Oops! I cannot do it again:
Testing for recursive feasibility in MPC

Johan Lotberg

Division of Automatic Control, Department of Electrical Engineering, Linkoéping University, SE-581 83 Linkdping, Sweden

Abstract

One of the most fundamental problems in model predictive control (MPC) is the lack of guaranteed stability and feasibility. It is
shown how Farkas’ Lemma in combination with bilevel programming and disjoint bilinear programming can be used to search
for problematic initial states which lack recursive feasibility, thus invalidating a particular MPC controller. Alternatively, the
method can be used to derive a certificate that the problem is recursively feasible. The results are initially derived for nominal
linear MPC, and thereafter extended to the additive disturbance case.

Key words: Predictive control, Constrained control

1 Introduction

An MPC controller repeatedly solves optimization prob-
lems on-line in order to decide the current input to the
system. Although MPC opens up for general and ad-
vanced control schemes, it comes with a serious flaw. In
contrast to, for instance, linear quadratic control which
is stabilizing by construction, an MPC controller is not
guaranteed to be stabilizing [18]. Instead, stability is
something which has to be built-in by judiciously defin-
ing the optimization problem. A related and even more
severe issue is that feasibility of the optimization prob-
lem can be lost. The computations of optimal inputs
may work for some time, but then, all of a sudden, the
MPC controller has driven the state to a region where
the optimization problem has no solution.

Almost all work on MPC assumes that these issues have
been taken care of a-priori. The typical approach is to
append the optimization problem with additional, some-
what artificial constraints, that will guarantee that loss
of feasibility cannot occur [18]. When this is done, the
MPC controller is said to be recursively feasible.

Unfortunately, although it is absolutely recommended
from a theoretical point of view, it is not always wanted
nor easy to construct an MPC controller which has an
a-priori guarantee of recursive feasibility, either due to
theoretical complications [8,12], or pragmatic decisions

Email address: johanl@isy.liu.se (Johan Lofberg).

Preprint submitted to Automatica

in practice. Instead, we might have a situation where
we are given an MPC controller, and the goal is to an-
alyze it with respect to recursive feasibility. In this pa-
per, the goal is primarily invalidation of an MPC con-
troller, i.e., detect that it has problematic states where
recursive feasibility is lost. A secondary objective is to
find certificates of guaranteed recursive feasibility, both
in the nominal and the disturbed case. We accomplish
our goals by posing a suitably defined bilevel optimiza-
tion problem originating from an application of Farka’s
lemma.

2 Problem formulation

We consider linear time-invariant discrete-time systems

Tpy1 = Az + Buy, (1)

with state © € R™, control u € R™, and (A, B) matrices
of compatible dimensions. Although most of the setup
can be generalized, the scope will be limited to a fairly
basic definition of the MPC controller. As long as the
resulting optimization problem is a linear or quadratic
program linearly parameterized in the initial state zy,
the analysis and algorithms presented here hold. Intro-

9 August 2011

duce decision variables and predicted states

Uk|k Tk|k
Uk+1|k Th+1|k
Ur = . , X = . (2)
Ukt N—1|k Tk4+Nlk

where Thtitlle = Aaijri‘k + Bukﬂ»“c. In this notation
U4, Means a decision variable representing a thought
future input at time k, and xpi;y1)x represents the
associated state prediction. The MPC controller mini-
mizes, at each time instance k, a finite-horizon quadratic
performance objective Zﬁgl xz+1+i\kak+1+ilk +
ugﬂ‘mRukH\k under (assumed convex polytopic) state
and control constraints. By stacking constraints and
variables in a suitable fashion, it is straightforward to
derive a model of the following quadratic programming
form (since the current state is fixed regardless of the
input trajectory, r is used instead of), to reduce the

notational burden)

1
U; :argnll]in QU,CTHUIWFU,?G:E;c (3a)
k
subject to Exy + FU, <b (3b)

The actual input ug to the system will be the first ele-
ment of the optimal solution, uzlk. After a time update,
k := k + 1, a similar problem is solved, now with a dif-
ferent initial state and a new set of decision variables.

