minimum amount of overlap between

the spectra. This can also be observed from the best approximation of the circumscribing

sphere that the Brillouin zone of the FCC lattice achieves (see Appendix A). The FCC lat-

tice has also been proposed for sampling video signals by Kovac̆ević [48] and Cooklev [18].

Therefore, in this section we will consider the reconstruction problem on the FCC lattice.

We studied four-direction box splines in Section 3 for their guaranteed smoothness and

approximation power on the BCC lattice. These box splines were discovered by realizing that

the first neighbors cell of a lattice point on the BCC lattice forms a rhombic dodecahedron.

In other words, all lattice points whose Voronoi cells share a non-degenerate face with the

Voronoi cell of the center point lie on the vertices of a rhombic dodecahedron. The rhombic

dodecahedron is a zonohedron with four zones. This allowed the construction of a four-

direction box spline with a rhombic dodecahedral support.

4.1.1 Linear Element Polyhedral Spline

The 12 vertices of the first ring of neighbors in the FCC lattice form a cuboctahedron as

shown in Figure 4.1. The Voronoi cells of these 12 vertices (green) share a face with the

Voronoi cell of the center (blue). If we consider the center lattice point to be at (x, y, z),

then these 12 neighbors can be visited by shifts of (±1,±1, 0), (±1, 0,±1), (0,±1,±1) or in

short form, all permutations of (±1,±1, 0). The 12-point neighborhood of an FCC lattice

point (x, y, z) is formed by all lattice points (x′, y′, z′) that satisfy:

(x− x′)2 + (y − y′)2 + (z − z′)2 = 2

The cuboctahedron is not a zonohedron since it has triangular faces; hence, one can

not construct a linear box spline element with a cuboctahedron support. However, one can

construct a linear spline element by a three-dimensional projection of a 24-cell [20]. This

polyhedral spline was the basis for the reconstruction algorithm we proposed in [75]. When

shifted to a general position, out of the 12 boundary points, only three of them accompany

the center point for this linear reconstruction. Hence a total of 1 + 3 = 4 points fall inside

the support of this kernel. Due to its non-trivial polyhedral spline structure, studying its

smoothness and approximation power is cumbersome. This difficulty is mainly due to the
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Figure 4.1: (a) Rhombic Dodecahedron: The Voronoi cell of the FCC lattice. (b) Cubocta-
hedron: The first neighbor cell of an FCC lattice point (blue) consists of all lattice points
(green) whose Voronoi cell shares a face with the center point. A corresponding polyhedral
spline can be constructed by projecting a 4-D 24-cell to 3-D. (i.e., a linear element with a
cuboctahedral support.)

non-trivial Fourier transform of the indicator function of a 24-cell, whereas, in the case of

box splines the Fourier transform of a hypercube is trivially known in any dimension.

4.1.2 The Six-Direction C
1 Box Spline

By expanding the neighborhood to include 6 additional lattice points that share a vertex

with the Voronoi cell of the center, we find a truncated octahedron. These 6 neighbors are

at offsets that are all permutations of (±2, 0, 0). Together with the 12-point neighborhood,

they form an 18-point neighborhood of points (x′, y′, z′) that satisfy:

(x− x′)2 + (y − y′)2 + (z − z′)2 ≤ 4

Since all of the faces of the truncated octahedron exhibit point symmetry, it is a zono-

hedron with 6 zones. Therefore it can be constructed by projecting a six dimensional

hypercube. The corresponding box spline can then be represented by the direction vectors

representing these 6 zones:

Ξ6 = [ξ1, ξ2, . . . , ξ6] =









1 −1 1 1 0 0

1 1 0 0 1 −1

0 0 1 −1 1 1









(4.1)

The truncated octahedral support of this box spline is shown in Figure 4.2.
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Figure 4.2: Truncated Octahedron: The support of the C1 box spline whose shifts on the
FCC lattice achieve a third order approximation.

Support

When shifted to a general position, in addition to the center and the 12 first neighbors, 3 of

the 6 boundary FCC lattice points1 on the surface of the truncated octahedron fall inside

the support of this kernel. Therefore, a total of 1+12+3 = 16 FCC lattice points fall inside

the support of this box spline kernel.

Smoothness and Approximation Power

By inspecting these direction vectors, we realize that the vectors ξ1, ξ3 and ξ6 are co-planar.

Therefore, the minimum number of directions to remove from Ξ6 so that the remaining

directions would not span R
3 is ρ = 3 (for instance by removing ξ2,ξ4 and ξ5). This means

that the box spline MΞ6 leads to a C1 reconstruction.

