
Computer Supported
Coordination

Peter H. Carstensen

This Ph.D. dissertation was made by Peter H. Carstensen at Department of
Computer Science, Roskilde University, Denmark. The work was con-
ducted in the period from January 1993 through December 1995, and
defended in public in March, 1996.

Table of contents

Table of contents

Preface and acknowledgments...7

Part I: Introduction and case..11

1. Introduction ..11

1.1 The problem addressed ...16
1.2 Research approach ..18
1.3 My personal background...26
1.4 How to read this dissertation...27

2. Related research ...31

2.1 Dimensions characterizing the field of CSCW34
2.2 Studies of cooperative work..35
2.3 Conceptualization of cooperative work38
2.4 Evaluation of use of CSCW systems40
2.5 Development methodologies...42
2.6 Design of CSCW systems for synchronous use......................43
2.7 Design of CSCW systems for asynchronous use44
2.8 Architectures and platforms for designing CSCW systems....46
2.9 The position taken...47

3. The Foss Electric work setting studied...50

3.1 Foss Electric..51
3.2 The S4000 project ...53
3.3 Complexity of the S4000 project ..59

Part II: Analysis and modeling...63

4. Cooperative work and its coordination ..63

4.1 Complexity: An occasion for cooperation63
4.2 The emergence of ‘coordination’..68
4.3 Approaches to coordination work ...70
4.4 Findings from the Foss Electric field study82
4.5 My approach to coordination ..83

3

Table of contents

5. The Concept of Coordination Mechanisms86

5.1 Background...87
5.2 Activities providing input for the framework.........................91
5.3 Coordination mechanisms ..92
5.4 Towards a first conceptualization of coordination work95
5.5 Overall facilities of coordination mechanisms100
5.6 Related approaches ...103
5.7 Characteristics of ‘real life’ coordination mechanisms105
5.8 Linking of coordination mechanisms108

6. The bug form: An example of a real-life
coordination mechanism ..111

6.1 Software testing ..113
6.2 The physical work setting...115
6.3 The overall facilities provided ..117
6.4 The overall organization of the work....................................120
6.5 Roles involved in the software testing and correction..........123
6.6 The bug form and the binder ..124
6.7 A state-transition model for the bug form mechanism127
6.8 A procedural description of the bug form mechanism130
6.9 The flow of the bug form mechanism from a roles and

actors perspective..141
6.10 Objects of coordination work reflected144
6.11 The interrelationhips between the

coordination mechanisms ...147
6.12 The nature of the support provided.......................................149

7 . The Coordination Mechanisms Concept as a means for
analyzing cooperative work ...157

7.1 Overall requirements for methodologies and conceptual
frameworks for analyzing cooperative work.158

7.2 Requirements for analysis methodologies and
frameworks derived from the field study..............................162

7.3 Advantages and disadvantages of using the Concept of
Coordination Mechanisms ..164

7.4 Improvements of the conceptual framework169

4

Table of contents

Part III: Towards computer support...173

8. Requirements for computer-based support of the coordination of
software testing...173

8.1 Overall requirements for support of the coordination of
software testing ...175

8.2 Requirements for a mechanism supporting
the bug handling process...181

8.3 Reflections on usability and generality.................................205

9. A prototype of a computer-based coordination mechanism...........210

9.1 The overall functionality provided by BRaHS211
9.2 A scenario for the use of BRaHS ..222
9.3 The prototype considered a coordination mechanism...........224
9.4 Evaluation of the prototype...230

10. Object-oriented modeling of a coordination mechanism:
An experiment ..232

10.1 The object-oriented approach..234
10.2 An object-oriented model of the bug form mechanism236
10.3 The usability of object-oriented modeling techniques..........245

11. General recommendations for design of computer-based
coordination mechanisms ...251

11.1 Modeling the coordination aspects of the work252
11.2 Towards useful requirements for coordination support257
11.3 Design of coordination mechanisms260
11.4 Evaluation of coordination mechanisms266

Part IV: Conclusion...269

12. Lessons learned ..269

12.1 The Concept of Coordination Mechanisms270
12.2 Coordination aspects of cooperative work............................273
12.3 Analysis of coordination ...275
12.4 Requirements for computer support of cooperative work276
12.5 Design of computer-based coordination mechanisms279

5

Table of contents

13. Future research...283

14. Conclusion ...290

Danish summary..295

Bibliography ..301

Appendix A: A list of papers produced...319

6

Preface

Preface and acknowledgments

This dissertation documents the research activities conducted during my
Ph.D. work. The work began in January 1993 and lasted for three years.
The work was supervised by associate professor Finn Kensing,
Department of Computer Science, Roskilde University.

During the work I have been employed at Systems Analysis
Department, Risø National Laboratory, where I, most of the time, was as-
sociated to the Esprit Basic Research Project COMIC lead by Tom
Roddon, Lancaster University, and having Kjeld Schmidt as project man-
ager at the Risø site.

The work is related to the research field called CSCW (Computer
Supported Cooperative Work). The central overall questions regards what
characterizes cooperative work, and how we by means of computer sys-
tems can support the cooperation, e.g., by providing better communication
facilities, provide improved monitoring and awareness possibilities to the
actors, and reducing the complexity of the coordination activities to be
conducted by the involved actors.

The work presented has mainly been concerned with contributing to the
establishment of a conceptual framework for understanding the basic
mechanisms used when mutually interdependent actors coordinate their
distibuted activities. To establish such a framework, several different ac-
tivities have been conducted. These include analyzing existing CSCW-
applications, conducting a field study of coordination of cooperative work,
and designing a computer-based coordination mechanism.

Much of my thesis work has been published elsewhere, either as tech-
nical reports, reviewed conference proceedings papers, or journal papers.
These papers have been used as input for the present dissertation. Some
chapters are revised versions of one of these papers, or an integration and
elaborated discussion of the themes addressed in these papers. Other
chapters are completely new in the sense that the theme or content have
not been published elsewhere. A list of all the papers published elsewhere
can be seen in Appendix A.

7

Preface

During the work, I have collaborated, or in other ways communicated,
with a lot of supportive people. This dissertation would definitely have
looked differently, if I had been excluded from having detailed discus-
sions on ideas, concepts, prototype sketches, etc. with a large number of
bright people. I have also learned a lot from writing papers together with
others. I would like to take the oppotunity to thank the following for their
support and collaboration:

I am indebted to Finn Kensing for supervising the thesis work. I have
learned a lot from our discussions on ideas, drafts, etc., and from his con-
structive comments to papers and preliminary versions of the chapters pre-
sented here. When I complained being too busy and stressed, Finn was
also the person who taught me, that the person to blame was me.
Decisions on what to be involved in is taken by me and nobody else.
Simple, but true.

Two of my colleges and close friends should have a very warm and
special thank: Thanks to Kjeld Schmidt and Carsten Sørensen. I am in-
debted to both of you. I have written several papers together with both of
you, and you have taught me a lot about doing scientific work. We have
had a lot of great fun together, and an abundance of fruitful discussions on
almost all the topics addressed in this dissertation. Thanks to Kjeld for in-
troducing me to the CSCW community and for previous collaboration on
the Work Analysis (cf. Schmidt and Carstensen, 1990) that opened my
eyes for the usefulness of sociologically inspired approaches within soft-
ware development. Kjeld is the visionary person establishing the ideas of
coordination mechanisms that are central in this dissertation. I am grateful
to Carsten for his good guidance on writing papers and doing thesis work.
Carsten has supported me by reading and commenting on a draft version
of this dissertation, and he has done a great job in helping me polishing
my poor English.

Also warm thanks to Tuomo Tuikka for a fruitful collaboration on pa-
pers on reuqirements for support of coordination of software testing, to
Thomas Albert for implementing the prototype, BRaHS, that is presented
in this dissertation, and to Liam Bannon for his involvement in the evalua-
tion of the prototype.

I had a series of good discussions with Anker Helms Jørgensen in the
early phases of my thesis work on how to combine the areas of CSCW and

8

Preface

HCI (Human-Computer Interaction). Although the HCI aspects ended not
playing a major role in the final approach taken, I would like to thank
Anker for his support.

Jesper Simonsen and Morten Nielsen supported me by providing a long
series of good, relevant, and constructive comments on a draft version this
dissertation.

I have also written papers in collaboration with a number of other peo-
ple: Thanks to Hans Andersen, Henrik Borstrøm, Monica Divitini, Betty
Hewitt, Birgitte Krogh, and Carla Simone. I appreciate all our discussions
in relation to these papers. They have been fruitful and informative, and I
have learned a lot from each of you.

During the work, a lot of people have been working for periods in our
group at Risø: Apart from Kjeld and Carsten also Hans, Monica, Betty,
Birgitte, Carla, Tuomo, Morten, and Steffen Herskind have been associ-
ated to the group. Thanks to all of you for a long series of good discus-
sions at our monthly meetings. We addressed many interesting topics,
both within what is addressed here and other areas of relevance. And we
had—and still have—a lot of great fun too!

 Much of the research presented here could not have been conducted
without the invaluable help of numerous people at Foss Electric in
Hillerød. The stay at Foss Electric gave me a great opportunity to ask
thousands of questions concerned with their work. Thanks for letting me
fumble around. A special thank to Marianne Malmstedt, Carsten Paludan,
Ole Pflug, and Jørn Ørskov.

The Man-Machine Interaction group at Risø, where I work, has been
supportive, both by funding my Ph.D. work, and by allowing me time to
write up this dissertation. A special thank to the group manager Leif
Løvborg for his suppport.

The work has been partially conducted within the Esprit Basic
Research Project COMIC. Thanks to all the colleges involved in the
COMIC project. The meetings with this group of people was my first en-
counter with a larger part of the European CSCW community. It was
great.

The Danish Science Research Council (SNF) and the Danish Technical
Research Council (STVF) have partially funded the work reported here
through their support to the Centre for Cognitive Informatics (CCI), and

9

Preface

through the support from SNF to the CSCW work at Risø (the KOMEK
project).

Thanks to the Øresunds group for good support through valuable com-
ments to papers and presentations at the Dragør seminar in August 1994,
and to the reviewers at the following conferences: COPE IT’ 93, HCI
International’ 93, IRIS’ 94, HCI International’ 95, and IRIS’ 95. And to
the reviewers of The Scandinavian Journal of Information Systems, and
The CSCW Journal.

 Last, but definitely not least, a warm thank to my wife, Helle. She has
supported me tremendously in many ways, basically by being a safe base
pleasantly making me aware, that there is indeed a life besides that of
working on a dissertation.

Although it would have been impossible to write this dissertation with-
out the great support from all the people mentioned above, it is, of course,
clear that all the errors, mis-interpretations, mistakes, etc. in this disserta-
tion is my personal responsibility. I am the only one to blame!

Peter Henrik Carstensen

Risø, December 1995

10

Part I Introduction and case

 Part I:
Introduction and case

1. Introduction

A general trend in modern work settings seems to be that the work be-
comes more and more complex. Complex in the sense that it is character-
ized by complex problem solving and decision making activities, rule in-
terpretation, cooperative work processes, etc. The demands for flexibility,
production time, complexity in products, etc.—as it is for example reflect-
ed in the trends of “concurrent engineering” (Helander and Nagamachi,
1992)—are increasing. Also the structure of the context of most work set-
tings are becoming more and more differentiated, and is characterized by
an increase in the speed of the changes (Ciborra, 1993). Many activities
and situations to be handled in modern work settings often have an in-
escapable aspect of contingency (Suchman, 1987).

The increasing complexity of the work activities to be conducted, the
situations to be dealt with, and the structures to be handled, requires in-
volvement of several or many actors in the work processes. Since individ-
uals have limited capabilities and capacities, the work arrangement to
conduct the work becomes cooperative. Cooperative work arrangements
emerge in response to different requirements and must serve different
generic functions such as augmentation of capacity, differentiation and
combination of specialities and techniques, mutual critical assessment, and
combination of perspectives (Schmidt, 1994c).

In the literature several approaches for when to define a work setting as
cooperative exists (e.g., Ehn, 1988; Johansen, 1988; Schmidt, 1991a)
spanning from, in the one extreme, viewing almost all work as coopera-
tive, to, in the other, only consider work as cooperative if all actors are
aiming at the same common goal.

When several actors having different competencies, perspectives,
strategies, etc. are involved in a cooperative work arrangement they be-
come mutually interdependent in their work, i.e., “cooperative work oc-

11

Part I Introduction and case

curs when multiple actors are required to do the work and therefore are
mutually dependent in their work and must coordinate and integrate their
individual activities to get the work done” (Schmidt, 1991a, p. 305).
Mutual interdependence means not only sharing resources, but also that
the involved actors mutually rely on the quality, feedback, etc. produced
by the other actors, i.e., no matter how the division of labor is organized,
the actors involved will be interdependent and need to interact with each
other.

In order to get the work done, they have to coordinate, schedule, inte-
grate, etc. their individual activities. The actors have to coordinate their
work along the salient dimensions of who, what, where, when, how, etc.
(Strauss, 1985). The need for coordination can be handled by use of sev-
eral means, from purely ad hoc communication and coordination in the
one extreme to completely pre-programmed and rigid work-flow systems
in the other (Schmidt, 1994c). One of the central researchers in the organi-
zational theory, Mintzberg, has an even simpler approach to the needs for
coordination. He argues that as soon as two persons work together, coor-
dination must be achieved “across brains”, and that every organized hu-
man activity gives rise to “two fundamental and opposing requirements:
the division of labor into various tasks to be performed, and the coordina-
tion of these tasks to accomplish the activity” (Mintzberg, 1983, p. 2).

When relatively few actors are involved, or the complexity of the work,
or its coordination, is low the actors can achieve the required coordination
by means of modes of interaction and conventions from everyday social
life such as talking, gesturing, monitoring the situation, etc. (Mintzberg,
1983; Schmidt, 1994c). Several studies indicate that actors in these situa-
tions are extremely good at handling the complexity of coordinating by
means of ad-hoc modes of interaction (cf. e.g., Harper et al., 1989b; Heath
et al., 1993). Problems will, however, often emerge in highly complex
work when, for example, the cooperative work setting includes many geo-
graphically distributed actors; when there are a large number of inter-
twined activities, actors, or resources; when different areas of competence
with different conceptualizations and goals are involved; or when the
work is carried out over a long time-span (see for example Carstensen et
al., 1995b). In addition to this, new technology (e.g., communication
technology) provides a new potential for cooperation introducing new
problems as well.

12

Part I Introduction and case

Mintzberg argues that the fundamental ways in which organizations
coordinate their work can be described as five mechanisms: mutual ad-
justment, direct supervision, standardization of work processes, standard-
ization of work outputs, and standardization of worker skills. These are
ordered, i.e., when the work becomes more complex the “favored means
of coordination shifts from mutual adjustment to direct supervision to
standardization, preferably of work processes, otherwise of outputs, or
else of skills, finally reverting back to mutual adjustment” (Mintzberg,
1983, p. 7).

To summarize: The need for cooperation emerge due to the need for
more resources (capacities, competencies, perspectives, etc.) than one ac-
tor can provide. Furthermore, from the construct of a cooperative work
setting raise the need for coordination, the actors have to coordinate their
inter-related distributed activities. Opposing requirements appear:
Increased complexity calls for more actors (i.e., more division of labor),
but more division of labor calls for more coordination.

This dissertation is based on the assumption that more and more work
settings will be characterized by complex cooperative work arrangements,
and these will require complicated coordination activities. It thus becomes
relevant to discuss how computer-based technology can be used to support
the activities concerning coordination in complex work settings. This is
the central topic in this dissertation.

The primary goal is to contribute to the development of a conceptual
framework for supporting designers in analyzing and designing computer-
based mechanisms supporting actors in cooperative work arrangements in
coordinating their distributed activities. The second goal is to formulate
preliminary, general, normative statements for: 1) how can complex coop-
erative work settings be analyzed in order to establish a basis for design-
ing computer-based coordination support systems, and 2) which kind of
computer-based tools supporting coordination work will it be relevant to
provide.

My work has taken a design oriented approach to the CSCW research
field. I have approached CSCW as a discipline concerning the problems of
how to conceptualize, design, and construct computer-based systems sup-
porting the coordination aspects of a complex cooperative work setting
(Bannon and Schmidt, 1989). The emphasis has been on understanding

13

Part I Introduction and case

cooperative work as a distinctive form of work (Schmidt, 1991c) with “the
objective of designing adequate computer-based technologies” (Bannon
and Schmidt, 1989, p. 5). The approach taken is systemic, inspired by, for
example, Simon’s ideas of inner and outer environments (Simon, 1981;
Simon, 1983), the Cognitive Engineering tradition (e.g., Rasmussen,
1986), Checkland’s ideas of soft systems (Checkland, 1981), and my own
work on work analysis (cf. Schmidt and Carstensen, 1990).

So, what is meant by cooperative work and its coordination? This will
be discussed in details in chapter 4, but let me here briefly introduce the
approach applied:

Cooperative work is handled by a cooperative work arrangement. The
central characteristic of a cooperative work arrangement is not that it is
sited in one organization, that the actors share resources, or that the actors
are physically located in the same room, etc. Instead, a cooperative work
arrangement is constituted by the field of work, i.e. constituted by “the
part of the world that is being transformed or otherwise controlled by the
cooperative work arrangement [...] all cooperative work is based upon in-
teractions mediated through the changing state of a common field of
work” (Schmidt, 1994c, p. 15). This further implies that “‘cooperative
work’ does not imply any notion of shared goals or conviviality, but rather
people engaged in work processes related as to content” (Bannon, 1993, p.
11). A cooperative work arrangement is often established across organiza-
tional boundaries.

The actors in a cooperative work arrangement are handling task and
activities that are closely related, intertwined, and interdependent, and, at
some level, characterized by having a common objective with respect to
the purchaser of the services provided. The term ‘coordination’ covers ac-
tivities to be conducted in order to handle needs that arise because inter-
twined tasks and activities conducted by individual interdependent actors
have to be coordinated, meshed, scheduled, integrated, etc. This is similar
to what Strauss calls ‘articulation work’ (Strauss, 1985).

In this dissertation the term coordination is used in a broader meaning
than the connotations usually implied. Coordination activities cover as-
pects such as scheduling, meshing, and allocating resources, negotiation of
resource allocations, monitoring work activities, resolving inconsistencies,
etc. I furthermore include activities concerning the establishment of means

14

Part I Introduction and case

supporting coordination activities. For example, development of a form
supporting the coordination of distributed test activities, or refinement of a
classification scheme used to classify software bugs in a distributed coop-
erative work setting, will be considered coordination work (both examples
are discussed in chapter 6). A simplification could be to state that, all
‘extra activities’, or overhead costs, arising because no omniscient and
omnipotent actor exists (Schmidt, 1994c, p. 10) are regarded as coordina-
tion.

co•or•di•nate (adj., n.), adj., n., v., -nat•ed, nat•ing. —adj. 1. of the same
order or degree; equal in rank or importance. 2. involving coordination. 3.
Math. using or pertaining to systems coordinates. 4. Gram. of the same
rank in grammatical construction, as Jack and Jill in the phrase Jack and
Jill, or got up and shook hands in the sentence He got up and shook hands.
—n. 5. a person or thing of equal rank or importance; an equal. 6. Math.
any of the magnitudes that serve to define the position of a point, line, or
the like, by reference to a fixed figure, system of lines, etc. 7. coordinates,
articles of clothing, furniture, or the like, harmonizing in color, material, or
style, designed to be worn or used together. —v.t. 8. to place or class in the
same order, rank, division, etc. 9. to place or arrange in a proper order or
position. 10. to combine in a harmonious relation or action. —v.i. 11. to
become coordinate. 12. to assume proper order or relation. 13. to act in
harmonious combination. Also, co-or’di•nate. [1635-45, co- +
(SUB)ORDINATE] —co•or’di•nate•ly, co-or’di•nate•ly, adv.
—co•or’di•nate•ness, co-or’di•nate•ness, n. —co•or•di•na•tive, co-
or•di•na• tive, adj.

Figure 1-1: Examples of usual connotations of the term ‘coordination’
(RandomHouse, 1987, p. 447).

The approach could be accused to be too naive, and a simplification of
what should be considered relevant. Many aspects are not explicitly ad-
dressed, for example the social structures in a work setting, the psychoso-
cial work environment (e.g. Keller, 1994), the sociocultural aspects of
work, or the power structures in the organization of the systems design
(e.g. Ehn and Kyng, 1987). The approach is, however, chosen to have a
pragmatic approach reflecting, that I consider CSCW a design discipline.
It is not to deny the importance of the aspects excluded. It is rather to
simplify the approach enough to actually make it useful for my purpose.

The rest of this chapter will first discuss the research question ad-
dressed in this dissertation in further detail. Then the research approach is
described. Section 1.3 will discuss what different readers can gain from
reading this dissertation and introduce the structure of the rest of it.

15

Part I Introduction and case

1.1 The problem addressed

As argued above, much of everyday work is so complex and demanding
that it needs to be done as a cooperation among several, mutually interde-
pendent, actors. This implies an increased need for coordinating dis-
tributed, complex, and interdependent activities. Involvement of many
actors—often separated in time and space—implies that the common
means for coordination activities (gestures, talk, mutual awareness, etc.)
become insufficient in many situations.

It seems reasonable to consider how computers can be used to support
the coordination activities in complex cooperative work settings. To do so
analyst and software designers needs tools supporting them

(1) in approaching and understanding the coordination aspects of
complex work settings,

(2) in identifying which aspects of the cooperation and coordination
activities are relevant to consider computer support of, and

(3) by providing structures and guidelines for design of computer-
based mechanisms supporting the coordination activities.

The purpose and idea in this dissertation is to contribute to the concep-
tual framework for understanding the mechanisms mutually interdepen-
dent actors use when coordinating their activities. The framework might
later develop into a more general theory of cooperative work and its co-
ordination. To be useful for analysts, the framework must be applicable
when addressing actual real-life work settings. And to be useful for de-
signers, the framework must be applicable when considering design of
computer-based support. Analysts and designers might not necessarily
need the same framework, but seeing the framework as supporting ‘the
transition from an analytical approach to a construction approach’, I as-
sume that a common framework supporting both will be useful. The
framework will, therefore, be discussed from both an analytical and con-
structive perspective.

When studying cooperative work activities it becomes clear that com-
munication is the basic means for coordination. It could then be obvious to
‘only’ develop more sophisticated computer supported communication
channels. The framework should, however, also address the structure of
interaction in order to be able to reflect how the structure of the coopera-

16

Part I Introduction and case

tive interaction can be supported. That is, to let the computer tools go
deeper into the structure of the coordination activities in order to provide a
more sophisticated support. A basic assumption is that by aiming at a
deeper and more conceptual understanding of what characterize coordina-
tion work we will be able to build better and more useful coordination
support tools. Since the allocation of functionality between the human
actors and the (computer-based) coordination mechanism probably will be
changed during the (re-)design process, the conceptual framework should
not define how the functionality should be divided up.

Phrased differently we can say that, coordination activities are (and be
in the future too)so complex, that they need to be supported by tools.
These tools can be designed by applying several strategies. A first strategy
is to let the actors handle it themselves since human actors are good at
adapting to new situations and handle coordination on an ad hoc basis. A
second is to automate (‘amplify’) already existing means (artifacts). A
third is to support what we can immediately observe in cooperative work
settings, i.e., support personal communication and interaction. And a
fourth strategy is to provide support tools that are based upon, and thus
reflects, a conceptual understanding of what characterizes coordination
activities. It is assumed that potentially the last will result in the most use-
ful support although it must be recognized that in all cooperative work
settings some of the coordination will be handled in an ad hoc manner,
and that in many settings the actors will constantly invent and use new
means for coordination, i.e., we cannot base coordination support on pre-
programmed rigid workflow-like systems only.

Besides the contribution to the establishment of a conceptual frame-
work for coordination mechanisms this dissertation also have a more con-
struction oriented approach. Namely to, based on empirically studies, dis-
cuss general requirements for computer-based coordination mechanisms,
discuss the usability of the conceptual framework for analyzing coopera-
tive aspects of complex work settings, and to discuss the applicability of
one of the commonly used software development paradigms (the object-
oriented) for modeling the coordination aspects of work.

The what has been conducted, and approach for doing this, will be de-
scribed further in the following.

17

Part I Introduction and case

1.2 Research approach

The research reported in this dissertation has basically been empirically
driven, and has had a design oriented approach to CSCW. The central set
of problems in CSCW is seen as the problem set related to: Which aspects
of activities concerning coordination of cooperative work are relevant for
designing computer-based support systems? How can we conceptualize
these aspects? And what should characterize a good and useful computer-
based coordination support system?

I consider myself a member of a construction discipline (design of
computer-based systems), who has recognized a lack of knowledge in our
design and construction methods, frameworks, and techniques. To over-
come some of these I have entered other disciplines to search for inspira-
tion to improve our conceptual understanding of some of the characteris-
tics of the work settings that we build systems for.

First let me briefly mention the activities that has been conducted dur-
ing the dissertation work.

1.2.1 What has been done

The aim has been to contribute to the establishment of a conceptual
framework for coordination mechanisms, and discuss its usability as a tool
for analyzing cooperative aspects of complex work settings. Furthermore,
general requirements for computer-based coordination mechanisms, and
how these can be achieved, have been discussed. To fulfill these aims a
number of activities have been conducted:

First, a preliminary understanding of essential characteristics of com-
plex cooperative work and its coordination was established through litera-
ture studies. This was, for example, literature on complexity (e.g., Simon,
1973; Simon, 1981; Woods, 1988), theories of cooperative work and its
coordination (e.g., Strauss, 1985; Malone and Crowston, 1990; Schmidt,
1991b), and ethnographic studies of work (e.g., Suchman, 1987; Harper et
al., 1989b).

A first version of a conceptual framework was then established. This
framework addressed mechanisms supporting coordination activities of
cooperative work by providing and mediating the information structures
needed for the coordination, and by prescribing and stipulating the flow of

18

Part I Introduction and case

either the work itself or the coordination work. This was done in collabo-
ration with several colleagues and was first described in relation to the
Esprit project COMIC (cf. Schmidt et al., 1993; Simone and Schmidt,
1993). The first version was established through analyzing existing CSCW
applications (Andersen et al., 1993), a critical walk-through of existing
frameworks and analysis methodologies (Carstensen and Schmidt, 1993a),
a re-analysis of earlier field studies (Simone and Schmidt, 1993), and re-
lating to literature on similar topics (e.g., Malone and Crowston, 1990;
Johnson, 1992; Bogia et al., 1993b).

To test, improve, and refine the conceptual framework, I conducted a
field study of a group of software designers at Foss Electric A/S, a Danish
manufacturing company. The study explicitly addressed how distributed
activities were coordinated in a complex, cooperative work setting (cf.
Carstensen, 1994; Carstensen and Sørensen, 1994a; Carstensen et al.,
1995b).

The analysis of the data from this study has been used for several dif-
ferent purposes: To discuss how different artifacts can be considered
mechanisms supporting coordination work (Carstensen et al., 1995b), to
improve and refine the conceptual framework of Coordination
Mechanisms (Simone and Schmidt, 1994; Schmidt et al., 1995), to reflect
on the use of a conceptual framework when analyzing coordination activi-
ties (Carstensen, 1995b), and to discuss how the notion of ‘organizational
context’ can be described in terms of inter-related coordination mecha-
nisms (Schmidt et al., 1994; Schmidt et al., 1995).

After analyzing the data from the field study, overall requirements for
computer support of the coordination of software testing was promoted
(Carstensen and Sørensen, 1994b; Carstensen et al., 1995c). These re-
quirements were related to the specific situation of coordinating software
testing at Foss Electric, but they were also generalized and transformed
into general requirements for coordination mechanisms.

Since the object-oriented paradigm is becoming ‘the norm’ in modern
software design and the coordination mechanisms observed at Foss
Electric had several characteristics identical to those of objects in the ob-
ject-oriented paradigm, an experiment was conducted. The idea behind
this experiment was to test the usefulness of object oriented analysis
methods for describing real life coordination mechanisms. A re-analysis of

19

Part I Introduction and case

one of the coordination mechanisms observed at Foss Electric was con-
ducted by means of an object-oriented approach (Carstensen et al.,
1995a).

Finally, the implementation of a horizontal prototype of a system sup-
porting software testers and designers at Foss Electric in distributed regis-
tration of software bugs and automatic routing of relevant information on
the bug to other actors involved (Carstensen and Albert, 1995). This was
done in order to qualify a discussion on overall requirements for coordina-
tion mechanisms, and illustrate preliminary ideas for how these can be re-
flected in the user interface.

January 1993

January 1994

January 1995

•Literature survey
• Critical review of existing
 analysis methodologies and frameworks

•Analysis of existing CSCW applications
• First version of a conceptual framework

• Field studies at Foss Electric
•Analyses of coordination of sw-design
• Analyses of artifacts used

• Requirements for computer support of
 coordination of sw-testing
•Improved version of the conceptual framework

•Analysis of the usability of the framework
 as an analysis tool
• Object-oriented modeling of
 coordination mechanisms
•Design of a horizontal prototype

• Final reporting and discussion

Figure 1-2: An overview of the most important activities conducted during
the dissertation work. It should be noticed that the actual process have
included much more iteration and parallelism than what is illustrated here.

As it can be seen from the description above this dissertation attempts
to span from contributing to a framework characterizing coordination
work, then use the frame as an analysis tool, and finally illustrate and dis-

20

Part I Introduction and case

cuss how the framework can be used for designing computer-based coor-
dination support.

1.2.2 The approach applied

As mentioned earlier, the research reported in this dissertation has basical-
ly been empirically driven. Furthermore, CSCW has been considered a de-
sign and construction oriented discipline, i.e., the goal has been to im-
prove the development of computer support of cooperative work. Apart
from mainly being empirically driven the work reported in this disserta-
tion has had a qualitative approach. The work was an iterative process of
analyzing existing CSCW systems, conceptualizing findings, collecting
data through observations, interviews, etc., applying the conceptual
framework for analyzing findings, establishing requirements for computer
support based on the lessons learned from the qualitative analyses, refin-
ing the framework, and applying the conceptual framework for designing
computer support.

As argued by, for example, Keyser (1992) and Siemieniuch (1992)
field studies are required in order to obtain a coherent understanding of
how computer tools can support product development in a manufacturing
setting.

As mentioned earlier, a field study of a group of software designers and
testers involved in a large instrument design project were conducted. Most
of the ideas, concepts, requirements, etc. discussed in this dissertation is
explicitly or implicitly related to the findings from this field study. The
study focused on software design, especially activities concerning the co-
ordination of the complex process of testing, diagnosing, and correcting
software errors. The aim of the study was to analyze and characterize co-
operative work in a large work setting where a number of participants with
different perspectives, competencies, etc. had to deal with the complexity
and uncertainty of testing a software product and determining when the
product was acceptable.

The field study was exclusively based on qualitative data collection
techniques. Qualitative interviews (Patton, 1980), observations, study of
project documentation, and participation in project meetings were the pri-
mary techniques used to collect the data. A total of approximately 16 in-
terviews have been conducted, and I participated in 6 project meetings.

21

Part I Introduction and case

Approximately 50 man-hours were spent observing the design and test
work. The documentation studied were mainly a requirement specification
(about 300 pages), design sketches, a pile of bug reports (the binder con-
tained more than 500 different bug forms), spread-sheet based work plans,
and short descriptions of organizational procedures (2-5 pages each).

 A triangulation of data sources (Beraneck, 1994) was conducted by
comparing observational data, interview data from different actors with
different perspective, and data from document inspection. To further
strengthen the validity of the findings a triangulation of collection meth-
ods (interviews, observation, and document inspection) was applied.
During the analysis of the field study I had several meetings with the de-
signers. At these meetings I confronted designers, managers, etc. with my
findings and interpretations of their activities. These meetings led to
changes and refinements, both in my understanding and analysis descrip-
tion, and in the designers understanding of their own activities. I, further-
more, compared the results with other analyses conducted at groups at
Foss Electric working closely together with the designers I studied (cf.,
e.g., Borstrøm and Sørensen, 1994). Triangulation has been done both
through use of multiple analysts (Beraneck, 1994) and through participant
consultation (Coolican, 1994).

The approach applied in the field study was conducted by following
some the ideas in and using the concepts of Work Analysis (Schmidt and
Carstensen, 1990). Here the analysts apply a systems approach, and de-
scribe the functions offered by the system and the conditions under which
they must be provided. The approach is inspired by, among others,
Simon’s understanding of artificial worlds (Simon, 1981), Checkland’s
ideas of soft systems (Checkland, 1981), and the tradition of cognitive
engineering (cf., e.g., Rasmussen, 1986). The field study was also inspired
by the ethnographic approaches (for example Bucciarelli, 1987; Bentley et
al., 1992a; Hughes et al., 1993). The assimilation and understanding of the
nature of the work studied has been achieved through frequently shifting
perspective. It is while attempting to abstract and conceptualize an ob-
served phenomena, or when searching for examples (real life phenomena)
of the conceptual structures that the understanding of the essential charac-
teristics of the work setting has been achieved. In establishing a model for
user-developer communication Kensing and Munk-Madsen (1993) argue

22

Part I Introduction and case

for similar shifts between the concrete and the abstract in order to obtain
an overview of and to understand a domain of discourse.

Data was collected during interviews, attendance in meetings, etc. by
means of tape recording, and taking notes. All tapes were transcribed af-
terwards. The data analysis was based on abstractions and conceptualiza-
tions of the patterns found in the data, followed by attempts to use these
conceptualizations on other parts of the data material. The process of
shuttling among data exploration, pattern generation, theoretical consider-
ation, and pattern fill-in, suggested by Andersen et al. (1992), has partly
been used as inspiration. During the analysis and interpretation of the phe-
nomena, observations, statements from actors etc. the Concept of
Coordination Mechanisms (previously also named Mechanisms of
Interaction, cf., Schmidt et al., 1993; Schmidt and Simone, 1995) has been
applied—and improved in an iterative process. The concept is introduced
in chapter 5.

The findings from the field study was also used for establishing re-
quirements for computer support of the coordination of software testing at
Foss Electric, and as a basis for designing a prototype for such a system.
Both the requirements and the prototype design have been evaluated in
two ways: First, these were presented to and discussed with some of the
testers and designers at Foss. This led to a number of changes in the re-
quirements and to a list of suggestions for improvement of the prototype.
Second, both the requirements and the prototype design have been pre-
sented to, and discussed with, experts and colleges within the area of
Human-Computer Interaction (HCI) and/or CSCW, for example Liam
Bannon, University of Limerick, Kjeld Schmidt, Risø, Carla Simone,
University of Torino, Carsten Sørensen, Risø, and Tuomo Tuikka,
University of Oulu. These sessions have functioned as a kind of heuristic
expert evaluation (cf. Nielsen, 1993). Qualitative input from these sessions
have implied several changes to the requirements and the design.

1.2.3 The nature of the results presented

A qualitative approach based on a single field study offers the obvious
strength of providing rich and detailed data, enabling a deep understand-
ing of the conditions under which work is performed. It does, however,
present a major limitation in terms of promoting statements of general va-

23

Part I Introduction and case

lidity. Mason (1989) calls this “The Fundamental Tradeoff in
Observational Research”. He argues for a distinction between, on the one
hand, richness of worldly realism, and on the other hand, tightness of
control. Qualitative research approaches as applied in the field enables us
to capture richness of worldly realism. Laboratory experiments which are
conducted in a restricted fashion with the purpose of testing the effect of a
very limited set of parameters do not provide such as richness, but have
the advantage of tightness of control over the parameters.

McGrath (1984) gives a similarly detailed discussion of research
strategies to be used when studying groups. He illustrates the ‘strategic
dilemma’ as he calls it as illustrated in Figure 1-3. McGrath concludes that
“field studies gain realism at the price of low generalizability and lack of
precision. Laboratory experiments maximize precision of measurement
and control of variables, at the price of lack of realism and low generaliz-
ability. Surveys have high generalizability but get it by giving up much
realism and much precision” (Ibid., p. 30).

Obtrusive
research
operations

Unobstru-
sive research
operations

Universial
behavior
systems

Particular
behavior
systems

Judgement
 studies

Laboratory
experiments

Experimental
 simulations

 Field
experiments

 Field
studies

 Computer
simulations

Sample
survey

Formal
 theory

Figure 1-3: An illustration of 8 research strategies, their approach and
limitations (Adapted from McGrath, 1984).

24

Part I Introduction and case

I have chosen the relevance and realism parameters as the essential.
Orlikowski (1993) presents a thorough argumentation for using a
grounded theory approach (Glaser and Strauss, 1967) combined with ideas
from the innovation literature for studying and developing general frame-
works for use of CASE tools. Following Yin (1989) Orlikowski calls the
technique “analytical generalization” to distinguish it from typical statisti-
cal generalization, and she continues, “here the generalization is of theo-
retical concepts and patterns. This generalization is further extended [...]
by combining the inductive concepts generated by the field study with in-
sights from existing formal theory” (Orlikowski, 1993, p. 310). Although I
have not used grounded theory, both the approach and the nature of the
phenomena studied and reported here are very similar to those reported by
Orlikowski. Flyvbjerg (1992) has a long and thorough discussion of the
generality of findings from case studies. He sets up five
“misunderstandings” regarding case studies. No. 2 of these states that
“you cannot generalize based on a single case. That is why the case study
cannot contribute to scientific progress” (Flyvbjerg, 1992, p. 138, my
translation). Based on Giddens (1984) and by means of examples of the
work of for example Freud, Marx, and Darwin, Flyvbjerg rejects the mis-
understanding and states:

“Correction no. 2: You can often benefit from generalizing based on a single case,
and the case study can very well contribute to the scientific progress via generaliza-
tion as a supplement or alternative to other methods. Formal generalization is over es-
timated as a source to scientific progress, whereas the ‘power of the good example’ is
under estimated” (Ibid., 148-149, my translation).

Mason (1989) argues that the purpose of research must be to provide
both the richness of detail and relevance of research problems studied, as
well as a certain rigor. I do not believe, that one empirical effort necessar-
ily needs to encompass both aspects, but I do recognize that since the re-
sults reported in this dissertation are drawn from a single field study, it
might within certain aspects be difficult to make claims concerning the
generality of the findings.

In order to characterize a research contribution Sørensen (1993) pro-
vides a useful structure: A two times two matrix with approach
(theoretical or empirical) on the on dimension and the result (analytical or
constructive) on the other dimension. My contributions filled into such a
matrix can be seen in Figure 1-4.

25

Part I Introduction and case

Theoretical
 approach

Emperical
 approach

Analytical
 result

Constructive
 result

1 2

3 4

• Approaches to
 coordination work

• Field study descriptions
• Conceptual framework
• Reflections on the
 usability of OO for
 modeling coordination

• Conceptual framework

• Conceptual framework
• Reflections regarding
 work analysis
• Requirements for, and
 design of, coordination
 mechanims

Figure 1-4: A matrix for characterizing research contributions presented in
this dissertation. Based on a similar figure from Sørensen (1993).

In terms of this matrix, I will argue that the research contributions pre-
sented in this dissertation falls into several of the squares, although most
of it is empirically driven, and thus belonging to the lower squares. The
descriptions from the field studies can naturally be placed in square 3,
whereas the reflections on requirements for computer-based coordination
mechanisms and on how a conceptual framework can be used to support a
work analysis must be placed in square 4. Also the conclusions from
object oriented modeling of a coordination mechanism is regarded as a
square 4 contribution. The literature survey of approaches to coordination
work is a square 1 contribution, whereas the contribution to the establish-
ment of a conceptual framework for coordination mechanisms can be
regarded as belonging to both square 2, 3, and 4.

Hence, this dissertation is mainly having an empirical approach and the
results are both analytical and constructive (normative).

1.3 My personal background

Before providing a guide for how to read this dissertation let me briefly
introduce relevant aspects of my personal background. I have since 1984

26

Part I Introduction and case

been involved in work on usability and user interface design (cf. e.g.,
Beyer et al., 1986; Carstensen, 1986). This work has mainly addressed
methodologies for designing and evaluating user interfaces, but has also
addressed how to identify ‘relevant’ requirements for computer based sys-
tems. From the late 1980’es, I have, in collaboration with Kjeld Schmidt,
been involved in establishing a conceptual framework to support work
analysis of complex work settings (cf. e.g., Schmidt, 1988; Schmidt and
Carstensen, 1990; Carstensen and Schmidt, 1993b; Carstensen and
Schmidt, 1993a). The intention behind this framework has been to provide
a systemic functional oriented approach to understanding a work system.
‘Functional’ must be understood in its broad sense, i.e., in terms of the
services a system provides to its purchasers. The framework was based on
a critique of the traditional (procedural oriented) approaches, and was
inspired by several well established traditions: Simon’s ideas of distinc-
tion between inner and outer environment (Simon, 1981; Simon, 1983);
Chekcland’s ideas of having several perspectives on soft system
(Checkland, 1981); The understanding of complexity and the systemic
approaches to work systems in the tradition of Cognitive Engineering
(e.g., Rasmussen, 1986; Woods, 1988; Woods and Roth, 1988); The early
work of Hammer (Hammer and Sirbu, 1980; Hammer, 1984); The critique
of the AI-tradition (e.g., Roth and Woods, 1989); etc. This is elaborated a
little further in section 5.1.

Apart from the academic basis, it might also be worth mentioning that
I, before starting at Risø as a researcher, have worked seven years as a
programmer and systems designer, followed by seven years in R&D labo-
ratories and a development support center. Here I mostly worked with re-
search, teaching, and consulting within the area of Human-Computer
Interaction.

1.4 How to read this dissertation

This dissertation is, of course, mainly thought of as reporting what I have
conducted and achieved. It is, therefore, basically written for CSCW re-
searchers. I have, however, attempted to address other possible readers
too. Very briefly I expect the following types of readers to gain from
reading (parts of) this dissertation:

27

Part I Introduction and case

• Researchers within the field of CSCW can be introduced to a con-
ceptual framework (towards a theory) for central aspects of cooper-
ative work, i.e., introduced to an attempt to model the structures co-
ordination is based on. (especially chapter 4 and 5). Furthermore,
they can be introduced to a field study of a type of cooperative work
rarely reported in the CSCW literature, namely a study of work
which is conducted over a long period of time, and characterized by
long periods of none of very little interaction among the actors
(chapter 3 and 6).

• Researchers within the software engineering field can gain from
being introduced to central characteristics and conceptualizations of
complex work that should be taken into consideration when design-
ing complex application systems, designing systems software, or
when developing new methods for analyzing, conceptualizing, and
designing computer-based systems (especially chapter 4, 5, 7, 9 and
10).

• Furthermore, is it believed that system analysts and designers can
get inspiration to include a new and relevant perspective when ana-
lyzing work settings or modeling systems to be used for cooperative
activities. The concrete and detailed example of a work analysis
(chapter 3, 4.3, and 6) is expected to be a source of inspiration for
system analysts and designers.

• Finally, I hope that consultants—in for example a development sup-
port center—can get inspiration to improve the frameworks and
methods currently used. For example by being introduced (in chap-
ter 10) to a discussion of how one of the trendy software engineering
paradigms (the object oriented) supports—and does not support—
the designers need for understanding and modeling coordination as-
pects of systems, or from seeing the example of a computer-based
coordination mechanism presented in chapter 9.

The dissertation is structured into four parts:

Part I (including this chapter) introduces the research field (chapter 2).
Since much of the following is based on a field study an introduction to
the work setting studied at Foss Electric is given in chapter 3.

Part II addresses aspects of the problems related to modeling coordina-
tion work. Cooperative work and its coordination is discussed in chapter 4

28

Part I Introduction and case

and the conceptual framework of coordination mechanisms is described in
chapter 5. An example of a coordination mechanism identified in the field
study is described in chapter 6. Part II is concluded (chapter 7) by some
reflections on how a conceptual framework can be used to support the
analysis of the coordination of complex cooperative work.

Part III discusses how computer support of coordination work can be
organized. Chapter 8 identifies requirements for computer support of some
of the coordination activities studied in the field study. In order to illus-
trate the ideas of computer-based coordination, chapter 9 provides a de-
scription of BRaHS, a horizontal prototype system. Chapter 10 illustrates
and discusses how this mechanism could be modeled by means of object-
oriented modeling techniques. Part III is concluded by a set of general
recommendations for how computer-based coordination mechanisms
should be designed (chapter 11).

 Part IV concludes the dissertation. Chapter 12 discusses which lessons
can be drawn from the work concerning establishment of a conceptual
framework, doing work analysis of coordination work, and how computer-
based support of coordination work should be designed. Chapter 13 dis-
cusses directions for future research in this field.

It is suggested that all readers read the Part I. For readers mainly inter-
ested in theory and conceptualizations relevant to CSCW, chapters 4, 5, 7,
12, and 13 will probably be the most interesting. To readers interested in
work analysis and how this can be done in practice, chapters 5, 6, and 7
are the most central. If the readers interests are more in the direction of
concrete design of systems supporting coordination work it is suggested to
read chapter 5, 6, 8, 9, 10, and 11.

As mentioned earlier much of the content of this dissertation is based
on papers that I have previously (co-)authored:

• Some parts of the descriptions in chapter 3 have previously been
published in Carstensen and Sørensen (1994a).

• Some of the approaches discussed in section 4.3 are previously dis-
cussed in Carstensen (1995a).

• The findings described in section 4.4 have previously been discussed
in Carstensen et al. (1995b).

29

Part I Introduction and case

• Chapter 5 aggregates findings reported in many different papers and
reports on the concept of Coordination Mechanisms. These are cited
in the chapter.

• The characteristics of the coordination mechanisms described in sec-
tion 5.7 and 5.8 are also discussed in Carstensen et al. (1995b) and
in Schmidt et al. (1995).

• Most of the analysis of a real-life coordination mechanism given in
chapter 6 have previously been published in Carstensen (1994).

• Parts of the discussion of overall requirements for work analysis
methodologies in section 7.1 have been published in Carstensen and
Schmidt (1993b), and the discussion on the usability of the Concept
of Coordination Mechanisms as a mean for analyzing coordination
work has been briefly started in Carstensen (1995b).

• Chapter 8 on requirements is partly based on Carstensen and
Sørensen (1994b) and Carstensen et al. (1995c).

• The prototype introduced in chapter 9 has been more thoroughly de-
scribed in Carstensen and Albert (1995).

• The experiment of object oriented modeling of a coordination mech-
anism and its results described in chapter 10 have previously been
published in Carstensen et al. (1995a).

A complete list of all papers I have considered relevant produced dur-
ing the work with this dissertation can be seen in Appendix A.

30

Part I Introduction and case

2. Related research

“Collaborative work is the core of our society,
wrought with difficulties and benefits. It is

clear that technology can change group work,
and there is a good possibility that it can result

in major enhancements to productivity. But,
there is a lot of work to do before we fully un-
derstand how to accomplish that. Trial and er-
ror from creative system builders is too slow a
discovery process. What is required is a better

understanding of the nature of group work, the
extent of the possibilities of the design space

of technology features, and evaluation of sys-
tems in use that leads to a theory of computer

supported co-operative work, which in turn
can help us direct subsequent invention of new

ways to do group work” (Olson et al., 1993).