Uy, =arg Doin 5U13+1HU;€+1 + UL Gy (4a)
1
subject to Exgiq1 + FUpy1 < b (4b)

The central question is whether (4) is feasible when (3)
was feasible. By using the optimal input to generate the
succeeding state 1 = Axy +B“Z|k’ the question boils

down to feasibility of the following constraint

Let Fy denote the set of initially feasible states, Fy =
{z : (3U such that Ex + FU < b)}. The complement of
the initially feasible set is denoted Zy. The set of states
which are initially feasible, but will lose feasibility after
one time update is 7 = {& € Fy : Az + Bu* € Iy}.
These states will be called problematic states later on.
The remaining states will not move to the infeasible re-
gion, F; = {z € Fo : Az + Bu* ¢ Iy} = Fo\Z; and
will thus be feasible for at least two time steps. Two
sets of interest can now be defined using a recursion,
I, = {.’IJ € Fi_1:Ax + Bu* € Iifl} and F; = ./—"171\:[7,
The set Z; represents states which will lose feasibility af-
ter ¢ time updates, and JF; represents all states which are

guaranteed to stay feasible for at least i + 1 steps. If F;
converges in a finite number of iteration, i.e., F; = F;_1
for some finite ¢, a recursively feasible set F,, has been
found. Note that this set is nothing but the maximal
positively invariant set of the closed-loop system.

A precise definition of the term recursive feasibility in
our context might be suitable at this point.

Definition 2.1 (Recursively feasible) The MPC
controller is recursively feasible if and only if for all ini-
tially feasible o and for all optimal sequences of control
inputs the MPC optimization problem remains feasible
for all time.

In the notation above, this requires Z; to be empty.
If x(is constrained to F., the optimization problems
will remain feasible, but the controller is not neces-
sarily recursively feasible. Note also the difference to
strongly recursively feasible solutions, which often occur
in the literature and is the cornerstone of most stability
proofs [14,18].

Definition 2.2 (Strongly recursively feasible)

The MPC controller is strongly recursively feasible if and
only if for all initially feasible xo and for all sequences
of feasible control inputs the MPC optimization problem
remains feasible for all time.

The typical approach to achieve (strongly) recursively
feasible MPC controllers is to append the original MPC
problem with a terminal state constraint zjn;x € T,
typically based on (maximally) controlled invariant
sets [5]. This paper is however devoted to analysis of
the controller, and does not propose any synthesis tools.
Neither is our goal to explicitly compute the set of re-
cursively feasible states F,, or the problematic states
7Z:. As the following example illustrates, these sets are
often severely nonconvex and thus intractably hard to
compute, represent and work with in the general case.

, B =
sin(%) cos(%

Example 2.3 Let A = % l
3

cos(%) —sin(%)
s
3

] . An MPC controller is designed using N = 1, Q =
1

I and R = 1, and the constraints are —1 < xpqp < 1,
-1 < wupp < 1 together with a mized state-control

constraint ugp < 0.2 + 1Txk+1‘k. The numerical data
associated with this model is given by

H=3 G= {0.549 2.049}

T
[0.750 1.299 —0.750 —1.299 0 0 —2.0491

—1.299 0.750 1.299 —0.750 0 0 0.549

T T
F:[—lllfllfll} ,b:[1111110.2}

To study recursive feasibility of the controller, the explicit
control law is computed using MPT (Multi-parametric
Toolboz, [16]), and the sequence (F;,T;) is computed us-
ing a variant of the invariance algorithm in [3]. As can
be seen in Figure 1, the sets of interest are highly non-
convex.

Ty

Fig. 1. The top left figure illustrates the set of initially fea-
sible states Fo and its complement Zy. The top right figure
illustrates the set of initial states (soft shaded Z;) which
moves to the infeasible region, and the set of states which
remain feasible for more than one time update, 1. The bot-
tom left shows the set of states which become infeasible after
five steps and its complement, while the bottom right shows
the set of initial states which remain feasible for 30 time up-
dates, i.e., an outer approximation of the recursively feasible
set Foo-

3 Conditions for feasibility and recursive feasi-
bility

An MPC controller lacks recursive feasibility and is thus
invalidated if it is possible to find a state which is fea-
sible, but where the optimal input moves the state to
a point where the MPC problem is infeasible. The tool
used throughout this paper to analyze the constraint (5)
is Farkas’ lemma [7].