The center of this box spline is 1
2

∑

ξ∈Ξ6
ξ. To center this box spline at the origin, we

can introduce a shift in the space domain (which amounts to a phase shift in the frequency

1These 6 boundary points are the FCC points whose Voronoi cell shares a vertex with the vertex of the
center point; hence they are called vertex-connected neighbors.
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domain). Then the Fourier transform of this centered box spline is:

M̂ c
Ξ6

(ω) =
∏

ξ∈Ξ6

sinc (ξTω) (4.2)

Recall that sinc (t) = sin (t/2)/(t/2). In order to avoid any signal shifts, we use this centered

version of the box spline during reconstruction.

When a function is represented by its samples on the FCC lattice, described by Equa-

tion (1.1), the replicates of the primary spectrum lie on the dual BCC lattice points which

are scaled by π; this means that the aliasing frequencies are frequencies whose three coor-

dinates are all even or all odd multiples of π.

To establish the approximation power of this box spline on the FCC lattice, we need to

examine the order of zeros of its Fourier transform at the aliasing frequencies. By examining

the axis-aligned neighboring aliasing frequencies of (±2π, 0, 0), one can show that sinc (ξT
1ω),

sinc (ξT
2ω), sinc (ξT

3ω) and sinc (ξT
4ω) vanish at these aliasing frequencies. Similarly we obtain

four vanishing moments from ξ1, ξ2, ξ5 and ξ6 for the aliasing frequencies at (0,±2π, 0)

and four vanishing moments at the aliasing frequencies at (0, 0,±2π). However, at the

aliasing frequencies whose coordinates are all odd multiples of π we only get three vanishing

moments: for instance, at (π, π, π), only the sinc functions corresponding to ξ1, ξ3 and

ξ5 vanish. Therefore, at every aliasing frequency we have a minimum of three vanishing

moments; hence the shifts of this box spline on the FCC lattice provides a space whose

approximation order is three.

The smoothness and approximation power of the six-direction box spline matches that of

the triquadratic B-spline on the Cartesian lattice. However, the support of the triquadratic

B-spline on the Cartesian lattice covers a total of 3×3×3 = 27 points. This neighborhood is

significantly reduced to 16 in case of the box spline on the FCC lattice, while maintaining the

same smoothness and approximation power. This fact reflects the striking computational

advantage of the FCC lattice (similar to the BCC lattice) over the commonly used Cartesian

lattice.

4.1.3 The Nine-Direction C
3 Box Spline

By adding the three unit directions to the direction set of the six-direction box spline

we increase the polynomial degree of the box spline while expanding the neighborhood of
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influence. The resulting nine-direction box spline is represented by

Ξ9 = [ξ1, . . . , ξ9]

=









1 −1 1 1 0 0 1 0 0

1 1 0 0 1 −1 0 1 0

0 0 1 −1 1 1 0 0 1









(4.3)

Since Ξ9 = [Ξ6, I], we have:

MΞ9(x) = (MΞ6 ∗MI)(x)

where I indicates the 3 × 3 identity matrix and MI is simply the indicator function of

the unit cube in R
3. Therefore, the support of this box spline is the Minkowski sum of

the truncated octahedron (Figure 4.2) and a unit cube which is a truncated cuboctahedron.

This polyhedron is shown in Figure 4.3. One can demonstrate the fact that the truncated

cuboctahedron is a sum of a cube and a truncated octahedron by deriving the zones of the

truncated cuboctahedron.

Support

When centered at an FCC lattice point, its 12 first neighbors and 6 vertex-connected neigh-

bors fall in the interior of the support of this box spline. Moreover, 24 FCC lattice points fall

inside the kernel’s support; these points are such that their Voronoi cells are away from the

Voronoi cell of the center by the distance of one edge of the Voronoi cell. These neighbors

are at offsets that are permutations of (±2,±1,±1). Three of these points are shown as

blue points in Figure 4.3. The 24-point neighborhood are all points (x′, y′, z′) such that:

(x− x′)2 + (y − y′)2 + (z − z′)2 = 6

Moreover 12 FCC lattice points fall on the boundary of the support; these lattice points

are at offsets generated by permutations of (±2,±2, 0). This secondary 12-point neigh-

borhood (three of which are displayed in green in Figure 4.3) are all FCC lattice points

(x′, y′, z′) such that:

(x− x′)2 + (y − y′)2 + (z − z′)2 = 8

Only 3 points from the secondary 12-point neighborhood fall inside the support when the

kernel is moved to a general position. Therefore, a total of 1 + 12 + 24 + 3 = 40 points fall

inside this kernel.
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Figure 4.3: Truncated Cuboctahedron: The support of the C3 box spline whose shifts on the
FCC lattice achieves a third order approximation. To avoid cluttering, only participating
neighbors in one octant are drawn.