As a research field, the field of CSCW (Computer Supported Cooperative
Work) is relatively new. A generally accepted definition has not yet been
established (cf. Bannon, 1993). There is still a lot of confusion and debate
of which overall research questions should be addressed. This chapter is
by no means an attempt to solve this. I will present what I consider the
most relevant dimensions for characterizing the field, and briefly intro-
duce the approach taken by some of the central players in these dimen-
sions. The aim is to relate my own position in the “map of CSCW” to
other traditions and approaches.

The literature contains, of course, many more or less different defini-
tions of what CSCW is, what groupware is, what characterizes groupware
technology, etc. Since many publications in the CSCW field contain their
own definitions it is more or less impossible to provide an overview. It ex-
ceeds the scope of this dissertation to go into detailed discussions of these
definitions, but a brief introduction to some of them might be relevant:

According to Grudin (1991) groupware, or CSCW systems, is defined
very differently by different researchers. Some will consider technology
providing access to shared files as CSCW systems (Crowley in Ensor,
1990); others will consider e-mail systems as CSCW systems (e.g., Kraut
in Ensor, 1990); whereas for example Bannon and Schmidt argue, that

31

Part I Introduction and case

CSCW systems must be based upon, and reflect, an understanding of the
cooperative aspects of the work to be supported, i.e., e-mail that do not
recognize any roles beyond the receiver and the sender is not to be consid-
ered a CSCW system (Bannon and Schmidt, 1989). E-mail and facilities
providing shared file servers, etc. should be seen as enabling technology.

The introduction of the CSCW field has also been used to argue for a
paradigm shift in software development. Grudin (1990) suggests that
CSCW can be an opportunity to stress the “importance of ‘workplace
democracy’—engaging the users or workers meaningfully in the design
process [... although] this time-consuming, labor-intensive approach may
not be equally appropriate for all development projects ” (Grudin, 1990, p.
101). Several have defined cooperative design as cooperative work and
used this to argue for seeing the tradition of Participatory Design (PD) as
an aspect of CSCW (e.g., Kyng, 1991). But, as argued by Bannon this
seem to add confusion to both fields rather than defining the field of
CSCW: “While certainly various forms of user involvement are important
to development of successful CSCW systems use of [PD] techniques or
ideas does not automatically signify any focus on cooperative work [...]
Nor, in many cases, are PD researchers interested directly in computer
support for the design practices they are proposing” (Bannon, 1993, p.
11). Like Bannon, I think it is a mistake to consider PD as part of CSCW
or vice versa. I would rather think of PD as a tradition that has developed
and introduced a number of approaches and techniques which, of course,
should be applied when designing CSCW applications.

Hughes et al. (1991) argue that CSCW should be seen as a paradigm
shift. Instead of seeing sociology as having a service role in CSCW,
CSCW should be seen as posing a challenge for sociology: “A new theo-
retico-empirical terrain is being formed, as much in the sociology of work
and organisations as elsewhere, and the interdisciplinary confrontations
invoked in CSCW can be a formative influence” (Hughes et al., 1991, p.
321). They then try to relate this to systems design without clearly defin-
ing what is meant by the term design. I do not find the paradigm shift dis-
cussion central to what is discussed in this dissertation, but like the PD
approach, this approach contains several useful propositions, for example
techniques for analyzing cooperative work, and a deeper and more coher-
ent understanding of the magnitude of aspects of a work situation that are
important to understand compared to traditional computer science.

32

Part I Introduction and case

Schmidt and Bannon have discussed useful approaches to CSCW in
several papers. This resulted in a definition focusing on the need for un-
derstanding the nature of cooperative work in order to establish a founda-
tion for designing information systems to support the work: “CSCW
should be conceived of as an endeavor to understand the nature and re-
quirements of cooperative work with the objective of designing computer-
based technologies for cooperative work arrangements. [...] in the con-
ception of CSCW proposed here—as a research area devoted to exploring
and meeting the support requirements of cooperative work arrange-
ments—CSCW is basically a design oriented research area. This is the
common ground. Enter, and you must change.” (Schmidt and Bannon,
1992, p. 11). The idea of considering CSCW primarily a design discipline
fits, as argued earlier, with my approach. This approach calls for an at-
tempt to establish a better conceptual understanding of what characterizes
cooperative work and its coordination.

The approaches mentioned above are only examples, but it should be
sufficient to illustrate that CSCW is not a well-defined research field yet,
and it might never become one.

The rest of this chapter will provide a brief introduction to some of the
topics and approaches included in the CSCW literature. Apart from the
CSCW field and other related areas this dissertation has also been inspired
by, and related to, the more traditional Computer Science and Information
Systems literature. I have, for example, prior to the dissertation work con-
ducted a long critical review of analysis methodologies within Computer
Science and the office automation tradition, and discussed the applicabil-
ity of these methodologies for modeling cooperative work (Carstensen and
Schmidt, 1993a). Whenever relevant, this literature is referenced, but this
chapter will not attempt to provide an overview of these fields.

The rest of this chapter will, of course, reflect which parts of the litera-
ture I have looked at, and this implicitly reflects the relevance of the litera-
ture. This might explain an eventual “lopsidedness” in the descriptions. I
have, furthermore, been involved in the Esprit Basic Research project
COMIC for three years, and have therefore been heavily influenced by
work conducted by CSCW researcher from Lancaster University,
University of Manchester, GMD in Bonn, University of Milan, University
of Limerick, and Risø.

33

Part I Introduction and case

2.1 Dimensions characterizing the field of CSCW

CSCW is a new research field. A generally accepted definition and frame
for how to classify the works within the field has not yet been established.
In this section I will present a preliminary set of dimensions characterizing
the CSCW field. The main purpose is to provide a frame for the introduc-
tion to the field given in the following sections.

Inspired by Johansen (1988), CSCW technologies are often character-
ized by means of a two-times-two matrix having synchronous vs. asyn-
chronous communication (time dispersion) on the one axis, and having
distributed actors vs. non-distributed actors (geographic dispersion) on the
other (cf. e.g., Baecker, 1993).

Synchronous
communication

Asynchronous
communication

Distributed
actors

Non-Distri-
buted actors

Electronic
meeting rooms

Mediaspaces

E-mail and conferencing

Workflow systems

Figure 2-1: An illustration of Johansen’s two-times-two matrix. For
illustration purposes a few examples have been inserted.

The two-times-two structure is very useful for characterizing CSCW
applications, although many of these have different facilities falling in dif-
ferent boxes. The structure is, however, insufficient to characterized the
research field of CSCW. It contains, for example, no structure for placing
all the field studies of cooperative work conducted within CSCW, and all
the work on applying theories from related fields (e.g., communication
theory) in order to improve our understanding of cooperative work is ex-
cluded too.

Inspired by the structure used in a CSCW paper collection edited by
Ronald Baecker (1993), the matrix for classifying CSCW-systems estab-
lished by Johansen (1988) and by the overviews of the CSCW field pro-
vided in Bannon (1993), Grudin (1991), and Ljungberg (1994), I will sug-
gest the following—non-orthogonal—dimensions to characterize the

34

Part I Introduction and case

CSCW-field: 1) Studies of cooperative work; 2) Evaluation of CSCW
systems in use; 3) Conceptualization of cooperative work; 4)
Development methodologies; 5) Design of CSCW systems for syn-
chronous use; 6) Design of CSCW systems for asynchronous use; And 7)
Design of architectures and platforms for CSCW systems design. The di-
mensions are visualized in Figure 2-2 below.

CSCW

Studies of
cooperative
work

Characterized
by synchronous
coordination

Characterized
by asynchronous
coordination

Conceptualizing
cooperative work

Based on
related theory

Empirically
based

Evaluation of
CSCW systems
 in use

Design of
synchronous
systems

Design of
asynchronous
systemsWorkflow

systems

E-mail
and
conferencing

Coordination
support

Shared
workspace

Mediaspaces

Organizational
memory

Development
methodologies

Architectures
and platforms

Analysis
methodologies

Electronic
meeting rooms

Design
methodologies

Architectures
Specification
languages

Usability

Changes in
work organization

Figure 2-2: A visual overview of the seven central dimensions suggested
for characterizing the research field CSCW. Each box contains one of the
non-orthogonal dimensions. The “topics” related to each of the dimensions
should be regarded as examples of typical themes related to the dimension.

As mentioned, the seven dimensions are not orthogonal. Most of the
research within CSCW could be related to several of the dimensions
(categories). The purpose of the dimensions has, however, mainly been to
impose a structure for introducing parts of the literature within CSCW!

The following sections each provide a brief introduction to some of the
approaches and works for each of the dimensions. I have chosen to men-

35

Part I Introduction and case

tion a specific body of work in the dimension (section) where I found it
most apparent. This will, of course, often be debatable. Those naturally
belonging in several dimensions are only mentioned in the most apparent
section.

2.2 Studies of cooperative work

The CSCW literature includes a lot of reports from field studies aiming at
providing a deeper understanding of the cooperative aspects of real-life
work or other important characteristics before designing software support.

Some of the most referenced are the studies of control work at the air
traffic control center outside London (cf. e.g., Harper et al., 1989b;
Hughes et al., 1993). The central findings in these studies were that har-
mony and good social relations among the air traffic controllers, and
awareness of each others strength and weaknesses among the controllers
were important for the handling of the work. Furthermore, the flight strips
used were analyzed as a communication medium and a means for mutual
awareness of current state of affairs. The flight strip analysis has later been
used as input for discussions of computer support of the work, and how
ethnographic studies can be used to inform systems design (Sommerville
et al., 1991; Bentley et al., 1992a).

At the London Underground some interesting studies have been con-
ducted of how actors in a control room are sensitive to, and monitor, activ-
ities within the local work area, while participating in different activities
(Heath and Luff, 1992). Heath, Luff and associates have conducted similar
studies of work in a dealing room in the City of London (Heath et al.,
1993). These studies illustrated the same awareness as the control room
study, but here the dealers were sensitive to general information provided
(‘open cries’) too. This often led to focused collaboration between dealers.
Examples from the control room and the dealer study have, furthermore,
been used to argue for a more flexible and more dynamic perception of
what constitutes “the work context” (Heath et al., 1995).

Suchman and Wynn (1984) have studied clerical workers and their use
of procedures in what is usually called procedural work. Their overall
finding is that “operational significance of a given procedure or policy on
actual occasions is not self-evident, but is determined by workers with
respect to the particulars of the situation at hand” (p. 152). Suchman fol-

36

Part I Introduction and case

lows this statement in her famous book on plans and situated action by il-
lustrating that making errors, improvisation, handling of exceptions, etc.
are typical characteristics of human activities, that most work is character-
ized by situated actions, and that plans thus are resources for actions only
(Suchman, 1987).

Most of the empirical studies in the CSCW field analyze work settings
involving many interdependent actors, but they primarily focus on the
work of relatively few. And the domains investigated are most often char-
acterized by a high degree of monitoring and regulating (often time-criti-
cal) activities among the actors (cf. the examples given above). Some
ethnographic studies of the cooperative aspects of work conducted over a
long time span do exist. For example Anderson et al. (1993) reports a
study of designers designing a feeder for a photocopier. They especially
address how the characteristics of the ‘organizational life’ affects the work
and thus must affect the design of support tools, etc. Our own studies
(Sørensen et al. , 1994; Carstensen et al., 1995b) have also addressed de-
sign work conducted over long time spans. Results from this will be dis-
cussed in the following chapters.

A more quantitatively oriented survey of cooperative work in software
development has been conducted by Kraut & Streeter (1995). They col-
lected data from 65 different projects focusing on means used for coordi-
nating the activities. Their conclusion was that the informal communica-
tion needs to be nurtured, and that tools and methods must provide support
for inter-personal communication to be supportive. They do, however,
also conclude that “direct contact between organizational members is not a
panacea for coordination problems in large software projects [...] Thus, a
large project will also need formal communication” (Ibid., p. 79).

The work mentioned in this section can all be regarded as contributing
to one of the other dimensions of CSCW, namely the conceptualization of
cooperative work (discussed further in the next section). Although it con-
tains very detailed descriptions, most of the work related to the air traffic
control study is, however, characterized by lack of conceptualizations and
abstractions. This seems to be against the ethnomethodological tradition.
Heath and associates have through their studies of London Underground
definitely contributed to a better conceptual understanding of cooperative
work. They have are to be honored for the focus on awareness as an im-

37

Part I Introduction and case

portant factor in cooperative work. Suchman and associates’ thorough
studies have contributed to our conceptual understanding of work by ex-
plicitly addressing the situated nature of all kinds of work (or rather hu-
man action in general). And our own work at Risø have primarily focused
on how to conceptualize central aspects of cooperative work.

So, most of the work categorized as “studies of cooperative work” here
could also be considered as contributing to “conceptualization of coopera-
tive work” discussed in the following.

2.3 Conceptualization of cooperative work

A number of models, theories, conceptual frameworks, etc. for under-
standing and conceptualizing cooperative work and its coordination have
been suggested. The basis for these are findings from field studies, appli-
cation of theories from related fields, or concrete experiences from model-
ing cooperative work settings. The most relevant of these will be thor-
oughly discussed in chapter 4. This section will briefly introduce some of
these models, theories, conceptual frameworks, etc.

Strauss was the first to explicitly distinguish between work and what he
calls ‘articulation work’. His work was based on, among others, empirical
studies of medical workers (Strauss et al., 1985). Strauss argues that in
order to handle the underlying interdependencies among the cooperating
and mutually interdependent actors, a set of ‘second order activities’
handling the articulation of activities and resources is needed. The actors
must, in often complex ways, articulate the plurality of tasks making up
their totality, and the relations of actors to tasks, i.e., mesh tasks, actors,
and organizational structures (Strauss, 1985). The approach is later out-
lined into a seven dimensional theoretical scheme for studying the articu-
lation of project work (Strauss, 1988).

Gerson and Star (1986) have used the work of Strauss to define articu-
lation work as consisting of all the tasks involved in assembling, schedul-
ing, monitoring, and coordinating all of the steps necessary to complete a
task. Leigh Star has later refined their approach further and established a
concept of Boundary Objects (Star, 1989), i.e., objects that are supportive
for a collaborative course of action. The conceptualizations provided by
Gerson and Star are based on findings from field studies and attempts to
model aspects of the work observed.

38

Part I Introduction and case

Inspired by Strauss, Gerson and Star, and others, Schmidt, myself, and
others have established a conceptual framework for understanding cooper-
ative work and its articulation (Schmidt, 1991b; Schmidt and Bannon,
1992; Schmidt, 1994c). This approach identifies a distinction between
field of work, work arrangement, and the work environment (Carstensen
and Schmidt, 1993b; Schmidt, 1994c), and it suggests a set of conceptual-
izations (objects of articulation) that are essential when modeling articula-
tion work (Schmidt et al., 1993; Schmidt and Simone, 1995). The concep-
tualizations suggested in the framework is derived from re-analyses of
existing field studies, studies of existing CSCW applications, and new
field studies. Also, theories of complexity and work modeling from the
Cognitive Engineering tradition (e.g., Rasmussen, 1986; Woods, 1988)
have inspired the development of the conceptual framework.

Malone and Crowston have also recognized the need for a set of con-
cepts based on “fruitful interdisciplinary connections concerning
coordination” (Malone and Crowston, 1990, p. 357) supporting design of
computer-based coordination support. They argue for a narrow definition
of coordination focusing on managing interdependencies. Based on a dis-
cussion of different kinds of interdependencies they conclude that these
are the unique aspect of coordination, and this is what is to be supported.
Malone and Crowston base their suggested conceptualizations on experi-
ences from designing a basic language for designing CSCW applications
(Lai and Malone, 1988), and on attempts to combine and apply theories
and frameworks from related research fields, e.g., linguistic (they refer-
ence Winograd and Flores, 1986; Flores et al., 1988), philosophy and
rhetoric (they reference Conklin and Begeman, 1988; Lee, 1990), or eco-
nomics (with references to unpublished work Murrey of Turoff).

Winograd and Flores (1986) have developed a perspective on coopera-
tive work inspired by ideas from linguistics. This ‘language / action’ per-
spective is used for understanding the different ‘speech acts’ going on in
cooperative settings. The speech acts are described and modeled in terms
of declarations and authorizations, requests, offers, acceptances, rejects,
and promises (Winograd, 1992). The perspective was a primary basis for
the design of The Coordinator (Flores et al., 1988). The approach is, as
mentioned, inspired by language/action having a language philosophical
basis, and conversation analysis derived from generalizations of empirical
findings. The work by Winograd and Flores have also been used for

39

Part I Introduction and case

establishing ideas of how to analyze and design computer support for
cooperative work (Kensing and Winograd, 1991). The work has thus con-
tributed to the dimension of CSCW I have called ‘Development method-
ologies’ (cf. section 2.5).

Since people do not strictly follow rules and procedures we should
instead model cooperation and cooperative work in terms of goals. This is
the overall conclusion in an approach to cooperative work and CSCW
systems suggested by Ellis and Wainer (1994). They offer, based on this
overall idea, a functionally-based taxonomy for understanding the kind of
support CSCW systems provide, or should provide. The dimensions in the
taxonomy are related to the support of 1) access to and sharing of data
space, 2) synchronization of activities, 3) communication, and 4) how to
handle the entire CSCW system. Ellis and Wainer do recognize that most
systems are, and should be, a mixture of the categories. The taxonomy is
established from a theoretical basis.

Many other approaches could be discussed here, especially if
approaches from related fields such as organizational theory or social psy-
chology are included. Mintzberg, for example, has established a model for
understanding the coordination going on in organizations in terms five dif-
ferent “coordination mechanisms” (Mintzberg, 1983). Mintzberg will be
briefly discussed in chapter 4, but apart from this, other approaches from
sociology (e.g., Sharrock and Anderson, 1986; Button, 1993), organiza-
tional theory (La Porte, 1975a; Thompson, 1983), cognitive engineering
(e.g. Rasmussen et al., 1994), etc. have been considered out of scope.

2.4 Evaluation of use of CSCW systems

One way of learning about cooperative work and how to computer support
it is, of course, by studying and evaluating how existing CSCW applica-
tions are used in real work settings. To illustrate this I will briefly mention
two well-known studies:

Based on involvement in several projects evaluating or designing ap-
plications Grudin has identified five factors contributing to groupware
failure: (1) actors were requested to do work they did not perceive benefit
for, (2) led to violation of social taboos and political structures, (3) did not
open up for the range of exceptions required, (4) were so complex that it
was almost impossible to learn from experience with previous systems,

40

Part I Introduction and case

and (5) design process had failed due to lack of intuitions for multi-user
applications (Grudin, 1989; Grudin, 1990).

As a counterpart Grudin has later published discussions on why group-
ware succeeds (Grudin and Palen, 1995). The previous findings are
reviewed and compared with new studies of using groupware tools for
scheduling meetings. It is concluded that improvements in the technical
infrastructure, an expanded functionality, the improvement of the user
interface, and the “peer pressure” for using the systems in modern group-
ware tools and their use patterns have resulted in an improved adoption to
the tools and an increased success rate. This has attracted a critical mass to
use the systems.

Another important and often referenced study is Orlikowski’s famous
study of the introduction and use of Lotus Notes in a large office in a ser-
vices firm. Her interest was to “investigate whether and how the use of a
collaborative tool changes the nature of work and the pattern of social
interactions” (Orlikowski, 1992, p. 362). Based on a long series of inter-
views and observations it was concluded that the way people act towards
and relate to new technology depends mainly on their understanding of it.
And since people have no understanding of the collaborative nature of
groupware, the technology will be interpreted as personal software. Thus
“a central aspect of implementing groupware is ensuring that prospective
users have an appropriate understanding of the technology” (Ibid., p. 368).
A second overall conclusion was that the structural properties (policies,
norms, etc.) influenced the utilization of the groupware technology. Work
settings based on competition and individual rewards will have few and
insufficient norms for sharing and cooperating. Without some “shared
norms groupware will likely be used primarily for advancing individual
productivity” (Ibid., p. 368).

41

Part I Introduction and case

2.5 Development methodologies

The penetration of CSCW as a research field has implications for people
discussing how to organize software development projects. The CSCW
center at Lancaster University has, based on lessons learned from a series
of field studies, argued for the use of ethnographers in the software devel-
opment process (Sommerville et al., 1991; Bentley et al., 1992a; Hughes
et al. , 1992; Hughes, 1993). The basic arguments are that the kind of in-
formation ethnographers can provide is very important for understanding
the cooperative (and social) aspects of working life, and that ethnogra-
phers can substitute users in a ‘user-centered’ design.

The same series of studies also pinpointed some of the limitations of
the ethnography (Shapiro, 1994). The conclusion here was that ethnogra-
phy used isolated will provide as simplistic a picture as other approaches.
Instead Shapiro argues for hybrid work forms including ethnography,
cognitive science, participatory design, computer science, etc.

The studies of how existing CSCW applications are used (e.g., Grudin,
1989; Orlikowski, 1992) have also provided input for how to organize the
development of CSCW applications (cf. previous section).

As mentioned the work by Winograd and Flores on the language/action
approach (cf. section 2.3) has also been used by Kensing and Winograd
for establishing ideas on how to analyze and design computer support for
cooperative work (Kensing and Winograd, 1991). The result is an exem-
plification and discussion of how a language/action perspective can be
used for structuring and analyzing observations of the flow of work and
the conversations encountered. Furthermore, it is briefly discussed how
techniques from the Scandinavian participatory design tradition (e.g.,
Bjerkenes et al., 1987; Andersen et al., 1990) can be used for re-designing
the work and the computer systems.

Holt (1985; 1988) discuss how a graphical language based on ideas
from Petri Nets can be used to build systems supporting coordination, or
build “coordination technology” as he calls it. Holt mainly discusses a
notation for specifying coordination technology, and provides only few
ingredients for a development methodology, apart from introducing “a
new formal graphical ‘language of plans’, called diplans, whose newness
lies in the meaning it brings to consciousness, rather than in its encoding
of meanings already there” (Ibid., p. 124).

42

Part I Introduction and case

Finally, some of my own findings from the field study at Foss Electric
have been used for reflecting upon requirements for support of the analy-
sis of complex cooperative work (Carstensen, 1995b). These requirements
will be discussed further in chapter 7.

A concluding remark in this section might be that very limited litera-
ture seems to explicitly address methodologies for analysis and design of
computer-based systems supporting the cooperative aspects of work.
Although this is not exactly the core of this dissertation, conceptual
frameworks for modeling cooperative work and methodologies for design-
ing CSCW applications are closely related. Chapter 7 will therefore
include some methodological reflections too.

2.6 Design of CSCW systems for synchronous use

I have chosen to distinguish between CSCW systems intended to be used
in a synchronous manner and systems to be used asynchronously. Of
course, many systems provide facilities for both types of interaction. This
section will discuss approaches for CSCW systems for synchronous use,
and section 2.6 will relate to interesting approaches for designing CSCW
systems for asynchronous use.

One of the prevalent approaches to design of systems to support syn-
chronous interaction and cooperation is the idea of establishing a shared
workspace. The idea is, based on lessons from early What-You-See-Is-
What-I-See systems (e.g., Stefik et al., 1987), to provide the users with all
their individual and familiar tools. These should be integrated in a com-
puter-based system by which the users can communicate, interact, cooper-
ate, share workspaces (like documents and boards), etc. dynamically over
space constraints (Ishii and Miyake, 1991). The goal is to provide a
“seamless collaboration media” (Ishii et al., 1994). The illustration sys-
tems typically contain shared workspaces where the actors can see each
others manipulations, video cameras so the actors can see each other,
voice transmission allowing oral communication, etc. Some more simple
systems provides only some of the facilities, e.g., shared whiteboard facil-
ities (e.g., Pedersen et al., 1993), or video conferencing systems (e.g.,
Isaacs et al., 1994).

Another tradition concerns collaborative writing, i.e., systems that
enables a number of users distributed in space to work on the same docu-

43

Part I Introduction and case

ment at the same time, e.g., GROVE (Ellis et al., 1991), or ShrEdit (Olson
et al., 1990). Research in this field has focused on, for example, what
characterizes collaborative writing processes (e.g., Posner and Baecker,
1993), how to support awareness in synchronous writing (e.g., Baecker et
al., 1993), or how to support that co-authors offer and make use of infor-
mation to and from each other (Beck and Bellotti, 1993).

A third approach is the idea of establishing a media space integrating
video and audio technology with network technology so that face-to-face
communication can be supported although the actors are distributed in
space. Xerox’s RAVE system (Gaver et al., 1992) is the most well-known.
This system has been used for a number of studies resulting in discussions
on, for example, control mechanisms in this kind of systems (Dourish,
1993), how privacy influences the use of, and can be handled in, media
spaces (Bellotti and Sellen, 1993), ideas for supporting awareness (Gaver,
1991), and how to establish a joint frame of reference for the interaction in
such systems (Gaver et al., 1993).

2.7 Design of CSCW systems for asynchronous use

As for the synchronous systems a long series of systems and design pro-
jects exists. Only a few, representing some central approaches, will be
mentioned in this section.

Some of the first systems (approaches) that were called CSCW were e-
mail and conferencing systems. Engelbart was one of the first to discuss
these ideas (cf., Engelbart and Lehtman, 1988). E-mail and conferencing
systems have existed and been used for several years, and a lot of experi-
ences from using them exists (e.g., Murrel, 1983). They will not be dis-
cussed further here.

Some CSCW systems are labeled ‘organizational memory’, i.e., “the
record of an organization that is embodied in a set of documents and arti-
facts” (Conklin, 1992, p. 133). Here focus is on how the data (or artifact)
oriented paradigm for recording information can be expanded to include
relevant recording of the 1) context in which the result have been pro-
duced, and 2) the process followed when producing these results. The
central idea is to build systems supporting traceability, reuse of ideas,
establishing consensus, etc. An example of such systems is Answer
Garden (Ackerman and Malone, 1990) that provides facilities for routing

44

Part I Introduction and case

questions within an organization to relevant experts, or gIBIS which sup-
port discussing, establishing, and keep track of the design rationale for a
software design project (Conklin and Begeman, 1988). A comparable
system is EGRET (Johnson, 1992) that supports ‘exploratory group work’
(dynamic and unpredictable) in software engineering by providing a
structure of schemes describing tasks, specifications, etc. EGRET keeps
track of the variations by offering functionality for listing registered devi-
ations from the schemes.

Another predominant approach is the idea of developing work flow
systems that aims at automating or supporting the flow of tasks, data, ac-
tors, and recurrent or non-recurrent events in order to improve the effi-
ciency and effectiveness of organizations (Cruse, 1992). In this approach
(or paradigm) organizations are seen as networks of intertwined flows of
work rather than of physical entities and structures (Winograd, 1992). The
basic units used for modeling the work thus become the workflows.
DOMINO (Kreifelts et al., 1991b) is an example of a system in which
office processes are modeled in terms of information flows including con-
current flows and processes and alternatives courses of activity. The
Coordinator (Winograd, 1986) mentioned earlier is a workflow modeled
in terms of ‘conversations’ (requests and offers, agreements, assertions,
and assessments). So, although The Coordinator is not a typical workflow
system it is often labeled as such.

The last approach is a characterized by aiming at supporting the coor-
dination and cooperation going on. The idea is to make models of the
work processes and then specify different kinds of support for these.
Focus has often been on planning and structuring the work, and then spec-
ify models of the work in specification languages, rules, PERT-charts, etc.
(Swenson et al., 1994). Such systems are usually shells or environments
that can be ‘programmed’ for a specific situation. An early example is
Officetalk (Ellis and Nutt, 1988). It was intended to support cooperative
management and preparation of office documents. It contained facilities
for handling in and outgoing mail, defining different forms to be used, etc.
A newer example is ConversationBuilder (Kaplan et al., 1992b) which
provide “appropriate mechanisms for the support of collaboration rather
than specific policies. Policies can be built out of mechanisms, if the right
mechanisms are provided” (Bogia et al., 1993a). The conversation for
action theory (Winograd and Flores, 1986) has been used as a basis, and

45

Part I Introduction and case

ConversationBuilder is basically based upon an understanding of both
work and coordination work, and that these on the one hand are inter-
twined and on the other hand need to be supported ‘orthogonal’ to each
other. ConversationBuilder have active support of “orthogonality. By this
we mean searching for ways of supporting tasks while remaining in some
sense orthogonal to the work of the tasks themselves” (Kaplan et al.,
1992a, p. 1). A third interesting system is Regatta (Swenson et al. , 1994).
It provides support for planning work processes. This is done by modeling
the communication required to coordinate the relevant tasks. The model-
ing is intended to be done in an iterative process by the users themselves:
“process plans can be created and modified by the end user allowing users
to experiment and find the best processes” (Ibid., p. 16).

Most of the systems discussed in this section can, of course, be used for
synchronous interaction too, and could thus have been categorized in sec-
tion 2.6 as well. A central characteristic for the systems mentioned here is,
however, that they contain facilities for asynchronous interaction.

2.8 Architectures and platforms for designing CSCW
systems

Several of the ‘platforms’ specified for supporting the development of
CSCW systems are mentioned above. Both The Coordinator,
ConversationBuilder, and Regatta can be defined as platforms for building
CSCW applications.

Some have attempted to specify a language including structures that
specifically supports the development of CSCW applications. The most
well-known example is the specification language OVAL (Malone et al. ,
1992) which is intended to be a general notation for expressing coordina-
tion work. The basic primitives (objects, views, agents, and links) are gen-
eral and at a very low level. We have earlier critiqued OVAL for not re-
flecting the relevant primitives used when coordinating work in actual
work settings at a proper semantic level (cf., Schmidt et al., 1993), i.e., the
primitives do not reflect the conceptualizations of the essential compo-
nents in coordination work at a level ‘natural’ to the user.

Others have discussed what kind of requirements the nature of CSCW
application sets up for the basic software (operating system, database sys-
tem, communication protocols, etc.). Some of these have discussed the

46

Part I Introduction and case

implications for the ‘distribution technology’. Cooperating CSCW appli-
cation users will be separated geographically in the future. This will have
implication (Rodden and Blair, 1991).

Shen and Dawan (1992) have explicitly addressed control aspects of
CSCW applications, and others have discussed how architectures support-
ing CSCW must be organized (e.g., Bentley et al., 1992b; Jeffay et al.,
1992). Based on these discussions and ideas attempts to build basis plat-
forms for CSCW systems exist (e.g., Trevor et al., 1993).

2.9 The position taken

To place my own work in one of the categories used for structuring this
chapter is very difficult, exactly as it has been for many of the mentioned
works. If one category should be chosen for placing the work presented
here it would be ‘Conceptualization of cooperative work’. The basic idea
has been to contribute to a better conceptual understanding of what char-
acterizes cooperative work, especially its coordination.

Several of the activities conducted in order to fulfill this idea would,
however, naturally belong to other categories. I have spend much effort in
studying cooperative work, establishing requirements for computer sup-
port, and designing a horizontal prototype. So, taken individually many of
the papers I produced forming a basis for this dissertation would be placed
in other categories, such as ‘studies of cooperative work’ (Carstensen,
1994; Carstensen and Sørensen, 1994a; Carstensen et al., 1995b),
‘evaluation of CSCW systems’ (Andersen et al., 1993), ‘development
methodologies’ (Carstensen and Schmidt, 1993a; Carstensen and Schmidt,
1993b; Carstensen et al. , 1995a; Carstensen, 1995b), and ‘design of asyn-
chronous systems’ (Carstensen and Sørensen, 1994b; Carstensen and
Albert, 1995; Carstensen et al., 1995c).

As mentioned earlier, I consider myself belonging to the information
systems tradition, and I consider CSCW—and thus what I have done—as
mainly design oriented, i.e., the aim is to improve the design of computer-
based support systems.

Hirschhiem and Klein (1989) identifies four prototypical paradigms for
information systems development: The functionalist paradigm concerned
with explanations of social order and integration, need satisfaction, and

47

Part I Introduction and case

rational choice. It focuses on how elements in a social system interact to
form a whole. The social relativism paradigm is characterized by seeking
“explanation with in the realm of individual consciousness and subjectiv-
ity, and within the frame of reference of the social actor as opposed to the
observer of action. From such a perspective roles and institutions exists as
an expression of the meanings which men attach to their world” (Ibid., p.
1201). The radical structuralist paradigm aims at transcending existing
social and organizational arrangements focusing primarily on economic
power. The neohumanism paradigm focuses on barriers to emancipation,
especially ideology, power, and social constraints.

OBJECTIVISM SUBJECTIVISM

ORDER

CONFLICT

Social
Relativism

NeohumanismRadical
Structuralism

Functionalism

Figure 2-3: The four paradigms for information systems development
according to Hirschhiem and Klein (1989).

It is not obvious where in this matirx to place the work I have con-
ducted. Most of the work should probably be placed in what Hirschhiem
and Klein call functionalism: The work on establishing a conceptual
framework (cf. chapter 5 and 7), the work on requirements for a computer-
based system (cf. chapter 8), the work on modeling and designing a com-
puter-based system (see chapter 9 and 10), and the normative recommen-
dations for design of coordination mechanisms discussed in chapter 11 can
all be regarded as concerned with explanations of social order and inte-
gration, need satisfaction, and rational choice, i.e., functionalism accord-
ing to Hirschhiem and Klein. There are, of course, aspects that can be seen
as radical structuralism is this. The nature of the field study conducted
could, however, be categorized as both functionalism and social rela-

48

Part I Introduction and case

tivism. Here the approach addresses both the individual social actor and
the social system as a whole.

In the terms of Dahlbom and Mathiassen (1993) I consider myself and
my approach as mainly belonging to what they call the ‘Intervention
School’ (in opposition to the Systems Construction and the Systems
Evolution approaches). As the name says the approach is characterized by
intervention:

“It is our job to look for structured domains of information usage, where stable forms
of information or stable procedures for processing information exists or can be estab-
lished. The identification of relevant structured domains requires technical compe-
tence, but the activity is carried out as an integral part of evaluating different propos-
als for a new management system. The new computer system is viewed as one impor-
tant part of a wider organizational system” (Ibid., p. 117-118).

The development of a conceptual framework (described and discussed
in chapter 5 and 7), and the recommendations presented in chapter 10 are
intended to be contributions within an intervention oriented approach. I
consider the ideas presented in this dissertation as concerned with design
of computer-based systems, but the ideas of computer-based coordination
support will only make sense if they are viewed as an important part of a
wider organizational system. The same goes for the field study findings
reported: The abstractions and conceptualizations should mainly be made
by actors having some technical competence, but they are only relevant
and useful if they are understood and used in relation to a broader context.

According to Dahlbom and Mathiassen, the intervention approach is a
natural next step in a thesis-antithesis-synthesis process going from con-
struction to evolution to intervention. Thus, in the intervention approach
the designer is still basically an actor solving problems by means of
approaches from the construction and evolution paradigms.

49

Part I Introduction and case

3. The Foss Electric work setting studied

“You see: Because you are working ‘down
here’ in one corner of the code you only en-

capsulate yourself, and don’t feel responsible
for the overall structure. If the project don’t
have an extremely good coordination and a

strong person to ensure that everything is co-
ordinated, the functionality ‘disappears

between the modules’. No one remember it.
That’s the problem when we are as many soft-

ware designers as in the S4000 project. It is
problematic to consider too many designs and

designers. That’s why I say that two is fine,
but four is a mess.”

(Software designer at the S4000 project)

As mentioned in chapter 1, much of the discussions and reflections pre-
sented in this dissertation departure from a field study conducted at Foss
Electric. This chapter provide a general introduction to Foss Electric and
the S4000 project which has been specifically studied. The study mainly
addressed a group of software designers working in the S4000 project.
This chapter will provide a descriptive approach. The aim is only to intro-
duce the field study before its results are discussed later.

A large scale manufacturing project is a very complex human activity
involving a multitude of people with different areas of competence. A
huge amount of decisions are to be made. The actors are mutually interde-
pendent and they must coordinate their activities, allocate resources,
schedule future activities, etc. The S4000 project was certainly no excep-
tion from this. The instrument to be developed was very complex, the
project organization was composite, it included many actors with different
perspectives, and it required a lot of coordination activities. During the
project the actors invented and adopted several new mechanisms to sup-
port them in handling the coordination.

Because this was a study of design and test work, the field of work was
in a number of ways different from, for example, work consisting mainly
of monitoring and regulation activities. The work studied was neither
time- nor safety-critical. It had a very important constructive, as opposed

50

Part I Introduction and case

to analytical, element since the ultimate goal was to specify an instrument
which can be manufactured within a broad range of constraints. Hence, the
focus was on cooperative aspects of a design process carried out in a large
scale setting, involving people with different areas of competence over a
long time span. Design and implementation of the first version of S4000
lasted approximately 2 1/2 years and involved more than 50 actors. Apart
from obtaining a general understanding of the work performed, the main
objective of the field study was to identify and characterize artifacts aim-
ing at reducing the complexity of the coordination work activities.

The analysis was conducted during the design of version 2 of the sys-
tem. The field study and the preliminary data analysis lasted a total of six
months and was exclusively based on qualitative data collection tech-
niques such as qualitative interviews (Patton, 1980), observations, study of
project documentation, and participation in project meetings. As men-
tioned in section 1.2.2 16 interviews were conducted, and I attended
approximately 6 project meetings and a number of informal ad hoc meet-
ings. Approximately 50 man-hours were spent observing the development
process, and I have had 5 meetings with the some of the software design-
ers later where we have discussed my analysis and ideas for how to use
the findings. The approach was inspired by perspectives promoted in sev-
eral other research efforts, for example Bucciarelli (1987). The analysis
was furthermore organized according to the guidelines in the Work
Analysis (Schmidt and Carstensen, 1990), and the conceptual framework
provided here was used for modeling the work observed.

First the company is introduced. Then the S4000 project, especially the
software group, is characterized. The chapter is concluded with a brief
introduction to the aspects that made the S4000 project so complex and
demanding. An introduction to Foss Electric and the S4000 project similar
to the one given here can be found in Carstensen and Sørensen (1994a).
Carstensen (1994), and Carstensen et al. (1995b) also contains brief intro-
ductions to the field study.

3.1 Foss Electric

Foss Electric is a Danish manufacturing company developing, producing,
and marketing equipment for analytical measuring of quality parameters
of agricultural products. Equipment for measuring quality parameters of

51

Part I Introduction and case

agricultural products is a highly specialized field. The research, develop-
ment, and production is localized in Denmark with subsidiary companies
in England and Germany. Sales, service and distributors are spread all
over the world. The Foss Electric corporation employs approximately 700
people.

 The products manufactured are used for measuring the compositional
quality of milk (the fat content, the count of protein, lactose, somatic cells,
bacteria, etc.), the composition and micro biological quality of food prod-
ucts, and for measuring grain quality. The measurement technologies are
typically infrared, fluorescence microscopy, or bacteriological testing. The
customers are most often laboratories, slaughterhouses, dairies, etc.

There are only a few companies in the marketplace and Foss Electric is
in their highly specialized field the largest in the world. Thus, when
designing and producing new instruments, they mainly compete with
themselves. Due to the degree of high market specialization, the few com-
petitors on the market, and an increasing centralization of laboratories, the
innovation towards new, better and faster measuring techniques is one of
the most important strategic goals for the company. Research and devel-
opment are essential activities.

Foss Electric has implemented concurrent engineering (cf. e.g.,
Helander and Nagamachi, 1992) yielding integration between manufactur-
ing functions throughout the development process. Hence the organization
is very much structured in terms of projects. These projects typically
includes specialists with competence in fine mechanics, hardware and
software design. In some projects also specialists in optics and chemistry
are involved. The development from idea to final product involves a num-
ber of intermediate products: (1) A product concept defining the overall
architecture and interaction between the involved technologies; (2) a few
functional models (mock-ups); (3) five to ten prototypes of the instrument
used for verifying detailed ideas and designs; and (4) a test series of five
to ten instruments in order to test manufacturability of the product.

The field study concentrated on one of the large projects Foss Electric
has recently accomplished, the System 4000 (S4000) project.

52

Part I Introduction and case

3.2 The S4000 project

The objective of the S4000 project was to build a new instrument for ana-
lytical testing of raw milk (See Figure 3-1). It was the first ‘system’ Foss
Electric produced, i.e., an instrument in which several instruments are in-
tegrated and can be plugged in and out. Compared to previous instruments
for testing milk, the S4000 system introduced measurement of new
parameters in the milk (e.g. urea and critic acid) and the measurement
speed was to be improved significantly compared to previous products.

Figure 3-1: The S4000 system being tested in the Quality Control
department.

The S4000 was the first product with an Intel-based 486 PC build-in.
The configuration, control, and operation of the instrument should be
made via a Microsoft Windows user interface, i.e. a graphical user inter-

53

Part I Introduction and case

face using mouse and keyboard. The software complex contained more
than 200.000 lines of C-code. The software was organized in approximate-
ly 25 modules distributed in 15 different application running on the
Microsoft Windows platform. The instrument consisted of approximately
8000 components grouped into a number of functional units, such as:
Cabinet, pipette unit, conveyer, PC, other hardware, flow-system, and
measurement unit. More than 50 different people were involved in the
project, which lasted approximately 2 1/2 years (for version 1 of the
S4000 system).

The core personnel, involved in the design included a number of de-
signers from each of the areas of mechanical design, electronics design,
software design, and chemistry. Added to this was a handful of draught-
persons and several persons from each of the departments of, production,
the model shop, marketing, and top management.

3.2.1 The overall course of the software design for the S4000

The facilities to be provided by the S4000 instrument was originally con-
sidered to be a an aggregation of three to four existing instruments. It was
therefore expected that the software to a large extent could be ported from
these instruments. Furthermore, the complexity of designing the software
required for the Windows interface was underestimated. Therefore, the
software group originally included only three to four designers. This
group started out by making an overall architecture design, and by
specifying the required functionality in some detail. This was done using a
preliminary requirement specification and specifications from previous in-
struments as a basis. During this work it was realized that the software
design would require more effort than originally estimated. More design-
ers were successively included in the group. After approximately a year,
the software project manager was taken off the project, and an external
consultant was requested to review the plans and to define a proper level
of ambition for the software design. During this work, some of the ideas
of working cycles, use of bug reports, etc. (discussed later) were invented.
After the review, the plans were changed and some of the software facili-
ties were postponed for version 2. The architecture design was revised and
frozen, and the group started to work on the detailed design, implementa-
tion, and test. This, and the rest of the development work, was organized

54

Part I Introduction and case

in short controllable cycles (see section 3.2.3). During the last 15-17
months the software design group had a stable size of approximately 7-8
designers, each having rather clear responsibilities related to the design
and implementation of one or more specified modules. It is interesting to
notice, that there was no software group manager during the one and a half
years. It is, furthermore, important to notice that the new ‘structured’ way
of organizing the work was new to the designers. From previous projects
they were used to being mainly on their own, i.e., they could plan, orga-
nize and document their work as they found it most useful without obey-
ing certain pre-specified rules or specification standards. Previously, the
coordination required between the involved software designers was basi-
cally handled in an ad hoc manner without use of standardized procedures.

The development of version 2 of the S4000, which was the work I stud-
ied, lasted approximately 9 months and was organized in 5 working cycles
(platform periods). Three to six software designers were involved in this
project, each having quite clear responsibilities related to a number of
modules. First phase in this project was a negotiation between the soft-
ware design group and people from the marketing department on what to
include in version 2. When this was done one of the software designers
decided for each new facility (or correction) which software module it
should be placed in. Since each of the designers were responsible for one
or more modules it was then clear who was to correct what. Plans were
then made for when this should be done. After this most of the work con-
cerned detailed design, implementation and testing.

3.2.2 The S4000 software design group

During the S4000 project a group of between four and twelve software
designers were working on designing, implementing, and testing the soft-
ware. All the software designers had an educational background as soft-
ware or electronics engineers, or as computer scientists. Most of them had
at least five years experience in designing software for instruments. To
handle the complexity of the software design work and its coordination
the software designers organized the work in different ways which will be
discussed later. Different roles were also defined, relating to the organiza-
tion of the work. These were:

55

Part I Introduction and case

(1) Software designers.

As mentioned between four and twelve software designers were
involved in S4000. All software designers were working as
designers, i.e., they were responsible for designing, implement-
ing, maintaining, and correcting bugs in one or more of the soft-
ware modules. Hence, when a development or correction task
was related to a specific module the designer ‘automatically’
became responsible for it.

(2) Spec-team.

The spec-team was a group of three software designers responsi-
ble for diagnosing reported bugs and deciding how to handle each
of the bugs. The members of the spec-team in the S4000 project
were appointed so that all the three main “layers” in the software
were represented: One had deep knowledge on aspects regarding
the user interface and the used file structures, etc. One was expe-
rienced in designing the algorithms used for computing the mea-
suring results. And one was very experienced in developing soft-
ware interfacing with the network, the hardware, and the external
devices to be controlled by the software.

(3) Platform master.

The software design was organized in working periods called
“platform periods” (described in details in the following section).
At the end of each platform period, the Platform master was
responsible for managing and coordinating all the activities
involved in integrating the outcome of the working period. He
was, among other things, responsible for verifying the corrections
of the software made by the designers, i.e., control that the
reported bugs had been dealt with. The platform master was
always one of the designers in the project, and the role was taken
alternately by the software designers involved in the project.

(4) Project plan manager.

In most of the project period the software group did not have a
dedicated manager. Instead they appointed one among themselves
as responsible for maintaining a project plan spreadsheet. This
could be regarded as a rolling project plan for the software devel-
opment. The sheet contained information on: (1) Which tasks

56

Part I Introduction and case

there are to be accomplished and a reference to a de tailed de-
scription of the task; (2) the estimated amount of time per module
for each task; (3) the responsibility relations between modules
and software designers; (4) the relation between the tasks and
which working period (platform period) they are planed to be fi-
nalized in; (5) and the total planned work hours per platform pe-
riod for each software designer. The role and function of the pro-
ject plan spreadsheet will be discussed further in chapter 6. The
project plan manager was one of the three members of the spec-
team.

(5) Testers.

Testers were the actors involved in the concrete testing of the
software embedded in the S4000 instrument. The testers could be
affiliated in several different departments at Foss Electric. They
had thus a very different background and approach to what func-
tionality the software should provide, and what the most impor-
tant characteristics of the software were (e.g., usability, stability,
correctness, maintainability, etc.). They were typically software,
hardware, or mechanical designers involved in the project, or
they were employed in the departments of quality assurance,
marketing, service, maintenance, etc. Apart from the software
designers approximately 15 ‘external’ people were involved in
testing the software. Some of these only implicitly, since they
were involved in testing the S4000 in general.

