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Abstract

Instabilities of nonlinear waves on unbounded domains manifest themselves in different ways. An absolute instability
occurs if the amplitude of localized wave packets grows in time at each fixed point in the domain. In contrast, convective
instabilities are characterized by the fact that even though the overall norm of wave packets grows in time, perturbations decay
locally at each given point in the unbounded domain: wave packets are convected towards infinity. In experiments as well as
in numerical simulations, bounded domains are often more relevant. We are interested in the effects that the truncation of the
unbounded to a large but bounded domain has on the aforementioned (in)stability properties of a wave. These effects depend
upon the boundary conditions that are imposed on the bounded domain. We compare the spectra of the linearized evolution
operators on unbounded and bounded domains for two classes of boundary conditions. It is proved that periodic boundary
conditions reproduce the point and essential spectrum on the unbounded domain accurately. Spectra for separated boundary
conditions behave in quite a different way: firstly, separated boundary conditions may generate additional isolated eigenvalues.
Secondly, the essential spectrum on the unbounded domain is in general not approximated by the spectrum on the bounded
domain. Instead, the so-called absolute spectrum is approximated that corresponds to the essential spectrum on the unbounded
domain calculated with certain optimally chosen exponential weights. We interpret the difference between the absolute and the
essential spectrum in terms of the convective behavior of the wave on the unbounded domain. In particular, it is demonstrated
that the stability of the absolute spectrum implies convective instability of the wave, but that convectively unstable waves can
destabilize under domain truncation. The theoretical predictions are compared with numerical computations. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We are interested in the stability properties of nonlinear waves such as fronts and pulses on unbounded and
bounded domains. On unbounded domains, an instability can manifest itself in different ways. The physics literature
distinguishes between two different kinds of instability, namely, absolute and convective instabilities. An absolute
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instability occurs if perturbations grow in time at every fixed point in the domain. Convective instabilities are
characterized by the fact that, even though the overall norm of the perturbation grows in time, perturbations decay
locally at every fixed point in the unbounded domain; in other words, the growing perturbation is transported,
or convected, towards infinity. In experiments as well as in numerical simulations, bounded domains are often
more relevant. From a physical point of view, it is then interesting and important to understand how absolute
and convective instabilities manifest themselves on large bounded domains under various boundary conditions. A
possible conclusion would be that convective instabilities disappear on bounded domains, while absolute instabilities
persist. It turns out, however, that there are convective instabilities that survive the truncation to a bounded domain.

Understanding the spectral properties of waves under domain truncation amounts to identifying and capturing
those instabilities that survive domain truncation, and to calculating and comparing the spectra of the relevant
linearized operators on such domains. These are the issues we set out to explore in this article. Our main result
establishes that it is not absolute and convective instabilities but what we callremnantandtransientinstabilities,
see below, that determine the spectral (in)stability of waves under domain truncation. Before we explain these
instabilities in more detail and outline our approach, we comment more on our motivation to study these issues.

Physical situations in which the aforementioned issues are relevant include, for instance, fluid flows in finite
containers [9,43] and the break-up of spiral waves as observed in experiments [28] and numerical simulations
[5,6,42]. In open flows, the difference between absolute and convective instabilities is important; this problem
has been studied intensively for modulation equations such as the complex Ginzburg–Landau equation; see, for
instance [3,13,14,43]. Part of our motivation comes from the break-up of spiral waves in two-dimensional excitable
and oscillatory media [5,6]. Spirals can break-up either near the core or else in the far-field; the difference between
these instabilities is the direction towards which unstable eigenmodes convect and transport. An interesting issue is
to predict these instabilities, and the direction of transport, from spectral properties of the asymptotic wave trains
of the spiral; this will be discussed in a forthcoming paper using the techniques introduced here.

A second reason for investigating the behavior of spectra under domain truncation is the fact that it is in general
quite difficult to calculate the spectrum of the linearization about a given nonlinear wave analytically. Thus, one
has to resort to numerical techniques which typically require that the unbounded domain is replaced by a bounded
domain, supplemented with appropriate boundary conditions. There is then, however, no guarantee that the true
spectrum on the unbounded domain is recovered as domain truncation is not a regular perturbation. In particular,
the spectrum on the bounded domain may well depend upon the choice of boundary conditions.

1.1. Different instability mechanisms on unbounded domains

We begin by reviewing the different instability mechanisms that we are interested in on the unbounded domain
R. As mentioned above, absolute instabilities occur if perturbations grow in time at every fixed point in the domain.
Convective instabilities are characterized by the fact that perturbations decay locally at every fixed point in the
unbounded domain even though the overall norm of the perturbation grows in time.

There are, however, other ways of differentiating between instabilities on unbounded domains. We refer to the
situation where every unstable mode travels to either left or right but not simultaneously to the left and right as
a transient instability. Note that a convective instability allows waves to split into two wave packets that travel
simultaneously to the left and right. In contrast, transiently unstable modes have a preferred direction of transport.
We expect that transiently unstable waves are convectively unstable but not necessarily vice versa.

We outline how convective and transient instabilities can be captured mathematically on the unbounded domain
R. Suppose that we linearize a certain partial differential equation (PDE) about a pulse, say. We then investigate
the resulting linear PDE operatorL on the real line using the spaceL2(R) with norm‖ · ‖. The spectrum of the
operatorL is the disjoint union of two sets: the point spectrum that consists of all isolated eigenvalues with finite
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multiplicity, and its complement which we refer to as the essential spectrum. If part of the essential spectrum lies in
the right half-plane, then there is typically a continuum of unstable modes present. The essential spectrum can be
computed using the dispersion relationd(λ, ν) = 0 that relates temporal eigenvaluesλ and spatial eigenvaluesν:
the dispersion relation is calculated by substitutingu(x, t) = exp(λt + νx) into the PDEut = L∞u, which is the
linearization about the asymptotic rest state of the pulse. We remark that our notation of dispersion relation differs
slightly from the physics convention whereλ andν are replaced by iω and−ik, respectively.

In certain cases, the essential spectrum induces a convective instability. Suppose that part of the essential spectrum
lies in the right half-plane. In many situations, it can be shown that a wave is convectively unstable if the dispersion
relationd(λ, ν) does not have any double roots inν for λ in the closed right half-plane; see [3,9] and the references
therein. A wave becomes absolutely unstable if a temporal eigenvalueλ for which the dispersion relation has a
spatial double root crosses into the right half-plane.

To describe transient instabilities, it is convenient to introduce exponential weights; see [40]: for any given real
numberη, define a new norm‖ · ‖η by

‖u‖2
η =

∫ ∞

−∞
|eηxu(x)|2 dx,

and denote byL2
η(R), equipped with the norm‖ · ‖η, the space of functionsu(x) for which eηxu(x) is in L2(R).

Note that the norms‖ · ‖η for different values ofη are not equivalent to each other. We then considerL as an
operator onL2

η(R) and compute its spectrum using the new norm‖ · ‖η for appropriate values ofη. The key is that,
for η > 0, the norm‖ · ‖η penalizes perturbations at+∞, while it tolerates perturbations (which may in fact grow
exponentially with any rate less thanη) at−∞. Thus, if an instability is of transient nature so that it manifests itself
by modes that travel towards−∞, then the essential spectrum calculated in the norm‖ · ‖η should move to the left
asη > 0 increases. Indeed, as the perturbations travel towards−∞, they are multiplied by eηx which is small as
x → −∞ and therefore reduces their growth or even causes them to decay. Exponential weights have been used to
study a variety of problems posed on the real line such as reaction–diffusion operators [40], conservative systems
such as the KdV equation [32], and generalized Kuramoto–Sivashinsky equations that describe thin films [11,12].

As mentioned above, convective and transient instabilities are not identical: an example of a convectively unstable
wave that is not transiently unstable is given in Example 2 in Section 3.3. What happens in this example is that
perturbations travel to both+∞ and−∞ at the same time. Such instabilities cannot be removed by exponential
weights since we would needη > 0 to get rid of modes travelling to the left butη < 0 to handle the modes that
travel to the right. This might seem to be a minor point but is in fact of importance when the domain is truncated to
a bounded interval; see below. We refer to Fig. 1, where we illustrate absolute as well as transient and convective
instabilities.

Fig. 1. The dotted waves are the initial datau0(x) to the linearized equationut = Lu, while the solid wavesu(x, t) represent the solution at
a fixed positive timet ; the horizontal axis isx, the vertical axis corresponds to the value ofu(x, t) at x. (a) Illustrates an absolute instability
where the solution to the linearized equation grows without bounds at each given pointx in space as time tends to∞. (b) Illustrates transient
instabilities: the solutionu(x, t) grows but also travels inonedirection so thatu(x, t) actually decays for each fixed value ofx ast → ∞. The
operatorL would have stable spectrum in the norm‖ · ‖η for a certainη > 0. (c) Shows a convectively unstable pattern that is not transiently
unstable: the solutionu(x, t) consists of two waves that grow while travelling in opposite directions. Such an instability cannot be stabilized by
using the norm‖ · ‖η. Typically, the group velocities of the two waves would differ in modulus as shown here.
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Finally, we say that a wave isremnantlyunstable if the spectrum ofL, computed in the spaceL2
η(R), is unstable

for any choice ofη. Thus, remnantly unstable modes are modes which are not affected by exponential weights.
We can capture remnant and absolute instabilities by computing what we call the absolute spectrum: roughly
speaking, the absolute spectrum6abs is defined as the set of complex numbersλ for which the resolventL − λ

is not invertible inL2
η(R) for any choice ofη; see Section 3.2 for a more precise definition. In fact, the absolute

spectrum can be computed using only the asymptotic coefficients of the linear operatorL, that is, it depends only
upon the asymptotic rest states of the underlying wave. The absolute spectrum captures remnant instabilities: the
absolute spectrum moves into the right half-plane if, and only if, the wave experiences a remnant instability. As
the absolute spectrum contains any pointsλ for which the dispersion relation has double spatial roots, we can also
use it to capture absolute instabilities. Such temporal eigenvaluesλ correspond to unstable eigenmodes with zero
group velocity. Absolute and remnant instabilities would be identical if the rightmost unstable temporal eigenvalue
λ in the absolute spectrum always corresponds to an eigenmode with zero group velocity; there is, however, the
possibility that the most unstable eigenmode in the absolute spectrum has non-zero group velocity; see Examples
2 and 3 in Section 3.3.

In summary, upon using exponentially weighted norms, the essential spectrum may move to a different location.
The new location of the essential spectrum is determined by a balance between the growth in amplitude and the
speed of advection associated with each eigenmode on the one hand and the rateη that is being used in the weight
on the other hand.

1.2. Instabilities on large bounded domains

Next, we consider the relevant PDE operator on a large but bounded interval with appropriate boundary conditions.
The distinction between point and essential spectrum then disappears. We may, however, define the extrapolated
essential spectral set6e

ext that consists of all complex numbers that are approached by infinitely many eigenvalues
as the interval approaches the entire real line. In other words, rather than investigating how the essential spectrum
breaks up under domain truncation, we consider the inverse problem by determining the asymptotic location of
eigenvalues on the bounded interval as the domain size tends to infinity. The first result, Theorem 4 in Section
5.2, demonstrates that the essential spectrum6essand the extrapolated essential spectral set6e

ext are equal to each
other provided we use periodic boundary conditions; this requires that the nonlinear wave is a pulse and not a front.
In other words, with periodic boundary conditions, the essential spectrum of pulses is well approximated under
domain truncation. The second result, Theorem 5 in Section 5.3, shows that the sets6essand6e

ext are in general
different if separate boundary conditions are used. Thus, no matter how large we choose the interval length, the
resulting spectrum will never be close to the spectrum on the real line. In fact, we demonstrate that, for separated
boundary conditions, the extrapolated essential spectral set6e

ext is typically equal to the absolute spectrum6abs.
The reason that the spectrum on the real line is not well approximated by the spectrum on bounded intervals is
related to the existence of transiently unstable eigenmodes. We had seen that we can shift the transient part of the
essential spectrum by using exponential weights. As mentioned above, this amounts to changing the underlying
function space as these norms are not equivalent to the standardL2-norm. On bounded intervals, however, these
norms are all equivalent to each other since eηx is then bounded away from zero and from infinity. Thus, we expect
that, if the operator is stable in an exponentially weighted norm, then it should also be stable on large bounded
intervals. In other words, even if it is unstable on the real line, it will be stable on bounded intervals provided it
is also stable on the real line considered with exponential weights. Heuristically, transiently unstable eigenmodes
transport perturbations towards either+∞ or −∞; on bounded intervals, the perturbations then disappear through
the boundary. This also explains why the essential spectrum is recovered upon using periodic boundary conditions:
the transient modes transport perturbations towards the boundary as before but they get fed in on the other endpoint
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of the interval through the boundary conditions. It also explains why convective instabilities may lead to instabilities
on bounded domains: if there are unstable eigenmodes that transport perturbations to the left and other modes that
transport to the right, then these modes may couple through the boundary conditions; even for separated boundary
conditions, this may lead to an instability on bounded intervals; see Example 2 in Section 3.3.

An interesting consequence of these remarks is a characterization of the so-called pseudo-spectrum. Roughly
speaking, for arbitrary smallε > 0, theε-pseudo-spectrum of an operatorL on a bounded domain consists, by
definition, of all complex numbers such that the associated resolvent(L−λ)−1 has norm larger than 1/ε. It has been
used in linear numerical analysis; see, for instance [44] for more background information. Our results imply that
the pseudo-spectrum on large domains typically interpolates between the absolute spectrum6absand the essential
spectrum6ess: for fixed interval lengthL, theε-pseudo-spectrum ofL approaches the absolute spectrum asε → 0;
on the other hand, for fixedε > 0, the pseudo-spectrum converges, asL → ∞, to an open set whose closure contains
the essential spectrum, see Section 4.4. The reason is that the resolvent on the real line is invertible only in some
exponentially weighted norm. Even though all these norms are equivalent on bounded intervals, their equivalence
constants approach infinity exponentially fast in terms of the interval length. Thus, the norm of the resolvents
also grows exponentially in terms of the interval length. For the constant-coefficient convection–diffusion operator
uxx + cux , this fact has been established in [34].

It remains to consider the effects of domain truncations on isolated eigenvalues. Again, we have to distinguish
between periodic and separated boundary conditions. In Theorem 2 in Section 4.2, we prove that eigenvalues persist
with their multiplicity under periodic boundary conditions. Furthermore, all the eigenvalues for the operator on the
bounded interval originate from eigenvalues on the real line. Thus, periodic boundary conditions recover not only
the essential spectrum but also the point spectrum accurately.

The case of separated boundary conditions is again quite different. There are three issues that have to be dealt with.
Firstly, given an isolated eigenvalue on the real line, we may ask for its persistence when truncating to a bounded
interval. Secondly, additional eigenvalues could be created through the boundary conditions. The third issue is as
follows. We have seen that the essential spectrum may shift upon using exponential weights. In the region between
the original and the shifted essential spectrum, additional eigenvalues may arise. The associated eigenfunctions are
bounded in the‖ · ‖η norm that was used to shift the spectrum but are unbounded in the originalL2-norm. It is then
possible that these new eigenvalues, which are often referred to as resonance poles, persist upon domain truncation.
The reason is that the exponential weights do not matter on any bounded interval. All these issues are taken care of
in Theorem 2 in Section 4.3.2. Resonance poles indeed persist under domain truncation in addition to eigenvalues of
the operator in the originalL2-norm. Furthermore, it is possible that additional eigenvalues are created through the
boundary conditions, and we give precise conditions on when this phenomenon occurs and how many eigenvalues
are created.

We remark that we do not give asymptotic expansions of isolated eigenvalues in the interval lengthL of the
underlying bounded interval asL → ∞. Such expansions can, however, be obtained using the approach utilized
here; see, for instance, [37] for expansions of eigenvalues for the linearization about a pulse under periodic boundary
conditions.

The main techniques that we use to demonstrate the persistence of eigenvalues are the Evans function [1] for
bounded intervals [19,21] applied with exponential weights [40]. Domain truncation for the absolute and essential
spectrum are investigated using exponential dichotomies [16,29,33,35]; implicitly, we also use extensions of the
Evans function across the essential spectrum [25]. We emphasize that we prove our results forλ in bounded subsets
of the complex plane. Thus, we do not establish resolvent estimates for largeλ; in particular examples, such estimates
are typically obtained on a case-to-case basis.

Finally, we mention related results. In [8], the persistence of eigenvalues under domain truncation has been
investigated for reaction–diffusion operators under periodic and separated boundary conditions. The authors also
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provided error estimates for the dependence of the eigenvalues on the interval lengthL. The results established in
[8] apply only to eigenvalues that are to the right of the essential spectrum; resonance poles or the behavior of the
essential spectrum itself were not discussed. A general reference for boundary-value problems is [4].

