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Abstract

Instabilities of nonlinear waves on unbounded domains manifest themselves in different ways. An absolute instability
occurs if the amplitude of localized wave packets grows in time at each fixed point in the domain. In contrast, convective
instabilities are characterized by the fact that even though the overall norm of wave packets grows in time, perturbations decay
locally at each given point in the unbounded domain: wave packets are convected towards infinity. In experiments as well as
in numerical simulations, bounded domains are often more relevant. We are interested in the effects that the truncation of the
unbounded to a large but bounded domain has on the aforementioned (in)stability properties of a wave. These effects depend
upon the boundary conditions that are imposed on the bounded domain. We compare the spectra of the linearized evolution
operators on unbounded and bounded domains for two classes of boundary conditions. It is proved that periodic boundary
conditions reproduce the point and essential spectrum on the unbounded domain accurately. Spectra for separated boundary
conditions behave in quite a different way: firstly, separated boundary conditions may generate additional isolated eigenvalues.
Secondly, the essential spectrum on the unbounded domain is in general not approximated by the spectrum on the bounded
domain. Instead, the so-called absolute spectrum is approximated that corresponds to the essential spectrum on the unbounded
domain calculated with certain optimally chosen exponential weights. We interpret the difference between the absolute and the
essential spectrum in terms of the convective behavior of the wave on the unbounded domain. In particular, it is demonstrated
that the stability of the absolute spectrum implies convective instability of the wave, but that convectively unstable waves can
destabilize under domain truncation. The theoretical predictions are compared with numerical computations. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We are interested in the stability properties of nonlinear waves such as fronts and pulses on unbounded and
bounded domains. On unbounded domains, an instability can manifest itself in different ways. The physics literature
distinguishes between two different kinds of instability, namely, absolute and convective instabilities. An absolute
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instability occurs if perturbations grow in time at every fixed point in the domain. Convective instabilities are
characterized by the fact that, even though the overall norm of the perturbation grows in time, perturbations decay
locally at every fixed point in the unbounded domain; in other words, the growing perturbation is transported,
or convected, towards infinity. In experiments as well as in numerical simulations, bounded domains are often
more relevant. From a physical point of view, it is then interesting and important to understand how absolute
and convective instabilities manifest themselves on large bounded domains under various boundary conditions. A
possible conclusion would be that convective instabilities disappear on bounded domains, while absolute instabilities
persist. It turns out, however, that there are convective instabilities that survive the truncation to a bounded domain.

Understanding the spectral properties of waves under domain truncation amounts to identifying and capturing
those instabilities that survive domain truncation, and to calculating and comparing the spectra of the relevant
linearized operators on such domains. These are the issues we set out to explore in this article. Our main result
establishes that it is not absolute and convective instabilities but what weegalhntandtransientinstabilities,
see below, that determine the spectral (in)stability of waves under domain truncation. Before we explain these
instabilities in more detail and outline our approach, we comment more on our motivation to study these issues.

Physical situations in which the aforementioned issues are relevant include, for instance, fluid flows in finite
containers [9,43] and the break-up of spiral waves as observed in experiments [28] and numerical simulations
[5,6,42]. In open flows, the difference between absolute and convective instabilities is important; this problem
has been studied intensively for modulation equations such as the complex Ginzburg—Landau equation; see, for
instance [3,13,14,43]. Part of our motivation comes from the break-up of spiral waves in two-dimensional excitable
and oscillatory media [5,6]. Spirals can break-up either near the core or else in the far-field; the difference between
these instabilities is the direction towards which unstable eigenmodes convect and transport. An interesting issue is
to predict these instabilities, and the direction of transport, from spectral properties of the asymptotic wave trains
of the spiral; this will be discussed in a forthcoming paper using the techniques introduced here.

A second reason for investigating the behavior of spectra under domain truncation is the fact that it is in general
quite difficult to calculate the spectrum of the linearization about a given nonlinear wave analytically. Thus, one
has to resort to numerical techniques which typically require that the unbounded domain is replaced by a bounded
domain, supplemented with appropriate boundary conditions. There is then, however, no guarantee that the true
spectrum on the unbounded domain is recovered as domain truncation is not a regular perturbation. In particular,
the spectrum on the bounded domain may well depend upon the choice of boundary conditions.

1.1. Different instability mechanisms on unbounded domains

We begin by reviewing the different instability mechanisms that we are interested in on the unbounded domain
R. As mentioned above, absolute instabilities occur if perturbations grow in time at every fixed point in the domain.
Convective instabilities are characterized by the fact that perturbations decay locally at every fixed point in the
unbounded domain even though the overall norm of the perturbation grows in time.

There are, however, other ways of differentiating between instabilities on unbounded domains. We refer to the
situation where every unstable mode travels to either left or right but not simultaneously to the left and right as
a transientinstability. Note that a convective instability allows waves to split into two wave packets that travel
simultaneously to the left and right. In contrast, transiently unstable modes have a preferred direction of transport.
We expect that transiently unstable waves are convectively unstable but not necessarily vice versa.

We outline how convective and transient instabilities can be captured mathematically on the unbounded domain
R. Suppose that we linearize a certain partial differential equation (PDE) about a pulse, say. We then investigate
the resulting linear PDE operatdron the real line using the spaé&(R) with norm || - ||. The spectrum of the
operatorL is the disjoint union of two sets: the point spectrum that consists of all isolated eigenvalues with finite
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multiplicity, and its complement which we refer to as the essential spectrum. If part of the essential spectrum lies in
the right half-plane, then there is typically a continuum of unstable modes present. The essential spectrum can be
computed using the dispersion relatid¢h, v) = 0 that relates temporal eigenvalueand spatial eigenvalues

the dispersion relation is calculated by substitutirig, 1) = exp(At + vx) into the PDEu, = Lou, which is the
linearization about the asymptotic rest state of the pulse. We remark that our notation of dispersion relation differs
slightly from the physics convention whexeandv are replaced by and—ik, respectively.

In certain cases, the essential spectrum induces a convective instability. Suppose that part of the essential spectrum
lies in the right half-plane. In many situations, it can be shown that a wave is convectively unstable if the dispersion
relationd (), v) does not have any double rootsiiffior A in the closed right half-plane; see [3,9] and the references
therein. A wave becomes absolutely unstable if a temporal eigenydioewhich the dispersion relation has a
spatial double root crosses into the right half-plane.

To describe transient instabilities, it is convenient to introduce exponential weights; see [40]: for any given real
numbers, define a new nornj - ||, by

o
luel|? =/ € u(x) % dx,

—00

and denote b)L%(R), equipped with the nornii - ||,), the space of functions(x) for which €*u(x) is in L2(R).

Note that the normg - ||, for different values ofy are not equivalent to each other. We then consiflers an

operator orL%(R) and compute its spectrum using the new ndrj,, for appropriate values of. The key is that,

for n > 0, the norml - ||,, penalizes perturbations &to, while it tolerates perturbations (which may in fact grow

exponentially with any rate less thahat —oo. Thus, if an instability is of transient nature so that it manifests itself

by modes that travel towardsoo, then the essential spectrum calculated in the npri, should move to the left

asn > 0 increases. Indeed, as the perturbations travel towards they are multiplied by & which is small as

x — —oo and therefore reduces their growth or even causes them to decay. Exponential weights have been used to

study a variety of problems posed on the real line such as reaction—diffusion operators [40], conservative systems

such as the KdV equation [32], and generalized Kuramoto—Sivashinsky equations that describe thin films [11,12].
As mentioned above, convective and transient instabilities are not identical: an example of a convectively unstable

wave that is not transiently unstable is given in Example 2 in Section 3.3. What happens in this example is that

perturbations travel to botioo and—oco at the same time. Such instabilities cannot be removed by exponential

weights since we would need> 0 to get rid of modes travelling to the left bgt< 0 to handle the modes that

travel to the right. This might seem to be a minor point but is in fact of importance when the domain is truncated to

a bounded interval; see below. We refer to Fig. 1, where we illustrate absolute as well as transient and convective

instabilities.
(©)
. A

Fig. 1. The dotted waves are the initial datg(x) to the linearized equatiom, = Lu, while the solid waveg (x, ¢) represent the solution at

a fixed positive time; the horizontal axis ig, the vertical axis corresponds to the value:6f, ¢) atx. (a) lllustrates an absolute instability
where the solution to the linearized equation grows without bounds at each given poispace as time tends to. (b) lllustrates transient
instabilities: the solutiom (x, r) grows but also travels ianedirection so that:(x, t) actually decays for each fixed valuexofst — oco. The
operatorC would have stable spectrum in the nojim||,, for a certainy > 0. (c) Shows a convectively unstable pattern that is not transiently
unstable: the solution(x, r) consists of two waves that grow while travelling in opposite directions. Such an instability cannot be stabilized by
using the normj| - ||,,. Typically, the group velocities of the two waves would differ in modulus as shown here.

(b)
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Finally, we say that a wave lemnantlyunstable if the spectrum &, computed in the spade%(R), is unstable
for any choice ofy. Thus, remnantly unstable modes are modes which are not affected by exponential weights.
We can capture remnant and absolute instabilities by computing what we call the absolute spectrum: roughly
speaking, the absolute spectrigysis defined as the set of complex numbgrfor which the resolvent — A
is not invertible inL%(R) for any choice ofy; see Section 3.2 for a more precise definition. In fact, the absolute
spectrum can be computed using only the asymptotic coefficients of the linear op&rttat is, it depends only
upon the asymptotic rest states of the underlying wave. The absolute spectrum captures remnant instabilities: the
absolute spectrum moves into the right half-plane if, and only if, the wave experiences a remnant instability. As
the absolute spectrum contains any poinfer which the dispersion relation has double spatial roots, we can also
use it to capture absolute instabilities. Such temporal eigenvalaesrespond to unstable eigenmodes with zero
group velocity. Absolute and remnant instabilities would be identical if the rightmost unstable temporal eigenvalue
A in the absolute spectrum always corresponds to an eigenmode with zero group velocity; there is, however, the
possibility that the most unstable eigenmode in the absolute spectrum has non-zero group velocity; see Examples
2 and 3 in Section 3.3.

In summary, upon using exponentially weighted norms, the essential spectrum may move to a different location.
The new location of the essential spectrum is determined by a balance between the growth in amplitude and the
speed of advection associated with each eigenmode on the one hand andjtteatie being used in the weight
on the other hand.

1.2. Instabilities on large bounded domains

Next, we consider the relevant PDE operator on a large but bounded interval with appropriate boundary conditions.
The distinction between point and essential spectrum then disappears. We may, however, define the extrapolated
essential spectral s&I5,; that consists of all complex numbers that are approached by infinitely many eigenvalues
as the interval approaches the entire real line. In other words, rather than investigating how the essential spectrum
breaks up under domain truncation, we consider the inverse problem by determining the asymptotic location of
eigenvalues on the bounded interval as the domain size tends to infinity. The first result, Theorem 4 in Section
5.2, demonstrates that the essential specfiaggand the extrapolated essential spectrabzgf are equal to each
other provided we use periodic boundary conditions; this requires that the nonlinear wave is a pulse and not a front.
In other words, with periodic boundary conditions, the essential spectrum of pulses is well approximated under
domain truncation. The second result, Theorem 5 in Section 5.3, shows that thegetsd =g, are in general
differentif separate boundary conditions are used. Thus, no matter how large we choose the interval length, the
resulting spectrum will never be close to the spectrum on the real line. In fact, we demonstrate that, for separated
boundary conditions, the extrapolated essential spectralets typically equal to the absolute spectriaps
The reason that the spectrum on the real line is not well approximated by the spectrum on bounded intervals is
related to the existence of transiently unstable eigenmodes. We had seen that we can shift the transient part of the
essential spectrum by using exponential weights. As mentioned above, this amounts to changing the underlying
function space as these norms are not equivalent to the stahdardrm. On bounded intervals, however, these
norms are all equivalent to each other sinteie then bounded away from zero and from infinity. Thus, we expect
that, if the operator is stable in an exponentially weighted norm, then it should also be stable on large bounded
intervals. In other words, even if it is unstable on the real line, it will be stable on bounded intervals provided it
is also stable on the real line considered with exponential weights. Heuristically, transiently unstable eigenmodes
transport perturbations towards eithieso or —oo; on bounded intervals, the perturbations then disappear through
the boundary. This also explains why the essential spectrum is recovered upon using periodic boundary conditions:
the transient modes transport perturbations towards the boundary as before but they get fed in on the other endpoint
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of the interval through the boundary conditions. It also explains why convective instabilities may lead to instabilities

on bounded domains: if there are unstable eigenmodes that transport perturbations to the left and other modes that
transport to the right, then these modes may couple through the boundary conditions; even for separated boundary
conditions, this may lead to an instability on bounded intervals; see Example 2 in Section 3.3.

An interesting consequence of these remarks is a characterization of the so-called pseudo-spectrum. Roughly
speaking, for arbitrary sma#l > 0, thee-pseudo-spectrum of an operatbron a bounded domain consists, by
definition, of all complex numbers such that the associated resal@ent) ! has norm larger thary#. It has been
used in linear numerical analysis; see, for instance [44] for more background information. Our results imply that
the pseudo-spectrum on large domains typically interpolates between the absolute sprgt@mad the essential
spectrumiess for fixed interval lengthl, thee-pseudo-spectrum @ approaches the absolute spectruna as O;
on the other hand, for fixed> 0, the pseudo-spectrum converged, as oo, to an open set whose closure contains
the essential spectrum, see Section 4.4. The reason is that the resolvent on the real line is invertible only in some
exponentially weighted norm. Even though all these norms are equivalent on bounded intervals, their equivalence
constants approach infinity exponentially fast in terms of the interval length. Thus, the norm of the resolvents
also grows exponentially in terms of the interval length. For the constant-coefficient convection—diffusion operator
uxx + CuU,, this fact has been established in [34].

It remains to consider the effects of domain truncations on isolated eigenvalues. Again, we have to distinguish
between periodic and separated boundary conditions. In Theorem 2 in Section 4.2, we prove that eigenvalues persist
with their multiplicity under periodic boundary conditions. Furthermore, all the eigenvalues for the operator on the
bounded interval originate from eigenvalues on the real line. Thus, periodic boundary conditions recover not only
the essential spectrum but also the point spectrum accurately.

The case of separated boundary conditions is again quite different. There are three issues that have to be dealt with.
Firstly, given an isolated eigenvalue on the real line, we may ask for its persistence when truncating to a bounded
interval. Secondly, additional eigenvalues could be created through the boundary conditions. The third issue is as
follows. We have seen that the essential spectrum may shift upon using exponential weights. In the region between
the original and the shifted essential spectrum, additional eigenvalues may arise. The associated eigenfunctions are
bounded in thg - ||, norm that was used to shift the spectrum but are unbounded in the oddimadrm. It is then
possible that these new eigenvalues, which are often referred to as resonance poles, persist upon domain truncation.
The reason is that the exponential weights do not matter on any bounded interval. All these issues are taken care of
in Theorem 2 in Section 4.3.2. Resonance poles indeed persist under domain truncation in addition to eigenvalues of
the operator in the origindl2-norm. Furthermore, it is possible that additional eigenvalues are created through the
boundary conditions, and we give precise conditions on when this phenomenon occurs and how many eigenvalues
are created.