(6) Central bugs file manager

At any given point in time of the S4000 project, one of the soft-
ware designers was responsible for organizing and maintaining
the central bug file, a ring binder containing copies of all reported
bugs and organized according to their status. Ahead of each inte-
gration period the central file manager was responsible for
informing the platform master on which bugs had been reported
as corrected since the previous platform integration period. The
role and function of the bug reports and the binder will be dis-
cussed in details in chapter 6.

57

Part I Introduction and case

3.2.3 The software design working cycles

During the project the software designers involved realized, that they had
severe problems in coordinating and integrating their activities, and in in-
tegrating the software modules. They explicitly stated that they needed
stipulations for the control and coordination of integration and meshing of
the software in the S4000 project. The idea of ‘software platforms’ were
invented by the designers themselves to support monitoring and control-
ling the integration of software pieces and modules.

The software platform is a concept including a number of artifacts,
written procedures, conventions, etc. Originally a software platform was
just a point in time where all software designers stopped all design activi-
ties and started integrating their bits and pieces. Later on, assisting arti-
facts and organizational procedures were added. The period between two
software platforms—i.e., the period in which the software designers
designed, coded, and tested their modules—was typically 3–6 weeks.
Version 1 of the S4000 system covered approximately 15 platform peri-
ods. After a platform period, the developers spent a week integrating the
software modules. This integration was managed by the platform master.
During this period no designer was allowed the continue the design work
until all had approved the integrated software complex. When the integra-
tion was brought as far as it was considered possible, and all known prob-
lems were written down by the platform master as tasks to be accom-
plished, the complete software complex was used (released) as platform
for the departure of all new design activities. In the late part of the pro-
ject—after having established a first running version of the total software
system—the integration period was reduced to two and half days.

One of the things to be done in each integration period was to appoint
one of the software designers as platform master for the next integration
period. He was then responsible for collecting all information on changes
(new development, redesign, error correction, etc.) made to the software.
Together with the project plan manager, he was also responsible for updat-
ing the project plan spreadsheet.

58

Part I Introduction and case

3.3 Complexity of the S4000 project

From the characteristics given above it should be easy to see that the work
conducted in the S4000 project was extremely complex. Handling the
required tasks demanded the involvement of many actors with different
perspectives. Consequently a coordination effort was needed (Mintzberg,
1983; Schmidt, 1994c).

 To illustrate the complexity of the S4000 project work a modified ver-
sion of Woods (1988) dimensions of complexity is applied including:
Dynamism; Many highly interacting parts; Uncertainty; And multiple
mutually interdependent actors. Woods do not distinguish between inter-
acting parts and interdependent actors. Instead he includes risk as a spe-
cific complexity dimension. I have, however, found the dimensions listed
above more relevant for the this chapter. Using these dimensions the
complexity of the S4000 project work can be characterized as follows:

Dynamism is often caused by the fact that the work situations are char-
acterized by handling a number of concepts, requirements, etc. that are
dynamic by nature, i.e., events happen at indeterminate times. This might
result in change of the problem to be solved. There was, for example,
inherently dynamism in design and implementation of the S4000 software.
There was a constant change in the use and design of the mechanical and
electronics design. This implied changes to the requirements to the soft-
ware and to the constraints under which it should be running.

Many highly interacting parts: The field of work is constituted of a
large number of interconnected parts, components, concepts, etc. A soft-
ware design failure could have many possible consequences, and con-
versely, a failure can have many possible causes and fixes. In the terms of
Simon the problems were ill structured, and in such situations the actors
use heuristics and general strategies in order to reduce the problem space
(Simon, 1973). In the S4000 system there was, for example, heavy
interaction and interdependence between the hardware and the approxi-
mately 15 different software applications, and between the 200.000 lines
of code and the mechanical and chemical processes in the flow and mea-
surement system. As one of the interviewed software designers stated:

“The problem we have right now is that the software architecture is difficult to
decompose so much that one designer can handle a component. We are all working

59

Part I Introduction and case

on several components and work on one component involves two to four guys, and
perhaps even some of the electronics designers too.”

Uncertainty exist in many complex work situations, i.e., the actors are
often confronted with missing, incomplete, ambiguous, erroneous and
contradictory information (Woods, 1988). The actors have to act on their
cooperate judgment. In many work situations the problem it-self is not
evident (Dery and Mock, 1985). Uncertainty is usually caused by external
occurrences, or it can arise through failures, noise, time delays, influence
of previous events, unclear requirement, etc. from the field of work. In the
S4000 project, methods for measurement of completely new parameters in
raw milk (e.g., urea and citric acid) had to be developed. This gave
“unfamiliar” requirements to both the chemical, mechanical, and eletron-
ics design of the S4000. And the software controlling the whole instru-
ment, computing all the measurements, and presenting relevant informa-
tion to the operator, was planned to be implemented as a set of Microsoft
Windows applications, a platform on which the software designers had no
previous experience.

Highly complex work situations are often handled in a distributed co-
operative work arrangement with mutually interdependent actors, requir-
ing a number of secondary activities handling the coordination.
Cooperative work settings are often not stable and involve a large, varying
or indeterminate number of participants (Schmidt, 1990; Schmidt, 1994c).
The S4000 project was no exception. The software design was signifi-
cantly more complex than in the usual projects. One of the software
designers phrased it as:

“It has really been problematic that we did not have any guidelines and descriptions
for how to produce and integrate our things. The individual designers are used to
work on their own and have all the needed information in their heads, and to organize
the work as they want to [..] When we started, we were only a few software designers.
And suddenly — problems. And ups, we were several software designers and external
consultants involved”.

The description above clearly illustrates, that the work in the S4000
project was very complex in all aspects. It has earlier been mentioned that
the sources of complexity in a work setting can be characterized by analyt-
ically distinguishing between: the field of work, i.e., a conceptual under-
standing of the work processes and objects, and their interrelations; the
cooperative work arrangement, i.e., how work is organized; and the envi-

60

Part I Introduction and case

ronment surrounding and constraining the work arrangement (Carstensen
and Schmidt, 1993b). In the S4000 case all three sources can be seen as
contributing to the complexity.

It must be concluded that because of the concurrent engineering strat-
egy, different conflicting requirements is exposed and negotiated early in
the manufacturing process. So, although this is an overall advantage in
relation to the quality of the finished product, it leads to a heavy burden of
coordination work in the design process.

Regarding software design and testing, the S4000 project was complex
too. There was a strong need for coordination activities in order to handle
the software design, implementation, and testing activities. This required
the invention, adoption, and use of a number of artifacts, procedures, etc.
to support the coordination. This will be explicitly addressed in the
following chapters.

61

Part II Analyzing and modeling

 Part II:
Analyzing and modeling

The idea of supporting cooperative work by
means of computer systems—the very idea!—

can be compared with riding a tiger.
Cooperative work may seem familiar and

tame. And in fact, a plethora of languages and
schemes has been furnished that confidently

claim to provide reliable models of organiza-
tional roles and patterns of communication.

The innocence and familiarity of cooperative
work is deceptive, however. Cooperative work
is difficult to bridle and coerce into a depend-

able model. And anyone trying to incorporate a
model of a social world in a computer systems

as an infrastructure for that world is as reckless
as a daredevil mounting a Bengal tiger.

(Schmidt, 1991c)

4. Cooperative work and its coordination

This chapter discusses different perspectives for approaching and under-
standing aspects of coordination of cooperative work. First, I will intro-
duce and discuss the inception for the need of cooperation: The complex-
ity of the tasks and activities to be conducted. Then different approaches
to coordination are introduced and discussed, and some examples from the
field study at Foss Electric are provided. Finally a short introduction is
provided of, how the term coordination has been interpreted and used in
this dissertation.

4.1 Complexity: An occasion for cooperation

The need for cooperation arise from the limited capabilities of single
human individuals (Schmidt, 1994c). The introduction of several actors
and some division of labor is dictated by the job to be done and the tech-
nology available (Mintzberg, 1983). Of course, there might be other

63

Part II Analyzing and modeling

arguments for organizing the work cooperatively, e.g., improving social
welfare, or having better control of the work. In this dissertation, a basic
assumption is that the major source for establishing cooperative work set-
tings is the complexity of the work. The complexity demands several
actors to be involved.

This section discuss central characteristics of complexity in work.
Many research areas and disciplines have addressed and discussed com-
plexity characteristics from different perspectives. An introduction will be
given based on some central approaches: Cognitive Engineering (Perrow,
1984; Woods, 1988; Woods and Roth, 1988; Rasmussen et al., 1994),
Human Problem Solving (Simon, 1973; Simon, 1983), and Organizational
Theory (La Porte, 1975a; Mintzberg, 1983). This will illustrate the central
dimensions characterizing the complexity of a work setting, i.e., pinpoint
some of the important factors of the complexity that can be observed in
most complex work settings.

Based on a cognitive engineering approach, Woods (1988) has argued,
that complexity must be seen as something characterizing the domain
(unfortunately without providing an exact definition of the term) and char-
acterizing the problem solving approach applied. Hence, complexity is not
a thing per se, but something that must be understood in a situation. In
searching for dimensions relevant to understand complexity Woods iden-
tifies three factors, and their interaction, that contribute to the complexity
of a problem solving situation: 1) The world to be acted on, 2) The actor
who acts on the world, and 3) The external representation of the world.
Each of these contain aspects that contribute in making problem solving
complex. The involvement of multiple actors and technical systems—or
‘Joint Cognitive Systems’ as Woods calls it—increases the complexity,
and so does the nature of the representations and conceptualizations of the
world that the actors act upon. The most important complexity dimensions
are, however, derived from the nature of the world. Here four complexity
aspects—dynamism, many interacting parts, uncertainty, and risk—are
central:

“1. When a world is dynamic, problem-solving incidents unfold in time and are event-
driven, that is, events can happen at indeterminate times. This element means that
there can be time pressure, tasks can overlap, sustained performance is required, the
nature of the problem to be solved can change, and monitoring requirements can be
continuous or semi-continuous and change over time.

64

Part II Analyzing and modeling

2. When a world is made up of a large number of highly interconnected parts, one
failure can have multiple consequences (produce multiple disturbances); a disturbance
could be due to multiple potential causes and can have multiple potential fixes; there
can be multiple relevant goals which can compete with each other; there can be mul-
tiple on-going tasks having different time spans. In addition, the parts of the world
can be complex objects in their own right.

3. When there is high uncertainty, available data can be ambiguous, incomplete, erro-
neous, low signal to noise ration, or imprecise with respect to the state of the world;
the inferential value of data can vary with context; future states and events are not
completely predictable. Uncertainty can be due to external occurrences, noise,
changes in noise parameters over time, nonlinearities, time delays or the influence of
previous events and inaccurate measurements can arise through sensor failures, mis-
calibrations or mesenteries.

4. When there is risk, possible outcomes of choices can have large costs. The pres-
ence of risk means that one must be concerned with rare but catastrophic situations as
well as with more frequent but less costly situations. When uncertainty is coupled
with risk, situations of choice under uncertainty and risk arise.” (Woods, 1988, p.
130).

Representations and conceptualizations of complex work situations
often involve a number of conceptual items containing a very rich seman-
tics, i.e., conceptual elements with a large number of possible interpreta-
tions. Concepts to which a simple and immediate interpretation are rare.
The concepts cannot be systemized into structures and the interpretations
are usually overlapping. The work situation is engrossed in a conceptual
world characterized by a rich and varied semantics and the situation re-
quires application of different conceptualizations of the domain, i.e., the
decision making process requires employment of and transformation
between different implementations (Rasmussen, 1985).

In his famous study of accidents in high-risk work settings, Perrow
identifies two essential dimensions that can be used for characterizing the
potential risk of a “system” (work arrangement) (Perrow, 1984): The
dimensions of interactiveness and coupling between the component in the
system. The interactiveness spans from linear in one end to complex in the
other, and the degree of coupling ranges from loose to tight. Linear inter-
actions is carried out through a series of sequences or steps laid out in a
line, i.e., they are expected and predictable, the feedback loops are famil-
iar, it is easy to locate a failure, and even if unplanned interactions occur
they are easily visible to the actors. In these situations the number of inter-

65

Part II Analyzing and modeling

acting parts is not an important factor. But if the components serve multi-
ple functions the interactions become non-linear and complex, i.e., there
are many unfamiliar feedback loops, it is difficult to isolate a failed com-
ponent, only a limited understanding of the ongoing processes exists, and
unplanned, unexpected, hidden and invisible interactions occur frequently.
In these situations the number of components and their connections, which
are often unanticipated, become an important factor. Coupling ranges
from loose to tight. Loosely coupled systems can have many connections
between the components, but they are characterized by the existence of
many alternative and flexible methods, the possibility of change in the
sequences, and by having very little consumer monitoring. Tight coupled
systems are characterized by not having alternative strategies or methods,
being very sensitive to slack in the processes, and being highly time-
dependent. Tight coupled systems cannot incorporate shocks, failures and
pressure without destablization.

When approaching the actor oriented (problem solving) aspects of a
complex work situation, the situation can be seen as a process searching
for a solution in a given space, a process of reasoning or accumulating
information until an answer has been found, or as a process of constraint
satisfaction narrowing down the set of solutions until it satisfies all the
constraints (Simon, 1983). The situations involve a huge amount of
potentially relevant components, i.e., in practice it is impossible to inves-
tigate and test all possible solutions and the problem space is too large to
systematically search entirely. The actor is confronted with incomplete,
ambiguous, erroneous and contradictory information on the situation
(Woods, 1988). Thus a complete constraint satisfaction process is impos-
sible to describe beforehand, i.e., the problem is in reality ill structured
(Simon, 1973; Simon, 1983). The actors have to act on their judgment by
use of heuristics, strategies, etc., and they are usually not able to be aware
of the potentialities in their entirety.

From the point of view of organizational theory the complexity of
organized social systems can be measured in terms of the number of sys-
tem components, the relative differentiation of the components, and the
interdependence among the components (La Porte, 1975b). A component
is defined as a person or group occupying a position within the system.
The relative differentiation is defined as the number of different social
roles or positions within the system, and the interdependence reflects the

66

Part II Analyzing and modeling

degree of reciprocal relationships between the components. When think-
ing of work settings where the actors have a perceived relatedness—i.e.,
the actors recognize their connections to other actors—the complexity first
of all depends on the degree of interdependence: “When we remember that
the basic element in complex social systems is the exchange interaction
among people, we see that such a multitude of relationships can become
the source of considerable distress for them. Here lies the root of the limi-
tations to the complexity to which social forms are subject” (Ibid., p. 13).

Many work situations must handle decisions or problems that are new
or contain aspects the actors have not been confronted with before. Or the
problem is not evident: “problems are not objective entities in their own
right, but are the product of interpretation. […] problems do not come
with an identifying tag, neither as problems nor as certain types of prob-
lems” (Dery and Mock, 1985, p. 107). The complete set of actions rele-
vant to the organizational world is unknowable. The set of possible states
or alternatives for achieving a goal is unknowable. Unforeseen situations
are a common occurrence (Barber, 1983). Both these aspects affects what
we could call the organizational complexity: First, no organizational pro-
cedure for handling the problem can be established beforehand (Mintzberg
et al., 1976). Actions and decisions will be based on incomplete, ambigu-
ous, erroneous, or even contradictory sets of rules and procedures. The
actors have to make their own interpretations. Second, decomposition of
the system of organized complexity is complicated or impossible (cf. e.g.,
Parnas, 1985). According to La Porte, the latter is essential for decreasing
the complexity.

To summarize, the causes of the complexity factors of a work situation
are:

1) the nature of the organization of the work, e.g., the interdepen-
dence among the actors and the interactional complexity (cf.
Perrow’s approach),

2) the context or environment in which the work is conducted, e.g.,
the uncertainty of what customers are demanding,

3) the nature of the work itself, e.g., in much design work the num-
ber of possible solutions to a problem are indefinite, and

4) the fact that the cognitive capabilities of the involved actors are
delimited.

67

Part II Analyzing and modeling

It could be argued that complexity is a characteristic that constitutes a
work situation or a phenomenon. Thus the complexity cannot be reduced.
However, supporting and (or) redesigning the interdependence and inter-
action between the involved actors can address a reduction of the involved
components and their interdependences, and a reduction of the interac-
tional complexity. This will then reduce the complexity of the implemen-
tation (organizational nature) of the work setting. The complexity derived
from the nature of the work itself, or from the nature of the environment,
might be hidden by choosing an appropriate structure for presenting the
(complex) content.

4.2 The emergence of ‘coordination’

To cope with complexity the involvement of more than one actor is re-
quired. The complexity of many work situations require capabilities of the
actors that exceeds the capabilities of individual actors. A work setting
based upon cooperation must be established. It is impossible to specify
and plan all aspects of such a setting beforehand:

“An arc for any given trajectory—or project—consists of the totality of tasks arrayed
both sequentially and simultaneously along the course of the trajectory or project. At
least some of the arc is planned for, designed, foreseen; but almost inevitably there
are unexpected contingencies which alter the tasks, the clusters of tasks, and much of
the overall organization. Hence the arc cannot be known in all its details—except in
very standard, contingency-minimal projects—until and if the actors look back and
review the entire course which they have traversed” (Strauss, 1985, p. 4).

Schmidt (1990) has identified a set of generic functions, provided by
the establishment of cooperative ensembles:

• Augmentation of capacity. The capacity of the individual actors are
insufficient.

• Differentiation and combination of specialities.

• Mutual critical assessment. By this the ensembles try to ensure a
more balanced decision.

• Confrontation and combination of perspectives, in order to get a
more multifaceted and coherent understanding of the problem com-
plex before taking the needed decisions.

The actors become mutually interdependent in their work. They need to
coordinate their activities, i.e. mesh, allocate, relate, schedule, etc. activi-

68

Part II Analyzing and modeling

ties, actors, and resources with respect to each other. A central character-
istic of a cooperative work setting is the underlying and constitutive mu-
tually interdependence of the involved actors. Hereby a set of secondary
activities coordinating the distributed activities is required.

The mutual interdependency among the actors has important implica-
tions for our understanding and definition of a cooperative work setting. A
cooperative work arrangement is not necessarily sited in one organization
sharing resources, etc. A cooperative work arrangement is constituted by
the field of work, i.e. constituted by “the part of the world that is being
transformed or otherwise controlled by the cooperative work arrange-
ment” (Schmidt, 1994c, p. 15). Actors in a cooperative work arrangement
handle tasks and activities that are closely related, intertwined, and inter-
dependent. At some levels these are characterized by having a common
objective with respect to the purchaser of the services provided. A coop-
erative work arrangement is often to be understood across organizational
boundaries. Since the field of work and the work arrangement mutually
constitutes each other, we should attempt to define them through iterations
in a dialectic process.

When few actors are involved, or the required coordination activities
are characterized by a low complexity, everyday social life modes of
interaction are sufficient for handling the coordination (Ibid.). Several
studies indicate that actors are good at handling the coordination on an ad-
hoc basis in these situations (e.g., Harper et al., 1989b; Heath et al., 1993).
Problems emerge when the actors become distributed in time and space,
when many different areas of competence are involved, when the activities
are intertwined, or when work is carried out over a long time-span. In
these situations the actors need conceptualizations of actors, activities, re-
sources, obligations, etc. from the field of work and the work setting in
order to handle the coordination. For example plans, work procedures, and
classification schemes. The concepts often need to be redefined and nego-
tiated, and symbolic artifacts are introduced in order to reduce the com-
plexity of the coordination, e.g., forms, work schedules, classification
structures, etc.

The aim of this dissertation is to discuss possible computer support of
coordination. In “order to be able to conceptualize and specify the support
requirements of cooperative work we need to make a fundamental analyti-

69

Part II Analyzing and modeling

cal distinction between (a) cooperative work activities in relation to the
state of the field of work and mediated by changes to the state of the field
of work and (b) activities that arise from the fact that the work requires
and involves multiple agents whose individual activities need to be coor-
dinated, scheduled, meshed, integrated etc. — in short: articulated. This
distinction is fundamental” (Schmidt, 1994c, p. 18). The following sec-
tions will discuss some relevant approaches to coordination work (or
‘articulation work’)1.

4.3 Approaches to coordination work

This section will first introduce three approaches to ‘articulation work’:
Strauss who originally described the term (Strauss, 1985), Gerson and
Leigh Star who have related it to discussions on computer support (Gerson
and Star, 1986), and Schmidt who has elaborated further on the approach
(Schmidt, 1994c). After this I will give a brief introduction to Malone and
Crowston’s coordination theory (Malone and Crowston, 1990) and
Mintzberg’s understanding of coordination (Mintzberg, 1983).

4.3.1 Strauss’ approach

Strauss (1985) establishes a conceptualization of the division of labor “in
terms of close scrutiny of work itself” (p. 1). The aim of the
conceptualization is to support research of the nature of work. He
describes how projects involve a course of action which entails a division
of labor, both in terms of actors and activities. Strauss calls it ‘actions’
which are made up by many tasks done over time and divided up among
many actors or group of actors. He argues that:

“Since the plurality of tasks making up their totality, as well as the relations of actors
to tasks, are not automatically articulated, actors must do that too, and often in com-
plex ways. We call the work of doing this ‘articulation work’—a supra-type of work
in any division of labor” (Ibid., p. 2).

In contrast to most research on division of labor—which has been con-
cerned with issues of the division of work by various occupations and pro-
fessions or issues relating of differential distribution of rewards to

1 This chapter does not distinguish between articulation work and coordination work. I will
call it ‘coordination work’, but in each of the descriptions I will use the terminology used by
the inventors.

70

Part II Analyzing and modeling

classes—Strauss addresses the tasks necessary for doing the work in the
division of labor: “Distribution is where the emphasis has been, and
‘labor’ in both senses of the word—(wo)manpower and work—has meant
largely the former” (Ibid., p. 2). Hence, a central aspect of articulation
work is concerned with the division of labor.

According to Strauss the division workers (persons, classes, or organi-
zational units) are depended on the tasks to be done. This implies (Ibid., p.
5) that: (1) the division are changing over time during a the project course,
(2) the division of labor varies by the type of work; “it is the variation in
work, not merely the class of worker, that is the essential ingredient for
getting a task accomplished”, (3) understanding the division of labor
requires a detailed scrutiny of how tasks are clustered and related to each
other. “If either the tasks or the speciality sharing were to be problematic,
then there would be a question of who shall do them”, and (4) “none of
this arc of work is called into play automatically.” Some actor has to be
responsible for deciding, planning, and articulating the various tasks. The
relevant aspects of articulation work and the division of work are closely
related to the characteristics of the field of work. Strauss considers the
“type of work” as the central division parameter. Understanding the tasks
distinctively becomes essential, including aspects like:

“what, where, when, how, for how long, how complex, how well defined are their
boundaries, how attainable are they under current working conditions, how precisely
are they defined in their operational details, and what is the expected level of perfor-
mance. (which of those are the most salient dimensions depends on the organizational
work context under study, and we cannot emphasize too much that it is the researcher
who must discover these saliences.) Two other important questions are: how they are
put together in task clusters, and linked together in an organization of tasks. ‘Work’
which constitutes the total arc, or some portion of it, is the ‘decomposed’ (Gerson,
1983), even perhaps in some arcs down to detailed mini-tasks.” (Strauss, 1985, p. 6).

The allocation of tasks is distributed among the actors in a number of
ways: they can be imposed, requested, assumed without request or com-
mand, delegated, or proffered. Furthermore, they can, of course, be ac-
cepted or rejected. But an allocation is never fixed. Revision goes on con-
tinuously, usually as negotiation. ‘Articulation’ then is a central part of the
work in the division of labor to be done. Having this in mind, Strauss re-
fines the characterization of articulation work:

71

Part II Analyzing and modeling

“[it amounts to] First, the meshing of the often numerous tasks, clusters of tasks, and
segments of the total arc2. Second, the meshing of efforts of various unit-workers
(individuals, departments, etc.). Third, the meshing of actors with their various types
of work and implicated tasks. (The term ‘coordination’ is sometimes used to catch
features of this articulation work, but the term has other connotations so it will not be
used here.) All of this articulation work goes on within and usually among organiza-
tional units and sub-units.

All workers articulate something (in accord with their positions on the accountability
ladder); whether tasks, task clusters, smaller or larger segments of the arc.
Understandably, articulation work will vary with various properties of tasks, task
clusters and arc segments and phases. [...]

Paradoxically, articulation tasks themselves also require a higher degree of work, with
the highest levels of authority—assigned, requested, claimed, imposed, etc.—doing
the highest order of integrating. Like other tasks, articulation ones are carried out both
simultaneously and sequentially for different portions of the arc by different workers
[...] At any higher level there would be some allocation of articulation tasks involving
what, who, how where, when, etc. And so each worker is accountable at least upward,
while needing to articulate some tasks—and usually some actors’ efforts—down-
ward” (Ibid., pp. 8-9)

Having an approach where the division of labor is the focal point could
perhaps have led to a conceptualization mainly covering aspects of the
division of work addressing topics of power and division according to
classes, professions, etc. Strauss has, however, taken a multifaceted under-
standing of the complexity of articulation work (the work done in the
division of labor) when conceptualizing articulation work. Based on his
previous work, and analysis of articulation work and the articulation pro-
cess3, he outlines a theoretical scheme or model for studying the articula-
tion of project work, that:

“revolves around: (1) work process (discovering and maintaining appropriate
resources; devising and maintaining a division of labor; matching tasks and workers’
motivations; supervising delegated tasks); (2) types of work; (3) interactional
processes (including negotiating, persuading, educating, manipulating, and coercing);
(4) all these elements occurring at every organizational level; (5) and interactionally
requiring continual alignment; (6) although the specifics of the articulation process

2 Strauss defines an arc as consisting of the totallity of tasks arrayed along the course of a
project.

3 Strauss distinguish between articualtion work and the articualtion process. The articulation
process regards putting all work elements together and keep them together. According to
Strauss this represents a more inclusive set of actions than the acts of articualtion work. For
the purpose here I don’t find this distinction particularly relevant.

72

Part II Analyzing and modeling

vary according to the properties of projects (including whether they are more or less
routinized and more or less complex). (7) In addition, unanticipated contingencies in-
evitably affect the functioning and articulation of these routines” (Strauss, 1988, p.
175).

4.3.2 The approach of Gerson and Leigh Star

Gerson and Leigh Star base their approach to articulation work on analy-
ses of the situated nature of office work. Based on studies of office work
they state that, “even apparently simple pieces of information such as en-
tries on fixed forms are the result of many negotiations and struggles” and
concludes that “since no centralized authority can possible anticipate all
the contingencies that might arise locally, office workers always have
some discretion in deciding how reconciliation is to be accomplished”
(Gerson and Star, 1986, pp. 257-258). The distributed character of the
decision making activities and the situated character of the decision situa-
tions studied are hence central characteristics of the approach Gerson and
Star establish.

Their approach is inspired by Hewitt’s understanding of offices as
“open systems” and the “due process” in such systems. Open systems are
characterized by concurrency among its components, asynchrony due to
the asynchrony of the outside world and the physical distribution of the
components, decentralized control in order to avoid bottlenecks, inconsis-
tent information because many internal components and/or external
sources are acting, partly isolated components that are not aware of all
states of other components (“arm’s-length relationships”), and continuous
operation independently of individual components (Hewitt, 1985). The
due process then

“is the organizational activity of humans and computers for generating sound, rele-
vant, and reliable information as a basis for decision and action within the constraints
of allowable resources. It provides an arena in which beliefs and proposals can be
gathered, analyzed and debated. [...] Due process is inherently reflective in that
beliefs, goals, plans, requests, etc. exists as objects that can be explicitly mentioned
and manipulated in the ongoing process. Due process does not make decisions or take
action per se. Instead it is the process that informs the decision-making process”
(Ibid., p. 275).

In the office work studied by Gerson and Star the due process problem
is how to assure that information systems make adequate provision for

73

Part II Analyzing and modeling

recognizing, weighing, and evaluating alternatives from conflicting
sources. They call the ensuring during the work process articulation and
define that:

“Articulation consists of all the tasks needed to coordinate a particular task, including
scheduling subtasks, recovering from errors, and assembling resources” (Gerson and
Star, 1986, p. 258).

Later refined into:

“Reconciling incommensurate assumptions and procedures in the absence of enforce-
able standards is the essence of articulation. Articulation consists of all the tasks in-
volved in assembling, scheduling, monitoring, and coordinating all of the steps neces-
sary to complete a production task. This means carrying through a course of action
despite local contingencies, unanticipated glitches, incommensurable opinions and
beliefs, or inadequate knowledge of local circumstances” (Ibid., p. 266).

Based on Hewitt, Gerson and Leigh Star consider all systems as open
systems. Thus, we cannot foresee the contingency that might arise, and
every system requires articulation. They identify the outcome of articula-
tion work as:

“Standardized representations of office work and its products, as captured in forms
diagrams, databases, or narrative text are thus the result of articulation, the local
adjustments that made the work possible in practice.” (Ibid., p. 258).

Gerson and Star argue, furthermore, that office work can be described
in an idealized form without concentrating on the articulation aspects. But
to understand the situated character of situations, we must consider the ar-
ticulation of concrete situations carefully. Hence, if we wants to build of-
fice information systems supporting the problems of the due process, i.e.,
supporting the articulation of the work, we need to address the due process
explicitly, and articulation tasks cannot just be integrated in the work
flow.

Where Strauss based his approach to articulation work on the division
of labor and the activities handling the division, Gerson and Star base their
approach on the fact that all representations of a work situation are incom-
plete. The work situations are situated in the work context. Office work is
distributed and has some discretion in the decision process. The central
purpose of articulation work is to overcome the situated character of the
work, i.e., handle the due process problem. Although Gerson and Leigh
Star take their departure in aspects involving several actors, articulation
work can, in their approach, be something done by an individual actor in

74

Part II Analyzing and modeling

order to handle a complex situation in which s/he is the only actor
involved.

Leigh Star has later refined the approach further and established a con-
cept of objects containing the multiple viewpoints required when several
actors having different background and perspective need to articulate their
work; the Boundary Objects (Star, 1989). The idea is to identify “objects
that are both plastic and coherent through a collective course of action”
(Ibid., p. 38). The concept is then used for establishing requirements for
distributed artificial intelligence systems. This idea is interesting since we
look for an approach that can be used for discussing computer support of
articulation work. The examples given do, however, indicate that all types
of objects, artifacts, physical places, etc. can be a candidate for a boundary
object. The concept is thus to indeterminate to be useful.

4.3.3 Schmidt’s approach

Although taking a sociological departure Schmidt’s approach to articula-
tion work has a more precise purpose than the above mentioned approach-
es. It aims at establishing a conceptual framework for understanding artic-
ulation work to assist design of computer-based systems supporting articu-
lation work. Schmidt and associates4 have discussed and refined the
approach in several publications (Schmidt, 1990; Schmidt, 1991c;
Schmidt and Bannon, 1992; Schmidt et al., 1993; Schmidt, 1994c).

The essential characteristics of a cooperative work arrangement—and
thereby of the articulation work conducted—is first of all the recognition
of the distributed nature of the arrangement, the interdependent actors and
activities, and the constantly ongoing reallocations, adaptions to change in
requirements, etc.:

Cooperative work relations emerge in response to the requirements and constraints of
the transformation process and the social environment on one hand and the limitations
of the technical and human resources available on the other. Accordingly, cooperative
work arrangements adapt dynamically to the requirements of the work domain and the
characteristics and capabilities of the technical and human resources at hand.
Different requirements and constraints and different technical and human resources
engender different cooperative work arrangements (Schmidt, 1994c, p. 11).

4 I am one of the assoiciates, and the work reported in this dissertation is one of the important
contributions to this work.

75

Part II Analyzing and modeling

Articulation work is approached as a series of on-going activities han-
dling the articulation of the cooperative work in a world of unforeseen
contingencies. To establish an understanding of articulation work address-
ing this contingency we have worked with a very broad definition cover-
ing aspects like scheduling and allocation of resources, monitoring, hand-
ing over, resolving inconsistencies, reconciling incommensurate assump-
tions, opinions, and beliefs, and so forth, cf. e.g., our discussion in
Schmidt et al. (1993).

Objects of articulation work Elemental operations with respect to
objects of articulation work (examples)

Actors enroll A, assign B, reserve C;
move D, place E

Responsibilities allocate, assume, volunteer; hand over; accept,
reject;

Tasks point out, express;
divide, relate;
allocate, assume, volunteer; accept, reject;
order, countermand;
accomplish, assess; approve, disapprove;

Activities do;
make publicly perceptible, monitor, be aware
of;
explain, question;

Conceptual structures define, classify, instantiate, relate, exemplify;
posit, accept, challenge;

Informational resources copy to A, move from B, transfer;
access, block;
read, interpret, relate;

Material resources consume, move from A, place near B;
name, characterize;
procure, deploy, reserve;

Technical resources use, move, place;
name, characterize;
procure, deploy, reserve;

Infrastructural resources name, characterize;
reserve;

Figure 4-1: Our first list of the essential objects of articulation and
examples of operations on these, from Schmidt et al. (1993), p. 127. The
list have been expanded and objects of articulation are now structured into
actual and nominal structures (cf. chapter 5).

76

Part II Analyzing and modeling

To cope with the contingency a conceptual understanding of the essen-
tial dimensions along which the work is articulated in order to address
questions on what, where how, when, who, etc. (cf., Strauss, 1985) is re-
quired. Schmidt and associates have attempted to establish a first set of
essential dimensions which we then, when discussing computational
mechanisms supporting articulation work, developed further and defined
as “objects of articulation” and operations on these, cf. figure 4-1 above.

According to Schmidt—and Strauss—a central aspect of articulation
work is handling these objects of articulation work. But, as Schmidt states
articulation work is always done in a context that needs to be understood
and approached too. The essential aspects of the context, when concep-
tualizing articulation work, are the state of affairs in the field of work, the
constraints posed by the environment in which the work is conducted, and
the nature of the organizational setting in which the work is conducted.

Although Schmidt recognizes the fact that much articulation work is
contingent and has a situated character, he further argues that in most
work settings a lot of routine work and work that can be accomplished by
individuals exists too:

“Action to accomplish some goal is not always “enormously contingent”! Of course,
any action may be construed as enormously contingent in Herakleitos’ sense that
every situation is unique. But the action is not necessarily “enormously contingent” to
the actors themselves. Contingencies may be more or less complex to deal with, more
or less serious in terms of effect, scope etc., more or less frequent, and so forth, and
different contingencies may affect the outcome of action and the validity of plans dif-
ferently. [...] The more distributed the activities of the cooperative work arrangement,
the more complex the articulation of the activities of that arrangement” (Schmidt,
1994c, p. 21).

With respect to designing computer systems supporting articulation
work Schmidt recognizes that articulation cannot be mediated only via the
field of work itself. We need to address the different modes of interactions
actors conducting articulation use, and the means for the interaction used.
Based on a discussion of different modes and means of interaction, and
central characteristics of articulation work analyzed we established a con-
cept of Mechanisms of Interaction supporting articulation work by mediat-
ing and stipulating it (Schmidt et al., 1993; Schmidt, 1994c; Schmidt and
Simone, 1995). An introduction is given in chapter 5.

77

Part II Analyzing and modeling

4.3.4 Coordination Theory

Malone and Crowston (1990) have recognized the need for a set of con-
cepts supporting design of computer-based coordination support. They
argue for establishing a “coordination theory” based on inputs from differ-
ent disciplines. They define coordination theory as “a body of principles
about how activities can be coordinated, that is, about how actors can
work together harmoniously” and continues:

“In coordination theory, the common problems have to do with coordination: How
can overall goals be subdivided into actions? How can actions be assigned to groups
or to individual actors? How can resources be allocated among different actors? How
can information be shared among different actors to help achieve the overall goals?”
(Ibid., p. 358).

They identify four main dimensions of components of coordination
(goals, activities, actors, and interdependencies) and processes associated
with these. The processes have to do with identifying goals, mapping
goals to activities, selecting actors and assign them to activities, and man-
aging the goal-relevant relationships between activities. Malone and
Crowston argue that we need a narrow definition of coordination that
explicitly focus on the elements that are unique to coordination. They sug-
gest coordination defined as: “the act of managing interdependencies
between activities performed to achieve a goal” (Ibid., 361).
Interdependencies can be analyzed in terms of what they call “common
objects” involved in the actions that needs to be coordinated. These com-
mon objects will thus constrain how the activities can be performed. A
first set of relevant kinds of interdependencies include tasks dependent on
the product of other tasks, use of shared resources, simultaneity, and
domain specific interdependencies. It is suggested that a first use of tech-
nology could be just to detect the interdependencies. The second concep-
tualization provided relates to the level of processes underlying coordina-
tion: coordination, decision making, communication, and object percep-
tion.

As said by Malone and Crowston themselves, it is a very preliminary
sketch of a framework. Up till now it seems to lack structures describing
interdependencies between actors. “Common objects” are only used to
analyze interdependencies between activities. Furthermore, the definition

78

Part II Analyzing and modeling

of coordination is very narrow and excludes several of the aspects of
coordination addressed by the previously mentioned approaches.

4.3.5 Coordination according to Mintzberg

Mintzberg addresses frameworks for understanding and designing organi-
zations rather than explicitly discuss coordination (Mintzberg, 1979;
Mintzberg, 1983). He argues that analyzing or designing organizations can
be done by means of combinations of five types of organization structures:
Simple Structure, Machine Bureaucracy, Professional Bureaucracy,
Divisionalized Form, and Adhocracy. The second essential dimension
characterizing organizations is the “coordination mechanisms”. According
to Mintzberg, organizations coordinate their work by means of combina-
tions of five coordination mechanisms: “mutual adjustment, direct super-
vision, standardization of work processes, standardization of work out-
puts, and standardization of worker skills. These should be considered the
most basic element of structure, the glue that holds the organizations
together” (Mintzberg, 1983, p. 4). There is a one-to-one relationship
between the organization structure to be chosen and the prime coordina-
tion mechanism to be used when designing the organization:

• The Simple Structure is based on centralization, and the “strategic
apex” of the organization is the most important part of the organiza-
tion. For this structure the direct supervision should be used as the
coordination mechanism. Coordination is achieved by having one
person responsible for work of others.

• Machine Bureaucracy is based on job specialization and formalized
behavior. The most important part of the organization is the infra-
and technostructure. The prime coordination mechanism is standard-
ization of work processes characterized by procedural description of
how to conduct the work.

• The Professional Bureaucracy is based on decentralization. The
“operating core” is the most important part of the organization. The
prime coordination mechanism is standardization of the workers
skills and knowledge. Skills and knowledge are standardized by
specified training.

• The Divisionalized Form is based on grouping of the organization
reflecting the markets. The “middle line” becomes the most impor-

79

Part II Analyzing and modeling

tant part of the organization and standardization of output is the
essential coordination mechanism. This requires specification of re-
quirements for the output.

• The Adhocracy based on decentralization, job specialization, and an
organic structure. The most important parts of the organization are
the “support staff” and the “operating core”. Mutual adjustment
based on informal operator to operator communication is the prime
coordination mechanism.

As an interesting point Mintzberg observes that the use of the coordi-
nation mechanism seems to follow a specific sequence over time. When
the work becomes more complex the “favored means of coordination
shifts from mutual adjustment to direct supervision to standardization,
preferably of work processes, otherwise of outputs, or else of skills, finally
reverting back to mutual adjustment” (Mintzberg, 1983, p. 7).

Mintzberg’s categories for coordination work is interesting since it can
be used for an overall characterization of an organization or a work ar-
rangement. But in relation to the purpose of this dissertation—to discuss
computer support of coordination work—the framework seems to be too
general.

4.3.6 Summarizing the approaches

All the approaches seem to agree that coordination work often covers a set
of very complicated tasks to accomplish. What is perhaps more important
is that coordination work can be considered a set of ‘isolated tasks’ that
has to be accomplished in order to handle the fact that several actors are
involved, i.e., we can analytically distinguish between work and coordina-
tion work. Strauss, Gerson and Star, and Schmidt et al. all make this dis-
tinction explicitly. By suggesting a theory for coordination Malone and
Crowston implicitly indicates the possibility for analytically distinguish-
ing between coordination and what is to be coordinated. The same goes
for Mintzberg when he explicitly characterizes the type of coordination
mechanisms used in a specific type of organization.

Furthermore, the coordination of cooperative activities should be con-
ceived of as an inherently recursive phenomenon (Gerson and Star, 1986).
The coordination of the distributed activities of a cooperative work ar-
rangement with respect to its field of work may itself be handled coopera-

80

Part II Analyzing and modeling

tively, i.e., a cooperative work arrangement can take the organization of
another cooperative work arrangement as its field of work. We have else-
where argued that it is the recursiveness that makes the open-endedness of
cooperative work arrangements manageable (Schmidt et al., 1995).

Coordination work

Work

Figure 4-2: The approaches discussed in this chapter all seemsto imply
that we can analytically distinguish the tangible work, and the required
activities regarding meshing, allocation, naming, relating, scheduling, etc.
of activities, actors, resources, etc. We can analytically separate work and
coordination work. Note that the model must be understood recursively.
Hence, a cooperative work arrangement can take the organization of
another cooperative work arrangement as its field of work. This distinction
is a basic assumption for the approach presented in this dissertation.

Strauss work departs from discussions on division of labor, i.e., special-
ization and decomposition are central elements. He also recognizes the
need for understanding coordination in terms of scheduling activities and
monitoring the processes, etc. Gerson and Star consider the situated char-
acter of much work as essential. This then lead to a definition of articula-
tion work which will include the activities on classifying, standardizing,
etc. done by an individual actor. The idea of boundary object is interest-
ing, but some refinement needs to be done if the concept is to be used for
conceptualizing the central aspects of coordination work.

Not surprisingly I will argue that the approach by Schmidt seems to be
a useful approach in relation to work towards computer support of coordi-
nation. Based on the ideas of Strauss and Gerson and Star, the approach
attempts to identify some essential conceptualizations of the coordination
work. Furthermore Schmidt recognizes the distributed and situated charac-
ter of cooperative work with constantly changes in requirements, alloca-
tions, etc. This dualism—on one hand recognizing the contingency and
situated character of articulation work, and on the other also trying to
establish some conceptualizations of the stabile structures of work—

81

Part II Analyzing and modeling

appears to be a useful approach. Although it addresses computer support
Malone and Crowston’s theory appears to be a bit to narrow and incom-
plete, whereas the conceptual framework of Mintzberg is too general to
provide substantial input.

4.4 Findings from the Foss Electric field study

Chapter 3 gave an overview of the work setting studied at Foss Electric,
and chapter 6 will provide a detailed analysis of some of the findings from
the field study. For the sake of illustration a few central findings from the
field study will be introduced here.

First of all: The designers at Foss spend a lot of effort on coordinating
activities related to the software development in the S4000 project. To
support this there were at least four types of countermeasures reducing the
complexity of coordination work: (1) A project oriented matrix organiza-
tion was implemented. Projects were organizational units with the project
manager serving as a “head of department” and all participants were
physically located in the same area; (2) To ensure that the overall goals
were met, the project had a whole line of scheduled meetings, some
weekly and most twice per month. In the most intense phases of the S4000
project 27 different meetings, involving from 6 to 26 participants, were
scheduled; (3) Besides the scheduled meetings a lot of unplanned meet-
ings were held as well. Typically one or two participants who recognized
a problem met; (4) The amount of detailed information that needed to be
communicated, coordinated, negotiated, etc., required more formalized
measures for the daily operation (these will be discussed in chapter 6).

Furthermore, I found that when the number of mutually interdependent
actors involved in the software development exceeded the limit of a few,
they needed to examine the state of affairs in the field of work. When, for
example, the software was designed by more than two to three actors, the
designers spent quite some effort on being aware of the redesigns intro-
duced by the other actors. This was impossible to do by means of ad hoc
modes of interaction only. Managing the work required many intertwined
and interdependent activities to be handled, and the complexity of mesh-
ing the activities increased tremendously. The actors recognized a need for
supportive structures, procedures, forms, etc. New roles taking care of

82

Part II Analyzing and modeling

certain coordination activities were needed, and support for structuring
and controlling the stipulation of the interrelated activities were required.

The first solution when a coordination problem was recognized was to
increase the use of ad hoc coordination, i.e., have more formal and infor-
mal communication and meetings. In many cases this appeared to be in-
sufficient and ineffective. In these situations different types of mecha-
nisms were invented and used to keep track of the integration or the state
of affairs, to schedule relations and dependencies among involved actors,
tasks, and resources, etc. These mechanisms were, for example, forms or
boards and related conventions and procedures prescribing how they
should be used. Some of the mechanisms were invented in the project,
some were a result of redesign of previous mechanisms, and others were
adopted. Examples of these were: An augmented bill of materials
(ABOM) supporting the integration between mechanical design, process
planning, and production; The fixed software design working cycle (or
working rhythm) including forms and procedures supporting the coordi-
nation and integration of the software; Or the bug report form coordinat-
ing the activities concerning registration, diagnosis, and correction of
software bugs. These and several other examples have been identified and
described elsewhere (cf. e.g., Carstensen et al., 1995b). The purpose and
function of the bug report form and its relations to the other mechanisms
will be illustrated in detail in chapter 6.

The field study indicated that when confronted with an abundance of
detailed decisions and activities needing to be coordinated, organizations
invent and adopt mechanisms that (partly) mediate and stipulate the coor-
dination of the work. These can be purely ad hoc based (e.g., meetings), or
they can be more formal and provide standardized structures, classifica-
tions, conceptualizations, etc. reflecting relevant structures the field of
work and the work arrangement (e.g., project plans with tasks, actors, and
deadlines interrelated).

4.5 My approach to coordination

In this dissertation the term ‘coordination’ is used in a very broad sense—
broader than the usual connotations. Coordination activities cover aspects
like scheduling, meshing, and allocating resources, negotiation of resource
allocations, monitoring work activities, resolving inconsistencies, etc. This

83

Part II Analyzing and modeling

is similar to what Strauss (1985) calls ‘articulation work’. Furthermore,
activities concerning the establishment of means supporting coordination
activities are considered ‘coordination’, e.g., the refinement of a classifi-
cation scheme. When certain activities are regarded ‘coordination’ this is
always done in relation to a specific field of work. For all fields of work,
on which more than one actor works, we can identify a set of activities
that are ‘second order activities’, ‘extra activities’, or ‘overhead activities’
with respect to what the work itself requires. These activities arise because
more than one actor is required to do the work. These activities are also
considered ‘coordination’.

Let us take a short example from the S4000 project: A central activity
was to test and correct the software. This activity involved many actors
testing and correcting the software. It required planning, distribution of in-
formation, meshing of activities, etc. Activities like planning the test
activities, scheduling the correction tasks, negotiating the allocations,
deadlines, etc., distributing correction requests to the relevant designers,
and the development of a bug form and concomitant procedures for its
use, are all considered ‘coordination’ in relation to the software testing
work. Of course, scheduling the correction tasks can itself be considered a
field of work. Then other activities, e.g., negotiating prioritizing of the
tasks, would be coordination with respect to scheduling the correction
tasks. This is an example of the recursiveness of the “work-coordination
work” distinction (cf. section 4.3).