In addition, there is tremendous amount of articles in the physics literature where absolute and convective
instabilities have been investigated; see, for instance, [3,43] to name but two. In many of these articles, absolute
and convective instabilities were investigated for the complex Ginzburg–Landau equation. The results typically
characterize the onset to instability by the crossing of a double root of the dispersion relation through the imaginary
axis into the right half-plane. As we have already mentioned above, this criterion is in general not correct even
though it gives the right answer in almost all the cases we are aware of. Our contribution is firstly the correct
criterion for instability on large bounded domains through the notions of remnant and transient instabilities and,
secondly, a characterization of the entire spectrum, and not only of the double roots of the dispersion relation, on
bounded domains. This allows for a comparison of numerical calculations with theoretical predictions. In addition,
the systematic use of exponentially weighted norms allows us to predict the absolute or convective nature of
instabilities including the direction of transport.

This article is organized as follows. The set-up and most of the relevant definitions are given in Section 2. In Section
3, we introduce the various notions of spectrum that we shall use. The behavior of point spectrum under domain
truncation is discussed in Section 4. Section 5 contains the results for the essential spectrum. Numerical simulations
for the KdV equation and the Gray–Scott model are presented in Section 6. Section 7 contains conclusions and
discussion of open problems.

2. Operators, boundary conditions, and exponential dichotomies

In this section, we introduce our precise set-up as well as all necessary definitions that we shall use.

2.1. The coefficient matrix

Throughout this article, we assume thatA(x; λ) ∈ RN×N is a matrix-valued function of(x, λ) ∈ R × C of the
form

A(x; λ) = Â(x)+ λB(x).

Most of our results are valid for more generalA(x; λ); we note, however, that eigenvalue problems arising from
evolutionary equations are typically of the above type. We assume thatA(x; λ) satisfies the following hypothesis.

Hypothesis 1. The matricesA(x; λ) ∈ RN×N are smooth inx ∈ R and analytic inλ ∈ C. Furthermore, the
following conditions are met.
1. Asymptotically constant-coefficients: There are positive constantsK andθ , independent ofx andλ, and matrices
A±(λ) that depend analytically onλ such that

‖A(x; λ)− A±(λ)‖ ≤ K e−θ |x|

asx → ±∞.
2. Well-posedness: There is a numberρ > 0 and an integeri∞ ∈ N, such that for allλwith Reλ ≥ ρ, the asymptotic

matricesA±(λ) are hyperbolic (i.e. they have no spectrum on iR), and the dimension of their generalized unstable
eigenspaces is equal toi∞.



B. Sandstede, A. Scheel / Physica D 145 (2000) 233–277 239

The second condition is satisfied for eigenvalue problems that arise from evolution equations. It guarantees that
the essential spectrum is to the left of the line Reλ = ρ for some finite numberρ.

We emphasize that most of our results hold in more generality; for instance, it suffices thatA(x; λ) is asymptot-
ically periodic inx.

Throughout this paper, we label eigenvalues ofA±(λ) according to their real part, and repeated with their
multiplicity, i.e.

Reν±
1 (λ) ≥ Reν±

2 (λ) ≥ · · · ≥ Reν±
N−1(λ) ≥ Reν±

N(λ). (2.1)

In particular, chooseλ such that Reλ is large. Using Hypothesis 1(2), we see that

Reν±
1 (λ) ≥ · · · ≥ Reν±

i∞(λ) > 0> Reν±
i∞+1(λ) ≥ · · · ≥ Reν±

N(λ).

We refer toλ andν±
j as thetemporalandspatialeigenvalues, respectively. For every fixed temporal eigenvalueλ,

the spatial eigenvaluesν±
j are the roots of the characteristic polynomials

d±(ν, λ) = det[ν − A±(λ)]

of A±(λ). The dependence between spatial and temporal eigenvalues is commonly referred to as the dispersion
relation, whereω = −iλ is considered as a function ofk = iν.

2.2. The operator on the real line

On the unbounded real lineR, we consider the familyT of linear operators

T (λ) : H 1(R,CN) → L2(R,CN), u 7→ du

dx
− A(·; λ)u (2.2)

for λ ∈ C, whereH 1 is the usual Sobolev space ofL2-functions that have a weak derivative which is inL2.
As mentioned in Section 1, it is often convenient to consider the operatorsT (λ) on exponentially weighted

function spaces; see [40,31]. Thus, for arbitraryη = (η−, η+) ∈ R2, we set

‖v(·)‖2
L2
η

=
∫ 0

−∞
|v(ξ)exp(η−ξ)|2 dξ +

∫ ∞

0
|v(ξ)exp(η+ξ)|2 dξ, ‖v(·)‖2

H1
η

= ‖v(·)‖2
L2
η
+ ‖vx(·)‖2

L2
η
.

We may then consider the operator

T η(λ) : H 1
η (R,C

N) → L2
η(R,C

N), v 7→ dv

dx
− A(·; λ)v. (2.3)

For any functionv defined onR, let

(Jηv)(x) =
{

exp(η−x)v(x) for x < 0,
exp(η+x)v(x) for x > 0.

The maps

Jη : H 1
η → H 1, v 7→ Jηv and Jη : L2

η → L2, v 7→ Jηv

are then linear isomorphism, and the operatorT η(λ) can be written as

T̃ η(λ) : H 1(R,CN) → L2(R,CN), u 7→ du

dx
− A(·; λ)u− η(·)u, (2.4)
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where

η(x) =
{
η− for x < 0,
η+ for x > 0.

(2.5)

Indeed, we have

T̃ η(λ) = JηT
η(λ)J−1

η .

In the following, we omit the tilde and denote both operators byT η(λ).

2.3. The operators on the bounded interval(−L,L)

Alternatively, we could consider the operators on the bounded interval(−L,L) for large numbersL. In this case,
we introduce boundary conditions at the endpoints of the interval. For periodic boundary conditions, a suitable
function space is

H 1
per((−L,L),CN) = H 1((−L,L),CN) ∩ {u; u(−L) = u(L)},

and we consider the operator

T
per
L (λ) : H 1

per((−L,L),CN) → L2((−L,L),CN), u 7→ du

dx
− A(·; λ)u. (2.6)

Separated boundary conditions can be realized by choosing appropriate subspacesQ+ andQ− of CN . We assume
that these subspaces satisfy the following hypothesis.

Hypothesis 2(Separated boundary conditions). We assume that

dimQ− = i∞, dimQ+ = N − i∞,

where the asymptotic Morse indexi∞ has been introduced in Hypothesis 1.

The correct function space for separated boundary conditions is then given by

H 1
sep((−L,L),CN) = H 1((−L,L),CN) ∩ {u; u(−L) ∈ Q− and u(L) ∈ Q+},

and we are interested in the operator

T
sep
L (λ) : H 1

sep((−L,L),CN) → L2((−L,L),CN), u 7→ du

dx
− A(·; λ)u. (2.7)

Example 1. Consider the convection–diffusion problemUt = Uxx + cUx together with the associated eigenvalue
problemλU = Uxx + cUx . Upon writing the eigenvalue problem as a first-order system, we see thatN = 2 and

Â =
(

0 1
0 −c

)
, B =

(
0 0
1 0

)
, A(x; λ) = Â+ λB, (2.8)

such thatu = (u1, u2)
T = (U,Ux)

T ∈ R2. Dirichlet and Neumann boundary conditions are given byU(±L) = 0
andUx(±L) = 0, respectively, and can be realized using the subspacesQDir± = span{(0,1)T} andQNeu± =
span{(1,0)T}.



B. Sandstede, A. Scheel / Physica D 145 (2000) 233–277 241

Note that, for separated boundary conditions, the integeri∞ is singled out as the number of boundary conditions
at the right endpoint of the interval(−L,L); observe that the number of boundary conditions atx = ±L is
the codimension ofQ±. Furthermore, we emphasize that exponential weights do not affect separated boundary
conditions but that they change periodic boundary conditions.

2.4. Exponential dichotomies

The main tool that we use below to investigate the spectral properties of the familyT are exponential dichotomies
of the associated ordinary differential equation

d

dx
u = A(x; λ)u (2.9)

for u ∈ CN .

Definition 2.1 (Exponential dichotomies). Let I = R+, R− orR, and fixλ∗ ∈ C. We say that (2.9), withλ = λ∗
fixed, has an exponential dichotomy onI if there exist positive constantsK, κs andκu and a family of projections
P(x) defined and continuous forx ∈ I such that the following is true.
1. For any fixedy ∈ I andu0 ∈ CN , there exists a solutionϕs(x, y)u0 of (2.9) with initial valueϕs(y, y)u0 =
P(y)u0 for x = y, and we have

|ϕs(x, y)| ≤ K exp(−κs|x − y|)

for all x ≥ y with x, y ∈ I .
2. For any fixedy ∈ I andu0 ∈ CN , there exists a solutionϕu(x, y)u0 of (2.9) with initial valueϕu(y, y)u0 =
(1 − P(y))u0 for x = y, and we have

|ϕu(x, y)| ≤ K exp(−κu|x − y|)

for all x ≤ y with x, y ∈ I .
3. The solutionsϕs(x, y)u0 andϕu(x, y)u0 satisfy

ϕs(x, y)u0 ∈ R(P (x)) for all x ≥ y with x, y ∈ I,
ϕu(x, y)u0 ∈ N(P (x)) for all x ≤ y with x, y ∈ I.

The (x-independent) dimension ofN(P (x)) is referred to as the Morse indexi(λ∗) of the exponential dichotomy
on I . If (2.9) has exponential dichotomies onR+ and onR−, the associated Morse indices are denoted byi+(λ∗)
andi−(λ∗), respectively.

The existence of exponential dichotomies of (2.9) is related to hyperbolicity of the asymptotic matricesA±(λ);
recall thatA(x; λ) converges toA±(λ) as x → ±∞. If A±(λ) is hyperbolic, then we denote byEs,u

± (λ) the
associated stable and unstable eigenspaces. Furthermore, we denote the spectral projections ofA±(λ) associated
with the stable and unstable eigenvalues byP s±(λ) andP u±(λ), respectively.

Statement 1(Coppel [16]). Fix λ∗ ∈ C. Eq. (2.9) has an exponential dichotomy onR+ if and only if, the matrix
A+(λ∗) is hyperbolic. In this case, the Morse indexi+(λ∗) is equal to the dimensiondimEu+(λ) of the generalized
unstable eigenspace ofA+(λ∗). The same statements are true onR− withA+(λ∗) replaced byA−(λ∗).
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Finally, (2.9)has an exponential dichotomy onR if, and only if, it has exponential dichotomies onR+ andR−

with projectionsP±(x) so thatR(P+(0)) ⊕ N(P−(0)) = CN ; this requires in particular that the Morse indices
i+(λ∗) andi−(λ∗) are equal.

In fact, we can say more about the asymptotic behavior of exponential dichotomies and their dependence onλ.
We denote byϕ(x, y; λ) the evolution operator to (2.9) with initial timey. Recall that we ordered the eigenvalues
ν±
j (λ) of A±(λ); see (2.1). LetUδ(λ∗) be the ball inC with centerλ∗ and radiusδ.

Theorem 1 ([16,33,35]). Fix λ∗ ∈ C and assume thatA+(λ∗) is hyperbolic. There are then numbersκs+, κu+ and
δ > 0 so that, withi+ = i+(λ∗),

Reν+
i+(λ) > κu

+ > 0> −κs
+ > Reν+

i++1(λ)

for all λ ∈ Uδ(λ∗). Furthermore, there is aK ≥ 1 so that, for everyλ ∈ Uδ(λ∗), there are evolution operators
ϕs+(x, y; λ) andϕu+(x, y; λ), defined forx, y ≥ 0 and analytic inλ, such that, forx, y ∈ R+,

ϕ(x, y; λ) = ϕs
+(x, y; λ)+ ϕu

+(x, y; λ), ‖ϕs
+(x, y; λ)‖ ≤ K exp(−κs

+|x − y|), x ≥ y,

‖ϕu
+(x, y; λ)‖ ≤ K exp(−κu

+|x − y|), y ≥ x, ‖ϕu
+(x, x; λ)− P u

+(λ)‖ ≤ K(e−θ |x| + exp(−σ+|x|)),

whereθ appeared in Hypothesis1 andσ+ = κs+ + κu+ is a lower bound for the gap, in the real part, between the
stable and unstable spectral sets ofA+(λ).

The matricesϕs+(x, x; λ)andϕu+(x, x; λ)are complementary projections, and we define the subspacesEs+(x; λ) =
R(ϕs+(x, x; λ)) of dimensionN − i+ andEu+(x; λ) = R(ϕu+(x, x; λ)) of dimensioni+. For any subspacêE of
C
N withEs+(0; λ)⊕ Ê = CN , there is a constant C such that

dist(ϕ(x,0; λ)Ê, Eu
+(λ)) ≤ C[e−θ |x| + exp(−σ+|x|)], x ≥ 0,

whereEu+(λ) = R(P u+(λ)). (We refer to Section4.1 for a definition of the distance between subspaces.)
Finally, ϕs+(x, y; λ) and ϕu+(x, y; λ) are unique up to the choice ofEu+(0; λ): any other analytic choice of a

complement ofEs+(0; λ) leads to evolution operators with the above properties. Furthermore, these evolution
operators are exponential dichotomies in the sense of Definition2.1.

The same statements are true onR− with A+(λ) replaced byA−(λ). Furthermore, if(2.9) has an exponential
dichotomy onR, then the operators defined above can be chosen to be analytic inλ for all x, y ∈ R.

Proof. The proofs can be found in [35, Section 1.1] and [33, Sections 2.2 and 3.4]. �

Remark 2.1. We emphasize that the above results can be extended to the case where the asymptotic matrixA+(λ)
has also spectrum on the imaginary axis. The evolution operator can then be written as the sumϕ(x, y; λ) =
ϕs+(x, y; λ) + ϕc+(x, y; λ) + ϕu+(x, y; λ) of evolution operators that depend analytically onλ. The operatorsϕs+
andϕu+ satisfy the same estimates as before, while we have in addition

‖ϕc
+(x, y; λ)‖ ≤ K exp(κc

+|x − y|), x, y ≥ 0

for fixed0< κc+ < min{κs+, κu+}. This statement can be proved by applying Theorem1 twice to(2.9)with A replaced
byA+ η for η > 0 andη < 0 close to zero, respectively. We omit the details and instead refer to[38].

The following theorem proved by Palmer relates Fredholm properties of the operatorT (λ) to properties pertaining
to the existence of dichotomies of (2.9).
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Statement 2(Palmer [29,30]).Fix λ ∈ C. If (2.9) has exponential dichotomies onR+ andR−, thenT (λ) is
Fredholm with indexi−(λ) − i+(λ). Conversely, ifT (λ) is Fredholm, then(2.9) has exponential dichotomies on
R

+ andR− with associated Morse indicesi+(λ) and i−(λ), respectively, and the differencei−(λ) − i+(λ) is the
Fredholm index ofT (λ). Finally, T (λ) is invertible if, and only if,(2.9) has an exponential dichotomy onR. If
T is invertible, we denote byi = i+ = i− the spatial Morse index ofT that is given by the dimensiondimEu(0; λ)
of the unstable subspaceEu(0; λ) of the associated dichotomy.

As a consequence of Statement 2 and the above discussion,T η(λ) is Fredholm if, and only if, the matrices
A±(λ) + η± are both hyperbolic. The Fredholm index is then given by the difference of the dimensions of the
generalized unstable eigenspaces ofA±(λ)+ η±.

3. Spectra on the unbounded real line

3.1. Point and essential spectrum

We consider the family of operatorsT with parameterλ. The spectrum of the operatorT (λ) for fixedλ is of no
interest to us; instead, we consider the so-calledB-spectrum, see [23, Chapter IV], of(d/dx)− Â(x).

Definition 3.2 (Spectrum). We say thatλ is in the spectrum6 of T if T (λ) is not invertible. We say thatλ ∈ 6 is
in the point spectrum6pt of T , or alternatively thatλ ∈ 6 is an eigenvalue ofT , if T (λ) is a Fredholm operator
with index zero. The complement6 \6pt =: 6essis called the essential spectrum.

Example 1(continued). We decomposeA(x; λ) = Â+ λB as in (2.8). The spectrum ofT then coincides with the
spectrum of the associated elliptic differential operatorL = (d2/dx2)+ c(d/dx).

In particular,λ /∈ 6ess if, and only if, (2.9) has exponential dichotomies onR+ and onR− with equal Morse
index. The essential spectrum is determined by the asymptotic matricesA±(λ): T (λ) is Fredholm if, and only if,
the spectra ofA+(λ) andA−(λ) are disjoint from the imaginary axis; the Morse indicesi±(λ) are given by the
dimensions of the unstable eigenspaces ofA±(λ).

For anyλ in the point spectrum, we define the multiplicity ofλ as follows. Recall thatA(x; λ) is of the form
A(x; λ) = Â(x)+ λB(x). Suppose thatλ is in the point spectrum ofT , where

T (λ) = d

dx
− Â(x)− λB(x),

so thatN(T (λ)) = span{u1(x)}. We say thatλ has multiplicity` if there are functionsuj (x) for j = 2, . . . , `, so that

d

dx
uj = (Â(x)+ λB(x))uj + B(x)uj−1

for j = 2, . . . , ` but no solution to

d

dx
u = (Â(x)+ λB(x))u+ B(x)u`.