We remark that we do not give asymptotic expansions of isolated eigenvalues in the intervalllesfgtine
underlying bounded interval d — oo. Such expansions can, however, be obtained using the approach utilized
here; see, for instance, [37] for expansions of eigenvalues for the linearization about a pulse under periodic boundary
conditions.

The main techniques that we use to demonstrate the persistence of eigenvalues are the Evans function [1] for
bounded intervals [19,21] applied with exponential weights [40]. Domain truncation for the absolute and essential
spectrum are investigated using exponential dichotomies [16,29,33,35]; implicitly, we also use extensions of the
Evans function across the essential spectrum [25]. We emphasize that we prove our resuftbfomded subsets
of the complex plane. Thus, we do not establish resolvent estimates fok Jangearticular examples, such estimates
are typically obtained on a case-to-case basis.

Finally, we mention related results. In [8], the persistence of eigenvalues under domain truncation has been
investigated for reaction—diffusion operators under periodic and separated boundary conditions. The authors also
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provided error estimates for the dependence of the eigenvalues on the intervalllefigthresults established in
[8] apply only to eigenvalues that are to the right of the essential spectrum; resonance poles or the behavior of the
essential spectrum itself were not discussed. A general reference for boundary-value problems is [4].

In addition, there is tremendous amount of articles in the physics literature where absolute and convective
instabilities have been investigated; see, for instance, [3,43] to name but two. In many of these articles, absolute
and convective instabilities were investigated for the complex Ginzburg—Landau equation. The results typically
characterize the onset to instability by the crossing of a double root of the dispersion relation through the imaginary
axis into the right half-plane. As we have already mentioned above, this criterion is in general not correct even
though it gives the right answer in almost all the cases we are aware of. Our contribution is firstly the correct
criterion for instability on large bounded domains through the notions of remnant and transient instabilities and,
secondly, a characterization of the entire spectrum, and not only of the double roots of the dispersion relation, on
bounded domains. This allows for a comparison of numerical calculations with theoretical predictions. In addition,
the systematic use of exponentially weighted norms allows us to predict the absolute or convective nature of
instabilities including the direction of transport.

This article is organized as follows. The set-up and most of the relevant definitions are given in Section 2. In Section
3, we introduce the various notions of spectrum that we shall use. The behavior of point spectrum under domain
truncation is discussed in Section 4. Section 5 contains the results for the essential spectrum. Numerical simulations
for the KdV equation and the Gray—Scott model are presented in Section 6. Section 7 contains conclusions and
discussion of open problems.

2. Operators, boundary conditions, and exponential dichotomies
In this section, we introduce our precise set-up as well as all necessary definitions that we shall use.
2.1. The coefficient matrix

Throughout this article, we assume thtr; 1) € RV*V is a matrix-valued function ofx, 1) € R x C of the
form

A(x; L) = A(x) + AB(x).

Most of our results are valid for more generilx; 1); we note, however, that eigenvalue problems arising from
evolutionary equations are typically of the above type. We assume that) satisfies the following hypothesis.

Hypothesis 1. The matricesA(x; ) € R¥*N are smooth i € R and analytic in. € C. Furthermore, the

following conditions are met.

1. Asymptotically constant-coefficienthere are positive constamtsand?d, independent of andi, and matrices
A4 ()) that depend analytically aksuch that

IAGx; 2) — Ax (V)| < K e

asx — foo.

2. Well-posednes3hereisanumbes > 0 and an integek, € N, such that for alk with Rex > p, the asymptotic
matricesA 1 (1) are hyperbolic (i.e. they have no spectrumRh and the dimension of their generalized unstable
eigenspaces is equalig.
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The second condition is satisfied for eigenvalue problems that arise from evolution equations. It guarantees that
the essential spectrum is to the left of the lineARe p for some finite numbep.

We emphasize that most of our results hold in more generality; for instance, it sufficaq tha is asymptot-
ically periodic inx.

Throughout this paper, we label eigenvaluesAaf(i) according to their real part, and repeated with their
multiplicity, i.e.

Revi(x) > Revy (1) > --- > Revy_; () > Revy (). (2.1)
In particular, choose such that Re is large. Using Hypothesis 1(2), we see that
Rev (1) > -~ > Rev; (A) > 0> Reufgo+l(x) > ... > Revy(L).

We refer tox andvj.E as thetemporalandspatial eigenvalues, respectively. For every fixed temporal eigenvalue
the spatial eigenvaluez;t are the roots of the characteristic polynomials

de(v,A) =detp — AL (L)]

of AL(1). The dependence between spatial and temporal eigenvalues is commonly referred to as the dispersion
relation, where» = —ix is considered as a function bf= iv.

2.2. The operator on the real line
On the unbounded real lirie, we consider the family™ of linear operators
d
T : HYR,CY) — L2R,CY),  urs d—” — AG; Mu (2.2)
X

for » € C, whereH1 is the usual Sobolev space bf-functions that have a weak derivative which islif.
As mentioned in Section 1, it is often convenient to consider the oper@i@rs on exponentially weighted
function spaces; see [40,31]. Thus, for arbitrarg (7_, ) € R?, we set

IvOIZ, = / iow(s) exp(n_&)|? dg + /0 " lue) expln £) 2 de. IO = IWOIZ, + Ol
We may then consider the operator

T HY R, CV) - LR, CY), V> g—z — A M. (2.3)
For any functiorv defined orR, let

exp(n—x)v(x) for x <O,
exp(nyx)v(x) for x > 0.

(Jyv)(x) = {
The maps

J,,:Hnl—>Hl, v J,v and Jn:L§—>L2, v Jyv
are then linear isomorphism, and the oper&t6(1) can be written as

T HY®R, CVy — L3R, CN), U 3—” — AG; Mu — n()u, (2.4)
X
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where

_|n- for x <0,
nx) = { ny for x > 0. (2.5)

Indeed, we have
T0) = I, T" () I,

In the following, we omit the tilde and denote both operatorgtiya).
2.3. The operators on the bounded inter¢alL, L)

Alternatively, we could consider the operators on the bounded intern/al L) for large number4.. In this case,
we introduce boundary conditions at the endpoints of the interval. For periodic boundary conditions, a suitable
function space is

Hpe((—=L, L), CY) = H* (=L, L), CY) N {u; u(—L) = u(L)},

and we consider the operator
d
TPY ) Hyg((=L, L), CN) — L*((-L.L).CY),  uw d—“ — A(; Mu. (2.6)
X

Separated boundary conditions can be realized by choosing appropriate sul@pasesQ_ of CV. We assume
that these subspaces satisfy the following hypothesis.

Hypothesis 2(Separated boundary conditionsWe assume that
dmQ_ =is, dmQ, =N — iy,
where the asymptotic Morse indéx has been introduced in Hypothesis 1.
The correct function space for separated boundary conditions is then given by
Hiof(—L, L), CN)y = H' (=L, L), C") N{us u(~L) € 0 and u(L) € 0y},

and we are interested in the operator

T t Hgff (L. L), CY) - L2(—L.L).CY),  uw g—” — A(; Mu. (2.7)
X

Example 1. Consider the convection—diffusion probleiip = Uyx + cU, together with the associated eigenvalue
problemiU = Uxx + cU,. Upon writing the eigenvalue problem as a first-order system, we se&/'thaf and

. (0 1 0 0 .
A:(O _C>, B:(l o)’ A(x; M) = A+ AB, (2.8)

such that: = (u1, u2)" = (U, U,)" e R?. Dirichlet and Neumann boundary conditions are giveritgy-L) = 0
andU,(+L) = 0, respectively, and can be realized using the subsp@@¥s= spar{(0, 1)T} and Q¢! =
spar{(1,0)7}.
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Note that, for separated boundary conditions, the integes singled out as the number of boundary conditions
at the right endpoint of the interval-L, L); observe that the number of boundary conditions at +L is
the codimension ofD.. Furthermore, we emphasize that exponential weights do not affect separated boundary
conditions but that they change periodic boundary conditions.

2.4. Exponential dichotomies

The main tool that we use below to investigate the spectral properties of the famityexponential dichotomies
of the associated ordinary differential equation

iu = A(x; Mu (2.9)
dx

foru e CV.

Definition 2.1 (Exponential dichotomigs Let I = R*, R~ or R, and fixi, € C. We say that (2.9), with = A,

fixed, has an exponential dichotomy oiif there exist positive constanss, «° and«! and a family of projections

P(x) defined and continuous fare I such that the following is true.

1. For any fixedy € I andug € CV, there exists a solutiopS(x, y)ug of (2.9) with initial valuegS(y, y)ug
P(y)ug for x = y, and we have

lS(x, y)| < K exp(—«®|x — y])

forallx > ywithx,y € 1.
2. For any fixedy € I andug € CV, there exists a solutiop"(x, y)ug of (2.9) with initial valueg"(y, y)ug =
(1— P(y))uo for x = y, and we have

lp"(x, y)| < K exp(—k"|x — y|)

forallx < ywithx,y e I.
3. The solutiongS(x, y)ug ande(x, y)ug satisfy

©S(x, Y)uo € R(P(x)) forall x >y with x,yel,
e"(x, yug € N(P(x)) forall x <y with x,yel.

The (x-independent) dimension &f( P (x)) is referred to as the Morse indég...) of the exponential dichotomy
on . If (2.9) has exponential dichotomies &1 and onR ™, the associated Morse indices are denoted., lgy..)
andi_ (1), respectively.

The existence of exponential dichotomies of (2.9) is related to hyperbolicity of the asymptotic matrices
recall thatA(x; ) converges tad+(A) asx — =oo. If AL(}) is hyperbolic, then we denote by3"(1) the
associated stable and unstable eigenspaces. Furthermore, we denote the spectral projectionsagociated
with the stable and unstable eigenvaluesifya) and P (1), respectively.

Statement 1(Coppel [16]). Fix A, € C. Eq.(2.9) has an exponential dichotomy @1 if and only if, the matrix
A4 (A4 is hyperbolic. In this case, the Morse indgx2.,) is equal to the dimensiodim EY (1) of the generalized
unstable eigenspace df, (1,). The same statements are true®n with A (1) replaced byA_ (A,).
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Finally, (2.9) has an exponential dichotomy @if, and only if, it has exponential dichotomies Bri and R~
with projectionsP. (x) so thatR(P,(0)) & N(P_(0)) = CV; this requires in particular that the Morse indices
i+ (Ay) andi_ (1) are equal

In fact, we can say more about the asymptotic behavior of exponential dichotomies and their dependence on
We denote by (x, y; 1) the evolution operator to (2.9) with initial timeg Recall that we ordered the eigenvalues
vJ?—L()L) of AL(X); see (2.1). LeUs(),) be the ball inC with centeri, and radiuss.

Theorem 1([16,33,35]). Fix 1, € C and assume that (1,) is hyperbolic. There are then number$, ! and
8§ > 0sothat, withiy =iy (Ay),

Revi()\.) > /cfi >0> —Ki > Revit+1()‘)

for all A € Us(n,). Furthermore, there is & > 1 so that, for every. € Us(L,), there are evolution operators
@3 (x, y; A) andeY (x, y; 1), defined forx, y > 0 and analytic inx, such that, forx, y € R,

P(x, y; A) = @5(x, y; 1) + L (x, yi M), ol (x, ys DIl < K exp(—kS|x —y)), x>y,
ot G, ys M < Kexp—ktlx —yD), y=x, o, x; ) — PYOI < K@M + exp(—oy|x])),

whered appeared in Hypothesisando, = «3 + «Y is a lower bound for the gap, in the real part, between the
stable and unstable spectral setsAf (1).

The matricer;pi (x, x; 1) andg§ (x, x; A) are complementary projections, and we define the subsmai:(as A) =
R(¢3 (x, x; 1)) of dimensionNV — iy and EY (x; ) = R(¢Y(x, x; A)) of dimension;.. For any subspacé of
CN with ES.(0; 1) @ E = CV, there is a constant C such that

dist(p(x, 0; ME, EL (1) < Cle™*™ + exp(—oy [x]. x>0,

whereEY (1) = R(PY(1)). (We refer to Sectiod.1for a definition of the distance between subspgces

Finally, ¢5 (x, y; 1) and ¢} (x, y; 1) are unique up to the choice @ (0; 1): any other analytic choice of a
complement of$ (0; 1) leads to evolution operators with the above properties. Furthermore, these evolution
operators are exponential dichotomies in the sense of Defirtibn

The same statements are truel®n with A, (i) replaced byA_()). Furthermore, if(2.9) has an exponential
dichotomy orR, then the operators defined above can be chosen to be analytifoirall x, y € R.

Proof. The proofs can be found in [35, Section 1.1] and [33, Sections 2.2 and 3.4]. |

Remark 2.1. We emphasize that the above results can be extended to the case where the asymptotic.ifatrix
has also spectrum on the imaginary axis. The evolution operator can then be written as thgxsumi) =
@3 (x, y; A) + @5 (x, y; 1) + ¢ (x, y; 1) of evolution operators that depend analytically briThe operatorsy$
andg! satisfy the same estimates as before, while we have in addition

e (e, yi M1 = K expw§lx =y, x,y=0

for fixed0 < k¢ < min{x3, «}. This statement can be proved by applying Thedkéwice to(2.9)with A replaced
by A + n forn > Oandn < O close to zero, respectively. We omit the details and instead ref@Bto

The following theorem proved by Palmer relates Fredholm properties of the opEkaido properties pertaining
to the existence of dichotomies of (2.9).
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Statement 2(Palmer [29,30]).Fix » € C. If (2.9) has exponential dichotomies @& andR~, then 7 (A) is
Fredholm with index_(A) — i+ (1). Conversely, if7 (1) is Fredholm, ther(2.9) has exponential dichotomies on
R* and R~ with associated Morse indicés (1) andi_ (), respectively, and the difference(r) — i (1) is the
Fredholm index off (1). Finally, 7(1) is invertible if, and only if(2.9) has an exponential dichotomy @ If

T is invertible, we denote hy= i, = i_ the spatial Morse index ¢f that is given by the dimensiaim EY(0; 1)

of the unstable subspad®'(0; 1) of the associated dichotomy

As a consequence of Statement 2 and the above discu§sioh) is Fredholm if, and only if, the matrices
A1 ()) + ny are both hyperbolic. The Fredholm index is then given by the difference of the dimensions of the
generalized unstable eigenspaced 9i}1) + 1.

3. Spectra on the unbounded real line

3.1. Point and essential spectrum

We consider the family of operatofSwith parametei.. The spectrum of the operat@i(x) for fixed 2 is of no
interest to us; instead, we consider the so-callespectrum, see [23, Chapter 1V], af/dx) — A(x).