The suggested approach to coordination has two important characteris-
tics: First, it is based on the existence of a given (analytically identifiable)
field of work and a related (analytically identifiable) cooperative work
arrangement working on the field of work. The field of work and coopera-
tive work arrangement mutually constitute each other. Second, it is based
on an analytical distinction between the tangible work and the coordina-
tion work related hitherto. Both the “field of work”-”work arrangement”
distinction and the “work”-”coordination work” distinction must be
regarded as analytical distinctions. In real work settings structures, phe-
nomena, and activities are intertwined.

In discussions with research colleges, I have been met by the viewpoint
that the approach is too naive, a simplification, just a simple distinction
between value adding work and none value adding work, and the like.

84

Part II Analyzing and modeling

Aspects like the social structures in a work setting, the psychosocial work
environment, the sociocultural aspects of work, power structures in the
work setting, or a detailed discussion on what value adding work actually
covers are not addressed in the approach. The purpose of the approach is,
however, to establish a pragmatic and useful approach that can be used to
explicitly address important aspects when analyzing cooperative work
settings, and when designing computer-based systems to support coopera-
tive work settings. By explicitly addressing coordination we can achieve
two things: As analysts we can get a better and more coherent understand-
ing of the phenomena and artifacts we study. And as designers we can en-
sure provision of the required support for coordination work. Hence, the
approach should not be regarded as an alternative to other approaches to
systems design, rather it is an enhancement.

85

Part II Analyzing and modeling

5. The Concept of Coordination
Mechanisms

“A particularly important new service which
coordination systems supply to environment
builders is a uniform and powerful means to
establish the expected relationships to task-

interdependence - in other words, the desired
patterns of task coordination. To be useful, this

must be done in a flexible yet well-integrated
manner, with plenty of leeway for the unpre-

dictability of real life. The new capabilities at
which coordination technology aims depend

on finding and installing appropriate concep-
tual and structural units with which to express
tasks, their diverse relations to each other and
to the people who ultimately bear responsibil-

ity for them” (Holt, 1985, p. 281).

As argued several places in the previous chapters, the coordination of co-
operative work can—when many actors are involved, when the work is
distributed in time and space, or when different competencies or perspec-
tives are involved—be very complex. Then everyday social and commu-
nication skills are insufficient for managing the coordination. In such
work settings it becomes relevant to require different kinds of artifacts.
These might be computer-based. They can provide support by prescribing
how the work could be conducted, constrain the solution space, mediate
relevant information, offer relevant representations of the field of work,
stipulate the flow of the work, etc.

This chapter introduces the conceptual framework of Coordination
Mechanisms, i.e., a protocol that, by encompassing a set of explicit con-
ventions and prescribed procedures and supported by a symbolic artifact
with a standardized format, stipulates and mediates the coordination of
distributed activities so as to reduce the complexity of coordinating dis-
tributed activities of cooperative work settings (cf. e.g., Schmidt et al.,
1993; Schmidt, 1994b; Carstensen et al., 1995b; Schmidt and Simone,
1995; Schmidt et al., 1995). The concept has several purposes: It can be
used as an analytical concept for understanding how procedures, forms,
and other artifacts can be considered mechanisms supporting coordination,

86

Part II Analyzing and modeling

and it can be used to support design of computer-based coordination
mechanisms.

First, I will provide some background for the establishment of the con-
ceptual framework. Then the conceptual framework is described in some
details, and some overall requirements (or facilities) of coordination
mechanisms are discussed. An illustration of essential characteristics of
the coordination mechanisms identified in the field study is provided. The
chapter is concluded by a discussion of an important feature of coordina-
tion mechanisms: These are often linked to each other—they interoperate.
For example, one mechanism might subscribe to information from an-
other, or trigger a specific action from another.

5.1 Background

As mentioned in section 1.3, I have, in collaboration Kjeld Schmidt, estab-
lished a conceptual framework supporting work analysis of complex work
(cf. e.g., Schmidt, 1988; Schmidt and Carstensen, 1990; Carstensen and
Schmidt, 1993b; Carstensen and Schmidt, 1993a). The aim has been to
provide a framework that has a more coherent and functional oriented
approach to understanding a work system than the traditional procedural
oriented approaches, i.e., understand a system in terms of the services a
system provides to its purchasers. The approach was inspired by several
sources: Simon (Simon, 1981; Simon, 1983), Cognitive Engineering (e.g.,
Rasmussen, 1986; Woods, 1988; Woods and Roth, 1988), Soft Systems
methodology (Checkland, 1981), Hammer’s early work on understanding
the function of office work (Hammer and Sirbu, 1980; Hammer, 1984),
the critiques of the AI-tradition (e.g., Roth and Woods, 1989); etc. A
number of overall requirements for a framework was established.
Regarding requirements for a conceptual framework Schmidt and I have
elsewhere argued that:

“First, the work arrangement must be seen as a dynamic whole (system). No parts
(procedures, activities, components, etc.) or perspectives can be addressed and ana-
lyzed in isolation. Relevant features must be identified and related to each other. To
do this, at least three different approaches are required, addressing 1) characteristics
of the outer environment and the relations between the environment and the coopera-
tive work arrangement, 2) the field of work, and 3) the characteristics of the actual
cooperative work arrangement itself (i.e. the existing implementation of a socio-
technical system).

87

Part II Analyzing and modeling

To conceptualize the work arrangement as a whole and to address its relations to the
outer environment, support for identifying the (abstract) functions offered by the work
arrangement to the environment is needed. [...]

Second, the essential characteristics of the field of work must be identified and
described. [...]

Third, the cooperative work arrangement itself must be unraveled for several reasons.
The types of activities must be identified, e.g. as a list of prototypical tasks and activi-
ties. Central questions are: To which extent do the activities reflect characteristics in
the field of work or in the environment and to which extents are they caused by the
current implementation of the work arrangement? Which activities are difficult and
why? When deciding the functional division between humans and computers in the
future, this is extremely important.

Also, unraveling the cooperative aspect of the work arrangement is essential. An ana-
lytic distinction to overcome the confusion of the concepts of cooperative work must
be supported, i.e. distinction of concepts like division of labour, organization, alloca-
tion of tasks and responsibilities, profession, collaborative styles, labour market
structures, etc.” (Carstensen and Schmidt, 1993b, pp. 578-579).

Hence, the need for an analytical distinction between field of work and
the work arrangement was recognized in relation to understanding the
interaction between a work system and its environment, or ‘between the
inner and outer environment’ as Simon would phrase it (Simon, 1981).

A natural next step was to search for support for understanding the
activities and other work aspects going on inside the work arrangement,
especially the cooperative aspects of a work setting was to be addressed
explicit. From the distinction between work arrangement and field of
work, it is easily recognized that actors in a work arrangement are working
within the same field of work. Thus, the actors are controlling, handling,
transforming, etc. a number of interdependent objects, structures, process-
es, etc. To do this they have to interact. They have to coordinate their ac-
tivities. This is done by means of an open-ended set of interactional activ-
ities used in mixed ways. According to Schmidt (1994c; 1994b) the pur-
pose of these interactional activities can be to, for example:

• maintain reciprocal awareness among the actors,

• deliberately directing the attention of an actor to certain aspects of
the field of work,

• assigning tasks by directing an actors attention to a specific detail or
by an explicit request, or

88

Part II Analyzing and modeling

• handing over responsibility for a certain process, task, etc.

These interactional activities can have many different appearances, for
example seeing, hearing, marking items, humming, pointing, nodding,
doing activities in abnormal ways, or writing notes. It is difficult to struc-
ture these different modes by means of certain concepts. Schmidt has ab-
stracted these into three salient overall dimensions of “modes of interac-
tion” (Schmidt, 1994c):

• Obtrusive versus non-obtrusive interactional activities. Some modes
are disruptive. Others are conspicuous and do not require much fur-
ther attention from the actors.

• Embedded in the field of work versus a symbolic representation em-
bedded in an artifact representing the state of the field of work. The
symbolic representation provides a higher degree of freedom in
manipulating the intimations presented.

• Ephemeral versus persistent interactional activities. Some modes of
interaction will disappear without leaving tracks. Others will leave a
path to trace.

A fourth prominent characteristic of the modes of interaction is the al-
location of the functionality between the actor and the artifact used. The
degrees of freedom—or ‘local control’—of the coordination can be under-
stood as a continuum from ad hoc coordination in the one end to coordi-
nation-based on rigidly prescribed protocols in the other. Figure 5-1 illus-
trates the continuum.

Ad hoc
coordination

Conventional
protocols

Written
statutes

Formatted
artifacts

Formatted
artifacts,
standardized
representations

Protocols
allowing
deviations

Rigidly
prescribed
protocols

Figure 5-1: The continuum of modes of interaction. In one are ad hoc
based modes that do not involve any pre-specified stipulations. In the mid-
dle we have modes including artifacts that somewhat constrains the coordi-
nation. In the other end are modes based on formally specified stipulations.
The arrow indicates that the formalization increases from left to right.

89

Part II Analyzing and modeling

The nature of the interactional activities and relevant modes of interac-
tion will not be discussed further here. They are, however, important to
keep in mind when setting up a concept for understanding and designing
mechanisms supporting coordination work.

The interactional activities discussed above can be seen as a category of
activities required to manage the fact that the cooperative work is dis-
tributed over several actors, in time, and (perhaps) in space. Coordination
work (or articulation work, cf. previous chapter) is required. It becomes
highly relevant to make an analytical distinction between work and coor-
dination work. When we relate this distinction to the distinction between
work arrangement and field of work it appears that what is coordination
work for one work arrangement might be the field of work for another
work arrangement. The work - coordination work distinction must thus be
understood as recursive, as also argued by Gerson and Star (1986).

The aim of the work presented in this dissertation is, as mentioned ear-
lier, to discuss how the use of computer technology can support coordina-
tion work. This can be done by, for example, providing more flexible in-
teraction mechanisms, providing better representations of the field of work
that reduces the complexity of the coordination work to be conducted by
the actors5, or providing facilities that delimits the need for coordination.

Inspired by the advanced systemic approach used in the development of
the Work Analysis and lessons learned from field studies, empirical stud-
ies of existing CSCW-systems, and existing theories we have established a
conceptual framework of Coordination Mechanisms, i.e., mechanisms that
support the coordination work by mediating coordination information and
by stipulating the flow of distributed activities. The framework will be de-
scribed in section 5.3. Before this let us take a brief overview of what has
been conducted in order to establish the framework.

5.2 Activities providing input for the framework

The establishment of a framework like the one discussed is, of course, not
done ‘over a night.’ Several different activities have been conducted in or-
der to establish the required basis. A lot of literature on themes like work,

5 A better representation might not—literally—cut off any work, but it can make it easier to
handle and thereby reduce the effort required by the actors.

90

Part II Analyzing and modeling

cooperative work, studies of work, coordination, complexity, human inter-
action, use of artifacts, modeling in system development, existing CSCW
systems, etc. has been studied. Much of this were discussed previously in
chapter 1, 2 and 4. Approaches within the field of CSCW similar to the
one provided here are discussed in section 5.6.

Our first version of the concept was described in Schmidt et al. (1993).
It was based on input from several sources:

1) A number of existing field studies were re-analyzed with respect
to coordination aspects (cf. Schmidt, 1994c);

2) A number of existing CSCW systems were analyzed as coordina-
tion mechanisms, i.e., they were considered “a standardized sym-
bolic artifact which was publicly available and publicly percepti-
ble, and having a standard format which imposed constraints on
the users of it and it could be manipulated independently of the
field of work” (cf. Andersen et al., 1993, p. 217 and; Simone et
al., 1993);

3) A critique of existing methodologies with the office automation
and computer science traditions (Carstensen and Schmidt,
1993a); and

4) An attempt to establish a formal notation to use for specifying
computer-based coordination mechanisms.

The next step was to use the framework when conducting work analy-
ses of complex work settings. Mainly three different domains were stud-
ied: Writing of technical documentation (Andersen, 1994); Software test-
ing (Carstensen, 1994); and Mechanical design (Sørensen, 1994a;
Sørensen, 1994b). Several analyses were conducted illustrating how dif-
ferent artifacts were used as means for coordination (cf. e.g., Borstrøm et
al., 1995; Carstensen et al., 1995b). This work was, together with further
refinements of the formal notation (Simone et al., 1994), the main input
for refining and reconsidering the conceptual framework (Schmidt, 1994b;
Schmidt and Simone, 1995; Schmidt et al., 1995), and discussions on how
‘real life’ coordination mechanisms are linked (Schmidt et al., 1994).
Apart from this my field study was also used to discuss overall require-
ments for computer-based mechanisms supporting the coordination of
software testing (Carstensen et al., 1994; Carstensen et al., 1995c), and

91

Part II Analyzing and modeling

methodological discussions of the use of a conceptual framework for ana-
lyzing coordination aspects of cooperative work (Carstensen, 1995b).

Although the process described above seems to be quite straight for-
ward the truth is, of course, that all these activities have been heavily
intertwined and parts of an iterative process.

5.3 Coordination mechanisms

As argued earlier, work settings having a high degree of complexity of the
coordination work or coordination of the distributed activities, require a
certain mode of interaction. This modes often include mechanisms embod-
ied in an artifact containing a protocol that stipulate and mediate the co-
ordination work. This mechanisms can thereby be regarded as reducing
the complexity of the coordination activities seen from the actors perspec-
tive6. Such mechanisms are what I call ‘coordination mechanisms’7. A
short definition:

A coordination mechanism is a protocol, encompassing a set of ex-
plicit conventions and prescribed procedures and supported by a
symbolic artifact with a standardized format, that stipulates and
mediates the coordination of distributed activities.

To fulfill this purpose of reducing the complexity of the coordination
work to be conducted by the actors, we have identified certain specific
characteristics of coordination mechanisms (cf. Schmidt et al., 1993;
Schmidt, 1994b; Schmidt and Simone, 1995; Schmidt et al., 1995). These
are:

(1) A coordination mechanism is essentially a protocol. It is a set of
explicit procedures and conventions that stipulate the coordina-
tion of the distributed activities. The distributed activities are co-
ordinated by executing the protocol. In some situations the actors
might, of course, chose not to execute the protocol. Then the co-

6 Although the mechanism reduce the demands on the actors with respect to coordination
activities a coordination mechanism can, of course, be seen as a constraint to, or
formalization of, the actual work.

7 During the work of developing the conceptual framework, these mechanisms were also
termed “Mechanisms of Interaction”. The term ‘interaction’ has, however, too many and
wide connotations to be adequate. The same might go for ‘coordination’, but that is at least
well-defined in the context of this dissertation.

92

Part II Analyzing and modeling

ordination mechanism is neutralized, and then later ‘switched
back’ to a well specified state.

(2) The stipulations of the protocol are (partly) conveyed by a sym-
bolic artifact. This means they are persistent in the sense that they
are, in principle, accessible independently of the particular
moment, of the state of affairs in the field of work, or of the par-
ticular actor. They are publicly available in some kind of
‘physical form’, i.e., a cognitive symbolic structure only existing
in ‘the head of the actors’ is not considered a coordination mech-
anism (but it might, of course, be turned into one).

(3) The symbolic artifact mediates the coordination of the distributed
activities. The artifact is an intermediary between the actors. It
conveys any change to the state of execution of the protocol to
other actors by means of changes to the state of the artifact. The
representation embedded in the artifact must thus be available,
accessible, and manipulatable for the actors.

(4) The symbolic artifact has a standardized format that reflects per-
tinent features of the protocol. It thus provides affordances to and
impose constraints on coordination work. By providing a formal
structure the artifact “force a specific behavior on a person”
(Norman, 1991, p. 34) that makes it easier for others to interpret
the information mediated.

(5) The state of the protocol is distinct from the state of the field of
work. Changes to the state of the field of work are not automati-
cally reflected in changes to the state of the execution of the pro-
tocol and vice versa. This allow the actors to reconfigure the
behavior of the protocol (locally or permanently) without discard-
ing ongoing work.

Since a coordination mechanism is defined as a set of procedures and
conventions supported by an artifact with certain necessary characteristics,
computational (or computer-based) coordination mechanisms are con-
ceived of as a special category of coordination mechanisms characterized
by a specific allocation of functionality between the human actors and the
artifact. A computational coordination mechanism is defined as a com-
puter artifact that incorporates aspects of the protocol of a coordination
mechanism so that changes to the state of the mechanism induced by one

93

Part II Analyzing and modeling

actor can be automatically conveyed by the artifact to other actors in an
appropriate form as stipulated by the protocol (Schmidt, 1994a). The
Concept of Coordination Mechanisms can thus be used to characterize
mechanisms having a wide range of allocations of functionality between
actor and artifact, from almost total reliance on human intervention to al-
most fully automated computer artifacts. All coordination mechanisms are
fundamentally ‘social’, i.e., they are constituted within a set of procedures
and conventions.

The very idea of having pre-defined protocols or procedures as deter-
minants of action has been analyzed and discussed widely in the literature
(e.g., Suchman and Wynn, 1984; Suchman, 1987; Rouncefield et al.,
1994). Many of these studies indicate that formal organizational construc-
tions in the actual course of work is problematic. They are ‘idealizations’
when taken as representations of actually unfolding activities. But—as ar-
gued by Schmidt (1994b)—the studies have often focused on recovery
from error in an administrative agency. They provide only little insight
into how standard procedures, defined as pre-defined written stipulations,
are applied in routine daily work. So, protocols can convey “affordances
and constraints to the individual actor which the actor, as a competent
member of the particular ensemble, can apply without further contempla-
tion and deliberation unless he or she, again as a competent member, have
accountable reasons not to” (Ibid., p. 94). The actors might have conclu-
sive reasons for deviating from the stipulations. Thus, rather than avoiding
protocols, they should be flexible and performative constructs (Bowers,
1993) that can be overruled if necessary.

When addressing artifacts we must consider two aspect with respect to
what they represents: The ‘surface representation’ and the ‘internal repre-
sentation’ as Norman calls them (Norman, 1991). Artifact with a surface
representation are primarily “systems for making possible the display and
maintenance of symbols: They implement the ‘physical’ part of the physi-
cal symbol system” (Ibid., p. 25). Artifacts containing internal representa-
tions have symbols maintained internally within the device, unlike for
example paper and pencil where the symbols appear only and always on
the surface (Ibid.). When describing coordination mechanisms both the
surface and the internal representations need to be addressed. The surface
representation is usually immediately visible, whereas the internal repre-

94

Part II Analyzing and modeling

sentations can be ascribed to a protocol that is not incorporated in the arti-
fact, for example forms or check lists used.

An aspect of the definition of coordination mechanisms was, that the
state of the protocol is distinct from the state of the field of work. Several
field studies describe artifacts supporting coordination of work from
which they are separated, for example the flight strip in air traffic control
(Harper et al., 1989a) or the bug form used at Foss Electric (described in
chapter 6, see also Carstensen, 1994). Other field studies have illustrated
how mechanisms directly coupled to the state of the field of work are
overruled and used in unintended ways in order to enable reconfiguration
of the stipulations without discarding the ongoing work (e.g., Schmidt,
1994b). The conceptual framework should thus be based on an explicit
distinction between the protocol and the artifact on the one side and the
state of affairs in the field of work on the other.

5.4 Towards a first conceptualization of
coordination work

In order to establish a basis for designing computer-based mechanisms
supporting coordination work, a conceptualization of relevant dimensions
in the work is required. As argued by Strauss coordination work is con-
ducted with respect to the salient dimensions of who, what, where, when,
how, etc. (Strauss, 1985). Strauss’ findings, Schmidt’s re-analysis of field
studies (Schmidt, 1994c), and findings from the field study as Foss
Electric (Carstensen, 1994) all indicated, that coordination work is con-
ducted with respect to conceptualizations (objects) pertaining structures in
the actual field of work and the actual work arrangement. An example is
the coordination of the software testing activities at Foss Electric
(discussed in chapter 6). Here my analysis implied, that when coordinating
the activities the actors related to conceptualizations of the software archi-
tecture and classifications of modules and bugs (i.e., structures reflecting
the field of work), and conceptualizations of work procedures, plans,
human resources, and technical resources (i.e., structures from the work
arrangement).

Inspired by Strauss ‘salient dimensions’, the attempt to identify ‘basic
coordination processes’ by Malone and Crowston (1990), the re-analyses
conducted by Schmidt, and findings from my field study a first model of

95

Part II Analyzing and modeling

the relevant dimensions of objects of coordination work8 was established.
The dimensions were both related to the cooperative work arrangement
and to the field of work, and they were furthermore organized according to
their status, nominal or actual. The model can be seen in figurte 5-2 in-
cluding data from my field study at Foss Electric. The dimensions have, of
course, evolved, and we have presented the model in several versions
during the work on the framework (Schmidt et al., 1993; Carstensen,
1994; Schmidt, 1994b; Schmidt and Simone, 1995).

Regarding the cooperative work arrangement, the following dimensions
of objects of coordination work must be included:

• Roles indicating general responsibilities for classes of tasks, re-
sources, etc.

• Actors participating in the cooperative work arrangement. These can
be committed to specific task and roles, participating in ongoing ac-
tivities, have different roles, cover different capacities, etc.

• Human resources which is the potential participants of the coopera-
tive arrangement.

• Tasks are operational intentions, characterized by goals to attain,
obligations, commitments to meet, etc. These structures include
information on the problem, conditions for undertaken the task, etc.
Furthermore relations to other structures like actors, informational
resources, or material resources is required.

• Activities are ongoing unfolding courses of action. Also these struc-
tures include relations to other structures like actors or material
resources.

Regarding the field of work a list of dimensions of objects of coordina-
tion work must include the following:

• Information resources. This is documents, letters, notes, files,
memos, drawings, etc. which the actors access, refer to, etc. These
must also include relation structures to, for example, material
resources, actors, or roles (this goes for the following resource
dimensions as well).

8 These dimensions have we elsewhere called “Objects of articulation” (e.g., Schmidt et al.,
1993).

96

Part II Analyzing and modeling

• Material resources being structures containing information on char-
acteristics, components, available assemblies, etc.

• Technical resources are structures having information on for exam-
ple tools, machinery, or software applications.

• Infrastructural resources contain descriptions of rooms, communi-
cation facilities, transportation facilities, etc. including their status
and operational characteristics.

• Conceptual structures are the relationships between categories used
within a specific community as ordering devices with respect to the
field of work. As recognized by Schmidt categories used in coordi-
nation work can either be adopted (e.g., used to establish prototypi-
cal categories), or they can be applied for classifying events, objects,
etc. (Schmidt, 1994b). The former is used to establish a common
understanding of aspect of the field of work, whereas the latter is
done as to support monitoring of, direct attention to, etc. certain as-
pects of the state of the field of work.

How the understanding of these dimensions has evolved will not be
discussed further here. The refinement can be illustrated by studying the
sections on ‘Objects of articulation work’ in for example Schmidt et al.
(1993), Carstensen (1994), and Schmidt (1994b).

Apart from the “work arrangement”-”field of work” distinction, the
analysis of the data from the Foss Electric field study indicated a need for
a distinction in order to conceive the complicated dynamics of coordina-
tion work.

97

Part II Analyzing and modeling

Nominal Actual

Dimensions of
coordination

work

Operations with
respect to the

dimension

Dimensions of
coordination

work

Operations with
respect to the

dimension

Dimensions with respect to the cooperative work arrangement
Role
- Tester
- Responsible
designer
- Spec-team member
- Central file
manager
- Platform master

assign to [Committed
actor];
responsible for
[Task]

Committed actor assume, accept,
reject [Role];
initiate [Activity];

Task
- Correction task

relate; allocate;
accept; volunteer;
reject; accomplish;
approve;
disapprove;

Activity initiate
[Committed actor];
done by [Actor-in-
action];
realize [Task];
make publicly;

Human resource
- James, Jones

locate, allocate,
reserve;

Actor-in-action initiates [Activity];
does [Activity];

Dimensions with respect to the field of work

Conceptual
structures
(conceptualizations
 of the field of work)
- Bug classifications
- Software
modulation
- Platform periods

categorize; define;
relate;

State of field of
work

classify aspects of;
instantiate;
direct attention to;
make sense of;
act on;

Informational
resources

locate; obtain access
to; reserve;

Informational
resources-in-use

show; hide;

Material resources

Technical resources
- Test machine

categorize; locate;
reserve [Task];

Technical
resources-in-use

categorize;

Infrastructural
resources

Infrastructural
resources-in-use

Figure 5-2: A model of the essential dimensions of objects of coordination
work. Related to these dimensions (column 1 and 3) are examples of
typical elemental operations on these (column 2 and 4). Adapted from
Carstensen (1994). For illustration purposes are included examples from
the coordination of software testing at Foss Electric.

98

Part II Analyzing and modeling

During the coordination work the objects of coordination were often re-
lated to one of three stages. They were either nominal (potential, but not
yet effected), actual (ongoing), or past (completed). The past-dimension is
simple since it is just a track record of the actual-dimension. In figure 5-2
the nominal and actual dimensions of objects of coordination work are in-
corporated, and typical operations on the objects are listed.

Task

Role

Activity/-
action

Committed
actor

Actor-in-action

Resource Resource
in use

Conceptual
structure

State of Field of
Work

Human
resource

responsible for

responsible for

assigned to / assumed
by

realizes
/ realized by

initiates /
initiated by

deployed to

does / done by

allocated to

categorizes

allocated to

responsible for

classifies

monitors

belongs to

defines

Figure 5-3: Dimensions of objects and elemental operations of coordina-
tion work. The objects on the left hand side of the diagram are of nominal
status, whereas the objects on the right hand side are of actual status. The
‘missing links’ between objects can be constructed indirectly, by creating
composite operations. Adapted from Schmidt (1994b, p. 28)

The dimensions of objects of coordination work should be considered
interrelated, e.g., conceptual structures used for categorizing resources,
roles are related to tasks by means of responsibilities, actors are assigned
to roles, tasks are related to activities, etc. They have relationships with
each other, and together they form a dynamic structure. Conducting one of
the elementary operations exemplified will influence the state of the ob-

99

Part II Analyzing and modeling

jects in the dimensions. The relationships between the objects of coordi-
nation work, and the influence of the basic operations are illustrated in
figure 5-3.

The conceptualizations presented in this section have mainly been seen
as an attempt to capture the essential aspects of a work setting in a coordi-
nation work perspective. The concept of objects of coordination work and
the model of these should, of course, also be seen as preliminary tools
supporting the process of analyzing cooperative work, i.e., the work ana-
lyst could regard the dimensions of objects of coordination work as a
framework or checklist to use for classifying his findings.

5.5 Overall facilities of coordination mechanisms

As argued earlier a driving force of this dissertation work has been to dis-
cuss how use of computer technology can support coordination work. It is
thus relevant to draw attention to which facilities existing coordination
mechanisms provide to the users (actors). Future mechanisms to be de-
signed should offer similar or improved facilities, no matter whether they
are to be based on computer technology or not.

Based on the study of existing CSCW applications, literature on coor-
dination work and CSCW, a re-analysis of existing field studies, etc. we
established a first set of required facilities for access and manipulation of
computer-based coordination mechanisms in Schmidt et al. (1993). Based
on this set and the findings in the field study the following overall
requirements for coordination mechanisms can be established:

(1) A coordination mechanism must be malleable and controllable by
the cooperating work arrangement itself. Similar to plans coordi-
nation mechanism are “resources for situated action” (Suchman,
1987). We cannot foresee and pre-program all situations. The
actors must thus be in charge of changing the protocol embedded
in the mechanism, and of controlling the mechanisms while they
are running.

(2) To support the requirements of malleability and controllability
the protocol and status of a coordination mechanism must be
visible and accessible to the actors, and amenable to modifica-
tions by workers while in the process of work.

100

Part II Analyzing and modeling

(3) Since coordination work is intertwined with work activities di-
rected to the field of work coordination mechanisms must, to
some extent be integrated in the machinery, support tools, pro-
cesses, etc. used in the work. Computer-based coordination
mechanisms should not be seen as isolated applications, but
rather as facilities to be included in the applications already used
for conducting the work.

(4) The primitives, structures, concepts, etc. used for expressing the
status of the field of work, and used when the actors access the
mechanisms must be at a semantic level appropriate to the work
context. The primitives, structures, concepts, etc. should be
expressed in terms of basic concepts pertaining to the coordina-
tion of distributed activities in cooperative work, not in terms of
low-level programming primitives or abstractions of the work dif-
fering much from the one normally used.

(5) Since the coordination mechanisms are supposed to support
cooperative management, they must support multiple actors in
modifying the mechanism while being engrossed in the flow of
distributed activities. The mechanisms must then have support for
propagating information on changes and for managing the incon-
sistencies that might appear due to changes in the middle of a
running process.

To specify this further the following facilities must be provided for:

• Making changes locally to the protocol prescribing the execution
flow and to the artifact mediating coordination information. These
changes must be temporary, and apply for specific situations only.
An example could be that an actor suspend the protocol for a given
instance of a work flow, overrule a step in the protocol, or re-start a
given instance of a procedure. It is the involved actors themselves
that must have access to this facility. There might, of course be
situations where only some actors should be allowed to make certain
changes to the protocol.

• Making global and permanent changes to the protocol prescribing
the execution flow and to the artifact mediating coordination infor-
mation, for example re-designing the flow of work or adding new

101

Part II Analyzing and modeling

roles in relation to the mechanism. Also this kind of changes must
be accessible for the actors involved.

• ‘Re-programming’ the mechanism. If the actors are going to make
permanent changes to the protocol or to the content and function of
the artifact(s) used they must be provided with a ‘language’ for (re-
)specifying the protocols and the behavior of the artifact. To make
the specification job as easy as possible the components and
manipulations provided by the mechanism must correspond to
notions and objects of everyday coordination work. A high degree of
transparency is required.

• Controlling the propagation of information on changes. A mecha-
nism must provide means for making dynamic reconfiguration
cooperatively. Thus means for propagating information of changes
should be offered too, i.e., facilities for informing other actors of the
changes, and for bringing the mechanism back into a well-specified
and consistent state.

• Getting access to the structure of the mechanism. From the require-
ments above follows that the behavior of the mechanism must be
‘visible’ to the actors. In order for actors to be able to exercise their
control of the execution of the mechanism and re-specify the behav-
ior of the mechanism, the specification of the behavior of the mech-
anism must be accessible and manipulable to actors and, more
specifically, accessible and manipulable at the semantic level of
coordination work (Schmidt, 1994b).

• Only partially specify the behavior of a coordination mechanism. A
coordination mechanism must include explicit prescribed proce-
dures, but since we cannot foresee the situations the procedures
should be under-specified (Suchman and Wynn, 1984; Suchman,
1987). Therefore it must be possible to let certain attributes be left
un-specified until a given action is taken by the actors or by another
mechanism.

• Keep track of the changes a mechanism has been through. The
actors must have access to reconstruct the evolution of the mecha-
nism in order to access and retrieve earlier versions that are possibly
more adequate to the current situation or suitable starting points for
the redesign of the mechanism.

102

Part II Analyzing and modeling

• Identifying pertinent features of the field of work as represented by
the data structures and the functionality of the system in which it is
embedded. Coordination mechanisms are local and temporary clo-
sures (Gerson and Star, 1986). A coordination mechanism will thus
only address certain aspects of the work to be coordinated.
Accordingly, a coordination mechanism is to be “conceived of as a
specialized [..] device that is distinct from the state of the field of
work and yet embedded in an application so as to support the
[coordination] of the distributed activities of multiple actors with
respect to the field of work as represented by that application”
(Schmidt, 1994b, p. 111). This is, of course, especially relevant for
computer-based mechanisms embedded in another software applica-
tion.

• Specify structures in the coordination mechanisms reflecting the
structures of the organizational context in which the distributed
activities to be coordinated are conducted. Although work mainly is
coordinated with respect to conceptualizations of the field of work
and the work arrangement, structures in the wider organizational
context might also be relevant. For example overall company poli-
cies might influence the coordination work.

• Linking coordination mechanisms to each other. The field study
clearly illustrated that although the coordination mechanisms used
could be considered individual demarcated mechanisms, they have
some very important interrelations (Schmidt et al., 1994; Carstensen
et al., 1995b). This is discussed in details in section 5.8.

It should be noticed, that the facilities are not distinct categories of
facilities. Their respective contributions to the support for access and
manipulation are extremely intertwined. So, the facilities must be seen as
a tentative frame of reference.

5.6 Related approaches

Others have been working with similar ideas of providing computer-based
flexible support of coordination work based on a conceptual understand-
ing of coordination. Those considered relevant were discussed in chapter
2. I will very briefly discuss some of them in the light of the required
facilities discussed above.

103

Part II Analyzing and modeling

OVAL developed by Malone and associates (Fry et al. , 1992; Malone
et al. , 1992) is intended to be a general framework, including a notation,
for expressing coordination work. The basic primitives of objects, views,
agents, and links are very general. Consequently, the notation in OVAL
becomes very flexible. The specification level is however very primitive,
and the basic primitives provided by the notation do not correspond to
objects in general coordination work. They rather reflect typical structures
in a computer.

The Coordinator (Winograd, 1986; Flores et al., 1988) can be con-
ceived of as providing a certain specification language for the coordina-
tion-related interactions between the actors. The Coordinator is an exam-
ple of a system that incorporates a coordination mechanism. Facilities are
provided for specifying and re-specifying protocols. But The Coordinator
provides no visibility and control of the mechanism to actors when it is
running. Another problem is that The Coordinator uses ‘conversation for
action’ as a metaphor for coordination work. Hence, the basic dimensions
of objects of coordination work are defined in terms of ‘obligations’.

Another environment for providing support of collaborative activities is
the EGRET Framework (Johnson, 1992). EGRET aims to support what is
termed ‘exploratory group work’, for example software engineering
(Johnson and Tjahjono, 1993). The EGRET Framework supports specific
aspects of coordination by giving the users the ability to develop new
‘schemes’ which can include tasks, descriptions, names etc. Only domains
characterized by having specific structures (e.g., consensus structures) are
supported, i.e., only a few highly specialized domains are supported. The
primitives are at an appropriate semantic level, but they are specialized in
terms of schemes representing the current state of consensus. Local and
temporary changes to the structure, and visualization of these, are sup-
ported by the EGRET Framework, i.e., a high degree of control of execu-
tion and visibility of changes are supported.

 ConversationBuilder (Kaplan et al., 1992b) was developed as a sup-
port tool for providing flexible active support for (collaborative) work ac-
tivities. The flexibility is achieved by providing ‘appropriate mechanisms’
for the support of collaboration rather than specific policies. Visibility and
control of the mechanisms are offered. ConversationBuilder offers a flex-
ible environment covering a number of relevant facilities and it offers a set

104

Part II Analyzing and modeling

of primitives at an appropriate semantic level. But the system is not based
on an understanding of some of the fundamental characteristics of coordi-
nation work. The notation for specifying mechanisms is based on a theory
of conversation. As for Coordinator, obligations become the central struc-
ture, and control is what is mainly supported.

Regatta (Swenson et al., 1994) provides support for planning work pro-
cesses. This is done by (iteratively) modeling the communication that is
required to coordinate the relevant tasks. The system does provide visibil-
ity, malleability, and control of the mechanisms developed, but it seems to
be based on the basic assumption that an overall ‘meta-plan’ can be estab-
lished, so that all other plans become sub-plans to this. Hence linking is
not supported. The semantic level of the basic primitives seems to be use-
ful, for example actors and tasks can be specified at a proper level, but
several important objects of coordination work are not addressed, e.g.,
responsibilities, conceptual structures, resources, etc.

5.7 Characteristics of ‘real life’ coordination mecha-
nisms

In order to illustrate the form and function of coordination mechanisms a
few examples of the (mainly paper-based) coordination mechanisms iden-
tified at Foss Electric will be given here. The only purpose is exemplifica-
tion, thus some important details might be missing. The mechanisms will
be described in greater detail in chapter 6.

In several situations the software designers in the S4000 project real-
ized that ad hoc coordination was insufficient and ineffective for manag-
ing the coordination of the distributed activities of software development,
integration, and testing. Different types of paper-based mechanisms were
invented (or adapted) and used to keep track of the integration or the state
of affairs, to schedule relations and dependencies among involved actors,
tasks, and resources, etc.

The first example is a concept of a working cycles (or working rhythm)
called “software platforms”. It was invented by the software designers
themselves in order to support monitoring and controlling the integration
of software pieces and modules. The software platform is a concept
including a number of artifacts, written procedures, conventions, etc.
Originally a software platform was just a point in time at which all soft-

105

Part II Analyzing and modeling

ware designers stopped all design activities and started integrating their
bits and pieces. Later supportive artifacts and organizational procedures
were added, and a platform period was defined at the period used for inte-
gration. The period between two software platforms—i.e., the period in
which the software designers designed, coded, and tested their modules—
was typically 3–6 weeks. After a platform period, the developers spent a
week integrating the software modules. When the integration was brought
as far as it was considered possible, and all known problems were written
down as tasks to be accomplished the complete software complex was
used (released) as platform for the departure of all new design activities.

How to handle the integration period was prescribed in organizational
procedures. Also the role and tasks of the Platform Master responsible for
the integration were specified in procedures and check lists. Apart from
the procedures and check lists two artifacts were essential for supporting
the coordination: A project plan spreadsheet and a software directory
structure.

The project plan contained information on which tasks were to be
accomplished, references to a detailed description of the task, estimations
per module per task, responsibility relations between modules and soft-
ware designers, relations between tasks and platform periods, and the total
planned work hours per platform period for each software designer. The
plan supported the coordination by providing a conceptual structure for
scheduling tasks, actors, and deadlines by relating these to software mod-
ules. All tasks were thus related to a given platform period. This stipulated
how progress in the integration of the software should be obtained, and
which actors and modules that needed to be involved when problems,
changes in plans, etc. occurred.

The directory structure was developed to support the software integra-
tion. The designers had to place their personally tested software in a pre-
specified directory structure before the deadlines of the integration peri-
ods. The structure was distributed and placed on the software designers’
work stations. The directory structures and the related software routines
reduced the complexity of the meshing of the software by providing a
structure stipulating how the software was to be integrated. This was done
by providing a scheme for classifying concepts and structures in the soft-

106

Part II Analyzing and modeling

ware, i.e., the structure established a common standardized conceptualiza-
tion of the software architecture.

Another example was a paper-based bug report form coordinating the
activities concerning registration, diagnosis, and correction of software
bugs. In relation to this, a list of not-yet-corrected-problems and a central
file containing copies of all registered bugs were established. The bug
report forms were used to collect, classify, and manage errors and sugges-
tions. In terms of objects of coordination they mediated and stipulated
coordination by means of conceptualizations of tasks, actors, software
modules, and responsibilities. The main purpose of the bug report forms,
the central file, the problems list, and the procedures for classifying, cor-
recting, and reporting on the problems, was three-fold: ensure that all
problems were registered and filed; establish and exhibit a clear and visi-
ble organization of the responsibilities to and for all involved designers;
and stipulate how a problem was diagnosed, how the correction responsi-
bility was delegated, and how a problem was reported corrected. The
problems list was intended to provide all designers with the possibility of
being aware of the state of affairs in the total software system.

The form allowed distributed registration and classification of software
errors. The standardized format and the classification established a
‘common language’ for reporting on bugs and for classifying the prob-
lems, both from a usage perspective and from a software design perspec-
tive. Using the form made it possible to distribute the test activities since
the need for ad hoc communication and coordination was reduced, and by
making known problems visible to the software designers it supported the
need for awareness of the state of affairs. The most important feature was
that it very clearly stipulated the flow of the reporting, diagnosing,
correcting, and verifying activities, i.e., when an activity was finalized the
following one could be initiated more or less automatically.

The examples mentioned here and several other examples have been
identified and described elsewhere (cf. e.g., Carstensen et al., 1995b). The
bug report form and related mechanisms will be discussed in detail in
chapter 6.

107

Part II Analyzing and modeling

5.8 Linking of coordination mechanisms

Coordination mechanisms can be considered local individual mechanisms
supporting a demarcated well-specified aspect of the coordination of dis-
tributed activities. In the terms of Gerson and Star they are ‘local and tem-
porary closures’ (Gerson and Star, 1986), and no single mechanism will
apply to all aspects of coordination work in all domains of work. Hence,
coordination mechanisms are to be conceived ofas a specialized device
conceptualizing certain aspects of the field of work and the work arrange-
ment.

When analyzing the mechanisms used at Foss Electric it became clear
that the different coordination mechanisms (protocols and supporting arti-
facts) used in an everyday cooperative settings intersect and interlace in
multiple ways and that they therefore must be made to interoperate, i.e.,
they must be linked (Schmidt et al., 1994). The coordination mechanisms
represented aspects of the structures in the field of work and the work
arrangement by means of different types of links:

• a coordination mechanism may subscribe to policies and other defi-
nitions issued by other coordination mechanisms;

• a coordination mechanism may trigger another coordination mech-
anism into action;

• a coordination mechanism may provide a control mechanism for
cooperatively managing changes to another coordination mecha-
nism; and

• ‘foreign’ coordination mechanisms may provide indexing facilities
for accessing resources in the wider organizational field;

This conception does not presuppose any single center, nor does it pre-
suppose any well-defined organizational boundary. The context of any
particular coordination mechanism (and the cooperative work arrangement
using it) stretches as far as the actual links emanating from this particular
coordination mechanism (subscriptions, triggers, searches).

108

Part II Analyzing and modeling

Project
Schedule

Platform
Integration
Procedure

OC: Roles

Bug Report Form

Bug
accepted

Modules

Tasks

Task announced:
verify bug

when corrected

P.M.

PM identified
for verification task

Actors

Software
module
repository

Software
Directory

Task announced:
correct bug

Module
classified

Module
published

Figure 5-4: The interacting coordination mechanisms used when coordi-
nating distributed software testing and correction tasks.
‘PM’ denotes the platform master, i.e., the actor in charge of the
integration of modules and hence verification of corrections at the end of
the current platform period. We have previously discussed a similar
drawing in Schmidt et al. (1994).

As mentioned the field study included several examples of coordination
mechanisms linked to each other:

(1) Repositories were accessed by means of a coordination mecha-
nism serving as an index for external clients, e.g., the software
directory served as index for the software module repository;

(2) A mechanism triggered the execution of another mechanism
when a certain condition occurs, e.g., when a reported bug was
accepted, a new correction task was announced and entered in the
project schedule. That is, the shift in state of one mechanism (the
bug report form) triggered operations on structures in another
mechanism (the spread sheet);

(3) Similarly, when a bug was reported being corrected, another new
task was announced, namely the task of verifying the correction.

109

Part II Analyzing and modeling

However, this task was pending until the platform master,
responsible for the verification, was appointed and until the point
in time where the next integration period was going to start. This
starting point was specified in the spread sheet.

(4) Links between the mechanisms made it possible for a the instan-
tiation of a mechanism (e.g., a particular bug report sheet) to be
incompletely defined. The missing specification could be filled in
later by another mechanisms. For example, was a platform period
number given in a bug report form an implicit implication of the
deadline for the correction task.

Some of the links and interactions between the coordination mecha-
nisms are illustrated in figure 5-4.

The idea of linkable (computational) coordination mechanisms might
have some interesting implications. The conception of computational co-
ordination mechanisms as interacting objects may be taken to provide a
foundation for creating workflow management systems in a bottom-up
manner (Pycock and Sharrock, 1994b). The use of this was clearly illus-
trated by the Foss Electric case: in their totality the interacting coordina-
tion mechanisms constituted a workflow management system, albeit dis-
tributed and emerging bottom-up.

110

Part II Analyzing and modeling

6. The bug form: An example of a real-life
coordination mechanism

“With the number of developers involved, it is
extremely important that all problems are

registered, otherwise they just ‘disappear’. So,
we designed an error and change request form

[…]. An important derived product then, is a
list of problems reported as fixed but not yet
tested. Based on the lists and the error forms

the platform master can check and then report
the problem corrected.”

(Software designer at Foss Electric)

In large software development projects, like the one studied at Foss
Electric, the testing of the software is a demanding and difficult task. It
often requires and involves many actors who need to coordinate their ac-
tivities, distribute information on identified errors, be aware of results
from others’ tests, negotiate the classification of an error, etc. This chapter
reports from the field study conducted at Foss Electric. As mentioned, the
field study addressed how the software designers in the S4000 project co-
ordinated their activities in the last stages of the project. The field study
and central characteristics of Foss Electric and the S4000 project are de-
scribed previously in chapter 3.

The chapter will be organized around a description of the use of, what
the designers called the “bug form” (or bug report form). The bug form is
considered an example of a paper-based coordination mechanism. It will
be illustrated, how the use of the form an concomitant work procedures
were used in order to cope with the complexity of coordinating certain ac-
tivities in relation to reporting, diagnosing, and correcting software bugs9

9 As my colleague Tuomo Tuikka has phrased it, the metaphor describing a software error as a
bug is confusing. An error can cause reactions as if it was a living insect that should be
removed, but it is, of course, created by the programmer and should as such be regarded as a
software error. The word bug is stuck in our language, and it is probably as difficult to get rid
of as errors in software. I will call them ‘bugs’ here since focus is on coordinating their
treatment (i.e., focus is on ‘talking about bugs’, cf. Carstensen et al., 1995c) rather than on
studying formal techniques for finding them.

111

Part II Analyzing and modeling

in the S4000 project. Other related mechanisms (mainly paper-based) will
also be described during the description.

Early in the project, the software designers involved in the S4000 pro-
ject realized problems in coordinating, controlling, monitoring, and han-
dling the testing activities. They invented and used a standardized bug
form that all testers had to fill in whenever they identified an error (a bug).
To prescribe the use of the forms, a structured ring binder (being used as a
central file) and a set of procedures and conventions for the use of the
form were established. Some of the procedures were written down as or-
ganizational procedures, others were just conventions developed and re-
fined during the project. A set of roles was defined in order to establish
the basis for running the procedures. These were described in chapter 3.

The purpose of the form, the binder, and the concomitant conventions
and procedures (hereafter often called ‘The bug form mechanism’ or just
‘The mechanism’) was to support:

(1) a decentralized registration of bugs,

(2) a centralized decision of how to overcome the identified problem,

(3) the correction activities in being handled in a decentralized man-
ner,

(4) providing an overview of the state of affairs (with respect to reg-
istered, corrected, verified, etc. bugs), both to the involved soft-
ware designers and testers, and to the management of the soft-
ware development, and

(5) a final centralized process for verifying the implemented correc-
tions10.

The following describes the bug form mechanism by means of the
Concept of Coordination Mechanisms described in the previous chapter,
i.e., the bug form mechanism will be considered a protocol, encompassing
a set of explicit conventions and prescribed procedures and supported by a
symbolic artifact with a standardized format, that stipulates and mediates
the coordination of distributed activities. It is thus relevant to discuss,
which functions related to coordination work the bug form mechanism

10 In the early stages of a project, a bug form was often are used as an informal means for
communicating ideas, suggestions, recognized problems, etc. This type of use is, of course,
relevant, but this chapter will mainly address the form used for registering and handling
software bugs.