Lemma 3.1 Let A € R™*"™ and b € R™. Then either
there is an x € R™ such that Ax < b or thereisay € R™
such thaty >0, yTA =0 and yTb < 0.

For given x; and uzl i the feasibility question is
E|Uk+1 : FUk+1 < b—E(A{Ek-i-Buzlk) (6)

According to Farkas’ lemma, infeasibility of this con-
straint is equivalent to the existence of a vector y satis-
fying the following constraints

y>0, y"F =0, y"(b— E(Az), + Bujy,)) <0 (7)

Working with this set of equations alone is typically very
conservative. For a reasonable analysis it is crucial to
use the fact that the variables x; and u;’;l i are coupled
via optimality. Nevertheless, the condition immediately
leads to a sufficient condition for strong recursive feasi-
bility, thus ruling out the possibility for a problematic
state.

Corollary 3.2 (Strong recursive feasibility test)

Letr = b—E(Axy+Buy)). If min yTr
y>0, yT F=0,Ex+Fup<b

is mon-negative, the MPC' controller is strongly recur-
sively feasible.

Proof. Follows immediately from Farkas’ lemma.

4 A bilevel programming approach to recursive
feasibility analysis

The analysis above which treats zj; and u’};‘k as two un-

coupled variables is often too weak. For stronger results,
the fact that uzl & is optimal at the state x;, must be en-
coded in the problem formulation. Our approach to do
this is to pose the whole problem as a bilevel optimiza-
tion problem.

A bilevel problem in its most general form is composed
of an outer and an inner problem with corresponding
outer and inner variables. The key feature which sets
bilevel programming apart from standard optimization
problems is that the inner variables, here denoted z, are
constrained to be optimal with respect to an inner opti-
mization problem which may depend on the outer vari-
ables x.

min f(z,z")
subject to (x,2") €C
z* = argmin h(z, 2)
z

subject to (x,z) € D

Bilevel problems are notoriously hard to solve, already
in the case when both the inner and outer problems are
linear programs, which pretty much is the most simple
bilevel problem possible [13,4,9]. The case when the inner
problem is convex for fixed outer variables is somewhat
more manageable than the general case, since the opti-
mality condition on the inner variables can be encoded
using KKT conditions. In the case of a linear or convex
quadratic inner program, the KKT conditions give rise to
a set of linear equality and inequality constraints, in com-
bination with a complementarity constraint. Hence, al-
though complementarity problems are NP-hard to solve,
the problem at least has a nice structure and can, in
principle, be solved using enumeration [10,19,4].

The search for a state x; and associated optimal input
uzl Which drives the state to a position where infea-

sibility arise can thus be posed as the following bilevel
program.

min y? (b — E(Azy + Bug,))

Y2k, Uk

subject toy >0, yTF =0

8a

(
(8b

)
)
Uy = argrrl}ikn %U,{HU;C +Ul'Grr, (8c)
subject to Exy + FU, < b (8d)

If the optimal objective of the outer problem is nega-
tive, we have found a proof of infeasibility. The inner
problem is (by assumption on the MPC setup) a con-
vex quadratic program, so we can replace the optimality
condition with the corresponding KKT condition. In-
troduce a non-negative dual variable A and append the
outer problem with the stationarity (9c), and feasibility
and complementarity (9d) constraints of the inner prob-
lem.

min y? (b— E(Axy + Buy,y)) (9a)
YTk, Uk, A
subject toy >0, yTF =0 (9b)
HU, + Ga, + FTA =0 (9c)
0<ALb—Ex,—FU,>0 (9d)

To simplify notation while working with complementar-
ity structures and KKT conditions, the notation 0 <
AL b— Exyp — FU, > 0 collects the constraints A > 0,
Exp + FU, <band)\T(b—ELCk —FUk) =0.