Definition 3.2 (Spectrunp. We say that is in the spectrunk of 7 if 7 (1) is not invertible. We say that € X is
in the point spectruny; of 7, or alternatively thak € X is an eigenvalue of , if 7 (1) is a Fredholm operator
with index zero. The complemedl \ Xpt =: Xessis called the essential spectrum.

Example 1(continued. We decomposé (x; 1) = A + AB as in (2.8). The spectrum 6F then coincides with the
spectrum of the associated elliptic differential operatet (d?/dx2) + c(d/dx).

In particular,A ¢ Zessif, and only if, (2.9) has exponential dichotomies & and onR~ with equal Morse
index. The essential spectrum is determined by the asymptotic matricgs: 7 (1) is Fredholm if, and only fif,
the spectra ofA; (1) and A_()) are disjoint from the imaginary axis; the Morse indi¢es)) are given by the
dimensions of the unstable eigenspaced ofA).

For any2 in the point spectrum, we define the multiplicity bfas follows. Recall thati (x; A) is of the form
A(x; M) = A(x) + AB(x). Suppose that is in the point spectrum of , where

d N
TA) = — — A(x) — AB(x),
dx
sothalN(7 (1)) = sparfu1(x)}. We say that has multiplicity¢ if there are functions ; (x) for j = 2, ... , £, sothat

d n
auj = (A(x) +AB(x))uj + B(x)uj_1
for j =2,..., ¢ but no solution to

d A

au = (A(x) + AB(x))u + B(x)uy.

Here, we assumed that the functiansbelong to the same function space that may include boundary conditions.
Finally, we say that an arbitrary eigenvaluef 7 has multiplicity? if the sum of the multiplicities of a maximal
set of linearly independent elementNii7 (1)) is equal tof.
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Next, we discuss stability in exponentially weighted spaces. Chodsé¢he right of the essential spectrum. As
before, we label eigenvalues af. (1) according to their real part and repeated with their multiplicity. Foriatty
the right of the essential spectrum, we then have

+ +
ReviOo A) >0> Re”ioo+1()‘)

due to Hypothesis 1(2). These inequalities are satisfied upon varyintl A touches the boundary of the essential
spectrum where atleast one of these eigenvalues crosses the imaginary axis. Using exponential weights ;)
has the effect of replacing the matricés (1) by AL (1) + n+. Thus,A is to the right of the essential spectrum of
T provided the eigenvalues dfy (1) satisfy

Revl.t()u) > —ny > Reviﬂ(k).

We give several different notions of stability, and begin with spectral stability.

Definition 3.3 (Spectral stability. We say thaf" is stable ifZ is contained in the open left half-plane. We say that
T is unstable if part of its spectrul lies in the closed right half-plane.

The next definition measures stability up to exponential weights. We restrict the allowed set of exponential
weights to make them compatible with the asymptotic behavior of spatial eigenvalues for lar§es expressed
in Hypothesis 1(2).

Definition 3.4 (Transient and remnant instability Suppose thaEegsis not contained in the open left half-plane.
We then say thal is transiently unstable if there are exponential weigfits such that7™* (1) is invertible with
spatial Morse index., for every in the closed right half-plane; we say thatis remnantly unstable if it is not
transiently unstable.

We refer to Statement 2 in Section 2.4 for the definition of the spatial Morse index.

We emphasize that the weighthat we use to inveff (1) may depend upok; in other words, we do not require
that the spectrum of " lies in the open left half-plane for some choicenqof

Note that, despite its name, we really consider a transient instability as some kind of stability: if a wave is
transiently unstable, it is stable in an exponentially weighted norm. In such a norm, unstable modes that travel
sufficiently fast in one preferred direction are considered to be stable.

In Section 3.3, we shall compare transient instabilities with convective instabilities. Convective instabilities are
related to the absence, in the right half-plane, of temporal eigenvaltrest correspond to certain spatial double
rootsv of the dispersion relatiod. (A, v) = 0O; this latter condition typically implies pointwise stability.

Example 1(continued. Without exponential weights, we have

0 1
A+_A__(A —c)’

and the associated eigenvaluesatisfyv? + cv — 1 = 0, i.e.v12 = —3c £ (3¢2 + VY2 Thereforep € iR ff,
and only if, A = —k? + ick for somek € R; by the arguments above, this gives the essential speciiagg=
{—k? 4 ick k € R} with “eigenfunctions” &%(1, ik)T. Using weights induced by, = 5_ = 7, the essential
spectrum is shifted ta = —k? + n(n — ¢) + ik(c — 2n) with “eigenfunctions” exp(ik — n)x)(1, ik — n)T. This
curve is shifted further to the left i§? — nc is minimal. Thus,;; = %c gives the optimal weight, and we have
Rex < —lecz. This corresponds to the point where the characteristic polynarfialcv — A has a double root in
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the complex plane. Note that the convection texm with ¢ positive has the effect that localized initial conditions
travel to the left. Exponential weights withpositive are compatible with such temporal behavior as these weights
penalize solutions that travel to the right and favor solutions that travel to the left.

Finally, we remark that the point spectrum is often defined as the set of all isolated eigenvalues with finite
multiplicity, i.e. as the se’Ept of thosex for which 7 (1) is Fredholm with index zero, the null space’dthr) is
non-trivial, and7 (%) is invertible for all’ in a small neighborhood of.

The setsXp; and ipt differ in the following way. The set of for which 7 (1) is Fredholm with index zero is
open. Take a connected componérdf this set, then the following alternative holds. Eittyer) is invertible for
all but a discrete set of elements@nor else7 (1) has a non-trivial null space for all € C. We assume that the
latter case does not occur.

Hypothesis 3(Isolated eigenvalu@s Eigenvalues irC \ Xessare isolated with finite multiplicity.

In the connected component @f\ Tessthat contains large positive real numbers, eigenvalues are typically
isolated; see, for instance [1] for the relevant argument.

3.2. Absolute spectrum

On bounded domains with separated boundary conditions, it is not the essential spectrum but what we call the
absolute spectrum that is important. We remark that the absolute spectrum is not a “spectrum” in that it is not defined
as the set of complex numbers for which a certain operator is not invertible; nevertheless, the absolute spectrum
gives information about the spectra of certain operators.

Definition 3.5 (Absolute spectrujn The subseizg(bs of C consists exactly of thosg for which Rev;:o ) =
Rev;;H(/\). Analogously is in X, if, and only if, Re”i; ) = Revl.;H(A). Finally, we say that is in the
absolute spectrulpsof 7 if Aisin X

J5s0rin =, ((or in both).

In other words, if. ¢ Z,ps then there are numbens such that Realfo A) > —n+ > Revifo+l(x). In particular,
if we ignore point spectrum, then is transiently unstable if, and only if, its absolute spectrum is contained in the
open left half-plane.

In particular, for constant-coefficient matricagx; 1) = Ao (1), we have thaf is transiently unstable if, and
only if, its absolute but not its essential spectrum is contained in the open left half-plane.

Example 1(continued. Recall that

0 1
A+_A__<A —c)

with spatial eigenvalues; » = — 3¢ £ (3¢2+21)Y/2. Thus, we hav&aps = (—00, —3c?] since then Re1 = Rev,.

In particular, we havetess # Zaps €xcept wherr = 0. The absolute eigenmodes for the absolute spectrum are
exp((—%c +ik)x)(1, —%c +ik)T, wherek € R. Growing exponentially as — —oo, they reflect the transport to
the left that is induced by the linear drift teren, .

Typically, we expect thaE,ps # Zess One exception is reversible systems that admit a symmetsy —x. In
this case, whenever a spatial eigenvalue crosses from right to left, then, by symmetry, another spatial eigenvalue
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crosses simultaneously from left to right. Thus, for reversible systems, we expeELaat Xess An example is
the diffusion operatouyy without convection; see above with= 0.

3.3. Convective instability and pointwise decay

Convective instability is defined as follows. As before, we label the eigenvalugés @f) according to their real
part so that

Revi(n) > --- > Revifo(k) > RevifoJrl(k) > ... > Revi (}).

We denote bypgp the largest real number such that there exists & C with Rei, = pgp SO thatu;; (Ay) =
v;;H(A*) or v, () = vl.;H(A*). Note thati, always corresponds to a spatial double roaif one of the

dispersion relationg. (1, v) = 0 (recall that replacing. = iw andv = —ik with spatio-temporal behavior
exp(i(wt —kx)) gives the standard form of the linear dispersion relation at the asymptotic states, with group velocity
dw/dk = —dx/dv). The above criterion on the double root, namely that is has to involve the spatial eigenvalues

with indexi,, andis, + 1, is often called the pinching condition; see [9].

Definition 3.6 (Convective and absolute instabilitySuppose thafessis not contained in the open left half-plane.
We then say that] is convectively unstable ifogqp < 0, while we say that7 is absolutely unstable if

pdb > 0.

We shall see below that convective instability sometimes implies pointwise stability: perturbations grow in
function space but decay pointwise for each fixeth other words, they are convected away. The different spectra
that we used as well as their characterization in terms of the asymptotic matrices are illustrated in Fig. 2.

The next example demonstrates that even for constant matiges the operator may be remnantly unsta-
ble but not absolutely unstable: this means that, even though there are no double spatial eigenvalues for
the closed right half-plane, we cannot move the temporal spectrum into the left half-plane by using exponential
weights.

Fig. 2. A schematic picture of the various spectra that we defined and their relationship to the spatial spectra of the, atex A_ (1)
that we plotted as inlets. The essential spectruri bis denoted byEgdss the dotted line in the spatial spectra consists of all spatial complex
numbers with real partn. The two circles in the absolute spectrum mark the temporal eigenvalues that correspond to spatial double roots.
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Eess

Fig. 3. The thick curves correspond to the essential spectrum of the operator (3.1) while the inlets represent the spatial spectra in the different
regions. The two spectral curves intersect at i. At this point, the spatial eigenvalues on the imaginary axisare i andv, = —i which are

not equal. Hence, there are no double spatial eigenvaléms on (or to the right of) the imaginary axis, even thougk: i is in the absolute

spectrum.

Example 2. Consider the operatat

U1 _ 0y U1
£<Uz) B (—(83+1)2U2—axU2) (3.1)

as well as the associated eigenvalue problem
UL =101,  —(02+ 1)Uz — 8,Up = AU>.

Eigenvalues of the spatial dynamics solve the characteristic equation
=M+ D%>+v+21)=0.

Double roots occur i is a double root of one of the factors or if the roots of the two factors coincide. It is not hard

to verify that all double roots that arise as collisions of unstable eigenvajuasd stable eigenvalues occur at

values ofx in the open left half-plane; see Fig. 3. On the other hand, the essential spectrum cannot be pushed into
the open left half-plane by means of exponential weights since the different signs of the transport terms in the two
components of would always lead to an instability in one of the two components. Therefore, adtintp the

first component ofZ ande U to the second produces an instability which, éos 0 sufficiently small, does not
disappear when introducing exponential weights even though all relevant spatial double roots o&dur tfoe

open left half-plane. As we shall see below, this instability is also present on any large bounded interval provided we
couple the two components appropriately through the boundary conditions; in fact, generic choices of the boundary
conditions will produce such an instability.

Example 3. The same phenomenon can be observed in a Turing—Hopf instability of a reaction—diffusion system
provided a small drift term is added to destroy the reflection symmetry. In a Turing—Hopf instability, the first unstable
modes are travelling waves of the form @im — kx) and sifwt + kx) with non-zerdk andw. One of these modes

travel to the left, the other one to the right. The superposition of these waves is a standing wawégcsigkx)

that corresponds to a double root in the dispersion relation; in other words, the most unstable eigenmodes have zero
group velocity. Adding a linear drift terrou, to the equation transforms these eigenmodes int@osin (k — ¢)x)

and sifwt + (k + ¢)x), respectively, which have non-zero group velocity. The spatial eigenvali(és- ¢) and

+i(k + ¢) are non-resonant, and the system is therefore convectively unstable. On the other hand, the presence of
waves that travel to the left and to the right shows that the instability cannot be suppressed in exponentially weighted
spaces; hence, the operator is not transiently unstable.
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We conclude this section with a brief digression on pointwise stability; we refer to [9] for more details and
references regarding this topic. Suppose thét) is invertible so that (2.9) has an exponential dichotomyRon
with evolution operatorg™S(x, y; A). We can then construct the Green’s funct@®ax, y; 1) of the operatoff (1)
in the following fashion. The solution 6f (A)u = 4 is given explicitly by

u(x)=/RG(x,)’§)»)h(Y)dy,
where

—oY(x,y; A) for x <y,
Glx,y;4) = S(p( > . Y
©3(x,y; L) for x > y.

Using the Green’s function, the solution of the linear initial-value problem of

Oyu — A(x; 9)u =0 3.2
can be constructed via Laplace transform.iRecall thatA (x; 1) is given by

A(x; A) = A(x) + AB(x),

and define
1
u(x, 1) = ——.fe’\’/ G(x,y; \)B(y)uo(y) dy da,
2 r R

where the contour is to the right ofZ; the precise shape &f depends on the type of the problem. For parabolic
problems,I" can be chosen to include a sector of the leftalf-plane; for hyperbolic problemg; is a vertical
line, and the integral is understood to be the principal value. Under reasonable convergence assumptions, and
under certain compatibility conditions amy(x), the functionu(x, t) then satisfies the PDE (3.2) with initial data
u(x,0) = ug(x).

If the contourl" can be deformed continuously into a contour that is contained in the left half-plane with-
out changing the value of the integral, the zero-solution is pointwise stable. This follows, for instance, from the
Riemann—Lebesgue lemma

e, )] < — ‘//é“”c(x,y; i) BOuo(y) do dy| — 0
27 |JrJR

ast — oo.

To deform the contour, we need analyticity @Gfin A for A in the right complex half-plane and suitable decay
estimates for large values af Typically, stability, or at least convective instability of the essential spectrum,
is necessary for analyticity af in A, since multiple eigenvalues typically create branch point& oSufficient
conditions are given by convective instability together with the absence of embedded point spectrum. However, an
additional condition, known as the Gap lemma, is needed in order to be able to continue the Green’s function into
regions where hyperbolicity (and exponential dichotomies) is lacking. Roughly speaking, the Gap lemma states that
analytic continuation is possible if the exponential convergence of the coefficieAts pk) is faster than the lack
of hyperbolicity that is created by the unstable and stable part of the overlapping spectiurof see [22,25].
Necessary and sufficient conditions do not seem to be known.
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4. Persistence of isolated eigenvalues and resonance poles with finite multiplicity

In this section, we begin our investigation of the spectrurii;obn the bounded interval-L, L); see (2.6) and
(2.7). The goal is to characterize the spectrgpffor large values ofL. Before we continue, we point out that
Fredholm properties no longer classify the spectrum.

Lemma4.1. The operatorg; (1) on the bounded interval- L, L) with periodic or separated boundary conditions
are Fredholm with index zero for all.