112

Part II Analyzing and modeling

provides. Hence, certain characteristics of the mechanism become central:
The mechanism is based on a publicly available and persistent artifact, the
mechanism is symbolic and not coupled in any strong, tight, or irre-
versible way to the state of field of work, and the mechanism is based on a
standardized format. Furthermore, the dimensions of objects of coordina-
tion work, along which the coordination is conducted, become essential.
Objects of coordination work are the references in the mechanism pointing
to components and aspects in the field of work or in the cooperative work
setting itself, e.g., references to actors, roles, tasks, conceptual structures,
resources of different kinds, etc. The dimensions addressed in the mecha-
nism are discussed at the end of this chapter.

In order to provide some background, I will first present a few aspects
of and relations to the software testing literature. This should not be re-
garded as an overview of the software testing literature, rather it is an at-
tempt to provide a more thorough perspective for the following descrip-
tions. The work context is briefly introduced, and the physical appearance
of the form and the binder is described. Then the use and function of the
bug form mechanism are described. Also the conditions triggering new
activities in the mechanism, and the objects of coordination work reflected
in the mechanism, are discussed. In a concluding section, I will briefly
discuss how the bug form mechanism reduces the coordination effort re-
quired. Later, in chapter 11, the usefulness of the Concept of Coordination
Mechanisms for describing phenomena related to coordination activities in
real life work settings will be discussed.

6.1 Software testing

The art devoted to finding software errors is called ‘software testing’.
Myers (1979) defines software testing simply as being the process of exe-
cuting a program with the intent of finding errors. The understanding of
software testing has changed over the last decades. In the early view of
programming and testing, you ‘wrote’ a program and ‘checked it out.’
Later testing has been defined as evaluation of software or prevention of
problems (cf. e.g., Gelperin and Hetzel, 1988). In modern systems devel-
opment, software testing is defined as any activity aimed at evaluating an
attribute or capability of a system, and determining whether it meets its
required results (Hetzel, 1988). Software testing is regarded as a very im-

113

Part II Analyzing and modeling

portant aspect of all modern software engineering, which should be an in-
tegrated part of all software quality assurance work (Yourdon, 1988).

The field of software testing spans mathematical theory, the art and
practice of validation, and methodology of software development (Hamlet,
1988). A broad array of testing methods and techniques are available to-
day, e.g., black and white box testing techniques providing a systematic
approach to the design of test cases (Hetzel, 1988; Beizer, 1990) or regres-
sion testing (Dalal et al., 1993). Also a fast growing stream of automated
and semi-automated software testing tools influences the field today.
Neither the stages, the techniques, or the automated tools will be discussed
further here.

Most of the software testing literature addresses the use of testing
methods and tools or the relationship between the testing and the rest of
the software engineering process. The cooperative aspects of the process is
only marginally addressed. Some attempts to computer support software
inspection and review activities do, however, exist (e.g., Johnson and
Tjahjono, 1993; Mashayekhi et al., 1993).

In real life software testing is an extremely complicated activity, and
conducting an exhaustive test is in practice impossible (Myers, 1979;
Parnas, 1985). According to Parnas software is never faultless, software
bugs are rather the norm:

“The lay public, familiar with only a few incidents of software failure, may regard
them as exceptions caused by inept programmers. Those of us who are software pro-
fessionals know better: the most competent programmers in the world cannot avoid
such problems. [...] Software is released for use, not when it is known to be correct,
but when the rate of discovering new errors slow down to one that management con-
siders acceptable.” (Parnas, 1985, p. 1327).

Despite of all the techniques and methodologies for specific source
code testing, black box testing, usability testing, etc., no methodologies
exists for establishing a set of unambiguous criteria for a sufficient test
strategy in order to ensure that the product is reliable, usable, and correct
(Petchenik, 1985). In modern software development projects much effort
is required to establish a common understanding among software develop-
ers, software testers, and software managers of when a product is accept-
able. To cope with the problems, organizations involved in software test-
ing typically apply the strategy of having people with different skills and
perspectives test the software. This was the case at Foss Electric too.

114

Part II Analyzing and modeling

Division of labor is required:

“Effective quality control requires a certain division of labor and responsibilities. In
practice, quality is not the only concern, and there is a constant struggle between qual-
ity and resource interests. Independence is needed to constantly defend a quality posi-
tion and to avoid the self-deception in having systems developers evaluate their own
products.” (Dahlbom and Mathiassen, 1993, p. 170).

The division of labor in a software testing process can either be done so
different actors perform different subtasks (detection, diagnosis, correc-
tion, etc.), or it can be organized so that each person has the responsibility
for all testing activities within a limited part of the program. In any case,
the participants will inevitably be mutually interdependent. The former
was the predominant at Foss Electric. No matter how the work is orga-
nized coordination is needed. Although it is often tried the need for coor-
dination cannot be eliminated just by structuring the software properly
(Parnas, 1985). In order to mesh their work results, interdependent actors
performing distributed software testing tasks must coordinate and negoti-
ate their work (see e.g., Kraut and Streeter, 1995).

In many software organizations, testing is the poorest scheduled part of
programming (Brooks Jr., 1982). If the importance is not recognized
properly, the project planning will not include enough time. This causes
exstra pressure on the testers, and, of course, the complexity of the testing
work and a tight schedule influences the decisions determining whether or
not a software product meets its requirements. The case is often, that there
is no systematic way to search, no way to judge points selected, and no
way to decide when to stop implemented in the organizations (Hamlet,
1988).

6.2 The physical work setting

The software design group in the S4000 project included between 5 and
12 software designers during the development. In version one of the pro-
ject up to 12 designers were involved, and the average number of designer
were approximately 8. During the design of version 2 of the instrument 4 -
5 software designers worked in the project. My observations and inter-
views were conducted over a three month period in the middle of the 10
month long version 2 design period. All the actors I interviewed had,

115

Part II Analyzing and modeling

however, also been involved in version 1, and I have considered my find-
ings valid for both projects.

The software designers were physically placed in the same room as the
project management, electronic designers, mechanical designers, chemists,
and drafts personnel involved in the project. In version 2 of the project ap-
proximately 23 people were placed in the room. Apart from these, people
from the marketing, quality assurance, and service departments were in-
volved too. None of these actors were working full time in the S4000
project.

S4000 Test-
instruments

Project-
manage-
ment

Mechanical
designers

Software designers
Elec-
tronic
desig-
ners

ChemistsSoftware
for QA

Drafts
personel

Mecha-
nical
designers

Figure 6-1: A sketch drawing of the room in which the designers working
on the S4000 version 2 project were placed. Apart from the room contain-
ing the two S4000 test instruments it was one big room. Each ‘office’ was
made of movable partition walls only 1.50 meter tall.

As mentioned The software design group included 5 to 12 people. Most
of these were engineers in either software design or electronics. One of the
designers were a computer scientist. The software design group had, of
course, a lot of interaction (on a daily basis) with the other groups and the
project management.

116

Part II Analyzing and modeling

The S4000
 software
design team

Project
management

Mechanical
designers

Electronic
designers

Top
management

Quality
assurance
personnel

Service
department

Marketing department

Plans
(paper
documents)

Progress
reports

Status and
progress
 reports

Bug
reports

Bug
reports Bug

reports

Bug reports

Specification
of interfaces
(oral and
documents)

Require-
ments
(documents)Specifications

(oral and doc.)

Specifications
(oral and doc.)

Bug reports

Figure 6-2: A “context diagram” illustrating the interaction the software
design team had with its near context during the S4000 project. The way of
drawing the diagram is inspired by the context diagrams suggested in the
Work Analysis (Schmidt and Carstensen, 1990) and the communication
path diagram suggested by Kensing and Winograd (1991).

If we consider testing and correction of software for the S4000 instru-
ment the field of work, the related cooperative work arrangement must be
approached as including testers from the service, marketing, and QA de-
partments too.

6.3 The overall facilities provided

I have, together with Kjeld Schmidt, argued elsewhere, that when
conducting work analysis a useful perspective is to approach the work
arrangement as a system conducting a set of overall funtions in order to
fulfil certain requirements from the target domain of the work system (cf.
Schmidt and Carstensen, 1990; Carstensen and Schmidt, 1993b). If we
think of the cooperative work arrangement dealing with development,

117

Part II Analyzing and modeling

implementation, and testing of software for the S4000 instrument11 the
overall functions conducted are:

• Functional specification specifying the functionality to be provided
by the software. This is mainly done through interaction with people
from the Marketing department.

• Architecture design specifying which modules the system should
include. The work is mainly done by the spec-team through interac-
tion with other relevant designers. The function also includes allo-
cation of resources responsible for the modules.

• Module interface design specifying the interaction between the
modules. This is done by the designers responsible for the modules
to interact.

• Module implementation regards writing the code for each module.
This, furthermore, includes activities related to correcting a bug re-
ported. This is typically done by each of the designers as an individ-
ual task.

• Software integration dealing with integrating the modules to each
other, and verifying the integration with the hardware and mechan-
ics. This is done by all the designers in cooperation having one of
them in charge (being platform master).

• Testing regarding the test of the software. The internal test of each
module is conducted by the designer responsible for the module.
The external (use oriented) test is conducted by the designers them-
selves and by people from the Marketing, Service, and Quality as-
surance departments.

• Diagnosing the reported bugs concerns the establishment of a hy-
pothesis of, what is the problem and who is supposed to fix it. This
is done by the spec-team, often involving one or two designers
more.

• Planning the work concerns maintaining the work plans, keep track
of the progress, and updating the plans. In the S4000 project, this
was done by one of the designers involved in the spec-team. The

11 It should be noticed, that the set of tasks mentioned here includes more than testing and
correction of software which is what is mainly addressed in this chapter. The broader
perspective is taken in order to provide a more coherent picture of which tasks the actors are
involved in.

118

Part II Analyzing and modeling

work plans are, of course, to be coordinated with the overall work
plans for the S4000 project in total, i.e., the designer responsible had
to interact with the project management in order to handle this func-
tion.

Figure 6-3 below contains a “simple” function model drawn according
to the recommendations in Schmidt and Carstensen (1990). It includes the
must important information areas (problem domains) the actors need ac-
cess to.

Architecture
design

Diagnozing

Work
planning

Testing

Integration

Module
design/code

Functional
specification

Module inter-
face design

Overall
requirements

Hardware
platform

Overall
requirements

Overall
plans

Resources
available

Figure 6-3: A function model of the software development work
conducted in the S4000 project at Foss Electric. The boxes each contains
one main function. The arrows between the boxes illustrates how one
function provide input for another function. The rounded boxes with italic
text illustrates external information required in order to fulfill a certain
function.

Since focus here is on the bug form mechanism, the overall functions
conducted will not be discussed further. Many of the activities will be
mentioned and discussed during the detailed description of how the bug
form is used as a coordination mechanism following.

119

Part II Analyzing and modeling

6.4 The overall organization of the work

One of the interesting observations during the study was the overall orga-
nization of the design, test, and correction work. The work was organized
in what could be called ‘working cycles’, or ‘platform periods’ as the de-
signers called it.

During the early phases of the design work, the software designers real-
ized, that they had severe problems in coordinating and integrating their
activities, and in integrating the software modules. They explicitly stated
that they needed stipulations for the control and coordination of the pro-
cess of integrating and meshing the S4000 software. One of software de-
signers phrased it as:

“It has really been problematic that we did not have any guidelines and descriptions
for how to produce and integrate our things. The individual designers are used to
work on their own and have all the needed information in their heads, and to organize
the work as they want to [..] When we started, we were only a few software designers.
And suddenly — problems. And, ups!, we were several software designers and exter-
nal consultants involved”.

As the quote indicates, the problems the designers were faced with had
their origin in the fact that they were not used to being so many interde-
pendent actors. They were used to being able to handle most interaction in
an ad hoc based manner only. Some of their problems might thus be con-
sidered ‘start-up problems’ only, i.e., they were not used to, and experi-
enced in, larger collaborative settings.

The concept of “software platforms” and “platform periods” was an
important invension. It was used for supporting monitoring and control-
ling the integration of software modules. Let me briefly sumarize the
characteristics of the platform concept: A software platform was originally
a point in time at which all software designers stopped all design activities
and started integrating their bits and pieces. Later, organizational proce-
dures and other artifacts were added refining how the integration should
be organized. The designer worked typically 3–6 weeks on designing,
implementing, and testing the software. Then a week was spend on inte-
grating the software modules and components. The result of the integra-
tion period was a new software platform on which all new development
should be based.

120

Part II Analyzing and modeling

Version 1 of the S4000 system covered approximately 15 platform pe-
riods. After a platform period, the developers spent a week integrating the
software modules. During this period no designer was allowed the con-
tinue design or implementation work until they all had approved the inte-
grated software complex. When the integration was brought as far as it
was considered possible, all known problems were written down as tasks
to be accomplished, and the complete software complex was used
(released) as platform for departure of all new design activities. In the later
parts of the project—after having established a first running version of the
total software system—the integration period was reduced to approxi-
mately two and half day.

One of the things to be done in each integration period was to appoint
the platform master for the next integration period. He was then responsi-
ble for collecting all information on changes (new development, redesign,
error correction, etc.) made, and for ensuring that the software was tested
and corrected before it was released. He was also responsible for updating
the work plans.

One of the problems the software designer felt the platform concept
gave them was, of course, that some designers were more or less inactive
during the integration period, and there were no structures for handling
major integration problems appearing unexpected in the middle of a work
period. From time to time, this type of problem caused a need for re-
scheduling the platforms, and immediate attainment of an extra platform
integration period. Despite these problems the designers considered the
establishment of the platform periods concept absolutely necessary, oth-
erwise the work on the software would never be finished.

Apart from improving the concept by adding organizational proce-
dures, the software designers invented a project plan spreadsheet and a
software directory structure. The use of these was integrated in the plat-
form period concept.

The project plan sheet contained information on: (1) Which tasks are to
be accomplished and a reference to a detailed description of each task; (2)
the estimated amount of time per module for each task; (3) the responsi-
bility relations between modules and software designers; (4) a specifica-
tion of in which platform period the tasks were planed to be finalized; (5)

121

Part II Analyzing and modeling

and the total planned work hours per platform period for each software
designer.

Task ref. Task
title

Incl
-ude

Platf
A

Platf
B

Platf
C

Mod.
ABC

Mod.
BCE

....... Mod.
XYZ

3.12.6 Print
batch

1 Incl.-
flag

23 10 33

6.09 8 text 0 5 0

5.16.6 conveyer
document

1 Incl.-
flag

10 45 55

1.10.4 PCIO
synchr.

1 Incl.-
flag

5 5

11.03.2 PCIO-
message

1 Incl.-
flag

4 4

11.04.5 UI
standard

0

.......

Total
sum

23 14 60 97

Sum A 4

Sum B 23 15

Sum C 10 45

A B C

Designer I 104 138 140 1

Designer II 109 124 185 1

Designer III 121 105 0 1

Designer IV 0 130 141 1

.....

Sum 334 497 466

Ideal 112 113 137

Figure 6-4: An illustration of the project plan spreadsheet. The example
shows three platform periods (A, B, and C), three modules (ABC, BCE and
XYZ), six different task of which two are postponed (a 0 in Included) and
four involved designers. All italics and shadings are my additions. The
shadings illustrate the ‘linking’ from a specific module to a specific
designer being responsible the module.

Before the deadlines related to each of the integration periods, the
designers had to place their software in a directory structure developed
especially with the purpose of supporting and enhancing the software
integration process. Each piece of software should be tested by the design-

122

Part II Analyzing and modeling

er himself before placing it in the directory. The directory structure was
continuously adjusted, both according to the architecture of the total soft-
ware system, and to the distribution of responsibility for the individual
modules among software designers. The structure was distributed on the
software designers’ work stations. Furthermore, a set of software routines
was implemented. These were used by the platform master for automati-
cally collecting, compiling, and integrating all software modules. In order
to support the use of the directory mechanism, a set of check lists, stan-
dards, and procedures were established within the concept of platform pe-
riods.

6.5 Roles involved in the software testing and
correction

Let us now return to the description of the bug form mechanism and its
use. First a brief repetition of the actor roles that are involved in the work:

• The software designers responsible for designing, implementing,
and maintaining one or more of the software modules, and for cor-
recting bugs.

• The spec-team: three software designers responsible for diagnosing
reported bugs and deciding how to handle each of the bugs.

• The platform master responsible for managing and coordinating all
the activities involved in integrating the outcome of the current
working period (platform period).

• The project plan manager responsible for maintaining a project plan
spreadsheet.

• The testers involved in the concrete testing of the software embed-
ded in the S4000 instrument. The testers could be affiliated in most
of the departments at Foss Electric.

• The central bugs file manager responsible for organizing and main-
taining the central bug file, a ring binder containing copies of all re-
ported bugs and organized according to their status.

 This list is a condensed version of the description provided in section
3.2.1.

123

Part II Analyzing and modeling

6.6 The bug form and the binder

The bug form mechanism includes two different types of artifacts. A bug
report form and a binder in which forms are filed.

The most interesting is the bug report form, or rather forms since there
exists one form (plus a copy) for each bug registered. The form is a two
pages form (both sides of one sheet of A4-paper) used by all designers and
testers involved in testing and developing the software for the S4000
instrument.

Initials:
Date:

Instrument: Report no:

Description:

Classification:
1) Catastrophic 2) Essential 3) Cosmetic

Involved modules:
Responsible designer: Estimated time:

Date of change: Time spend: Tested date:
 Periodic error - presumed corrected

Accepted by: Date:
To be:
1) Rejected 2) Postponed 3) Accepted

Software classification (1-5): ___
Platform:

Description of corrections:

Modified applications:

Modified files:

Filled in by:
The tester

The spec-team

The tester
The spec-team

The spec-team

The spec-team

The designer
correcting the bug

The designer
correcting the bug

Figure 6-5: A translated version of the 2 pages bug form invented and
used in the S4000 project. On the right side of the figure is illustrated
which actors (roles) that fills in the different fields.

124

Part II Analyzing and modeling

The form is filled in step-wise—partly by a tester recognizing a bug,
partly by the spec-team diagnosing the problem, and partly by the designer
correcting the bug. How the form is filled-in, and the intention of the dif-
ferent fields, will be described in further details in the following sections.
This is done by means of a state-transition diagram illustrating possible
states of the bug form mechanism, and by a non-formal description of the
procedure, how the form is updated, how the routing between the activi-
ties is handled, etc.

One of the basic ideas in the bug form mechanism is, as mentioned,
that there exists exactly one (original) form filled in for each registered
bug. The position of the form is an implicit indication of the state of the
bug (registered, diagnosed, corrected, or verified). In some stages of the
registering, diagnosing, and correcting process, a copy of the form is in-
serted in the central file (the binder) in order to keep an overview of the
state of affairs.

The second artifact in the mechanism is a ring binder containing all
forms (either the original or a copy) filled in and diagnosed by the spec-
team (i.e., all registered bugs). The binder is physically placed in the same
room as the actors involved in developing the S4000 instrument, i.e., the
binder is (intended to be) easily accessible to all the software designers
engaged in the project. Some of the involved testers are also engaged in
the project as software, hardware, or mechanical designers placed in the
same room as the software designers and the binder. Other testers are affil-
iated within other departments (e.g., the marketing department). They had
a more complicated access to the binder.

The purpose of the binder is to provide awareness to all involved de-
signers and testers of the state of affairs in the testing of the instrument.
Furthermore, the binder is used by the project management to get an
overview of the state of affairs and the progress in the project.

The binder is maintained by one of software designers engaged in the
project. He does this through a close interaction with other software de-
signers, especially with the actor being platform master (cf. section 3.2.1).

All bug forms are filed in the binder according to the following cate-
gories: (1) non-corrected catastrophes, (2) non-corrected semi-serious
problems, (3) non-corrected cosmetic problems, (4) postponed, (5) re-
jected, (6) corrected but not yet tested, and (7) corrected problems. In each

125

Part II Analyzing and modeling

of these entries, the forms are inserted and organized in a chronological
order. According to decisions taken by the spec-team and messages from
the designers concerning specific problems (bug forms), results from the
platform integration, etc. the forms are successively re-filed.

1) Non-corrected bugs
 - category 1 (copies)
2) Non-corrected bugs
 - category 2 (copies)
3) Non-corrected bugs
 - category 3 (copies)
4) Postponed bugs
 (originals)
5) Rejected bugs
 (originals)
6) Corrected bugs
 - not yet veryfied (copies)
7) Corrected bug (originals)

Figure 6-6: The seven entries used for filing the bug forms. The headings
for the entries are translations of the table of contents in the original binder.

The use and maintenance of the binder will be described further in the
following. The following three sections will describe the behavior of the
bug form mechanism, and how the mechanism was used in the S4000 pro-
ject. I have chosen to describe the bug form mechanism from three differ-
ent perspectives:

First, the bug form mechanism is approached as a ‘box’ (in section
6.7). This description is concerned with, which states the mechanism can
be in, i.e., which state can the handling (treatment) of a given bug be in.
This is done by means of a state-transition diagram illustrating the possi-
ble states of the mechanism, and the possible transitions from one state to
the other.

The second description (section 6.8) is organized as a procedural de-
scription of the overall procedure used for handling each bug when the
mechanism is running. This is organized as a step-by-step description de-
scribing what goes on in each step, and the most common deviations from

126

Part II Analyzing and modeling

the ‘standard procedure’. This description includes references to the states
defined in relation to the state-transition model presented in section 6.7.

Third, section 6.9 describes the bug form mechanism from the perspec-
tive of the involved actors and roles, i.e., which information is flowing
among the actors (roles), and in what sequence.

6.7 A state-transition model for the bug form
mechanism

When approaching the bug form as a black box, we are not interested in
modeling what goes on inside the mechanism, only in identifying which
different observable states the mechanism can take. The state-transition
model illustrated below (figure 6-7) reflects the possible different states of
the bug form mechanism, and the possible next “legal” steps.

The state-transition model can be considered a model of the mechanism
itself, i.e., a model of the possible states (or status) the coordination of the
testing activities can be in. It is not a model of the states, procedural steps,
or of the activities involved in the testing work itself. Neither is it a model
reflecting the different actors involved in the software testing and correc-
tion work.

An empty form shifts state when it is filled-in (from initial—BR0—to
BR1), and again when it is send to the spec-team (BR2). The state is
changed when the problem is classified (BR12, BR3, BR4, or BR7), and
again when it is estimated (BR8) and send to the responsible designer
(BR5). When the problem has been dealt with a new state occurs (BR6)
and, again, when the form is send to the central file (BR9). Before an inte-
gration period, the form is send to the platform master and the state
changes (BR13). Finally, the state changes when the correction has been
verified (BR10), and when the form is filed (BR11).

As it can be seen from this very condensed description the state of the
mechanism typically changes when 1) information is added to the form, 2)
the form is routed to another actor, or 3) the form is filed.

127

Part II Analyzing and modeling

BR0:
Empty form

BR3:
Rejected bug
filed

BR1:
Registered bug

BR2:
Registered bug
at spec-team

BR4:
Classified,
diagnosed bug

BR7:
Classified bug

BR5:
Bug to be
corrected

BR8:
Estimated bug

BR13:
Correction to be
verified

BR10:
Verified
correction

BR11:
Verified, filed
correction

BR6:
Corrected bug

Verification
rejected

Return to spec-team
(reject estimate)

Return to
spec-team
(reject
diagnosis)

BR12:
Postponed bug
filed

Send to cetral file
(bug postponed)

BR9:
Correction to be
verified filed

Send
to PM

Send to cetral file
(bug rejected)

Classify, diagnose,
and involve designer

 Send to
 spec-team

Fill in a form

Request
designer

 Involve
 designer

Diagnose
and estimate

Estimate

Request
designer

 Correct
 bug

 Send to
 central file

 Verified

Send to
central file

Figure 6-7: A state-transition diagram of the bug form mechanism. Each
box illustrates a possible state the mechanism. The arrows illustrate possi-
ble actions (transitions) that can be taken. Each arrow points at the new
state a given action will result in. Arrows with a white head reflects an ac-
tion that makes changes to the content of the mechanism; here mainly in
terms of adding new information to the form. Arrows with black heads re-
flect changes in who is in control of the mechanism, i.e., allowed to change
the state of the mechanism.

When approaching states, and possible transitions from these, it is also
relevant to address what triggers the shifts (transitions) in the state of the
mechanism. In most cases, shifts in state of the mechanism are caused by

128

Part II Analyzing and modeling

decisions taken by one of the involved actors, or by events in the context
in which the bug form mechanism functions. The triggering conditions are
discussed in the list below, one state at a time. Final states (i.e., states
without outgoing transitions) are not included in the list.

BR0: The only transition is the BR0 to BR1. This is triggered by an
event in the work: a tester decides to categorize a problem in the
software as a bug.

BR1: To follow the procedures, the tester should send the form to the
spec-team.

BR2: Here are a number of possible transitions. All transitions are trig-
gered by decisions taken by the spec-team and related to the re-
ported bug:

• BR2-BR12 if the correction is postponed.

• BR2-BR3 if the bug is rejected.

• BR2-BR4 if the estimation cannot be done without involving
the responsible designer.

• BR2-BR7 if the diagnosing requires involvement of other de-
signers.

• BR2-BR5 if no involvement is required.

Since the spec-team typically have meetings ones a week, we can
say that the decisions made by the spec-team are indirectly trig-
gered by an external event: the occurrence of a specific point in
time. The decisions taken by the spec-team can also be regarded
as being implicitly influenced by another external source. All de-
cisions taken by the spec-team are taken under influence of the
constraints and policies directed from the management of the
company. A classification will, for example, be closely related to
the general product acceptance criteria and the time left before
the product should be released.

BR4: The BR4-BR8, BR7-BR8, and the BR8-BR5 are all triggered by
decisions taken by the spec-team regarding the classification, the
diagnosis, or the estimation.

BR5: All possible transitions from BR5 depend on decisions taken by
the responsible designer. As for BR2 the decisions are influenced

129

Part II Analyzing and modeling

by the outside world since all decisions are taken within the con-
straints defined by the general policies.

BR6: BR6-BR9 is triggered when the responsible designer decides to
send the form including correction information to the central file
manager, i.e., the designer decides, that the problem (the bug) has
been solved.

BR7: See BR4.

BR8: See BR4.

BR9: The transition from BR9 to BR13 is triggered when the central
file manager decides to send a pile of forms describing correc-
tions to be verified to the platform master. This decision is related
to an external event: the occurrence of a certain point in time. The
organizational procedures state that, the central file manager
should send the forms to be verified to the platform master two
days before the next integration period is going to start.

BR10: When the platform master verifies the corrections, he decides on
the acceptance of the correction. If a correction is acceptable, he
piles the form (BR13-BR10), and when all forms are controlled
he sends the accepted forms to the central file manager (BR10-
BR11).

BR13: The platform master decides on the acceptability of the correc-
tions. If it is okay see BR10, otherwice BR13-BR2 is triggered.

As it can be seen from the descriptions, all the transitions are triggered
by decisions taken and actions made by the involved actors. Some of these
actions have a second order triggering condition related to the occurrence
of a specific point in time. None of the triggering situations are directly re-
lated to the “outside world” apart from these time related events and ex-
ternal policies.

6.8 A procedural description of the bug form
mechanism

The previous section approached the bug form mechanism as a black box.
This section will describe the bug form mechanism in terms of procedural
steps conducted, when the mechanism is “running”. Many of the procedu-

130

Part II Analyzing and modeling

ral steps described here are described in the organizational procedures es-
tablished by the software during the S4000 design.

The overall procedure for the mechanism, and how the forms and the
binder are updated, are illustrated in figure 6-8 below. The overall proce-
dural steps are:

(1) A bug is recognized by a tester. He fills-in a form and classifies
the bug.

(2) The tester sends the form to the spec-team.

(3) The bug is re-classified and diagnosed by the spec-team.

(4) The responsible module (and thereby designer) is identified by
the spec-team.

(5) The correction time is estimated by the spec-team.

(6) The required correction tasks are incorporated in the work plans.
This is done by one of the members of the spec-team.

(7) The spec-team sends the form (the original) to the responsible
designer. This can be regarded as a correction request. The spec-
team sends a copy of the form to the central file (the binder).

(8) The bug is corrected and additional correction information is
filled-in on the form by the responsible designer.

(9) The responsible designer sends the form to the central file.

(10) The central file manager inserts a copy of the form in the central
file, and sends the form (the original) to the platform master.

(11) The correction is verified by the platform master.

(12) The accepted forms are returned to the central file manager.

Each step in the procedure is described in further detail in the follow-
ing. The activities will be related to the use of the forms and the binder.
The descriptions will be related to the different states and transitions in the
diagram in figure 6-7.

131

Part II Analyzing and modeling

Initials:
Date:

Instrument: Report no:

Description:

Classification:
1) Catastrophic 2) Essential 3) Cosmetic

Involved modules:
Responsible designer: Estimated time:

Date of change: Time spend: Tested date:
 Periodic error - presumed corrected

Accepted by: Date:
To be:
1) Rejected 2) Postponed 3) Accepted

Software classification (1-5): ___
Platform:

Description of corrections:

Modified applications:

Modified files:

The procedure

(1) Bug reporting and
 classification
(2) Send to the spec.team
(3) Diagnose and classify
(4) Identify responsible
 designer
(5) Estimate correction
 time
(6) Incorporate in the
 work plans
(7) Request the respons-
 ible designer.
 Send copy to the
 central file
(8) Bug correction and
 fill in additional
 correction information
(9) Send to the central file
(10) Send to platform master.
 Insert copy in central file
(11) Verify the correction
(12) Return the forms to
 the central file

(8)

(1)

(1)
(3)

(3)

(4) (5)

(3)

(8)

(1)

Figure 6-8: The bug report form and a 12 steps overall procedure for the
use of the mechanism. The numbers in the form indicate in which step of
the procedure the field is affected.

 Most cases (forms) are handled according to the prescribed procedures.
In some cases an actor might, however, choose to deviate from the proce-
dure, e.g., if a tester knows who is responsible for a specific bug, he can
contact the designer without involving the spec-team. Some of these devi-
ations are characterized in the following. The description will, however,
not attempt to describe all possible situations. A basic assumption related
to the Concept of Coordination Mechanisms is that, it is considered im-
possible to predict all possible work situations, i.e., it will not make sense
to attempt to include an exhaustive description of possible deviations.

132

Part II Analyzing and modeling

Although the S4000 project is finished the following descriptions are
given in present time.

Bug reporting:

The S4000 software is tested on software simulators and on instrument
prototypes. The project has distributed detection, registration, and classifi-
cation of software bugs. Occasionally testers and software designers en-
gage in preliminary discussions on the interpretation of problems or possi-
ble bugs. When a bug is identified by one of the involved testers, a new
form is filled-in. The intention is, that the tester fills-in a form for each
bug he identifies. It might, of course, be difficult to decide if a problem is
“the same” as one identified earlier, or to see if a concrete problem actu-
ally is caused by several different software bugs.

The tester fills-in his initials, the date, an identification of the instru-
ment and the software version he has used, and he describes what he did
and how the instrument reacted. Finally he fills-in a classification
(catastrophic, essential, or cosmetic) of the importance of the problem.
Filling in the information is reflected in the state-transition diagram
(figure 6-7) as the transition from state BR0 to state BR1.

Some errors are impossible to reproduce, and hence difficult to describe
during registration. My observations indicate that in at least 20% of the
bug reports, testers were not able to describe the problem in detail. If it is
difficult for the tester to fill in the required information, the spec-team
member fills-in the form after having discussed the problem with the
tester. As one of the spec-team members said:

“The form is not very user-friendly. We often have to force them [the testers] to fill
in a form. Sometime they just send in a note describing what they have seen, and we
must produce a form.”

The classification of errors as either catastrophic, essential or cosmetic
was done according to the tester’s perspective. As one of the spec-team
members phrased it:

“People, depending on who they are, often interprets a catastrophe in a different way
than I do. An inconsistency in the user interface might, for example, be a disaster to a
marketing guy, whereas it is a cosmetic problem to me”.

An exception to the described procedure is, that the tester personally
contacts one of the members of the spec-team (or one of the other software

133

Part II Analyzing and modeling

designers), and orally reports on the problem. In this case, the spec-team
member or designer will, if the problem is considered relevant, fill in a
form.

Send the form to the spec-team:

Having filled in a new form, the tester sends the form to the spec-team.
This is illustrated in the state-transition diagram as the transition from
BR1 to BR2. Usually this is done by use of internal mail.

There are, at least, two exceptions to this procedure step. If the tester
considers the identified problem to be very important (having classified it
as catastrophic), or he decides that the diagnose and correction of the
problem cannot be delayed further, he might contact one of the members
of the spec-team and discuss it immediately. Furthermore, if the tester
knows who is probably going to be responsible for correcting the bug he
might choose to contact the designer directly, and discuss the problem
with him before handing in the form to the spec-team.

Diagnosing the bug:

This section describes what is illustrated as three steps in the procedure in
figure 6-8: The diagnose and classification of the bug (step 3), the identi-
fication of the responsible designer (step 4), and the estimation of the ex-
pected correction time (step 5). These steps are all handled by the spec-
team and are usually conducted concurrently and intertwined. The spec-
team will typically have a meeting ones a week. In periods with very in-
tensive testing activities it might be more frequent.

The spec-team starts out by checking, if any of the incoming bugs are
identical. This is done by comparing the description of the incoming
forms. If two registered bugs are considered identical only one of the
forms is treated.

For each form, the spec-team decides if the described bug can be ac-
cepted as a bug. If not, the form is classified as rejected and send to the
central file manager (the transition from BR2 to BR3) who inserts it in the
“Rejected bugs” entry (cf. figure 6-6). Next step is to decide whether the
bug is important or can be postponed. If the bug is postponed, the form is
classified as postponed and the form is send to the central file manager
(BR2 to BR12). The central file manager files the form in the “Postponed
bugs” entry.

134

Part II Analyzing and modeling

The remaining forms are classified as accepted. Then they are classified
according to importance. This is done by use of two classification struc-
tures on the form. First, the classification made by the tester is corrected
(re-classified). Usually the classification is not changed, but if the spec-
team disagrees in the classification they might change it. If there is a de-
viation in the tester classification (and description) and the spec-team
classification, the spec-team might choose to contact the tester and nego-
tiate the classification. Second, the importance is filled in in the field for
“Software classification” (cf. figure 6-8). This field also indicates in which
of the next platform periods the bug should be corrected. The 1-5 classifi-
cation on the form indicates that the work on version 2 of the S4000 was
organized as 5 platform periods.

If the diagnose and the estimation of time required to correct the bug is
fairly simple, the spec-team fills-in (writes) the diagnose in the
“Description” field of the form, fills-in the “Involved modules”, the
“Estimated time”, and “Responsible designer” fields. The responsibility is
distributed (i.e., all modules have one software designer associated).
Hence, the decision of, who is responsible, is based upon which modules
are considered involved. In cases where the diagnosis and time estimation
are simple, the spec-team incorporate the correction work in the plans (cf.
the following section on ‘Incorporate in plans’) and sends a request (the
form) to the designer (BR2 to BR5), cf. the following section on ‘Send re-
quest to responsible designer’. The responsible designer is always able to
reject the estimate. This is described further in the section on ‘Correct the
bug’.

If the diagnose is complicated, the spec-team can choose to call in the
designer responsible for the relevant modules (BR2 to BR7). The designer
is then involved in diagnosing the problem and estimating the correction
time (the transition from BR7 to BR8). When the relevant decisions have
been made, the spec-team incorporates the correction work in the plans
(cf. the ‘Incorporate in plans’ section below) and sends a request (the
form) to the designer (BR8 to BR5).

If the estimation requires only involvement of the responsible designer,
the spec-team fills-in the “Description” field of the form, the “Involved
modules” field, and the “Responsible designer” field (BR2 to BR4). The
spec-team and the responsible designer collaborates on deciding the re-

135

Part II Analyzing and modeling

quired corrections time (BR4 to BR8). As for the previous situations, the
spec-team incorporates the correction work in the plans and sends a re-
quest (the form) to the designer (BR8 to BR5), cf. the section on ‘Send re-
quest to responsible designer’.

The diagnosing and estimating work is usually a complicated task re-
quiring involvement of experts in different fields, use of the software
specifications, source code, and documentation, etc. A description of this
in further detail is, however, considered out of the scope.

Incorporate in work plans:

The fact that a bug has been identified, diagnosed, and estimated results in
a new task that has to be accomplished. The spec-team requests the de-
signer or manager responsible for the overall project plan to include the
new task (cf. the project plan spreadsheet in figure 6-4). In the S4000 pro-
ject, the project plan manager was identical to one of the spec-team mem-
bers. Information on the task, the responsible designer, the estimated time,
and the platform period are incorporated in the plans by the actor respon-
sible for the overall project plan.

Since the plans are considered “outside” of the bug form mechanism
described here, the incorporation does not affect the mechanism, i.e., no
transitions are triggered in the state-trasition model. It can rather be seen
as an example of a linking (cf. section 5.8) between two different coordi-
nation mechanisms supporting the coordination of software development
and testing: The bug form mechanism and another mechanism supporting
scheduling and allocation of tasks and human resources. A thorough dis-
cussion of the observed linking between the coordination mechanisms is
given in section 6.11.

A possible exception to incorporating correction tasks in the work plans
is, when the problem is corrected immediately by a designer or a member
of the spec-team. Then the task will never occur in the plans, and it will
not be “officially visible”, that the designer has spend time on this task.

Send request to responsible designer:

The updated form containing information on the problem, the classifica-
tion, the diagnose, the involved modules, and the estimated correction
time is sent to the responsible designer. The designer is supposed to con-

136

Part II Analyzing and modeling

sider the form as a request. The request requires either, that the bug is cor-
rected, or the request is rejected (by contacting a spec-team member).

A copy of the form is send from the spec-team to the central file man-
ager. The central file manager inserts the copy in the binder according to
the classification on the form (cf. figure 6-6), i.e., in one of the first three
entries: “Non-corrected category 1”, “Non-corrected category 2”, or
“Non-corrected category 3”.

If the spec-team has made the diagnose and estimation without involv-
ing other software designers sending the request is reflected in the diagram
as the transition from BR2 to BR5. Otherwise the action is reflected in the
state-transition diagram as BR8 to BR5.

An exception is, of course, that one or several of the members of the
spec-team personally hand over the form to the designer and/or to the
central file manager. This might be done just because it is the easiest way
to do it, or it might be caused by the need for additional information, or if
it is considered important that the correction work is launched immedi-
ately.

Correct the bug:

Having received a form, the designer checks if the diagnose, the estimate,
and the deadline (the platform period) are acceptable. If the designer con-
siders the estimate as to optimistic (low) he returns the form to (or per-
sonally contacts) a spec-team member with a note stating, that the estimate
is unacceptable (the transition from BR5 to BR4). The estimate is then
negotiated with the spec-team. A basic convention states that “the respon-
sible designer is always right”.

The designer might also disagree on the diagnose, or in the descriptions
of which modules are involved, i.e., he might disagree in what is the
problem and/or who is responsible. In this case he will return the form to
the spec-team with a note explaining, what is the problem in the diagnose
(BR5 to BR7). The diagnose and the estimate will then be negotiated with
the spec-team.

If the designer accepts the diagnose, and assumes that he can handle the
problem within the estimated resources and deadlines, he corrects the bug.
That might, of course, be done at a much later point in time.

137

Part II Analyzing and modeling

Since all the 5 to 10 designers correcting the software is placed in the
same room, many problems are mainly conducted by an abundance of
meetings and discussions. This is, however, quite problematic. One of the
designers characterized the problem as follows:

“The problem we have right now is that the software architecture is difficult to de-
compose sufficiently so that one designer can handle a component. We are all work-
ing on several components, and work on a single component often involves two to
four men, and perhaps even some of the electronical designers too. Then we need
coordination [..] We have recently started a process where we try to produce more
formal documents and agreements about the things we work with, we have not been
good at doing this up till now, but now we have to do it.”

Having corrected the bug, and tested the corrections, the designer fills-
in the fields of “Date of change”, “Time spend”, “Tested date”, and if rel-
evant tip of the “Periodic error” field on the form. Furthermore, he de-
scribes the corrections made, and the applications (or modules) and files
affected. The addition of information to the form is reflected in the BR5 to
BR6 transition in the state-transition diagram.

Finding the origin for a bug, and correcting it, is normally an extremely
complicated task requiring intense studies of the source code and specifi-
cations, discussion with other designers, etc. Describing the character of
this is out of the scope here.

Send the form to central file:

When the corrections are implemented and information is added to the
form, the designer sends the form to the central file manager. The central
file manager is responsible for maintaining the ring binder. He removes
the old copy of the form (placed in one of the first three entries, cf. figure
6-6) from the binder and throws it away. A copy of the updated (received)
form containing the additional information regarding the corrections is
filed in the binder in entry 6 “Corrected bugs to be verified” (BR6 to
BR13).

Send the form to platform master:

The central file manager sends the form (the original) to the platform mas-
ter, illustrated as BR13 to BR9. The platform master is supposed to con-
sider the form a request for verifying the described corrections in the next
platform integration period.

138

Part II Analyzing and modeling

There might be situations where the platform master decides to reject
such a request. I do not have any empirical material indicating that this has
happened or could happen, and how it is handled. If such a situation
would occur, it would probably result in a situation similar to the one de-
scribed as the “correction cannot be verified” described in the following
section.

Verify the corrections:

During the platform integration periods, the platform master is responsible
for verifying the corrected bugs, i.e., verify that each bug is corrected suf-
ficiently without introducing new problems. This is done either by the
platform master himself, or he delegates the responsibility to other soft-
ware designers. As on of the designers put it:

“Usually we produce a list of all the problems we have identified on a large white-
board. We then discuss whether this is a problem—an error—or not. Actually, it’s the
platform master who does that. If it’s a real heavy problem you are immediately
summoned and asked to correct it.”

The verification is also a complex and demanding task out of the scope
to describe here. If the verification process results in an acceptance of the
correction the form is placed in a pile of accepted forms (the transition
from BR9 to BR10).

If the verification process results in a rejection of the correction one of
several things can happen: The platform master can, if it is a minor prob-
lem, either correct the code himself, or ask the responsible designer to do
this immediately. If this is possible the form can be piled in the accepted
forms pile (transition BR9 to BR10). If the correction of the bug can be
verified, but it has introduced a new bug (or several) the form is piled as
verified (transition BR9 to BR10) and a new empty form is filled-in de-
scribing the new bug (the transition from BR0 to BR1). Finally, if the cor-
rection cannot be verified, the platform master adds a note in the
“Description field” indicating the problems and sends the form to the
spec-team (BR9 to BR2).

A possible exception to the last mentioned procedure is, that the plat-
form master, instead of sending the form to the spec-team, returns the
form to the responsible designer. This requires that the platform master
ensures, that a copy of the form is inserted in the relevant non-corrected
bugs entry in the central file (done by contacting the central file manager).

139

Part II Analyzing and modeling

Furthermore, it requires that the platform master ensures, that the work
plans are updated (cf. the section on ‘Incorporate in work plans’).

Return the accepted forms to central file:

Finally the forms piled in the accepted forms pile are send from the plat-
form master to the central file manager. The central file manager removes
all the copies of forms placed in entry 6 “Corrected bugs not yet verified”
of the binder. The forms (the originals) received from the platform master
are inserted in the “Corrected bugs” entry of the binder (BR10 to BR11).

The central file manager can check, if the copies taken out are identical
to the inserted ones. Forms that are removed, without a corresponding
form inserted indicates corrections that could not be verified. The correct-
ness of this can then be checked by comparing with forms in the non-cor-
rected bugs entry. The procedures do not specify anything about this. The
study indicated that whether this check is made or not depends on the
work load for the central file manager.

Monitoring what goes on:

Apart from the twelve overall steps described above, a central activity in
coordinating the process of registering and correcting bugs was to estab-
lish an overview of the state of affairs. The designers, testers, and man-
agers tried to measure progress of the work, and to be aware of the number
of bugs to be corrected, the accumulated estimation of correction time,
changes that might affect other modules, etc. The designers tried to be
aware of corrections and changes affecting their modules. The spec-team
members needed to know the state of affairs before each spec-team meet-
ing. The testers frequently tried to obtain an overview in order to avoid
wasting their time on reporting already registered bugs. The platform
master needed an overview of corrections to be verified in the next inte-
gration period in order to plan the integration work. And management
tried to get an overview of the progress of the whole development project.

There were basically three information sources used for monitoring:
informal communication, the binder, and the list of bugs not yet corrected.
There was a lot of informal communication and discussion among the de-
signers about what kind of corrections and changes they had made. Some
of the testers discussed changes in the software with the designers several
times a week, whereas others never contacted the designers directly. Even

140

Part II Analyzing and modeling

though the designers sat in the same room and were engaged in discus-
sions every day, it was difficult for them to be aware of the state of affairs:

“Earlier, the channel driver guy and I had a clear agreement. Oral discussions and a
sketch drawing were sufficient. But in a project as large as the S4000 we don’t have a
complete overview of the software complex. Then you are in big trouble when the
other guys change their code” (Software designer in the S4000 project).

Testers as well as designers found it very difficult to obtain the neces-
sary overview by consulting the bug form binder, mainly because the
forms were only organized according to the seven categories (cf. section
6.6). This made it almost impossible to determine whether the same bug
had been reported in several bug forms. It was the intention, that a specifi-
cation of the corrections should be included in each form. In order to be
aware of relevant changes, the designers were expected to browse through
all the forms in order to see if anything was of interest. The binder con-
tained approximately 1400 forms at the end of the project!

The third source for getting an overview was a weekly produced list of
registered bugs that had not yet been dealt with. One of the designers
phrased the problems with this as:

“Originally the intention was to produce statistics of the number of known-but-not-
yet-fixed problems and use this as a management tool. The management hoped to find
a decreasing curve on the week-to-week measurement. They didn’t. But we realized
that as a management tool this can only be used if you have a stable product. We
didn’t have that.”

6.9 The flow of the bug form mechanism from a roles
and actors perspective

The previous sections included two different approaches: The perspective
of the state of the bug form mechanism, and a procedure oriented ap-
proach.

It is, furthermore, obvious to approach the mechanism from the per-
spective of the involved actors, i.e., to focus on the information flow from
the view point of the involved roles and actors. Figure 6-9 below illus-
trates the roles involved in coordinating the software testing and correc-
tion activities in the S4000 project, and figure 6-10 is an example of the
flow from the actors perspective.

141

Part II Analyzing and modeling

There are, as mentioned in section 6.5, basically six different roles in-
volved in coordinating the software testing and correction activities in the
S4000 project. These are the testers testing the software, the spec-team
diagnosing the bugs, the software designers correcting the bugs, the pro-
ject plan manager including the correction tasks in the plans, the platform
master verifying the corrected bugs, and the central file manager maintain-
ing the central file in order to keep track of the state of affairs.

