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Abstract: Molecular dynamics simulation methods produce trajectories of atomic positions (and
optionally velocities and energies) as a function of time and provide a representation of the
sampling of a given molecule’s energetically accessible conformational ensemble. As simulations
on the 10—100 ns time scale become routine, with sampled configurations stored on the
picosecond time scale, such trajectories contain large amounts of data. Data-mining techniques,
like clustering, provide one means to group and make sense of the information in the trajectory.
In this work, several clustering algorithms were implemented, compared, and utilized to
understand MD trajectory data. The development of the algorithms into a freely available C
code library, and their application to a simple test example of random (or systematically placed)
points in a 2D plane (where the pairwise metric is the distance between points) provide a means
to understand the relative performance. Eleven different clustering algorithms were developed,
ranging from top-down splitting (hierarchical) and bottom-up aggregating (including single-linkage
edge joining, centroid-linkage, average-linkage, complete-linkage, centripetal, and centripetal-
complete) to various refinement (means, Bayesian, and self-organizing maps) and tree
(COBWEB) algorithms. Systematic testing in the context of MD simulation of various DNA
systems (including DNA single strands and the interaction of a minor groove binding drug DB226
with a DNA hairpin) allows a more direct assessment of the relative merits of the distinct clustering
algorithms. Additionally, means to assess the relative performance and differences between
the algorithms, to dynamically select the initial cluster count, and to achieve faster data mining
by “sieved clustering” were evaluated. Overall, it was found that there is no one perfect “one
size fits all” algorithm for clustering MD trajectories and that the results strongly depend on the
choice of atoms for the pairwise comparison. Some algorithms tend to produce homogeneously
sized clusters, whereas others have a tendency to produce singleton clusters. Issues related to
the choice of a pairwise metric, clustering metrics, which atom selection is used for the
comparison, and about the relative performance are discussed. Overall, the best performance
was observed with the average-linkage, means, and SOM algorithms. If the cluster count is not
known in advance, the hierarchical or average-linkage clustering algorithms are recommended.
Although these algorithms perform well, it is important to be aware of the limitations or
weaknesses of each algorithm, specifically the high sensitivity to outliers with hierarchical, the
tendency to generate homogenously sized clusters with means, and the tendency to produce
small or singleton clusters with average-linkage.

Introduction
Molecular dynamics (MD) and free energy simulation
methods provide valuable insight into the structure, dynam-
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ics, and interactions of biological macromolecules.'™* Over
the past three decades, MD simulation methods have proven
to be an accurate tool for probing the detailed atomistic
dynamics of models of biological systems on the picosecond
to microsecond time scales.’”'* MD simulations give direct
insight into protein folding,%'>~?° drug-receptor interac-
tion,>3073 and fast time scale motions of biological mole-
cules.*~%7 As computer power continues to increase, and
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simulations on the 10—100 ns time scale and beyond become
routine, large amounts of data result. This sequence of data—
the “MD trajectory”—fully specifies the history of the atomic
motions in terms of a sequential time-dependent set of
molecular configurations from the MD simulation and the
larger set of derived properties calculated from the MD
trajectory (such as energies, bond lengths, and angle distribu-
tions). These data not only provide insight into the structure,
dynamics, and interactions of the biomolecules under study
but also can be reused to score putative force field changes,
as a set of “good” and “bad” representative structures
sampled, and for the development of coarse-grained poten-
tials. Although many of the properties derived from the MD
trajectory are rather easy to extract, such as the time evolved
root-mean-squared coordinate deviation (RMSd) to the initial
structure or various distance and angle time series, some
properties are more difficult to extract and may be signifi-
cantly more time-consuming to evaluate (such as entropies
and heat capacities). Further, even with elucidation of these
properties, often the inherent relationships among the mo-
lecular configurations are hidden in the complexity of the
data. One very useful way to expose some of these
correlations is to group or cluster molecular configurations
into subsets based on the similarity of their conformations
(as measured by an appropriate metric).*4° Clustering is a
general data-mining technique that can be applied to any
collection of data elements (points) where a function measur-
ing distance between pairs of points is available ! A
clustering algorithm partitions the data points into a disjoint
collection of sets called clusters. The points in one cluster
are ideally closer, or more similar, to each other than to points
from other clusters. In this work, we describe the imple-
mentation and application of a variety of well-known
pairwise distance metric clustering algorithms into a general
purpose (and freely available) C code library. To test and
validate the implementations, a simple problem is the
clustering of randomly (or systematically) placed points in
the Euclidean plane where the pairwise metric is the distance
between points. This provides an easy way, using the
discrimination of our visual system, to see the results and to
highlight bugs in the implementations. This contrived test
system also nicely highlights the underlying limitations of
each algorithm. After description of the algorithms and their
relative performance, the clustering methods are then applied
to a series of MD trajectories of various biomolecular
systems.

The use of clustering algorithms to group together similar
conformations visited during a MD simulation is not a novel
concept #4952 A wide variety of algorithms has been applied
in many studies to cluster molecular dynamics trajectories,
group similar conformations, and otherwise search for
similarities among structures. A subset of publications
developing and applying clustering algorithms to analyze
molecular dynamics trajectories spans the range from some
of the earliest MD simulations to very recent studies #$492~7
In this work we build on the previous studies by comparing
and contrasting the performance of various well-known
clustering algorithms applied to the points in a plane example
and multiple different sets of MD simulation data. The
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algorithms implemented include rop-down/divisive (hierar-
chical), bottom-up/agglomerative (single-linkage/edge-join-
ing, centripetal, complete-linkage, centroid-linkage, av-
erage-linkage, and centripetal-complete), refinement (means,
Bayesian, and self-organizing maps or SOM), and tree
clustering (COBWEB) algorithms. The choice of biomo-
lecular systems to cluster includes MD simulation studies
of a dynamic 10-mer polyadenine DNA single strand in
aqueous solution, the interaction of the minor groove binding
drug DB226 (the 3-pentyl derivative of 2,5-bis(4-guanylphe-
nyl)furan) with a DNA hairpin loop in two different binding
modes, and the conformational transition from an open to
closed geometry of an drug-free cytochrome P450 2B4
structure (PDB: 1P05).” In addition to the raw or production
MD trajectory data, two artificial sets of data were con-
structed from independent trajectories of the polyA single
strand to create trajectories containing 500 configurations
at 1 ps intervals. The first represents five equally sized
clusters created from 100 ps MD sampling around five
distinct starting conformations, and the second is created
from sampling around five distinct conformations to create
clusters of different sizes, specifically containing 2, 15, 50,
100, or 333 configurations each.

When clustering the molecular configurations from a MD
trajectory, ideally each clustering algorithm should group
similar molecular configurations into distinct sets or groups.
This gives a refined view of how a given molecule is
sampling conformational space and allows direct character-
ization of the separate conformational substates visited by
the MD.”’ As large-scale conformational change during the
MD can lead to high variance for the calculation of time
independent properties, such as MM-PBSA estimates of free
energetics®’® or covariance estimates of the entropy,””0 it
is expected that clustering of the trajectory into distinct
substate populations can minimize this variance and provide
more useful information about the ensemble of conformations
sampled by MD. Clustering—no matter how valid in terms
of its algorithmic success and ability to discern—is only
useful if it can provide an unbiased means of exposing
significant relationships and differences in the underlying
properties. Ultimately, it is desired that an algorithm will
naturally partition the data—with minimal user input—into
representative clusters where each cluster may have different
shapes, different variance, and different sizes. For example,
structures sampled from a deep and narrow minimum energy
well will typically have a smaller variance than those sampled
from more flat and higher entropy wells. Clusters of
configurations from MD simulation are also likely to have
different sizes as sampling should ultimately progress ac-
cording to a Boltzmann distribution, and, therefore, higher
energy substates will be less populated than lower energy
substates. In practice, except with artificially constructed and
well-separated data, the performance of the underlying
algorithm depends critically on the data, the pairwise
comparison metric, the choice of atoms used in the com-
parison, and the choice of cluster count. With proper usage,
we found that the clustering algorithms do seem to capture
conformational substates of interest and that the clustering
results highlight the similarity and differences among the
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structures. However, some of the clustering algorithms have
key limitations and hence are not recommended for clustering
MD trajectory data. Moreover, there appears to be no “one
size fits all” clustering algorithm that always does an
appropriate job of grouping the molecular configurations;
in other words, the clustering algorithm ideally suited for
clustering a particular data set will depend on the data.

To better characterize the relative performance, we imple-
mented a range of different clustering algorithms. Assessment
was made via visual inspection of the resulting clusters and
also through the use of various clustering metrics. The
algorithms chosen vary widely in their approaches, their
computational complexity, their sensitivity to outliers, and
their overall effectiveness. Our examination of several rather
different clustering algorithms allowed us to quantitatively
assess the quality of their output as well as their overall
similarities and limitations. Surprisingly different behavior
was observed in application of the different algorithms to
the same MD simulation data. Whereas the fast and top-
down divisive (or hierarchical) clustering algorithm tends
to produce uniformly sized clusters or clusters with similar
diameters, across the set of molecular configurations, various
implementations of the bottom-up “merging” (or linkage)
clustering algorithms tended to group most of the molecular
configurations into a single large cluster with small singleton
cluster outliers that contained only one or a few molecular
configurations. Although the merging algorithms may pro-
duce singleton clusters, these algorithms can form clusters
of any “shape” (such as elongated or concave clusters) in
contrast to the hierarchical clustering algorithm. Depending
on the data set, cluster count, and metric, differences in the
relative performance of the various algorithms are clearly
evident. The observation that clustering depends on the
choice of algorithm strongly justifies the exploration of
multiple clustering algorithms when initially characterizing
the MD trajectory data. In addition to multiple algorithms,
users need guidance on choosing the appropriate cluster count
and atoms to use for the pairwise comparison. In general,
the appropriate choices that will best partition the data are
not known in advance. Strategies to assess the proper cluster
count include dynamically choosing the number of clusters
based on quantitative measures of clustering quality. Metrics
investigated in this work include the pseudo F-statistic (pSF),
the Davies-Bouldin index (DBI), the SSR/SST ratio, and the
“critical distance”. These indices and the detailed progression
of the partitioning or merging can be cached, thereby
allowing characterization of clustering performance across
a range of cluster counts in a single clustering run. Further
information about the relative performance and optimal
choice of cluster count can come from visual examination
of the tree of clusters. Finally, a significant concern when
clustering based on pairwise distance evaluations is that the
computational costs rapidly become excessive as the number
of conformations to cluster grows. To partially mitigate this
N? growth in computational costs and memory requirements,
we implemented a two-pass “sieved” approach as a way to
efficiently cluster many thousands of points. The MD
trajectory is scanned first at a coarse level to do the initial
clustering, with a second pass through the data to add skipped
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configurations to existing clusters. We examine the useful-
ness and limitations of these approaches.

Methods

Eleven different cluster algorithms® were implemented:
hierarchical, single linkage (edge), average linkage (aver-
age), centroid linkage (linkage), complete linkage (com-
plete), K-means (means), centripetal, centripetal-complete,
COBWEB }'#2Bayesian ** and self-organizing maps (SOM) 3
These were implemented in a library written in C, libcluster,
which works abstractly on points and pairwise distances. It
is not specific to MD simulations. By extending a few
functions, such as the one that computes the centroid of a
cluster, one can use this library to cluster arbitrary types of
data. For instance, a separate program we developed, called
ClusterTest, invokes libcluster to cluster collections of points
in the plane. The ClusterTest utility can also measure
distances between clustering outputs. In application to MD
simulation, particular care needs be levied in calculation of
the cluster centroid. Specifically, this relates to deciding the
frame of reference for the averaging of conformations that
form the centroid. In our initial development, the centroids
produced were misleading as the molecules moved during
the MD simulation and were not necessarily in the same
reference frame as their centroid. To circumvent this problem,
prior to construction of the centroid either the sampled
configurations need to be placed into a common reference
frame (such as by an RMSd fit to the first frame or a
representative structure), or, better, separate reference frames
should be created for each cluster where the frame of
reference is the most representative configuration from that
cluster. In the current implementation, all the structures in a
given cluster are rms fit to the most representative structure
before calculation of the centroid. The representative structure
is the structure which has the minimal sum of the squared
displacements between other structures in the cluster and
itself. This is stored internally as the “bestrep” structure, and
at present this is not necessarily equivalent to the representa-
tive structure output by ptraj (which currently writes out
the structure closest to the centroid).