Proof. This can be readily seen by considerifigx) as a compact perturbation ofdlk with periodic or separated
boundary conditions. O

Hence, it suffices to locate eigenvalueggf We begin by studying the persistence of eigenvalues and resonance
poles under domain truncation. In addition, we show that separated boundary conditions can sometimes generate
additional eigenvalues oL, L).

Our strategy is to use various versions of the Evans function. Each Evans function is designed to track isolated
eigenvalues with finite multiplicity of one of the operators that we are interested in. We shall then show that the Evans
functions defined for bounded intervals are small perturbations of the Evans function that is associated with the entire
real line. Since all these functions are analytic, we can then conclude that eigenvalues persist with their multiplicity.

Throughout the remainder of this paper, we denoté&/pgr.) the ball inC with centeri, and radiuss.

4.1. Evans functions

Let E4 (1) be two subspaces 6 that depend analytically onsuch that_ +n, = N, whereny := dim E1 ()
is independent of. Choose vectorsli(k), ..., vE (1) such that

s Uny
E+ () =sparvy (M), ..., v, W),
andvji () is analytic ina for all j; this is possible due to [26, Chapter 11.4.2]. We then define

E_(M) ANEL() :=detp; (1), ..., v, (M), vf(x), e ,v,: W] ecC.
Note that this function is analytic ik. In addition, its zeros and the order of its zeros do not depend on the choice
of the bases; in fact, any two such functions differ by a product with a non-zero analytic complex-valued function.

In this sense, the function depends only on the two subspaces.

Remark 4.2. We shall often use the following argumentEif(1) and E»>()) are two subspaces @V that depend
analytically oni € Uas(A4) so thatdim E1(A) + dim E2(A) = N, then eitherdim(E1 () N E2(1)) > O for all
A € Uas(ry) Or elseE1(A) @ Eo(A) = CN for all A € Us(),) except for at most finitely manye Us(ry). This
statement follows immediately from analyticity of the determit&iit) A E2(1) in A € Uzs(Ay).

The following remark, which will be used repeatedly below, shows that the dependefcerothe subspaces
E is continuous in an appropriate sense: we say thatkidomensional subspacds and E of CV aree-close
provided|e — ¢| < e for all unit vectorse € E andé € E.

Remark 4.3. Suppose that for sonig. € C,
D) 1= E_(M) A Ex () = (b = 20" 4 O(I2 — 2T
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for some¢ > 0. Suppose that 1 (1) and E (1) are e-close to each other, with sufficiently small, uniformly for
all A near,. By Rouché’s theorem, we then have that

DO)=E_(\) AEL(V)

has¢ zeros(counted with multiplicitynear i, and these zeros akd’/¢-close toi,.

Assume thaD (1) is an analytic function. We denote by @id, D) the order ofs,. as a zero oD (1). If the order
is finite, then it is equal to the winding number Df(A) about any sufficiently small circle i@ that is centered
atAy.

4.2. Periodic boundary conditions

We begin by investigating the behavior of eigenvalues under domain truncation for periodic boundary conditions.
We demonstrate that eigenvalues persist with their multiplicity without any additional assumptions and that no
additional eigenvalues are created.

Throughout this section, we assume that()) are equal to each other, and denate() = Ag(A).

Our proofs are based upon the Evans function. Eigenvalugsoain be found by seeking bounded solutions to

u' = Ax; Mu. 4.1)

Fori ¢ Yess the asymptotic matrixig(r) is hyperbolic. Eq. (4.1) then has exponential dichotomie®dnand
R~, and we denote the associatedependent stable and unstable subspaces defineddfd®* andx € R~ by
ESY(x; 1) andE>"(x; 1), respectively, see Section 2.4. Thus, for every Tess we can define the Evans function

Do (M) = EY(0; 1) A ES(O; 1). (4.2)

Note that the dimension of the subspaces that appear in the wedge products in (4.2) addlup to the assumption
on . It has been proved in [1,20] that @id., D~o) is equal to the multiplicity of, as an eigenvalue gf.
Next, for everyr ¢ Xess We define

Dper(h) = detfp(0, —L; 1) — ¢(0, L; )], (4.3)

wherep(x, y; A) is thei-dependent linear evolution operator to (4.1) with initial timeét has been proved in [18]
thati. is an eigenvalue of > with multiplicity ¢ if, and only if, 1. is a zero ofDper(1) of ordere.

Theorem 2(Periodic boundary conditionsAssume that, ¢ Yessand thatord(A,, D) = £ for somef > 0. For
every smalb > 0, there is then arLL, > 0 such thal’TLper has precisely eigenvaluegcounted with multiplicity
in the §-neighborhoodUs (A,) of A, in C for everyL > L,. For ¢ > 0, these eigenvalues aexp(—2« L /¢)-close
to, forall L > L. Here,x = min{«", «5} is the distance of the spectrum4f(1,) from the imaginary axis

The statement regarding the persistence of eigenvalues with their multiplicity has been proved first in [19] using
a topological construction that involved Chern numbers. For the sake of completeness, we include a shorter proof
that illustrates in addition that the eigenvalues on the unbounded and the bounded interval are exponentially close;
see also [8].

Proof. The strategy is to show thd,, (1) and Dper(2) are e 2L_close to each other for all close tox,. Recall
that

Dper(1) = detfp(0, —L; 1) — ¢(0, L; 1)].
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Sincel, ¢ Xess the matricesAg(r) are hyperbolic fon. close tol,, and we denote their stable and unstable
eigenspaces bg5(1) andEg (1), respectively. Leto = dim Eg (). Recall thatEY (x; ») andES (x; A) consist of
precisely those solutions to

u = A Mu

that converge to zero as - —oo andx — oo, respectively. The Evans functiab,, (1) measures non-trivial
intersections of these subspaces evaluated-aD; see (4.2) and Section 4.1. To capture these intersections, if they
exist, we choose analytic bas@s (1)}i—1.....i and{vi+ (M Yizig+1,...,v of EY(0; 1) andES (0; 1), respectively.

We shall use that, due to Theorem 1, the spat¥¥(L; ») and E>"(—L; 1) are e close toEg" (), where
6 = min{o, kS + kY.

For everyi with 1 < i < ig, there are then unique VeCtQL§7’_()\) € EY(L;») andw; (1) € ES (—L; X)) such
that

@(=L,0; v, () = w; () — wi (W),

sinceEY (L; ) andE® (—L; 1) are e close toEg (1) and E5(1), respectively (see above), and since the direct
sum of the latter two spaces@". SinceEY (—L; 1) is also e?L-close toE§()), see again above, we have
lwt MW < lo(=L,0; Moy W], w;y W] < e p(=L, 0; My, ()],

We conclude thaw;“(k) is of the order exp-«"L), while w; (1) is of the order exp—(0 + k) L). Finally, for
1 <i <ip, we define

ui(A) == w () = @(—L,0; v, (A) + w; (A).

Analogously, for indices with ig + 1 < i < N, there are unique vectom;r(k) € E{(L;») andw; (1) €
ES (—L; ) such that

ui(A) == —w; (&) = —p(L, 0; Vv (L) — wi (L).

Forip+1<i < N, the vectoran;” (1) are of the order exp-«°L), while wl.+ (1) is of the order exp- 6 +«S)L).
Using the estimates above and the definition;b(k), it is not hard to verify that the vectorg(A) with1 <i < N
form a basis ofC". We conclude that

v (W) + 90, —L; Mw; (W) — (0, L; Hw; (1), 1<i<io,
(0, —L; A) — (0, L; 1))u; (A) = B
v (W) + 9O, L; Hwi () — 90, —L; Mw; (), io+1<i<N,
where the terms involving;ii(x) are of the order @~ with k = min{«xY, «S}. On the other hand, we have
Doo(h) = detloy (W), ..., v (M), u;g+l(x), L UE ]

Invoking Remark 4.3 then proves the statement. O

Upon using the results in [24], it follows from Sandstede [36] that the rate of convergence in the above theorem
is optimal.

4.3. Separated boundary conditions

In this section, we investigate the behavior of eigenvalues under domain truncation for separated boundary
conditions.
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4.3.1. The set-up
Throughout this section, we fix an elementthat does not belong to the absolute spectbiygs Sincei, is not
in the absolute spectrum, we find weights= (_, n4) such that the eigenvalue‘;“()») of AL () satisfy

Revio(k) > —ny > Revliﬂ()\)

for all » in a smalls,.-neighborhoodJs, (1) of A, with Us, (A,) N Zaps= ¥. We fix these weights from now onwards
and varyx in the Us, (A,). In particular, the operatdf () is Fredholm with index zero for any sugh and the
associated asymptotic Morse indices are both equal t&e then consider the equation

j—” = (AGx; ) + @)y, (4.4)
X

wheren(x) = ny forx > 0 andn(x) = n_ for x < 0; see (2.5).
Notation. Any quantity that refers to the weighted equation (4.4) has a superscript tilfe (

Thus, the evolution operator of (4.4) is denotedliy, y; A). The asymptotic matrice$.. (1) +n are hyperbolic,
and we denote by?j;”(k) their stable and unstable subspaces. Also, by hyperbolicity of the asymptotic matrices
A+ (\) + 0+, (4.4) has exponential dichotomies Bf with x-dependent stable and unstable subspﬁ@@&; A),
and we can construct an analytic Evans functiorférby

Doo(h) = EY(0; 1) A ES(0; 1)
for » € Us, (1). We also define
Dsegd) = ¢(0, —L: Q- AGO, L; N0y, D-(M)=0_AESQ), Dy =0, AE{(R). (45)

Note that the dimension of the subspaces that appear in the wedge products in (4.5) addlup to the assumption
on A. This is the set-up that we use below.

We point out that the Evans functidbsepdoes not depend upon the choice of the weight. Indeed, solutians
to the original equation (4.1) andx) to (4.4) only differ by multiplication by the scalaf'@>*. Thus, the direction
of solutions is not changed, and in particular, thevolution of subspaces is independent of the weight.

We briefly comment on the dependence of the other Evans functions on the choice of our weight. Through
the separated boundary conditions, a canonical dimension, nagelg selected via the number of boundary
conditions at the endpoints of the interval; see Hypothesis 2. The relevant information that we require is a spectral
decomposition of the spatial spectrum. of the original asymptotic matrice$. (1) into two spectral setsri“
which is induced by a gap in the real part (i.e. the spectralsgtsare such that Re§. < RevY for any two elements
v € T} andvy € YY); most importantly, the associated generalized “stable” and “unstable” eigenspaces have
dimension, andN —i, respectively. One way of obtaining these eigenspaces is by introducing a weight so that the
spectral decomposition is given by eigenvalues with negative and positive real part. Afterwards, this decomposition
is extended dynamically to-dependent subspaces of (4.4), and the resulting subspaces are then used to construct the
Evans function. Again, weights allow us to construct thesiependent subspaces by using exponential dichotomies.
None of these constructions, however, depends really upon the weights: what we require is that we can distinguish
solutions by their growth or decay rate (corresponding to the spectral gap) and that the spaces of initial data leading
to these solutions have the correct dimension, namely the one selected by the boundary conditions. As we already
mentioned, the-evolution of subspaces does not depend on the weight.
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4.3.2. The persistence and generation of eigenvalues and resonance poles
We discuss the persistence of eigenvalues under domain truncation as well as the potential generation of additional
eigenvalues through the boundary conditions. Throughout this section, we use the set-up introduced in Section 4.3.1.
Eigenvalues of7;°" can be found as zeros of the functidgeg(.).

Lemma 4.2(Ref. [21]). Assume thal, ¢ Zaps theni., is an eigenvalue of P with multiplicity ¢ if, and only if,
Ly is @ zero ofDseg(A) of order .

Proof. For the case of eigenvalues of reaction—diffusion equations with separated boundary conditions, the proof
can be found in [21, Proposition 4.1]. The proof for the more general situation considered here is the same, save for
notation, and we omit it. O

For separated boundary conditions, eigenvalues and resonance poles persist with their multiplicity provided the
boundary conditions satisfy appropriate transversality conditions. The situation where these conditions are violated
is discussed below.

Lemma 4.3. Assume thak, ¢ Zaps Choose a weighy as in Section4.3.1,and suppose thaD. (i) # O
and ord(A«, Dx) = ¢ for some¢ > 0. For every smalls > 0, there is then arL, > 0 such that7,*" has
precisely? eigenvaluegcounted with multiplicityin Us(A,) for everyL > L.. For £ > 0, these eigenvalues are
exp(—o L/¢)-close tox, for all L > L., wheres = min{o4}, andoy = Reu?; () — Reviﬂ(k*) are the
spectral gaps of the matricesy (1).

For reaction—diffusion systems, this lemma has been proved in [8],ftw the right of the essential spectrum.
Note that the rate of convergence proved in [8] is smaller than the rate that we establish here. The reason for the
improved rate is that we can always balance the distance from the stable and unstable part of the spectrum to the
imaginary axis by adjusting the weights. In contrast to the case of periodic boundary conditions, this does not change
the boundary conditions. Again, our rate is optimal, see [36], except when the boundary conditi@rms] O
happen to coincide with the unstable and stable subsgates,) andEi (1+), respectively.

Proof. The proof is similar to the one given above for periodic boundary conditions. We consider the weighted
equation (4.4) and use the notation introduced in Section 4.3.1, recall that

Dsegr) = ¢(0, —L; M) Q- A 90, L; M) Q.

Choose an analytic basﬁs;r (M} j=1,... N—iy Of Ei (0; 1). SinceD_ (1) # 0 for all A close toi, by assumption,
we have ’

0+ ®EY(M) =CV.

Since ES (L; ») and EY(L; 1) converge toES (x) and EY.(%), respectively, exponentially fast ds — oo, see
Theorem 1, there are unique vectmﬁ(k) € EY(L; ») such that

Q4 = span@(L, 0; Mvf () +wi () j=1,... o).
As in Theorem 2, we obtain that

$(0, L; 2) Q4 = sparvy (1) + ¢(0, L Mw] (); j=1,... ,ico}.
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As aconsequence(0, L; A) O+ andEi(O; A) are exfi—o, L)-close to each other. By the same argument, we have
that@(0, —L; 1) Q_ andEY (0; 1) are exgg—o_ L)-close to each other. Since

Doo(1) = EY(0; 1) A ES(0: 1),
the statements of the lemma follow from Remark 4.3 and Lemma 4.2. O

Remark 4.4. In the set-up of Lemm& 3, we have that an eigenfunctiatix) to the original equatior{4.1)on the
interval (—L, L) typically satisfies

lu(—L)| ~ expx—Revi:O(A)L), lu(L)| ~ exp(Rev;:O+l(k)L).

In particular, the convective properties of resonance poles manifest themselves via the growth of the associated
eigenmodes at = +L depending on the direction of transport. The remark is a consequence of the proof of
Lemma4.3.

Next, we investigate eigenvalues that are created by separated boundary conditions near points whBre either
or D_ vanishes.