It goes without saying that the problem above is hard to
solve. Not only does it involve the complementarity con-
straints A L b — Ex, — FUy, but it also involves a bilin-
ear objective function. Nevertheless, we have managed
to cast the infeasibility analysis problem as a structured
optimization problem.

From a numerical point of view, it is important to note
that the problem definition is severely ill-posed. An arbi-
trary small but negative objective function would prove
lack of recursive feasibility, while a solution with ob-
jective value 0 easily is constructed using y = 0. Such
a small separation is dangerous in floating-point arith-
metics and numerical optimization. Fortunately, it can
be avoided by recognizing that the problem is homoge-
neous in y. Hence, it is advised to add a normalizing
constraint of the type y71 = 1 (1 denoting a vector of
ones) or similarly.

This normalization is not only for purely numerical rea-
sons, but actually increases the scope of the analysis
significantly. When solving the optimization problem
using a rigorous global solver such as BARON [20] or
YALMIP [17], such a solver typically computes increas-
ingly tighter lower and upper bounds on the achievable
objective value. Without the normalizing constraint, a
trivial upper bound is 0, and the lower bound is negative

and typically only approach 0 in the limit if the true op-
timal value is 0. Hence, the lower bound would never al-
low us to terminate and say that the lower bound proves
that the objective cannot be strictly negative. In other
words, lack of recursive feasibility is possible to prove (by
finding a particular xy), but proof of recursive feasibility
would be problematic. After a normalization though, the
optimal value can be a positive number, and the lower
bound can on its convergence to the upper bound pass
0, and thus allow us to terminate and conclude that the
optimal objective value must be positive and recursive
feasibility has to hold ! .

4.1 Dual interpretation of normalized objective func-
tion

With the normalization 4”1 = 1, Farka’s lemma and the
objective function in our optimization problem has an
intuitive geometric interpretation. Considering all vari-
ables but y as fixed, we have

min y" (b — E(Azy + Bug)) (10a)
y
subject toy >0, y'F =0, yT1=1 (10Db)

Using strong duality of linear programming, i.e.,

min ¢’y = max bTx it follows that the mini-
y>0,Ay=b c—ATz>0

mization over y corresponds to

max t (11a)

z,t

subject to b — E(Axy, + Buyp) — Fz>t1 (11b)

This is nothing but (5) with an added slack-variable ¢
and z taking the role of Ugy;. Hence, the normalized
objective function, for fixed zy and uyx, corresponds to
the largest possible slack that can be added to all con-
straints in (5) while keeping feasibility. If this optimal
value is negative for some xy, it means that the con-
straints are infeasible for xy 11 = Axy + Buy);, and the
feasible set has to be extended by using a negative slack
at that state.

4.2 A linear bilevel alternative

Inspired by the fact that the bilinear objective func-
tion disappeared in the dual interpretation above, we
derive an alternative formulation of (9) and its normal-
ized form. The important property which we will exploit
(and used above) is that the optimization problem (9)

! Note that a local approach (using, e.g., a general nonlinear

solver) might be sufficient in many cases. If the local solver
finds a solution with negative objective value, the controller
is invalidated. A global solver is only required if we want to
prove recursive feasibility by showing positivity of a lower
bound, or if we fail to find a problematic state using a local
approach.

is a disjoint bilinear problem [2]. Introduce the variable

w = (zg,Ug, \) and the optimization problem can be

written as mig milrjl yT f(w). Above, we showed that the
well ye

minimization over y corresponds, by duality, to a max-

imization over a new set of variables (z,t) € Z. Hence,

we arrive at a minimax problem mig max t. This min-
we zZ

max problem is by no means simple, so nothing is won
in principle. What we have done however is that we have
eliminated the bilinear objective function. The solution
procedure we propose at this point is to continue using
our tool of the day, bilevel programming. Characterize
optimal solutions of the linear program max t using KKT

conditions, thus introducing a new set of dual variables
.