Testers

Central
file manager

Software
designers

Platform
master

Spec-team

1
7

3

2 5

6

8

Project plan
manager

4

Figure 6-9: A visualization of the roles involved in the software testing of
the S4000 project, and the information flow between them. The informa-
tion flow described in the figure concerns only the stipulated (through or-
ganizational procedures) flow of the bug form mechanism. The thick ar-
rows (3, 4, 6, and 8) indicate, that the flow is often a bunch of forms sent.
The thin arrows indicate, that the forms typically are send one at the time.
Other types of information are frequently exchanged between the actors
and there might be situations were one of the actors choose not to follow
the stipulated information flow. It should be noticed, that one actor might
have two or more roles (cf. figure 6-10).

The general flow of information (route of the forms) follows the eight
major steps illustrated in figure 6-9:

142

Part II Analyzing and modeling

(1) The testers send forms describing recognized bugs to the spec-
team.

(2) The spec-team adds diagnose and estimation information to the
form and sends it, as a request, to the software designers.

(3) The spec-team sends rejected forms and copies of accepted forms
to the central file manager.

(4) The spec-team sends information on new (correction) tasks gen-
erated to the project plan manager.

(5) The software designers add correction information to the form
and sends it to the central file manager.

(6) The central file manager sends a pile of forms containing correc-
tion information to the platform master.

(7) Forms containing corrections, that cannot be verified, are send
from the platform master to the spec-team which then recycle
them in the process (starting from flow 2).

(8) Forms containing corrections, that can be verified, are send from
the platform master to the central file manager.

As mentioned, actors can have several roles, and several actors can
fulfill similar roles. The example in figure 6-10 illustrates this.

James is testing a prototype and reports a problem (1a). During his de-
sign work, Jack realizes a problem in the interface between his and one of
the other modules. This is reported (1b). John diagnoses problem a, and
decides that it should be corrected by Dave (2a) and that Alan should be
responsible for b (2b). John, furthermore, sends information on the two
problems to the central file manager, Alan (3), and to the plan-manager,
Dave (4). Dave corrects problem a, and informs the central file manager
(5a). Alan corrects problem b and files the form (5b). Two days before the
next integration period, the platform manager, Jack, asks Alan (the central
file manager) to check which bugs have been corrected. Alan sends the
two forms on problem a and b to Jack (6). During the integration period,
Jack checks the corrections. Problem a is okay, and the form is send to the
central file manager for final filing (8a).

143

Part II Analyzing and modeling

James
QA-dept.

Jack
SW-designer
PF-master.

John
SW-designer
spec-team member.

Alan
SW-designer
CFM

Dave
SW-designer
Plan-manager

1a
1b

7b
8a 6

5b

3

2b
2a

4
5a

Figure 6-10: An example of 5 actors involved in the treatment of 2 bugs.
The number of the flow corresponds to those used in figure 6-9. A detailed
description is given in the body text below.

Problem b has not been solved sufficiently, and Jack decides that it
should be diagnosed further. He therefore adds a note on the form, and
sends it to the spec-team for further analysis (7b).

As it can be seen from the example, the actors have several roles. Jack
is both tester and platform master in the example, Alan is both designer
and file manager, and Dave is designer and plan manager. Thus to a cer-
tain extent, each actor has to be aware of between his roles and the infor-
mation he receives. In practice, this did not cause any problems.

6.10 Objects of coordination work reflected

As previously defined, a coordination mechanism contains information
structures relevant for coordinating the work and for monitoring the state
of affairs. These structures are ‘objects of coordination work’ reflecting
(pointing at) structures in the actual field of work and the current coopera-

144

Part II Analyzing and modeling

tive work arrangement (cf. chapter 5). This section will briefly discuss,
which objects of coordination work the bug report form mechanism gov-
erns.

We can consider objects of coordination work the conceptualizations of
work the actors use when coordinating distributed activities. An important
aspect is which “manipulations” (or operations) to make to these concep-
tual structures. Both the dimensions of objects of coordination work (cf.
section 5.4) and the relevant operations to these dimensions are, thus, rel-
evant to address.

The detailed analysis and conceptualization of the findings concerning
the software testing and correction work indicated, that the overall di-
mensions of objects of coordination of the software testing and correction
work contain overall conceptualizations of 1) the software structure, 2) the
bugs registered, 3) the classifications of bugs and software modules, 4)
work procedures applied, 5) the roles used, 6) work plans, and 7) the hu-
man resources available. These are the dimensions along which the coor-
dination of the distributed activities on testing and correcting S4000 soft-
ware is conducted. The first four can be considered conceptualizations of
structures within the field of work (testing and correcting S4000 soft-
ware), whereas the last three reflect the nature and implementation of the
cooperative work arrangement.

The objects of coordination work can be in one of two stages, either
nominal or actual (cf. section 5.4). In relation to the description of the bug
form mechanism, the relevant nominal dimensions were: Roles, Tasks,
Human resources, and Conceptual structures. The relevant actual dimen-
sions were: Committed actor and State of the field of work. These will be
briefly described:

The notion and use of roles is essential in the bug form mechanism.
The description of the protocol stipulating the flow of the testing and cor-
rection work is based on a clear definition of roles. All organizational pro-
cedures and obligations are formulated in terms of roles.

Whenever a decision on either who is to be the next platform manager
or who is responsible for correcting a bug is taken an ‘assigned to’ relation
is made from a task to a role to a committed actor (cf. figure 5-3 in sec-
tion 5.4), and the role is furthermore related to a human resource.

145

Part II Analyzing and modeling

When a tester registers a bug, he uses a classification scheme, i.e., in
terms of objects of coordination work he uses a conceptual structure.
Additionally, when the spec-team diagnoses a bug, they relate a specific
problem to a software module, and they relate a task to a platform period.
Software modules can be regarded as conceptualization of certain aspect
of the field of work, i.e., in terms of objects of coordination work it is a
conceptual structure . Similarly, the platform periods can be considered a
conceptualization of aspects of the work arrangement, and thus as a con-
ceptual structure in terms of objects of coordination work.

Nominal Actual

Dimensions of
coordination

work

Operations with
respect to the

dimension

Dimensions of
coordination

work

Operations with
respect to the

dimension

Dimensions with respect to the cooperative work arrangement

Role
- Tester
- Responsible
designer
- Spec-team member
- Central file
manager
- Platform master

assign to [Committed
actor];
responsible for
[Task];
responsible for
[Human resource]

Committed actor accept [Role];
reject [Role]

Task
- Correction task

allocate to [Role];
accept;
reject;

Human resource
- James, Jones

allocate to [Role]

Dimensions with respect to the field of work

Conceptual
structures
- Bug classifications
- Software
modulation
- Platform periods

categorize bug;
define bug
classification;
relate to [Task];
classify module

State of field of
work

make sense of;

Figure 6-11: A model of the dimensions of objects of coordination work
used in the bug form mechanism, and the required elemental operations
lated to these dimensions. The table is based on the general table illustrated
in figure 5-2.

146

Part II Analyzing and modeling

Furthermore, when one of the designers or testers browse in the binder
they access a conceptualization of the state of the field of work.

The relevant dimensions and the basic operations required with respect
to these dimensions are illustrated in figure 6-11 above.

As it can be observed from the table above, only very few structures are
placed in the actual stage. The reason for this is, that the bug form mech-
anism does not attempt to provide information on ongoing activities or ac-
tors in action.The purpose of the mechanism is planning and work flow
stipulation rather than monitoring ongoing activities.

Another observation is, that the bug form mechanism does not have any
relations to resources apart from human resources. Material, technical and
infrastructural resources are not reflected at all.

6.11 The interrelationhips between the coordination
mechanisms

As mentioned several times, the field study illustrated several mechanisms
that can be considered coordination mechanisms. One of these, the bug
form mechanism, has been described in detail. Other mechanisms men-
tioned were the platform period concept, the project plan spreadsheet, and
the directory structure for software integration.

The platform period concept stipulated, how the work should be orga-
nized and which integration activities should be conducted. It, further-
more, defined roles and standard obligations for the designers during the
integration periods, i.e., it stipulated how progress in the integration of the
software was to be obtained.

The project plan spreadsheet provided a conceptual structure for
scheduling tasks, actors, and deadlines by relating development and test-
ing activities to relevant software modules (and thus to responsible actors)
and to working periods. The sheet stipulated which components of the
software should be integrated in the individual integration periods, and it
provided information on which actors and modules to involve when prob-
lems, changes in plans, etc., occured.

The directory structure, and the software routines for automatically
linking the modules, supported meshing the software components by
stipulating how several actors’ pieces were to be integrated. Furthermore,

147

Part II Analyzing and modeling

the structure embedded in the directory can be considered a classification
scheme for classifying concepts and structures within the software, i.e.,
the directory structure established a common picture of the software
complex architecture that all designers could relate to.

Project
Schedule

Platform
Integration
Procedure

OC: Roles

Bug Report Form

Bug
accepted

Modules

Tasks

Task announced:
verify bug

when corrected

P.M.

PM identified
for verification task

Actors

Software
module
repository

Software
Directory

Task announced:
correct bug

Module
classified

Module
published

Figure 6-12: The interaction between the coordination mechanisms used
for coordinating the software development in the S4000 project. ‘PM’ is
platform master. The figure is a reprint of figure 5-4.

Besides being individual coordination mechanisms supporting certain
aspects of the coordination of the development of software for the S4000,
the mechanisms were heavily interrelated. For example, when a bug was
accepted, it “automatically” generated a new task to be invoked in the
spread sheet. Another example of the interrelationships between the
mechanisms was that, at a certain point in time (specified in one coordi-
nation mechanism—the spread sheet), a procedure specified by another
coordination mechanism (the platform period concept) was initiated. This
procedure included (subscribed to) information from a third coordination
mechanism (the bug form mechanism), and it launched the execution of a

148

Part II Analyzing and modeling

fourth coordination mechanism (the directory mechanism) linking and
compiling the software modules.

The linking between the coordination mechanisms identified in the
field study is illustrated in figure 6-12 below. We provide a thorough dis-
cussion of linking between real life coordination mechanisms, and the
implications with respect to design of computer-based coordination mech-
anisms, in Schmidt et al. (1994). I have, however, only considered it rele-
vant to briefly illustrate the interrelations here.

The study illustrated several types of linking:

• a coordination mechanism subscribing to information from another.

• a coordination mechanism using information from another mecha-
nism as an index for accessing repositories.

• a coordination mechanism triggering the execution of another mech-
anism when a certain condition occurs, and

• a coordination mechanism “writing” in the information included
another mechanism (or requesting a writing).

Another point is worth noticing: The different links between the coor-
dination mechanisms used in a work situation made it possible for a spe-
cific instantiation of a mechanism (e.g., a particular bug report sheet) to be
incompletely defined. For example, just indicating a responsible software
module and a platform period number in the bug form was sufficient since
the responsible designer and the actual deadline for the correction task
were “added” later by another mechanism, namely the spreadsheet.

6.12 The nature of the support provided

This section will briefly condense the most interesting aspects of how the
coordination of the software testing and correction work in the S4000
project was organized, and how the coordination mechanism used sup-
ported this.

First, some overall characteristics of the coordination of the software
testing work in the S4000 are given. This is followed by a discussion of
the use of the bug form mechanism, the related coordination mechanisms,
and how these supported the required coordination activities.

149

Part II Analyzing and modeling

6.12.1 Characteristics of the coordination of the software testing
and correction work observed

The field study has clearly indicated, that software testing and correction
is a very complex and complicated task requiring a lot of coordination. In
order to avoid redundant work, the testers need to be aware of each others
work. The study showed, that it was very difficult for the testers to get an
overview of reported errors, their diagnoses, correction status, etc. It was
extremely difficult for the actors involved in the S4000 project to deter-
mine the state of affairs in the software testing at a glance. It was illus-
trated in the study, that it was difficult for the testers and designers to
communicate about the software complex and its status at a given point in
time. The state of affairs was “hidden in abstract representations”. An il-
lustration of this was the briefing sessions ending each integration period.
Here, most of the time was spend on discussing user interface details such
as colors and layout. This was done, despite the fact that all designers
agreed, that aspects concerning the structure and implementation of the
code computing the measurement results was much more important and
essential for the project. The problems of lack of “visible representations”
of the relevant aspects of the software complex are similar to problems in
the process of developing software reported by Parnas and Clements
(1986).

A number of activities were essential for coordination purposes. The
most important of these were: Allocating resources, planning and
scheduling tasks, monitoring the state of affairs in the development and
test process, classifying and prioritizing, distributing information, negoti-
ating requirements, and negotiating priorities. These activities were, in the
S4000 project, usually conducted by means of ad hoc meetings and dis-
cussions, structured meetings, and use of forms, lists, boards. This chapter
has described one of these forms, and its related procedures and conven-
tions.

The study, furthermore, illustrated that, the coordination activities
within software testing and correction were mainly based upon conceptu-
alizations of structures in the field of work (e.g., the structure of the soft-
ware complex) and structures reflecting the current implementation of the
cooperative work arrangement (e.g., the involved actors, the working cy-
cles, verification procedures, etc.). The conceptualizations was, among

150

Part II Analyzing and modeling

other things, used to support the distributed bug registration activities,
support the planning activities, monitoring progress in correcting the soft-
ware, monitoring the state of affairs in general, and to simplify the needed
bug classification and diagnosing activities.

Furthermore, aggregations of detailed information of the state of affairs
(e.g., the total number of “not yet corrected category 2 bugs”) was used to
support the coordination work, especially in order to simplify the required
monitoring activities. Several structures for classification and categoriza-
tion of bugs, corrections demands, and software modules was used.
Concrete information from the software testing and development was also
used, when the activities were coordinated, e.g., the software code itself,
the documentation, or the content of the bug registrations was used when
deciding the estimated correction time for a bug.

The most prominent basic coordination functions (or activities) con-
ducted in relation to the conceptualizations were: classification and cate-
gorization of bugs and software, monitoring the state of affairs and
progress in the processes, allocation of resources, relating resources to
tasks (establishing responsibilities), meshing the resources and tasks into
work plans, and negotiations on classifications, allocations, obligations,
etc.

6.12.2 How the mechanisms supported the coordination work

A definition like the one given here, of the basic function of the bug form
mechanism would probably only partly be recognized by the software de-
signers involved in the S4000 project. It would not reflect their original
intentions, or rather the original description of the problem they had rec-
ognized, when they first developed the ideas of the form. When the project
had been going on for half a year, the board of directors at Foss Electric,
and the S4000 project management realized, that they had no means for
measuring the progress of the software development part of the project. In
their search for measurement methods they hired a consultant that sug-
gested to perform weekly measurements of how many known problems
that remained to be fixed. A decreasing curve would indicate progress.
This was very problematic:

“Originally the intention was to produce statistics of the number of known-but-not-
yet-fixed problems and use this as a management tool. But we realized that as a man-

151

Part II Analyzing and modeling

agement tool this can only be used if you have a stable product. We didn’t!”
(Software designer at Foss Electric)

So, instead of a management tool for monitoring state of affairs in the
project, the ideas were refined into a mechanism supporting decentralized
registration of bugs ensuring that all registered bugs were remembered.
From the field study findings and the comments from the software design-
ers at Foss Electric, it appears to be quite clear, that the most important
aspect of the bug form mechanism was, actually, that it reduced the effort
required in order to handle certain aspects of the coordination of the soft-
ware testing and correction process.

It can, of course, be questioned whether a mechanism genuinely
“eliminates” the complexity. The coordination to be conducted is as com-
plex as always, but it can appear simpler to the actors through improving
the representations of the work domain (cf. e.g., Woods, 1988), by forcing
a specific behavior of the actors involved (Norman, 1991), by automating
or computer supporting certain activities of the coordination (Malone and
Crowston, 1990; Schmidt and Bannon, 1992), or by establishing a division
of labor minimizing the need for coordination (cf. e.g., Mintzberg, 1983).
The claim here is, that the bug form mechanism supported the coordina-
tion of software testing and correction in the S4000 project by providing
several of these things:

• The bug form provided a standardized information structure by
which all bugs were described. By allowing information to be used
for the diagnosis to be included in the form in a standardized pre-
structured manner, the mechanism made it easier for the spec-team
to find the relevant information. The classification of the bugs made
it easier for the spec-team to deduce the testers perception of the
problem reported. The form can thus be seen as improving the repre-
sentation of the field of work (the bugs) by establishing a “common
standardized language”. This makes it easier for the actors to inter-
act. “Standardized languages” are, of course, problematic too. They
constrain the actors, and it takes time for the actors to become famil-
iar with them, and they need to be maintained.

• The stardardized format of the form, furthermore, supported the
work of reporting, both from tester to spec-team, from spec-team to
designer, and from designer to platform master. This is because it
forces a specific behavior on the actors. Through a specific surface

152

Part II Analyzing and modeling

representation (Norman, 1991), the form supported the actors: No
effort was required for considering which information to include.

• The bug form mechanism also supported the coordination activities
by stipulating the work flow for how to handle the reporting, diag-
nosing, and correcting process. Although it was not completely au-
tomated, the pre-specified flow excluded the need for communica-
tion and interaction among the actors when handing over the form
(and thus the obligations) from one actor to the next. The pre-speci-
fied flow (the embedded protocol) afforded support through con-
straining the actor: He could just apply the pre-specified routing
without further considerations.

• Finally, the bug form mechanism was a central tool in the attempt to
establish a well-understood and well-defined division of labor. By
establishing different roles, and very clearly defining their respon-
sibilities, the mechanism reduced the need for communication and
interaction among the actors. All actors in the reporting, diagnosing,
and correcting process knew exactely, what their obligations were.
When they had dealt with their part of the treatment, they could just
pass on the form, and others would take care of the rest. Their need
for coordination was reduced.

Coordination activities like monitoring the state of affairs, and negotia-
tion of classifications, allocations, etc. were attempted to be supported by
the bug form mechanism too. The establishment of the central file (the
binder) including all registered bugs and their current status made it easier
to get a coherent picture of the state of affairs. Although the testers and
designers found it difficult to achieve an overview from the content of the
binder, the benefit was that they only had to search in one place.
Furthermore, the standardized information structure in the forms, and the
standardized index of the binder (cf. figure 6-6), made it easier for the ac-
tors to find the relevant information, for example the classification and
status of a bug or the number of not-yet-corrected category 2 bugs.
Regarding negotiation of bug classification or resource allocation the bug
form mechanism, and its related mechanisms, made classifications and re-
source allocations visible and accessible to the actors. The classifications
and allocations became easier to discuss.

153

Part II Analyzing and modeling

Based on findings in the study, and discussions I have had with the
testers and designers at Foss Electric, I will claim, that it would be more or
less impossible to handle distributed testing and bug registration involving
approximately 20 testers without having a mechanism providing an over-
all functionality similar to the bug form mechanism. It would require an
enormous amount of formal and informal meetings to coordinate all ac-
tivities and keep all actors up to date.

The purpose of the bug form and the related procedures and conven-
tions was first of all to ensure: That all problems were registered, that re-
sponsibilities and obligations were clearly defined and visible to all in-
volved designers, and that the work flow was clearly stipulated.
Furthermore, the intention was, that the binder should provide the in-
volved designers and testers with an overview of the state of affairs in the
software complex, and support the designers in being aware of activities in
modules of which they were not responsible, but to which their modules
might have close interaction. Most of these purposes were fulfilled suc-
cessfully, although the two latter purposes of providing awareness of state
of the affairs were only partly fulfilled. Most of the designers found it to
complicated to browse the forms in the binder.

Other coordination mechanisms were used in interaction with the bug
form mechanism. Regarding how these coordination mechanisms sup-
ported the coordination of the S4000 software development we can briefly
conclude the following:

• The platform period concept aimed at ensuring coherence in the
project: All actors had a common understanding of the work and the
direction for progress. This was done by establishing specific points
in time, and at these points “force” the actors to establish common
basis for future activities. This simple idea was recognized as the
best solution to an overwhelming problem for the software design-
ers. The concept of platform periods supported the coordination of
the software development and testing work by establishing standard-
ized structures, and by establishing a forum for being mutually
aware of each others work. More efficient approaches might exist,
but the concept proved to be so successful, that it has been devel-

154

Part II Analyzing and modeling

oped into a company standard for organizing development projects
in the future.

The platform period concept can thus be seen as supporting coordi-
nation work by partly automating (stipulating) the flow of the work.
It entrenched the division of labor through detailed specifications of
the obligations of the different involved actors (roles). The concept,
furthermore, supported the actors in monitoring the state of affairs
by providing a standardized forum for being aware of what went on
and for discussing and negotiating how to proceed. An example of
this was the briefing meeting held at the end of each integration pe-
riod.

• The project plan spreadsheet supported the coordination of the
software development and testing work by providing a conceptual
structure scheduling tasks, actors, and deadlines by relating devel-
opment activities to relevant software modules and responsible ac-
tors. This stipulated how progress in the integration of the software
should be obtained, and which actors and modules that should be
involved when problems, changes in plans, etc. occurred. The
spreadsheet provided a standardized conceptualization of some of
the central structures to be related. This standardization facilitated
the communication and ad hoc coordination by providing a
“common language”. Furthermore, it supported the actors in being
aware of the state of affairs and future tasks, and it facilitated the
frequently ongoing negotiations on allocation and reallocation of
resources.

The project plan spreadsheet thus provided a standardized represen-
tation of aspects of both the field of work, the work arrangement,
and the relationships of these structures. This format can be seen as
forcing a specific behavior on the actors dealing with resource allo-
cation, and it, furthermore, made the state of affairs (tasks to be con-
ducted) visible and accessible to all the involved actors.

• The directory structures, and the related software routines, reduced
the complexity of the meshing of the software by providing a struc-
ture stipulating how several actors’ pieces were to be integrated. The
directory structure, hence, supported distributed software develop-
ment by providing a classification scheme for classifying concepts

155

Part II Analyzing and modeling

and structures in the software, i.e., the structure established a com-
mon standardized conceptualization of the software architecture. All
designers could relate to this when communicating and coordinating
their activities. In addition to enabling distributed storage and re-
trieval, the directory structure also provided a set of automated pro-
cedures for meshing the elements. Only situations where the archi-
tecture of the software complex needed to be updated, required ne-
gotiation of the directory structure. In terms of coordination work,
the directory mechanism automated some of the integration activi-
ties, and established a standardized structure facilitating the integra-
tion, and the negotiation of the integration.

The directory structures and the related routines can be seen as an
automation of certain tasks related to integrate the software com-
plex. It, furthermore, enforced a standardized structure of the most
essential aspects of the field of work, namely the software architec-
ture, i.e., it settled the basic structure of the software which all in-
volved actors had to relate to in their work.

The analysis presented in this chapter has been descriptive only.
Reflective and constructive use of the findings and experiences will be
presented in the following.

156

Part II Analyzing and modeling

7 . The Coordination Mechanisms Concept
as a means for analyzing
cooperative work

“He who does not lay his foundations before-
hand may by great abilities do so afterwards,

although with great trouble to the architect and
danger to the building”

(Machiavelli, 1514)

The two previous chapters have introduced the Concept of Coordination
Mechanisms and applied the concept for analyzing the coordination of
software testing and correction in the S4000 project at Foss Electric.
Based on the analysis a natural next step towards computer support is to
switch into a more constructive approach and formulating requirements
and design sketches for a computer-based system. Such an approach will
be taken in part III (chapters 8, 9, 10 and 11). I will, however, first con-
trive some reflections on the usability of the Coordination Mechanisms
concept as a means for analyzing, and aiming at understanding, the coor-
dination aspects of a complex cooperative work setting. This will be done
in four steps:

1) I have previously conducted a critical review of a number of ex-
isting analysis methodologies within the software engineering
and office automation traditions (Carstensen and Schmidt,
1993a). First, a brief summary of the conclusions from this will
be provided.

2) Although the field study applied a specific framework it can, of
course, also be seen as ‘normal’ ethnographically inspired field
study (or ‘workplace study’) undertaken with the intention of in-
forming a systems design process (cf. e.g., Hughes, 1993;
Plowman et al., 1995). Step two discusses what the study has in-
dicated with respect to overall requirements for methodologies
and conceptual frameworks for analyzing cooperative work.

3) Since the Concept of Coordination Mechanisms has been applied
in order to analyze the findings, a discussion of the usability of

157

Part II Analyzing and modeling

the concept as a means for analyzing coordination of cooperative
work will be provided. The discussion focuses on, what has been
gained from using the concept, and what has been left out.

4) Originally a primary purpose of the field study was to provide in-
put for improving, changing, and refining the Concept of
Coordination Mechanisms. Much of the lessons learned from the
field study have already been implemented in the conceptual
framework as it is presented in chapter 5. The last section dis-
cusses conclusions regarding the conceptual framework drawn
from the field study, and which aspects of the conceptual frame-
work need further development and refinement.

7.1 Overall requirements for methodologies and con-
ceptual frameworks for analyzing cooperative work.

The objective of analyzing a cooperative work setting is to provide input
for improving a given situation by designing and implementing informa-
tion systems, by redesigning work, by recommending a retraining pro-
gram, etc. The basic approach will thus be oriented towards changes or
possible “treatment”. The analyst investigates a particular social system of
work in order to suggest changes. Accordingly, the analysis cannot take
the current behavior of the social system of the cooperative work ar-
rangement for granted. On the contrary, the analyst must uncover the hid-
den rationale of current practices as well as the accidental choices of the
past, the procedures turned rituals, the formalized mistakes, etc. (Schmidt,
1990; Schmidt, 1991b; Carstensen and Schmidt, 1993a). Focus will be on
questions such as:

• What is the rationale behind current practice?

• Which aspects of current practices can be interpreted as incidental
adaptations?

• Which aspects of current practices are essential and necessary to
meet current and future requirements?

• What could be done better, more efficiently, more satisfactory to the
actors, and how?

• How could information technology improve the efficiency, effec-
tiveness, actor satisfaction etc.?

158

Part II Analyzing and modeling

The analyst must attempt to unravel the social system of the coopera-
tive work arrangement. While ‘taking apart’ current practices, the analyst
has to ‘decipher’ the extensive and shifting networks of cooperative rela-
tions ingrained with current practice and identify the rationale of the vari-
ous patterns of cooperation (Schmidt, 1990). It is, both from my study and
other reported studies, quite clear that analysis of complex, cooperative
work settings is a hard and—seen from the analyst’s point of view—a
never ending activity.

The work settings to be analyzed are normally immensely complex,
and it is usually difficult to separate the relevant information, require-
ments, mechanisms etc. from the less relevant. What are in fact the crite-
rias for defining what is relevant? These complications for the analyst
poses some extremely knotty methodological problems. Some of these
arise from the fact that the cooperative work arrangement is a complex
phenomenon involving multitude forms of social interaction (e.g., within
the work process itself, within the organizational setting, or within the so-
cial control). Other complications arise from addressing the structure and
the function of the work system approached (e.g., the function of the
enterprise, or the structure of the market purchasing the products pro-
vided).

A first overall requirement then is systematic analytical distinctions
overcoming the confusion of the concepts of cooperative work, division of
labour, organization, allocation of tasks and responsibilities, profession,
management strategy, collaborative styles, labour market structures, class,
ideology, etc. This is similar to Strauss’ argumentation (cf. Strauss, 1985;
Strauss, 1988).

As suggested ealier (cf. Carstensen and Schmidt, 1993a) it might be
useful to make a basic distinction between: 1) the social system of work as
a functional system and 2) the social system of work as an arena for
human actors. The function oriented perspective approaches the social
system of work as a functional system of cooperative relations, i.e., focus
is on the social system of work as an instrument meeting the functional
requirements posed by the environment. The approach is similar to what
others have called “a rational systems perspective” where the behaviour is
viewed as actions performed by purposeful and coordinated agents (Scott,
1987). The arena for human actors perspective regards of the social sys-

159

Part II Analyzing and modeling

tem of work as a system of more or less collaborative arrangements
between multiple individuals with diverging interests and motives. This is
similar to what Scott calls “a natural system perspective” (Ibid.).

A second overall requirement for a methodology is support of separa-
tion and analytical distinction in conceptualizing the cooperative work
arrangement as a working system and a social organization. Being a bit
more operational we can list a number of more concrete requirements:

• The work arrangement must be seen as a dynamic whole—as a sys-
tem. All relevant perspectives should be addressed, analyzed, and
related to each other. So, at least three different approaches are
required, addressing: 1) Characteristics of the outer environment and
the relations between the environment and the cooperative work
arrangement; 2) The field of work; and 3) The characteristics of the
actual cooperative work arrangement itself, i.e., the existing imple-
mentation of a socio-technical system.

• The relations to the outer environment—the abstract functions of-
fered by the work arrangement to the environment and the objectives
of the work arrangement (cf. Schmidt and Carstensen, 1990)—need
to be identified. Conditions, constraints, requirements, etc. under
which the functions must be accomplished and characteristics such
as time constraints, risks, success acceptance criteria, stability and
dynamism in the environment, the frequency of changes in require-
ments and constraints, the level of interrelations in the requests, etc.
should be identified and described.

• The essential characteristics of the field of work should be identified
and described in terms of goals, conditions, constraints, sets of rules,
heuristics, possible strategies, etc. The complexity should be de-
scribed in at least the dimensions of dynamism, interacting compo-
nents and processes, and uncertainty.

• Prototypical activities need to be identified and it should be ad-
dressed to which extent the activities reflect characteristics in the
field of work or in the environment and to which extents they are
caused by the current implementation of the work arrangement. A
distinction between the social and the work system should, further-
more, be included.

160

Part II Analyzing and modeling

The overall requirements for work analysis methodologies and concep-
tual frameworks described above have mainly been derived through a cri-
tique of existing methodologies within the software engineering and office
automation fields (Schmidt and Carstensen, 1990; Carstensen and
Schmidt, 1993b; Carstensen and Schmidt, 1993a).

The software engineering methodologies (e.g., Sutcliffe, 1988;
Yourdon, 1989; Mathiassen et al., 1993) presuppose the human-system
boundary to be known beforehand, that the field of work can be described
exhaustively and unambiguously as a three-dimensional system of data-
structures, -processing, and -flow, and that the work can be decomposed
into a partial tree structure of procedural processes. The methodologies
can only rarely express abstractions or specializations in the conceptual
models, and there are no possibilities for separating procedures from rou-
tines or algorithms expressing the “correct” logical method (cf. Floyd,
1986). Furthermore, there are no techniques for modeling means/ends
relations, causal relation, control structures, structures for mediating co-
ordination work, etc. These aspects are only implicitly represented in the
models as ‘hidden’ aspects.

The approaches from the office automation tradition (e.g., Zisman,
1977; Ellis, 1979; Sirbu et al., 1981) are also problematic. These provide
richer notations for modeling the work. The problem with the procedure
descriptions is, however, that only activities and situations that can be de-
scribed procedurally are covered. The activities are modeled and de-
scribed, but left un-interpreted in the models and descriptions, and non-
procedural decision situations are only implicitly represented as termina-
tors. If exceptions are ‘the norm’ the approaches will fail to produce any
usable information. All office automation approaches seem to exclude the
issues of unanticipated decision making and problem solving situations.

To conclude this brief review of existing analysis methodologies and
frameworks from the software engineering and office automation fields,
we can state that, the world modeled is an overly simplified conceptual
world when using traditional office automation and software engineering
methodologies12.

12 I have earlier termed this as “The Procrustes Paradigm” (Carstensen and Schmidt, 1993a). In
the Greek mythology, Procrustes was known for his own very special method of torture,
namely that fitting victims to a bed by cutting off the legs of those too tall to fit or racking
those too short.

161

Part II Analyzing and modeling

7.2 Requirements for analysis methodologies and
frameworks derived from the field study

It is also relevant to provide some reflections based on the experiences
from the field study reported on here. Through the process of analyzing
the field study I have obtained input for, what a conceptual framework
must provide in order to support a ‘relevant analysis’ of a complex coop-
erative work setting.

I have elsewhere reported my first conclusions regarding the use of a
conceptual framework for analyzing a complex cooperative work setting
(Carstensen, 1995b). These can be structured in the following bullets:

• A conceptual framework must be based on an analytical distinction
between work and coordination work. The explicit distinction pro-
vided by the Coordination Mechanisms Concept proved to be very
useful. The fact that cooperative work and its coordination are
closely related and intertwined must, of course, be reflected, but an
analytical distinction is important. It is the aspects regarding the co-
ordination of the cooperative work that are central. Although we,
when designing computer-based systems, need analysis methods that
grasps the richness of the work, we also need an approach that re-
strict aspects not addressing the coordination of work. This is also
essential when considering how applications supporting
‘conventional’ work can be augmented with coordination facilities.

• It must be the nature of the work that constitutes the cooperative
work arrangement to be addressed. It is the actors that are mutually
interdependent in their work that must be addressed, i.e., actors that
are actually working in cooperation, not necessarily placed in the
same organizational unit. When conducting our analysis, it made
more sense to let the field of work define who and what to address.
Otherwise, the actors in the service department would have been
considered outside the work setting although they were heavily in-
volved in the software testing and thus closely collaborating with the
software designers.

The approach of just cutting (or adding) bits, pieces and slices of your object (e.g., the
cooperative work arrangement) until it fits into your model of the world has quite a lot in
common with several of the approaches discussed there.

162

Part II Analyzing and modeling

• The coordination of the work studied was first of all based on ab-
stractions and conceptualizations of structures in the field of work
and in the work arrangement, e.g., bug classifications, the software
architecture, work plans, etc. These structures could be regarded as
dimensions of objects of coordination work in the terms of the
Concept of Coordination Mechanisms (cf. chapter 5). A conceptual
framework should provide structures supporting the analysts in
identifying and characterizing the conceptual structures, categories,
classifications, etc. used when coordinating. In relation to this the
framework should also support identification of relevant functions
(or manipulations) on these conceptual structures.

Conceptualizations and categorizations contain a hidden agenda of
discipline and control which needs to be explicitly adressed
(Suchman, 1994). However, in order to support the design of com-
puter systems, conceptualizations are required.

• Much of the coordination activities observed at Foss Electric were
supported by conventions, procedures, artifacts, etc. A functional
approach to such mechanisms used to support the coordination of
the work should be included in the framework. ‘Functional’ in the
sense, that it must address what function the mechanism serve, for
what purpose, and under which conditions the function must be
served. This is essential in order to identify candidates for computer-
based coordination mechanisms.

• Much of the coordination activities observed in the study were con-
ducted by means of meetings. A functional approach to such meet-
ings might prove useful too. The framework must support the ana-
lyst in understanding what function the meeting serves regarding
coordination. Certain aspects of meetings will often be candidates
for computer-based support, for example in terms of coordination
mechanisms or through improved communication support.

• The actors used several mechanisms more or less concurrently to
support the coordination activities. These mechanisms were related
to, and mutually dependent of, each other. In order to understand
how the mechanisms are interrelated we need to address both the
structural and dynamic properties of these mechanisms. A concep-
tual framework should provide techniques for grasping and model-

163

Part II Analyzing and modeling

ing both the structural properties of the mechanisms and the dynam-
ics (and concurrency) of the interaction between the mechanisms.

• In very complex cooperative work settings, certain aspects of coop-
eration might simply have been avoided due to the complexity of the
coordination of the work. The software designers, for example, gave
up handling the coordination of the software integration in a dis-
tributed, concurrent manner. Instead, they introduced the non-paral-
lel platform period concept. A conceptual framework should support
the identification of such situations, i.e., ‘see’ possible reorganiza-
tions of the work that will require coordination, that do not exist to-
day or have been given up.

• The cooperative work studied was carried out over a long time-span.
There were often long periods in which the actors had none or very
little interaction. They were, however, still mutually interdependent.
Hence, the approach and framework to be applied cannot be mainly
based on a registration of observable phenomena. Techniques based
on direct interaction with the involved actors should be provided
too.

The statements listed above are, of course, findings based on one study
only, and thus not an exhaustive list.

7.3 Advantages and disadvantages of using the
Concept of Coordination Mechanisms

Both the previous section on requirements for analysis methodologies and
the following (section 7.4) can be regarded as reflections on the usability
of the Coordination Mechanisms Concept as a means for analyzing coor-
dination of cooperative work. This section will attempt to more concretely
illustrate the advantages and disadvantages of using the concept to support
the study, and as a structure for conceptualizing the findings.

Apart from a definition of a coordination mechanism as a “protocol,
encompassing a set of explicit conventions and prescribed procedures and
supported by a symbolic artifact with a standardized format, that stipulates
and mediates the coordination of distributed activities”, the basic concep-
tualizations provided by the Coordination Mechanisms Concepts are:

(1) The recursive “work”—”coordination work” distinction;

164

Part II Analyzing and modeling

(2) The “field of work”—”work arrangement” relation;

(3) An identification of some overall modes of interaction among the
actors, and prototypical interactional activities;

(4) A ‘continuum of the rigidness’ of the modes of interaction used;

(5) A set of salient dimensions of ‘objects of coordination work’,
both with respect to the work arrangement and the field of work,
and with respect to its state (nominal or actual); and

(6) A set of elemental operations on the dimensions of objects of co-
ordination work required.

The concept furthermore includes a set of overall statements on which
facilities a coordination mechanism should provide.

The analytical distinction between work and coordination work was
very useful. It helped explicitly addressing the coordination aspects of the
work. It turned out not to be difficult to distinguish when the testers and
designers at Foss Electric were conducting actual test, design, implemen-
tation, corrrection, or verification work from when they were conducting
coordination activities. When observing situations, or making interviews,
the information I collected contained, of course, both apsects of work and
of coordination work. But, when analyzing the data it was quite easy to
make the separations. It is, however, important to notice, that I conducted
the study within a field which I am familiar with. It might have been more
complicated to handle the analytical distinction within a domain less
familiar.

The explicit distinction between work and coordination work also
demonstrated usefulness at a seminar at Foss Electric. We13 presented our
findings to approximately 30 designers, project managers, company man-
agers, etc. Several of the participants stated that only very little of what we
told them was new to them. But they had never thought of it this way be-
fore, and they felt that it immediately provoked considerations on how to
reorganize some of their work structures. Examples were using CEDAC
board for software testing activities (we have discussed the CEDAC board
in details in Borstrøm et al., 1995), and respecifying the role of the spec-
team.

13 The presentation was given in collaboration with Henrik Borstrøm (DTU) and Carsten
Sørensen (Risø). Carsten and Henrik conducted field studies at Foss Electric in the S4000
project similar to mine within the areas of mechanical design and process planning.

165

Part II Analyzing and modeling

The explicit distinction between the work and its coordination sup-
ported a more thorough understanding of the coordination aspects, since
the purpose of a number of ‘just overhead activities’ were explicitly ad-
dressed. For example the negotiations of a bug classification, or the
allocations of resources for correcting a problem. The recursive definition
of the work-coordination work distinction made it easier to understand the
work conducted by the spec-team. If I had addressed their work as
diagnosing only, a lot of their work would have appeared irrelevant for the
software testing and correction. However, when I addressed their field of
work to be resource allocation and work scheduling the purpose of many
of their activities were easier to grasp.

The disadvantage of distinguishing between “work” and “coordination
work” distinction was, that aspects of doing the actual work (testing and
correcting software) were not thoroughly addressed. I focused on the co-
ordination, and if the question is, for example, how to support the testers
in conducting the actual testing, my analysis will prove insufficient. An
analysis of coordination work, as the one I have conducted, must thus be
combined with a more traditional work analysis.

This leads on to the “field of work”—”work arrangement” relation.
Again, I will claim that this distinction proved useful. It made it quite easy
to identify the relevant work arrangement although the arrangement con-
sisted of actors within several different departments at Foss Electric. Since
the analysis focused on coordination of cooperative activities, it was im-
portant to identify the cooperating actors regardless of the organizational
structure. Investigating the testing and correction work clearly indicated
the mutual interdependencies among the actors even though theses were in
different parts of the organization. For example the spec-team (in the
S4000 group) could not do the diagnosis work without indications and
specifications of the importance of a specific functionality provided by
actors from the marketing department.

The disadvantage of the “field of work”—”work arrangement” relation
is that activities made across work arrangement boundaries are left out.
For example there was an ongoing activity with the purpose of standardiz-
ing the style of commenting software code. If this should have been ad-
dressed, the field of work approached should have included (or rather
explicitly been) the work on standardizing the commenting style.

166

Part II Analyzing and modeling

The specified modes of interactions (cf. e.g., Schmidt, 1994c) and the
continuum of rigidness of the modes applied were only implicitly used in
the analysis. The set of modes of interaction were used as a sort of check-
list and source of inspiration for where to look and what to look for during
the analysis. When observing attempts to be aware of the activities of
other actors, situations of directing the attention of an actor to certain
aspects, handing over task or reponsibilities, etc. these were naturally
considered candidates to be investigated further. Examples were, of
course, the use of the binder and the bug forms, and the resource alloca-
tion activities. Being aware of the continuum of modes of interaction pro-
voked discussions on costs and benefits of replacing certain modes and
mechanisms of interaction with others. A problem here was, that the con-
ceptual framework does not have any guidance for how to compare differ-
ent modes and mechanisms, and how to ensure that all aspects relevant to
a specific mode of interaction have been taken into consideration.

The idea of addressing the dimensions of objects of coordination work
was very useful since the coordination of the testing and correction work
studied was heavily based upon abstractions and conceptualizations of
structures in the field of work and in the work arrangement, e.g., bug
classifications, the software architecture, work plans, etc. The support of
the data collection process was not particularly good, but it appeared to be
a severely useful support for conceptualizing the findings during the anal-
ysis process. Although the idea was very useful, the first version of the
dimensions was not sufficiently mature, i.e., it was not ready to support an
analysis like the one conducted. This will be discussed further in section
7.4 below.

After refining the list of dimensions into the one described in section
5.4 (and illustrated in figure 5-2) it was quite easy to conceptualize the
structures required for coordinating the software testing and correction in
relatively few dimension. Conceptualizing the coordination work into
structures concerning roles, committed actors, tasks, human resources,
conceptual structures, and state of the field of work (cf. figure 6-10) pro-
vided a simple, but very expressive and coherent view of the activities
analyzed. It did, furthermore, deliver a good basis for establishing
requirements for computer-based coordination mechanisms, cf. following
chapter (chapter 8) in this dissertation and Carstensen et al. (1995c). It
should, however, be noticed that it is uncertain whether the dimensions of

167

Part II Analyzing and modeling

objects of coordination work will prove sufficient for analyzing a work
domain having basic characteristics very different from the one I have
studied, for example with heavy constrains in relation to safety or time.
Further investigations are required to answer this question.

The elemental operations related to the objects of coordination work
were not useful. The basic operations seem to need further refinement in
order to serve as a guideline, checklist, or inspiration for an analyst.
However, just by forcing the analyst to consider which basic operations
the actors conducted in relation to the object dimensions mentioned above,
the conceptual framework provide implicit support of the analysis process.

The most useful aspect of the Concept of Coordination Mechanisms
was without doubt the protocol approach by means of which all artifacts
(forms, boards, procedures, etc.) supporting the coordination was ad-
dressed. Viewing a form as a protocol, encompassing a set of explicit con-
ventions and prescribed procedures was useful and provided a good
understanding of how coordination work was supported and what the
overall function of the mechanism was (cf. the analysis in chapter 6).
Aspects regarding which coordination information was mediated, how,
and to whom it was made explicit, and aspects regarding the stipulation of
the work (or its coordination) could be unraveled by “following” the life
of instances of the mechanism. Discussions on possible and relevant devi-
ations could the easily be taken with the actors. The protocol approach
supported the requirement (listed in section 7.2) of a functional approach
to the conventions, procedures, forms, boards, etc. observed.

Another frequently used means for coordination was meetings. To
grasp the function of the meetings observed the protocol approach proved
insufficient. The meetings often had several (non related) purposes, and
could serve as coordination of many different activities. The same goes for
support of addressing coordination needs in situations where cooperation
had been avoided because of the complexity of the coordination of the
work. There were certainly situations like this in the work studied, but the
Concept of Coordination Mechanisms did not provide any support for
identifying these.

Based on the experiences achieved so far in using a framework like the
Concept of Coordination Mechanisms, it can be concluded that the overall
impression is positive. The framework provided useful support for struc-

168

Part II Analyzing and modeling

turing and conceptualizing the findings regarding the coordination of the
work, but it must be combined with other approaches addressing the actual
work conducted.

7.4 Improvements of the conceptual framework

As indicated above the field study has been used as input for a process re-
fining the Concept of Coordination Mechanisms. Some of these are al-
ready reflected in the conceptual framework as it is presented in chapter 5.
The most important of these will be introduced in this section.
Furthermore, other improvements will briefly be suggested. These should
be regarded as preliminary suggestions for future research, i.e., ideas that
has been considered relevant, but out of scope of this dissertation.

The first and most essential problem was that the original definition of
a coordination mechanism proved to be much too restricted. In the first
version of the concept, a coordination mechanism was defined as an arti-
fact that actively stipulated and mediated the coordination of distributed
activities of large cooperative ensembles (Schmidt et al., 1993). This ini-
tial definition proved to create certain problems. In fact, when applying
this definition to the various artifacts used for supporting the coordination
work in the cooperative work setting studied, none of the artifacts quali-
fied as a coordination mechanism according to the definition. The initial
definition presumed a specific allocation of functionality between the
human actor and the artifact, in the form of activeness on the part of the
artifact, that can only be realized by computer-based coordination mecha-
nisms. In the real life work situation studied at Foss Electric, all the mech-
anisms supporting coordination work were non-active artifacts. Rather,
they were forms, schemes, boards, or directory structures containing
information relevant for the coordination of the work coupled with a set of
related conventions and procedures for its use. The artifacts themselves
were thus passive information containers, the stipulation was specified by
the conventions and procedures, and it was the actors who were active in
making things happen, usually by following the procedures. Hence, a
broader definition of a coordination mechanism was needed, or rather a
two-leveled definition: An open-minded one to be used for identifying
candidates for coordination mechanisms in existing work settings, and a
more restricted one to be used when specifying the characteristics of an

169

Part II Analyzing and modeling

active (computer-based) mechanism. The definition of a coordination
mechanism was changed to the one introduced in chapter 5.

With respect to the dimensions of objects of coordination work the first
tentative conceptual framework required several refinements too:

The first version had only an actor dimension, not a dimension of roles.
It was, however, quite clear from the field study that the actor dimension
needed to be separated into two dimensions: One of ‘actors’ referring to
the actual actors involved in the work, and one of ‘roles’ referring to the
role an actor has in relation to a given task or activity. In the S4000 pro-
ject, all the software designers had several different roles which was im-
portant to explicitly address when coordinating the distributed activities.