Lemma 4.4. Assume that, ¢ Saps Choose a weight as described in Sectioh3.1.Suppose thab_(1,) # 0,
Doo(ry) # 0andord(i,, D+) = ¢ for some? > 0. For everys > 0 sufficiently small, there is then dn. > 0such
that 7‘Lse’) has precisely eigenvaluegcounted with multiplicityin Us(1.) for everyL > L,. In addition, these
eigenvalues arexp(—a L /¢)-close tor, for all L > L. Here, o, = min{6, o1} wheref appears in Hypothesis
1,andoy has been introduced in Lemmde3.

We have an analogous lemma in the case fhath,) # 0, Do (1) # 0 and ordi,, D_) = ¢.

Proof. The general set-up is as in Section 4.3.1. We write
Dsegr) = ¢(0, —=L; 1) Q- A ¢(0, L; 1) Q4 = det[p(0, L; )] x (p(L, —L; 1) Q- A O4),
and note that it suffices to determine the number of zeros of the function

¢(L, —L; 1) Q- N Q4

since det§(0, L; 1)] # O for all L andx. SinceQ_ @ ES (,) = CN by assumption, it follows thai(0, —L; A) O _

is exp(—o_ L)-close toEY (0; 1) uniformly for A close to,; see the proof of Lemma 4.3. Siné& (1) # 0,

we see thatE¥ (0; 1) & Ei(o; 1) = CV. Hence, we can conclude th@tL, —L; 1)Q_ is exp—o L)-close

to Eb‘r(L; A), and therefore exp-min{6, o4 }L)-close toEﬁ(A) uniformly in A; see the arguments in the proof
of Lemma 4.3. Sincd, (L) = Q4 A Eﬁ(k), the statements of the lemma follow again from Remark 4.3 and
Lemma 4.2. O

The general case where, and D, vanish for the same value afis treated in the following theorem.

Theorem 3(Separated boundary condition#Assume that, ¢ Xaps Choose a weight as described in Section
4.3.1.Suppose thabrd(i, D) = ¢4 andord(r,, Dsy) = £o for somely and ¢o,. For every smals > 0,
there is then arL,. > 0 such that7,*" has precisely_ + ¢ + £ eigenvaluegcounted with multiplicityin a
8-neighborhood o, for everyL > L,. If either¢. = 0 or £, = O, then error estimates for the eigenvalues on
(=L, L) are given in Lemma4.3and4.4,respectively
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Proof. Recall that, ifD+ (1) # 0, thenDsed(A) andD (1) are e “L-close to each other uniformly ih anda; see
the proof of Lemma 4.3. Hence, there i&,a> 0 such that, for every & § < 8, there are numbers, ande, > 0
With | Dseg(A)| > €, forall L > L, and allx with [» — A,| = §. In particular, the number of zeros Blsepinside
the §-neighborhood/s (1.,) is independent of. for L > L. In the following, we fix such @ and the associated
€, > 0.

Next, choose a subspa@ so close taQ 4 that| D, (1) — ﬁ+(k)| < %e* for A with |A — A.| = 8 but such that
0+ @ EY () = CN. Here,Dy () = 04 A EY (). Hence, the number of zeros Bf, () inside Us (1) is also
equal tol .

Similarly, choose a subspa¢e_ with analogous properties; in addition, we require t@atis chosen such that
D_()) # 0 wheneverD, (1) = 0 for A € Us(%,). Such a choice is clearly possible sinbe (1) has only finitely
many zeros irUs (A).

As a consequence of the above arguments, there is a numb&at depends oA and the above choices of
0+ such thatDseg(A) and Dseg() are exg—o L)-close to each other for all with [ — .| = s and allL > L,;
indeed, both functions are &X-close toDu(1). Thus, Dgeg2) and bsep(k) have the same number of zeros in
Us()y) for all L sufficiently large. Due to Lemmas 4.3 and ﬂep(A) has precisely_ + ¢4 + £o zeros inUs (1)
sinceD (1) has not changed, arfdi(/\) and D (1) have no common zeros by construction. This completes the
proof. O

4.4. Resolvent estimates for periodic and separated boundary conditions

In this section, we establish estimates for the inverse of the opéfatdy posed on the interval-L, L).

For periodic boundary conditions, it is a consequence of the results presented in [8,27] that the inﬁﬁ?&epf
is bounded uniformly in. for A away from the point and essential spectrunyoposed orR. Alternatively, the
proofs given below for separated boundary conditions can be adapted in a straightforward fashion to the case of
periodic boundary conditions.

We therefore concentrate on the case of separated boundary conditions. Our main result in this section is that,
under certain assumptions which are stated below, the norm of the inveTfé’pQI) grows exponentially in.
for any fixedA for whichi (1) ori_()) differs fromiy; recall thati (1) are the asymptotic Morse indices of
the matricesA. (A). Roughly speaking, the inverse ﬁfep(k) grows exponentially for every that is to the left
of the boundary of the essential spectrum while being close to it: note that the boundary of the essential spectrum
is given as the union of algebraic curves. For the opetato# u,, this fact has been proved in [34]. Besides its
importance for the stability and convergence of numerical algorithms for the computation of spectra, the exponential
growth of the resolvent in the region to the left of the essential spectrum has the following interesting consequence:
suppose thalf‘epcorresponds to the eigenvalue problem of the linearization about a certain nonlinear wave that is
only transiently unstable. Since the resolvent grows as the interval length increases, the sensitivity of the wave with
respect to small initial perturbations also increases. The large norm of the resolvent predicts a large constant in front
of the exponential decay factor of the semigroup. Before the system picks up the exponential decay predicted from
spectral information, there will be a long intermediate regime where solutions first grow in norm while travelling to
one end of the domain, a phenomenon which is most easily illustrated in the pure convection problem+ u
with boundary condition«(L) = O: localized initial conditions grow along characteristics= —¢ until they
disappear through the boundary= —L; in fact, the explicit solution is given by(x, t) = €ug(x + t). With
increasing sensitivity, stability then depends more and more on the nonlinear terms. We also refer to [44] for a
discussion.

The remaining part of this section contains the precise statements of the relevant hypotheses and the results. Most
of itis rather technical and can be skipped by the reader; we do not use any of these results in the following sections.
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Throughout this section, we assume tha¥ Xi,s We begin by choosing weights = (n_, n+) so that
Revifo(k) > —nt > Rev;—:o+1(x); see Section 4.3.1. It is then a consequence of Theorem 371’7?3(0\) is
invertible for all L > L, if, and only if, D+()) # 0 andDs (1) # 0. In this situation, we have to estimate the
solutionu(x) to

S—Z =AM, Mu+ B(x)h(x), u(£L)e O+ (4.6)
ontheinterval—L, L) interms ofa(x). The reason why we restrict to right-hand sides of the f8i) 2 (x) is that
we are primarily interested in resolvent estimates for the underlying PDE operator that we had cast as a first-order
operator. All of our results, however, are also true, and in fact easier to prove, in the case of general right-hand sides;
see below.

Next, we consider the equation in the weighted space. We shall then establish estimates of thegalution
to

dv_
dx

on the interval—L, L) in terms ofg(x), wheren(x) = n4 for x > 0 andn(x) = n_ for x < 0 has been chosen
above. The functiong andv as well ash andg are then related via

(A(x; 1) + n(x)v + B(x)g(x), v(£L) € 0+ 4.7)

u(x) = e 1%y (x), g(x) = &% h(x). (4.8)

SinceDqso (1) # 0, the equation

S_v = (A(x; 4) + n(x)v (4.9)
X

has an exponential dichotomy @with evolution operatorgS(x, y; A) andg(x, y; 1) so that the estimates in
Definition 2.1 are met fof = R. In particular, we have

195(L, 0; M| < K exp(—k3 L), $°0, —=L; )| < K exp(—kS L), (4.10)

and the analogous estimates §d' The stable and unstable subspaces of the asymptotic matriq@s + n. are
denoted byE$"(1). Similarly, the spectral projections df.. (1) + 1+ belonging to the stable and unstable spectral
sets are denoted BB (1).

The general solution to

v = (A(x; 1) + n(x)v + B(x)g(x)
is given by
v(x) = / @°(x, y; M B(y)g(y) dy +/L @Y (x, yi MB()g(y) dy + @%(x, —L; Ma® + ¢"(x, L; May,
(4.11)

wherea® € ES (1) anda!l € EY(x) are arbitrary.
It remains to satisfy the boundary conditionstL) € Q. SinceD+ (1) # 0, we have

EY)® 04 =C", EE)@®Q_=C". (4.12)
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Hence, the boundary conditions are equivalent to the equation

L
P(EY (M), 04) [/ L<Z>S(L, yi MB(y)g(y)dy + %L, —L; Ma® + ¢(L, L; k)ai] =0,
L
P(ES()), 0-) [—/ @"(—L, y; M) B(y)g(y)dy + ¢>(—L, —L; 1)a® + ¢"(—L, L; k)ai} =0, (413
-L

whereAP(X, Y) is the projection with rang& and null space’. By Theorem 1gY(L, L; 1) and@S(—L, —L; A)
are e%-close to the spectral projectio®! (1) and PS (1), respectively, wheré = min{6, & + #$}. Exploiting
(4.10), we get
P(EL (), QIF(L, —L; Wa® + ¢"(L, L; M)ay]
= P(EL (M), Q)[O(exp(— (kS + &$)L))as + (PY(x) + O F))all,
x P(ES (M), Q)[@%(—L, —L; M)a® + ¢“(~L, L; Mal]
= P(ES(1), QO)[(P2(1) + O(e™""))a® + Oexp(—(&" + &) L))al].

Using this equation, we see that (4.13) has a unique solution given by

u

" ) = (14 O(e fLy)

aS

a 1 O(exXp(— (&S + &$)L))

Oexp(— (&Y +&Y)L)) 1

P(EY(), 0) [5 %L, y; W B()g(y) dy

i , (4.14)
—P(ES(), ) [5, %=L, y; W B(»)g(y) dy

whereg = min{d, &S + k3 + &Y + &Y}, and we have the estimate
la® |+ |aY| < Cligll

for some constard that is independent df for L > L,.

It remains to relate the resolvent estimates fonttegjuation (4.7) to resolvent estimates for ihequation (4.6).
If we can choose. = 0, then the above analysis demonstrates that the inver‘§§e&f>\) is bounded uniformly
in L. Indeed, note that the integral operators in (4.11) are uniformly boundedlire to the exponential decay of
the evolution operatorg>Y. Uniform bounds of the other two summands in (4.11) follow again from the bounds
ona® anda! above. We summarize this result in the following proposition.

Proposition 1. Assume that, ¢ Xapsand thaﬂRevij:CH <0< Reviﬂ;. Furthermore, we assume thBt. (1,) # 0

and Do (1) # 0. Then there are positive constamtsC and L. such that the inverse 6f>°"(1) is bounded by C
uniformly inL > L, forall A € Us()y).

If, on the other hand, we have to choose non-zero values for one or both of theratben we expect that
the inverse ofTLsep(A) actually increases exponentially &sincreases. The reason is that even though the un-
weighted and weighted norms are equivalent(eil, L), the equivalence constants grow exponentiallyi.in
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We have

X

u(x) =g 1x ( / @5(x, y; 2) €0 B(y)h(y) dy + / ¢U(x, y; 1) €Y B(y)h(y) dy
L L

+¢%(x, —L; M)a® + ¢"(x, L; A)di) , (4.15)

where(a®, aY) are given by

at 1 O(exp(—2&SL))
=(1+0(ePLy)
as O(exp(—2kYL)) 1

P(EY(), Q) [5 @3(L, y; 1) @9 B(y)h(y) dy
X . (4.16)

—P(ES (W), Q) [5, GU(—L, y; 1) @Y B(y)h(y) dy

Here,c! = min{k%"}. First, we consider the case that the eigenvaluesaft) satisfy the condition Re/” ; <
Rev;go < 0. Afterwards, we investigate the case(Rev;; < Rev;;.The analogous cases fér (1) are handled
in the same fashion; upon reversing the spatial variable —x, we end up with one of the aforementioned cases
for the eigenvalues of ; (A).

Thus, assume that Rg ; < —n4 < Rev; < 0so that we have, > 0.

Hypothesis 4. We assume that R¢__; < Rev;” < OandthatRe;" < Rev;" _;. Furthermore, we assume that
there is a vectok € C" such that

(P(EY (M), Q4)PS (M) — PY(M)Byhy

has a non-zero component in the eigendirectiod f1) associated with the simple eigenvahz;?o, where we
express vectors with respect to the basis that consist of (generalized) eigenveeto(a of

The above hypothesis can be interpreted as requiring that a certain transmission coefficient is non-zero. In the
situation considered here, we hayxe > 0 so that the rest state at= co sustains waves that travel to the left. The
above hypothesis guarantees that the boundary conditioa-at. emits such waves: since the waves grow as they
travel to the left, we expect that the resolvent growd ascreases.

Proposition 2. Assume that Hypothesiss met. The inverse drfe"(,\) grows exponentially with rate equal to or
bigger than|Rev;' |.

The growth rate of the resolvent is not optimal; see Remark 4.5.

Proof. We defineh(x) by h(x) = hy for L — p < x < L and zero otherwise. Hence, the integrands of the integrals
above are zero whenever< L — p. Furthermore, we have

L ~
'/L @3(L, y; 1) exp(ny-(y — L)) B(y)h(y) dy — PY (M) Byhyp
—p

L ~
+ /L GU(L — p, y; 1) expin(y — L)) BO)Ah(y) dy — PY(A)Byhip| < C(hy)(p? +e%F)  (4.17)

—p
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uniformly in p andL, whered = min{6, kY + k3}. Using these expressions in (4.16), we obtain
ay = expin D)[P(EL(), Q) PI(M)Bihip +O(p® + €71, (4.18)

wherey = min{, kY, &3} Evaluating (4.15) at = 0, we get

L

u(0) = —exp(n+L)¢" (0, L — p; 1) i PU(L — p, y; A) expny(y — L)) B(y)h(y) dy
—p

+¢S(07 _L; )")ai + (ﬁu(ov L; )")ai7
and therefore, upon substituting (4.18),

u(0) = exp(n+ L)@"(0, L; M[(PY (L) — P(EY.(3), 04) P (W) Byhyp + O(p® + 7))
+¢%(0, —=L; M)a®. (4.19)

Since (4.9) has an exponential dichotomybnthe subspaceR(¢3(x, x; 1)) andN(@S(x, x; A)) have an angle

that is bounded away from zero uniformlyinand we may restrict to the first summand for a lower bound. Next,
observe thag" (0, L; A) satisfies (4.9). Therefore, e¢p. L)@"(0, L; 1) is the evolution of the original-equation,

i.e. of (4.9) withn = 0. Exploiting Hypothesis 4, and using the results in [15, Section 3.8], it is then not hard to see
that

u(0) = Cexp(Rev;’ |L),

whereC > 0 does not depend updn Thus, it follows that the inverse dfep(k) grows exponentially with rate
equal to or bigger thatRev;" |. O

It remains to investigate the case<0Rev;” ., < —n; < Rev;” thatleadsto); < 0.