p=0 (12a)

0<pul(b—E(Azy + Buy) — Fz—t1) >0 (12b)

Collecting all constraints from (9) and (12) yields the
following complementarity problem

min ¢ (13a)
T, Ul A\, 2,t
subject to (9¢,9d, 12a, 12b) (13b)

Having transformed the problem to a complementar-
ity problem with a linear objective means that we have
opened up the possibility to use other alternatives for
actually solving the problem. In principle, the comple-
mentarity structure allows us to solve the problem us-
ing brute-force enumeration and linear programming.
In practice, it means that we can use standard mixed-
integer reformulations of the problem [9].

It is easily seen that we are still solving exactly the same
problem as before but in disguise. The introduced com-
plementarity constraint u” ((b— E(Axy + Bugg) — Fz —
t1) = 0 simplifies to t = p” (b — E(Azy, + Buy) if we
use FTp = 0 and 17y = 1. Hence, p plays the role of
y and all we have done is exploited structure to trade a
bilinear objective for a complementarity constraint.

4.8 FEaxtension to systems with disturbances

The problem formulation can be extended to incorporate
disturbances. 2

Tr41 = Az + Bug + Mwy (14)

One problem of interest is to check if there exists any
state xp, optimal input u,*cl . and disturbance wy € W
such that the problem loses feasibility. Our prediction
will now be different, thus changing our complementarity
constraint to

p L (b— E(Axy, + Buy, + Mwy) — Fz—t1) >0 (15)

Going directly to the formulation with a linear objective,
we obtain

min t (16a)

Tk, Ul Wi, A, 2,t
subject to (9¢, 9d, 12a, 15) (16b)
wr € W(k, ug) (16¢)

As one can see, the difference is minor, since the variable
wy, is a variable related to the outer problem and does not
complicate the KKT conditions. In the problem defini-
tion above, the exact representation of VW has been omit-
ted. The typical uncertainty case would be a polytopic
model, but there is nothing in the analysis approach that
limits the uncertainty model to this. For instance, the
uncertainty may depend on the current state and input
as indicated above. The only limitation in the uncer-
tainty model is the tractability of actually solving the
resulting optimization problem. A linear complementar-
ity model, as in Section 4.2, is obtained if W(xy, ugy,) is
polytopic wy, xx and uy|s.

By parameterizing a polytopic uncertainty model as
Kw < hry where 7 is a scaling parameter, and using -y as
an objective, we can search for the smallest v such that
the problem is feasible with the constraint ¢ < 0. Hence,
finding the smallest disturbance set such that recursive
feasibility is lost for some disturbance in that set.

i 1
xkyUkirullch,l)\,z,t,'y v (73‘)
subject to (9¢, 9d, 12a, 15) (17Db)

Kw < hy, t<0 (17¢c)

2 Note that we are analyzing the impact of a disturbance,
and not necessarily using a robust MPC synthesis setup. A
robust MPC problem can of course be used to define the con-
trol input, assuming it in the end simplifies to a quadratic
program of the type (3), possibly involving extra decision
variables necessary in order to eliminate the disturbance
from the uncertain problem.

4.4 Relazring optimality

Almost all stability proofs of MPC are based on strong
recursive feasibility and allow a relaxation of optimality
by only requiring concurrent optimization problems to
have a sufficient decrease in the objective. This is well
motivated by practice where it is not always possible to
run the optimization process to complete convergence.
Instead, the process is terminated at a feasible but sub-
optimal stage. In a feasible interior-point approach, this
would typically mean that complementarity is violated.
Encoding this in the analysis here is straightforward.
Instead of using A L b— Fxj — FUy, it is relaxed to, e.g.,
M(b — Exzy — FUy) < e. Note though, that the linear
bilevel alternative (13) no longer can be used.

5 Numerical illustrations

This section implements the proposed method for a cou-
ple of scenarios. All computations were performed on a
3GHz desktop PC in MATLAB using YALMIP [17] and
the mixed-integer linear programming solver CPLEX
12 [1].