Here, we assumed that the functionsuj belong to the same function space that may include boundary conditions.
Finally, we say that an arbitrary eigenvalueλ of T has multiplicity` if the sum of the multiplicities of a maximal
set of linearly independent elements inN(T (λ)) is equal tò .
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Next, we discuss stability in exponentially weighted spaces. Chooseλ to the right of the essential spectrum. As
before, we label eigenvalues ofA±(λ) according to their real part and repeated with their multiplicity. For anyλ to
the right of the essential spectrum, we then have

Reν±
i∞(λ) > 0> Reν±

i∞+1(λ)

due to Hypothesis 1(2). These inequalities are satisfied upon varyingλ until λ touches the boundary of the essential
spectrum where at least one of these eigenvalues crosses the imaginary axis. Using exponential weightsη = (η−, η+)
has the effect of replacing the matricesA±(λ) byA±(λ)+ η±. Thus,λ is to the right of the essential spectrum of
T η provided the eigenvalues ofA±(λ) satisfy

Reν±
i∞(λ) > −η± > Reν±

i∞+1(λ).

We give several different notions of stability, and begin with spectral stability.

Definition 3.3 (Spectral stability). We say thatT is stable if6 is contained in the open left half-plane. We say that
T is unstable if part of its spectrum6 lies in the closed right half-plane.

The next definition measures stability up to exponential weights. We restrict the allowed set of exponential
weights to make them compatible with the asymptotic behavior of spatial eigenvalues for largeλ > 0 as expressed
in Hypothesis 1(2).

Definition 3.4 (Transient and remnant instability). Suppose that6essis not contained in the open left half-plane.
We then say thatT is transiently unstable if there are exponential weightsη(λ) such thatT η(λ)(λ) is invertible with
spatial Morse indexi∞ for everyλ in the closed right half-plane; we say thatT is remnantly unstable if it is not
transiently unstable.

We refer to Statement 2 in Section 2.4 for the definition of the spatial Morse index.
We emphasize that the weightη that we use to invertT η(λ)may depend uponλ; in other words, we do not require

that the spectrum ofT η lies in the open left half-plane for some choice ofη.
Note that, despite its name, we really consider a transient instability as some kind of stability: if a wave is

transiently unstable, it is stable in an exponentially weighted norm. In such a norm, unstable modes that travel
sufficiently fast in one preferred direction are considered to be stable.

In Section 3.3, we shall compare transient instabilities with convective instabilities. Convective instabilities are
related to the absence, in the right half-plane, of temporal eigenvaluesλ that correspond to certain spatial double
rootsν of the dispersion relationd±(λ, ν) = 0; this latter condition typically implies pointwise stability.

Example 1(continued). Without exponential weights, we have

A+ = A− =
(

0 1
λ −c

)
,

and the associated eigenvaluesν satisfyν2 + cν − λ = 0, i.e.ν1,2 = −1
2c ± (1

4c
2 + λ)1/2. Therefore,ν ∈ iR if,

and only if,λ = −k2 + ick for somek ∈ R; by the arguments above, this gives the essential spectrum6ess =
{−k2 + ick; k ∈ R} with “eigenfunctions” eikx(1, ik)T. Using weights induced byη+ = η− = η, the essential
spectrum is shifted toλ = −k2 + η(η − c) + ik(c − 2η) with “eigenfunctions” exp((ik − η)x)(1, ik − η)T. This
curve is shifted further to the left ifη2 − ηc is minimal. Thus,η = 1

2c gives the optimal weight, and we have
Reλ ≤ −1

4c
2. This corresponds to the point where the characteristic polynomialν2 + cν − λ has a double root in
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the complex plane. Note that the convection termcux with c positive has the effect that localized initial conditions
travel to the left. Exponential weights withη positive are compatible with such temporal behavior as these weights
penalize solutions that travel to the right and favor solutions that travel to the left.

Finally, we remark that the point spectrum is often defined as the set of all isolated eigenvalues with finite
multiplicity, i.e. as the set̃6pt of thoseλ for which T (λ) is Fredholm with index zero, the null space ofT (λ) is
non-trivial, andT (λ̃) is invertible for allλ̃ in a small neighborhood ofλ.

The sets6pt and6̃pt differ in the following way. The set ofλ for which T (λ) is Fredholm with index zero is
open. Take a connected componentC of this set, then the following alternative holds. EitherT (λ) is invertible for
all but a discrete set of elements inC, or elseT (λ) has a non-trivial null space for allλ ∈ C. We assume that the
latter case does not occur.

Hypothesis 3(Isolated eigenvalues). Eigenvalues inC \6essare isolated with finite multiplicity.

In the connected component ofC \ 6ess that contains large positive real numbers, eigenvalues are typically
isolated; see, for instance [1] for the relevant argument.

3.2. Absolute spectrum

On bounded domains with separated boundary conditions, it is not the essential spectrum but what we call the
absolute spectrum that is important. We remark that the absolute spectrum is not a “spectrum” in that it is not defined
as the set of complex numbers for which a certain operator is not invertible; nevertheless, the absolute spectrum
gives information about the spectra of certain operators.

Definition 3.5 (Absolute spectrum). The subset6+
abs of C consists exactly of thoseλ for which Reν+

i∞(λ) =
Reν+

i∞+1(λ). Analogously,λ is in 6−
abs if, and only if, Reν−

i∞(λ) = Reν−
i∞+1(λ). Finally, we say thatλ is in the

absolute spectrum6absof T if λ is in6+
absor in6−

abs(or in both).

In other words, ifλ /∈ 6abs, then there are numbersη± such that Reν±
i∞(λ) > −η± > Reν±

i∞+1(λ). In particular,
if we ignore point spectrum, thenT is transiently unstable if, and only if, its absolute spectrum is contained in the
open left half-plane.

In particular, for constant-coefficient matricesA(x; λ) = A∞(λ), we have thatT is transiently unstable if, and
only if, its absolute but not its essential spectrum is contained in the open left half-plane.

Example 1(continued). Recall that

A+ = A− =
(

0 1
λ −c

)

with spatial eigenvaluesν1,2 = −1
2c± (1

4c
2 +λ)1/2. Thus, we have6abs= (−∞,−1

4c
2] since then Reν1 = Reν2.

In particular, we have6ess 6= 6abs except whenc = 0. The absolute eigenmodes for the absolute spectrum are
exp((−1

2c + ik)x)(1,−1
2c + ik)T, wherek ∈ R. Growing exponentially asx → −∞, they reflect the transport to

the left that is induced by the linear drift termcux .

Typically, we expect that6abs 6= 6ess. One exception is reversible systems that admit a symmetryx 7→ −x. In
this case, whenever a spatial eigenvalue crosses from right to left, then, by symmetry, another spatial eigenvalue
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crosses simultaneously from left to right. Thus, for reversible systems, we expect that6abs= 6ess. An example is
the diffusion operatoruxx without convection; see above withc = 0.

3.3. Convective instability and pointwise decay

Convective instability is defined as follows. As before, we label the eigenvalues ofA±(λ) according to their real
part so that

Reν±
1 (λ) ≥ · · · ≥ Reν±

i∞(λ) ≥ Reν±
i∞+1(λ) ≥ · · · ≥ Reν±

N(λ).

We denote byρdb the largest real number such that there exists aλ∗ ∈ C with Reλ∗ = ρdb so thatν+
i∞(λ∗) =

ν+
i∞+1(λ∗) or ν−

i∞(λ∗) = ν−
i∞+1(λ∗). Note thatλ∗ always corresponds to a spatial double rootν of one of the

dispersion relationsd±(λ, ν) = 0 (recall that replacingλ = iω and ν = −ik with spatio-temporal behavior
exp(i(ωt−kx)) gives the standard form of the linear dispersion relation at the asymptotic states, with group velocity
dω/dk = −dλ/dν). The above criterion on the double root, namely that is has to involve the spatial eigenvalues
with indexi∞ andi∞ + 1, is often called the pinching condition; see [9].

Definition 3.6 (Convective and absolute instability). Suppose that6essis not contained in the open left half-plane.
We then say thatT is convectively unstable ifρdb < 0, while we say thatT is absolutely unstable if
ρdb ≥ 0.

We shall see below that convective instability sometimes implies pointwise stability: perturbations grow in
function space but decay pointwise for each fixedx. In other words, they are convected away. The different spectra
that we used as well as their characterization in terms of the asymptotic matrices are illustrated in Fig. 2.

The next example demonstrates that even for constant matricesA(λ), the operator may be remnantly unsta-
ble but not absolutely unstable: this means that, even though there are no double spatial eigenvalues forλ in
the closed right half-plane, we cannot move the temporal spectrum into the left half-plane by using exponential
weights.

Fig. 2. A schematic picture of the various spectra that we defined and their relationship to the spatial spectra of the matrixA+(λ) = A−(λ)
that we plotted as inlets. The essential spectrum ofT η is denoted by6ηess; the dotted line in the spatial spectra consists of all spatial complex
numbers with real part−η. The two circles in the absolute spectrum mark the temporal eigenvalues that correspond to spatial double roots.
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Fig. 3. The thick curves correspond to the essential spectrum of the operator (3.1) while the inlets represent the spatial spectra in the different
regions. The two spectral curves intersect atλ = i. At this point, the spatial eigenvalues on the imaginary axis areν1 = i andν2 = −i which are
not equal. Hence, there are no double spatial eigenvaluesν for λ on (or to the right of) the imaginary axis, even thoughλ = i is in the absolute
spectrum.

Example 2. Consider the operatorL

L

(
U1

U2

)
=
(

∂xU1

−(∂2
x + 1)2U2 − ∂xU2

)
(3.1)

as well as the associated eigenvalue problem

∂xU1 = λU1, −(∂2
x + 1)2U2 − ∂xU2 = λU2.

Eigenvaluesν of the spatial dynamics solve the characteristic equation

(ν − λ)((ν2 + 1)2 + ν + λ) = 0.

Double roots occur ifν is a double root of one of the factors or if the roots of the two factors coincide. It is not hard
to verify that all double roots that arise as collisions of unstable eigenvaluesν1 and stable eigenvaluesν2 occur at
values ofλ in the open left half-plane; see Fig. 3. On the other hand, the essential spectrum cannot be pushed into
the open left half-plane by means of exponential weights since the different signs of the transport terms in the two
components ofL would always lead to an instability in one of the two components. Therefore, addingεU1 to the
first component ofL andεU2 to the second produces an instability which, forε > 0 sufficiently small, does not
disappear when introducing exponential weights even though all relevant spatial double roots occur forλ in the
open left half-plane. As we shall see below, this instability is also present on any large bounded interval provided we
couple the two components appropriately through the boundary conditions; in fact, generic choices of the boundary
conditions will produce such an instability.

Example 3. The same phenomenon can be observed in a Turing–Hopf instability of a reaction–diffusion system
provided a small drift term is added to destroy the reflection symmetry. In a Turing–Hopf instability, the first unstable
modes are travelling waves of the form sin(ωt − kx) and sin(ωt + kx) with non-zerok andω. One of these modes
travel to the left, the other one to the right. The superposition of these waves is a standing wave sin(ωt) cos(kx)
that corresponds to a double root in the dispersion relation; in other words, the most unstable eigenmodes have zero
group velocity. Adding a linear drift termcux to the equation transforms these eigenmodes into sin(ωt − (k− c)x)
and sin(ωt + (k + c)x), respectively, which have non-zero group velocity. The spatial eigenvalues±i(k − c) and
±i(k + c) are non-resonant, and the system is therefore convectively unstable. On the other hand, the presence of
waves that travel to the left and to the right shows that the instability cannot be suppressed in exponentially weighted
spaces; hence, the operator is not transiently unstable.
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We conclude this section with a brief digression on pointwise stability; we refer to [9] for more details and
references regarding this topic. Suppose thatT (λ) is invertible so that (2.9) has an exponential dichotomy onR
with evolution operatorsϕu,s(x, y; λ). We can then construct the Green’s functionG(x, y; λ) of the operatorT (λ)
in the following fashion. The solution ofT (λ)u = h is given explicitly by

u(x) =
∫
R

G(x, y; λ)h(y)dy,

where

G(x, y; λ) =
{−ϕu(x, y; λ) for x < y,

ϕs(x, y; λ) for x > y.

Using the Green’s function, the solution of the linear initial-value problem of

∂xu− A(x; ∂t )u = 0 (3.2)

can be constructed via Laplace transform int . Recall thatA(x; λ) is given by

A(x; λ) = Â(x)+ λB(x),

and define

u(x, t) = − 1

2π i

∫
0

eλt
∫
R

G(x, y; λ)B(y)u0(y)dy dλ,

where the contour0 is to the right of6; the precise shape of0 depends on the type of the problem. For parabolic
problems,0 can be chosen to include a sector of the leftλ-half-plane; for hyperbolic problems,0 is a vertical
line, and the integral is understood to be the principal value. Under reasonable convergence assumptions, and
under certain compatibility conditions onu0(x), the functionu(x, t) then satisfies the PDE (3.2) with initial data
u(x,0) = u0(x).

If the contour0 can be deformed continuously into a contour that is contained in the left half-plane with-
out changing the value of the integral, the zero-solution is pointwise stable. This follows, for instance, from the
Riemann–Lebesgue lemma

|u(x, t)| ≤ 1

2π

∣∣∣∣
∫
R

∫
R

eiωtG(x, y; iω)B(y)u0(y)dω dy

∣∣∣∣ → 0

ast → ∞.
To deform the contour, we need analyticity ofG in λ for λ in the right complex half-plane and suitable decay

estimates for large values ofλ. Typically, stability, or at least convective instability of the essential spectrum,
is necessary for analyticity ofG in λ, since multiple eigenvalues typically create branch points ofG. Sufficient
conditions are given by convective instability together with the absence of embedded point spectrum. However, an
additional condition, known as the Gap lemma, is needed in order to be able to continue the Green’s function into
regions where hyperbolicity (and exponential dichotomies) is lacking. Roughly speaking, the Gap lemma states that
analytic continuation is possible if the exponential convergence of the coefficients ofA(x; λ) is faster than the lack
of hyperbolicity that is created by the unstable and stable part of the overlapping spectrum ofA±(λ); see [22,25].
Necessary and sufficient conditions do not seem to be known.
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4. Persistence of isolated eigenvalues and resonance poles with finite multiplicity

In this section, we begin our investigation of the spectrum ofTL on the bounded interval(−L,L); see (2.6) and
(2.7). The goal is to characterize the spectra ofTL for large values ofL. Before we continue, we point out that
Fredholm properties no longer classify the spectrum.

Lemma 4.1. The operatorsTL(λ) on the bounded interval(−L,L)with periodic or separated boundary conditions
are Fredholm with index zero for allλ.

Proof. This can be readily seen by consideringTL(λ) as a compact perturbation of d/dx with periodic or separated
boundary conditions. �

Hence, it suffices to locate eigenvalues ofTL. We begin by studying the persistence of eigenvalues and resonance
poles under domain truncation. In addition, we show that separated boundary conditions can sometimes generate
additional eigenvalues on(−L,L).

Our strategy is to use various versions of the Evans function. Each Evans function is designed to track isolated
eigenvalues with finite multiplicity of one of the operators that we are interested in. We shall then show that the Evans
functions defined for bounded intervals are small perturbations of the Evans function that is associated with the entire
real line. Since all these functions are analytic, we can then conclude that eigenvalues persist with their multiplicity.

Throughout the remainder of this paper, we denote byUδ(λ∗) the ball inC with centerλ∗ and radiusδ.

4.1. Evans functions

LetE±(λ)be two subspaces ofCN that depend analytically onλ such thatn−+n+ = N , wheren± := dimE±(λ)
is independent ofλ. Choose vectorsv±

1 (λ), . . . , v
±
n±(λ) such that

E±(λ) = span{v±
1 (λ), . . . , v

±
n±(λ)},

andv±
j (λ) is analytic inλ for all j ; this is possible due to [26, Chapter II.4.2]. We then define

E−(λ) ∧ E+(λ) := det[v−
1 (λ), . . . , v

−
n−(λ), v

+
1 (λ), . . . , v

+
n+(λ)] ∈ C.

Note that this function is analytic inλ. In addition, its zeros and the order of its zeros do not depend on the choice
of the bases; in fact, any two such functions differ by a product with a non-zero analytic complex-valued function.
In this sense, the function depends only on the two subspaces.

Remark 4.2. We shall often use the following argument: ifE1(λ) andE2(λ) are two subspaces ofCN that depend
analytically onλ ∈ U2δ(λ∗) so thatdimE1(λ) + dimE2(λ) = N , then eitherdim(E1(λ) ∩ E2(λ)) > 0 for all
λ ∈ U2δ(λ∗) or elseE1(λ) ⊕ E2(λ) = CN for all λ ∈ Uδ(λ∗) except for at most finitely manyλ ∈ Uδ(λ∗). This
statement follows immediately from analyticity of the determinantE1(λ) ∧ E2(λ) in λ ∈ U2δ(λ∗).