Hypothesis 5. We assume that @ Rev;” , < Rev} andthatRe;”  , < Rev/ ;. Furthermore, we assume
that there is a vectoi; € C" such thatﬁ_i(k)B+h+ has a non-zero component in the eigendirectiod 9f2)
associated with the simple eigenvalufgo where we express vectors with respect to a basis that consists of

(generalized) eigenvectors af, (1).

+1

Here, we have); < 0 so that the rest state at = oo sustains waves that travel to the right while grow-
ing. The above hypothesis guarantees that these waves still grow when the boundary conditieas’aare
imposed.

Proposition 3. Assume that Hypothesiss met. The inverse GFLsep(A) grows exponentially with rate equal to or
bigger than|Rev;"  4|.

Proof. Defineh(x) by h(x) = hy for Ly — p < x < L, and zero otherwise for some largie that we specify
below. Thus, any integrands that contaifx) are non-zero only for between’Z . — p andL ... We have

L+ ~ A
/L G (L, y3 1) expn4 (v — L) BO)A(y) dy — PS(WByhyp| < Chy)(p? +e77h) (4.20)
+=p

uniformly in p andL. From (4.16), we obtain

la] < C(L+, p, hy). (4.21)
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Evaluating (4.15) at = L, we get

Ly
u(L) =exp(—n4+L) (@S(L,L+;k) . @>(Ly, y; M) exp(n4y) B(y)h(y)dy
+—p

+@5(L, —L; Mas + (L, L; k)di) ;

and therefore, upon substituting (4.20) and (4.21),

u(L) = exp(—=n+ L) (€Xp(14+ L)@ (L, L3 WP (1) Bihy
+0(p2 + 7L 4 exp(—kS L))] + G%(L., L; Ma'), (4.22)

where the @ - - )-term depends upon the choicelof andi . but not onL. Again, it suffices to consider the norm
of u(L) in the stable components; see the proof of Proposition 2. Exploiting Hypothesis 4, and using the results in
[15, Section 3.8], we see that

u(L)] > Cexp(|Rev;" 4|L)

upon choosing firsk ;- large enough, and thdnlarge compared td . The constan€ is strictly positive and does
not depend upodt.. |

Remark 4.5. In fact, if n,. andn_ have the same sign, then the inversé'ﬁ?p(k) typically grows exponentially
with a rate that is the sum of the rates established in the above propositiensatidn_ have opposite signs, then
the resolvent typically grows exponentially with the larger of the rates that appear in the above propositions

5. The essential spectrum under truncation

In this section, which contains our main results, we investigate the fate of the essential spectruff ig8hen
replaced by7;”*" or 7;°. Recall that the spectrum @, on the bounded interval-L, L) consists of eigenvalues;
see Lemma 4.1. Throughout this section, we assume that Hypotheses 1-3 are met.

5.1. Extrapolated essential spectral sets on bounded intervals

Rather than attempting to describe in detail how the essential spectrum breaks up and trying to track individual
eigenvalues, we focus on the asymptotic shape of the set that consists of the accumulation points of eigenvalues of
TL asL — oo.

Definition 5.7 (Extrapolated essential spectral $eWe say thak., is not in the extrapolated essential spectral set
%¢,, of the family {7,°F . (or {T/®'}) if there exists a neighborhodd(1.) C C of A, an integer and a positive
numberL, such thatDsep(0r Dper) has at most zeros inU (Ay) for L > L.

Roughly speaking, the extrapolated essential spectral set consists of those points where infinitely many eigenvalues
of 7p accumulate ag — oo. Note that the extrapolated essential spectral set of the fghnifs defined above is
closed since its complement is open by definition.

Example 1(continued. The essential spectrulessof the operatolCu = uxx + cu, onR is given by the curve
A = —k?+cik for k € R. The spectrum of the operat6ron the interval—L, L) with periodic boundary conditions
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is given by

2,2
)\:—HL—];—H?, kel
Thus, as. — oo, each point inZessis an accumulation point, and we ha¥§,; = Zess For Dirichlet or Neumann
boundary conditions, however, we ha¥,, = (—oo, —lecz], and thereforexg,; # Tess Instead, we observe
that =5, = Zaps It is instructive to check that the eigenfunctions7ofP with Dirichlet or Neumann conditions

converge, ag. — oo, to the absolute eigenmodes’bfthat we computed in Section 3.2.
As we shall see in the next sections, the behavior of the essential spectrum in this example is rather typical.

5.2. Periodic boundary conditions

We assume that . (1) = A_(A) and denote these matricesby()). Furthermore, we impose periodic boundary
conditions.

Proposition 4. Under the above hypothesis, and Hypothelsasd 3, the spectrum of P satisfiesSg,; C Tess

Proof. It suffices to show that, if. ¢ Xess then there is a neighborhodd c C of A and numberd., > 0 and
£ > 0 such thaWLper has at most eigenvalues it/ for L > L,. This, however, follows from Theorem 2. 0O

The example in the previous section suggests that the extrapolated specii@iitsein fact equal toZess We
show that this is indeed the case under the following assumption.

Hypothesis 6(Reducible essential spectriniThe subsetyer, defined below, of the essential spectriiigssis
dense inXess Here A, € Sper C Xessprovided speCo(ry)) NIR = {iw(Ay)} with geometric and algebraic
multiplicity equal to one anddw/dA)|;, # O, where v (1) is the eigenvalue afig(2) that is close tod (1) for A
close tor,.

It is important to note that the reducible essential spectSggnconsists of regular curve segments.
Theorem 4. If Hypothesed, 3and6 are met, then the spectrum‘b’g‘aer satisfiesEs,; = Zess

Proof. SinceX§,; is closed, it suffices to show thaf € Sperimpliesi, € .

Thus, we fix somet, € Sper, and denote byEG(1,), EG(r+) and Eg¥(1,) the stable, center and unstable
eigenspaces ofo(1.). Exploiting Hypothesis 6, there axedependent subspac&§3(x; 1.) and ESY(x; A,) that
consist of those initial values 6" that lead to solutions of (2.9),

iu = A(x; Mu, (5.1)
dx

which are bounded onx[ co) and (—oo, x], respectively; see [15]. All aforementioned spaces can be continued
analytically inx for A closex,: in particular, we have the generalized eigenspaér), Eg(1) and EgU(1) of
Ap(n), as well as ther-dependent spaces®(x; A) and E%(x; ) that consist of all initial conditions which lead
to solutions to (5.1) that are of the ordete®*!) for x > 0 andx < 0, respectively, for some small fixed> 0.
For A close tox,, we denote byd (1) the unique eigenvalue ofp(2) that is close tod (A).

We begin by investigating the intersectia{(0; ») N ES(0; 1) for A € Sper close toi,. We claim that this
intersection is trivial except possibly for finitely many elemehtseari,. To prove this claim, we argue by
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contradiction: if our claim is wrong, then Remark 4.2 implies that the intersedf$(D; A) N E(0; 1) has
non-zero dimension for all in a small open neighborhodd, of A.. Next, recall that the seffper neari, is the
curve that consists of precisely those values fuir whichw (1) is real. In particularSper dividesU,, into two open
setsB; and By, say, so thal, is the disjoint union o1, B> andU, N Sper. Since(dw/dA)[;., # 0 by Hypothesis
6, we have that Red(A) > 0 for all A in either B; or By; suppose that Rai(A) > 0 for A € B1, say. Therefore,
we conclude that®"(0; 1) consists of all initial conditions that, for € B1, lead to solutions to (5.1) that decay
exponentially as — —oo since (1) is then an additional unstable eigenvalueigf)). We are now in a position
to reach the desired contradiction: we assumed that the interséii 1) N E(0; 1) has non-zero dimension
for all & in an entire neighborhood of,. ForA € B1, any solution of (5.1) associated with an initial condition in
this intersection decays exponentially|a$ — oo; thus, any such. is an eigenvalue in a region wheyg) is
Fredholm with index zero. This contradicts Hypothesis 3.

In summary, we conclude that the intersectigi¥(0; 1) N ESY(0; 1) and, by the same argument, the intersection
E$(0; 1)NEYN(0; 1) are trivial ford € Sperclose tak, except possibly for finitely many elementsAfter removing
these exceptional elements from the Sgi;, the resulting set is still dense Mess We can therefore assume that
the aforementioned intersections are trivial. atand therefore also in a open neighborhood.oin C.

As a consequence, the intersection

ES3(0; 1) N ESY(0; 1) = spar{u,(0; A)}
is one-dimensional for everyneara, and
ux(0; 1) ¢ EY(0; 2) N ESXO; A).

It follows then from [35] or [25, Lemma 2.2] that there is a snéa# O, certain constant$, (1) € C, and vectors
ao(L) € ES(A) with ag(1) # 0 so that the solution. (x; 1) to (5.1) can be expressed as

1, (x; 1) = ao(A) expli(@(M)x + ¥ (1)) + O (5.2)
for x € R. In particular, we have
E$(x; 1) @ E™(x; 1) @ sparfu.(x; 1)} = CV (5.3)

for all A close toi..
Next, we seek solutions(x) of (5.1) that satisfyi(—L) = u(L). It is a consequence of Remark 2.1 and (5.3)
that any solution:(x) to (2.9) can be written in the form

u(x) = ¢5%(x, —L; Ma_ + ¢"(x, L; May + ue(x; 1)b,

wherea_ € E31), ay € Eg'(x) andb e C are arbitrary. Here, the evolution operatg:¥(x, —L; A) and
@W(x, L; )) satisfy

l%%(x, —L; M| < K exp(—8|x + L), lp"(x, L; )| < K exp(—3|x — LJ) (5.4)
for |x| < L, wheres > 0 is a small positive constant. Thus, it suffices to find, ») andx so that

PS(—L; Ma— + @"(—L, L; May + us(—L; M)b = ¢°(L, —L; Ma_ + P"(L; May + u.(L; Vb, (5.5)
where

PS¥(—L; 1) = ¢°(—L, —L; 1), PUY(L;A) = @"(L, L; 3)
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are Qe %L)-close, for some > 0 that is independent of, to the spectral projection83S(x) and PU(»),
respectively, ofAg(1); see again Remark 2.1. Exploiting this fact together with the estimates (5.4), we see that (5.5)
is equivalent to

(P0) + O(€ " )a- + O *May + uw(~L; )b = O *a_ + (P(1) + O *"))ay + us(L; M)b,
where we replacedl by min{s, 6}. Substituting (5.2) and using the definitionaf anda_, we obtain

(id + Oe*L))a_ + O L)ay + ag(h) (€Xp(—i(@ (W)L + D (1)) + O *L))b
= 0 *MYa_ + (id + OE™*L))as + ap(h) (expli(w(M) L + 94 (1)) + OE*L))b.

We can write this equation, which is linear {a_, a, b), in components according to the direct-sum decom-
position

E3) ® Eg'(0) @ E§() = CV,
and solve the first two components far_, a) as a function ob. We arrive at the equation

@XP(—i (@M L +9-(1) + OE*F)b = (expi(@(M)L + 0+ (1)) + O *H))b,
which, after dividing byb, is equivalent to the reduced equation

oML = exp(i(9_ (1) — 94 (1)) + O(e™%L). (5.6)
To solve this equation, it suffices to find all solutions to

20(ML = 0-() = 9+(A) + O€™°") + 2,

wheren € Z is arbitrary. Dividing by Z., we get

mn

w(A) = 7

1 —SL
+ Z(19_@) — U04+(1) +OEe™"").

Sincew (14) is real, there are unique numbetg L) € N andr(L) € [0, 1) such that

no(L) + (L) = ”(Z*)L.
Thus,
mno(L) — W) — nr(L)’
L L

and upon setting = ng(L) + m, we obtain the equation

o) = w(hy) + %(Zn(m —r(L)) +9_(1) — 94(1)) + Oe*). (5.7)

Since(dw/dX) (1) # 0, Eq. (5.7) can be solved with respectitéor A neari, for every L sufficiently large and
allm € N such thain /L is smaller than some constant- 0. In particular, (5.7) has @) different solutions. This
proves that., is indeed in the extrapolated essential spectrat§gt |
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5.3. Separated boundary conditions

Finally, we consider separated boundary conditions. We shovEgis again determined by spectral properties
of 7 onR but in general does not coincide willyss Roughly speaking, separated boundary conditions stabilize up
to an optimal exponential weight. Throughout this section, we once again use the set-up and the notation introduced
in Section 4.3.1.

Hypothesis 7(Non-degenerate boundary conditignShere is a discrete (possibly empty) getc C with no
accumulation points i so thatQ_ @ ES (») = CY andQ4 @ EY (1) = CV forall A ¢ ZapsUC.

Recall thatEj;”(A) have been defined in Section 4.3.1. Note that the above hypothesis is often violated when we
consider systems of decoupled equations together with boundary conditions that also decouple. An example is the
operator introduced in Example 2 with either Dirichlet or Neumann conditions. It is possible to adapt the results to
such cases, but we do not pursue this here.

Proposition 5. Assume that Hypothes&s2 and 7 are met. Furthermore, assume that satisfies Hypothesid
for everyn € R2. Under these assumptions, we h&&,; C Taps

Proof. If & ¢ Taps then7 (1) is Fredholm with index zero for an appropriately chosen wejghtR?. Considering
T7(x) on L2, we have to replace (2.9) by the equation

iv = (A(x; A) +n4)v. (5.8)

dx
The associated operator fA, which we again denote b (1), is then also Fredholm with index zero. Note théi
has to satisfy the same boundary conditions at L asu(-). We have therefore reduced the problem to a setting
that is similar to the case of periodic boundary conditions. Isolated eigenvalues of finite multiplicity persist with
their multiplicity provided the boundary conditions are transverse to the stable and unstable eigenspacg} of
andA_ (1), respectively; see Lemma 4.3. Norms on the finite intefvdl, L) are equivalent, and invertibility of
thev-equation therefore implies invertibility of theequation. If the boundary conditions are not transverse, only
finitely many eigenvalues are generated, and their number, counting multiplicity, is indepenfieagéefTheorem
3. This completes the proof of the proposition. O

We remark that, for reversible systems, we expect that = Zess In general, however, we hawg,ps # Zess
see Section 3.2. In the remaining part of this section, we provestfiat= Xapsunder the following additional
assumption.

Hypothesis 8(Reducible absolute spectrimThe subsetSsep defined below, of the absolute spectriys is
dense inXaps Here,A, € Ssep C Tapsprovided one of the following two conditions is met.
1. Pulseq(i.e. A (L) = A_(A) =: Ap(2) for all 1):

Rev;—1(As) > Rev; (1) = Revi11(As) > Revi 12(Ay)

with Vi, (M) = —1no0 + iw1(1y) and Vig+1(As) = —no + iw2(Ay), Wherewi(hy) # w2(ry) and (d(wy —

w2)/dA) |5, # 0.
2. Fronts either

REv;:o_l(A*) > Reuijo(,\*) = Revzo+1(k*) > Rev;;Jrz()L*)
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with vf (L) = =14 +iw10) andv () = —ny + i02(hs), Wherewi(rs) # w2(rs) and (d(w1 —
wp)/d)]5, # 0 while

Revi;()\*) > —n_ > Revi;+1()‘*)
for somen, or vice versa.