Code and Interface. All programs are written in portable
C code and are available from the authors. For clustering
MD trajectory data, this library was interfaced to the ptraj
module of Amber.3>% We measured the distance between
frames using mass-weighted, optimal-coordinate superposi-
tion root-mean-squared deviation (RMSd) or by using the
distance measure D,, (DME) defined by Torda and van
Gunsteren.>? Users can choose the subset of atoms to be used
for pairwise comparison, specify the clustering algorithm and
cluster count, and request to output new trajectories for each
cluster, average structures for each cluster, and/or representa-
tive structures for each cluster. In this paper, each reference
to distance indicates the RMSd between two simulation
snapshots (i.e., two molecular configurations from different
time points from the MD trajectory) unless otherwise
specified.

Testing of the Implementation Using Points on a 2D
Plane. To aid our analysis and algorithm development, we
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Figure 1. Clustering on a simple data set of points on a 2D
plane. This data set is simple for several reasons: each
cluster (represented by a different color) is convex, the clusters
are clearly separated, nearby clusters do not differ greatly in
size, and we requested the “right” number (three) of clusters
when clustering. Changing any of these conditions will cause
problems for some of the clustering algorithms.

utilized a very simple test set for evaluating the performance
of the various clustering algorithms. This test uses points in
the Euclidian plane where the pairwise metric is simply the
distance between the points. Using either systematically
placed (as shown in Figure 1) or randomly distributed points,
it is very easy to construct and visualize the test set. As the
data are somewhat contrived and not fully representative of
the 3D configurations sampled in a MD trajectory, an
algorithm’s good performance on the points in Euclidean
space example does not guarantee it will classify simulation
frames usefully. However, many properties—such as the
relative memory requirements, the inability to generate con-
cave clusters, or the sensitivity of edge-joining clustering to
outliers—remain the same for any problem domain and are
most easily discovered and visualized on a simple problem
space. For simple test cases, where clusters are convex and
clearly separated, all the algorithms perform equally well
(see Figure 1). In other cases, the commonly applied
algorithms (such as hierarchical clustering) break down.

In the following, we provide a general discussion of each
of the clustering algorithms that were implemented. These
common algorithms, or variants thereof, are classified as
algorithms that are top-down (starting from a single cluster
or divisive), bottom-up (starting from many clusters and
merging or agglomerative), refinement (iteratively refining
the membership of clusters starting from seed clusters), or
tree based. A brief heuristic explanation of each is provided.
A more technical description of each algorithm is provided
in the Supporting Information.

Top-Down Clustering Algorithms. Top-down algorithms
begin by assigning all points to one large cluster. They then
proceed iteratively, splitting a large cluster into two sub-
clusters at each stage. The cluster count increases by one at
each step until the desired number of clusters is reached.
Hierarchical clustering is the only top-down clustering
algorithm we implemented. In our implementation, we
defined the diameter of a cluster to be the maximal distance
between any two points in the cluster. At each cycle, we
find the cluster with greatest diameter. We split it around
the two eccentric points that define the diameter, A and B:
all points closest to A are assigned to one child cluster, and
all points closest to B fall in the other.>?
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Figure 2. Hierarchical clustering (right) produces a nonin-
tuitive clustering of the two distinct sets of points in the plane
compared to the other algorithms (centroid-linkage clustering
is shown on the left).

Hierarchical clustering tends to give clumsy results
particularly near the boundary equidistant from the two
eccentric points. Each “cut” made in hierarchical clustering
may separate points near the boundary from their nearest
neighbors. Hierarchical clustering can produce clusters of
different population sizes (i.e., some with few points, some
with many) but cannot produce clusters of greatly different
diameters, such as might correspond to local energy minima
of different depths (see Figure 2). This may or may not be
mitigated by alteration of the refinement steps in the
hierarchical algorithm to be cleverer about the “cut”. As
implemented, in each of the refinement steps the cluster
centroids are calculated, and the points are reassigned
between the two new clusters. As will be seen later, this
behavior differs from the refinement algorithms where
reassignment of points can occur over all the clusters. This
implies that the algorithm cannot overcome mistakes in
partitioning made in previous steps. Hierarchical clustering
is also sensitive to outliers since repositioning an extreme
point changes the location of a boundary, and hierarchical
clustering cannot produce concave clusters. Its main strengths
are that it is the fastest of the clustering algorithms we
examined at low cluster counts and changes in the perfor-
mance metrics as a function of cluster count, such as the
variance explained by the data or distance between split
clusters, are easy to interpret.

Bottom-Up Clustering Algorithms. Bottom-up algo-
rithms begin by assigning each point to its own cluster and
proceed by iteratively merging clusters, one merge at each
stage, into larger clusters until the desired number of clusters
remains. Algorithmic differences relate to the specific choice
of which pair of clusters to merge and the definition of the
intercluster distance. Edge or single-linkage, centroid-
linkage, average-linkage, complete-linkage, centripetal,
and centripetal-complete clustering are the bottom-up
algorithms implemented in this work. Bottom-up algorithms,
like top-down algorithms, can produce a tree of clusters,
where each “leaf” is a cluster, and the “root” is the cluster
containing all points. An advantage of these methods is that
the cluster merging information can be saved at each step to
provide in a single run the set of distinct clusters that result
across a range of cluster counts. Examination of these data
in terms of the performance metrics can guide users to the
appropriate cluster count for the data.

Edge. Under the single-linkage or “edge-joining” or edge
algorithm, the distance from one cluster to another is defined
as the shortest intercluster point-to-point distance. At each
iteration step, the two closest clusters are merged. This
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merging continues until the desired number of clusters is
obtained.>> Centroid-linkage (or linkage) clustering is similar
to single-linkage, except that the cluster-to-cluster distance
is defined as the distance between the cluster centroids.
Average-linkage (or average) clustering is also similar,
except that the cluster-to-cluster distance is defined as the
average of all distances between individual points of the two
clusters. Complete-linkage (or complete) clustering defines
the cluster-to-cluster distance as the maximal point-to-point
intercluster distance between the two clusters. Centripetal
clustering is derived from the CURE algorithm.” In
centripetal clustering, we choose up to five “representatives”
for each cluster. Representatives are taken as follows: choose
up to five maximally distant points from the cluster and then
move each point 1/4 of the way closer to the centroid to
produce our representatives. This “centripetal” motion toward
the centroid is intended to make the algorithm less sensitive
to outliers. At each iteration step, the pair of clusters with
the closest representatives is merged, and new representatives
are chosen for the resulting larger cluster. The choice of five
representatives and movement 1/4 of the way to the centroid
is somewhat arbitrary. The centripetal clustering algorithms
merging process is depicted graphically in Figure SO of the
Supporting Information.

Centripetal-complete is a variation on the centripetal
algorithm that defines the distance between two clusters to
be the largest distance (“complete”) between the pairs of
representative points from the two clusters (rather than the
edge distance).

Refinement Clustering Algorithms. Refinement algo-
rithms start with “seed” clusters. These seed clusters are
refined, or “trained”, over the course of one or more iterations
through all the data points. After the clustering is determined
to be good enough, or stable enough, the resulting clusters
are saved. The number of clusters to form is set at the
beginning and generally does not change during the refine-
ment. These algorithms tend to depend on data presentation
order and definition of the seed clusters. In our development,
we evaluated the effect of the random (seed) and data order
factors through multiple runs with different random seeds
and comparison of chronological versus random ordering of
the MD data. Means, Bayesian, and self-organizing maps
are all refining algorithms. Means clustering starts by
choosing a collection of seed points, each of which is
assigned to its own cluster. We then iterate over all other
data points. Each data point is assigned to the cluster whose
centroid is closest; the centroid for this cluster is then
recomputed.®® To provide greater consistency between runs,
we choose as our initial points a collection of maximally
distant seed points, although random collections can also be
used. Bayesian clustering starts with randomized seed
clusters. A seed cluster has a random mean (and standard
deviation) for each coordinate. Clusters are refined using an
expectation-maximization (EM) algorithm. Points have proba-
bilistic membership in each cluster. We first compute the
odds that each point is in each cluster (the “expectation”
step) and then alter the mean and standard deviation in the
clusters to maximize the utility of each (the “maximization”
step). This is based on the AUTOCLASS clustering algo-
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rithm .38 In our experience, a large series of repetitive runs
with different seeds need to be performed to get consistent
results. SOM: Self-organizing maps are a form of artificial
neural network. Each cluster is seeded with a random point,
and the clusters are set up in a simple topology where each
cluster has some “neighbor” clusters. The system is then run
through several training cycles on the data. To process a data
point, the most similar (closest) cluster is chosen. The
coordinates of that cluster (and, to a lesser extent, its
neighbors) are then shifted toward those of the training data
point .3

Other Clustering Approaches. The COBWEB?! $
clustering system produces a tree describing the hierarchical
relationships of members to their clusters. Each leaf node
corresponds to a single point (or in the case of MD
simulation, a single conformation or frame from the MD
trajectory), and nonleaf nodes are clusters of all the descen-
dant points. Points are placed in the tree by maximizing
category utility (CU), a metric of cluster quality. Category
utility is large for a cluster when the standard deviation of
an attribute (over all points in the cluster) is smaller than
the standard deviation of that same attribute in the cluster’s
parent.®® Because of its unwieldy tree output, COBWEB
results cannot be directly compared with those of other
clustering algorithms. Although it is possible to “flatten” the
tree into a standard partitioning of clusters, the straightfor-
ward flattening algorithm (choosing each merge in such a
way as to maximize CU) may lead to terrible results, such
as clusters consisting of disjoint batches of points. The
thousand-node trees produced by COBWEB give a visual-
ization of the relationships between MD configurations;
however, they may be difficult to see and understand.

Clustering Metrics. To avoid bias, assessment via quan-
titative measures is desirable. Unfortunately, there is no
universally accepted metric of “clustering quality”. Despite
this, metrics do provide a general indication of whether one
clustering method is generally better than another.* In the
current work we explored various distinct metrics, including
the Davies-Bouldin index (DBI) and the pseudo F-statistic
(pSF). DBI effectively measures the average over all clusters
of the maximal values of the ratio that divides the pairwise
sum of within-cluster scatter (where the scatter is the sum
of the average distance of each point in the cluster from its
centroid) by the intercluster separation® 3 It aims to identify
clusters that are compact and well-separated. Low values of
DBI indicate a better clustering. As the value of DBI is
affected by cluster count, it makes sense to only compare
DBI values for different clustering algorithms when the
number of clusters is similar. Also, as the number of clusters
decreases, the DBI value automatically tends toward smaller
values. The pseudo-F statistic (pSF) is based on a comparison
of intracluster variance to the residual variance over all
points* and is determined from the classical regression model
coefficients of SSR (sum of squares regression, or explained
variation) and SSE (sum of squares error, or residual
variation) through the ratio (for all points n and g clusters):

_ SSR/g — 1

SF =
P T SSEIn — o)
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High values of pSF indicate better clustering. Since pSF
sometimes rises with cluster count, one generally looks for
a peak in pSF where the number of clusters is still
manageably small. These metrics are imperfect. For instance,
low DBI values result when the cluster algorithms produce
several (likely uninformative) singleton clusters. On the other
hand, pSF tends to give its highest scores when all clusters
have approximately the same size, even if the clusters are
badly formed. In our experience, using both metrics in
conjunction with examination of the tree of clusters (see
below) appears to be a promising way to assess clustering
quality. Moreover, to assess cluster count, we can also use
the “elbow criterion”. This is a common evaluation tool that
chooses the appropriate number of clusters by noting where
adding in additional clusters does not add sufficient new
information.””> This can be seen by plotting the percentage
of variance explained versus cluster count where a kink or
angle in the graph (the elbow) illustrates the optimal cluster
count. The percentage of variance explained by the data is
the SSR/SST ratio where SSR is the sum of squares
regression (or explained variation) from each cluster (summed
over all clusters) and SST is the total sum of squares. The
SSR/SST ratio is equivalent to the coefficient of determi-
nation or the R-squared value in classical regression. When
this value is low, little variance is accounted for by the
regression, and the clustering is likely poor. Another metric
that provides insight into the proper cluster count is the
critical distance. This is defined as the distance between the
clusters that were just split or merged. The distance is
different for each algorithm, as discussed previously; for
example, the distance between clusters for the centroid-
linkage algorithm is the distance between centroids,
whereas for the edge algorithm it is the shortest point-to-
point distance between clusters. Abrupt changes in the
critical distance, as a function of cluster count, highlight
optimal cluster counts. For example, if splitting a cluster
leads to a significantly smaller critical distance than was seen
previously, this suggests that the two new clusters are
much closer together than clusters were in earlier splits
and suggest that the split may have been unnecessary. The
critical distance metric is not defined for the refinement
algorithms.