The first model had, furthermore, only one dimension of time, or rather
of status, i.e., there were no distinction between actual and nominal status
of the objects of coordination. It provided, for example, no distinction
between role and committed actor, and tasks and activities were consid-
ered as being on the same conceptual level (cf. section 4.3.3). Findings
from the study of the software testing and correction work illustrated the
need for a separation along the dimension of status. Some tasks were
planned along the dimension of resources available in the period where
the task must be accomplished, and at any given point in time some
activities using named resources were ongoing. These required coordina-
tion. For monitoring purposes historical information should be available as
well, i.e., the actors should be able to backtrack what had happened with
respect to the status dimension. This observation called for a three layered
set of dimensions of objects of coordination work: 1) planned or potential,
2) present or ongoing, and 3) past. Since past could be regarded as just a
“logging of present” only two were considered required. In order to clarify
the different statuses of resources these were developed into the model of
the dimensions of objects of coordination work as a distinction between
the statuses of ‘nominal’ and ‘actual’ (cf. figure 5-2).

Based on the experiences from the field study, a third comment to the
first version of the dimensions of objects of coordination work concerned
responsibility. These were represented as a dimension of objects in itself.
The field study illustrated that responsibilities are always modeled as a
relation between two or more of the other dimensions, typically between
task and actor. This called for two changes: Responsibilities should not be

170

Part II Analyzing and modeling

modeled as an independent dimension of objects of coordination work,
and it appeared relevant to establish a general model for how instances of
the different dimensions are related to each other. The resulting model of
how the objects of coordination work are interrelated is illustrated in fig-
ure 5-3.

The last thing changed in relation to the dimensions of objects of coor-
dination work concerned the material, informational, technical, and infra-
structural resources. These were modeled as independent dimensions re-
lated to the cooperative work arrangement. The study indicated that it
would make more sense to relate these to the field of work. This was
therefore done as ‘resources’ in nominal status, and as ‘resources-in-
action’ in actual status.

So far, this section has described changes to the conceptual framework
that has already been implemented. The field study—and a review of what
other researchers have reported from similar studies—have, of course, ini-
tiated other suggestions for improvements of the conceptual framework.
The most important of these are:

• The aspect of time needs to be reflected in the conceptual frame-
work. As it is organized now time aspects of a coordination mecha-
nism is not modeled, i.e., it is not approached explicitly in the analy-
sis. In many work settings, it is a requirement that the coordination
is handled in real time (in for example air traffic control). This im-
poses a series of requirements and specific characteristics on the
interaction modes and coordination mechanisms used. These special
characteristics of, and the time related demands on, the coordination
activities and mechanisms should be reflected in the framework.

• Similar to the time dimension, a dimension of space should be better
reflected in the Concept of Coordination Mechanism. Much coordi-
nation work is done with reference to certain aspects of the space in
which the work is conducted. Characteristics of the space and speci-
fications of how the space influences the coordination activities
should be grasped by a conceptual framework for analyzing coordi-
nation work.

• As mentioned earlier in this chapter, the basic elemental operations
was not very useful as a list of candidates for elemental operations
of coordination work conducted at Foss Electric. It only functioned

171

Part II Analyzing and modeling

as an inspiration. A more coherent list of operations, and a more
detailed description of how they manipulate the objects of coordina-
tion work, would be useful.

We are—as work analysts—basically interested in understanding the
important aspects of coordination work to an extent that is sufficient for
informing a design of computer-based support of coordination work activ-
ities14. Doing this requires at least a good conceptualization of the struc-
tures used and the operations and actions required when coordinating the
distributed work activities. Other kinds of support are required too:

The conceptual framework does not provide any methodological sup-
port, i.e., there is no line of action suggested, and it is not (yet) clear which
techniques it would be relevant to use when collecting and analyzing data.

An analysis of the coordination activities within a work setting must be
combined with a more traditional work analysis. Work and its coordina-
tion is closely related and intertwined. Analysis methodologies must there-
fore include techniques and conceptual frameworks addressing both
aspects of the work.

As analysts we, furthermore, need support for ‘an overall abstraction’
of the coordination activities addressed. As it is now, there are very little
support for understanding what is the function (in terms of coordination)
of the meetings observed, or which types of work organization have been
avoided in the existing implementation of the work arrangement due to
lack of means for handling the coordination required. Means for compar-
ing costs and benefits from applying different modes and mechanisms of
interaction in a specific work situation are missing too.

The Concept of Coordination Mechanisms seems to be a good first
candidate for providing the required conceptualizations of the structures
used when coordinating distributed work activities. Several important as-
pects are, however, still missing, and there is a big need for methodologi-
cal support. A lot of further (future) research is called for. As for conduct-
ing work studies and work analyses, establishment and refinement of
methodological support for this seems to be an open-ended never ending
process.

14 Some people—within different research traditions—might disagree with this statement. But
it is a basic assumption for the approach I have taken in this dissertation (cf. chapter 1).

172

Part III Towards computer support

 Part III:
Towards computer support

8. Requirements for computer-based
support of the coordination of
software testing

“Systems development is a creative activity,
and many systems developers see themselves

as professional individuals, conscious and
proud of their personal working style. The

motivation and drive of many systems
developers are founded in their practice as

creative individuals. Systems development is,
however, at the same time a highly cooperative
and complex activity. Effective coordination is

essential and the limited intellectual capacity
of individual systems developer has to be dealt

with explicitly.”
(Dahlbom and Mathiassen, 1993, p. 163)

The previous chapters have discussed conceptualization of coordination
work, and approached the findings from the field study at Foss Electric
analytically. A next step is thus, to take a construction oriented approach.

A construction oriented approach could start out by first establishing a
set of requirements. The aim of this chapter is to illustrate how require-
ments for a specific computer-based coordination mechanism supporting a
specific work setting could be established and expressed concisely. The
area chosen is, quite naturally, the coordination of the software testing and
correction process observed at Foss Electric. The aim of establishing the
requirements was originally to provide input for refining the Concept of
Coordination Mechanisms, and gaining experience regarding using the
conceptual framework for supporting requirements specification. This
chapter should, therefore, not be read as a documentation of a software-
development process. The central approach has not been to come up with
new innovations, but to provide an exemplification of requirements for a

173

Part III Towards computer support

computer-based coordination mechanism. In real life settings it would, in
addition, be essential to address problems such as: How to identify candi-
dates for computer-based coordination mechanisms? How to draw the
boundary of the computer systems? How to avoid simple automation of
the existing mechanism? etc.

As illustrated in section 6.1 software testing is a complicated task,
which, in practice, is impossible to accomplish exhaustively (Myers, 1979;
Parnas, 1985). Much effort is required to coordinate the activities, negoti-
ate software acceptance criteria for usability, reliability, capability, etc.,
and to establish consensus of when the software is acceptable. In large
scale software projects, like the S4000 project, many actors with different
perspectives and different areas of competence are involved in the testing
process. Plans and procedures describing who is testing what, classifying
errors, reporting back, handling the corrections, re-testing, etc. are needed.
Much research has been conducted in the software testing field (Gelperin
and Hetzel, 1988), but very little of this research has addressed the organi-
zational process and cooperative aspects of software testing. An attempt
within the field of CSCW to address the cooperative aspects of software
testing is the CSRS system supporting collaborative software review
(Johnson and Tjahjono, 1993). The idea was to apply an existing hyper-
text-based environment for building systems to keep track of the decisions
taken in a group, on the field of software inspection. Another example is
provided by Mashayekhi et al. (1993) who discuss how to support dis-
tributed cooperative software inspections.

This chapter formulate a set of requirements for a computer-based co-
ordination mechanism supporting the coordination work involved in regis-
tering, diagnosing, and correcting software bugs. The requirements are
derived from the findings of the field study and from the general require-
ments defined for coordination mechanisms (cf. section 5.5). Focus has
been on setting up a set of requirements for a mechanism that, in a more
active manner, stipulates the required work flow, and mediates the needed
information among the involved actors. To do this, the requirements
address two central aspects: Which conceptualizations of the field of work
and the work arrangements should be provided, and which facilities are
needed for stipulating the central work flow, in the aspects of coordinating
a process of registering, diagnosing, and correcting software bugs. It is not
claimed that tools supporting the coordination of software testing should

174

Part III Towards computer support

be seen as isolated tools. They should be integrated with other tools for
software testing. For the purpose of illustration, this integration has, how-
ever, been considered outside the scope here.

Requirements for how the interaction between the mechanims and the
actors (users) can run, what the data structures embedded in the mecha-
nism should contain, what browsing facilities should be provided, and
which other computer-based mechanisms the mechanism could link to are
discussed, both in terms of overall requirements and in terms of more
design oriented aspects.

Based on the findings from the field study, a set of overall requirements
for computer support of the coordination of software testing is established
in section 8.1. Section 8.2 establish a set of detailed requirements for how
to computer support the bug form mechanism described in chapter 6. The
chapter is concluded with a brief discussion on the generality and usability
of the requirements listed.

8.1 Overall requirements for support of the
coordination of software testing

Many software testing tools already exist in the commercial market. They
primarily support the individual test tasks, or provide an overview of the
state of affairs by applying a specific set of testing metrics. They do rarely
support the coordination of distributed software testing and correction
activities.

There are several areas where support for coordination of software test-
ing should be considered. The findings from the field study (see chapter 3
and 6) can be used for establishing an overall picture of the coordination
of the bug handling activities. This picture is first of all characterized by
the use of a set of conceptual structures reflecting central aspects of the
field of work (registering, diagnosing, and correcting bugs), and of the
structures of the cooperative work arrangement. The most important struc-
tures from the field of work reflected in the conceptualizations are the
registered bugs, the classifications of bugs and software, and the software
architecture. Structures reflected from the work arrangement are mainly
the plans, work procedures, actors, and roles. These structures can be re-
garded as the dimensions of objects of coordination work along which the
coordination is conducted, i.e., the coordination activities are done by

175

Part III Towards computer support

means of abstractions and conceptualizations of the nature of the work,
not by directly interacting with the objects of the work (e.g., the code).

Software structure:
 - modules
 - module relation
 - specifications

Actors:
 - roles
 - competences

Plans:
 - platform periods
 - tasks

Classifications:
 - bug categories
 - module importance

Bugs are
classified

Bugs:
 - descriptions
 - status
 - aggregations

Modules are
categorized

Bugs generate
correction tasks

Actors are
responsible
for correcting

Actors are
responsible for
modules

Actors are responsible
for the tasks in the plan

Modules will be
corrected within a
platform period

Modules contain bugs

Figure 8-1: A model of the conceptual structures used when coordinating
the registration, diagnose, and correction of bugs. The lines between the
structures illustrate different kinds of relations typically established as a re-
sult of the coordination activities. For example: a registration of a bug will
result in a relation between the bug and a classification. The three upper
conceptual structures are derived from the nature of the field of work,
whereas the two structures at the bottom reflects the nature of the work ar-
rangement.

8.1.1 Conceptual structures

A first overall set of requirements for computer support of the coordina-
tion of software testing includes accessible and modifiable data structures
reflecting the conceptual structures. In relation to these conceptualizations
a set of basic actions—using the conceptual structures—pops up in many
of the bug handling coordination activities. These are first of all classify-
ing bugs, tasks, modules, routing of information and requests, monitoring
state of affairs, progress, and allocating, meshing, and negotiating the use
of resources, etc.. The actions are performed by all the involved actors.

176

Part III Towards computer support

When discussing computer support of the coordination of certain aspects
of software testing work, it is obvious to require access to basic operations
on the data structures similar to the basic actions mentioned here. If we
consider a computer system as consisting of a set of data structures and a
set functions, the data structures should be symbolic representations of the
above mentioned conceptual structures, and the functions must reflect the
activities mentioned as accessible operations on the conceptual structures.
So, as it can be seen from the brief discussion above some requirements
mainly concern the data structures that must be provided, whereas others
concern the functionality.

A general requirement is that all data structures or relations between
data structures mentioned must be available and accessible to the actors,
and in most cases they should be modifiable too. The most important
overall requirements regarding conceptual structures are:

(a) A computer system supporting the coordination of complex soft-
ware testing processes should provide access to data structures
reflecting the architecture of the software complex. Main func-
tionality, relevant classifications, and the relations to other mod-
ules should be included for all modules. Furthermore, references
to the responsible software designers, relevant documentation,
and specification should be available. All the structures must be
modifiable.

(b) Access to descriptions of the specific bugs registered should be
provided. The descriptions could contain information on origina-
tor, symptoms, priority, suggested diagnosis, involved modules,
estimations, related responsibilities, correction, etc. The informa-
tion should be accessible as aggregations with respect to modules,
types of bugs, priorities, and responsible designers.

(c) A third type of conceptual structures that should be available is
existing plans containing information on the use of both human
and technical resources. The relations among tasks, deadlines,
actors, software modules, etc. should be accessible. This includes
access to a conceptual structure containing information on all in-
volved actors, and to technical and hardware resources involved
in the development and testing. Individual characteristics, present

177

Part III Towards computer support

and planned workload, etc. of the actors and technical resources
should be available.

(d) A central aspect of coordination work is classification of the
structures, objects, situations, etc. from the field of work or the
work arrangement. This is also a central aspect of coordination of
software testing. This implies the need for access to data struc-
tures containing information and descriptions of the present clas-
sification categories for bugs, software modules, etc. The classifi-
cation categories should be accessible in all work situations
where they are used (e.g., in bug registrations). Furthermore, in
order to make classification structures modifiable, support of dis-
tributed changes to the classification schemes should be sup-
ported. This requires some kind of structured communication
channel and/or a mechanism structuring the negotiation process.

(e) The last conceptual structure concerns the organizational context.
A computer support system should provide access to structures of
information on organizational procedures, techniques, standards,
etc. and to structures containing information on the requirements
for the software complex (both the existing specifications and the
suggested interpretation) used in the test work.

8.1.2 System functionality

The most obvious requirement for functional support concerns distributed
registration and classification of bugs, and support to the testers in filling
in all the information required in order to perform the diagnosis. Handling
bugs could be improved by refining the bug classification system. Too
often the existing classification structure led to discussions resulting in a
re-classification made by the spec-team. A more elaborated classification
of the type and importance of bugs would support the testers in providing
useful information to the spec-team and to designers. Research within
software engineering may provide input for more elaborate classification
structures, for example, standard software quality taxonomies (e.g.,
Boehm, 1981), or a software risk taxonomy. Support for discussions via
electronic mail or bulletin boards among testers would also improve the
quality of the information registered.

178

Part III Towards computer support

Access should be offered to the actors that aloows them to specify (and
later on modify) a work-flow process stipulating to whom information on
the bug should be routed, how the bug registration is made visible to other
testers, etc. When an actor has completed his activities in relation to a spe-
cific bug form, the work flow system could automatically validate that the
required information is registered, pass the information on to the next
actor (or group of actors), and notify the receiver(s) that new action must
be taken. However, in most situations is it impossible to completely speci-
fy all situations which may occur (cf. e.g., Suchman, 1987). The coordina-
tion of software testing in the S4000 project was no exception. The actor
completing an activity must therefore be able to overrule the routing and
redirect the information to somebody else. The protocol stipulating the
routing should, furthermore, be based on roles to which actors can be re-
lated. This could draw upon research addressing available work flow
technologies (e.g., De Cindio et al., 1988; Kreifelts et al., 1991a), but it
will not be discussed further.

The coordination work itself is often handled in a distributed manner.
Facilities should be provided for a distributed creation and registration of
new tasks. Tasks should be established as relations between a task, an
actor, and a deadline. Functions for integrating the tasks in the existing
plans and for notifying the affected actors are required. The structure for
how, and whom, to notify should be available as a modifiable structure
describing how this stipulation should run. This, of course, requires a
communication structure allowing the actors to send requests, accepts, and
rejects to each other. For example, supporting diagnose of bugs primarily
implies support of communication among the spec-team members.
Without face-to-face communication, the spec-team members would have
had severe problems. E-mail based communication between spec-team
members, testers and designers could support diagnoses and prevent some
of the interruptions in the work derived from the need for ad hoc discus-
sions. A communication channel where the actors can negotiate a diagno-
sis, the resource allocations, a deadline, etc. by means of structured mes-
sages and a predefined message flows would be very useful. The structure
of the messages and dialogue flow should be modifiable, i.e., tailored to
the concrete situation. The coordination of the diagnosis work could also
be supported by providing access to information on already reported bugs.

179

Part III Towards computer support

In order to improve the awareness of changes made by others, and to
establish a common understanding of the software complex, some support
for “viewing” the structure of the software complex should be provided. It
was obvious, that the designers had problems in relating themselves to the
structure of other designers’ modules although these had an essential
impact on how they should (re-)design their own modules. This should be
supported by what Henderson and Cooprider call “representation” in their
“production technology dimension” of CASE tools, i.e., functionality to
enable the user to define, describe or change a definition or description of
an object, relationship or process (Henderson and Cooprider, 1990).
Improved use of some of the existing specification techniques or CASE
tools could decrease the need for ad hoc coordination by providing an
improved structure of the field of work, i.e., the software system being
designed (Mathiassen and Sørensen, 1994).

Furthermore, features that support the testers and designers in making it
possible for others to be aware of registered bugs and implemented correc-
tions are required. Both user activated and automatic distribution of this
type of information should be available. All actors must, upon request, be
able to receive information on the state of affairs. This can be fulfilled
through access to the registered bugs, their diagnosis, and status, or
through access to information on a specific correction task. Providing de-
signers and testers with browsing and query facilities to a database con-
taining all registered bugs would enable these actors to access aggregated
information on reported bugs which have not yet been corrected, the num-
ber of a specific type of bugs, the number of not yet corrected bugs in a
specific module, the number of bugs a specific designer is responsible for
getting corrected, etc. Also access to view the project schedule would be
useful for monitoring state of affairs. This functionality could be provided
by means of some of the existing project planning tools (e.g., Microsoft
Project), and should support requests like: Who is responsible for the UIS-
module? Which modules are John responsible for? How busy is Tom dur-
ing the next integration period? How much time has been spent on correc-
tion so far?

When analyzing the coordination of software testing and correction
work conducted within the S4000 project at Foss Electric six overall
functions to be supported emerged. These were the flow of work, registra-
tion and classification of bugs, diagnosing bugs and allocating resources,

180

Part III Towards computer support

correction of bugs, verification of the reported corrections, and monitoring
the state of affairs. A more elaborate discussion of how the requirements
are derived from characteristics observed in the work setting and struc-
tured according to these overall functions can be seen in Carstensen et al.
(1995c). All the requirements mentioned there will, however, also be
mentioned in the following.

8.2 Requirements for a mechanism supporting the bug
handling process

The aim of this section is to present and discuss requirements for a
computer-based coordination mechanism supporting the coordination of
the distributed software testing activities, i.e., distributed registration of
bugs, routing the required information to the actors, and stipulate the se-
quence of activities and the involvement of actors in the register-diagnose-
correct-verify process. The requirements are based on the findings from
the field study (especially with respect to the bug form described in chap-
ter 6) and the overall requirements for coordination mechanisms described
in section 5.5.

The description is organized top-down, i.e., it goes from general
requirements (presented above) towards more concrete requirements and
sketches of how a computer-based mechanism could be implemented.
Distinguishing in any exact manner between requirement specification and
systems design is widely recognized as an impossible task (Andersen et
al., 1990). I have, however, as a pragmatic approach to specifying the
computer-based bug handling mechanism tried to distinguish between, on
the one hand, which functions it should perform on which data, and on the
other hand, how these functions are performed, and what mechanism
should look like. For simplicity reasons I will, in the rest of this chapter,
call the computer-based bug handling mechanism Bug-CM (Bug-
Coordination Mechanism).

First step is to delimit the set of overall requirements to address. Next
step (section 8.2.2) is a discussion of the basic functionality of the Bug-
CM, and how the interaction between the actors and the mechanism
should be. Then required structures are discussed (section 8.2.3), and
which functions for accessing the data structures should be provided.
Section 8.2.5 defines the links from the Bug-CM to “external” mecha-

181

Part III Towards computer support

nisms. It is sketched which concrete data structures, classification types,
user interface structures, etc. that should be included. Finally a brief dis-
cussion of the protocol embedded in the mechanism should be designed in
order to fulfill the requirements is provided.

8.2.1. General requirements for a computer-based bug handling
coordination mechanism

The requirements established above will be used as inspiration and criteria
of relevance for the discussion of the requirements for the Bug-CM in this
section. For each of the listed requirements I have considered the rele-
vance of including it as a requirement for the Bug-CM. Aspects which are
clearly outside the bug form mechanism are excluded in order to delimit
focus. For example, the requirements on providing access for the actors to
revise, update, and get an overview of the work plans are excluded in the
following discussions.

Before establishing the set of requirements, some general decisions on
the allocation of functionality between the involved actors and the Bug-
CM should be taken, i.e., decide what is to be handled by humans and
what is to be handled by the computer system. An example is the registra-
tion of a bug. It is the actor who decides the classification of a bug and en-
ters all relevant information into the system, but it is the Bug-CM that
validates that all mandatory information is entered, as well as it passes on
the registration to the actor(s) responsible for the next sub task to be con-
ducted.

The Bug-CM should handle all information—and aggregations of
information—related to the registration of a bug, its diagnosis and correc-
tion, and its verification. Furthermore, all routing of information between
the involved actors (or rather roles) should be handled by the Bug-CM.
The Bug-CM is not making any decisions regarding whether or not a phe-
nomenon is a bug, how to classify a bug, how to diagnose a bug, which
modules a correction will affect, what a correction time estimate should
be, how to correct a bug, etc. This is taken care of by the human actors. To
phrase it differently: The Bug-CM should not include any ‘knowledge’
used when decisions are taken in the actual work, e.g., decisions on
whether new expertise is required, or decisions on how to correct a bug.

182

Part III Towards computer support

The Bug-CM will only contain ‘knowledge’ of how the work-flow should
be stipulated.

Basically, the Bug-CM should support different problems: Ensure that
all registered bugs are treated until they reach a final state; Provide an
overview of state of affairs that is correct and up to date; And handle a
process of distribution (of the registration tasks), compilation (of all the
bug forms for diagnosing), distribution (of the registration tasks), and
compilation (for verification). These overall requirements result in
requirements that actually delimit the degrees of freedom for the actors.
This is necessary in order fulfill all three needs.

The decisions on the division of Bug-CM—Human actor functionality
implies that basically the Bug-CM should provide four types of function-
ality:

(1) The mechanism should offer facilities for distributed registering
new bugs. The Bug-CM should support the registration so it is
ensured that all mandatory information is entered before the reg-
istration is completed and passed on. All registered bugs should
be filed so aggregations and statistical information on the com-
plete set (or subsets) of the bugs can be generated.

(2) The Bug-CM should stipulate the work flow by routing the
information between the actors. When a certain actor has com-
pleted his or her activities in relation to the handling of a specific
bug, the mechanism should automatically validate that the re-
quired information is registered, pass the information on to the
next actor (or group of actors), and notify the receiver(s) to indi-
cate, that the specific bug is now at a stage where a new action
can be taken. The actor completing an activity must be able to
overrule the routing and redirect the information to whoever he or
she wants. Furthermore, the protocol stipulating the routing must
be based on roles to which actors can be related, and it should be
possible to change the actual actor related to a role without
changing the protocol stipulating the routing. Receiving a notifi-
cation can be regarded as receiving a request. Hence, the Bug-
CM should provide a facility making it possible to reject a
request, i.e., return the request to the originator.

183

Part III Towards computer support

(3) The Bug-CM should support the resource allocation tasks in rela-
tion to the diagnosis and estimation tasks. When the spec-team
decides on the diagnosis of a bug and on who is going to correct a
specific bug, they also handle resource allocation. To be able to
do this the mechanism should provide information to the actors
on the relations between roles and actors, the architecture of the
software complex, the relations between software modules and
the responsible designer, the workload of the involved designers,
the existing work plans, and the relations between tasks and
deadlines, etc. Supporting the diagnosis task—and thus the re-
source allocation task—requires an improvement of the existing
classifications of the importance of bugs. The existing categories
are insufficient and are used for several different purposes, e.g.,
both as an indication of the problem from the perspective of the
testers and as an indication of the importance from a software
development perspective. The Bug-CM should provide a more
sufficient and elaborated set of categories of bugs.

(4) The Bug-CM is required to support the actors in obtaining aware-
ness of the state of affairs regarding the registered bugs. The Bug-
CM should provide a series of querying facilities for generating
aggregations on reported bugs not yet corrected, the number of
bugs with a certain classification, etc. It is important that the ac-
tors can monitor the progress of testing activities and the state of
affairs in general, i.e., to get an overview of how many percent-
age of the code is tested, what is the number of man-hours
planned for testing, how much time has been spend on testing so
far, etc.

The requirements discussed so far reflects by no means whether the
facilities should be provided directly by the Bug-CM itself, or whether
they can be provided through links to other mechanisms. It is obvious to
expect that some of the facilities are provided by the Bug-CM, but facili-
tated by other (computer-based) mechanisms, e.g., information on the
software architecture could be obtained in a data-structure maintained by a
CASE tool.

184

Part III Towards computer support

In order to reduce the complexity of the task of specifying the require-
ments for the Bug-CM, I have excluded supporting certain aspects of the
coordination of software testing. The most essential of these are:

• Negotiation structures.

An important aspect of coordinating software testing and correction
is negotiation on classifications, diagnosis, resource allocations,
deadlines, etc. A Bug-CM should provide some predefined struc-
tures to be used by the actors when negotiating. I have decided not
to discuss such predefined structures further here, apart from a re-
quirements stating that all requests sent from one actor to another
can be rejected and routed back to the originator.

• Decision support.

Apart from providing relevant information, the Bug-CM should not
provide any decision support facilities. As mentioned, have I chosen
to let all decisions on, for example, the classification of a bug, the
diagnosis, how to correct a bug, etc. be taken by the actors without
any active intervention from the Bug-CM. Decision support is
beyond the scope of this dissertation.

• Communication facilities.

It is relevant to support, for example, the members of the spec-team
in being geographically distributed, and then use the mechanism as a
means for communicating on the diagnosis of a bug. Such general
communication facilities are considered out of scope here. The prob-
lem, could be addressed by some of the same means as addressing
negotiation (e.g., Flores et al., 1988), collaborative writing (e.g.,
Beck and Bellotti, 1993), video-conferencing (like the ideas pre-
sented in Ishii et al., 1994), etc.

• Access to updating plans.

A central aspect of coordinating the handling of bugs is, of course,
to be able to see the current plans and make changes to these. Here,
support for updating the work plans is considered belonging to a
separate computer-based mechanism. In this chapter the linking of
the two mechanisms will only be addressed through a requirement
stating, that information on a task generated by the accept of a bug
must be routed to the actor responsible for handling the work plans.
An automatic update of the plans combined with a notification of the

185

Part III Towards computer support

actor(s) handling (responsible for) the planning would be relevant.
This is, however, excluded from the requirements here. Further work
on the requirements should involve a specification of the linking (cf.
section 5.8) between the two computer-based coordination mecha-
nisms.

Neither the mentioned requirements, nor the list of aspects that are
excluded, should be regarded as exhaustive. During the process of refining
the requirements, several of the requirements will be specified further, and
further decisions on what to include and what to exclude will be taken.

8.2.2. The interaction between the actors and the Bug-CM

This section discusses the interaction between the actors and the com-
puter-based mechanism (Bug-CM). This is done by means of step by step
descriptions of which actions the actors (users) perform, and what kind of
result this leads to in the Bug-CM. The Bug-CM should provide two gen-
eral facilities. One supporting the registering-routing-diagnosing-correct-
ing-verifying process (figure 8-2), and one facilitating browsing and
search activities (figure 8-3, 8-4, 8-5, and 8-6).

For presentation purposes, the description of the types of interaction
with the Bug-CM illustrates the ‘typical’ working sequence, i.e., the flow
of actions as they would appear in a typical situation without exceptions.

Each row in the tables is a pair of ‘user action—Bug-CM responds’.
First column describes the user actions and the next column contains the
related reaction from the Bug-CM. The roles and actors are the same as
those used to characterize the coordination work previously (cf. chapter 3
and 6). Decisions on the allocation of functionality between the human
and the computational artifact are, thus, described as a set of scenarios (cf.
e.g., Cambell, 1992; Carroll and Rosson, 1992).

The first process is the registering-routing-diagnosing-correcting-veri-
fying process presented in figure 8-2. The description of the ‘typical flow’
of the registration and correction process illustrated in figure 8-2 does not
contain examples of exceptions where, for example, the actor choose to
overrule the stipulated workflow and skip some of the steps in the process.
It should, according to the overall requirements discussed previously,
always be possible for the actor to do so.

186

Part III Towards computer support

As mentioned above, support for browsing and search is the second
general facility provided by the Bug-CM. Although this does not provide a
similar ‘natural sequence’ as in the previous facility, I have used the same
scenario structure in order to describe the browsing and search facility.
This is done by presenting four prototypical situations:

(1) An actor (usually a tester or a designer) is interested in obtaining
specific information on a specific bug (shown in figure 8-3);

(2) A tester who wants to check if a registered problem is identical to
a phenomenon he has just recognized (shown in figure 8-4);

(3) The spec-team searches for relevant information in order to de-
cide who is going to be responsible for a specific bug (shown in
figure 8-5); and

(4) A manager or others searching for relevant information on the
state of affairs (shown in figure 8-6).

The scenarios presented in figure 8-3 to 8-6 are based on activities ob-
served in the field study. They are all highly contextual activities depen-
dent of the role of the actor interacting with the Bug-CM. From a design
point of view, the need for search and browsing facilities might be pro-
vided through a generic search and browsing function without distinguish-
ing between types of actors and types of situations.

Actions from the actor(s) The responds from the Bug-CM

1) A tester recognize a bug in the software,
decides to report it, and “generate a new bug
report”.

The Bug-CM replies by setting up an electronic
form containing entry fields for the relevant
information.

2) The tester classifies the bug, fills in the fields
in the form, and ask the system to “register the
bug”.

The Bug-CM validates that all mandatory fields
are filled in. If not the tester is requested to do
this.
If this is OK the registration is filed in the
central bug database and a notification is send to
the spec-team.

3) A spec-team member asks for the “next new
registration”.

All registration information are presented to the
spec-team member together with relevant fields
to be filled in concerning the diagnosis and
estimation.

4) If the bug cannot be accepted by the spec-
team, a spec-team member demands to “reject
bug”.

The bug is filed as “rejected” in the central
database, and a notification is returned to the
tester indicating that the registration has been
rejected.

187

Part III Towards computer support

5) If the bug is accepted, but it is decided to
postpone it, a spec-team member classifies the
bug, describes the reason to postpone it, and
demands to “postpone bug”.

The bug is filed as “postponed” in the central
database, and a notification is returned to the
tester indicating that the registration has been
postponed.

6) If the bug is accepted by the spec-team, a
spec-team member fills in the classification of
the bug, the platform period in which it is going
to be fixed, and the responsible module(s).

On the basis of the specified module, a default
responsible designer is added to the information.

7) The responsible designer(s) are filled in
together with the correction time estimate for
each. “Bug accepted” is demanded.

The bug is filed as “accepted” in the central
database. The responsible designer(s) and the
originator (the tester) are notified.

8) A designer demands a “see correction
request”.

All information on the registered bug is
presented to the designer.

9) If the designer rejects to do the corrections or
cannot accept the correction time estimate he
fills in a rejection description and asks to “reject
request”.

The bug is filed as “correction request rejected”
in the central database and the spec-team
members is notified. The spec-team can then
handle it as a new registration (cf. entry 3).

10) If the designer accepts the diagnosis and
estimate he demands a “accept request”.

The bug is filed as “correction request accepted”
in central database and the spec-team members
are notified.

11) The designers asks for a “register
correction”.

Identification information on the bug is
presented to the designer together with fields for
registering information on the corrections.

12) The designer fills in the time spend and
information on affected modules and files, and
“register correction”.

The bug is filed as “corrected” in the central
database.

13) The platform master (PM) asks to “see
corrections to be verified”.

Information on all corrections to be verified in
the next integration period is presented to the
PM.

14) The PM demands a “register verifications”. Information on the next bug to be verified is
presented to the PM.

15) If the bug presented cannot be verified the
platform master fills in a description of the
problem and demands “verification rejected”.

The bug is filed as “not corrected” in the central
database, and the spec-team members are
notified. The spec-team can handle it as a new
registration (cf. entry 3).

16) If the bug presented can be verified the PM
demands “verification accepted”.

The bug is filed as “corrected and verified” in
the central database.

Figure 8-2: A table of the typical user actions and Bug-CM reactions (each
pair in the rows) in the registering-routing-diagnosing-correcting-verifying
process.

188

Part III Towards computer support

Actions from the actor(s) The responds from the Bug-CM

1) An actor demands “see specific bug”. The Bug-CM replies by presenting a search
template with entry fields for bug registration
id., tester id., bug classification, responsible
module, responsible designer, etc.

2) The actor fills in the fields to be searched. The central bug database is searched for all
registered bugs fulfilling the search profile. The
search template used and the number of
retrieved instances are presented to the actor.

3) If the actor is not satisfied with the found
number of bug registrations he fills in new
information in the fields and demands “search”.

Se the previous Bug-CM reaction.

4) The actor asks to “see next bug”. The complete set of information on the next bug
in the list of retrieved records are presented to
the actor.

Figure 8-3: A table of the user actions and the matching reactions from the
Bug-CM in a process of searching for information on specific bugs.

Actions from the actor(s) The responds from the Bug-CM

1) A tester asks to “see similar bugs”. The Bug-CM replies by presenting a search
template with entry fields for the responsible
module and keywords for the bug description.

2) The tester fills in as precise information on
the responsible module and the keywords as
possible and asks the mechanism to “search”.

The central bug database is searched for all
registered bugs fulfilling the search profile. The
number of retrieved records are presented to the
tester.

3) If the tester is not satisfied with the found
number of candidates he or she starts over again
by asking to “see similar bugs”.

See the Bug-CM reaction in step 1.

4) The tester demands “see next bug” The complete set of information on the next bug
in the list of retrieved records are presented to
the tester.

Figure 8-4: A table of the typical user actions and Bug-CM reactions in a
process of a software tester searching for bugs with similar characteristics.

The three queries illustrated in figure 8-5 below are all queries that
address information outside the Bug-CM itself. In order to fulfill these
requirements the Bug-CM will have to link to other computer-based
mechanisms providing the relevant information.

189

Part III Towards computer support

Actions from the actor(s) The responds from the Bug-CM

1) A member of the spec-team demands “see
roles”.

The Bug-CM replies by presenting a template
with entry fields for roles and actors.

2) The member of the spec-team fills in the
fields of actor or role and demands “see roles”.

The Bug-CM presents all roles related to the
defined actor (or vice versa).

1) A member of the spec-team demands “see
responsibilities”

The Bug-CM replies by presenting a template
with entry fields for modules, tasks, and
designers.

2) The member of the spec-team fills in the
fields of designer and/or module and/or task, and
demands “see responsibilities”.

All responsibility relations between:
• specified designers - tasks,
• specified designers - modules,
• specified modules - designers,
• specified tasks - designers,
are presented.

1) A member of the spec-team demands “see
workload”

The Bug-CM replies by presenting a template
with entry fields for designers, tasks, and a
deadline.

2) The member of the spec-team fills in the
fields of designer and/or tasks and deadline, and
demands “see workload”.

The Bug-CM presents the man hours to be spend
from now until the deadline:
• on the specified tasks.
• by the specified designers.

Figure 8-5: A table of three typical user actions - Bug-CM reactions pairs
in a process in which the spec-team attempts to establish the required
information for deciding on responsibility. The first supports the spec-team
member in getting information on, for example, who will be platform mas-
ter in the next period. The next can be used to get information on, for
example, who is responsible for the UI-module or which tasks are James
responsible for. The intention of the last one is to provide information on
how busy a specific designer is going to be, according to the plans, in a
forthcoming work period.

190

Part III Towards computer support

Actions from the actor(s) The responds from the Bug-CM

1) An actor demands “see state of affairs”. The Bug-CM replies by presenting a search
template with entry fields for bug status, bug
classifications, module, and designer.

2) The actor fills in the fields he consider
relevant and demands “search”. Default for all
fields is that all are included.

If no fields have been filled in the actor is
requested to do this.
If at least of the fields have been filled in, the
central bug database is searched for all
registered bugs. The number of registrations in
the database fulfilling the bug status, the bug
classification, the module, and the designer
specified is presented.

3) If the actor is not satisfied with the found
aggregation number he starts all over by
demanding “see state of affairs”.

See step 1.

4) If the actor wants to see details on the bugs
aggregated he demands a “see next bug”.

The complete set of information on the next bug
fulfilling the requirements on the bug status, the
bug classification, the module, and the designer
specified is presented to the actor.

Figure 8-6: A table of the typical user actions and the matching reactions
from the Bug-CM in a process of searching for state of affairs information.

The previous four tables illustrated prototypical situations where an
actor search for information in order to establish a basis for taking deci-
sions on how to organize the work. They do not cover all relevant situa-
tions and exceptions from these situations. Furthermore, the search situa-
tions illustrated have all been based on the same general structure. This
structure is illustrated in figure 8-7. In a case where the Bug-CM is going
to be implemented, it will be obvious to base the implementation on such
a general search structure.

191

Part III Towards computer support

Actions from the actor(s) The responds from the Bug-CM

1) An actor evokes the search function. The Bug-CM replies by presenting a search
template with entry fields for bug registration
id., tester id., bug classification, responsible
module, responsible designer, etc.

2) The actor sets up search profile by entering
fields in the search template.

The central bug database is searched for all
registered bugs fulfilling the search profile. The
search template used and the number of
retrieved instances are presented to the actor.

3) The actor asks to “see next record”. The complete set of information on the next
record in the list of retrieved records are
presented to the actor.

Figure 8-7: A table of the generic user actions and the matching reactions
from the Bug-CM in a process of searching for information.

In further work on specifying requirements, the fact that the situations
and the need for actors to obtain aggregated information are different
could lead to radically different browsing and search functions. Searching
for matching records is only the basic starting point we have taken here. A
next step would be to provide different types of graphs, links between
mechanisms etc. Here, the spec-team member assessing state-of-affairs
would probably need other functions than a software tester who needs to
get an overview of the software errors found.

8.2.3. Data structures required

Overall requirements have been set up, and the required functionality has
been illustrated. It is time for a more detailed discussion of which data
structures the mechanism should have access to in order to be able to
fulfill the requirements, either by having them as internal structures, or
through links to other mechanisms. This section will illustrate which
structures are required.

The structures along which the coordination of software testing and
correction activities is performed were briefly introduced in section 8.1.
Using these and the established requirements, results in the following set
of structures to be provided: The registered bugs, the bug classifications,
the actors and their roles, the tasks, the work plan and platform periods,
and the software architecture. These structures are, of course, related to
each other in different ways, see figure 8-8. Another work settings might

192

Part III Towards computer support

require additional data-structures, for example, references to technical re-
sources such as production equipment etc.

Tasks Roles

Actors

Software
modules

Platform
periods

Deadlines

Is in

Contain

Responsible for

Have

Establish
Have

Responsible for

Responsible for

Have
interaction
with

Responsible for

To be affected in

Registered
bugs

Bug
categories

Classifies

Figure 8-8: A simple version of a entity-relationship like diagram illustrat-
ing the central structures to be contained or accessed by the Bug-CM. The
grayed box illustrates which structures would obviously be inside the Bug-
CM. The forks in the relations indicate a many-relation. For example a bug
can have exactly one classification, whereas a bug classification can be
used for many registered bugs.

 In some more details, the data structures include:

• Registered bugs.

The central database in the Bug-CM should be a file containing a
compilation of all relevant information on all bugs ever registered.
All information regarding the description of the bug, its diagnosis,
its corrections, the classifications and the status of the bug and its
correction should be filed here. In order to support search for bugs
with specific characteristics, the bug description field and the diag-
nosis description field should partly be based on selections from
predefined sets of situations descriptions.

193

Part III Towards computer support

• Bug classifications.

As argued previously a generally accepted set of categories for clas-
sifying bugs is essential. The set of categories should be substan-
tially improved compared to the categories on the existing form (cf.
section 6.6). The classification set will be discussed further in the
following.

• Actors and roles.

Descriptions and information on all possible roles to be included in
the software testing and correction work should be available. The
roles should be defined including obligations, time limitations, etc.
Also information on all the actually involved actors should be ac-
cessible, on for example, involvement in different projects, main
interests and competence, etc.

• Tasks.

Access to a database covering all tasks, their estimate, their dead-
lines, a description, a reference to further specification of goal and
acceptance criteria, priority, current status, etc. is demanded, includ-
ing references to responsible roles/actors, work plans, and origina-
tor.

• Work plan.

A work plan illustrating how all the tasks and roles/actors are related
to deadlines (platform periods) is, of course, an essential tool for
meshing correction tasks and activities with already defined tasks,
and to decide on deadlines for the correction tasks. Such a work plan
structure is identical to a combination of the tasks, platform periods,
and deadline structures in figure 8-8.

• Software architecture.

The structure of the software modules, their relation to each other,
their importance from a product point of view, etc. are essential
when deciding on the diagnosis of a bug, and who to make responsi-
ble for the corrections. Information on module name, module priori-
ties, and module status, and references to detailed specifications,
other modules related to a specific module, and who is responsible
for designing the module is needed.

194

Part III Towards computer support

8.2.4. Operations on the data structures

Viewing a computer system as a set of data structures and a set of opera-
tions on the data structures, we are now ready to discuss the operations.
Previously, I have identified a set of overall functions of coordination
activities including: Meshing activities, task, and deadlines; Relating
diagnosis and correction tasks to actors and work periods; Allocating
resources; Monitoring progress and state of affairs; And negotiating clas-
sifications, allocations, deadlines, etc. Some of these have been excluded
(cf. section 8.2.1), but they have worked as a criteria of relevance when
going through the concrete requirements for the Actor—Bug-CM interac-
tion, leading to the following identification of which operations must be
provided:

First, there should be access to create new instances of the structures,
mainly creating new bug registrations. Creation of new instances of struc-
tures outside the Bug-CM should be available in other computer-based
mechanisms. Also creation of new bug categories should be available, but
some limitation on who have access to this will probably be required. The
next basic operation concerns relating the bug structure (cf. figure 8.8) to
bug classifications, responsible software module(s), and responsible
role/actor(s).

In order to validate information entered, and to setup search requests of
different kinds, the mechanism should include a compare operation, and
an update of the bug structure. Use of the update operation can then—as a
next step—trigger other actions, e.g., a send notification information (e.g.,
pass information or return a rejection to a specific actor/role), or a notify
external mechanism about an update to be made.

Access to the information registered should include a read information.
This requires access to setup query parameters and search the database.
Reading information will, of course, require a present information. Read
information concerns reading a specific (set of) instance(s) of a given
structure. This can be organized either as a read from the registered bug
database or the bug classification structure, or it can—if the information is
placed in an external mechanism—result in a read request to the external
mechanism.

195

Part III Towards computer support

If access to the above mentioned basic manipulations on the data
structures is provided, a basis for establishing of a first version of the Bug-
CM exists.

8.2.5. Links to external mechanisms

The Bug-CM should have access to other computer-based coordination
mechanisms in order to provide the required facilities. These other mech-
anisms are not established yet, and have not been discussed in this chapter.
Figure 8-9 illustrates, through a re-use of figure 8-8, which mechanisms
the Bug-CM could have access to (be linked to). The illustration contains
only one of several possible decompositions of the mechanisms.

Tasks Roles

Actors

Software
modules

Platform
periods

Deadlines

Is in

Contain

Responsible for

Have

Establish

Have

Responsible for

Responsible for

Have
interaction
with

Responsible for

To be affected in

0

Registered
bugs

Bug
categories

Classifies

Planning CM Bug-CM Software Archi-
tecture CM

Human Resources CM

Figure 8-9: An illustration of four computer-based mechanisms that, alto-
gether, could support the coordination of software testing and correction
work. Each of the gray boxes represent a mechanism. The mechanism
described in this chapter is the Bug-CM in the center. The forks in the rela-
tions indicate a many-relation.

196

Part III Towards computer support

The Bug-CM has access to three other (computer-based) mechanisms
supporting the work plan aspects, the human resource aspects, and the
software modulation aspects of the coordination activities. There are two
types of access to the Planning CM: One is a read from link, i.e., the Bug-
CM can read (or request a read of) the content of structures of tasks, dead-
lines, and platform period information. The other is an update link (used
for defining new tasks in the plans). This can be implemented either as a
write directly in the structures, or as a send update request. The access to
information on the roles/actors and their work load is made through read-
ing the content of the structure handled by the Human Resources CM. The
same goes for the Software Architecture CM. The Bug-CM can access
information on which roles are responsible for which tasks in the current
plans both via the link to the Planning CM and via the link to the Human
Resource CM. The same goes for accessing information on who is re-
sponsible for which modules. Here the information can be accessed via the
Human Resource CM or via the Software Architecture CM.

8.2.6. Redesign of the bug form artifact

The information processing history contains many mistakes derived from
replicating the existing manual administrative systems (Hammer and
Sirbu, 1980). Designing a computer-based coordination mechanism based
on existing paper-based social mechanisms of interaction, should not
mean replicating the existing artifacts and procedures. The bug form
mechanism used at Foss Electric as a means of supporting coordination
work should therefore not just be given the power of computing. If taken
seriously, both artifacts and procedures should be made subject to re-
design. The purpose of this chapter is, as mentioned earlier, to demon-
strate ideas, not to completely redesign artifacts and procedures used. I
will, therefore, only partly sketch one possible solution. The Bug-CM is
represented as a semi-structured message system (see e.g., Malone et al.,
1987; Herskind and Nielsen, 1994) containing a set of fields to be filled in
with further constraints attached through the protocol specified. Designing
the actor - Bug-CM interaction the ‘form’ (illustrated in figure 8-11)
might result in several screens reflecting different roles interacting with
the system in different situations.

197

Part III Towards computer support

Re-design of the original Bug Form

1 Concerning the ‘Initials’ field: Assuming that the Bug-CM is linked to the Human Resource
CM, the actor will at some point have logged into the system, and his or her initials will
therefore automatically be inserted as the default value. If not appropriate, the initials can be
altered.

2 Concerning the ‘Date’ field: The date will be inserted, when the instance of the form is
made.

3 Concerning the ‘Instrument’ field: The tester enters the name. If, at a later stage, a
repository of pending projects were to be established, this field would naturally be linked to
such a repository.

4 Concerning the ‘Report no’ field: A unique report number will automatically be generated.
In the manual system, only reports of accepted software bugs are numbered. This way the
last number reflects the total of accepted bugs. In the Bug-CM simple queries will quickly
be able to determine this number, even if all reports are numbered.

5 Concerning the ‘Description’ field: The description of the phenomenon detected is a
mixture of classification and free text annotations. The Bug Categories data-structure
provides a classification scheme of types of software bugs. Free text is used as a ‘other’
category. Since both testers and spec-team members add information to this field, it must be
split in two.

6 Concerning the ‘Classification’ field: The classification of the seriousness of the software
bug needs serious redesign. The chosen solution is a two dimensional classification
(perspective x importance). Using arguments as in the previous field, the classification of
seriousness must be split in two.