The following remark, which will be used repeatedly below, shows that the dependence ofD on the subspaces
E± is continuous in an appropriate sense: we say that twok-dimensional subspacesE andÊ of CN areε-close
provided|e − ê| ≤ ε for all unit vectorse ∈ E andê ∈ Ê.

Remark 4.3. Suppose that for someλ∗ ∈ C,

D(λ) := E−(λ) ∧ E+(λ) = (λ− λ∗)` + O(|λ− λ∗|`+1)
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for somè ≥ 0. Suppose that̂E±(λ) andE±(λ) are ε-close to each other, withε sufficiently small, uniformly for
all λ nearλ∗. By Rouché’s theorem, we then have that

D̂(λ) = Ê−(λ) ∧ Ê+(λ)

has` zeros(counted with multiplicity) nearλ∗, and these zeros areε1/`-close toλ∗.

Assume thatD(λ) is an analytic function. We denote by ord(λ∗,D) the order ofλ∗ as a zero ofD(λ). If the order
is finite, then it is equal to the winding number ofD(λ) about any sufficiently small circle inC that is centered
atλ∗.

4.2. Periodic boundary conditions

We begin by investigating the behavior of eigenvalues under domain truncation for periodic boundary conditions.
We demonstrate that eigenvalues persist with their multiplicity without any additional assumptions and that no
additional eigenvalues are created.

Throughout this section, we assume thatA±(λ) are equal to each other, and denoteA±(λ) = A0(λ).
Our proofs are based upon the Evans function. Eigenvalues ofT can be found by seeking bounded solutions to

u′ = A(x; λ)u. (4.1)

For λ /∈ 6ess, the asymptotic matrixA0(λ) is hyperbolic. Eq. (4.1) then has exponential dichotomies onR+ and
R

−, and we denote the associatedx-dependent stable and unstable subspaces defined forx ∈ R+ andx ∈ R− by
E

s,u
+ (x; λ) andEs,u

− (x; λ), respectively, see Section 2.4. Thus, for everyλ /∈ 6ess, we can define the Evans function

D∞(λ) = Eu
−(0; λ) ∧ Es

+(0; λ). (4.2)

Note that the dimension of the subspaces that appear in the wedge products in (4.2) add up toN due to the assumption
onλ. It has been proved in [1,20] that ord(λ∗,D∞) is equal to the multiplicity ofλ∗ as an eigenvalue ofT .

Next, for everyλ /∈ 6ess, we define

Dper(λ) = det[ϕ(0,−L; λ)− ϕ(0, L; λ)], (4.3)

whereϕ(x, y; λ) is theλ-dependent linear evolution operator to (4.1) with initial timey. It has been proved in [18]
thatλ∗ is an eigenvalue ofT per

L with multiplicity ` if, and only if,λ∗ is a zero ofDper(λ) of order`.

Theorem 2(Periodic boundary conditions).Assume thatλ∗ /∈ 6essand thatord(λ∗,D∞) = ` for somè ≥ 0.For
every smallδ > 0, there is then anL∗ > 0 such thatT per

L has preciselỳ eigenvalues(counted with multiplicity)
in theδ-neighborhoodUδ(λ∗) of λ∗ in C for everyL ≥ L∗. For ` > 0, these eigenvalues areexp(−2κL/`)-close
to λ∗ for all L ≥ L∗. Here,κ = min{κu, κs} is the distance of the spectrum ofA0(λ∗) from the imaginary axis.

The statement regarding the persistence of eigenvalues with their multiplicity has been proved first in [19] using
a topological construction that involved Chern numbers. For the sake of completeness, we include a shorter proof
that illustrates in addition that the eigenvalues on the unbounded and the bounded interval are exponentially close;
see also [8].

Proof. The strategy is to show thatD∞(λ) andDper(λ) are e−2κL-close to each other for allλ close toλ∗. Recall
that

Dper(λ) = det[ϕ(0,−L; λ)− ϕ(0, L; λ)].
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Sinceλ∗ /∈ 6ess, the matricesA0(λ) are hyperbolic forλ close toλ∗, and we denote their stable and unstable
eigenspaces byEs

0(λ) andEu
0(λ), respectively. Leti0 = dimEu

0(λ∗). Recall thatEu−(x; λ) andEs+(x; λ) consist of
precisely those solutions to

u′ = A(x; λ)u
that converge to zero asx → −∞ andx → ∞, respectively. The Evans functionD∞(λ) measures non-trivial
intersections of these subspaces evaluated atx = 0; see (4.2) and Section 4.1. To capture these intersections, if they
exist, we choose analytic bases{v−

i (λ)}i=1,... ,i0 and{v+
i (λ)}i=i0+1,... ,N of Eu−(0; λ) andEs+(0; λ), respectively.

We shall use that, due to Theorem 1, the spacesE
s,u
+ (L; λ) andEs,u

− (−L; λ) are e−θ̂L-close toEs,u
0 (λ), where

θ̂ = min{θ, κs + κu}.
For everyi with 1 ≤ i ≤ i0, there are then unique vectorsw+

i (λ) ∈ Eu+(L; λ) andw−
i (λ) ∈ Es−(−L; λ) such

that

ϕ(−L,0; λ)v−
i (λ) = w+

i (λ)− w−
i (λ),

sinceEu+(L; λ) andEs−(−L; λ) are e−θ̂L-close toEu
0(λ) andEs

0(λ), respectively (see above), and since the direct

sum of the latter two spaces isCN . SinceEu−(−L; λ) is also e−θ̂L-close toEu
0(λ), see again above, we have

|w+
i (λ)| ≤ |ϕ(−L,0; λ)v−

i (λ)|, |w−
i (λ)| ≤ e−θ̂L|ϕ(−L,0; λ)v−

i (λ)|.
We conclude thatw+

i (λ) is of the order exp(−κuL), while w−
i (λ) is of the order exp(−(θ̂ + κu)L). Finally, for

1 ≤ i ≤ i0, we define

ui(λ) := w+
i (λ) = ϕ(−L,0; λ)v−

i (λ)+ w−
i (λ).

Analogously, for indicesi with i0 + 1 ≤ i ≤ N , there are unique vectorsw+
i (λ) ∈ Eu+(L; λ) andw−

i (λ) ∈
Es−(−L; λ) such that

ui(λ) := −w−
i (λ) = −ϕ(L,0; λ)v+

i (λ)− w+
i (λ).

For i0 + 1 ≤ i ≤ N , the vectorsw−
i (λ) are of the order exp(−κsL), whilew+

i (λ) is of the order exp(−(θ̂ + κs)L).
Using the estimates above and the definition ofv±

i (λ), it is not hard to verify that the vectorsui(λ) with 1 ≤ i ≤ N

form a basis ofCN . We conclude that

(ϕ(0,−L; λ)− ϕ(0, L; λ))ui(λ) =
{
v−
i (λ)+ ϕ(0,−L; λ)w−

i (λ)− ϕ(0, L; λ)w+
i (λ), 1 ≤ i ≤ i0,

v+
i (λ)+ ϕ(0, L; λ)w+

i (λ)− ϕ(0,−L; λ)w−
i (λ), i0 + 1 ≤ i ≤ N,

where the terms involvingw±
i (λ) are of the order e−2κL with κ = min{κu, κs}. On the other hand, we have

D∞(λ) = det[v−
1 (λ), . . . , v

−
i0
(λ), v+

i0+1(λ), . . . , v
+
N(λ)].

Invoking Remark 4.3 then proves the statement. �

Upon using the results in [24], it follows from Sandstede [36] that the rate of convergence in the above theorem
is optimal.

4.3. Separated boundary conditions

In this section, we investigate the behavior of eigenvalues under domain truncation for separated boundary
conditions.
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4.3.1. The set-up
Throughout this section, we fix an elementλ∗ that does not belong to the absolute spectrum6abs. Sinceλ∗ is not

in the absolute spectrum, we find weightsη = (η−, η+) such that the eigenvaluesν±
j (λ) of A±(λ) satisfy

Reν±
i∞(λ) > −η± > Reν±

i∞+1(λ)

for all λ in a smallδ∗-neighborhoodUδ∗(λ∗) of λ∗ withUδ∗(λ∗)∩6abs= ∅. We fix these weights from now onwards
and varyλ in theUδ∗(λ∗). In particular, the operatorT η(λ) is Fredholm with index zero for any suchλ, and the
associated asymptotic Morse indices are both equal toi∞. We then consider the equation

dv

dx
= (A(x; λ)+ η(x))v, (4.4)

whereη(x) = η+ for x > 0 andη(x) = η− for x < 0; see (2.5).

Notation. Any quantity that refers to the weighted equation (4.4) has a superscript tilde (∼ ).

Thus, the evolution operator of (4.4) is denoted byϕ̃(x, y; λ). The asymptotic matricesA±(λ)+η± are hyperbolic,
and we denote bỹEs,u

± (λ) their stable and unstable subspaces. Also, by hyperbolicity of the asymptotic matrices
A±(λ)+ η±, (4.4) has exponential dichotomies onR± with x-dependent stable and unstable subspacesẼ

s,u
± (x; λ),

and we can construct an analytic Evans function forT η by

D̃∞(λ) = Ẽu
−(0; λ) ∧ Ẽs

+(0; λ)

for λ ∈ Uδ∗(λ∗). We also define

Dsep(λ) = ϕ̃(0,−L; λ)Q− ∧ ϕ̃(0, L; λ)Q+, D̃−(λ) = Q− ∧ Ẽs
−(λ), D̃+(λ) = Q+ ∧ Ẽu

+(λ). (4.5)

Note that the dimension of the subspaces that appear in the wedge products in (4.5) add up toN due to the assumption
onλ. This is the set-up that we use below.

We point out that the Evans functionDsepdoes not depend upon the choice of the weight. Indeed, solutionsu(x)

to the original equation (4.1) andv(x) to (4.4) only differ by multiplication by the scalar eη(x)x . Thus, the direction
of solutions is not changed, and in particular, thex-evolution of subspaces is independent of the weight.

We briefly comment on the dependence of the other Evans functions on the choice of our weight. Through
the separated boundary conditions, a canonical dimension, namelyi∞, is selected via the number of boundary
conditions at the endpoints of the interval; see Hypothesis 2. The relevant information that we require is a spectral
decomposition of the spatial spectrumϒ± of the original asymptotic matricesA±(λ) into two spectral setsϒs,u

±
which is induced by a gap in the real part (i.e. the spectral setsϒ

s,u
± are such that Reνs± < Reνu± for any two elements

νs± ∈ ϒs± andνu± ∈ ϒu±); most importantly, the associated generalized “stable” and “unstable” eigenspaces have
dimensioni∞ andN−i∞, respectively. One way of obtaining these eigenspaces is by introducing a weight so that the
spectral decomposition is given by eigenvalues with negative and positive real part. Afterwards, this decomposition
is extended dynamically tox-dependent subspaces of (4.4), and the resulting subspaces are then used to construct the
Evans function. Again, weights allow us to construct thesex-dependent subspaces by using exponential dichotomies.
None of these constructions, however, depends really upon the weights: what we require is that we can distinguish
solutions by their growth or decay rate (corresponding to the spectral gap) and that the spaces of initial data leading
to these solutions have the correct dimension, namely the one selected by the boundary conditions. As we already
mentioned, thex-evolution of subspaces does not depend on the weight.
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4.3.2. The persistence and generation of eigenvalues and resonance poles
We discuss the persistence of eigenvalues under domain truncation as well as the potential generation of additional

eigenvalues through the boundary conditions. Throughout this section, we use the set-up introduced in Section 4.3.1.
Eigenvalues ofT sep

L can be found as zeros of the functionDsep(λ).

Lemma 4.2(Ref. [21]). Assume thatλ∗ /∈ 6abs, thenλ∗ is an eigenvalue ofT sep
L with multiplicity` if, and only if,

λ∗ is a zero ofDsep(λ) of order`.

Proof. For the case of eigenvalues of reaction–diffusion equations with separated boundary conditions, the proof
can be found in [21, Proposition 4.1]. The proof for the more general situation considered here is the same, save for
notation, and we omit it. �

For separated boundary conditions, eigenvalues and resonance poles persist with their multiplicity provided the
boundary conditions satisfy appropriate transversality conditions. The situation where these conditions are violated
is discussed below.

Lemma 4.3. Assume thatλ∗ /∈ 6abs. Choose a weightη as in Section4.3.1,and suppose that̃D±(λ∗) 6= 0
and ord(λ∗, D̃∞) = ` for some` ≥ 0. For every smallδ > 0, there is then anL∗ > 0 such thatT sep

L has
precisely` eigenvalues(counted with multiplicity) in Uδ(λ∗) for everyL ≥ L∗. For ` > 0, these eigenvalues are
exp(−σL/`)-close toλ∗ for all L ≥ L∗, whereσ = min{σ±}, and σ± = Reν±

i∞(λ∗) − Reν±
i∞+1(λ∗) are the

spectral gaps of the matricesA±(λ∗).

For reaction–diffusion systems, this lemma has been proved in [8] forλ∗ to the right of the essential spectrum.
Note that the rate of convergence proved in [8] is smaller than the rate that we establish here. The reason for the
improved rate is that we can always balance the distance from the stable and unstable part of the spectrum to the
imaginary axis by adjusting the weights. In contrast to the case of periodic boundary conditions, this does not change
the boundary conditions. Again, our rate is optimal, see [36], except when the boundary conditionsQ− andQ+
happen to coincide with the unstable and stable subspacesẼu−(λ∗) andẼs+(λ∗), respectively.

Proof. The proof is similar to the one given above for periodic boundary conditions. We consider the weighted
equation (4.4) and use the notation introduced in Section 4.3.1, recall that

Dsep(λ) = ϕ̃(0,−L; λ)Q− ∧ ϕ̃(0, L; λ)Q+.

Choose an analytic basis{v+
j (λ)}j=1,... ,N−i∞ of Ẽs+(0; λ). SinceD̃+(λ) 6= 0 for all λ close toλ∗ by assumption,

we have

Q+ ⊕ Ẽu
+(λ) = CN.

SinceẼs+(L; λ) and Ẽu+(L; λ) converge toẼs+(λ) and Ẽu+(λ), respectively, exponentially fast asL → ∞, see
Theorem 1, there are unique vectorsw+

j (λ) ∈ Ẽu+(L; λ) such that

Q+ = span{ϕ̃(L,0; λ)v+
j (λ)+ w+

j (λ); j = 1, . . . , i∞}.

As in Theorem 2, we obtain that

ϕ̃(0, L; λ)Q+ = span{v+
j (λ)+ ϕ̃(0, L; λ)w+

j (λ); j = 1, . . . , i∞}.
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As a consequence,ϕ̃(0, L; λ)Q+ andẼs+(0; λ) are exp(−σ+L)-close to each other. By the same argument, we have
thatϕ̃(0,−L; λ)Q− andẼu−(0; λ) are exp(−σ−L)-close to each other. Since

D̃∞(λ) = Ẽu
−(0; λ) ∧ Ẽs

+(0; λ),
the statements of the lemma follow from Remark 4.3 and Lemma 4.2. �

Remark 4.4. In the set-up of Lemma4.3,we have that an eigenfunctionu(x) to the original equation(4.1)on the
interval (−L,L) typically satisfies

|u(−L)| ≈ exp(−Reν−
i∞(λ)L), |u(L)| ≈ exp(Reν+

i∞+1(λ)L).

In particular, the convective properties of resonance poles manifest themselves via the growth of the associated
eigenmodes atx = ±L depending on the direction of transport. The remark is a consequence of the proof of
Lemma4.3.

Next, we investigate eigenvalues that are created by separated boundary conditions near points where eitherD̃+
or D̃− vanishes.

Lemma 4.4. Assume thatλ∗ /∈ 6abs. Choose a weightη as described in Section4.3.1.Suppose that̃D−(λ∗) 6= 0,
D̃∞(λ∗) 6= 0 andord(λ∗, D̃+) = ` for somè > 0.For everyδ > 0 sufficiently small, there is then anL∗ > 0 such
that T sep

L has preciselỳ eigenvalues(counted with multiplicity) in Uδ(λ∗) for everyL ≥ L∗. In addition, these
eigenvalues areexp(−α+L/`)-close toλ∗ for all L ≥ L∗. Here,α+ = min{θ, σ+} whereθ appears in Hypothesis
1, andσ+ has been introduced in Lemma4.3.

We have an analogous lemma in the case thatD̃+(λ∗) 6= 0, D̃∞(λ∗) 6= 0 and ord(λ∗, D̃−) = `.