One feature that emerged from the clustering of the real
MD data is that the algorithms tended to group frames from
a contiguous block of time together, even when sampling at
10—50 ps intervals. This is expected since with frequent
sampling each simulation frame is necessarily close to its
neighbors. However, the fact that clusters generally consist
of frames from a single block of time shows that our
sampling of conformational space may not be complete.
Given a sufficiently long simulation, we would expect to
see the system to revisit old clusters repeatedly (with
sampling according to the Boltzmann distribution). As a
rough quantification of this behavior, we define the “progress”
of a cluster as 1 — S/E, where S is the actual number of
“switches” (i.e., the number of time points such that frames
n and n+1 are in a different cluster), and E is the expected
number of switches (based on the cluster’s size and assuming
random membership, £ = (n—1) * X(n,/n * (n—n,)/n) over
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clusters g). This number goes to zero as the actual number
of switches approaches the expected number for a random
distribution. The progress of large clusters for most of
clustering is above 0.8, which means the continuous frames
tend to be in the same cluster even at 10 ps sampling of the
MD trajectory data. This observation can be used to guide
choices of optimal cluster counts since the progress will
likely decrease as the cluster count increases. Observation
of progress values in the range of ~0.5 may suggest that
the data are overpartitioned or poorly clustered. The subjec-
tive choice of a cutoff for progress values will depend on
the sampling frequency and rate of conformational exchange
and therefore cannot be considered in isolation; it is better
to examine how the progress changes as a function of cluster
count.

Molecular Dynamics Trajectories

A variety of different production-phase MD simulations were
performed to provide the raw MD trajectory data used to
test and validate the clustering algorithms. All of the MD
simulations were performed with the Amber software suite 3
For the simulations of nucleic acids in solution, a particle
mesh Ewald treatment of the electrostatics (with less than 1
A FFT grid spacing, cubic interpolation for the reciprocal
space charge grid, a 9 A direct space cutoff with the Ewald
coefficient adjusted so that the direct space energy is less
than 0.00001 kcal/mol at the cutoff, SHAKE?® on all bonds
with hydrogen, and constant temperature (300 K) and
pressure (1 atm) with weak Berendsen scaling”’) was applied.
The all-atom Cornell et al. force field®® for the DNA was
applied with necessary supplemental parameters (for the
bound drug) as outlined below and is available in the
Supporting Information. Two distinct sets of MD data of
nucleic acids in solution were investigated, specifically a
rather dynamic trajectory of an “unfolded” polyA DNA
strand (10-mer) sampled at broad (20 ps) intervals from more
than 15 different trajectories (each starting from a different
“unfolded” conformation) and also from an artificially created
small trajectory that sampled around five different structures
at 100 ps intervals (which should only produce “good”
clustering with a cluster count of 5) and a dynamic trajectory
of a DNA hairpin loop with the drug DB226 bound in the
minor groove that shifts from one binding mode to another
over the course of 36 ns of simulation. Additional biomo-
lecular systems clustered include a ~75 ns simulation of a
solvated mammalian cytochrome P450 with PDB entry
1PO5.7 The relevant data for these systems are provided in
the Supporting Information.

polyA Single Strand. Simulations were performed on a
10-mer polyadenine single strand of DNA. The initial model
was built into an idealized B-DNA helix (of polyA-polyT
deleting the polyT strand) using the Amber nucgen utility.
The DNA was solvated with 2402 TIP3P% waters in a
rectangular box (~53 A x 42 A x 35 A with a 60 x 45 x
40 charge grid), and the charge was neutralized through the
addition of nine Amber-adapted Aqvist sodium ions.!'%
Simulations of the polyA single strand remain fully stacked
and helical on a 5 ns time scale.'”! To investigate single
strand structures more representative of the true ensemble
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Figure 3. Snapshots from a 1050 ps self-guided MD simulation of a 10-mer polyA DNA single strand in explicit water (ions and
water not shown) at 50 ps intervals (from left to right and top to bottom at 50 ps, 100 ps, 150 ps, 250 ps, 300 ps, 400 ps, 450
ps, 550 ps, 600 ps, and 650 ps) rendered with UCSF/Chimera.'%® Large guiding factors (0.5) and long (2 ps) local averaging
times lead to considerable motion. When the SGMD is turned off, the single strands begin to “fold” into various stacked adenine

structures.

and to generate a set of diverse conformations for clustering,
the self-guided MD (SGMD) method was utilized with a
guiding factor (0.5) and local averaging times (2 ps)
significantly greater than are routinely applied (which are
in the range of 0.1 and 0.2 ps, respectively).'>71% When
used in this manner, the SGMD rapidly moves the DNA and
effectively samples a very wide range of “unfolded” con-
formations in short (1 ns) runs. Configurations from a 1050
ps SGMD simulation of this type, taken at 50 ps intervals
(some of which are shown in Figure 3), were then run with
standard MD protocols (Ewald and no SGMD) each on the
15—20 ns time scale. An aggregate trajectory for clustering
was obtained by taking data from 15 of these trajectories at
20 ps intervals. As the starting configurations were widely
different, this leads to a diverse set of single strand structures
for clustering. In addition, an artificial trajectory of 500
frames was created from stable 100 ps regions of five of
these independent trajectories. This creates a trajectory that
should naturally split into five equally sized clusters. An
additional 500 frame trajectory was created with unequally
sized clusters of 2, 15, 50, 100, and 333 configurations, each
sampling around distinct polyA geometries; this is a more
difficult case to cluster as each resulting cluster has a different
size. Moreover, the largest cluster samples multiple confor-
mations and hence has relatively high variance compared to
the smaller clusters. This is closer to what is expected for
raw trajectory data; however, this trajectory is still easier to
cluster than real MD trajectory data as there is no direct link
or path between the clusters. During normal MD simulation
and sampling on the picosecond time scale, the clusters are
naturally linked due to the dynamics. As will be shown in

the results, the contrived systems are easier to cluster. With
real data, it is not obvious which algorithm is the best, and
users likely have to explore multiple data clustering algo-
rithms.

DNA Duplex-Drug Interactions. Simulations were per-
formed on a model of the minor groove binding drug 2.5-
bis[4-(N-alkylamidino)phenyl]furans (DB226)!%7~1% bound
to the ATTG region of a DNA hairpin loop. The DNA
hairpin used has sequence 5-CCAATTGG-(TCTC)-CCAAT-
TGG where the start binding site is indicated in bold and
the loop is in parentheses. During the simulation the drug
DB226 shifted back to the canonical AATT binding region.
The hairpin DNA model was created by building an idealized
B-DNA helix (for the full symmetric sequence d(CCAAT-
TGGTC);) using the Amber nucgen utility followed by
manually linking the two strands at one end. The model
structure was relaxed with 1000 steps of steepest descent
minimization (no cutoff) allowing only the six residues
centered on the hairpin to move and 100 ps of dynamics
with a generalized Born implicit solvent model (igh=1,!10-111
no cutoff, SHAKE on hydrogens,”® 300 K with 1.0 ps
coupling time with Berendsen temperature controP”’) allowing
only the four loop residues to move. As this force field does
not contain parameters for DB226, parameters (see the
Supporting Information) were obtained using Antechamber''?
and the GAFF force field''® using RESP charges''* from a
6-31G* optimization with Gaussian 98.113

To build the initial model system, in analogy with the
crystal structure of 2,5-bis(4-guanylphenyl)furan (furamidine)
bound to the d(CGCGAATTCGCG), dodecamer (PDB
accession number 227D),''¢ the 3-pentyl diamidine derivative
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Figure 4. The molecular structure of DB226 (left) and furamidine (right). For full details on the parametrization, see the Supporting
Information. The *’s denote atoms that were used for rms fits to the crystal structure during the initial docking, and the labels
refer to atoms used for initial restraints to the DNA structure as discussed in the text.
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Figure 5. Clustering algorithms applied to the same set of random points in the 2D plane. The results highlight the features of
six of the distinct clustering algorithms investigated, such as the uniform/linear cutting of the hierarchical clustering, the uniform
sizes of the clusters created by the means clustering, and the ability of centroid-linkage, centripetal, and Bayesian algorithms

to create clusters with distinct shapes and sizes.

of furamidine (DB226)!%%19 was hand-docked into the ATTG
region. This was done by a rms fit of the Gaussian-optimized
geometry of DB226 to the crystal structure of bound
furamidine (using the five atoms denoted with an asterisk
in Figure 4) and of four ATTG binding-site phosphates in
the DNA hairpin to the crystal structure binding site. The
system was then minimized for 500 steps using the steepest
descent method in vacuo with no cutoff, followed by 100
ps of generalized Born implicit solvent simulations as above
(except with a temperature coupling time of 10.0 ps).
Distance restraints were applied (both to the heavy atoms
and the hydrogens with a flat-well potential from 2.0 to 3.0
Aor1.0t02.0 A, respectively, with a 5.0 kcal/rad?>-mol lower
bound force constant to 0.0 A and a 15.0 kcal/rad?-mol force
constant beyond the upper bound) for DB226 atom N4 to
02 of base T17, N2 to N3 of base T7. Harmonic positional
restraints with a force constant of 5.0 kcal/A%-mol were
applied to the DNA duplex. Note that in early simulations
of this system, where no restraints were applied during the
in vacuo equilibration, the ligand either shifted to an alternate
binding mode or escaped the groove entirely. This reinforces
the need to be careful when initially setting such systems to
avoid artifacts due to the equilibration and initial modeling
procedure.

The system was then solvated with explicit TIP3P water®
in a truncated octahedron periodic unit cell to a distance of
9 A. Explicit net-neutralizing Na* and an additional 12 Na*
and CI” ions were added to bring the system to a salt

concentration of ~100—150 mM. The water and counterions
were allowed to equilibrate via the same minimization and
relaxation steps, with the DNA and ligand fixed. Finally,
production MD was run for more than 36 ns.

Results
Clustering Points in the 2D Plane. To illustrate differences
in the clustering algorithms, Figure 5 shows the performance
of various clustering algorithms when applied to the same
randomly selected collection of points in the 2D plane.
Visualization of the data for each algorithm (run with a
cluster count of four where each cluster is denoted by a
different symbol and color) shows the significant variation
in the cluster sizes and shapes. Each algorithm clusters the
same data in very different ways. The properties of the
various algorithms, such as the ability to handle cluster
convexity and the preferences toward producing clusters of
similar sizes, tend to carry over to other problem domains.
Unlike the data shown in Figure 1, the random distribution
of points shown in Figure 5 does not have an obvious
partitioning. How these data are clustered will depend on
the details of the algorithm and how intra- and intercluster
separation and variance are determined. As each algorithm
is different, it is not surprising that rather different sets of
clusters emerge with the different algorithms. The means,
hierarchical, and SOM clustering algorithms tend to produce
clusters of similar size with a linear partitioning of the data.
The centripetal and Bayesian clustering algorithms are able
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Figure 6. Cluster metrics for a subset of the algorithms investigated for the constructed polyA trajectory of five distinct equally
sized clusters as a function of cluster count (x-axis). At the optimal cluster count of 5, DBI is at a minimum, pSF is at a maximum,
the SSR/SST values plateau, and a transition occurs in the critical distance. “CC” is the centripetal complete clustering algorithm,
and a critical distance is not shown for the means refinement clustering algorithm since it is ill-defined. Note that for the means
refinement, five independent clustering runs (with random choices of configurations for the refinement steps) were performed,

and the data shown are for the run with the highest pSF value.

to produce both small and large clusters. The centroid-
linkage is able to produce clusters of very different shapes.
The centripetal algorithm is able to associate distant points
into a cluster despite having very few points near the
“centroid” due to the use of representative points distant from
the centroid. With the exception of the Bayesian algorithm,
all shown tend to naturally partition the data.