Smoothness and Approximation Power

By inspecting these direction vectors, we realize that the minimum number of directions to

remove from Ξ9 so that the remaining directions would not span R
3 is ρ = 5 (for instance,

ξ1, ξ2, ξ7 and ξ8 are co-planar). This means that the box spline MΞ9 leads to a C3

reconstruction. We are inheriting three vanishing moments from the original six directions;

the new three directions do not increase the vanishing moments at aliasing frequencies which

are odd multiples of π. For instance for the aliasing frequency at (π, π, π), we still have three

vanishing moments generated by ξ1, ξ3 and ξ5. Therefore, the FCC shifts of this box spline

still generate a third-order approximation space.

This combination of smoothness and approximation power of the nine-direction box

spline on the FCC lattice is not common for the tensor-product B-spline solutions.

4.1.4 Reconstruction Results

In this section, we examine the C1 and C3 box spline reconstructions on the benchmark

dataset of Marschner-Lobb on the FCC lattice. Furthermore, we compare and contrast

with similar sampling density data on the Cartesian lattice. Since, the smoothness and
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approximation power of the nine-direction box spline on the FCC lattice is not matched by

the common tensor-product B-spline solutions, we will compare against the commonly used

triquadratic and tricubic B-spline reconstructions.

Figure 4.4 demonstrates the sampling of the ML dataset at a resolution of 41× 41× 41

on the Cartesian lattice rendered with the triquadratic B-spline on the first row. The

second row shows the sampled volume of 25×25×100 samples on the FCC lattice rendered

using the six-direction box spline. The error images are also depicting the angular errors

that occurred when estimating the gradient of the trivariate function at the surface. A

maximum angular error of .3 radians is mapped to white. The darker error image from

the FCC pipeline shows a more accurate reconstruction. For the sake of comparison with

the commonly-used tricubic B-spline reconstruction, Figure 4.5 shows the nine-direction box

spline reconstruction on the FCC lattice versus the tricubic B-spline on the Cartesian lattice.

The box spline reconstruction clearly shows darker error images hinting at a more accurate

reconstruction. Note that the tricubic B-spline reconstruction involves a neighborhood of

4×4×4 Cartesian points while the nine-direction box spline neighborhood contains 40 FCC

lattice points.

4.2 Box Spline Reconstruction on the Cartesian Lattice

4.2.1 The Seven-Direction C
2 Box Spline

In this section, we shall present a seven-direction box spline for reconstruction on the Carte-

sian lattice. The construction of the seven-direction box spline is motivated by the construc-

tion of the Zwart-Powell element (see Section 2.3.3) which is formed by direction vectors

of the unit square and its diagonals. In 3-D, the construction is also a box spline whose

direction vectors form a cube (that is the Voronoi cell of the 3-D Cartesian lattice) and its

four diagonals, see Figure 4.6. While one could extend the 2-D ZP element by adding other

directions in 3-D, we have chosen the diagonal directions specifically in order to get a good

approximation to a spherically symmetric reconstruction kernel. This choice of box spline

directions is represented by the matrix:

Ξ7 =









1 0 0 1 −1 −1 1

0 1 0 −1 1 −1 1

0 0 1 −1 −1 1 1









. (4.4)
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Figure 4.4: C1 reconstructions. The first row shows the ML dataset at a Cartesian resolution
of 41 × 41 × 41 = 68.9K (left) and its error image (right) rendered with the triquadratic
B-spline. The second row shows the ML data sampled on the FCC lattice with a resolution
of 25×25×100 = 62.5K rendered with the six-direction box spline. The max angular error
of .3 radians is mapped to white.
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Figure 4.5: C2 reconstruction on the Cartesian lattice versus a C3 reconstruction on the FCC
lattice. The first row shows the ML dataset at a Cartesian resolution of 41×41×41 = 68.9K
(left) and its error image (right) rendered with the tricubic B-spline. The second row shows
the ML data sampled on the FCC lattice with a resolution of 25×25×100 = 62.5K rendered
with the nine-direction box spline. The max angular error of .3 radians is mapped to white.
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Peters exploits the advantage of this box spline for constructing a curvature-continuous

surface by tracing its zero sets [71]. He also describes a subdivision scheme that can be used

to approximate this box spline at a particular point.

x

y

z

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

Figure 4.6: The seven directions of the box spline. The first three directions (ξ1, ξ2 and ξ3)
are axis aligned and form a cube. The last four are the antipodal diagonal directions.