Proof. The general set-up is as in Section 4.3.1. We write

Dsep(λ) = ϕ̃(0,−L; λ)Q− ∧ ϕ̃(0, L; λ)Q+ = det[ϕ̃(0, L; λ)] × (ϕ̃(L,−L; λ)Q− ∧Q+),

and note that it suffices to determine the number of zeros of the function

ϕ̃(L,−L; λ)Q− ∧Q+

since det[̃ϕ(0, L; λ)] 6= 0 for allL andλ. SinceQ− ⊕ Ẽs−(λ∗) = CN by assumption, it follows that̃ϕ(0,−L; λ)Q−
is exp(−σ−L)-close toẼu−(0; λ) uniformly for λ close toλ∗; see the proof of Lemma 4.3. SincẽD∞(λ∗) 6= 0,
we see thatẼu−(0; λ) ⊕ Ẽs+(0; λ) = CN . Hence, we can conclude thatϕ̃(L,−L; λ)Q− is exp(−σ+L)-close
to Ẽu+(L; λ), and therefore exp(−min{θ, σ+}L)-close toẼu+(λ) uniformly in λ; see the arguments in the proof
of Lemma 4.3. SinceD̃+(λ) = Q+ ∧ Ẽu+(λ), the statements of the lemma follow again from Remark 4.3 and
Lemma 4.2. �

The general case wherẽD± andD̃∞ vanish for the same value ofλ is treated in the following theorem.

Theorem 3 (Separated boundary conditions).Assume thatλ∗ /∈ 6abs. Choose a weightη as described in Section
4.3.1.Suppose thatord(λ∗, D̃±) = `± and ord(λ∗, D̃∞) = `∞ for some`± and `∞. For every smallδ > 0,
there is then anL∗ > 0 such thatT sep

L has preciselỳ − + `+ + `∞ eigenvalues(counted with multiplicity) in a
δ-neighborhood ofλ∗ for everyL ≥ L∗. If either `± = 0 or `∞ = 0, then error estimates for the eigenvalues on
(−L,L) are given in Lemmas4.3and4.4,respectively.
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Proof. Recall that, ifD̃±(λ) 6= 0, thenDsep(λ) andD̃∞(λ) are e−σL-close to each other uniformly inL andλ; see
the proof of Lemma 4.3. Hence, there is aδ∗ > 0 such that, for every 0< δ < δ∗, there are numbersL∗ andε∗ > 0
with |Dsep(λ)| > ε∗ for all L ≥ L∗ and allλ with |λ − λ∗| = δ. In particular, the number of zeros ofDsep inside
theδ-neighborhoodUδ(λ∗) is independent ofL for L ≥ L∗. In the following, we fix such aδ and the associated
ε∗ > 0.

Next, choose a subspacêQ+ so close toQ+ that|D̃+(λ)− D̂+(λ)| < 1
2ε∗ for λ with |λ− λ∗| = δ but such that

Q̂+ ⊕ Ẽu+(λ∗) = CN . Here,D̂+(λ) = Q̃+ ∧ Ẽu+(λ). Hence, the number of zeros ofD̂+(λ) insideUδ(λ∗) is also
equal tò +.

Similarly, choose a subspacêQ− with analogous properties; in addition, we require thatQ̂− is chosen such that
D̂−(λ) 6= 0 wheneverD̂+(λ) = 0 for λ ∈ Uδ(λ∗). Such a choice is clearly possible sinceD̂+(λ) has only finitely
many zeros inUδ(λ∗).

As a consequence of the above arguments, there is a numberL∗ that depends onδ and the above choices of
Q̂± such thatDsep(λ) andD̂sep(λ) are exp(−σL)-close to each other for allλ with |λ− λ∗| = δ and allL ≥ L̃∗;
indeed, both functions are e−σL-close toD̃∞(λ). Thus,Dsep(λ) andD̂sep(λ) have the same number of zeros in
Uδ(λ∗) for allL sufficiently large. Due to Lemmas 4.3 and 4.4,D̂sep(λ) has preciselỳ− +`+ +`∞ zeros inUδ(λ∗)
sinceD̃∞(λ) has not changed, and̂D±(λ) andD̃∞(λ) have no common zeros by construction. This completes the
proof. �

4.4. Resolvent estimates for periodic and separated boundary conditions

In this section, we establish estimates for the inverse of the operatorTL(λ) posed on the interval(−L,L).
For periodic boundary conditions, it is a consequence of the results presented in [8,27] that the inverse ofT

per
L (λ)

is bounded uniformly inL for λ away from the point and essential spectrum ofT posed onR. Alternatively, the
proofs given below for separated boundary conditions can be adapted in a straightforward fashion to the case of
periodic boundary conditions.

We therefore concentrate on the case of separated boundary conditions. Our main result in this section is that,
under certain assumptions which are stated below, the norm of the inverse ofT

sep
L (λ) grows exponentially inL

for any fixedλ for which i+(λ) or i−(λ) differs from i∞; recall thati±(λ) are the asymptotic Morse indices of
the matricesA±(λ). Roughly speaking, the inverse ofT sep

L (λ) grows exponentially for everyλ that is to the left
of the boundary of the essential spectrum while being close to it: note that the boundary of the essential spectrum
is given as the union of algebraic curves. For the operatoruxx + ux , this fact has been proved in [34]. Besides its
importance for the stability and convergence of numerical algorithms for the computation of spectra, the exponential
growth of the resolvent in the region to the left of the essential spectrum has the following interesting consequence:
suppose thatT sep

L corresponds to the eigenvalue problem of the linearization about a certain nonlinear wave that is
only transiently unstable. Since the resolvent grows as the interval length increases, the sensitivity of the wave with
respect to small initial perturbations also increases. The large norm of the resolvent predicts a large constant in front
of the exponential decay factor of the semigroup. Before the system picks up the exponential decay predicted from
spectral information, there will be a long intermediate regime where solutions first grow in norm while travelling to
one end of the domain, a phenomenon which is most easily illustrated in the pure convection problemut = ux + u

with boundary conditionu(L) = 0: localized initial conditions grow along characteristicsx = −t until they
disappear through the boundaryx = −L; in fact, the explicit solution is given byu(x, t) = et u0(x + t). With
increasing sensitivity, stability then depends more and more on the nonlinear terms. We also refer to [44] for a
discussion.

The remaining part of this section contains the precise statements of the relevant hypotheses and the results. Most
of it is rather technical and can be skipped by the reader; we do not use any of these results in the following sections.
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Throughout this section, we assume thatλ /∈ 6abs. We begin by choosing weightsη = (η−, η+) so that
Reν±

i∞(λ) > −η± > Reν±
i∞+1(λ); see Section 4.3.1. It is then a consequence of Theorem 3 thatT

sep
L (λ) is

invertible for allL ≥ L∗ if, and only if, D̃±(λ) 6= 0 andD̃∞(λ) 6= 0. In this situation, we have to estimate the
solutionu(x) to

du

dx
= A(x; λ)u+ B(x)h(x), u(±L) ∈ Q± (4.6)

on the interval(−L,L) in terms ofh(x). The reason why we restrict to right-hand sides of the formB(x)h(x) is that
we are primarily interested in resolvent estimates for the underlying PDE operator that we had cast as a first-order
operator. All of our results, however, are also true, and in fact easier to prove, in the case of general right-hand sides;
see below.

Next, we consider the equation in the weighted space. We shall then establish estimates of the solutionv(x)

to

dv

dx
= (A(x; λ)+ η(x))v + B(x)g(x), v(±L) ∈ Q± (4.7)

on the interval(−L,L) in terms ofg(x), whereη(x) = η+ for x > 0 andη(x) = η− for x < 0 has been chosen
above. The functionsu andv as well ash andg are then related via

u(x) = e−η(x)xv(x), g(x) = eη(x)xh(x). (4.8)

SinceD̃∞(λ) 6= 0, the equation

dv

dx
= (A(x; λ)+ η(x))v (4.9)

has an exponential dichotomy onR with evolution operators̃ϕs(x, y; λ) and ϕ̃u(x, y; λ) so that the estimates in
Definition 2.1 are met forI = R. In particular, we have

|ϕ̃s(L,0; λ)| ≤ K exp(−κ̃s
+L), |ϕ̃s(0,−L; λ)| ≤ K exp(−κ̃s

−L), (4.10)

and the analogous estimates forϕ̃u. The stable and unstable subspaces of the asymptotic matricesA±(λ)+ η± are
denoted byẼs,u

± (λ). Similarly, the spectral projections ofA±(λ)+ η± belonging to the stable and unstable spectral
sets are denoted bỹP s,u

± (λ).
The general solution to

v′ = (A(x; λ)+ η(x))v + B(x)g(x)

is given by

v(x) =
∫ x

−L
ϕ̃s(x, y; λ)B(y)g(y)dy +

∫ x

L

ϕ̃u(x, y; λ)B(y)g(y)dy + ϕ̃s(x,−L; λ)as
− + ϕ̃u(x, L; λ)au

+,

(4.11)

whereas− ∈ Ẽs−(λ) andau+ ∈ Ẽu+(λ) are arbitrary.
It remains to satisfy the boundary conditionsv(±L) ∈ Q±. SinceD̃±(λ) 6= 0, we have

Ẽu
+(λ)⊕Q+ = Cn, Ẽs

−(λ)⊕Q− = Cn. (4.12)
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Hence, the boundary conditions are equivalent to the equation

P(Ẽu
+(λ),Q+)

[∫ L

−L
ϕ̃s(L, y; λ)B(y)g(y)dy + ϕ̃s(L,−L; λ)as

− + ϕ̃u(L,L; λ)au
+

]
= 0,

P (Ẽs
−(λ),Q−)

[
−
∫ L

−L
ϕ̃u(−L, y; λ)B(y)g(y)dy + ϕ̃s(−L,−L; λ)as

− + ϕ̃u(−L,L; λ)au
+

]
= 0, (4.13)

whereP(X, Y ) is the projection with rangeX and null spaceY . By Theorem 1,ϕ̃u(L,L; λ) andϕ̃s(−L,−L; λ)
are e−θ̂L-close to the spectral projections̃P u+(λ) andP̃ s−(λ), respectively, wherêθ = min{θ, κ̃u± + κ̃s±}. Exploiting
(4.10), we get

P(Ẽu
+(λ),Q+)[ϕ̃s(L,−L; λ)as

− + ϕ̃u(L,L; λ)au
+]

= P(Ẽu
+(λ),Q+)[O(exp(−(κ̃s

− + κ̃s
+)L))a

s
− + (P̃ u

+(λ)+ O(e−θL))au
+],

×P(Ẽs
−(λ),Q−)[ϕ̃s(−L,−L; λ)as

− + ϕ̃u(−L,L; λ)au
+]

= P(Ẽs
−(λ),Q−)[(P̃ s

−(λ)+ O(e−θL))as
− + O(exp(−(κ̃u

− + κ̃u
+)L))a

u
+].

Using this equation, we see that (4.13) has a unique solution given by


 au+

as−


= (1 + O(e−βL))


 1 O(exp(−(κ̃s− + κ̃s+)L))

O(exp(−(κ̃u− + κ̃u+)L)) 1




×

 P(Ẽu+(λ),Q+)

∫ L
−Lϕ̃

s(L, y; λ)B(y)g(y)dy

−P(Ẽs−(λ),Q−)
∫ L
−Lϕ̃

u(−L, y; λ)B(y)g(y)dy


 , (4.14)

whereβ = min{θ̂ , κ̃s− + κ̃s+ + κ̃u− + κ̃u+}, and we have the estimate

|as
−| + |au

+| ≤ C‖g‖

for some constantC that is independent ofL for L ≥ L∗.
It remains to relate the resolvent estimates for thev-equation (4.7) to resolvent estimates for theu-equation (4.6).

If we can chooseη± = 0, then the above analysis demonstrates that the inverse ofT
sep
L (λ) is bounded uniformly

in L. Indeed, note that the integral operators in (4.11) are uniformly bounded inL due to the exponential decay of
the evolution operators̃ϕs,u. Uniform bounds of the other two summands in (4.11) follow again from the bounds
onas− andau+ above. We summarize this result in the following proposition.

Proposition 1. Assume thatλ∗ /∈ 6absand thatReν±
i∞+1 < 0< Reν±

i∞ . Furthermore, we assume thatD±(λ∗) 6= 0

andD∞(λ∗) 6= 0. Then there are positive constantsδ, C andL∗ such that the inverse ofT sep
L (λ) is bounded by C

uniformly inL ≥ L∗ for all λ ∈ Uδ(λ∗).

If, on the other hand, we have to choose non-zero values for one or both of the ratesη±, then we expect that
the inverse ofT sep

L (λ) actually increases exponentially asL increases. The reason is that even though the un-
weighted and weighted norms are equivalent on(−L,L), the equivalence constants grow exponentially inL.
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We have

u(x)= e−η(x)x
(∫ x

−L
ϕ̃s(x, y; λ)eη(y)yB(y)h(y)dy +

∫ x

L

ϕ̃u(x, y; λ)eη(y)yB(y)h(y)dy

+ϕ̃s(x,−L; λ)as
− + ϕ̃u(x, L; λ)au

+

)
, (4.15)

where(as−, au+) are given by

(
au+
as−

)
= (1 + O(e−βL))

(
1 O(exp(−2κ̃sL))

O(exp(−2κ̃uL)) 1

)

×

 P(Ẽu+(λ),Q+)

∫ L
−Lϕ̃

s(L, y; λ)eη(y)yB(y)h(y)dy

−P(Ẽs−(λ),Q−)
∫ L
−Lϕ̃

u(−L, y; λ)eη(y)yB(y)h(y)dy


 . (4.16)

Here,κ̃s,u = min{κ̃s,u
± }. First, we consider the case that the eigenvalues ofA+(λ) satisfy the condition Reν+

i∞+1 <

Reν+
i∞ < 0. Afterwards, we investigate the case 0< Reν+

i∞+1 < Reν+
i∞ . The analogous cases forA−(λ)are handled

in the same fashion; upon reversing the spatial variablex 7→ −x, we end up with one of the aforementioned cases
for the eigenvalues ofA+(λ).

Thus, assume that Reν+
i∞+1 < −η+ < Reν+

i∞ < 0 so that we haveη+ > 0.

Hypothesis 4. We assume that Reν+
i∞+1 < Reν+

i∞ < 0 and that Reν+
i∞ < Reν+

i∞−1. Furthermore, we assume that
there is a vectorh+ ∈ Cn such that

(P (Ẽu
+(λ),Q+)P̃ s

+(λ)− P̃ u
+(λ))B+h+

has a non-zero component in the eigendirection ofA+(λ) associated with the simple eigenvalueν+
i∞ , where we

express vectors with respect to the basis that consist of (generalized) eigenvectors ofA+(λ).

The above hypothesis can be interpreted as requiring that a certain transmission coefficient is non-zero. In the
situation considered here, we haveη+ > 0 so that the rest state atx = ∞ sustains waves that travel to the left. The
above hypothesis guarantees that the boundary condition atx = L emits such waves: since the waves grow as they
travel to the left, we expect that the resolvent grows asL increases.

Proposition 2. Assume that Hypothesis4 is met. The inverse ofT sep
L (λ) grows exponentially with rate equal to or

bigger than|Reν+
i∞|.

The growth rate of the resolvent is not optimal; see Remark 4.5.

Proof. We defineh(x) byh(x) = h+ for L−ρ ≤ x ≤ L and zero otherwise. Hence, the integrands of the integrals
above are zero wheneverx < L− ρ. Furthermore, we have∣∣∣∣

∫ L

L−ρ
ϕ̃s(L, y; λ)exp(η+(y − L))B(y)h(y)dy − P̃ s

+(λ)B+h+ρ
∣∣∣∣

+
∣∣∣∣
∫ L

L−ρ
ϕ̃u(L− ρ, y; λ)exp(η+(y − L))B(y)h(y)dy − P̃ u

+(λ)B+h+ρ
∣∣∣∣ ≤ C(h+)(ρ2 + e−θ̂L) (4.17)
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uniformly in ρ andL, whereθ̂ = min{θ, κ̃u± + κ̃s±}. Using these expressions in (4.16), we obtain

au
+ = exp(η+L)[P(Ẽu

+(λ),Q+)P̃ s
+(λ)B+h+ρ + O(ρ2 + e−γL)], (4.18)

whereγ = min{θ̂ , κ̃u±, κ̃s±}. Evaluating (4.15) atx = 0, we get

u(0)= −exp(η+L)ϕ̃u(0, L− ρ; λ)
∫ L

L−ρ
ϕ̃u(L− ρ, y; λ)exp(η+(y − L))B(y)h(y)dy

+ϕ̃s(0,−L; λ)as
− + ϕ̃u(0, L; λ)au

+,

and therefore, upon substituting (4.18),

u(0)= exp(η+L)ϕ̃u(0, L; λ)[(P̃ u
+(λ)− P(Ẽu

+(λ),Q+)P̃ s
+(λ))B+h+ρ + O(ρ2 + e−γL)]

+ϕ̃s(0,−L; λ)as
−. (4.19)

Since (4.9) has an exponential dichotomy onR, the subspacesR(ϕ̃s(x, x; λ)) andN(ϕ̃s(x, x; λ)) have an angle
that is bounded away from zero uniformly inx, and we may restrict to the first summand for a lower bound. Next,
observe that̃ϕu(0, L; λ) satisfies (4.9). Therefore, exp(η+L)ϕ̃u(0, L; λ) is the evolution of the originalu-equation,
i.e. of (4.9) withη = 0. Exploiting Hypothesis 4, and using the results in [15, Section 3.8], it is then not hard to see
that

|u(0)| ≥ Cexp(|Reν+
i∞|L),

whereC > 0 does not depend uponL. Thus, it follows that the inverse ofT sep
L (λ) grows exponentially with rate

equal to or bigger than|Reν+
i∞|. �

It remains to investigate the case 0< Reν+
i∞+1 < −η+ < Reν+

i∞ that leads toη+ < 0.