Clustering Artificial MD Data: Five Equally Sized and
Distinct Clusters. After development and testing of the
algorithms on the points in the plane examples, clustering
was performed on a series of MD trajectories using both the
RMSd and the DME as a metric and a series of independent
runs varying the cluster count and other variables. To
demonstrate the results, two trajectories of 500 configurations
from the polyA single strand MD simulations were created
and then clustered. In each case, these trajectories were
created from independent runs and sampling around five
distinct conformations. The first test set has 100 configura-
tions for each distinct conformation leading naturally to a
partitioning into five equally sized clusters. Clustering metrics
as a function of the cluster count are shown in Figure 6.
The metrics show the expected (idealized) behavior including
a minima in the DBI, maxima for pSF, a plateau in SSR/
SST, and a sudden drop in the critical distance when a cluster
count of 5 is reached. Beyond five clusters, little new
information is gained from further partitioning of the data.
The behavior of the critical distance at the transition point
around the optimal cluster count is effectively opposite for
the top-down compared to the bottom-up algorithms. In the
case of the bottom-up algorithms and cluster merging, there
is a sudden jump as the cluster count goes from 5 to 4; this

indicates that the distance between the newly formed clusters
is much larger than the distance (variance) between previous
clusters. With the top-down or hierarchical algorithm, the
change in the critical distance occurs as we split clusters
from the optimal count of 5 to 6; this leads to a drop in the
critical distance suggesting that the split leads to clusters that
are significantly closer together than the previous clusters
were. As an indicator of the proper cluster count, the drop
in the critical distance occurs at the proper cluster count for
the bottom-up algorithms and just after the proper cluster
count for the top-down algorithms.

In general for this artificial data set most of the algorithms
perform equally well. The exceptions are the Bayesian and
COBWESB clustering algorithms which yield some of the
expected 100-member clusters in some cases but incorrectly
split other clusters; this contrasts with the SOM algorithm
which correctly generates the five expected 100-configuration
clusters. An additional limitation of the SOM and Bayesian
algorithms that was uncovered is that both algorithms may
fail to generate the expected cluster count (i.e., the algorithms
can form clusters that contain no points). In some cases, when
more than 5 clusters are requested, the SOM algorithm will
yield only the 5 expected clusters. This property may be
exploited to determine optimal cluster count. For more data
on the Bayesian, COBWEB, and SOM clustering results
refer to Table ST2 in the Supporting Information.

Clustering Artificial MD Data: Five Differentially
Sized Clusters. The second set of artificial MD trajectory
data was also constructed from sampling around five distinct
conformations, but each cluster was constructed to be a
different size, specifically with 2, 15, 50, 100, or 333
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Figure 7. 2D RMSd plot (mass weighted) for all frames from
the polyA single strand simulation with five differentially sized
clusters. Note that only four clusters are readily visible since
the first cluster is very small.

configurations in five separate clusters. This set is more
difficult to cluster as it has both very small clusters with
small variance and relatively large clusters with larger
variance. The average distance of each conformation in the
cluster to its centroid spans a large range. These average
values for each cluster size : distance pair are as follows:
2:027A;15: 072 A; 50 : 0.84 A; 100 : 1.62 A; and
333 : 2.34 A. The maximal pairwise best fit RMSd between
any two conformations is 9.8 A. Although the intent was to
create five clusters, the natural partitioning may be closer to
six. This can be seen clearly from visualization of the 2D
RMSd plot or effectively the visualization of the matrix of
pairwise best fit RMSd values of every structure to every
other structure for all the conformations (see Figure 7). The
plot shows that each cluster is dissimilar from its neighbors
and also that the largest cluster may best be represented by
two similar clusters. The diagonal elements (white) represent
self-comparison or zero RMSd and the black shows the
largest pairwise RMSd of 9.8 A. As the members of the
smallest cluster are distinct from the others, partitioning
ideally should create the small clusters before breaking the
largest cluster. With a cluster count of 5, this does not happen
with the centripetal complete, COBWEB, complete, hi-
erarchical, means, and SOM algorithms. The cluster sizes
for each of these algorithms, italicizing the incorrect cluster
sizes, are centripetal complete: 15, 52, 100, 106, 227,
COBWEB: 50,63, 115,117, 155, complete: 15,52, 100,
137, 196, hierarchical: 15, 52,100, 112,221, means: 15,
52, 100, 113, 220, and SOM: 67, 95, 100, 114, 124
algorithms. In most of these cases, the largest and smallest
clusters are not found. Edge, centripetal, average-linkage,
and linkage each partition the data as expected into five
distinct clusters; when a cluster count of 6 is specified, the
largest cluster is broken in two with each of these algorithms,
although the sizes are different (centripetal 114, 219; edge
70, 263; average-linkage 102, 231; linkage 106, 227). The
centripetal complete, complete, means, and hierarchical
recover the natural partitioning when a cluster count of six
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is specified. This is not true of the Bayesian, SOM, or
COBWESB algorithms, and the “small” cluster of 2 confor-
mations is not found until a cluster count of 10 is reached
with the Bayesian algorithm. The SOM and COBWEB
algorithms appear to be unable to produce the smallest
cluster. In the Supporting Information, trees outlining the
partitioning of conformations by each of the algorithms are
displayed. The centripetal, edge, average-linkage, and
linkage algorithms show the best partitioning.

Shown in Figure 8 are the clustering metrics for some of
the algorithms, omitting the poorly performing Bayesian,
SOM, and COBWEB algorithms, on this artificial polyA
MD trajectory with varying cluster sizes. It is clear from
these data that when the configurations are not uniformly
separated into similarly sized clusters, the metrics are less
consistent across algorithms and also less informative. For
many of the algorithms, a clear minimum in DBI or
maximum in pSF is not readily evident. Similarly, rather than
showing a clear elbow in the SSR/SST or critical distance
plots as a function of cluster count, a smoother linear plot is
often evident. These data can also be misleading. For
example, the hierarchical clustering shows a clear minimum
in DBI at a cluster count of 5 or 6, a maxima in pSF at a
cluster count of 5, and a clear kink in the SSR/SST plot at
a cluster count between 4 and 5, yet this algorithm does a
poor job of clustering into five clusters. At a cluster count
of 5, the hierarchical algorithm has already split the largest
cluster but not split the 50 + 2 cluster into two separate
clusters. Moreover, although the centripetal algorithm shows
excellent clustering, the performance is not readily evident
from the DBI, pSF, and SSR/SST metrics. The most
definitive demonstration of metric success comes with the
edge algorithm; this algorithm very naturally partitions the
data.

Shown in the Supporting Information are schematics of
the cluster trees or partitioning by various algorithms (Figures
S2—S11) and the distinct performance metrics (Table ST3)
for the Bayesian, COBWEB, and SOM algorithms.

As MD ideally samples according to a Boltzmann distri-
bution, it is expected that the data will look more like the
artificial trajectory with differentially sized clusters than data
that partition into equally sized clusters. This is because the
population of a given conformer is related to its free energy,
with lower populations as the energy increases. This suggests
that finding the ideal partitioning and clustering of the data
will be messier with real data and that the various algorithms
will each lead to distinct partitioning of the data.

Clustering Real MD Data: Simulation of Drug—DNA
Interaction. A series of MD simulations were performed on
a series of minor-groove binding agents binding into the
minor grooves of various DNA hairpin sequences. The
specific MD trajectory of DB226 binding to the ATTG
sequence of a hairpin DNA was chosen for clustering and
further analysis. This is an interesting case as the simulation
revealed a major shift, by one base pair step, in the binding
of the minor groove binding drug DB226 to the DNA hairpin.
As this change in binding is easy to visualize, this is a good
test of the clustering algorithms ability to discern and to
naturally partition the data. To cluster the MD trajectory data,
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Figure 8. Cluster metrics for a subset of the algorithms investigated for the artificially constructed polyA trajectory representing
five clusters of distinctly different sizes as a function of cluster count (x-axis). Note that for the means refinement, five independent
clustering runs (with random choices of configurations for the refinement steps) were performed, and the data shown are for the

run with the highest pSF value.

each algorithm was applied to the drug—DNA hairpin MD
trajectory over 36 ns with configurations taken at 10 ps
intervals, for a total of 3644 frames. For each of the
algorithms investigated, a range of cluster counts from 2 to
20 was evaluated. To limit the structure comparisons to the
binding region of the drug—DNA complex, the clustering
metric used was the best-fit RMSd of the residues defining
the drug and the binding region. Specifically, this included
all the carbon, nitrogen, and oxygen atoms of the drug and
from residues 3—8 and 14—19 of the DNA, i.e., the
AATTGG binding region noting that the drug initially binds
at the ATTG site. Figure 9 shows the shifting of DB226 to
the AATT site that occurs during the MD simulation between
15 and 16 ns. The MD results suggest that multiple modes
for DB226 binding to the DNA hairpin are thermally
accessible. From the plot of the distances versus time shown,
it appears that the drug attempts to shift down a base pair
step at ~6 ns, but moves back to the ATTG site, and then
eventually successfully fully shifts by one base pair step by
~16 ns. Additional data and discussion, including plots of
the overall RMSd versus time (Figure S12) and molecular
graphics of average structures before and after the change
in drug binding (Figure S13) and the clustering data across
the different cluster counts (Tables ST4—ST6), are shown
in the Supporting Information.

Relative Performance of the Clustering Algorithms.
The data in Table 1 provide a summary of the relative
performance and properties of the various clustering runs as
a function of cluster counts. Included are the runtimes, DBI,
and pSF metrics, the SSR/SST ratio or R-squared value, the
“progress” of the simulation, and the sizes of the resulting
clusters. The full data, including cluster counts of 10 and
20, are in the Supporting Information (Table ST4—ST6). The

|
10000

Figure 9. Graph of selected atom positions of the minor
groove binding drug DB226 relative to the base pair step (y-
axis, base pair step number) as a function of time (x-axis, in
ps). In each frame, we calculated the least-squares fit plane
for each base pair and averaged the normal vectors perpen-
dicular to those planes. From this, we can interpolate the
position of an arbitrary atom based on the midpoints of those
least-square fit planes. The red (middle) represents the furan
oxygen atom in the middle of DB226. The black and green
represent the two guanyl nitrogen atoms at each side of the
drug. From the plot, the shifting of DB226 from the ATTG
region (base pair steps 4—7) to the AATT region (base pair
steps 3—6) is evident.

runtime in the table is the time for running each clustering
algorithm on an equivalent machine. The actual runtime will
be increased by the time needed to precalculate the full pair
wise distance matrix which amounted to 367 s for the
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Table 1. Comparison of the Various Clustering Algorithms Applied to a 36 ns MD Trajectory of DB226 Bound to Hairpin

DNA?