Support

We note that the first three direction vectors of Ξ7 are along the coordinate axes, and the

last four direction vectors are the ones on the diagonals of a cube. We can decompose this

box spline matrix into two sub-matrices where the axis-aligned vectors are separated from

the diagonal ones:

I =









1 0 0

0 1 0

0 0 1









Ξ4 =









1 −1 −1 1

−1 1 −1 1

−1 −1 1 1









Due to the convolution property of box splines as in Equation (2.15), the seven-direction box

spline can be written as the convolution of the box splines corresponding to these matrices:

MΞ7(x) = (MI ∗MΞ4) (x) (4.5)

We can recognize MI as the trivariate box function; i.e., the indicator function of the interval

[0, 1)3. Moreover MΞ4 is the linear box spline that was introduced for reconstruction on

the BCC lattice in Section 3. The support of this box spline (when centered at the origin)
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Figure 4.7: (a) The four diagonal directions give rise to a box spline whose support is a
rhombic dodecahedron. (b) The support of the seven-direction box spline is a truncated
rhombic dodecahedron which is the Minkowski sum of a cube and rhombic dodecahedron.

is a rhombic dodecahedron that is contained in the interval [−2, 2)3; see Figure 4.7(a).

Since MΞ7 is the convolution of MI with MΞ4 , its support is the sum of their supports. In

particular, the support of MΞ7 is contained in [−5/2, 5/2)3.

In [71], the support of the seven-direction box spline is considered an octahedron. How-

ever, since the support of MΞ4 is a rhombic dodecahedron as displayed in Figure 4.7(a) and

the support of MI is a cube, the support of MΞ7 is the Minkowski sum of a rhombic dodeca-

hedron and a cube which is a truncated rhombic dodecahedron as displayed in Figure 4.7(b).

When this box spline is shifted to a general position, a total of 53 Cartesian points

fall inside of its support. This is the direct result from [24, II.15] since the volume of the

truncated rhombic dodecahedron is 53. The truncated rhombic dodecahedron is obtained

from a rhombic dodecahedron whose bounding cube is [−3, 3]3. The volume of the rhombic

dodecahedron is a quarter of this cube (see Appendix A) which is 54. The volume of each of

the six pyramids cut from the rhombic dodecahedron is 1/6 which adds up to 1; therefore,

the volume of the truncated rhombic dodecahedron is 53.

Smoothness and Approximation Power

The seven-direction box spline offers a C2 reconstruction since ξ1, ξ4 and ξ7 are co-planar,

hence ρ = 7 − 3 = 4. This smoothness parallels that of the tricubic B-spline. However
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the seven-direction box spline only consists of polynomials of degree four, but the tricubic

B-spline consists of degree nine polynomials (i.e., product of three univariate cubic polyno-

mials).

The center of this box spline is 1
2

∑

ξ∈Ξ7
ξ. To center this box spline at the origin, we

can introduce a shift in the space domain (which amounts to a phase shift in the Fourier

domain). Then the Fourier transform of this centered box spline is:

M̂ c
Ξ7

(ω) =
∏

ξ∈Ξ7

sinc (ξTω). (4.6)

Recall that sinc (t) = sin (t/2)/(t/2). In order to avoid any signal shifts, we use this centered

version of the box spline during reconstruction.

Using Equation (4.6), we can demonstrate the number of vanishing moments generated

by the Cartesian shifts of this box spline and compare it with the tricubic B-spline. Recall

that the Fourier transform of the tricubic B-spline is β̂3(ωx, ωy, ωz) = sinc4 (ωx) sinc4 (ωy) sinc4 (ωz).

From careful examination of the Fourier transform of this box spline and the tricubic B-

spline, we realize that they both attain a minimum of four vanishing moments at the center

of every aliasing frequency; hence both of them have a fourth order approximation power.