Hypothesis 5. We assume that 0< Reν+
i∞+1 < Reν+

i∞ and that Reν+
i∞+2 < Reν+

i∞+1. Furthermore, we assume

that there is a vectorh+ ∈ Cn such thatP̃ s+(λ)B+h+ has a non-zero component in the eigendirection ofA+(λ)
associated with the simple eigenvalueν+

i∞+1, where we express vectors with respect to a basis that consists of
(generalized) eigenvectors ofA+(λ).

Here, we haveη+ < 0 so that the rest state atx = ∞ sustains waves that travel to the right while grow-
ing. The above hypothesis guarantees that these waves still grow when the boundary conditions atx = L are
imposed.

Proposition 3. Assume that Hypothesis5 is met. The inverse ofT sep
L (λ) grows exponentially with rate equal to or

bigger than|Reν+
i∞+1|.

Proof. Defineh(x) by h(x) = h+ for L+ − ρ ≤ x ≤ L+ and zero otherwise for some largeL+ that we specify
below. Thus, any integrands that containh(x) are non-zero only forx betweenL+ − ρ andL+. We have∣∣∣∣

∫ L+

L+−ρ
ϕ̃s(L+, y; λ)exp(η+(y − L+))B(y)h(y)dy − P̃ s

+(λ)B+h+ρ
∣∣∣∣ ≤ C(h+)(ρ2 + e−θ̂L) (4.20)

uniformly in ρ andL. From (4.16), we obtain

|as
−| ≤ C(L+, ρ, h+). (4.21)
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Evaluating (4.15) atx = L, we get

u(L)= exp(−η+L)
(
ϕ̃s(L,L+; λ)

∫ L+

L+−ρ
ϕ̃s(L+, y; λ)exp(η+y)B(y)h(y)dy

+ϕ̃s(L,−L; λ)as
− + ϕ̃u(L,L; λ)au

+

)
,

and therefore, upon substituting (4.20) and (4.21),

u(L)= exp(−η+L)(exp(η+L+)ϕ̃s(L,L+; λ)[P̃ s
+(λ)B+h+

+O(ρ2 + e−θ̂L + exp(−κ̃s
−L))] + ϕ̃u(L,L; λ)au

+), (4.22)

where the O(· · · )-term depends upon the choice ofL+ andh+ but not onL. Again, it suffices to consider the norm
of u(L) in the stable components; see the proof of Proposition 2. Exploiting Hypothesis 4, and using the results in
[15, Section 3.8], we see that

|u(L)| ≥ Cexp(|Reν+
i∞+1|L)

upon choosing firstL+ large enough, and thenL large compared toL+. The constantC is strictly positive and does
not depend uponL. �

Remark 4.5. In fact, if η+ andη− have the same sign, then the inverse ofT sep
L (λ) typically grows exponentially

with a rate that is the sum of the rates established in the above propositions. Ifη+ andη− have opposite signs, then
the resolvent typically grows exponentially with the larger of the rates that appear in the above propositions.

5. The essential spectrum under truncation

In this section, which contains our main results, we investigate the fate of the essential spectrum whenT is
replaced byT per

L or T sep
L . Recall that the spectrum ofTL on the bounded interval(−L,L) consists of eigenvalues;

see Lemma 4.1. Throughout this section, we assume that Hypotheses 1–3 are met.

5.1. Extrapolated essential spectral sets on bounded intervals

Rather than attempting to describe in detail how the essential spectrum breaks up and trying to track individual
eigenvalues, we focus on the asymptotic shape of the set that consists of the accumulation points of eigenvalues of
TL asL → ∞.

Definition 5.7 (Extrapolated essential spectral set). We say thatλ∗ is not in the extrapolated essential spectral set
6e

ext of the family{T sep
L }L (or {T per

L }L) if there exists a neighborhoodU(λ∗) ⊂ C of λ∗, an integer̀ and a positive
numberL∗ such thatDsep(orDper) has at most̀ zeros inU(λ∗) for L ≥ L∗.

Roughly speaking, the extrapolated essential spectral set consists of those points where infinitely many eigenvalues
of TL accumulate asL → ∞. Note that the extrapolated essential spectral set of the familyTL as defined above is
closed since its complement is open by definition.

Example 1 (continued). The essential spectrum6essof the operatorLu = uxx + cux onR is given by the curve
λ = −k2+cik for k ∈ R. The spectrum of the operatorL on the interval(−L,L)with periodic boundary conditions
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is given by

λ = −π
2k2

L2
+ i
cπk

L
, k ∈ Z.

Thus, asL → ∞, each point in6essis an accumulation point, and we have6e
ext = 6ess. For Dirichlet or Neumann

boundary conditions, however, we have6e
ext = (−∞,−1

4c
2], and therefore6e

ext 6= 6ess. Instead, we observe
that6e

ext = 6abs. It is instructive to check that the eigenfunctions ofT sep with Dirichlet or Neumann conditions
converge, asL → ∞, to the absolute eigenmodes ofT that we computed in Section 3.2.

As we shall see in the next sections, the behavior of the essential spectrum in this example is rather typical.

5.2. Periodic boundary conditions

We assume thatA+(λ) = A−(λ) and denote these matrices byA0(λ). Furthermore, we impose periodic boundary
conditions.

Proposition 4. Under the above hypothesis, and Hypotheses1 and3, the spectrum ofT per
L satisfies6e

ext ⊂ 6ess.

Proof. It suffices to show that, ifλ /∈ 6ess, then there is a neighborhoodU ⊂ C of λ and numbersL∗ > 0 and
` ≥ 0 such thatT per

L has at most̀ eigenvalues inU for L > L∗. This, however, follows from Theorem 2. �

The example in the previous section suggests that the extrapolated spectral set6ext
e is in fact equal to6ess. We

show that this is indeed the case under the following assumption.

Hypothesis 6(Reducible essential spectrum). The subsetSper, defined below, of the essential spectrum6ess is
dense in6ess. Here,λ∗ ∈ Sper ⊂ 6ess provided spec(A0(λ∗)) ∩ iR = {iω(λ∗)} with geometric and algebraic
multiplicity equal to one and(dω/dλ)|λ∗ 6= 0, where iω(λ) is the eigenvalue ofA0(λ) that is close to iω(λ∗) for λ
close toλ∗.

It is important to note that the reducible essential spectrumSper consists of regular curve segments.

Theorem 4. If Hypotheses1, 3and6 are met, then the spectrum ofT per
L satisfies6e

ext = 6ess.

Proof. Since6e
ext is closed, it suffices to show thatλ∗ ∈ Sper impliesλ∗ ∈ 6e

ext.
Thus, we fix someλ∗ ∈ Sper, and denote byEss

0 (λ∗), Ec
0(λ∗) andEuu

0 (λ∗) the stable, center and unstable
eigenspaces ofA0(λ∗). Exploiting Hypothesis 6, there arex-dependent subspacesEcs+ (x; λ∗) andEcu− (x; λ∗) that
consist of those initial values inCN that lead to solutions of (2.9),

d

dx
u = A(x; λ)u, (5.1)

which are bounded on [x,∞) and(−∞, x], respectively; see [15]. All aforementioned spaces can be continued
analytically inλ for λ closeλ∗: in particular, we have the generalized eigenspacesEss

0 (λ), E
c
0(λ) andEuu

0 (λ) of
A0(λ), as well as thex-dependent spacesEcs+ (x; λ) andEcu− (x; λ) that consist of all initial conditions which lead
to solutions to (5.1) that are of the order O(eη|x|) for x > 0 andx < 0, respectively, for some small fixedη > 0.
Forλ close toλ∗, we denote by iω(λ) the unique eigenvalue ofA0(λ) that is close to iω(λ∗).

We begin by investigating the intersectionEss+(0; λ) ∩ Ecu− (0; λ) for λ ∈ Sper close toλ∗. We claim that this
intersection is trivial except possibly for finitely many elementsλ nearλ∗. To prove this claim, we argue by
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contradiction: if our claim is wrong, then Remark 4.2 implies that the intersectionEss+(0; λ) ∩ Ecu− (0; λ) has
non-zero dimension for allλ in a small open neighborhoodU∗ of λ∗. Next, recall that the setSper nearλ∗ is the
curve that consists of precisely those values ofλ for whichω(λ) is real. In particular,Sper dividesU∗ into two open
setsB1 andB2, say, so thatU∗ is the disjoint union ofB1, B2 andU∗ ∩ Sper. Since(dω/dλ)|λ∗ 6= 0 by Hypothesis
6, we have that Re iω(λ) > 0 for all λ in eitherB1 or B2; suppose that Re iω(λ) > 0 for λ ∈ B1, say. Therefore,
we conclude thatEcu− (0; λ) consists of all initial conditions that, forλ ∈ B1, lead to solutions to (5.1) that decay
exponentially asx → −∞ since iω(λ) is then an additional unstable eigenvalue ofA0(λ). We are now in a position
to reach the desired contradiction: we assumed that the intersectionEss+(0; λ) ∩ Ecu− (0; λ) has non-zero dimension
for all λ in an entire neighborhood ofλ∗. Forλ ∈ B1, any solution of (5.1) associated with an initial condition in
this intersection decays exponentially as|x| → ∞; thus, any suchλ is an eigenvalue in a region whereT (λ) is
Fredholm with index zero. This contradicts Hypothesis 3.

In summary, we conclude that the intersectionEss+(0; λ)∩Ecu− (0; λ) and, by the same argument, the intersection
Ecs+ (0; λ)∩Euu− (0; λ) are trivial forλ ∈ Sperclose toλ∗ except possibly for finitely many elementsλ. After removing
these exceptional elements from the setSper, the resulting set is still dense in6ess. We can therefore assume that
the aforementioned intersections are trivial atλ∗, and therefore also in a open neighborhood ofλ∗ in C.

As a consequence, the intersection

Ecs
+ (0; λ) ∩ Ecu

− (0; λ) = span{u∗(0; λ)}
is one-dimensional for everyλ nearλ∗ and

u∗(0; λ) /∈ Euu
− (0; λ) ∩ Ess

+(0; λ).
It follows then from [35] or [25, Lemma 2.2] that there is a smallδ > 0, certain constantsϑ±(λ) ∈ C, and vectors
a0(λ) ∈ Ec

0(λ) with a0(λ) 6= 0 so that the solutionu∗(x; λ) to (5.1) can be expressed as

u∗(x; λ) = a0(λ)exp(i(ω(λ)x + ϑ±(λ)))+ O(e−δ|x|) (5.2)

for x ∈ R. In particular, we have

Ess
+(x; λ)⊕ Euu

− (x; λ)⊕ span{u∗(x; λ)} = CN (5.3)

for all λ close toλ∗.
Next, we seek solutionsu(x) of (5.1) that satisfyu(−L) = u(L). It is a consequence of Remark 2.1 and (5.3)

that any solutionu(x) to (2.9) can be written in the form

u(x) = ϕss(x,−L; λ)a− + ϕuu(x, L; λ)a+ + u∗(x; λ)b,
wherea− ∈ Ess

0 (λ), a+ ∈ Euu
0 (λ) and b ∈ C are arbitrary. Here, the evolution operatorsϕss(x,−L; λ) and

ϕuu(x, L; λ) satisfy

|ϕss(x,−L; λ)| ≤ K exp(−δ|x + L|), |ϕuu(x, L; λ)| ≤ K exp(−δ|x − L|) (5.4)

for |x| ≤ L, whereδ > 0 is a small positive constant. Thus, it suffices to find(a±, b) andλ so that

P ss(−L; λ)a− + ϕuu(−L,L; λ)a+ + u∗(−L; λ)b = ϕss(L,−L; λ)a− + P uu(L; λ)a+ + u∗(L; λ)b, (5.5)

where

P ss(−L; λ) = ϕss(−L,−L; λ), P uu(L; λ) = ϕuu(L,L; λ)
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are O(e−δL)-close, for someδ > 0 that is independent ofL, to the spectral projectionsP ss(λ) andP uu(λ),
respectively, ofA0(λ); see again Remark 2.1. Exploiting this fact together with the estimates (5.4), we see that (5.5)
is equivalent to

(P ss(λ)+ O(e−δL))a− + O(e−δL)a+ + u∗(−L; λ)b = O(e−δL)a− + (P uu(λ)+ O(e−δL))a+ + u∗(L; λ)b,

where we replacedδ by min{δ, θ}. Substituting (5.2) and using the definition ofa+ anda−, we obtain

(id + O(e−δL))a− + O(e−δL)a+ + a0(λ)(exp(−i(ω(λ)L+ ϑ−(λ)))+ O(e−δL))b
= O(e−δL)a− + (id + O(e−δL))a+ + a0(λ)(exp(i(ω(λ)L+ ϑ+(λ)))+ O(e−δL))b.

We can write this equation, which is linear in(a−, a+, b), in components according to the direct-sum decom-
position

Ess
0 (λ)⊕ Euu

0 (λ)⊕ Ec
0(λ) = CN,

and solve the first two components for(a−, a+) as a function ofb. We arrive at the equation

(exp(−i(ω(λ)L+ ϑ−(λ)))+ O(e−δL))b = (exp(i(ω(λ)L+ ϑ+(λ)))+ O(e−δL))b,

which, after dividing byb, is equivalent to the reduced equation

e2iω(λ)L = exp(i(ϑ−(λ)− ϑ+(λ)))+ O(e−δL). (5.6)

To solve this equation, it suffices to find all solutions to

2ω(λ)L = ϑ−(λ)− ϑ+(λ)+ O(e−δL)+ 2πn,

wheren ∈ Z is arbitrary. Dividing by 2L, we get

ω(λ) = πn

L
+ 1

2L
(ϑ−(λ)− ϑ+(λ))+ O(e−δL).

Sinceω(λ∗) is real, there are unique numbersn0(L) ∈ N andr(L) ∈ [0,1) such that

n0(L)+ r(L) = ω(λ∗)L
π

.

Thus,

πn0(L)

L
= ω(λ∗)− πr(L)

L
,

and upon settingn = n0(L)+m, we obtain the equation

ω(λ) = ω(λ∗)+ 1

2L
(2π(m− r(L))+ ϑ−(λ)− ϑ+(λ))+ O(e−δL). (5.7)

Since(dω/dλ)(λ∗) 6= 0, Eq. (5.7) can be solved with respect toλ for λ nearλ∗ for everyL sufficiently large and
allm ∈ N such thatm/L is smaller than some constantε > 0. In particular, (5.7) has O(L) different solutions. This
proves thatλ∗ is indeed in the extrapolated essential spectral set6e

ext. �
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5.3. Separated boundary conditions

Finally, we consider separated boundary conditions. We show that6e
ext is again determined by spectral properties

of T onR but in general does not coincide with6ess. Roughly speaking, separated boundary conditions stabilize up
to an optimal exponential weight. Throughout this section, we once again use the set-up and the notation introduced
in Section 4.3.1.

Hypothesis 7(Non-degenerate boundary conditions). There is a discrete (possibly empty) setC ⊂ C with no
accumulation points inC so thatQ− ⊕ Ẽs−(λ) = CN andQ+ ⊕ Ẽu+(λ) = CN for all λ /∈ 6abs∪ C.

Recall thatẼs,u
± (λ) have been defined in Section 4.3.1. Note that the above hypothesis is often violated when we

consider systems of decoupled equations together with boundary conditions that also decouple. An example is the
operator introduced in Example 2 with either Dirichlet or Neumann conditions. It is possible to adapt the results to
such cases, but we do not pursue this here.

Proposition 5. Assume that Hypotheses1, 2 and7 are met. Furthermore, assume thatT η satisfies Hypothesis3
for everyη ∈ R2. Under these assumptions, we have6e

ext ⊂ 6abs.

Proof. If λ /∈ 6abs, thenT η(λ) is Fredholm with index zero for an appropriately chosen weightη ∈ R2. Considering
T η(λ) onL2, we have to replace (2.9) by the equation

d

dx
v = (A(x; λ)+ η±)v. (5.8)

The associated operator onL2, which we again denote byT η(λ), is then also Fredholm with index zero. Note thatv(·)
has to satisfy the same boundary conditions atx = ±L asu(·). We have therefore reduced the problem to a setting
that is similar to the case of periodic boundary conditions. Isolated eigenvalues of finite multiplicity persist with
their multiplicity provided the boundary conditions are transverse to the stable and unstable eigenspaces ofA+(λ)
andA−(λ), respectively; see Lemma 4.3. Norms on the finite interval(−L,L) are equivalent, and invertibility of
thev-equation therefore implies invertibility of theu-equation. If the boundary conditions are not transverse, only
finitely many eigenvalues are generated, and their number, counting multiplicity, is independent ofL; see Theorem
3. This completes the proof of the proposition. �

We remark that, for reversible systems, we expect that6abs= 6ess. In general, however, we have6abs 6= 6ess;
see Section 3.2. In the remaining part of this section, we prove that6e

ext = 6abs under the following additional
assumption.