algorithm cluster runtime DBI pSF SSR/SST progress cluster sizes
average 3 6197 1.10 1545.23 0.459 1.00 2061, 1581, 2
average 4 6279 1.59 1119.57 0.480 1.00 2061, 1454, 127, 2
average 5 6387 1.56 925.33 0.504 0.99 2061, 1340, 127, 114, 2
Bayesian 3 59 1.91 1820.10 0.500 0.89 2034, 929, 681
Bayesian 4 94 2.37 1395.03 0.535 0.73 1054, 996, 952, 642
Bayesian 5 120 217 1187.41 0.566 0.76 1366, 786, 689, 476, 327
centripetal 3 3272 1.14 108.29 0.056 0.98 3516, 127, 1
centripetal 4 3351 1.02 72.65 0.056 0.97 3516, 126, 1, 1
centripetal 5 3103 0.98 54.83 0.057 0.96 3515,126, 1, 1, 1
CcC 3 1516 1.54 1470.70 0.447 0.98 2148, 1492, 4
CcC 4 1477 1.68 1066.73 0.468 0.98 2148,1395,97, 4
cC 5 1572 1.30 801.19 0.468 0.98 2148, 1395, 97, 3, 1
COBWEB 3 1854 1.87 1757.04 0.491 0.77 1594, 1109, 941
COBWEB 4 1236 2.12 1378.27 0.532 0.86 1804, 780, 764, 296
COBWEB 5 1221 2.88 1071.62 0.541 0.63 1025, 780, 764, 568, 507
complete 3 922 1.86 1585.13 0.465 0.85 1703, 1407, 534
complete 4 960 2.16 1163.30 0.490 0.83 1703, 1216, 534, 191
complete 5 1398 2.35 931.67 0.506 0.83 1703, 1060, 534, 191, 156
edge 3 923 0.54 3.43 0.0019 0.25 3642, 1,1
edge 4 931 0.77 3.43 0.0028 0.37 3640,2,1,1
edge 5 930 0.78 2.92 0.0032 0.30 3639,2,1,1,1
hierarchical 3 6 1.80 1898.54 0.510 0.91 2088, 960, 596
hierarchical 4 7 1.86 1362.83 0.529 0.90 2088, 960, 304, 292
hierarchical 5 9 2.13 1199.49 0.568 0.77 1350, 960, 738, 304, 292
linkage 3 2349 0.93 1544.21 0.459 0.99 2077, 1566, 1
linkage 4 2158 1.06 1035.76 0.460 0.99 2077, 1562, 4, 1
linkage 5 1782 1.07 805.17 0.469 0.99 2053, 1562, 24, 4, 1
means 3 1105 1.80 1899.67 0.511 0.91 2088, 965, 591
means 4 953 2.11 1490.24 0.551 0.79 1402, 967, 702, 573
means 5 909 2.02 1222.68 0.573 0.78 1322, 891, 756, 454, 221
SOM 3 663 1.70 1597.10 0.467 0.98 2066, 1546, 32
SOM 4 1391 1.96 1149.12 0.486 0.93 2035, 1396, 134, 79
SOM 5 1558 2.13 1059.96 0.538 0.74 1238, 1100, 956, 212, 138

2 The RMSd of carbon, nitrogen, and oxygen atoms of the drug and residues 3—8 and 14—19 of the DNA hairpin were used as the pairwise
distance between all configurations from the MD simulation at 10 ps intervals. The cluster count represents how many clusters were chosen.
The DBI and psF values are metrics of clustering quality; low values of DBI and high values of pSF indicate better results. The R-squared
(SSR/SST) value represents the percentage of variance explained by the data; plots of this as a function of cluster count can show where
adding more clusters fails to add new information shown by the elbow criteria or a kink in the plot. The “progress” as discussed in the Methods
section describes how often switching between the clusters is occurring. Larger values imply that most of the cluster members are sequential
in time with values of 1.0 meaning all frames in a cluster are contiguous. Edge and centripetal clustering produced optimum values of DBI but
generated pathological singleton clusters. Centroid-linkage clustering performs well under both metrics. Hierarchical clustering is the fastest
of the algorithms applied. CC refers to centripetal-complete clustering. The SOM, means, Bayesian, and COBWEB algorithms were each run

five times, and the results with the highest pSF are shown.

clustering data in Table 1. The time for calculating a DME
pair wise distance matrix increases significantly as the
number of atoms in the comparison increases. The DME
matrix preparation time for the same atoms is 24 519 s. This
also significantly increases the runtime for the algorithms
which need to recalculate at each iteration the DME distance
between the cluster centroid and every other clusters centroid,
such as with the centripetal and linkage algorithms.
Clearly the fastest algorithm at low cluster counts is the
hierarchical clustering and the most computationally de-
manding algorithms are average linkage, centripetal, link-
age, the neural net refinement (SOM), and COBWEB

algorithms. With the exception of the Bayesian and SOM
refinement algorithms, the relative cost does not tend to
increase dramatically as the number of clusters goes up.
In terms of the clustering quality metrics, algorithms that
have high pSF and low DBI values at a given cluster count
suggest better clustering. For all the algorithms applied to
the MD trajectory of the drug bound to the DNA hairpin,
where the similarity was ascertained by fitting to atoms in
the binding region, this mix occurs at a cluster count of
between 2 and 4. Based solely on pSF and DBI, a cluster
count of 2 is suggested by the data; however, the SSR/SST
ratio and critical distance plots suggests a count closer to 5
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Figure 10. Cluster metrics for the MD trajectory of drug—DNA interaction as a function of cluster count (x-axis). Note that the
scales of SSR/SST are different for the centripetal and edge clustering algorithms and that the scales for the critical distance
are different for the hierarchical and complete clustering algorithms. The critical distance is not defined for the refinement

algorithms and hence is not shown in these cases.

or 6. As the cluster count goes up, DBI is relatively constant,
pSF gets smaller, and more information is added according
to the SSR/SST. This is likely characteristic of MD simula-
tion data as finer grained partitioning among the dynamic
continuum of states is possible until all of the substates have
been defined; as the potential energy surface is rough and
there are many degrees of freedom, there are likely many
different substates defining the path of the molecule in time.
Although each algorithm suggests an optimal cluster count
somewhere in the range of 2—6, the resulting cluster sizes
vary considerably, and this impacts the relative performance
of each. Most inconsistent with the natural partitioning of
the data are the results from the centripetal and edge
algorithms. These display a single large cluster with either
small or singleton clusters outliers. In these cases, high pSF
values are not obtainable, and the “progress” of 1.0 implies
that each cluster has contiguous frames in time. Considering
the data shown in Figure 9 and in the Supporting Information,
and given our knowledge that two distinct binding modes
for the drug were explored in the MD, we would expect the
natural partitioning of this data to include the two distinct
binding modes with drug binding to the ATTG and AATT
binding sites. Shown in Figure 11 is a plot of the 2D RMSd
values over the binding region during the ~36 ns of
simulation at 100 ps intervals. Two clear clusters are evident.
The partial transition to the alternate binding mode at ~6 ns
is evident as the horizontal and vertical light lines which
show agreement of frames from early in the trajectory (~6
ns) with those from later in the trajectory. From the 2D rms
plot, the next partitioning could split up either the smaller
or larger cluster. Starting from the lower left (or the early
part of the trajectory), the first cluster should have ~1600
frames and the second ~2040. This partitioning with a cluster
count of three is seen with the hierarchical algorithm and
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Figure 11. 2D RMSd plot (mass weighted) for frames at 100
ps intervals from the 36 ns simulation of DB226 binding to
the DNA hairpin.

cluster counts of 596, 960, and 2088. The highest pSF values
are observed with hierarchical and means clustering
algorithms. Average-linkage and linkage both obtain a low
DBI and high pSF; however, the SSR/SST plot is essentially
flat. The reason the plot is flat beyond a cluster count of 2
is that only clusters with very few configurations are newly
formed.

It is important to note that the performance of a given
clustering algorithm is affected by the character of the data
under consideration. In the case of the molecular dynamics
trajectories of DNA interacting with DB226, the data did
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not include extreme outlier points. As a quick screen for
outliers, we examined the rmsd from each simulation frame
to its nearest neighbor. For the major heavy atoms in the
binding region in the trajectory, these nearest-neighbor
distances were distributed between 0.4 and 1.2 A, mostly
around 0.8 A. If we call the rms deviation from one frame
to the next the “velocity” of a simulation, it is reasonable to
suspect that early equilibration stages will have a relatively
high velocity and therefore account for the bulk of the
variation between clusters. This is one reason why it is best,
when clustering MD trajectories, to exclude the initial
equilibration portion of the simulation. For our DB226
trajectory, the equilibration protocol was successful in starting
the system in a reasonable state—the velocity is consistent
over time.

Distances between the Various Clustering Algorithms.
In addition to evaluating the performance of a single
clustering algorithm, we can measure the distance between
two sets of different clusters of the same data produced by
different clustering algorithms. This provides a measure of
the disagreement between different clustering algorithms.
One reasonable approach to measure the distances between
clusters is to compute the rms distance between cluster
representatives from the different sets of different clusters.
However, in practice this is tricky as it requires guesswork
to set up the correspondence between the clusters in each
distinct set. To avoid this problem, we devised the following
metric, d(A,B). To measure the distance between clustering
A and B, we consider the set of all pairs of points being
clustered. We say that A and B agree on a pair of points if
both A and B assign the points to the same cluster. If one of
A or B assigns the pair of points to the same cluster but the
other does not, this is counted as a disagreement. We
compare the actual number of disagreements to the number
of disagreements we would expect to see if A and B were
unrelated. To do this, we first note the odds that two
randomly chosen points will fall in the same cluster in A:

S8, — 1)
P,=Y ———
nn—1)

Here n is the number of points, and Sy is the size of cluster
k. Now the expected number of disagreements (ED) can be
computed:

ED(A.B) = C*(Py(1 — Py) + Pp(1 — P)))

Here C is the number of pairs of points, and P4 and Pj are
the probability that a pair of points falls in the same cluster
in A and B, respectively.

Similarly, we can compute the expected number of the
true agreements (EA), where a pair of points is both in the
same cluster in clustering A and clustering B:

EA(A,B) = C*P,*P,

As a finer-grained metric, we define a function d measuring
the ratio of the actual and expected number of disagreements
over the ratio of the actual and expected number of true
agreements:
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AD(4.B)
ED(A.B)
AA(A.B)
EA(A.B)

d(A.B) =

This distance function has several intuitive properties: a (A,
B) =0 (B, A), and 0 (A, A) = 0, as we would expect. For
random clustering C and D, d (C, D) is very near 1. In
general, a small distance reading (<~0.2) indicates very
similar clustering, such as is obtained when the same
algorithm is used to generate a similar number of clusters.
Readings less than ~0.6 indicate some similarity, and
distances greater than ~0.6 indicate low levels of agreement.

The distance metrics, d(A,B), for the various algorithms
applied to clustering the DNA hairpin-DB226 trajectory are
displayed in Table 2 and can be used to compare the output
of the different algorithms. The data suggest that the average-
linkage, linkage, and centripetal-complete algorithms
generate very similar clusters. Similarly, the Bayesian, SOM,
hierarchical, and means clustering all give related results,
whereas the complete and COBWEB algorithms only
generate somewhat similar sets of clusters when compared
to the other algorithms. On the contrary, due to the
production of singleton clusters, the resulting sets of clusters
from the edge and centripetal algorithms are very dissimilar
to the sets of clusters that result from the other algorithms
under this distance metric. Direct comparisons of a given
algorithm’s clustering of the data using the two distance
metrics, RMSd and DME, indicate that the resulting differ-
ence is fairly small—usually less than 0.2. However, again,
for edge and centripetal algorithms, the differences go
beyond 0.5. This indicates that both metrics (RMSd and
DME) are capturing the conformational changes of the
molecular system, though not in precisely the same way.

A useful application of this metric is to quantify the
consistency between different runs of the stochastic clustering
algorithms. The SOM clustering algorithm was run five times
on the same system, and the distance between each resulting
set of clusters was compared. The average distance was 0.03,
indicating that SOM is very consistent. Similar runs for
means, Bayesian, and COBWEB clustering yielded an
average distance of 0.07,0.15, and 0.25, respectively. Thus,
it appears that the SOM and means algorithm provides more
consistent (if not always better) results than those produced
by the Bayesian, COBWEB clustering algorithm.

The Choice of Atoms for the Pairwise Comparisons.
As might be expected, the clustering outcome is strongly
influenced by which atoms are used to determine the
similarity of the different molecular configurations. If too
small a region is chosen, the fine partitioning that results
may not be meaningful, similarly, choosing too many atoms
may hide conformational substates visited by substructures
during the MD. With the DB226-DNA hairpin trajectory,
the distances between clusters are strongly influenced by the
choice of atoms. For example, distances between clustering
only the DB226 atoms compared to all solute atoms are
generally above 0.9 for the bottom-up algorithms (i.e.,
linkage, edge, complete, centripetal) and ~0.3—0.4 for
SOM, hierarchical, means, and Bayesian algorithms. If
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Table 2. Distances between the Various Clustering Algorithms, in the Dimensionless Metric Defined in the Text That
Compares the Ratio of the Actual to Expected Agreements and Disagreements?