Figure 4.8 demonstrates the vanishing moments in the space of the seven-direction box

spline and the tricubic B-spline. From considering the aliasing frequencies along each coor-

dinate axis at (2π, 0, 0), (0, 2π, 0) and (0, 0, 2π) we note that the seven-direction box spline

has five vanishing moments and the tricubic B-spline has four. For the aliasing frequencies

on the sub-diagonals at (2π, 2π, 0), (2π, 0, 2π) and (0, 2π, 2π) the seven-direction box spline

has four vanishing moments while the tricubic B-spline has eight vanishing moments. Fur-

thermore, on the diagonal direction (2π, 2π, 2π) the seven-direction box spline introduces

seven vanishing moments while the tricubic B-spline has twelve.

Oversmoothing and Post-Aliasing

Since we are considering the Cartesian shifts of the seven-direction box spline, the geometry

of sampling is the same with a tricubic B-spline reconstruction. Therefore, for the recon-

struction using this box spline, we can measure its over-smoothing and post-aliasing errors

and compare with the corresponding errors for the tricubic B-spline.

The over-smoothing and post-aliasing errors were introduced by Marschner and Lobb

in [53] for evaluating reconstruction schemes. The idea is to compare the Fourier transform
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Figure 4.8: A minimum of four vanishing moments at every aliasing frequency.

Table 4.1: Approximation to the mean squared differences of the Fourier transforms of
seven-direction box spline and tricubic B-spline from the indicator function of the unit cube
centered at the origin.

MS Error Over-smoothing Post-aliasing

Seven-direction box spline 7.203× 10−1 1.622× 10−6

Tricubic B-spline 6.007× 10−1 8.817× 10−6

of the reconstruction kernel against the ideal reconstruction whose Fourier transform is the

indicator function of the unit cube centered at the origin in the frequency domain. Since

we know the Fourier transform of the seven-direction box spline and the tricubic B-spline,

we can evaluate them at any point in the frequency domain.

A numerical experiment to approximate the over-smoothing and post-aliasing errors of

the seven-direction box spline and the tricubic B-spline was carried out by sampling the

frequency domain inside the region of [0, 6π]3 by a 200 × 200 × 200 volume. The mean

squared errors from the ideal reconstruction were estimated numerically and the results are

gathered in Table 4.1. It is evident that the seven-direction box spline has lower post-aliasing

errors at the cost of over-smoothing.

Variants

If we consider the decomposition of the direction vectors as above, we realize that recon-

struction by Ξ7 is a 3-D nearest neighbor I convolution followed by a convolution with the

linear order Ξ4. Reconstruction with the box spline of I is the nearest neighbor interpo-

lation; this kernel provides a discontinuous reconstruction with first order approximation
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power. The box spline of Ξ4 by itself is a linear order reconstruction on the rhombic dodec-

ahedral support of this box spline. When centered on a Cartesian lattice point, the support

of this rhombic dodecahedron extends to the two neighbors on the left and the right on

each axis. On the diagonal directions its support is only to the nearest neighbors, hence

we concluded earlier that the support is contained in [−2, 2)3. For this box spline ρ = 2;

hence, it provides a C0 reconstruction. Examining vanishing moments, one can verify that

it is only of second order in terms of approximation power.

One can shrink the support of this box spline by considering the box spline induced

by Ξ′

4 = 1
2Ξ4. The support of this box spline is a rhombic dodecahedron whose extent

goes to the closest neighbors on each axis and half way to the nearest neighbor on the

diagonal direction. Therefore, the support of this box spline is contained in [−1, 1)3. Putting

things back together, the box spline induced from [I,Ξ′

4] offers the same C2 smoothness in

reconstruction since the directions of the direction vectors of the box spline didn’t change;

hence, ρ is the same as for Ξ7. The support of this box spline is contained in [−3/2, 3/2)3 and

examining its vanishing moments one can show that its approximation power is decreased

to only one.

Another possibility is to use the box spline associated with trilinear interpolation instead

of I. The trilinear interpolant is induced from [I, I]. The box spline that is induced from

[I, I,Ξ′

4] is also of interest. The support of the trilinear box spline is [−1, 1)3; hence, the

support of this box spline is contained in [−2, 2)3. For this box spline, ρ = 6. Therefore, it

provides a C4 reconstruction while its vanishing moments reveal that it is of second order

approximation power. This box spline obviously favors the axis directions more strongly

due to its trilinear component.

4.2.2 Reconstruction Results

The support of the seven-direction box spline, MΞ7 , is more isotropic than the support

of a tensor-product reconstruction (i.e., a cube). Therefore, a reconstruction using this

box spline outperforms the corresponding tricubic B-spline reconstruction when it comes to

isotropy of reconstruction.

Our first case study is on reconstructing sharp planar surfaces with varying inclination.