Hypothesis 8(Reducible absolute spectrum). The subsetSsep, defined below, of the absolute spectrum6abs is
dense in6abs. Here,λ∗ ∈ Ssep⊂ 6absprovided one of the following two conditions is met.
1. Pulses(i.e.A+(λ) = A−(λ) =: A0(λ) for all λ):

Reνi∞−1(λ∗) > Reνi∞(λ∗) = Reνi∞+1(λ∗) > Reνi∞+2(λ∗)

with νi∞(λ∗) = −η0 + iω1(λ∗) and νi∞+1(λ∗) = −η0 + iω2(λ∗), whereω1(λ∗) 6= ω2(λ∗) and (d(ω1 −
ω2)/dλ)|λ∗ 6= 0.

2. Fronts: either

Reν+
i∞−1(λ∗) > Reν+

i∞(λ∗) = Reν+
i∞+1(λ∗) > Reν+

i∞+2(λ∗)
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with ν+
i∞(λ∗) = −η+ + iω1(λ∗) andν+

i∞+1(λ∗) = −η+ + iω2(λ∗), whereω1(λ∗) 6= ω2(λ∗) and (d(ω1 −
ω2)/dλ)|λ∗ 6= 0 while

Reν−
i∞(λ∗) > −η− > Reν−

i∞+1(λ∗)

for someη±, or vice versa.

We observe that the reducible absolute spectrumSsepconsists of regular curve segments.

Theorem 5. Assume that Hypotheses1, 2, 7and8 are met. Furthermore, assume that Hypothesis3 is satisfied for
T η for everyη ∈ R2. We then have6e

ext = 6abs.

Proof. We have to show thatλ∗ ∈ Ssep implies λ∗ ∈ 6e
ext. We again consider (5.8) using the weightsη± that

appear in Hypothesis 8. In contrast to the notation introduced in Section 4.3.1, we omit in this proof the tilde (∼ )
that referred to quantities computed with respect to (5.8). In other words, for the sake of simplicity, we assume that
η = 0 (possibly after changing the equation appropriately). We then use the notation and conventions introduced in
the proof of Theorem 4; in fact, the proofs for separated and periodic boundary conditions are quite similar. Finally,
we restrict ourselves to the case of fronts; the proof for pulses proceeds in a similar fashion.

First, we claim that we can assume thatQ− ⊕ Es−(λ∗) = CN . Indeed, suppose thatQ− andEs−(λ∗) have a
non-trivial intersection. SinceSsepconsists locally of regular curve segments, we can varyλ in Ssepnearλ∗. As a
consequence, the subspacesQ− andEs−(λ) intersect either only at the origin for anyλ close toλ∗ with λ 6= λ∗, or
else they intersect non-trivially for allλ in an open neighborhood ofλ∗ due to analyticity ofEs−(λ) in λ; the latter
case, however, contradicts Hypothesis 7. Thus, the first case occurs, and we can replaceλ∗ by any nearbyλ ∈ Ssep.
This proves our claim.

As a consequence, if we transport the subspaceQ− using the evolutionϕ(x,−L; λ) associated with (2.9), then,
by hyperbolicity ofA−(λ), the transported subspaceϕ(0,−L; λ)Q− is close toEu−(0; λ) for all largeL.

Next, consider the situation at the right endpointx = L of the interval(−L,L). By Hypothesis 8, we have

Ess
+(λ)⊕ span{a1(λ), a2(λ)} ⊕ Euu

+ (λ) = CN

for all λ nearλ∗, wherea1(λ) anda2(λ) are non-zero eigenvectors ofA+(λ) associated with the eigenvaluesω1(λ)

andω2(λ). Using the roughness theorem for exponential dichotomies [33,35], we can continue any combination
of these subspaces tox-dependent invariant subspaces of (2.9). In particular, using also [25, Lemma 2.2], there are
subspaces

Ess
+(x; λ)⊕ span{a1(x; λ)}, Ess

+(x; λ)⊕ span{a2(x; λ)} (5.9)

that converge to the correspondingx-independent eigenspaces ofA+(λ)asx → ∞. Note thatEcs+ (x; λ) is(N−i∞+
1)-dimensional, whileEu−(x; λ) has dimensioni∞. Therefore, these two subspaces intersect in a non-trivial fashion;
in fact, we may assume thatEu−(x; λ) andEcs+ (x; λ) intersect transversely in a one-dimensional subspace which is
not contained in either of the two spaces appearing in (5.9). Otherwise, we reach a contradiction to Hypothesis 3;
see Remark 4.2 and [25].

Hence, as a consequence of the discussion in the last few paragraphs,Ecs+ (0; λ) and the transported subspace
ϕ(0,−L; λ)Q− intersect in a one-dimensional subspace that is spanned by a vectoru∗(0; λ). The solution associated
with the initial conditionu∗(0; λ) can be written as

u∗(x; λ) = a1(λ)exp(iω1(λ)x)+ a2(λ)exp(iω2(λ)x)+ O(e−θx) (5.10)
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asx → ∞, whereθ is again the rate of convergence ofA(x; λ) asx → ∞, anda1(λ) anda2(λ) are certain non-zero
eigenvectors ofA+(λ) associated with the eigenvalues iω1(λ) and iω2(λ). This expansion can be proved by using
exponential weights and dichotomies for an appropriate variation-of-constant formula; see, for instance [33,35] or
[25, Lemma 2.2]. In addition, we have

ϕ(L,−L; λ)Q− = span{u∗(L; λ)} + Euu
+ (λ)+ O(e−δL)) (5.11)

for all L sufficiently large. Here, and in the following,δ denotes a small positive constant determined byθ and the
rates of hyperbolicity ofA±(λ).

In the next step, we focus on the boundary conditions at the right endpoint of the interval. Arguing as above, we
can assume that

Q+ = span{v∗} ⊕ Q̃+,

where

v∗ ∈ span{a1(λ), a2(λ)} ⊕ Euu
+ (λ), v∗ /∈ span{aj (λ)} ⊕ Euu

+ (λ) (5.12)

for j = 1,2 and

Q̃+ ⊕ Ec
+(λ)⊕ Euu

+ (λ) = CN (5.13)

otherwise, we reach a contradiction to Hypothesis 3. In particular, we have

v∗ = a+
1 (λ)+ a+

2 (λ)+ vu
∗(λ) (5.14)

with a+
j (λ) ∈ span{aj (λ)} for j = 1,2 andvu∗(λ) ∈ Euu+ (λ). Note thata+

j (λ) is not equal to zero forj = 1,2.
It suffices to find non-trivial intersections ofQ+ and ϕ(L,−L; λ)Q−. Exploiting (5.10)–(5.13) and using

Lyapunov–Schmidt reduction as in the proof of Theorem 4 (we omit the details), we arrive at the reduced equation

a1(λ)(exp(iω1(λ)L)+ O(e−δL))+ a2(λ)(exp(iω2(λ)L)+ O(e−δL)) = r(a+
1 (λ)+ a+

2 (λ)),

wherer ∈ C is arbitrary. In other words, we shall solve

a1(λ)(exp(iω1(λ)L)+ O(e−δL)) = ra+
1 (λ), a2(λ)(exp(iω2(λ)L)+ O(e−δL)) = ra+

2 (λ). (5.15)

Recall thataj (λ) anda+
j (λ) are not equal to zero forj = 1,2. Thus, we can write

a+
j (λ) =

|a+
j (λ)|

|aj (λ)| exp(iϑj (λ))aj (λ)

for certain complex numbersϑj (λ) with j = 1,2. The first equation in (5.15) can then be solved forr:

r = |a1(λ)|
|a+

1 (λ)|
exp(−iϑ1(λ))(exp(iω1(λ)L)+ O(e−δL)).

Substituting this expression into the second equation in (5.15), we obtain

exp(iω2(λ)L)+ O(e−δL) = |a+
2 (λ)| |a1(λ)|

|a2(λ)| |a+
1 (λ)|

exp(i(ϑ2(λ)− ϑ1(λ)))(exp(iω1(λ)L)+ O(e−δL)),

which is equivalent to

exp(i(ω2(λ)− ω1(λ))L) = |a+
2 (λ)| |a1(λ)|

|a2(λ)| |a+
1 (λ)|

exp(i(ϑ2(λ)− ϑ1(λ)))+ O(e−δL).
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This equation is exactly of the type considered in the proof of Theorem 4; see (5.6) and the discussion following it.
Thus, the proof of the theorem is complete. �

Remark 5.6. In the set-up of the above theorem, we have that an eigenfunctionu(x) to the original Eq.(5.1) on
the interval(−L,L) with separated boundary conditions typically satisfies

|u(−L)| ≈ exp(−Reν−
i∞(λ)L), |u(L)| ≈ exp(Reν+

i∞+1(λ)L).

The remark is a consequence of the proof of the previous theorem.

In particular, the convective properties of the absolute spectrum manifest themselves via the growth of the
associated eigenmodes atx = ±L depending on the direction of transport. If the absolute eigenvalueλ is induced
by unstable spatial eigenvaluesν+

i∞(λ) andν+
i∞+1(λ), then the direction of transport is to the right. Note that this

requires that the formerly stable spatial eigenvalueν+
i∞+1(λ) moves into the right half-plane; we would therefore

needη+ < 0 to stabilize the wave using exponential weights. Analogously, if the absolute eigenvalueλ is induced
by stable spatial eigenvaluesν−

i∞(λ) andν−
i∞+1(λ), then the direction of transport is to the left. In the other cases,

the absolute eigenmodes transport towardsx = 0, either fromx = L if Reν+
i∞(λ) < 0 or else fromx = −L if

Reν−
i∞+1(λ) > 0; in these cases, the instability would lead to a break-up of the wave near its core, away from the

asymptotic rest states.

5.4. Separated boundary conditions: the edge of the absolute spectrum

Often, the rightmost endpoint of the absolute spectrum is given by a branch point, i.e. by a double root of the
dispersion relation. In that case, it is of interest how well the edge of the absolute spectrum is approximated on
bounded intervals. For the sake of brevity, we only consider the case of fronts. A similar result under analogous
assumptions is true for pulses.

Hypothesis 9(Non-degenerate double eigenvalue). Fronts: We have a double eigenvalueν+
i∞(λ∗) = ν+

i∞+1(λ∗)
with geometric multiplicity one so that

Reν+
i∞−1(λ∗) > Reν+

i∞(λ∗) > Reν+
i∞+2(λ∗),

and the Jordan block associated withν+
i∞(λ∗) is unfolded generically upon varyingλ nearλ∗. Let v+

i∞(λ∗) denote

the eigenvector ofA+(λ∗) associated withν+
i∞(λ∗). We assume that

span{v+
i∞(λ∗)} ⊕ Euu

+ (λ∗)⊕Q+ = Cn, (5.16)

whereEuu+ (λ∗) is the eigenspace ofA+(λ∗) associated with the unstable part of the spectrum. Furthermore, we
assume thatλ∗ /∈ 6−

absand thatEs−(λ∗)⊕Q− = Cn. Finally, we assume that

Eu
−(0; λ∗)⊕ span{v+

i∞(0; λ∗)} ⊕ Ess
+(0; λ∗) = Cn, (5.17)

wherev+
i∞(x; λ∗) is a solution that converges tov+

i∞(λ∗) asx → ∞; see [15].

Lemma 5.5. Assume that Hypotheses1, 2 and 9 are met. In addition, suppose thatλ∗ is the rightmost point in
the absolute spectrum. There are then constantsb1,2 ∈ Cwithb1 6= 0andδ > 0such that, if we order the eigenvalues
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λj,L of T sep
L that are closest toλ∗ by their real part, then∣∣∣∣∣ 1√|λj,L − λ∗|

− (b1jL + b2)

∣∣∣∣∣ = O(e−δL)

for all L large enough(depending on j).

Proof. We proceed as in the proof of Theorem 5. Without loss of generality, we can assume that Reν+
i∞ = 0 for

λ = λ∗. We writeEss+ , Ec+ andEuu+ for the stable, center and unstable eigenspaces ofA+, respectively, where the
two-dimensional center eigenspace corresponds to the two eigenvalues nearν+

i∞ .

We assumed thatλ∗ /∈ 6−
absand thatD−(λ∗) 6= 0. Hence,ϕ(0,−L; λ)Q− is exponentially close toEu−(0; λ) for

all λ close toλ∗. In particular, using (5.17), we see that

ϕ(0,−L; λ)Q− ∩ Ecs
+ (0; λ) = span{u∗(0; λ)}, (5.18)

whereu∗(0; λ) is not equal to zero and

u∗(0; λ∗) /∈ span{v+
i∞(0; λ∗)} ⊕ Ess

+(0; λ∗). (5.19)

As a consequence of (5.18), and proceeding as in the proof of Theorem 5, we have that

ϕ(L,−L; λ)Q− = span{u∗(L; λ)} ⊕ (Euu
+ (λ)+ O(e−δL))

for someδ > 0. We seek thoseλ close toλ∗ for which ϕ(L,−L; λ)Q− has a non-trivial intersection withQ+.
Thus, we are interested in the space

[span{u∗(L; λ)} ⊕ (Euu
+ (λ)+ O(e−δL))] ∩Q+. (5.20)

We begin by trackingu∗(x; λ) up tox = L. We denote byAc+ the restriction ofA+ to the center spaceEc+. We
claim that

u∗(L; λ) = [exp(Ac
+(λ)L)+ O(e−δL)]a+(λ) (5.21)

for someδ > 0 that is independent ofλ and some non-zero vectora+(λ) ∈ Ec+(λ). Indeed, upon using exponential
dichotomies, we can reduce the equation to an equation inR

2. We can then use the variation-of-constant formula
and exponential weights; we refer to [35] for similar arguments. See also [15, Section 3.8] for the case when the
equation does not depend upon parameters. In addition, we know thata+(λ∗) 6= v+

i∞(λ∗) due to (5.19). Next, we
consider the spaceQ+. Due to (5.16), we have

Q+ ∩ (Ec
+(λ)⊕ Euu

+ (λ)) = span{q+(λ)}
for someq+(λ) 6= 0 with

q+(λ∗) /∈ span{v+
i∞(λ∗)} ⊕ Euu

+ (λ∗).

In other words, we have

Q+ = span{q+(λ)} ⊕ Q̃+

with Q̃+ ∩ Euu+ (λ) = {0}. Expression (5.20) then reads

[span{u∗(L; λ)} ⊕ (Euu
+ (λ)+ O(e−δL))] ∩ [span{q+(λ)} ⊕ Q̃+].
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Therefore, we have that

u = ru∗(L; λ)+ (id + O(e−δL))uuu
+

is inQ+ for appropriate choices ofr ∈ R anduuu+ ∈ Euu+ (λ) if, and only if,

u = r̃q+(λ)+ q̃+,

where r̃ ∈ R and q̃+ ∈ Q̃+. Using Lyapunov–Schmidt reduction, i.e. upon projecting these equations into the
complementary subspacesQ̃+, Euu+ (λ) andEc+(λ), and solving the projected equations in the former two spaces,
we finally arrive at the reduced equation

r[exp(Ac
+(λ)L)a+(λ)+ O(e−δL)] = r̃[q+(λ)+ O(e−δL)], (5.22)

where we used (5.21). Note thata+(λ) andq+(λ) are smooth and that both are contained inEc+(λ). In addition,
neither of these vectors is equal tov+

i∞(λ∗) for λ = λ∗. SinceAc+(λ∗) is a Jordan block, we see that exp(Ac+(λ)L)
corresponds to a linear second-order scalar operator, and (5.22) is the equation that appears when we seek the
operator’s eigenvalues. Thus, we can solve this equation by phase–plane analysis; we omit the details.�

6. Numerical computations

To illustrate and confirm the results, we compare our theoretical predictions with numerical computations. The
computations are carried out for pulses in the generalized KdV equation and for fronts that arise in the Gray–Scott
model. We conclude with a brief discussion on the implications that our results have for the numerical computation
of spectra on large intervals.

6.1. The generalized KdV equation

We begin with the generalized KdV equation that is given by

ut + uxxx − cux + upux = 0, x ∈ R, (6.1)

wherec is the wave speed andp is a parameter. This equation admits a family of pulses given by

u(x) = [ 1
2c(p + 1)(p + 2)]1/p sech2/p(1

2xp
√
c) (6.2)

for any positive values ofc andp. The linearization of (6.1) about one of these pulses is equal to

Lv = −vxxx + (c − up)vx + pup−1uxv. (6.3)

It has been shown in [31] that the pulses are marginally stable inR for p < 4 and unstable forp > 4. The instability
is induced by a simple unstable eigenvalue that appears forp > 4. For anyp 6= 4, λ = 0 is an eigenvalue with
geometric multiplicity 1 and algebraic multiplicity 2; the associated eigenvectors areux anduc.