RMS average linkage cC SOM hierarchical means Bayesian COBWEB complete centripetal edge
average 0.000 0.039 0.071 0.169 0.182 0.205 0.240 0.245 0.209 0.887 0.994
linkage 0.000 0.085 0.169 0.196 0.224 0.255 0.259 0.234 0.951 0.996
cC 0.000 0.203 0.212 0.243 0.278 0.283 0.255 0.872 0.996
SOM 0.000 0.137 0.154 0.158 0.163 0.227 0.968 0.999
hierarchical 0.000 0.064 0.130 0.202 0.211 0.892 0.997
means 0.000 0.100 0.197 0.200 0.909 0.997
Bayesian 0.000 0.204 0.239 0.928 0.998
COBWEB 0.000 0.242 0.966 0.998
complete 0.000 0.914 0.997
centripetal 0.000 0.978
edge 0.000

2 The trajectory being clustered was DB226 bound to hairpin DNA. Distances for cluster counts of 3, 4, 5, and 10 were computed and averaged.
Clustering was performed using RMSd distances as the pairwise metric, the refinement algorithms were each run five times, and the data with

the highest pSF values were used.

| 1 | |

20000 30000

Figure 12. The effect of choosing different atoms for the pairwise comparisons when clustering. Based on the DNA hairpin-
DB226 MD trajectory, shown is the RMSd (A) as a function of time over the trajectory where individual points are colored based
on their cluster identity. Four different sets of atoms for the pairwise comparison were chosen. (A) :1—21 represents all solute
atoms, (B) :3—8:14—19:21 represents the atoms in binding region, (C) :3—8,14—19,21@C*,0*,N* represents the carbon, oxygen,
and nitrogen atoms in binding region, and (D) :21 represents the atoms in the drug DB226 only. The trajectory data were taken

every 10 ps and clustered using the means algorithm with a cluster count of 5.

similar atoms are chosen, the distances between the resulting
sets of clusters are quite small, usually less than 0.01 for
linkage, hierarchical, means, and SOM (i.e., comparing
the major heavy atoms in the binding region to all atoms in
the binding region). This suggests that it is best to narrow
one’s focus to the residues of interest before clustering a
trajectory. Figure 12 shows the effects of clustering based
on different choices of atoms for the pairwise comparison.
Shown are the RMSd as a function of time for the atoms in
the binding region with colors representing the distinct
clusters that result based on different choices of the atoms
for the pairwise comparison. The resulting sets of clusters

based on pairwise comparisons of two sets of atoms
describing the binding region, shown as the middle two plots
in the figure, are almost identical as expected. The clustering
based on the drug DB226 alone (residue 21, bottom), in
comparison to the partitioning based on including all the
DNA and drug atoms in the binding region, shows that
although the drug conformation largely determines what
cluster the configuration will adopt, clearly conformational
substates of the DNA are also relevant. For example,
compare the “green” cluster with and without the DNA
binding region included. When the clustering is done on all
of the DNA and drug atoms from the MD trajectory, some
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Figure 13. Cluster trees for linkage (left), complete (middle), and hierarchical (right) clustering algorithms applied to the DNA
hairpin-DB226 trajectory. The last 30 steps of the algorithms are shown with the initial cluster size noted at each branch tip.
Note that at this stage, the linkage algorithm has essentially already added most of the configurations to one of two large
clusters. In contrast, the complete algorithm produces a well-balanced tree. The tree plots shown were generated using software
available on the WWW from the Laboratory of Bioinformatics, Wageningen University and Research Center, The Netherlands;

see http://www.bioinformatics.nl/tools/plottree.html.

of the important conformational differences or substates are
concealed in the collective motion of the entire DNA
structure. These data highlight the importance of narrowing
the focus to relevant residues for the pairwise comparisons
before clustering begins.

Critical Distance. Most clustering algorithms require the
user to specify in advance the number of clusters to create.
Doing this is difficult as the proper choice of the cluster count
will depend on the underlying data. As an example of the
difficulty, consider how poor the clustering would be for
the trivial example of points in the plane shown in Figure 1
if a cluster count other than three was chosen. To provide
users with more guidance on the proper choice of cluster
count, we experimented with ways to dynamically choose a
correct cluster count. For example, the bottom-up clustering
algorithms can be instructed to stop when the intercluster
distance or critical distance for the next merge is greater than
some threshold e rather than when a preselected number of
clusters is reached. This approach has some promise, but it
still requires the user to choose a value of €. The appropriate
value will be different from one algorithm to another—for
instance, an € value of 12 A RMSd applied to linkage
algorithm produces 12 clusters, while this same € produces
74 clusters when the centripetal algorithm is applied, 181
clusters with the complete algorithm, and only 1 cluster with
the edge algorithm. The appropriate value of € also depends
on the distance metrics used in the algorithm, the molecular
system, and the choice of atoms used for the pairwise
comparison.

Cluster Trees. For the bottom-up algorithms, a better
approach may be to examine the tree of clusters that results
(Figure 13). The cluster tree provides more information than
does the individual clustering output at any particular stage.

For instance, the cluster tree for a linkage clustering of the
entire trajectory is not balanced; it consists mainly of two
large clusters. For the edge and centripetal algorithms, the
unbalanced tree that results will essentially be one big cluster.
With the complete and hierarchical algorithms, the cluster
trees are more balanced. In general, large clusters which
remain unchanged for several iterations of the clustering
algorithm seem more meaningful than clusters that shift at
each stage, producing an unbalanced “bushy” tree.
Efficient Sieved Clustering. Speed and memory consid-
erations make it difficult to cluster large trajectories using
algorithms that compute the full pairwise comparison across
all configurations. All of the algorithms investigated in this
work precomputed an N x N symmetric matrix of the
complete set of frame-to-frame distances, where N is the
number of the frames in the trajectory. The matrix was
precomputed since computing these distances on demand
greatly increased the runtime. As discussed in the section
comparing the relative performance of the different algo-
rithms, computing this matrix is expensive and memory
intensive. Even with precomputing the similarity matrix, the
calculations quickly become intractable as more and more
configurations are to be clustered. For the SOM, COBWEB,
and Bayesian algorithms, the similarity matrix is only
actually needed to calculate the DBI and pSF metrics; the
pairwise comparisons could be calculated on the fly or loaded
after the clustering is finished to improve performance. In
spite of this, the refinement algorithms quickly become
intractable as the trajectories to cluster become very long.
To cluster very large trajectories, a better way to enable the
efficient clustering is to cluster in a hierarchical fashion,
specifically to initially cluster a subset of the data, such as
that from a coarser-grained time sampling, with subsequent
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partitioning or clustering to put the skipped data into the
existing clusters. To test the utility of this approach, we
implemented a two-pass, or “sieved”, clustering method that
initially clusters only part of the data and then on the second
pass puts the missing data into existing clusters. With a sieve
of n, initially clustering every “n” configurations, the
pairwise-distance matrix is reduced in size by a considerable
factor; specifically by n?. The savings in computer time and
memory more than compensate for the expense of making a
second pass through the data. The one drawback of sieved
clustering is that we may not sample all the conformations
of the system during our first pass, especially if the sieve
size is too large or if there are periodic components of the
data with a period close to the sampling rate. In this case,
the clustering output will not accurately partition the data.
As a means to mitigate the problem with potential periodicity
of the data, we can randomly select points for the first pass.

To assess the advantages and drawbacks of this scheme,
we clustered the DB226-DNA hairpin trajectory data using
sieves of various sizes. We compared the results and the
runtime to the earlier results. Table 3 indicates the differences
for the various clustering algorithms between the ordinary
and the sieved results. In general, the sieving provides a
dramatic decrease in runtime, particularly for the slower
algorithms (bottom-up algorithms) where the time required
decreases to about 1/n?. For the refinement and tree
algorithms, including the means, SOM, Bayesian, and
COBWEB algorithms, the time decreased to about 1/n.
Interestingly, with the top-down algorithm (hierarchical),
the time decrease only occurs in the initial distance matrix
calculation as the actual clustering algorithm is not very
computationally demanding when small cluster counts are
used. As the output, second pass through the data, and
calculation of the statistics takes more time than the
clustering, the time savings with this algorithm are modest.

Small sieve sizes (effectively less than 50 ps with this
trajectory) produce negligible changes in DBI and pSF values
with the means, average-linkage, linkage, and SOM
algorithms. Additionally, for these algorithms the distances
between the sieved clustering and unsieved clustering are
small. This is likely a result of the second pass grouping
procedure which assigns configurations to the closest centroid
with each of these algorithms. Interestingly, the sieved
clustering results are sometimes slightly better, with smaller
DBI and larger pSF values, than the results obtained when
clustering without sieving. This again suggests that the
clustering depends on the data set. The data also suggest
that the algorithms like complete and COBWEB seem more
dependent on the choice of configurations for the first pass
clustering. The small distance between the various distinct
sets of clusters, as a function of sieve size, suggest that a
sieve size of 5, with sampling every 50 ps, seems to be
sufficient with this MD trajectory. The larger the desired
number of clusters, the tighter the sieve should be, as rare
conformational states (corresponding to smaller clusters)
must still be adequately sampled in the first pass through
the data. Interestingly, for larger sieve sizes (up to 500 ps),
the average-linkage, linkage, and SOM algorithms still
perform well, in contrast to the means algorithm which

Shao et al.

Table 3. Performance of Sieved Clustering on the DNA
Hairpin-DB226 MD Trajectory under Various Conditions?

sieve sieve total clustering
algorithm size start time DBI pSF distance
means no sieve 1376 2.02 1223 0.000
means 2 1 470 2.03 1223 0.014
means 2 2 386 1.99 1221 0.023
means 2 random1 421  2.00 1221 0.022
means 2 random?2 671 205 1221 0.013
means 5 1 118 2.03 1220 0.013
means 5 2 140 2.04 1221 0.022
means 5 random1 117 2.02 1221 0.028
means 5 random?2 127 2.05 1221 0.030
means 50 1 36 1.62 1007 0.181
means 50 2 33 210 1111 0.060
means 50 random1 34 199 1168 0.064
means 50 random?2 37 2.03 1106 0.060
average  no sieve 6816 1.56 925 0.000
average 2 1 910 1.57 852 0.029
average 2 2 820 1.65 897 0.014
average 2 random1 897 1.66 842 0.069
average 2 random?2 790 1.57 941 0.013
average 5 1 112 1.50 855 0.031
average 5 2 115 1.56 955 0.024
average 5 random1 203 1.76 882 0.030
average 5 random?2 207 1.56 942 0.016
average 50 1 32 1.53 948 0.027
average 50 2 27 1.58 938 0.031

random1 33 1.58 973 0.041
random?2 32 1.69 1031 0.081

average 50
average 50

linkage no sieve 2149 1.04 805 0.000
linkage 2 1 259 1.49 795 0.019
linkage 2 2 305 1.76 830 0.015
linkage 2 random1 274 1.65 816 0.025
linkage 2 random?2 336 1.64 856 0.026
linkage 5 1 70 1.70 798 0.020
linkage 5 2 64 1.88 842 0.041
linkage 5 random1 80 1.76 823 0.026
linkage 5 random2 75 1.65 865 0.030
linkage 50 1 17 1.61 870 0.035
linkage 50 2 18 1.38 926 0.042
linkage 50 random1 17 1.58 945 0.072
linkage 50 random?2 18 1.48 856 0.026
SOM no sieve 1925 2.13 1060 0.000
SOM 2 1 857 218 1092 0.019
SOM 2 2 587 2.18 1094 0.015
SOM 2 random1 730 2.17 1090 0.025
SOM 2 random2 546 2.17 1089 0.026
SOM 5 1 224 218 1121 0.020
SOM 5 2 281 216 1119 0.041
SOM 5 random1 293 2.16 1116 0.026
SOM 5 random2 212 216 1121 0.030
SOM 50 1 32 215 1132 0.076
SOM 50 2 32 209 1104 0.071
SOM 50 random1 31 205 1130 0.092
SOM 50 random2 31 240 1314 0.285

2|n each case a cluster count of five was chosen. Various sieve
sizes were chosen ranging from no sieve (10 ps sampling), to 2, 5,
or 50 (representing 20, 50, or 500 ps sampling, respectively). For
each algorithm, different choices of the starting configuration were
investigated either with uniform sampling (sieve starting configuration
of 1 or 2) or random sampling of the configurations to be clustered.
Comparisons of the compute time, DBI, pSF, and clustering distance,
relative to the unsieved clustering, show that the sieving process does
not drastically alter the outcome.
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Figure 14. RMSd (A) versus time (ps) for the DB226-DNA hairpin trajectory for different clustering algorithms. Trajectory data
were taken every 10 ps, and a cluster count of 5 was used. The RMSd is the unfit distance (displacement) of the drug after fit
the DNA structure to the first frame. The color scheme is based on the size of the cluster with black > red > green > blue >

yellow.

sometimes breaks down. However, the performace of means
may be improved by running multiple trials with different
random selections of configurations for the refinement steps
in each run. An additional problem of the SOM algorithm
is that it may produce fewer clusters than are expected for a
particular cluster count. The larger distance of SOM with a
sieve size of 50 and a sieve start random?2 (the last row in
the table) is due to the fact that only 4 clusters have been
formed during the SOM clustering. In addition to the
applications to DNA shown, clustering has been applied to
a relatively long trajectory of a dynamic protein system.
Specifically, this involves a cytochrome P450 2B4 structure
that converts from the “open” geometry seen in the crystal
to a closed geometry over the course of a ~75 ns simulation.
The cluster metrics for clustering over 7000 configurations
at 10 ps intervals, a description of the simulation protocols,
and RMSd plots and molecular graphics are shown in the
Supporting Information.