Example 5.1 (Initial example revisited) Solving

the test (13) for a state wviolating recursive fea-

sibility ome finds, in a fraction of a second, the
T

—0.2048 1.4214} with associated input

uzlk = —1. Hence, the controller setup can be invali-

dated and the control engineer should be warned about
the possible loss of feasibility.

state T =

Example 5.2 (System with state disturbances)

jus

Let A = 2 [COS(?') Sm(i‘*)], B = [1]. An MPC

sin(g) cos(3) 1
controller is designed using N = 3, Q@ = I and
R = 1, with the constraints —1 < Zpii4 < 1,
—1 < Upgipp < 1. The test (13) is solved and returns
an optimal value of 0.22, thus proving that recursive

feasibility holds.

A process disturbance wy, € R? is now added to the sys-
tem, xx+1 = Az + Bug + wi. In a first experiment,
the disturbance model was f% < w < % Solving (16)
yields an objective of —0.17, i.e., a combination of initial
state xp and disturbance wy such that feasibility is lost
has been found. To investigate how robust the controller
s against process noise, we parameterize the uncertainty
set as —y < wg < v and find the smallest possible v such
that recursive feasibility is lost, using (17). In less than
a second, the optimal value 0.283 is returned. In other
words, recursive feasibility is guaranteed as long as the
absolute value of the process noise is smaller than 0.283.

Example 5.3 (Non-convex uncertainty models)
As a second robustness test, we use the state-dependent

uncertainty w,zwk < 0.1:ckT.xk on the model in the pre-
vious example. With this setup, a linear complemen-
tarity model is no longer possible. Since the uncer-
tainty description will lead to an indefinite quadratic
constraint, we might just as well work with the initial
normalized bilinear objective model (9), now involving
also the uncertainty and thus leading to the objective
y* (b — E(Axy, + Bugx +w)). This bilinear complemen-
tarity problem is solved using the spatial branch-and-
bound based global solver in YALMIP, with SNOPT [11]
as the local upper bound solver. The branch-and-bound
iterations terminate after only two iterations due to an
upper bound with negative objective value. Hence, the
system is not recursively feasible. The disturbance is now
reduced to wgwk < O.legmk. This problem turned out
to be more challenging, but after 85 iterations, taking
roughly 1 minute, the lower bound on the achievable ob-
jective value turns positive, thus proving that recursive
feasibility holds.

Example 5.4 (4D ball-and-plate) As a finalillustra-
tion, we revisit the ball-and-plate example from [6,8,15].
The system has four states, all constrained, and one con-
strained input. For simplicity, we disregard the reference
signal. An MPC controller is designed, using the same
setup as in [15]. In a first experiment, a controller with
prediction horizon N = 1 is designed. Not surprising, test
(13) immediately invalidates this setup and finds a prob-
lematic state. A terminal state constraint xy), € T s
added, where T is the largest positively invariant set in-
scribed in the feasible set for the closed-loop system con-
trolled using the associated infinite horizon discrete-time
L@ controller. As standard stability theory for MPC sug-
gests, (13) is no longer able to find a complicating initial
state. In a second setup, we increase the prediction hori-
zon to N = 10, keep the terminal state constraint, but en-
force up 1)k = Upgoik = - - = UpgpN—1)x- Thetest (13) s
readily adjusted for this setup and returns a problematic
state in a couple of seconds, thus numerically supporting
the well-known fact that move-blocking can destroy stan-
dard stabilizing strategies [8,12]. As an alternative to the
proposed test, the explicit solution can be derived and an-
alyzed. The explicit solution, computed in just under one
minute using MPT, is comprised of 609 regions. After
having obtained the explicit solution, a variant® of the
invariance algorithm [3] was applied and showed, in a
couple of seconds, that the set I indeed was non-empty.

6 Summary

Feasibility and infeasibility analysis questions in MPC
have been addressed using Farkas’ lemma, bilevel pro-
gramming and disjoint bilinear programming. The anal-
ysis has been devoted to a very standard MPC settings,
but can easily be extended to more general scenarios. A

3 The algorithm in [3] recursively computes the sets Z; and
can be terminated immediately when Z; becomes non-empty.

generalization to the uncertain case has been proposed

and allows us to compute a measure of robustness of an
MPC controller.