This experiment is documented in Figure 4.9. We designed a set of voxelized planar surface

datasets that are essentially half spaces angled from zero to forty five degrees at increments

of five degrees sampled at 21× 21× 21 resolution on the Cartesian lattice. The zero degree
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surface represents a plane that is aligned with a coordinate axis of the Cartesian lattice,

while the forty five degrees planar surface makes a forty five degrees angle with the Z-axis in

the XZ plane. While the box spline reconstruction performed equally well when compared

with tricubic B-spline for planes between 0−30 degrees, sharper angled planes showed a big

difference in the two reconstructions. This is as expected, since for small angles the main

features of the planar surface are indeed aligned with the coordinate axes.

The isotropy of the box spline reconstruction allowed the extremely smooth reconstruc-

tion of the planar surface, while the tricubic B-spline solution exhibited grid-aligned stripes

on the surface known as stair-casing artifacts. The wider stripes are due to the aliasing ex-

isting in the volume dataset. The stair-casing artifacts appearing as the thin stripes which

are dominant in the left and the middle column are due to aliasing in the reconstruction.

In our experiments, none of the tensor-product reconstructions (even with wider support)

in [67, 68] could decrease these stair-casing artifacts. We have also experimented with many

different inclination angles, and the behavior of the seven-direction box spline reconstruction

was consistent with what we reported above. This is due to the shape of the support and

continuity of the box spline which is guaranteed to produce a C2 reconstruction.

We have also experimented with the Marschner-Lobb dataset to compare the tricubic

B-spline and the seven-direction box spline reconstructions. The seven-direction box spline

reconstruction demonstrated its increased presence of over-smoothing error as predicted

while the aliasing artifacts are better removed as in Figure 4.10.

The stronger post-aliasing cancellation in the seven-direction box splines is useful for

removing grid-aligned artifacts as demonstrated in the planar surfaces dataset in Figure 4.9.

This feature can also benefit the reconstruction of real datasets where the stair-casing is

present as axis-aligned artifacts (see Figure 4.11). Similarly, the seven-direction box spline

reconstruction is superior for the reconstruction of voxelized surfaces (Figure 4.12).
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Voxelized surface tricubic B-spline seven-direction box spline

Figure 4.9: Planar surfaces with varying inclination sampled at the resolution of 21×21×21.
The first row shows the plane at 0 degrees, the second row is at 15 degrees, the third row is
at 35 degrees and the last row at 45 degrees.
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Figure 4.10: C2 reconstructions of the ML data at a Cartesian resolution of 41× 41× 41 =
68.9K. The first row shows the tricubic B-spline reconstruction. The second row shows the
seven-direction box spline reconstruction. The max angular error of .3 radians is mapped
to white.
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Figure 4.11: Reconstruction of the eye area in the brain dataset (the volumetric dataset
is from University of North Carolina). The grid aligned artifacts are significantly reduced
in the proposed reconstruction. Top row: trilinear B-spline, middle row: tricubic B-spline,
and the bottom row: seven-direction box spline.
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Figure 4.12: The Stanford Bunny dataset voxelized with an 18 connectivity neighborhood
at the sampling resolution of 182 × 182 × 182. Top row: trilinear B-spline, middle row:
tricubic B-spline, and the bottom row: seven-direction box spline.



Chapter 5

Summary and Topics of Further

Interest

In chapter 3, we introduced and discussed a class of four-direction box splines that allow

for smooth and accurate reconstructions on the BCC lattice. These box spline-based recon-

structions allowed us to show that the theoretical advantages of the BCC sampling lattices

can be exploited in practical applications, particularly for volume visualization applications.

For efficient evaluation of these box splines, we derived their explicit piecewise polynomial

representations. Not only do these box splines allow for reconstructions with desired smooth-

ness and numerical accuracy, also in terms of computational efficiency they outperform the

corresponding tensor-product B-spline reconstructions on the Cartesian lattice.

In chapter 4, we presented a set of six-direction and nine-direction box splines suitable

for reconstruction on the FCC lattice. These box splines allow for a smooth and accurate

reconstruction on the FCC lattice. We also exploited the seven-direction box spline on

the Cartesian lattice for its advantages for a more isotropic reconstruction than the tensor-

product reconstructions. This box spline allows for significantly reducing the stair-casing

artifacts in rendering applications.