We observe that the reducible absolute spectfdggconsists of regular curve segments.

Theorem 5. Assume that Hypothesgs2, 7and8 are met. Furthermore, assume that Hypoth&sissatisfied for
T for everyn € R2. We then havee,, = Saps

Proof. We have to show thak, € Ssepimplies 1, € . We again consider (5.8) using the weights that

appear in Hypothesis 8. In contrast to the notation introduced in Section 4.3.1, we omit in this proof th& }Jilde (
that referred to quantities computed with respect to (5.8). In other words, for the sake of simplicity, we assume that
n = 0 (possibly after changing the equation appropriately). We then use the notation and conventions introduced in
the proof of Theorem 4; in fact, the proofs for separated and periodic boundary conditions are quite similar. Finally,
we restrict ourselves to the case of fronts; the proof for pulses proceeds in a similar fashion.

First, we claim that we can assume t@t @ ES (1,) = CV. Indeed, suppose th@_ and ES (),) have a
non-trivial intersection. Sinc8sepconsists locally of regular curve segments, we can %arySsepneari,. As a
consequence, the subspa¢es and ES (1) intersect either only at the origin for anyclose toi, with A # A, or
else they intersect non-trivially for allin an open neighborhood af, due to analyticity of£S (1) in A; the latter
case, however, contradicts Hypothesis 7. Thus, the first case occurs, and we canuepjeary nearby. € Ssep
This proves our claim.

As a consequence, if we transport the subsgaceusing the evolutiop(x, —L; 1) associated with (2.9), then,
by hyperbolicity ofA_ (1), the transported subspagé), —L; A)Q_ is close toEY (0; 1) for all largeL.

Next, consider the situation at the right endpaint L of the interval(—L, L). By Hypothesis 8, we have

ES%0) @ sparfai (1), a2(L)} @ E{'(1) = CY

for all A neari,, wherea1 (1) andaz()) are non-zero eigenvectors af_ (1) associated with the eigenvalues(i)
andw2(A). Using the roughness theorem for exponential dichotomies [33,35], we can continue any combination
of these subspaces tedependent invariant subspaces of (2.9). In particular, using also [25, Lemma 2.2], there are
subspaces

E(x; 1) @sparfar(x; A)},  ESx: A) @ sparfaz(x; 1)} (5.9)

that converge to the correspondingndependent eigenspacestf (1) asx — oo. Note thatE {>(x; 1) is (N —ioo+
1)-dimensional, whileEY (x; A) has dimensioi,. Therefore, these two subspaces intersect in a non-trivial fashion;
in fact, we may assume that! (x; 1) and E$(x; 1) intersect transversely in a one-dimensional subspace which is
not contained in either of the two spaces appearing in (5.9). Otherwise, we reach a contradiction to Hypothesis 3;
see Remark 4.2 and [25].

Hence, as a consequence of the discussion in the last few paragkgpifs,.) and the transported subspace
¢(0, —L; 1) Q_ intersectin a one-dimensional subspace that is spanned by awg@pk). The solution associated
with the initial conditionu, (0; A) can be written as

ue(x; A) = a1 (X)) expliw1 (M) x) + az(r) explioa(A)x) + oEe™ ™) (5.10)
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asx — oo, whered is again the rate of convergenceAx; A) asx — oo, anda1 (1) andaz () are certain non-zero
eigenvectors ofi ; (1) associated with the eigenvaluas (1) and w2(A). This expansion can be proved by using
exponential weights and dichotomies for an appropriate variation-of-constant formula; see, for instance [33,35] or
[25, Lemma 2.2]. In addition, we have

(L. ~L: 1)Q- = sparfus(L: )} + EW() + Oe™L)) (5.11)

for all L sufficiently large. Here, and in the following denotes a small positive constant determined lyd the
rates of hyperbolicity ofA ().

In the next step, we focus on the boundary conditions at the right endpoint of the interval. Arguing as above, we
can assume that

0+ = sparfv.} ® Q—i-,

where

vy € sparfai(), az(A)} & EJ'(), v ¢ sparfa;(M)} & ES'(L) (5.12)
for j =1,2and

04 @ ES() @ EY) =CV (5.13)

otherwise, we reach a contradiction to Hypothesis 3. In particular, we have
v = af (W) +ag (W) + v () (5.14)
with a;r()L) € sparfa;(2)} for j = 1,2 andv(2) € E{"(1). Note tha‘ra;r()\) is not equal to zero fof = 1, 2.
It suffices to find non-trivial intersections a@; and ¢(L, —L; A)Q_. Exploiting (5.10)—(5.13) and using
Lyapunov—Schmidt reduction as in the proof of Theorem 4 (we omit the details), we arrive at the reduced equation
a1() (expliw1(M)L) + O€™°)) + az(1) (expliwz (M) L) + O€~*")) = r(af (1) +az (W),
wherer € C is arbitrary. In other words, we shall solve
a1(A) (expliw1 (ML) + Oe™°F)) = raf (), az(A) (expiwz(M) L) + O(e™°F)) = raf (). (5.15)
Recall thata; (1) anda;r(/\) are not equal to zero fgr = 1, 2. Thus, we can write
+ay = O i Gy
a . = — : a;
/ la;j ()] S
for certain complex numbens; (1) with j = 1, 2. The first equation in (5.15) can then be solvedrfor

_ lar@)l

r= Iaf()»)l exp(—iv1(A)) (expliwi (M) L) + O(e*L).

Substituting this expression into the second equation in (5.15), we obtain

lag (W) laz (W)

exp(i(92(2) — 91(1))) (expliw1(A) L) + O(e*F)),
Iaz(k)llaf(k)| pa(F2(2) 1(A))(exXpliwi(A)L) ( ))

expimwa(A)L) + O(e™?) =

which is equivalent to

lag (V)] laz(A)]

—2 expi(92(2) — 91(A))) + O(e™°L).
laz(M)] |ai‘(k)| pi(92(2) 1(1) ( )

expli(wz2(2) — w1(M)L) =
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This equation is exactly of the type considered in the proof of Theorem 4; see (5.6) and the discussion following it.
Thus, the proof of the theorem is complete. |

Remark 5.6. In the set-up of the above theorem, we have that an eigenfundtiorto the original Eq.(5.1) on
the interval(—L, L) with separated boundary conditions typically satisfies

lu(~L)| ~ exp(—Rev;,_ (ML), lu(L)| ~ exp(Rev;”  ;(ML).
The remark is a consequence of the proof of the previous theorem

In particular, the convective properties of the absolute spectrum manifest themselves via the growth of the
associated eigenmodeswat +L depending on the direction of transport. If the absolute eigenvailsénduced
by unstable spatial eigenvalue:%o (») and v;;H(A), then the direction of transport is to the right. Note that this
requires that the formerly stable spatial eigenvajfgogrl(x) moves into the right half-plane; we would therefore
needn, < O to stabilize the wave using exponential weights. Analogously, if the absolute eigeivalingluced
by stable spatial eigenvalues_ (i) and Vi1, then the direction of transport is to the left. In the other cases,
the absolute eigenmodes transport towards 0, either fromx = L if Re v;; (M) < Oorelse fromx = —L if
Rev, .,(0) > 0; in these cases, the instability would lead to a break-up of the wave near its core, away from the
asymptotic rest states.

5.4. Separated boundary conditions: the edge of the absolute spectrum

Often, the rightmost endpoint of the absolute spectrum is given by a branch point, i.e. by a double root of the
dispersion relation. In that case, it is of interest how well the edge of the absolute spectrum is approximated on
bounded intervals. For the sake of brevity, we only consider the case of fronts. A similar result under analogous
assumptions is true for pulses.

Hypothesis 9(Non-degenerate double eigenvgluéronts: We have a double eigenvalu;é;o(x*) = V;;H()‘*)
with geometric multiplicity one so that

Rev () > Rev) (L) > Rev; (),

and the Jordan block associated vmtbo (1+) is unfolded generically upon varyingneara,. Let vfw (A4) denote
the eigenvector oft  (1,) associated Withl’i'; (Ay). We assume that

sparv;” (h)} ® E{(h) @ 04 = C", (5.16)

where E{"(1,) is the eigenspace of  (1,) associated with the unstable part of the spectrum. Furthermore, we
assume that, ¢ > _and thatts (,,) & Q_ = C". Finally, we assume that

abs
EY(0; .) ® spafv;” (0; 1)} @ ESY0; 1) = C7, (5.17)
Wherev;go (x; A4) is a solution that converges t@;(k*) asx — oo; see [15].

Lemma 5.5. Assume that Hypothesés 2 and 9 are met. In addition, suppose thaf is the rightmost point in
the absolute spectrum. There are then constagiise Cwithb, # 0ands > 0such that, if we order the eigenvalues
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;. of 7 %Pthat are closest ta., by their real part, then

1
VIAG L — Asl

for all L large enough(depending on)j

— (b1jL + b2)| = O(e™°F)

Proof. We proceed as in the proof of Theorem 5. Without loss of generality, we can assume dﬁ;gu:R@ for
L = k. We write ESS, ES and E{ for the stable, center and unstable eigenspaces ofespectively, where the
two-dimensional center eigenspace corresponds to the two eigenvaluevgonear

We assumed that, ¢ X and thatD_(),) # 0. Hencep(0, —L; 1) Q_ is exponentially close t&" (0; A) for

abs
all A close toi,. In particular, using (5.17), we see that

@0, —L; 1) Q- N ESX(0; 1) = sparfu,(0; 1)}, (5.18)
whereu, (0; 1) is not equal to zero and

us(0: &) ¢ spariv;” (0: 1)} @ ESN0; As). (5.19)
As a consequence of (5.18), and proceeding as in the proof of Theorem 5, we have that

o(L, —L; ) Q- = sparu.(L; 1)} ® (EL'() + Oe™*"))

for somes > 0. We seek thosg close toi, for which ¢(L, —L; A)Q_ has a non-trivial intersection wit@ .
Thus, we are interested in the space

[sparu.(L; 1)} @ (EL'(h) + OE > )] N Q4. (5.20)

We begin by trackinge.(x; 1) up tox = L. We denote byAS the restriction ofA. to the center spaceS. We
claim that

ue(L; ) = [exp(AS (ML) + O~ H]as (2) (5.21)

for somes > 0 that is independent afand some non-zero vectar. (1) € E$ (2). Indeed, upon using exponential
dichotomies, we can reduce the equation to an equati@f.iWe can then use the variation-of-constant formula

and exponential weights; we refer to [35] for similar arguments. See also [15, Section 3.8] for the case when the
equation does not depend upon parameters. In addition, we know ttat) # v;; (A4) due to (5.19). Next, we
consider the spac@ ;. Due to (5.16), we have

0+ N(ES() @ EY'(3)) = sparig+ (1))
for someg (A) # 0 with
q+0us) & Sparty; ()} ® EL ().
In other words, we have
Q0+ = sparig+ (W)} ® O+
with 04 N E{Y()) = {0}. Expression (5.20) then reads

[spar(u.(L; 1)} ® (EY() + O(e™*F)] N [spar{g+ (M)} @ 0-].
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Therefore, we have that
u = r1u(L; A) + (id + O(e™*F))ut
is in Q. for appropriate choices ofe R andu" € E}"(3) if, and only if,
u=rq+(A) +q+,

where7 € R andgy € Q.. Using Lyapunov—Schmidt reduction, i.e. upon projecting these equations into the
complementary subspacés,, E{"(1) andE$ (1), and solving the projected equations in the former two spaces,
we finally arrive at the reduced equation

rlexp(AS (L) L)ag (1) + O™ 5)] = g+ (1) + O™ )], (5.22)

where we used (5.21). Note that (1) andg4 (1) are smooth and that both are containedfn(1). In addition,
neither of these vectors is equahgﬁoio (A4) for & = i,. SinceAS (1,) is a Jordan block, we see that €43 (1)L)
corresponds to a linear second-order scalar operator, and (5.22) is the equation that appears when we seek the
operator’s eigenvalues. Thus, we can solve this equation by phase—plane analysis; we omit the details[]

6. Numerical computations

To illustrate and confirm the results, we compare our theoretical predictions with numerical computations. The
computations are carried out for pulses in the generalized KdV equation and for fronts that arise in the Gray—Scott
model. We conclude with a brief discussion on the implications that our results have for the numerical computation
of spectra on large intervals.

6.1. The generalized KdV equation

We begin with the generalized KdV equation that is given by
U + uyxx — CUy +ufu, =0, x eR, (6.1)
wherec is the wave speed andis a parameter. This equation admits a family of pulses given by
u(x) = [3e(p + D(p + 2177 seck/” (3xpy/e) (6.2)
for any positive values af and p. The linearization of (6.1) about one of these pulses is equal to
Lv = —vxxx+ (¢ — uP)v, + pu”_luxv. (6.3)

It has been shown in [31] that the pulses are marginally stafit€fam p < 4 and unstable fop > 4. The instability
is induced by a simple unstable eigenvalue that appears for4. For anyp # 4,1 = 0 is an eigenvalue with
geometric multiplicity 1 and algebraic multiplicity 2; the associated eigenvectots,aaedu..

To compute the essential and the absolute spectrum, we rewrite the eigenvalue gfobteln about the pulses
as a first-order system. The associated asymptotic matrix is given by

0O 1 0
Aom)=1 0 0 1]. (6.4)
- ¢ O
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Fig. 4. The spectrum of on the intervak—7.5, 7.5) with periodic boundary conditions. We discretized the operator using a pseudo-spectral
method with 700 Fourier modes. The resulting matrix-eigenvalue problems were always solved using thepcautinffom the Larack
package [2].

Its three spatial eigenvalueg(i) are the roots of the dispersion relation
da,v)=A+ v2(v —0).

In particular, the asymptotic indeax, is equal to two, and we will need two boundary conditions at L and
one boundary condition at = —L. Using the dispersion relation, the essential and absolute spedfraaf be
computed

Tess= IR, Yaps= (—00, —2(%0)3/2], (6.5)

see [32, Proposition 2.3]. The absolute eigenmodes induce transport tawardso since, forh € Zaps the two
spatial eigenvalues that have the same real part are located in the left half-plane. The discussion after Remark 5.6
then implies that the eigenmodes are exponentially growing-as —oo. This behavior is consistent with> 0.