To compute the essential and the absolute spectrum, we rewrite the eigenvalue problemLv = λv about the pulses
as a first-order system. The associated asymptotic matrix is given by

A0(λ) =

 0 1 0

0 0 1
−λ c 0


 . (6.4)
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Fig. 4. The spectrum ofL on the interval(−7.5,7.5) with periodic boundary conditions. We discretized the operator using a pseudo-spectral
method with 700 Fourier modes. The resulting matrix-eigenvalue problems were always solved using the routinedgeev from thelapack
package [2].

Its three spatial eigenvaluesνj (λ) are the roots of the dispersion relation

d(λ, ν) = λ+ ν2(ν − c).

In particular, the asymptotic indexi∞ is equal to two, and we will need two boundary conditions atx = L and
one boundary condition atx = −L. Using the dispersion relation, the essential and absolute spectra ofL can be
computed

6ess= iR, 6abs= (−∞,−2(1
3c)

3/2], (6.5)

see [32, Proposition 2.3]. The absolute eigenmodes induce transport towardsx = −∞ since, forλ ∈ 6abs, the two
spatial eigenvalues that have the same real part are located in the left half-plane. The discussion after Remark 5.6
then implies that the eigenmodes are exponentially growing asx → −∞. This behavior is consistent withc > 0.

We first considerp = 2, and also fix the wave speedc = 2. The pulses are then transiently unstable; see [32].
On the bounded interval(−L,L), we consider periodic boundary conditions as well as the separated boundary
conditions

ux(−L) = 0, u(L) = 0, ux(L) = 0. (6.6)

We begin by comparing the spectra of the operatorL on the real line and the bounded interval(−L,L)withL = 7.5.
Fig. 4 shows that periodic boundary conditions indeed recover the essential spectrum. In addition, the two embedded
eigenvalues at zero move away from the imaginary axis. For the separated boundary conditions defined in (6.6), we
recover the absolute spectrum; see Fig. 5. As predicted, the two embedded eigenvalues at zero stay near the origin
but split into two simple eigenvalues. It is straightforward to show that the boundary conditions are non-degenerate
nearλ = 0 so that no additional eigenvalues are created there.

We then compared the rate of convergence with which the embedded eigenvalues near zero approach zero as
L → ∞. The spatial eigenvaluesνj (λ) of the asymptotic matrixA0(λ), see (6.4), atλ = 0 are given by

ν1(0) = 0, ν2,3(0) = ±√
c.

The spectral gap is therefore equal to
√
c. Since the multiplicity of the eigenvalueλ = 0 is 2, we expect that

the rate of convergence is equal to1
2

√
c. We calculated the temporal eigenvalues near zero numerically using the

packageauto97, see [17], and continued in the interval lengthL. The results are shown in Fig. 6(a); the actual
rate of convergence is

√
c and not the expected12

√
c. The reason for the super-convergence is as follows: first, the

eigenfunction ofλ = 0 on the real line converges faster to zero asx → −∞ than expected; its exponential rate is√
c rather than 0. The same is true for the unique bounded solutionψ(x) of the adjoint eigenvalue equation. The
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Fig. 5. The spectrum ofL on the interval(−7.5,7.5) with the separated boundary conditions (6.6). We discretized the operator using one-sided
finite differences with 1500 equidistant mesh points corresponding to a step size ofh = 0.01.

latter is true due to the Hamiltonian nature of the KdV equation. In fact, we haveψ(x) = ∇H(u(x)), whereu(x)
is the pulse andH(u) is the Hamiltonian of the KdV equation. It is then a consequence of the super-convergence
results presented in [36] that the rate of convergence is

√
c and not12

√
c.

Next, we investigate the approach of eigenvalues to the edge of the absolute spectrum located at

λ∗ = −2(1
3c)

3/2 ≈ −1.089. (6.7)

We expect that the convergence is like

|λ− λ∗| ≈ 1

L2
.

We therefore plotted(|λ − λ∗|)−1/2 overL, and expect to see a straight line. This is confirmed in Fig. 6(b). Note
that the slopes of the first three eigenvalues that we continued have a ratio of approximately 1 :1

2 : 1
3 as predicted;

see Lemma 5.5.
Next, we change the boundary conditions to

ux(−L) = 0, ux(L) = 0, uxx(L) = 0. (6.8)

These boundary conditions are no longer non-degenerate. It is straightforward to show thatD+(λ) = λ+ O(|λ|2).
We therefore expect three eigenvalues nearλ = 0. This is confirmed in Fig. 7(a).

Fig. 6. (a) For the separated boundary conditions (6.6), the slopes of the curves formed by the real and imaginary parts of the eigenvalues that
approach zero are given by−2.8275 and−1.4109, respectively. The overall numerically computed slope is therefore−1.4109 which is twice
the expected rate of

√
2/2; this super-convergence phenomenon is explained in the main text. (b) The first three eigenvalues that approach the

edge of the absolute spectrum are continued inL. The slopes of the scaled curves formed by these eigenvalues are given by 0.40468, 0.20170
and 0.13498, respectively.
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Fig. 7. (a) The spectrum ofL near zero on the interval(−7.5,7.5) using the boundary conditions (6.8). As predicted, there are three eigenvalues
nearλ = 0. (b) The resonance pole is shown as a function of the parameterp. The pole crosses the imaginary axis atp ≈ 4.

Finally, we return to the case of the transverse boundary conditions (6.6). We shall confirm that resonance poles,
i.e. eigenvalues that are generated upon using exponential weights, show up on large intervals with separated
boundary conditions but are not visible for periodic boundary conditions. To this end, we varyp in the interval (2,
5). It has been shown in [31] that atp = 4, a resonance pole crosses the imaginary axis from left to right at the origin,
rendering the pulses unstable. Forp > 4, this resonance pole is an ordinary eigenvalue that should then be picked
up by periodic boundary conditions. Our numerical computations confirm that this is indeed the case; see Figs. 7(b)
and 8. Recall that our theory predicts that the absolute spectrum is filled with eigenvalues asL → ∞. Thus, all but
finitely many eigenvalues will stay to the left of the edgeλ∗ of the absolute spectrum. Hence, a priori, we cannot
distinguish the resonance pole from other eigenvalues until it emerges from the absolute spectrum through the edge
λ∗ ≈ −1.089. This happens atp = 2.551; see Fig. 7(b).

We used the aforementioned resonance poles, calculated forp = 4.5, to illustrate the difference in the convergence
rates for periodic and separated boundary conditions. We computed the unstable eigenvalues for increasing values
of L and compared them with the “exact” unstable eigenvalueλu. The latter was calculated using the boundary
conditions (6.6) for a large value ofL, namelyL∗ = 40. The spatial eigenvalues of the matrixA0(λ

u), see (6.4), are

ν1 = 1.15612, ν2 = 0.42071, ν3 = −1.57683.

Thus, from Theorem 2 and Lemma 4.3, we expect the convergence rates 2κ = 2 min{ν2, |ν3|} = 0.84143 for periodic
andσ = ν2 −ν3 = 1.99754 for separated boundary conditions. This is confirmed by numerical computations using
auto97; see Fig. 9.

Fig. 8. The spectrum ofL with periodic boundary conditions on the interval(−7.5,7.5) for p = 3.5 (left) andp = 4.5 (right). The resonance
pole is not visible in the left plot; the unstable pair of eigenvalues forp > 4, however, is captured; see the plot to the right. We discretized the
operator using a pseudo-spectral method with 800 Fourier modes.
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Fig. 9. The scaled error of the unstable eigenvalue, computed numerically for various values ofL but for fixedp = 4.5, is plotted for: (a)
periodic, and (b) separated boundary conditions (6.6). The eigenvalues are compared with the exact valueλu = 0.766736 that we obtained using
the boundary conditions (6.6) for largeL∗. The slopes for the scaled error are−0.84154 for periodic and−2.00403 for separated boundary
conditions. Our theory predicts the slopes 0.84143 and−1.99754, respectively.

6.2. The Gray–Scott model

The second equation that we investigate is the Gray–Scott model:

ut = D1uxx − cux − uv2 + F(1 − u), vt = D2vxx − cvx + uv2 − (F + k)v. (6.9)

Here,c denotes again the wave speed. In the parameter regime where1 = 1 − 4(F + k)2/F is positive, (6.9) has
three different homogeneous steady states; the two that are of concern to us are commonly referred to as the red
and blue states

(ur, vr) = (1,0), (ub, vb) =
(

1

2
(1 −

√
1),

F

2(F + k)
(1 +

√
1)

)
. (6.10)

If we choose the parameters according to

D1 = 6.0 × 10−5, D2 = 1.0 × 10−5, c = −5.02063× 10−4, k = 0.05, F = 0.1, (6.11)

then numerical computations reveal that (6.9) admits a stationary front that connects the blue state at−∞ with the
red state at+∞. The front was computed using the driverhomcont [10] that is built into the packageauto97 [17].
We refer to Fig. 12(a) for a plot of the two components of the front. In fact, sincec < 0, the front moves to the right
towards the red state if considered in a non-moving coordinate frame. It can be shown that the red state is stable,
while the blue state is unstable for the aforementioned choice of parameters. The linearization of (6.9) about the
front is given by

L =
(
D1∂xx − c∂x − v2 − F −2uv

v2 D2∂xx − c∂x − 2uv − (F + k)

)
. (6.12)

We calculate its spectrum on the interval (0, 1); note that, if we rescale the equation so that the diffusion constants
are of order 1, then the length of the interval would be of the order 1× 102. We used the boundary conditions

u(0)+ v(0) = 0, ux(0)− vx(0) = 0, u(1)+ v(1) = 0, ux(1)− vx(1) = 0. (6.13)

Neumann boundary conditions violate Hypothesis 7 since the two components of the operator (6.12) decouple at
the red state.

First, we computed the absolute and essential spectra of the asymptotic homogeneous states. This was done by
continuation withinauto97. The results are shown in Fig. 10. Note that absolute spectrum is to the left of the
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Fig. 10. The absolute and essential spectra of the red (left) and the blue (right) rest states are shown. The essential spectrum is plotted using
thicker lines, while the absolute spectra are plotted with thin lines.

essential spectrum. The rightmost edge of the absolute spectrum of the blue state corresponds to a double spatial
eigenvalue as does the rightmost point of the absolute spectrum of the red state.

We then computed the spectrum of the operatorL on the interval (0, 1) with the boundary conditions (6.13); see
Fig. 11. The computations confirm that the spectrum on the bounded interval asymptotes on the absolute and not
on the essential spectrum. The additional eigenvalue at zero is of course due to translational invariance of (6.9).

The absolute spectrum of the blue state is caused by spatial eigenvalues that cross the imaginary axis from right
to left. The exponential weight function is therefore given by eηx with η > 0, and we expect that perturbations
are convected towards−∞. In particular, eigenfunctions associated with eigenvalues ofL on the bounded interval
should be large at the left endpointx = 0 of the domain. This is confirmed in Fig. 12(b), where theu-component
of a typical eigenfunction within the absolute spectrum is plotted.

6.3. Numerical computations of spectra on the real line

As we have seen, only periodic boundary conditions generally capture the spectrum of PDE operators on the real
line. One of the exceptions is the case where the operator exhibits an additional reversibility structure so that the
essential and the absolute spectrum are in fact equal.

For separated boundary conditions, the spectrum that is computed on the bounded interval is the absolute spectrum
plus the set of eigenvalues and resonance poles of the original operator. Additional eigenvalues can be created

Fig. 11. The spectrum ofL on the interval (0, 1). The thin lines indicate the location of the absolute spectrum of the operator. We used centered
finite differences with 2000 equidistant mesh points corresponding to a step size ofh = 5 × 10−4.
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Fig. 12. (a) The left-hand side picture contains theu andv components of the front to the Gray–Scott model as a function ofx. The parameters
are chosen according to (6.11). (b) Theu-component of the eigenfunction ofL associated with the eigenvalueλ = −3.96×10−4 −3.5 i×10−2

is plotted. This eigenvalue is close to the rightmost edge of absolute spectrum of the blue state.

through the boundary conditions. To confirm the numerical computations, one could therefore compute the absolute
spectrum of the asymptotic states separately, either by using the spatial eigenvalues of the asymptotic matrices
or by numerically computing the spectra of the asymptotic constant-coefficient operators. A comparison with the
spectrum of the full operator then identifies the absolute spectrum. Spurious eigenvalues generated by the boundary
conditions can be identified using different boundary conditions and comparing those eigenvalues that are not related
to the absolute spectrum.

Finally, we emphasize that our results are true asymptotically asL → ∞, but that we do not have estimates for
how largeL really has to be in order to resolve the absolute spectrum over a large region in the complex plane. An
additional difficulty is that the operator has to be discretized so that the spectra also depend upon the step size of the
discretization scheme. An example where these issues seem to play a role is the FitzHugh–Nagumo equation that
has been used in [8] to illustrate domain-truncation results for isolated eigenvalues. It appears as if the computed
spectrum is close to the absolute spectrum only extremely near the imaginary axis. Our calculations show that the rest
of the spectrum is very sensitive to variations of the length of the interval and the choice of the number of mesh points.

7. Conclusions and discussion

Our results can be summarized as follows. As far as the original point spectrum on the real line is concerned,
eigenvalues persist under truncation with their multiplicity. For separated boundary conditions, however, additional
eigenvalues can be created when the boundary conditions are not transverse to certain eigenspaces. In addition,
eigenvalues may appear in regions that were previously occupied by the essential spectrum; these eigenvalues are
often referred to as resonance poles. The essential spectrum of the problem on the real line is recovered under domain
truncation only if periodic boundary conditions are imposed. For separated boundary conditions, the spectrum on
the bounded intervals asymptotes onto the absolute spectrum as the endpoints of the interval tend to±∞.

We have taken three different viewpoints towards stability for operators on the real line:L2-stability, convective
instability, and transient instability. As far as the essential spectrum is concerned,L2-stability implies stability on
all sufficiently large intervals with periodic boundary conditions, while transient instability implies stability under
separated boundary conditions. In particular, separated boundary conditions can stabilize: transiently unstable
patterns may be spectrally unstable under periodic boundary conditions, while they may be stable under separated
boundary conditions. Convective instability does in general not imply stability under separated boundary conditions;
see Example 2.

Proving that solutions actually decay pointwise whenever the operator is convectively unstable is in general a
difficult endeavor for hyperbolic or dispersive equations since it requires to show the convergence of0-integrals.
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Uniform bounds on the resolvent usually require a scaling of the scalar product inR
N for largeλ. For instance, the

heat equationuxx = λu, when rewritten asux = v, vx = λu, does not admit uniform dichotomies asλ → ∞ with
λ ∈ R since the eigenvectors(1,±√

λ)T are asymptotically parallel;T (λ)−1 is therefore not uniformly bounded in
λ. The correct (space–time) scaling isux = √

λv, vx = √
λu which guarantees uniform dichotomies.

Our results are partial in the sense that they only consider the effect of the truncation on the linearization as in
[8]. In general, the stationary solution of the nonlinear PDE itself is perturbed by the boundary conditions. When
the essential spectrum does not containλ = 0, these perturbations are often harmless. In many circumstances, the
perturbed wave is e−θL-close to the original wave; see [7]. In this situation, our results are also true if the original
wave is replaced by the perturbed wave. This is a consequence of the estimates for exponential dichotomies that
were established in [33,35].

The approach using exponential dichotomies is suitable for problems in one-dimensional domains where dynamical-
systems properties prove particularly useful. However, the results can be immediately generalized to cylindrical
domains with multi-dimensional bounded cross-section and to time-periodic solutions of parabolic problems using a
slightly generalized notion of dichotomies and Morse indices; we refer to [27,37,38] for related results. In particular,
the absolute Morse indices considered here have to be replaced by relative Morse indices.

In general, the absolute spectrum seems to play an important role whenever boundary or, more generally, matching
conditions are imposed. An interesting example is the following situation: suppose that the travelling wave ODE
admits a heteroclinic cycle so that the first connection is transversely constructed while the other connection is of
codimension two. This situation is often called aT -point. The interpretation for the PDE is then as follows. There
are two homogeneous rest states so that one of them is stable while the other one is unstable. There are also two
fronts that connect the first to the second and the second to the first rest state, respectively. Furthermore, these fronts
have the same wave speed. It is known that, for nearby parameter values, the PDE exhibits pulses that connect
the stable rest state to itself. An interesting issue is the stability of these pulses. Note that both fronts are unstable
since one of their asymptotic states is unstable. Also, the pulses have a long plateau along which they are very
close to the unstable rest state. Numerically, it appears as if the bifurcating pulses can be stable, see [41,45], even
though in the limiting configuration, i.e. for the heteroclinic cycle, part of the essential spectrum is contained in
the right half-plane. Matching or gluing the pulses from two fronts is similar to imposing a boundary condition
in the middle of the domain. We therefore expect that the stability properties of the pulse are not determined by
the essential spectrum of the unstable rest state but by its absolute spectrum (which can be stable even though the
essential spectrum is unstable). As shown in [39], this is indeed the case.
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