The FCC and BCC lattices along with their box spline reconstructions demonstrate

attractive properties for the sampling and reconstruction of trivariate functions. In the

following sections, we consider other avenues of interest for exploiting the advantages of

these optimal lattices in the computational domain.
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Multi-resolution

Wavelet theory plays a central role in many biomedical, image processing and visualization

applications [1]. Key algorithms such as compression [78] and de-noising [82] heavily rely on

wavelet transforms. By sub-sampling a (sampled) function into coarser scales of resolution,

the wavelet transform produces a multi-resolution representation of the function. The quin-

cunx lattice in 2-D and the FCC and BCC lattices in 3-D produce striking sub-sampling

patterns. Their curious structure allows for partitioning the spectrum of the function into

a multi-resolution representation in a non-separable fashion.

Multi-resolution schemes are important tools for dealing with large data. Different levels

of detail of the data can be pre-computed and an appropriate level can be picked according

to the available bandwidth of the display device or the transition channel (e.g., for online

music, video, or graphics applications).

Ideally, one would like to find the appropriate level-of-detail, which preserves exactly as

much data as can be handled by the underlying hardware or software constraints. In other

words, we would like to have a continuous level-of-detail (LOD) slider, creating the LOD

that is needed. However, it is only feasible to pre-compute finitely many LOD’s. The choice

of LOD’s is often constrained by the underlying data structures and algorithms available to

process these data structures.

In image and volume processing, it has been customary to work with image and volume

pyramids that treat each dimension separately which is a Cartesian tensor-product paradigm

of multi-resolution. In such a scenario the smallest possible granularity of sub-sampling

would be to halve the resolution of each dimension. This leads to the well-known quad-trees

(in 2-D) and octrees (in 3-D). While we are only halving the resolution per coordinate axis

during each iteration, we effectively reduce the overall data by a factor of four in 2-D and

eight in 3-D.

While this is a convenient and widely used pipeline, the granularity may be too coarse

and alternatives are of interest. Hence, the quincunx structure has been studied in the

image processing community [104, 28] with the benefit of allowing a finer granularity for

2-D image pyramids. Quincunx allows an overall data reduction by a factor of two in each

iteration.

Van De Ville et al. [105] have shown that a simple extension of the quincunx scheme to

3-D is not possible, and iterating through the commonly assumed FCC subsampling cannot
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provide a suitable isotropic representation of the signal at various resolution levels. We have

also derived a family of BCC sub-sampling matrices suitable for dilation that allow for an

isotropic reduction of resolution when iterating through the sub-sampling pipeline [32].

On the other hand, Linsen et al. [51] have studied a multi-resolution pipeline which has a

change of resolution by a factor close to two in each step. In the first step of down-sampling,

this method loses 3/8 of the data; in the second step it discards 3/5 of the data; and in

the final step it loses 1/2 of the data to obtain a representation at 1/8 of the original data

rate. Therefore, each resolution of the data is not exactly halving the information. Another

drawback is that this pipeline is made up of grids for which no rendering algorithms with

proper reconstruction kernels exist. Moreover, it is not possible to analyze the representation

of the data at various resolution levels in terms of the spectrum of the underlying signal. In

other words, there are no signal processing tools available to analyze or predict the quality

of the data representation and reconstruction on such grids.

In [31] we introduced a multi-resolution pipeline in 3-D which represents a volumetric

dataset at half the resolution on a FCC lattice and at one quarter the resolution on a BCC

lattice. The resolution of one eighths is again represented on a Cartesian lattice. Since

proper reconstruction schemes for these lattices exist we are able to render and visualize

data in the decomposition domain on these 3-D lattices efficiently. The spectrum of the

data at these sub-sampling steps has been illustrated in Figure 5.1.

(a) FCC (b) BCC (c) Cartesian

Figure 5.1: Brillouin zones for various subsampling steps. The gray cube indicates the
support of the spectrum of the original Cartesian-sampled trivariate function.

Designing wavelets suitable for these FCC and BCC sub-sampling steps is a challeng-

ing task since they are non-separable (not a trivial tensor-product of one dimensional)
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wavelets [83]. The non-separability leads to their improved isotropy and slow progression

through the scales of resolution.

Non-separable multivariate regular perfect reconstruction filter banks have been studied

by Cooklev [18] and Kovac̆ević [42, 47, 48, 49] and Vetterli [106, 107, 108] that extend

the techniques of filter design to two-channel multidimensional transforms. However, multi-

channel non-separable wavelets are significantly harder to come by. A major difficulty is that

the spectral factorization results do not easily extend to a multivariate setting [36]. Cohen

and Daubechies showed that coming up with scaling functions and wavelets for arbitrary

dilation matrices is difficult [14]. However, Cohen presented a class of wavelet bases with

hexagonal symmetry [13].