We first considelp = 2, and also fix the wave speed= 2. The pulses are then transiently unstable; see [32].
On the bounded interval-L, L), we consider periodic boundary conditions as well as the separated boundary
conditions

uy(—L) =0, u(L) =0, u, (L) =0. (6.6)

We begin by comparing the spectra of the operAton the real line and the bounded intergalL, L) with L = 7.5.
Fig. 4 shows that periodic boundary conditions indeed recover the essential spectrum. In addition, the two embedded
eigenvalues at zero move away from the imaginary axis. For the separated boundary conditions defined in (6.6), we
recover the absolute spectrum; see Fig. 5. As predicted, the two embedded eigenvalues at zero stay near the origin
but split into two simple eigenvalues. It is straightforward to show that the boundary conditions are non-degenerate
neari = 0 so that no additional eigenvalues are created there.

We then compared the rate of convergence with which the embedded eigenvalues near zero approach zero as
L — oo. The spatial eigenvalueg (1) of the asymptotic matrixo(1), see (6.4), at = 0 are given by

v1(0) =0, v2,3(0) = £+/c.

The spectral gap is therefore equalJ@. Since the multiplicity of the eigenvalue = 0 is 2, we expect that

the rate of convergence is equal%q/E. We calculated the temporal eigenvalues near zero numerically using the
packageauTogy, see [17], and continued in the interval lendthThe results are shown in Fig. 6(a); the actual
rate of convergence ig’c and not the expecte%i\/E. The reason for the super-convergence is as follows: first, the
eigenfunction of. = 0 on the real line converges faster to zeracas —oo than expected; its exponential rate is
J/c rather than 0. The same is true for the unique bounded solttiah of the adjoint eigenvalue equation. The
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Fig. 5. The spectrum of on the interval—7.5, 7.5) with the separated boundary conditions (6.6). We discretized the operator using one-sided
finite differences with 1500 equidistant mesh points corresponding to a step &ize 6{01.

latter is true due to the Hamiltonian nature of the KdV equation. In fact, we #h@ave = V H (u(x)), whereu (x)
is the pulse andi (1) is the Hamiltonian of the KdV equation. It is then a consequence of the super-convergence
results presented in [36] that the rate of convergenggiand not%\/E.

Next, we investigate the approach of eigenvalues to the edge of the absolute spectrum located at

A= —2(30¥% ~ ~1.089 (6.7)
We expect that the convergence is like
1
A — Ayl = 12

We therefore plotted|x — A..|)~Y/2 over L, and expect to see a straight line. This is confirmed in Fig. 6(b). Note
that the slopes of the first three eigenvalues that we continued have a ratio of approxima}el% hs predicted,;
see Lemma 5.5.

Next, we change the boundary conditions to

ux(—L) =0, ux(L) =0, uxx(L) = 0. (6.8)

These boundary conditions are no longer non-degenerate. It is straightforward to shbw that= A + O(|A|2).
We therefore expect three eigenvalues near0. This is confirmed in Fig. 7(a).

_ 0 T T T T T T T 8
= 7
E =6
B bk
= =4
= =
= 3
£ =
g 1
0

L L

Fig. 6. (a) For the separated boundary conditions (6.6), the slopes of the curves formed by the real and imaginary parts of the eigenvalues that
approach zero are given by2.8275 and—1.4109, respectively. The overall numerically computed slope is thereftr4109 which is twice

the expected rate af'2/2; this super-convergence phenomenon is explained in the main text. (b) The first three eigenvalues that approach the
edge of the absolute spectrum are continued.ifthe slopes of the scaled curves formed by these eigenvalues are given by 0.40468, 0.20170
and 0.13498, respectively.
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Fig. 7. (a) The spectrum a near zero on the intervé+7.5, 7.5) using the boundary conditions (6.8). As predicted, there are three eigenvalues
near) = 0. (b) The resonance pole is shown as a function of the parametére pole crosses the imaginary axipat 4.

Finally, we return to the case of the transverse boundary conditions (6.6). We shall confirm that resonance poles,
i.e. eigenvalues that are generated upon using exponential weights, show up on large intervals with separated
boundary conditions but are not visible for periodic boundary conditions. To this end, we Wrathe interval (2,

5). It has been shown in [31] that at= 4, a resonance pole crosses the imaginary axis from left to right at the origin,
rendering the pulses unstable. For- 4, this resonance pole is an ordinary eigenvalue that should then be picked

up by periodic boundary conditions. Our numerical computations confirm that this is indeed the case; see Figs. 7(b)
and 8. Recall that our theory predicts that the absolute spectrum is filled with eigenvalues as. Thus, all but

finitely many eigenvalues will stay to the left of the edgeof the absolute spectrum. Hence, a priori, we cannot
distinguish the resonance pole from other eigenvalues until it emerges from the absolute spectrum through the edge
A & —1.089. This happens at = 2.551; see Fig. 7(b).

We used the aforementioned resonance poles, calculatedfat.5, to illustrate the difference in the convergence
rates for periodic and separated boundary conditions. We computed the unstable eigenvalues for increasing values
of L and compared them with the “exact” unstable eigenvalieThe latter was calculated using the boundary
conditions (6.6) for a large value &f namelyL, = 40. The spatial eigenvalues of the mattig(A"), see (6.4), are

v; = 1.15612 v2 = 0.42071 vz = —1.57683

Thus, from Theorem 2 and Lemma 4.3, we expect the convergencexate nin{v,, |v3|} = 0.84143 for periodic
ando = v —v3 = 1.99754 for separated boundary conditions. This is confirmed by nhumerical computations using
AUTO97; see Fig. 9.
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Fig. 8. The spectrum of with periodic boundary conditions on the interyal7.5, 7.5) for p = 3.5 (left) andp = 4.5 (right). The resonance
pole is not visible in the left plot; the unstable pair of eigenvaluegfor 4, however, is captured; see the plot to the right. We discretized the
operator using a pseudo-spectral method with 800 Fourier modes.
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Fig. 9. The scaled error of the unstable eigenvalue, computed numerically for various valudsibfor fixed p = 4.5, is plotted for: (a)
periodic, and (b) separated boundary conditions (6.6). The eigenvalues are compared with the exettv8ld€6736 that we obtained using
the boundary conditions (6.6) for larde.. The slopes for the scaled error ar€.84154 for periodic and-2.00403 for separated boundary
conditions. Our theory predicts the slopes 0.84143-ah®9754, respectively.

6.2. The Gray—Scott model

The second equation that we investigate is the Gray—Scott model:
Ur = DluXX — CUy — UUZ + F(l - M), Vy = DZUXX — Cvy + UUZ — (F + k)v (69)

Here,c denotes again the wave speed. In the parameter regime wheré — 4(F + k)?/F is positive, (6.9) has
three different homogeneous steady states; the two that are of concern to us are commonly referred to as the red
and blue states

1 F
(ur, vy) = (1, 0), (up, vp) = <§(1 — V), m(1 + «/K)) ) (6.10)

If we choose the parameters according to
D1=60x10"° D,=10x10"°,  ¢=-502063x10"%  k=0.05 F=01, (6.11)

then numerical computations reveal that (6.9) admits a stationary front that connects the blue-stateittt the

red state at-oo. The front was computed using the driwesmconT [10] that is built into the packageutog7 [17].

We refer to Fig. 12(a) for a plot of the two components of the front. In fact, sined, the front moves to the right
towards the red state if considered in a non-moving coordinate frame. It can be shown that the red state is stable,
while the blue state is unstable for the aforementioned choice of parameters. The linearization of (6.9) about the
front is given by

D_‘]_axx - Cax - U2 - F —2uv
= ) 6.12
£ ( v2 Dodyx — ¢dx — 2uv — (F + k) ) (6.12)

We calculate its spectrum on the interval (0, 1); note that, if we rescale the equation so that the diffusion constants
are of order 1, then the length of the interval would be of the orderl0?. We used the boundary conditions

u(0) +v(0) =0, ux(0) — v, (0) =0, u(l) +v() =0, uy (1) — v (1) =0. (6.13)

Neumann boundary conditions violate Hypothesis 7 since the two components of the operator (6.12) decouple at
the red state.

First, we computed the absolute and essential spectra of the asymptotic homogeneous states. This was done by
continuation withinautogy. The results are shown in Fig. 10. Note that absolute spectrum is to the left of the
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Fig. 10. The absolute and essential spectra of the red (left) and the blue (right) rest states are shown. The essential spectrum is plotted using
thicker lines, while the absolute spectra are plotted with thin lines.

essential spectrum. The rightmost edge of the absolute spectrum of the blue state corresponds to a double spatial
eigenvalue as does the rightmost point of the absolute spectrum of the red state.
We then computed the spectrum of the operéton the interval (0, 1) with the boundary conditions (6.13); see
Fig. 11. The computations confirm that the spectrum on the bounded interval asymptotes on the absolute and not
on the essential spectrum. The additional eigenvalue at zero is of course due to translational invariance of (6.9).
The absolute spectrum of the blue state is caused by spatial eigenvalues that cross the imaginary axis from right
to left. The exponential weight function is therefore given By with » > 0, and we expect that perturbations
are convected towardsoo. In particular, eigenfunctions associated with eigenvalugs af the bounded interval
should be large at the left endpoint= 0 of the domain. This is confirmed in Fig. 12(b), where #heomponent
of a typical eigenfunction within the absolute spectrum is plotted.

6.3. Numerical computations of spectra on the real line

As we have seen, only periodic boundary conditions generally capture the spectrum of PDE operators on the real
line. One of the exceptions is the case where the operator exhibits an additional reversibility structure so that the
essential and the absolute spectrum are in fact equal.

For separated boundary conditions, the spectrum that is computed on the bounded interval is the absolute spectrum
plus the set of eigenvalues and resonance poles of the original operator. Additional eigenvalues can be created

0.1

0.05

-0.05

Fig. 11. The spectrum af on the interval (0, 1). The thin lines indicate the location of the absolute spectrum of the operator. We used centered
finite differences with 2000 equidistant mesh points corresponding to a step éize 6fx 10~4.
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Fig. 12. (a) The left-hand side picture contains #hendv components of the front to the Gray—Scott model as a functian ©he parameters
are chosen according to (6.11). (b) Theomponent of the eigenfunction gfassociated with the eigenvaltie= —3.96x 107% —3.5i x 102
is plotted. This eigenvalue is close to the rightmost edge of absolute spectrum of the blue state.

through the boundary conditions. To confirm the numerical computations, one could therefore compute the absolute
spectrum of the asymptotic states separately, either by using the spatial eigenvalues of the asymptotic matrices
or by numerically computing the spectra of the asymptotic constant-coefficient operators. A comparison with the
spectrum of the full operator then identifies the absolute spectrum. Spurious eigenvalues generated by the boundary
conditions can be identified using different boundary conditions and comparing those eigenvalues that are not related
to the absolute spectrum.

Finally, we emphasize that our results are true asymptotically as oo, but that we do not have estimates for
how largeL really has to be in order to resolve the absolute spectrum over a large region in the complex plane. An
additional difficulty is that the operator has to be discretized so that the spectra also depend upon the step size of the
discretization scheme. An example where these issues seem to play a role is the FitzHugh—Nagumo equation that
has been used in [8] to illustrate domain-truncation results for isolated eigenvalues. It appears as if the computed
spectrum is close to the absolute spectrum only extremely near the imaginary axis. Our calculations show that the rest
ofthe spectrum is very sensitive to variations of the length of the interval and the choice of the number of mesh points.

7. Conclusions and discussion

Our results can be summarized as follows. As far as the original point spectrum on the real line is concerned,
eigenvalues persist under truncation with their multiplicity. For separated boundary conditions, however, additional
eigenvalues can be created when the boundary conditions are not transverse to certain eigenspaces. In addition,
eigenvalues may appear in regions that were previously occupied by the essential spectrum; these eigenvalues are
oftenreferred to as resonance poles. The essential spectrum of the problem on the real line is recovered under domain
truncation only if periodic boundary conditions are imposed. For separated boundary conditions, the spectrum on
the bounded intervals asymptotes onto the absolute spectrum as the endpoints of the intervatsend to

We have taken three different viewpoints towards stability for operators on the real firstability, convective
instability, and transient instability. As far as the essential spectrum is concérhsthbility implies stability on
all sufficiently large intervals with periodic boundary conditions, while transient instability implies stability under
separated boundary conditions. In particular, separated boundary conditions can stabilize: transiently unstable
patterns may be spectrally unstable under periodic boundary conditions, while they may be stable under separated
boundary conditions. Convective instability does in general not imply stability under separated boundary conditions;
see Example 2.

Proving that solutions actually decay pointwise whenever the operator is convectively unstable is in general a
difficult endeavor for hyperbolic or dispersive equations since it requires to show the convergéhuoeetfrals.
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Uniform bounds on the resolvent usually require a scaling of the scalar prodR€tfor largex. For instance, the
heat equatiomyyx = Au, when rewritten ag, = v, v, = Au, does not admit uniform dichotomies as—> oo with

1 € R since the eigenvectorg, ++/A)T are asymptotically parallef (»)~1 is therefore not uniformly bounded in
. The correct (space—time) scalingds = v/Av, v, = +/Au which guarantees uniform dichotomies.

Our results are partial in the sense that they only consider the effect of the truncation on the linearization as in
[8]. In general, the stationary solution of the nonlinear PDE itself is perturbed by the boundary conditions. When
the essential spectrum does not confaia 0, these perturbations are often harmless. In many circumstances, the
perturbed wave is &~ -close to the original wave; see [7]. In this situation, our results are also true if the original
wave is replaced by the perturbed wave. This is a consequence of the estimates for exponential dichotomies that
were established in [33,35].

The approach using exponential dichotomies is suitable for problems in one-dimensional domains where dynamical-
systems properties prove particularly useful. However, the results can be immediately generalized to cylindrical
domains with multi-dimensional bounded cross-section and to time-periodic solutions of parabolic problems using a
slightly generalized notion of dichotomies and Morse indices; we refer to [27,37,38] for related results. In particular,
the absolute Morse indices considered here have to be replaced by relative Morse indices.

In general, the absolute spectrum seems to play animportant role whenever boundary or, more generally, matching
conditions are imposed. An interesting example is the following situation: suppose that the travelling wave ODE
admits a heteroclinic cycle so that the first connection is transversely constructed while the other connection is of
codimension two. This situation is often called gpoint The interpretation for the PDE is then as follows. There
are two homogeneous rest states so that one of them is stable while the other one is unstable. There are also two
fronts that connect the first to the second and the second to the first rest state, respectively. Furthermore, these fronts
have the same wave speed. It is known that, for nearby parameter values, the PDE exhibits pulses that connect
the stable rest state to itself. An interesting issue is the stability of these pulses. Note that both fronts are unstable
since one of their asymptotic states is unstable. Also, the pulses have a long plateau along which they are very
close to the unstable rest state. Numerically, it appears as if the bifurcating pulses can be stable, see [41,45], even
though in the limiting configuration, i.e. for the heteroclinic cycle, part of the essential spectrum is contained in
the right half-plane. Matching or gluing the pulses from two fronts is similar to imposing a boundary condition
in the middle of the domain. We therefore expect that the stability properties of the pulse are not determined by
the essential spectrum of the unstable rest state but by its absolute spectrum (which can be stable even though the
essential spectrum is unstable). As shown in [39], this is indeed the case.
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