The proposed analysis approach has been applied to a
number of small examples, and current work is focused
on improving the computational results in order to han-
dle larger problems. In particular, the global solver in
YALMIP does not exploit the bilevel context. YALMIP
has a built-in bilevel solver for fairly general bilevel prob-
lems, but for the particular class of problems addressed
in this paper (nonconvex bilinear outer problem with
convex quadratic inner problem) it has not performed
well and was thus not used.

In the end, it is our hope that the methods in this paper
can be a viable approach for analysis of systems where
approaches based on polytopic geometry or brute-force
gridding start struggling, say, in the range 4 — 10 states.

Acknowledgement

The author gratefully acknowledges funding from
CENIIT at Linkoping University.

References

[1] CPLEX 12.2. Available
at www.ibm.com/software/integration/optimization/cplex-
optimizer.

[2] F. Al-Khayyal. Generalized bilinear programming: Part
I. Models, applications and linear programming relaxation.
European Journal of Operational Research, 60(3):306-314,
Aug. 1992.

[3] M. Baotié¢. Optimal Control of Piecewise Affine Systems-a
Multi-parametric Approach-. PhD thesis, ETH Zurich, 2005.

[4] J.F.Bard and J. T. Moore. A branch and bound algorithm
for the bilevel programming problem. SIAM Journal on
Scientific and Statistical Computing, 11(2):281-292, Mar.
1990.

[6] F. Blanchini. Set invariance in control.
35(11):1747-1767, Nov. 1999.

[6] F. Borrelli. Discrete Time Constrained Optimal Control.
PhD thesis, ETH Zurich, 2002.

[71 S. Boyd and L. Vandenberghe.
Cambridge University Press, 2004.

[8] R. Cagienard, P. Grieder, E. C. Kerrigan, and M. Morari.
Move blocking strategies in receding horizon control. Journal
of Process Control, 17(6):563-570, July 2007.

[9] B. Colson, P. Marcotte, and G. Savard. Bilevel programming:
A survey. 4OR, 3(2):87-107, June 2005.

[10] J. Fortuny-Amat and B. McCarl. A representation and
economic interpretation of a two-level programming problem.
The Journal of the Operational Research Society, 32(9):783—
792, Sept. 1981.

[11] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP
algorithm for large-scale constrained optimization. SIAM
Review, 47(1):99-131, 2005.

Automatica,

Convex Optimization.

[12] R. Gondhalekar, J.-i. Imura, and K. Kashima. Controlled
invariant feasibility - A general approach to enforcing strong
feasibility in MPC applied to move-blocking. Automatica,
45(12):2869-2875, Dec. 2009.

[13] R. G. Jeroslow. The polynomial hierarchy and a simple
model for competitive analysis. Mathematical Programming,
32(2):146-164, June 1985.

[14] E. C. Kerrigan. Robust Constraint Satisfaction : Invariant
Sets and Predictive Control. PhD thesis, University of
Cambridge, 2000.

[15] M. Kvasnica. Efficient Software Tools for Control and
Analysis of Hybrid Systems. PhD thesis, ETH Zurich, 2008.

[16] M. Kvasnica, P. Grieder, M. Baoti¢, and M. Morari.
Multi-Parametric Toolbox (MPT). In Hybrid Systems:
Computation and Control, pages 448—462, 2004.

[17] J. Lofberg. YALMIP : A toolbox for modeling and
optimization in MATLAB. In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

[18] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert. Constrained model predictive control: Stability and
optimality. Automatica, 36(6):789-814, June 2000.

[19] K. G. Murty. Linear Complementarity, Linear and Nonlinear
Programming. Sigma Series in Applied Mathematics.
Helderman Verlag, 1988.

[20] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-
and-cut approach to global optimization. Mathematical
Programming, 103(2):225-249, May 2005.