Acquisition

We have demonstrated the attractive properties of the BCC and FCC lattices for represent-

ing trivariate functions. The application of such sampling lattices in scanning and acquisition

devices is a challenging task with promising perspectives. Medical scanning modalities like

CT, PET and MRI machines are to benefit from optimal sampling lattices.

One can exploit the BCC lattice to increase the quality of imaging (theoretically by 30%)

in CT without increasing patient exposure time. One of the challenging tasks here is to

incorporate a mathematical model (point-spread function) of the imaging system to design

the pre-filters that compensate for the non-ideal physical characteristics of the imaging

system. The framework of optimal quasi-interpolation [15, 16] can be used here to design

fast and local pre-filters that are practical.

Optimal Sampling in Higher Dimensions

The advantage of the hexagonal sampling over the Cartesian sampling in 2-D is about 14%.

In 3-D, the number goes up to about 30%; the efficiency of the best sampling pattern in

4-D (D4 lattice) is about 50% over the 4-D Cartesian lattice [17]. The optimal sampling

lattices in higher dimensions demonstrate more attractive advantages, and hence studying

the problem of sampling lattices and reconstruction in higher dimensions is of interest. The

class of box splines (along with other polyhedral splines) allows for construction of suitable

approximation kernels in arbitrary dimensions.
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Piecewise Polynomial Representation of Box Splines

While the piecewise polynomial derivation of the box splines in Section 3.2 is for a spe-

cific class of box splines, we believe that it can be extended to general box splines. This

piecewise polynomial representation can be further used for obtaining efficient computation

of weighted sum of shifts of box splines using their barycentric forms. The box splines

discussed in chapter 4 are of interest here. An explicit piecewise polynomial derivation of

box splines would benefit reconstructions in chapter 4 so that we could implement them

efficiently, similar to the implementation discussed in Section 3.2.



Appendix A

Geometric Facts

The cube, the rhombic dodecahedron and the truncated octahedron are the tiling polyhedra

that are the Voronoi cells of the Cartesian, FCC and BCC lattices. For a sampling density

of one sample per unit volume, the volume of the Brillouin zone of the sampling lattice is

1. In Table A.1, we have computed the radius of inscribed and circumscribed spheres to

these polyhedra. According to these measurements, the Brillouin zone of the BCC lattice

contains the largest inscribed sphere. The Brillouin zone of the FCC lattice has the smallest

circumscribed sphere, while its inscribed sphere is not too much smaller than that of the

BCC lattice.
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Figure A.1: Lattice Tiling Polyhedra: Cube (top), Rhombic Dodecahedron (middle) and
Truncated Octahedron (bottom).
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Cube Rhombic Dodecahedron Truncated Octahedron

Volume 1 1 1

Bounding Cube 1 3
√

4 ≈ 1.587 3
√

2 ≈ 1.260

Insc Radius 1/2 = .5
3√4

2
√

2
≈ .561

√
3

4
3
√

2 ≈ .546

Circ Radius
√

3/2 ≈ .866 3
√

4/2 ≈ .794
√

5
4

3
√

2 ≈ .704

Circ / Insc
√

3 ≈ 1.732
√

2 ≈ 1.414
√

5
3 ≈ 1.291

Vol - Vol Insc .476 .260 .320

Vol Circ - Vol 1.721 1.094 .464

Table A.1: Geometric facts about the inscribed and circumscribed spheres to the tiling poly-
hedra of interest. Cube is the Voronoi cell of the Cartesian lattice. Rhombic Dodecahedron
is the Voronoi cell of the FCC lattice, and Truncated Octahedron is the Voronoi cell of the
BCC lattice. ‘Insc’ and ‘Circ’ stand for inscribed and circumscribed spheres respectively.
‘Vol’ stands for the volume of the solid.
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[7] Pierre Brémaud. Mathematical principles of signal processing. Springer-Verlag, New
York, 2002. Fourier and wavelet analysis.

[8] Gerald Burns and A. M. Glazer. Space groups for solid state scientists. Academic
Press Inc., Boston, MA, second edition, 1990.

[9] Ingrid Carlbom. Optimal filter design for volume reconstruction and visualization.
In Proceedings of the IEEE Conference on Visualization 1993, pages 54–61, October
1993.
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Dimensional Multiresolution Transform. In Proceedings of the Eurographics/IEEE-
VGTC Symposium on Visualization, pages 267–274, May 2006.
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