Summary of the Relative Performance of the Various
Clustering Algorithms. Using color to identify each distinct
cluster, Figures 14 and 15 show the RMSd or MM-PBSA
free energy of binding versus time for the DB226-DNA
hairpin trajectories. This provides another means to visualize
the relative performance of the various algorithms. From the
figure, it is clear that similar RMSd or AGyingine Values do
not necessarily imply equivalent cluster membership. Also
evident is that edge, linkage, and centripetal do not produce
very meaningful sets of clusters as only one or two large
clusters result. The means, hierarchical, complete, Baye-
sian, and average-linkage algorithms, on the other hand,
all tend to produce meaningful sets of clusters.

Bottom-up algorithms iteratively merge small clusters
into larger ones. With MD simulation data, the algorithms
have a tendency to produce outlier or singleton clusters. If
the algorithm generates 10 clusters, 9 of which are single

points, little is learned about the underlying structure of the
data (other than identifying the most extreme conformations).
Careful choice of cluster count (see below) is one way to
mitigate this sensitivity.

o The single-linkage algorithm is rather fragile in that the
presence or absence of a single point can control the grouping
of the rest. It is very sensitive to lines of closely spaced
“breadcrumb” points, which can add arbitrarily long trails
of data to one cluster.’> Although it can handle clusters of
differing sizes, the algorithm often does a poor job delineat-
ing clusters whose points are very close. Its results were
passable on points in the plane but very poor on real MD
trajectories.

o Complete-linkage and centripetal-complete clustering
are the two bottom-up clustering algorithms that do not have
the tendency to produce singleton clusters. In spite of this,
the resulting clusters tend to be small.

o Centripetal clustering gives results that are similar, but
inferior, to those of centroid-linkage. It tends to produce a
larger minimum cluster size, since the representatives from
a small cluster are not drawn away as far from the ‘frontier’
as those in a large cluster. The parameters of centripetal
clustering (the number of representatives per cluster, and the
distance they are drawn toward the centroid) may be
amenable to further tuning to improve cluster quality.

o Centroid-linkage and average-linkage clustering gave
consistently good results as quantified by the Davies-Bourdin
Index (DBI) and pseudo-F statistic (pSF). They can produce
clusters of varying sizes and possibly concave shapes. They
are two of the most useful of the clustering algorithms we
have examined for use with MD trajectories.

Refinement Clustering Algorithms. Because the refine-
ment algorithms include a random factor, we ran the
algorithms several times and kept the best (as measured by
DBI and pSF) clustering results.
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Figure 15. MM-PBSA binding energy versus time (ps) for the DB226-DNA hairpin trajectory for different clustering algorithms.
Trajectory data were taken every 10 ps, and a cluster count of 5 was used. The color scheme is based on the size of the cluster
with black > red > green > blue > yellow. The data on the right side of the figure show the approximate free energy and
standard deviation (kcal/mol) of a cluster. The number in the parentheses is the number of snapshots in that cluster. Very
different average free energies (all neglecting solute entropic components) are seen between the different clustering algorithms.

e Means clustering tends to produce “blocky” clusters of
similar sizes. The seed cluster centroid positions start at the
edges of the data set but move toward the eventual centroid
over the course of the clustering run. This algorithm cannot
produce concave clusters and does not generate clusters of
different sizes, but in general it performs very well.

e Bayesian clustering produces decent results, but these
results become poor for high cluster counts. It can produce
clusters of different sizes. Bayesian clustering often has
difficulty “recognizing” obvious clusters in simple test cases
in the plane, even when the algorithm is reseeded and rerun
many times. To give good results, the algorithm must be
repeated many times with new random seeds. This is
computationally expensive, particularly on MD trajectories
where there are often hundreds of coordinates and thousands
of configurations to consider.

o Self-organizing maps (SOM) produced the best results
of the refinement algorithms. The performance was more
consistent between runs than Bayesian clustering. However,
self-organizing maps share some of the problems character-
istic of the hierarchical clustering algorithm; specifically, the
SOM algorithm cannot produce concave clusters, and it has
difficulty producing clusters of varying sizes.

We also find that the COBWEB clustering algorithm is
also promising. Visualization of the resulting tree structure,
before flattening, can provide hints as to the reasonable
number of clusters to specify the data. However, a severe
limitation of the COBWEB algorithm is that it is highly
dependent on the order of the points incorporated into the
COBWEB tree. Thus, the variations between multiple
COBWESB runs are relatively large.

Discussion

We described the development of a series of different
clustering algorithms into a C program library, their applica-
tion to the easy to visualize test case of clustering 2D points
on the plane, integration of the clustering algorithms into
the ptraj trajectory analysis program, and the subsequent
application of the various algorithms to a series of contrived
and real MD trajectories. Overall, we were rather surprised
by the results which clearly show widely different behavior
among the various algorithms. Moreover, the performance
of a given algorithm is strongly dependent on the choice of
cluster count and, less surprisingly, the choice of atoms for
the pairwise comparison. On the other hand, the results
appeared to only be weakly sensitive to the choice of the
pairwise metric when comparing RMSd to DME measures
of similarity. Evaluation of the relative performance was
made possible through visualization of the results and also
through the exploration of various metrics defining the
performance. Specifically, low DBI values and high pSF
values signal better clustering. Information on the appropriate
cluster count comes from analysis of SSR/SST ratios and
critical distance measures as a function of cluster count. In
order to more efficiently handle very large data sets, a sieving
approach was introduced where only a portion of the data is
initially clustered, and then the remaining data are added to
existing clusters. For the MD simulations investigated in this
work, sieves up to 50 ps only moderately alter the outcome.
Overall, the best performance was observed with the average-
linkage, means, and SOM algorithms. If the cluster count is
not known in advance, one of the other algorithms, such as
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hierarchical or average-linkage, are recommended. These two
also can be used effectively with a distance threshold for
separating clusters. In addition to performing reasonably well,
it is important to be aware of the limitations or weaknesses
of each algorithm, specifically the high sensitivity to outliers
with hierarchical, the tendency to generate homogenously
sized clusters with means, and the tendency to produce small
or singleton clusters with average-linkage and linkage.
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Technical descriptions of the clustering algorithms implemented.

Hierarchical:

1. Assign all points to a single cluster.

2. Calculate the diameter of each of the clusters. The diameter is defined as the
maximal distance between any two points in the cluster.

3. Split the cluster with the largest diameter around the two eccentric points A and B
that define the diameter. All points closest to A are assigned to one child cluster
and all points closer to B fall into the other.

4. If the desired cluster count has been reached, stop; otherwise, go to Step 2.

Edge or single-linkage:

1.
2.

s

Assign each point to its own cluster.

Calculate all the inter-cluster point-to-point distances between each cluster. This
is the set of distances of every point in cluster A to every point in cluster B, over
all pairs of clusters.

Choose the two clusters that have the shortest inter-cluster distance and merge.
If the desired cluster count has been reached, stop; otherwise go to Step 2.

Centroid-linkage or linkage:

. Assign each point to its own cluster.

Initially the first structure is defined as the most representative and is defined as
the centroid.

Best fit all the points/structures in the cluster to the most representative structure.
The representative structure is the structure which has the minimal sum of the
squared displacements between other structures in the cluster and itself.

Construct the centroid for each cluster. This is the straight-coordinate average of
the best-fit points or structures.

Calculate all the centroid-to-centroid distances between all pairs of clusters.

Choose the pair of clusters that has the shortest centroid-to-centroid distance
and merge.

If the desired cluster count has been reached, stop; otherwise go to Step 3.
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Average-linkage or average:

4.

5.

. Assign each point to its own cluster.

Calculate all the inter-cluster point-to-point distances between each cluster. This
is the set of distances of every point in cluster A to every point in cluster B, over
all pairs of clusters A and B.

For a given pair of clusters, A and B, calculate the average cluster-to-cluster
distance as average over all the inter-cluster point-to-point distances.

Choose the two clusters that have the shortest average inter-cluster distance and
merge.

If the desired cluster count has been reached, stop; otherwise go to Step 2.

Complete-linkage or complete:

1. Assign each point to its own cluster.

2. Calculate all the inter-cluster point-to-point distances between each cluster. This
is the set of distances of every point in cluster A to every point in cluster B, over
all pairs of clusters A and B.

3. For a given pair of clusters, A and B, determine the maximal cluster-to-cluster
distance over all the inter-cluster point-to-point distances.

4. Choose the two clusters that have the shortest maximal inter-cluster distance
and merge.

5. If the desired cluster count has been reached, stop; otherwise go to Step 2.

Centripetal:

1. Assign each point to its own cluster.

2. Initially the first structure is defined as the most representative and is defined as
the centroid.

3. Best fit all the points/structures in the cluster to the most representative structure.
The representative structure is the structure which has the minimal sum of the
squared displacements between other structures in the cluster and itself.

4. Construct the centroid for each cluster. This is the straight-coordinate average of
the best-fit points or structures.

5. Choose up to five representative structures for each cluster. The five
representatives should be five maximally distant points from the centroid.

6. Move the five representative structures 25% closer to the centroid.

7. Calculate all the inter-cluster representative point-to-representative point
distances between each cluster. This is the set of distances of every
representative point in cluster A to every other representative point in cluster B,
over all pairs of clusters A and B.

8. Choose the two clusters that have the shortest inter-cluster distances and merge.

9. If the desired cluster count has been reached, stop; otherwise go to Step 3.
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Figure SO depicts the centripetal clustering algorithm’s merging process.
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Figure S0: Centripetal clustering merges two clusters into one larger cluster.
The clusters to be merged are at the bottom left of the figure on the left. The
initial representative points are shown as squares and triangles, respectively.
The initial representatives are shaded; the representatives moved toward the
centroid are hollow. In this particular case, several of the points used as
representatives were re-used in the merged cluster.

Centripetal-complete:

This is a variation on the centripetal algorithm where in Step 7 the maximal distance
between pairs of points is calculated.

Means:

1. Find two points with maximal distance between them. These two points will be
used as seeds for clusters.

2. If more seeds are needed, search for one point which has the maximal sum of
the distances between the selected seeds and itself. Add the point to the
selected seeds.

3. Repeat Step 2 until desired number of seeds have been selected.

4. Assign the remaining points to the cluster which has the shortest distance to the
cluster centroid.

5. Refine all points. For each point, remove it from its cluster unless it is the single
member; update the centroid; reassign that point according to the new cluster
centroids.

6. Repeat Step 5 until no new change occurs.
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Bayesian:

1. Randomly assign the values and standard deviation of the attributes for each
cluster.

2. For each point, determine the probabilities of being a member of each cluster
based on the normal distribution of the value and standard deviation of the
attributes. Assign the point to the cluster of maximal probability.

3. Update the values and standard deviations of the attributes for all clusters.

4. Repeat Step 2 and Step 3 for 10 iterations.

Self-organizing maps:

1. Randomly assign the values of attributes for each cluster (map node).

2. Train the underlying map (a simple linked loop) with all points. For one point, find
the closest cluster for that point. Move the value of each attribute of this cluster
10% closer to the values of attributes of that point. Move the value of each
attribute of this cluster’s neighbor clusters 5% closer to the values of attributes of
that point.

3. Repeat the training (Step 2) for 1000 times. After every 10 iterations, the training
rates are decreased by 5%.

4. Finally, assign the points to the closest trained cluster.

COBWEB:

1. Add one point to a COBWEB tree to maximize the category utility (CU).

2. Calculate the CU if the point is added to the tree, or merge two of its children, or
split one child, or if the point is added to one of its children.

3. Add the point by choosing the highest CU.

4. Repeat Step 1 to 3 until all points are clustered.

5. The first level of branches indicates the natural clustering. If more or less number

of clusters is requested, split or merge the branches accordingly.
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Figure S1: Atom types and charges for the minor groove binding drug “DB226” (the
pentyl derivative of 2,5-bis(4-guanylphenyl) furan) as obtained from a RESP fit to the
electrostatic potential calculated at the 6-31g* level of theory. The equivalent atoms
(specifically the termini, equivalent methyl, and equivalent methylene atoms) were
constrained to have the same charges.
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Table ST1: Parameters beyond those in the standard GAFF parameter set (as of 2002)
include:

ANGLE force constant equilibrium value
C3-n3-c2 62.656 118.405

n3-c2-ca 66.300 124.550

IMPROPER force constant phase periodicity
ca-n3-c2-n3 1.1 180.0 2.0
ca-ca-ca-ha 1.1 180.0 2.0
ca-ca-ca-ca 1.1 180.0 2.0
ca-ca-ca-os 1.1 180.0 2.0
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Figure S2-S11: Schematic cluster trees for the different clustering algorithms. The
data shown is for clustering a constructed MD trajectory of a polyA DNA single strand into a
set of configurations that naturally partitions into clusters of size 2, 15, 50, 100, and 333
configurations. Shown are the numbers of configurations in each cluster as the cluster count
increases. The numbers on the left side of each figure represent the cluster count and the
numbers in the tree represent, at each stage, how many configurations are in each cluster.
The bold/italic values highlight clusters with the expected number of frames. As an example,
looking at Figure S2 for the centripetal clustering algorithm, with a cluster count of two there
are 100 and 400 members in each cluster, with a cluster count of three there are 100, 15, and
385, with a cluster count of 4 there are 100, 15, 52 and 333, and so on, where cluster
membership is inherited from the root unless a cluster is split. The dotted lines highlight the
parent cluster that is split. With the COBWEB, SOM and means algorithms, a tree is not
obvious as children clusters do not necessarily come from the same parent, hence the
number of members in each cluster are displayed in Figures S9 to S11.
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Figure S12: RMSd plot for DB226 binding to a hairpin DNA duplex. Shown are the
RMSd (A) versus time (ps, at 1 ps intervals) with reference to the first frame from the MD
simulation of the minor groove binding agent DB226 (1-3) initially binding to the ATTG region
of the hairpin duplex structure of DNA, d(CCAATTGG-TCTC-CCAATTGG). This simulation
was performed with Amber (4, 5) using standard protocols (6) and the Cornell et al. (parm94)
force field (7) and a particle mesh Ewald (8) treatment of the explicitly solvated truncated
octahedral ~200mM NacCl solution. The drug parameters were obtained from RESP fits (9) to
the electrostatic potential of Gaussian (10) 6-31G* optimized geometries for charges and all
other parameters from GAFF (11). The plot shows two traces, the upper (black/gray) is all
DNA and drug atoms (mass-weighted) and the lower (red/green) is just the central region of
the DNA (specifically residues 3-7 and 14-18) including also the drug. The smoother lines in
the middle of each trace are running averages over 250 ps.
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The jump in the RMSd at 15.7-16.3 nanoseconds corresponds to the spontaneous shift of the
drug from the ATTG binding site to the canonical AATT binding site. From the RMSd plot, it
can be seen that over the course of the 36 ns simulation, the DNA and drug remain within 3-5
A of the starting structure. Although this deviation is larger than would be expected from
thermal fluctuation (which is partially represented by the fluctuations in the RMSd values of
0.48 A over the whole simulation), these values suggest that the DNA maintains its overall
structure. This can be seen from the average structures shown in Figure S2. In addition to
suggesting that the simulation is stable (as evidenced by the relatively flat RMSd profile over
the second half of the simulation for the central region of the hairpin), the zig-zags in the
RMSd (evident most clearly in the running averages) show that the DNA and drug are moving
around and likely sampling distinct conformational sub-states throughout the simulation. The
RMSd plot does not provide information about the different sub-states, to get more
information, clustering of the data—along with more careful analysis of the structure and
energetics—is necessary to better understand the conformational sampling.
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Figure S13: Shown are molecular graphics representations of the hairpin DNA (in gray with
the ATTG region colored yellow) and DB226 (colored by atom, in the groove), both without
hydrogens displayed for clarity from ns-length straight-coordinate averaged structures. The
figures were created with UCSF/Chimera (12). On the left are structures from 5-6 ns and 10-
11 ns, on the right are structures from 20-21 ns, 25-26 ns and 35-36 ns (after the drug has
shifted its binding mode to the AATT regions. Two different views are shown. Evident from
the figures on the left are multiple binding modes of the drug in the minor groove. Evident
from the figures on the right are conformational variations in the termini and subtle
rearrangement of the loop geometry.
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Table ST7: Comparison of the relative performance and properties of the clustering
algorithms under various sieve conditions as applied to the clustering of DB226 bound
initially to ATTG (and later to AATT as the drug shifts during the simulation) binding
sites in @ RNA hairpin from 36 ns MD trajectories. Results of the means algorithm
shown are those with the highest pSF values from five independent runs.

|Algorithm | Sieve size | Sieve start [Total time| DBI | pSF Clustering

means No sieve 1376 2.02 1223 0.000
means 10 1 49 1.73 1106 0.163
means 10 2 49 2.05 1213 0.038
means 10 Random1 63 2.03 1212 0.036
means 10 Random2 50 2.05 1216 0.037
means 25 1 34 1.92 1164 0.080
means 25 2 21 2.04 1189 0.057
means 25 Random1 22 1.86 1194 0.106
means 25 Random2 19 2.00 1200 0.025
average No sieve 6816 1.56 925 0.000
average 10 1 55 1.48 853 0.035
average 10 2 67 1.68 893 0.025
average 10 Random1 67 1.67 1074 0.061
average 10 Random2 66 1.71 901 0.053
average 25 1 35 1.63 989 0.046
average 25 2 38 1.78 1033 0.058
average 25 Random1 37 1.70 1038 0.070
average 25 Random?2 36 1.56 1017 0.041
linkage No sieve 2149 1.04 805 0.000
linkage 10 1 41 1.56 815 0.030
linkage 10 2 40 1.51 846 0.030
linkage 10 Random1 49 1.48 887 0.038
linkage 10 Random2 47 1.57 848 0.021
linkage 25 1 20 1.53 858 0.034
linkage 25 2 20 1.43 915 0.045
linkage 25 Random1 20 1.59 975 0.067
linkage 25 Random2 20 1.82 896 0.066

SOM No sieve 1925 2.13 1060 0.000

SOM 10 1 110 2.17 1121 0.040

SOM 10 2 103 2.15 1128 0.049

SOM 10 Random1 107 2.17 1128 0.057

SOM 10 Random2 109 2.15 1116 0.042

SOM 25 1 56 2.13 1141 0.069

SOM 25 2 51 2.16 1127 0.059

SOM 25 Random1 49 2.13 1092 0.045

SOM 25 Random2 48 2.14 1098 0.055
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Figure S14: Shown are the cluster metrics for a ~75 ns MD trajectory of cytochrome
P450 2B4 with PDB entry 1PO5 (13). A total of 7303 frames, taken at 10 ps intervals
were clustered based in pairwise similarity of all the Ca atoms. For the clustering with
the COBWEB algorithm, a sieve size of 5 was used to allow the clustering to complete
within five days. Clustering runs with the means, Bayesian and SOM algorithms were
run twice and the values obtained at a given cluster count shown are the ones with the
higher pSF values. Most algorithms indicate that the optimal number of clusters is ~5-7
according to the various metrics. For the SOM clustering, only n - 1 clusters are
generated when the number of requested clusters n is greater than 6. This is also a
good indication for the optimal number of clusters.
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Details of the cytochrome P450 2B4 MD simulations:

The initial structure was based on the 1PO5 PDB entry which provides an “open”
geometry of this cytochrome P450 2B4 isozyme at 1.6 A resolution (13). The ionization
states of the basic and acidic residues were assumed to be charged if normally charged
at physiological pH. All of the histidine residues were assumed to be neutral and
hydrogens were placed at the & or ¢ positions based on visualization of the molecular
graphics and optimal placement to maximize hydrogen bonding interactions.
Specifically, histidine residues 145, 199, 225, 292, 308, 327 and 465 were assumed to
be HID and the others defined to be HIE residues. The ff99sb force field was utilized for
the protein. Heme parameters (available by request) will be described elsewhere. The
protein was then solvated with explicit TIP3P water into a truncated octahedral
geometry with a 12 A space around the protein in each direction. Explicit NaCl salt was
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then added, first to neutralize the net-positive charge (3 Cl- ions), followed by addition of
70 extra Na+ and CI- ions using the Smith and Dang ion parameters at points of low
electrostatic potential using LEaP. The positions of the ions were randomized by
swapping with random water molecules such that the ions remained at least 6 A from
the protein and at least 4 A from each other using ptraj. After equilibration, the net-
added salt concentration is ~215 mM.

Equilibration and production MD simulations: All simulations were performed at
constant pressure (1 atm) with Berendsen coupling of temperature and pressure with
coupling times of 1.0 ps (14) using the PMEMD 9.0 version of AMBER (15). A particle
mesh Ewald treatment was applied with a 9 A cutoff and 1 A buffer for heuristic pairlist
update and a homogeneous long-range van der Waals density correction, cubic
interpolation of a 96x96x96 FFT charge grid, and Ewald coefficient of 0.30768 (8). All
bonds to hydrogen were constrained with SHAKE (16) and the integration time step was
2 fs. The equilibration protocol as outlined in Table ST8 below was used. “s. d,” and “c.
g.” refer to steepest descent and conjugate gradient minimization, respectively. After
equilibration, production MD was continued at constant temperature (300K) and
pressure (1 atm) with longer coupling times (5 ps).

Table ST8: Outline of the equilibration protocol.

Equilibration stage: Restraint32 Minimization Dynamics
(kcal/mol-A”) | s.d./c.g. steps

mini 25.0 on all Ca 500 / 500

heat 25.0 on all Ca 100 ps; heat from S%ZK
mini5 5.0 on all Ca 500 / 500

eqd5 5.0onall Ca 50 ps
mini4 4.00n all Ca 500 / 500

eq4 4.0 on all Ca 50 ps
mini3 3.0 on all Ca 500 / 500

eqd 3.0onall Ca 50 ps
mini2 2.0onall Ca 500 / 500

eq2 2.0 on all Ca 50 ps
mini1 1.0 on all Ca 500 / 500

eq1 1.0 on all Ca 50 ps
eq05 0.50n all Ca 500 ps
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Figure $15: RMSd and 2D RMSd plots of the 1PO5 cytochrome P450 2B4
simulations. Shown on the bottom is the RMSd to the initial structure (at 10 ps
intervals). Above this plot is the 2D RMSd plot as a function of time (at 50 ps intervals)
from the ~75 ns MD simulation of the PDB 1PO5 structure taken at 10 ps intervals. Low
RMSd is denoted with the cooler or blue colors with higher RMSd represented by hotter
colors ranging from green to yellow to red representing the most deviation. Although
the 1D RMSd plot shows rapid transition of the RMSd away from the starting geometry
to a relatively flat value (which mistakenly might be interpreted as a stable geometry
due to the plateau in values and minimal fluctuations), from the 2D RMSd plot it is clear
that the structure does not settle into a stable basin until ~45-50 ns. More detailed
analysis of these MD simulations will be published elsewhere.
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Figure S16: Molecular graphics of representative structures from the ~75 ns MD
simulation of cytochrome P450 2B4 structure 1PO5. Representative structures from
the clusters generated with the average-linkage algorithm and a cluster count of six are
shown using a ribbon trace of the backbone and all atom representation of the heme
(buried in the middle of the protein). The initial cluster (from early in the simulation) is
depicted in yellow whereas the last cluster (from later in the simulation) is shown in red.
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