7 Concerning the ‘Involved modules’ field: Characterization of the modules involved in
testing the bug are to be made by accessing the Software Modules data-structure.

8 Concerning the ‘Responsible designer’ field: Since the Bug-CM will be linked to the
Planning CM, the responsible designer(s) can be assigned as a default by accessing the
relationship between roles and software modules. The default value can be overruled by
choosing one or more other designer from a list. Because neither this or the estimated time
field covers the allocation of more than one involved designer, an additional field is needed.

9 Concerning the ‘Estimated time’ field: The time is filled in by the spec-team members.

10 Concerning the ‘Date of change’ field: The date of change of the software is automatically
given the default value of the date the designer reports the changes made.

11 Concerning the ‘Time spent’ field: The amount of time spent is filled in by the designer.

12 Concerning the ‘Tested date’ field: The date is given the default value of the date the
designer reports changes made. This implies, together with the default of the change date
field that in all other cases than the changes being made and tested the same day, the
defaults must be altered.

13 Concerning the ‘Periodic error’ field: If the bug is assumed to be periodic, and has been
assumed to be fixed, the designer checks in this box.

14 Concerning the ‘Accepted by’ field: The spec-team member accepting the bug form chooses
his or her initials from a list. Initials on more than one person can be added.

15 Concerning the ‘Accepted date’ field: The field is default assigned the date the spec-team
receives the form describing the software bug.

16 Concerning the ‘To be’ field: The classification of how to proceed further could be linked to
the classification of bug categories. Since a fourth category ‘Postponed indefinitely’ is
already used at Foss Electric, although it is not on the form, we have chosen to include it.

17 Concerning the ‘Software classification’ field: This field is redundant, because it covers the
same information as the platform field.

198

Part III Towards computer support

18 Concerning the ‘Platform’ field: This field is actually linked to the Planning CM. It
indicates in which platform the bug should be fixed. Current platform period is default
value.

19 Concerning the ‘Description of correction’ field: The corrections made can be classified
using the Bug Categories structure. Alternatively, free text can be annotated as an ‘others’
category.

20 Concerning the ‘Modified applications’ field: Classification of which software modules and
files have been changed inserted by linking to the Software Architecture CM.

21 Concerning the ‘Modified files’ field: This field is merged with the modified applications
field.

Figure 8-10: Suggested redesigns of the fields in the original bug form
(see figure 6-6).

If we take a critical look at the original paper-based bug form used at
Foss Electric (see figure 6-6), there are several obvious changes which can
be made when turning it into a computer-based form. Some of these
changes could, with advantage, be made even to the paper-based form.
Others are made due to the fact that a set of linked computer-based coor-
dination mechanisms (cf. section 8.2.5) is assumed to be designed. This,
for example, results in several fields having default values.

Figure 8-10 reviews each field in the original form and discuss the
changes decided. Each change discussed in the figure is introduced by
defining the related field in the original bug form as illustrated in figure 6-
6. Figure 8-11 shows an initial redesign of the form, representing the
design decisions discussed in figure 8-10.

199

Part III Towards computer support

4

1

3

2

5a6a

7

8b

8a

18

15
14

9

16

10
12

11
13

19 20-21

5b6b

22
24
26

28

23
25

27
29

30

Figure 8-11: Redesign of the Bug-CM artifact. The numbers on the ‘form’
refer to the changes numbered in figure 8-10. The software tester uses the
default values or fills in fields 1, 2, 3, 4, 5a, and 6a. The spec-team applies
default values or fills in fields 5b, 6b, 7, 8a, 8b, 9, 14, 15, 16 and 18. The
software designer(s) correcting the software error applies default values or
fills in fields 10, 11, 12, 13, 19 and 20–21. All actors use fields 22–30. The
layout is not supposed to include directions for how the actor-Bug-CM
interaction should be designed.

The major changes made in the re-designed ‘form’ compared to the
original form (figure 6-6) are listed, and briefly discussed, in the follow-
ing. The annotated numbers (e.g., 17) refer to the numbers in figure 8-10
and 8-11. The major changes are:

• Some fields in the form will upon instantiation or triggered by rout-
ing, be assigned default values. This can be accomplished because
the Bug-CM will be one of a set of linked computer-based coordi-
nation mechanisms. Fields 1, 2, 4, 8, 10, 12, 15, and 18 will be as-
signed default values. The only one of these fields which are given a
default value which can not be changed is the report number (field
4). In the manual system, the actors needed to maintain an unbroken
sequence of report numbers for accepted software bugs in order to

200

Part III Towards computer support

produce statistics. Given the computational power of the Bug-CM
system, this is no longer necessary.

• An additional category, ‘Postponed Indefinitely’, has been included
for categorizing bug forms. The difference between a bug form
postponed indefinitely and one being rejected is that the former is
recognized as a software error, the latter is not.

• The fields on software classification and platform (17 and 18) are,
on the original form, used for the same purpose and hence merged
into one.

• Given the linking to the Software Architecture CM the fields of
modified applications and modified files (20 and 21) are represented
in the same field on the re-designed ‘form’.

• An ‘others’ field (8b) have been added in order to reflect the practice
of using the manual system, where several designers, besides the re-
sponsible, can be assigned the task of correcting the bug.

• In order to support the actors in routing the bug reports, fields re-
flecting the phase and the possible receivers have been added on the
new ‘form’ (field 22-29). The semantics of the fields are discussed
below.

• The history of the ‘form’ is represented in field 30 of the new form.
This provides the actor with the possibility of obtaining an overview
of who previously have updated the form and when they have done
so.

The description of the software bug found (field 5) and the classifica-
tion of the importance of correcting the software bug (field 6) both need to
be redesigned. First, since both software testers and spec-team members
update fields, have they been separated into four separate fields in the re-
designed ‘form’. Second, the contents of the two fields need to be re-
designed. The description field (number 5) is used for characterizing
observed phenomena. It is proposed that a classification structure
(contained in the Bug Categories shown in figure 8-8) is used, characteriz-
ing software bugs phenomena, e.g., program stopped, window in wrong
place, unstable output on tests, etc. Field 6 on classification merges two
different criteria in the original form: the perspective and the rating of im-
portance. It would improve the use if we separate, on the one hand, why
the tester deems a software bug important, and on the other hand, how im-

201

Part III Towards computer support

portant it is to correct the bug. The first could be taken care of by a classi-
fication of perspectives or concerns, e.g., maintainability, marketing, sta-
bility, safety, usability etc. As for the importance of correcting the soft-
ware bug, a scale from 1 to 10 could be used. Using a software risk taxon-
omy to characterize the perspective and a software bug classification for
categorizing the observed phenomena should be combined with free text
annotations. In classification structures, it is important to make sure that
there is an “others” or “miscellaneous” category on each level in order to
urge the actor to provide as precise a classification as possible.

The original paper-based form does not present the fields in the
sequence in which they are filled in by actors in the work-flow. In princi-
ple several criteria can be used to formulate the requirements for the
design of the Bug-CM, e.g., present all fields to all actors in the sequence
in which they are filled in or present only the most relevant fields as a
default based on assessment of which fields are most relevant for each of
the roles involved or for each stage in the process. The fields could be pri-
oritized according to the assessed importance and presented in that order.
Additionally, criteria regarding the clustering of data elements could be
applied. Several data elements could be clustered, for example, all infor-
mation on actors and roles, information on conceptualizations of the field
of work, references to the contents of the field of work, information on
decisions made, etc. All these criteria can, of course, be mutually contra-
dictory. The most general solution would be to provide a limited possibil-
ity for each actor to create his or her own default views to the data ele-
ments. Further discussion along these lines have, however, been excluded
here. Here the simple solution is to change it so the approximate sequence
in which the fields are updated is reflected in the sequencing of the clus-
ters of fields filled in by testers, spec-team members, designers, and the
platform master.

Fields on the stages (22, 24, 26, and 28) have been included in the
redesigned ‘form’ in order to provide the actors with an overview of
which stage in the process the Bug-CM is at. These fields are also used
when routing the form from one actor to one or more others, and hence
potentially changing the state of the Bug-CM from, for example, registra-
tion to diagnosis. The corresponding routing field (23, 25, 27, 29) shows
the possible receivers as a list of roles with the stipulated next step as the
default value.

202

Part III Towards computer support

 The history of the process is represented by a sequence of fields each
containing information on role and date (field 30). The actor can get an
overview of which states the Bug-CM has passed through before it arrived
on his desk.

8.2.7. Towards a protocol for Bug-CM

For each instance of the ‘form’ (identical to each bug reported) a protocol
must be stipulated, governing the routing of the ‘form’ through the four
main stages: from a bug registered by a tester, to a member of the spec-
team diagnosing the bug, to one or more designers fixing the problem, and
lastly ending with the platform master verifying that the problem has been
dealt with. The following sketch the protocol by discussing general re-
quirements as to how a ‘form’ can be routed.

The process supported by the protocol consists of the four distinct
phases: Registration, diagnosis, correction, and verification (see figure 8-
12). The standard procedure would, in most cases, be that a role sends the
form as a request to the next role in the process. If the receiver chooses to
reject the request, for example because of incomplete information, the
form is returned to the sender, cf. figure 8-12.

Registration

Diagnosis

Correction

Verification

1: Request

2. Reject

5: Request

6: Reject

4: Reject

3: Request

Figure 8-12: The standard protocol. In each of the four stages, the actors
sends the ‘form’ as a request to the subsequent stage, which in turn might
reject it.

A ‘form’ can be sent without any restrictions to roles within each
phase, i.e., a spec-team member forwarding to other spec-team members,
testers forwarding to other testers. This is illustrated in figure 8-13.

203

Part III Towards computer support

Registration

Diagnosis

Correction

Verification

Diagnosis Diagnosis

Request

Request

Figure 8-13: Within any stage the actors may send the form as a request to
others, who in turn can reject the request.

Registration

Diagnosis

Correction

Verification

1: Request

3: Reject

2: Notify

4: Intercept

Figure 8-14: The strict sequencing of the four stages can be only be
broken by the sender skipping a stage downstream (1). The actors in the
stage which has been skipped are notified (2). If the receiver rejects, the
‘form’ is passed back to the sender. Actors in the stage being skipped can
choose to intercept (4).

A sender (an actor) can choose to skip one stage in the process
‘downstream’. Whenever a receiver is surpassed, he should automatically
be notified. A ‘form’ cannot be sent ‘upstream’ unless it has been send as
a request, which, if rejected, will be returned to the sender (illustrated in
figure 8-14). A surpassed receiver (who has been skipped ‘downstream’)
can choose to claim the ‘form’. If, for example, a tester sends a form
directly to a software designer, a spec-team member is notified, and he can
subsequently choose to intercept the request (see figure 8-14).

204

Part III Towards computer support

The protocol sketched above is an example of how each of the ‘forms’
instantiated in the S4000 could be routed. When it comes to an actual
design situation the concrete protocol must be discussed in further details.

8.3 Reflections on usability and generality

The aim of this chapter was to illustrate the specification of detailed
requirements for a computer-based coordination mechanism. These
requirements has been used for sketching a horizontal prototype support-
ing the coordination of the distributed software testing and correction ac-
tivities within the S4000 project at Foss Electric. This prototype will be
described in chapter 10. The work has, furthermore, been used as input for
refining the Concept of Coordination Mechanisms.

The chapter has provided a set of general requirements for computer
support of the coordination activities involved in software testing. Based
on these, have I outlined a computer-based coordination mechanism sup-
porting the processes of: 1) ensuring that all registered bugs are treated,
i.e., all registered bugs are either diagnosed and corrected, or they are
explicitly rejected, 2) providing an overview of the state of affairs of test-
ing and correction activities at any given point in time, and 3) distributed
registration, centralized diagnosis, distributed correction, and central com-
pilation of verification information. The computer-based mechanism does
not provide support for negotiation and communication among the actors,
although this is a very relevant requirement.

I have, by presenting a series of interactions between actors and the
mechanism, illustrated how a mechanism could fulfill the requirements.
The general requirements led to at set of specific requirements concerning
the data structures contained in, or accessible to, the mechanism, as well
as operations on these structures. In order to outline a computer-based co-
ordination mechanism, subscribing to the general requirements, a number
of decisions regarding the detailed requirements and the design, has been
made: The structures used for classifying and describing a bug has been
redesigned; The design takes into account that several designers is en-
gaged in a specific task; And a major improvement concerning the routing
of the information has been introduced.

Another essential requirement for coordination mechanisms is to pro-
vide actors with the possibility of assessing the status of the mechanism

205

Part III Towards computer support

(cf. section 5.5). The mechanism must offer visibility. Because the Bug-
CM protocol stipulates who can send requests to whom at each phase, the
actors are provided with various information concerning the state of the
mechanism. The Bug-CM provides the actor with information on which
software testing phase it is currently in. Whenever a phase is skipped, the
actors responsible for this phase is notified, and historical information
about the states which the mechanism has been in, and when, prior to be-
ing received by an actor, is also provided. This feature also facilitates vis-
ibility.

Although the primary purpose of this exercise has been to provide an
example, it has also served the purpose of establishing a more general
approach to, and concepts for, understanding the process of designing
mechanisms supporting the coordination of complex work. It is, therefore,
relevant to reflect upon the validity of the requirements in relation to other
work settings and situations, even though this problem is far too complex
to be discussed thoroughly in this section. It might thus be relevant to re-
late to other paper-based mechanisms described in field studies similar to
mine.

The need for access to conceptual structures reflecting structures in the
cooperative work arrangement and in the actual field of work seems to be
a general requirement. Other paper-based mechanisms have a similar
nature, for example the ‘flight strips’ embodying information on “the
goals, intentions and plans of pilots and controllers and their recent ac-
tions” (Harper et al., 1989a, p. 10), the ‘augmented bill of materials’
(ABOM) and ‘CEDAC board’ used in engineering design and process
planning at Foss Electric (Sørensen, 1994a; Sørensen, 1994b), or the ‘fault
report form’ described by Pycock and Sharrock (1994a). Also, some of the
basic operations on these structures (e.g. relating structures to each other,
routing information, making others aware of changes in the structures,
etc.) are similar in the mechanisms analyzed in the mentioned studies:
Again is the ‘flight strip’ an obvious example.

The support for defining, applying, and refining different types of clas-
sification schemes seems to be a general requirement as well. In the ‘fault
report form’ (Pycock and Sharrock, 1994a) classification was essential for
the coordination of the work, and the ‘International Classification of
Diseases’ analyzed by Bowker and Star (1991) proved to be important for

206

Part III Towards computer support

mediating information among specialists. Furthermore, when objects are
classified, there seems to be a need for a channel (or structure) through
which the classification structure can be negotiated. Andersen (1994)
contains an example of how the classification in a ‘product classification
scheme’ is negotiated and refined. Negotiation was one of the require-
ments excluded in this chapter. It is, however, a central aspect of coordi-
nation work, and thus a central requirement for computer-based coordina-
tion mechanisms.

The need for stipulation of the work flow seems, not surprisingly, to be
a requirement in most of the examples too. Both the ABOM (Sørensen,
1994a) and the ‘fault report form’ (Pycock and Sharrock, 1994a) included
‘build in flow protocols’ specified by conventions and organizational pro-
cedures. The same goes for the ‘Kanban Card’ described by Schmidt
(1994c). In all these cases, there are also need for actors to be able to
deviate from the predefined routing.

Finally, there is the topic of linking mechanisms. An example is the
‘construction note’ and ‘product classification scheme’ analyzed and
described by Andersen (1994). In much coordination work, activities such
as meshing, relating and allocating structures are essential. Mechanisms
supporting coordination work should have access (links) to structures
within other mechanisms. The need for linking could, in theory, be elimi-
nated by supporting coordination work by one big mechanism. This
would, however, conflict with the approach to organizations as multi-
facetted and open-ended, and work arrangements as constantly changing
open-ended structures (cf. e.g., Schmidt, 1994d).

Like all research work, this dissertation has a delimited focus.
Elaborate discussions of methodological issues are excluded, e.g., how an
analysis process should be organized, or what is the usability of certain
modeling techniques. Chapter 10 will elaborate a bit on the usability of
object-oriented methods for modeling coordination aspects of work, and
chapter 11 includes some reflections regarding the process of setting up
requirements and designing a prototype. I will, therefore, only provide a
few methodological reflections here.

 Outlining the requirements has, first of all, been characterized by the
difficulties in separating the specification of requirements from the design

207

Part III Towards computer support

of structures, facilities, and protocols. As in any design process, theories
will only facilitate the process. The fundamental design decisions will
inevitably be a matter of making design decisions. When reflecting upon
the analysis and requirements implicitly and explicitly described in this
chapter, it is obvious that there are no clear cut distinction between the
requirements for support established and the preliminary conceptual
design of a mechanism.

Another problem was related to taking into consideration, how the co-
operative work should be supported, when establishing requirements and
sketching a design of a computer-based coordination mechanism.
Supporting the coordination of distributed cooperative work by means of
computer-based coordination mechanisms should, of course, be conducted
in consonance with the development of computer support for work itself.
The requirements and designs discussed here have not been thought into a
general work context.

In relation to the problem of lack of input and considerations regarding
the work context, a real-life design situation should certainly also con-
sider, how the requirements, the models and representations developed,
and the designs sketched could be evaluated and refined. This must, of
course, include a direct interaction with the actors (future users of the
system). The requirements and design sketches presented here have been
read by some of the software designers involved in the S4000 project at
Foss Electric, and the ideas were presented at a meeting where four of the
designers participated. At this meeting, the designers agreed to the general
ideas and facilities suggested, but we did not have detailed discussions of
the functionality, etc. So, although several of the potential future users
have read and approved the requirements and design sketches, a much
more thorough discussion of functionality, usability, presentation, etc. is,
of course, required. This should be based on detailed discussions of illus-
tration prototypes and scenarios with the actors involved in the software
testing and correction work.

The requirements and sketches described here are based on several
types of information representations. These are a model of conceptual
structures, entity-relationship diagrams, actor-system interaction scenar-
ios, verbal descriptions of functionality, an improved ‘form’, and some
simple models of the protocol flow. I have only very limited empirically

208

Part III Towards computer support

based information on the usability of these. Although it was not explicitly
investigated, it was my impression, that the designers at Foss Electric had
no problems in understanding these representations. They were, however,
software designers and thus used to such representations. I found, person-
ally, the actor-system interaction scenarios very useful. These descriptions
illustrated the intended use of the system, and they forced me, as a
designer, to carefully consider which types of functionality the system
should provide, and how this should be provided. The redesigned form
provided a good input for the design of the user interface of the prototype
(described in the following chapter). The entity-relationship diagrams
proved to simplistic to be used for the database design of the prototype,
whereas the considerations and models of the protocol embedded in the
mechanism were an important input for the protocol design. Designing the
protocol in the prototype without sketches like those illustrated in section
8.2.7 would have been very problematic.

Further methodological reflections are given in chapter 10 and 11, but
it is not considered the core of this dissertation.

209

Part III Towards computer support

9. A prototype of a computer-based
coordination mechanism

“In signs, one sees an advantage for dicovery
that is greatest when they express the exact

nature of a thing briefly and, as it were, picture
it; then indeed, the labor of thought is

wonderfully diminished"
(Fredrick Kreiling quoting Leibniz, in an

interview in Scientific American, May, 1968)

In collaboration with Thomas Albert, I have developed a preliminary
prototype of a computer-based coordination mechanism supporting decen-
tralized bug reporting and routing of the relevant information among the
involved actors. The prototype is called BRaHS—Bug Reporting and
Handling System. The aim of building BRaHS was to illustrate how the
basic components in a coordination mechanism could be expressed in a
concrete system, and to establish a basis for discussing how the conceptual
framework of coordination mechanisms can be applied in actual systems
design. Especially the requirements for visibility, local control, and rout-
ing support have been considered in the prototype.

The major input for the design of BRaHS was the set of requirements
derived from the field study presented in chapter 8. The overall require-
ments for coordination mechanisms have, of course, influenced the design,
but the driving force for the design was the “real-life requirements”.

After the design and implementation BRaHS has been analyzed and
discussed in terms of the Concept of Coordination Mechanisms. This
chapter describes BRaHS in terms of the functionality, and discusses the
prototype in terms of the overall characteristics of coordination mecha-
nisms. Overall requirements for coordination mechanisms concern local
control, protocol visibility, linking, etc. This chapter discusses how these
are fulfilled, and which objects of coordination work that are reflected in
the prototype.

In a design, like the one presented here, a lot of decisions have to be
made. Most of these are, of course, debatable. In this chapter, I have cho-
sen only to discuss a few of these: When it is obvious to point at “better”,

210

Part III Towards computer support

but more demanding, solutions. The purpose of the design was to illus-
trate, rather than to refine, debate, discuss, iterate, etc. until a “perfect de-
sign” was established. Especially the user interface could be polished and
improved a lot, even with a minor effort. This has, however, not been con-
sidered relevant here. Another comment is important: A basic idea in the
Concept of Coordination Mechanisms is that coordination support should
be intertwined with support of the actual work, i.e., a coordination mech-
anism should be embedded as an integrated component in the applications
used. BRaHS is, for simplicity reasons, designed as a stand-alone applica-
tion.

The overall functionality of BRaHS is introduced, and a brief scenario
is given. The chapter is concluded with a discussion of the central charac-
teristics of the prototype in terms of coordination mechanisms.

9.1 The overall functionality provided by BRaHS

BRaHS was designed in order to illustrate ideas. The effort was mainly
put into illustrating how the registration of bugs (including an improved
classification of bugs) could be handled, how the overall requirements of
malleability and local control could be reflected in the user interface, and
how a protocol can be made visible and accessible to the users. BRaHS
was designed to support distributed registration of bugs, and automatic
routing (forwarding and passing on) of information to the next actor (role)
in the tester -> spec-team -> designer -> platform master chain. Since the
control of the work flow must be in the hand of the user, BRaHS should
also provide access to changing the flow. BRaHS, furthermore, aims at
providing the users with facilities for getting an overview of which bugs
are reported, their status, etc. To fulfill the requirements, the following
overall functionality was designed and implemented:

• Log-in procedure where the user identifies himself to the system and
specifies the role(s) he assumes when interacting with the system.

• Three windows for registering information about bugs. Both the
testers, the spec-team, and the designers fill in information about a
bug.

• A window for specifying the classification of a bug.

211

Part III Towards computer support

• Procedures that, when a user indicates that his registration is fin-
ished, automatically routes information on the bug to the next actor
(role) in the flow.

• A graphical representation of the protocol specifying the information
flow, and access for the user to make certain changes to the protocol.

• Facilities to search for bugs associated with certain characteristics,
and for browsing information on registered bugs.

• Procedures to select which project is the current, and to define or
change which actors, modules, roles, instruments are involved in a
particular project.

The prototype was implemented as a client/server structure using
Borland’s Delphi as the application development and runtime environ-
ment. It is running on a Windows platform. Each of the listed functions
will be described in more detail in the following.

9.1.1 Log-in

The log-in window is illustrated in figure 9-1 below. The purpose is to
provide access control, and for the system to have an identification of who
the user is, and which role(s) he wishes to assume.

The log-in procedure is very simple and primitive. If the system is go-
ing to be used in a real work situation this procedure should be redesigned
carefully. First of all, a relevant level of security should be reflected, the
fact that the user has to specify his role(s) beforehand should be reconsid-
ered. The actors will frequently switch between several roles in many
work situations. A designer might, for example, be a tester in one situation
and a designer a few seconds later. Thus, explicit switching between roles
should be reconsidered. This is only supported through the possibility of
indicating more than one role at log-in, and by providing a command but-
ton for changing role in the icon button row. This will probably be insuf-
ficient and disturbing for actors in real work situations.

After having logged-in the user gets access to a number of menus and
functional icon buttons (see figure 9-2). The menus will be described later.
The icon buttons give access to open or close a particular project. To cre-
ate a new project (a new database containing bug reports) is considered a
facility that not all users should have access to. This is, therefore, done via

212

Part III Towards computer support

another application offering facilities for initiating new actors, roles, pro-
tocols, classification structures, etc.

Figure 9-1: The log-in window in BRaHS.

Figure 9-2: The main menu, and icon buttons for opening and closing ac-
cess to specific project databases, create new bug reports, search for spe-
cific bugs in the database (three types of search), and for changing the role
profile specified.

When a project (and thus a database containing registered bugs) is
opened the next four icon buttons give access to functions creating a new
empty bug form, searching for a particular bug, searching for bugs fulfill-
ing certain characteristics, and establishing a list of all registered bugs
from which the relevant can be chosen. The right most button is used for
changing the role.

213

Part III Towards computer support

9.1.2 Registration of information on bugs

Registering data about specific bugs is essential, both in the studied testing
and correction work and in the prototype. Several different roles are regis-
tering data about the bugs: Testers register information the occurrence and
importance of a problem. The spec-team register information on impor-
tance, deadlines, who is responsible, and estimated correction time. The
designer adds information about which corrections have been made,
modules and files affected, and time spend on the correction.

Figure 9-3: The first page of the three layered index card used for register-
ing data about bugs. The report is separated into three chunks: one to be
filled in by the tester reporting a bug, one to be filled in by the spec-team
diagnosing the problem, and one to be filled in by the designer, when hav-
ing dealt with the problem.

To provide this functionality, BRaHS includes a registration window
organized as a three layered “index card” as illustrated in figure 9-3. The
content of the registration window is the same for the tester, the spec-
team, and the designer, but in each situation fields not relevant are
ghosted.

214

Part III Towards computer support

The indexes on the top are used for shifting to windows for classifying
bugs or getting an overview of the flow of the protocol. These will be
described in the following sections. The entry fields are grouped into
three: The upper group is used by the testers to register date, who they are,
and which instrument they used when testing. In the middle group, the
spec-team enters (or selects from selection lists) whether or not the prob-
lem reported can be accepted as a bug, in which platform period it must be
corrected, which module has caused the problem, who is responsible for
correcting the problem, and the estimated correction time. A general free-
text comment can also be entered. The group of fields in the bottom are
filled in by the designer after the problem is corrected. He specifies when
the bug has been corrected and tested, and the amount of time spent on the
correction. Furthermore, he enters a free-text description of the corrections
made, and which modules and files are affected. This field also contains
an identification of who has conducted the actual correction work. A more
sophisticated solution would be to divide the description field into several
fields (selection-lists) in which the designer can indicate affected modules,
affected files, types of correction, expected implications for other mod-
ules, etc.

The buttons at the bottom is used for navigating and controlling the
interaction. The lock is used to lock the current record so parallel updates
are avoided. The forward and backward keys are used to browse in the
selected bug reports. The check mark button is used for saving the regis-
tered information. Pressing the Send button indicates that the user has fin-
ished his registrations, i.e., the window is closed, and the next actor in the
work flow is notified. The Cancel and Help functions should be self
explanatory.

9.1.3 Bug classification

A proper and detailed classification of the problem is very important. As
required in chapter 8, bugs are classified according to two dimensions:
One regarding which aspects of the system it concerns, e.g., the usability
or the maintenance of the product. The other regards the importance of
getting the problem fixed. The window offering the classification is shown
in figure 9-4 below.

215

Part III Towards computer support

Figure 9-4: The window used for classifying a bug. The free-text descrip-
tion field on the right side of the window contains a general description
characterizing and describing the problem in further detail. Both the tester,
the spec-team, and the involved designers can enter as many ‘x’s in the
matrix as they wish. For each ‘x’ it will be identified who has entered it
(The designer OJ has entered a level 3 for ‘support’). An optional addi-
tional comment can be added to each of the ‘x’s. These are shown in the
description filed below the matrix.

Due to the overall requirement of malleability both the list of concerns
and the importance scale can be re-specified by the users them-selves, i.e.,
in a project were other dimensions are required the users can specify
which dimensions should be used. For example if it is a completely differ-
ent product from those previously tested. These corrections or expansions
can also be made in an ongoing project. Corrections to the classification
scheme used in an ongoing projects have been considered rare and impor-
tant to have control off. Maintenance of the classification dimensions are
therefore done through another application (the setup-application) only.

All actors involved in reporting, diagnosing and treating the problem
can at any time include a more detailed free-text description of the prob-

216

Part III Towards computer support

lem. The navigation buttons are the same as those described in the previ-
ous section.

9.1.4 Routing facilities

Automatic routing is designed so that, when a user presses Send in order
to finish his registration, the system updates the database, and checks the
protocol. The protocol contains information on which role must receive
the form (the information on the bug) next. If this role is logged-in, the
actor receives a message saying that bug number x has been send for him.
He can open it immediately and see the information registered so far, or he
can decide to look at it later. If the receiver is not logged-in, the system
sends him a notification, when he logs-in to the system.

9.1.5 Changing the protocol

Visibility of the protocol embedded in the mechanism, and possibilities
for the local users to deviate from the protocol, were two essential re-
quirements. BRaHS deals with these by including an index card layer
which graphically presents the structure of the protocol, and the possible
changes to it.

The idea is to provide the users with access to an overview picture of
the protocol in which the roles and flow are represented by icons (cf.
figure 9-5).

By clicking an icon (which represents a role), the user can get further
information on who has this role for the current bug. If, for example, the
user presses the gearwheel icon information on the responsible designer
will pop-up next to the icon. Local control is implemented by allowing the
user to chose one or more of the allowed deviations (ghosted flows). This
is probably a controversial implementation of local control, since the users
are only allowed to make certain pre-specified deviations. An alternative
solution would be, to let the user draw new arrows between every two
icons. The degree of freedom is limited in BRaHS for simplicity reasons.
This should, of course, be considered further in a real-life design situation.

217

Part III Towards computer support

Figure 9-5: The window used for getting an overview of the protocol flow,
and for making changes to the flow. Each bug form can have its own flow,
i.e., there is a protocol for each. Each icon in the diagram represents a role:
The question-mark is a tester, the tool-set is the spec-team, the gearwheel
is a software designer, and the document is the platform master. The non
ghosted icons illustrate the current protocol, and the arrows between them
indicate the direction of the flow. The current status is marked by a red ring
around the actual icon (invisible in the black/white picture). The ‘Change
flow’ allows for manipulations of the protocol. ‘Broadcast change’ sends
notifications to other actors involved in the treatment of the currrent bug,
indicating that the protocol has been changed. ‘Hide/Show deviations’
removes/ adds the rings indicating the default protocol, and ‘History’ gives
the user access to see how the protocol has previously appeared.

The flow is changed by first pressing the Change flow button. Then the
protocol is changed by clicking on the components. A ghosted icon or
broken arrow can be made active (non ghosted) and vice versa. The cor-
rections are completed via the check mark button. The consistency is
checked, and the protocol is saved.

When a new version of BRaHS is instantiated—e.g., a new project is
established—a default protocol is defined at the same time as the actors
and roles are defined. All new bugs will be routed according to this default

218

Part III Towards computer support

protocol until a user changes it for a particular bug. The default protocol is
highlighted if Show deviations is activated. This can be turned off by
pressing Hide deviations. Thus the user have access to see both the actual
protocol, possible deviations, and the default flow serving as the standard
protocol.

The user making changes to a protocol can chose to inform the other
actors involved by pressing the Broadcast change button. Then all actors
involved in the treatment of the current bug will receive a notification
indicating that the protocol for bug number x has been changed. They can
then request to see the bug information and thereby get access to see the
changed protocol.

All users can browse previous versions of the protocol related to the
treatment of a particular bug. If the History button is pressed, a series of
new windows pops up. Each of these contain a diagram of an older ver-
sion of the protocol for the current bug form. These diagrams can, of
course, not be changed.

9.1.6 Searching and browsing

BRaHS also includes facilities for finding information on specific bugs, or
on bugs having certain specific characteristics. Three different search
facilities are implemented:

The ‘simple search’ allows the user to find a particular bug form by
entering the bug number. Information on the bug in a three layered index
card window similar to those shown in figure 9-3, 9-4, and 9-5 is then
shown.

Figure 9-6: Three different search facilities are implemented. These can be
accessed either via the search menu or via the three right most icon buttons
on the opening screen.

219

Part III Towards computer support

Another quite simple search facility is the ’Show all’. This results in a
list of all the bugs registered on the current project. For each bug all
information registered in the database is listed, i.e., the bug number, an
indication of whether the protocol has been changed or not, the acceptance
state, the test date, the state of the bug, diagnose date, the status of the
treatment, an identification of the tester, the designer involved, etc. An
example of such a search is illustrated in figure 9-7 below.

Figure 9-7: The ‘show all’ search results in a list of all bugs registered on
the current project. The user can, by clicking on a specific line, get detailed
information on the specific bug. The upper right corner of the screen con-
tains information on the project (here S4000) and on the actual user and his
current role(s).

The most complex search is the one called ‘advanced’ in the menu.
When this is selected the user gets a window as showed in figure 9-8 in
which a search profile can be specified. The profile can include all kinds
of combinations of all the fields registered for all bugs. That is, the user
can search for bug reports to be corrected in a particular platform period,
bug reports for which a specific designer is responsible, bugs which it has
taken more than 15 hours to correct, bugs having a particular classification
profile, bugs treated according to a certain deviation from the standard
protocol, etc.

220

Part III Towards computer support

Figure 9-8: In the ‘advanced search’ all kinds of search profiles for all
fields registered for the bugs can be combined. All fields can contain a
combination of several selections or keywords. This is the main reason,
why all selection lists are shown in an additional window. It minimizes the
requirements for how much the users must remember on his own. The
search profile in the example will result in a list similar to the one shown in
figure 9-7 containing all registered bugs to be corrected in platform period
A5 in the CV Driver module by designer JY.

9.1.7 Set-up of projects, actors, modules and roles

As mentioned earlier, a new project having its own actors, classifications,
module structure, and default protocol must be specified in another appli-
cation, which the users usually have no access to. Local corrections to the
way BRaHS is executed can, however, be made. New actors, modules,
and instruments can be added to the lists, or the existing actors, modules,
and instruments can be re-specified or removed from the lists. This is done
in the Objects menu.

The situation is very often that several actors have the same role, that
one actor can have several roles, and that it will be obvious to group the
modules and instrument components. Facilities for this are also provided
via the Groups-menu.

221

Part III Towards computer support

Figure 9-9: The menu used to define new, re-specify, or remove groups of
actors, or groups of modules, or groups of instruments previously
specified. The menu shown here, furthermore, includes a command for
relating a role to a (group of) actors.

9.2 A scenario for the use of BRaHS

The previous section gave a rather detailed overview of the functionality
provided by the system. In order to relate this to a use situation, this sec-
tion will briefly describe a small simple scenario of a possible use of
BRaHS.

Mr. Tester is involved in the test of the software controlling the pipette
of System 4000. He discovers the conveyer stops if the pipette meets two
empty milk test glasses in a row. He checks the requirement specification
and realize that this is not a correct behavior. It should be reported. Mr.
Tester logs-in to BRaHS and identify himself as tester. He opens the
S4000 project via the ‘Bug’ menu and creates a new bug form by pressing
the ‘New bug’ icon. An empty bug registration window is opened (cf.
figure 9-3). Mr. Tester now fills in information on the problem. He classi-
fies it according to support as ‘3’ (not too important) and according to
usability and salability as ‘8’ (important). He writes a short notice in the
comments field on classifications, saying that the conveyer will often
contain empty glasses, and two glasses in a row will be quite common (cf.
figure 9-4). He presses the Send button, and the window is closed.

Two days later the S4000 spec-team have their weekly meeting. Mr.
ST-member logs-in to BRaHS, and searches for bug forms having the
status registered. The first on this list is the bug form filled in by Mr.
Tester. Mr. ST-member opens it and reads the description. The spec-team
agrees, that this is a problem related to the pip-control module, which Mr.
Designer is responsible for. Thus Mr. ST-member tip of the ‘accepted

222

Part III Towards computer support

button’, and selects the pip-control module and Mr. Designer from the se-
lection lists.

The spec-team, furthermore, agrees that it is important to have this bug
corrected during the current platform period, so Mr. ST-member enters an
A4 in the platform field. Estimating the correction time causes problems.
The field is left open. The spec-team does not add anything to the classifi-
cation. The default protocol prescribes that the form on a diagnosed bug
should be send to the tester, before it is routed to the designer, cf. figure 9-
10. But in this situation, the problem is quite clear. Mr. ST-member
change the protocol so that the form is directed directly to the actor re-
sponsible, Mr. Designer.

Figure 9-10: The default protocol prescribes, that the form on a diagnosed
bug should be send to the tester, before it is routed to the designer: The
arrow goes ‘down’ from the spec-team (the tools icon) to the tester (the
question mark). This is not needed. Mr. ST-member can change the proto-
col, so that the flow follows the icons in the upper line, i.e., it goes directly
from the spec-team to the designer (the gearwheel icon), and further to the
platform master (the hand and paper icon).

When Mr. ST-member presses Send the database is updated, and a
notification is send to Mr. Designer. He is a curious person. He opens the

223

Part III Towards computer support

bug form right away, and reads the description. He realizes the problem,
and that he needs to correct it soon. He estimates the correction to take 12
hours. This is entered and the window is closed. A week later, Mr.
Designer has time to correct the problem. When he has finished doing this,
he logs-in to BRaHS, opens the actual bug form, enters the date for
changing and testing, and fills in that he has spend 23 hours on correcting
it. Furthermore, he writes a note saying that only the code in the pip-
control module has been affected, and that he has changed the stop condi-
tions so that an indefinite number of empty glasses is accepted without
stopping the conveyer. The form now contains all the information previ-
ously illustrated in figure 9-3. Mr. Designer presses the Send button to
indicate that he has dealt with it. The database is updated, and a notifica-
tion is send to the platform master, Mr. PM. Two weeks later, the day be-
fore the next integration period, Mr. PM logs-in to BRaHS and searches
for all bugs having the status of corrected, but not yet verified. As a prepa-
ration to the forthcoming integration period Mr. PM prints the description
of each of bug on the list. He is now ready to check if all the problems
have been dealt with properly.

9.3 The prototype considered a coordination
mechanism

Although ideas and concepts from the conceptual framework described in
chapter 5 have provided input, the current design of BRaHS mainly re-
flects the requirements specified in chapter 8. It is thus relevant to discuss
BRaHS in terms of the Concept of Coordination Mechanisms.

9.3.1 BRaHS as a protocol

A coordination mechanism is defined as a protocol that, by encompassing
a set of explicit conventions and prescribed procedures and supported by a
symbolic artifact with a standardized format, stipulates and mediates the
coordination of distributed activities so as to reduce the complexity the
coordination work. A computer-based coordination mechanism is a com-
puter artifact that incorporates aspects of the protocol of a coordination
mechanism so that changes to the state of the mechanism induced by one
actor automatically are conveyed by the artifact to other actors in an

224

Part III Towards computer support

appropriate form (cf. section 5.3). Let us elaborate a bit further on how
these characteristics are reflected in BRaHS, and how this affects the use:

(1) BRaHS contains an incorporated protocol that stipulates aspects
of the coordination of the distributed testing, diagnosing, correc-
tion, and verification process. BRaHS encompass a set of pre-
scribed procedures for how the information should be routed
from each actor (role) to the next in line. The routing is con-
ducted automatically and supports, thus, the coordination in two
ways: First, the information is handed over—and the receiver is
automatically notified—and second, the receiver is specified in
advance, so that the user do not need to consider who to address
the information for. To some extent BRaHS allows the user to
overrule the flow (cf. section 9.2.5). These situations will require
more coordination by the user. On the other hand, it is an overall
requirement for a coordination mechanism that it supports local
control.

Using BRaHS requires that a set of conventions for its use is
established among the actors: The users must use the system.
Since BRaHS is not directly related to the field of work—the
software being tested—there are, amongst other things, no auto-
matic registration of data. It is also important to establish conven-
tions for how to use the classification scheme, negotiate an esti-
mate, etc. The need for use conventions exists for all kinds of
artifacts used by more than one actor.

(2) The structures and information in BRaHS are conveyed by a
symbolic artifact. The PC running BRaHS, the code stipulating
the flow, and each instance of the database containing informa-
tion on registered bugs in a specific project are symbolic artifacts.
They are, thus, persistent to changes in the actual field of work
accessed, i.e., they can be accessed by the involved actors inde-
pendently of a particular moment in the work flow, and indepen-
dently of a particular actor.

(3) To elaborate a bit further on characteristics of a symbolic artifact,
we can say that BRaHS is distinct from the state of the actual
work conducted. Changes to the state of the testing, diagnosing,
correction, and verification work are not automatically reflected

225

Part III Towards computer support

in changes the content of the data stored in the databases. And
vice versa: Changes to the content of the data stored in the
databases, made by one of the actors, will not automatically be
reflected as changes to the code or the work processes.

(4) BRaHS mediates information relevant for handling the required
coordination of the distributed activities. First, BRaHS mediates
the information registered for a bug from one actor to others,
either as a notification to a particular actor or upon request.
Second, changes to the protocol are conveyed to other actors as
notifications (if the originator chooses to inform other involved
actors, cf. section 9.2.5), or upon request. These are visible as
changes to the protocol for the particular bug. It is the users who
decide, whether change information should be distributed or not.
Information on changes to the state of execution of the protocol
will not in all situations be obtrusively mediated to the other
actors.

(5) All registrations and presentations of information in BRaHS are
based on a standardized format of the data and the protocol. The
format can, thus, be seen as providing affordances to the coordi-
nation work: The pre-specified structure supports the actors in
filling in the correct and required information, and helps them to
search and browse for specific information. The pre-specified
structure will also impose constraints on coordination work by
not allowing the user to, for example, define his own module
names, etc. while describing the diagnose of a bug. BRaHS has
no validation of the content of entry fields as it is implemented
now.

9.3.2 Objects of coordination work reflected in BRaHS

A central structure provided by the Concept of Coordination Mechanisms
is the model of dimensions of coordination work (cf. section 5.4). When
the field study was conducted, this structure influenced the analysis and
the structuring of data, and a model for the essential objects of coordina-
tion work and related operations was defined (cf. figure 6-10). Discussing
BRaHS in terms of coordination mechanisms should also include reflec-
tions on this structure.

226

Part III Towards computer support

The model distinguishes between nominal and actual objects of coordi-
nation work. Nominal covers structures having a potential status, i.e.,
resources that can be allocated, task that should be conducted, etc. Actual
includes structures in ongoing actions or allocated for specific tasks, obli-
gations, etc. This distinction appears in BRaHS as well, for example in the
database structure. Some structures in the database can be regarded as
nominal structures, for example actors and modules as roles and potential
responsible modules. When a relationship structure to specific bug is
established (during the diagnosis conducted by the spec-team) the struc-
tures become actual, i.e., they become ‘committed actor’ and ‘module to
be corrected’ (a thorough and detailed discussion of how the database
structure reflects the actual-nominal distinction is given in Carstensen and
Albert, 1995).

The nominal-actual distinction is also visible in the user interface.
When a user establishes a new actor or module group, or he is using the
selection lists, the structures used are nominal, but when the user browse
or search for specific information on who has which obligations in relation
to the next platform period, the structures he is facing are of an ‘actual’
nature.

If we look at the objects of coordination work identified in the field
study (cf. figure 6-10) most of the nominal are reflected in BRaHS: ‘Role’
and ‘Human resource’ can be recognized immediately in BRaHS, and
‘Task’ is implicitly reflected since all registered and accepted bugs can be
considered a task to be conducted. Regarding ‘Conceptual structures’ the
modules and instruments could be considered as such. Informational,
material, technical, and infrastructural resources are not included in
BRaHS. Regarding the actual structures a few of them are identifiable.
‘Committed actor’ is reflected for all accepted and diagnosed bugs.
BRaHS does not register any specific ongoing activities, neither activities
related to the testing and correction work itself, nor activities related to the
coordination. Structures described as ‘Activity’ and ‘Actor-in-action’ are
thus not included. The same goes for the different resources. The filed
information on registered bugs contains certain aspects of the state of the
field of work. These are actual conceptual structures.

227

Part III Towards computer support

9.3.3 The fulfillment of the overall requirements for coordination
mechanisms

Let us also consider how the following overall requirements for computer-
based coordination mechanisms, established in section 5.5, are reflected in
the prototype: local and/or temporary changes, global and lasting changes
(including a language for re-programming), control of propagation of
changes, visibility, partial definitions, the reflection of structures of the
field of work, and linkability. Functionality related to these requirements
has already been discussed in this chapter, but to complete the picture, let
us go briefly through each of the requirements, and describe how these are
reflected in BRaHS and consider some potential alternatives:

Local and/or temporary changes: Actors should have control of the ex-
ecution of the mechanism in order to cope with unforeseen contingencies.
BRaHS allows actors, roles, and modules to be grouped and reorganized
during execution, i.e., without need for a new instance. And the protocol
can be redefined individually for each bug registered. It is, however, only
changes included in the pre-specified set of deviations that are accepted
(cf. section 9.2.5).

A redesign of BRaHS should consider, how the actors can be supported
in redesigning a running protocol in a more flexible manner. It would, for
example, be obvious to consider, how to allow the actor to connect the
nodes (icons in the graphical representation) arbitrarily. Furthermore, a
facility through which the user could selected any nodes in the protocol,
and restart the process from there, would improve the flexibility.

Global and lasting changes, and a language for re-programming:
Facilities for actors to specify and re-specify the behavior of the mecha-
nism should be provided. This requirement is partly fulfilled in BRaHS.
The actors can (re)specify the module-structure, involved actors, roles,
classification schemes, etc. via the setup-application. Through BRaHS it-
self actors, roles, and modules can be grouped and reorganized. There are,
however, no means for identifying completely new conceptual structures,
e.g., references to the design specifications used.

An alternative design would have been to: 1) Establish a more coherent
set of conceptual structures for software testing including, for example,
the software architecture and the platform oriented work plans; 2) Design
a set of protocol components providing more flexible building blocks for

228

Part III Towards computer support

the users designing the protocols; and 3) Allow the users to save a running
protocol as permanent.

Propagation of changes: Actors should have access to control the
propagation of changes to the specification of the behavior of the mecha-
nism. BRaHS is based on a pre-specified set of possible changes to the
protocol. The user has full control of the propagation of the possible
changes. Regarding the propagation of information on changes, users of
BRaHS can decide to inform all actors involved in the treatment process
of a specific bug.

If a more flexible and freely changeable protocol is offered, problems
of how to ensure consistency, and how to let the changes propagate,
should be reconsidered.

Visibility: The behavior (protocol) of the mechanism must be accessi-
ble and manipulatable to actors. This should be at a proper semantic level
of coordination work. The protocol used by BRaHS is visible and accessi-
ble to actors in terms of a diagram consisting icon representations of the
involved roles, and arrows indicating the flow (cf. section 9.2.5). Certain
pre-specified changes to the protocol are provided as manipulations on
these graphical items.

An overall aim of the BRaHS design was to illustrate a possible visual-
ization of the protocol. Several alternatives should be considered. An im-
portant question to think of is whether the roles should be ‘visible’ in the
interface. Roles are useful for describing work settings, but actors rarely
think of themselves in terms of roles when working.

Partial definitions: A coordination mechanism should allow the actors
to let attributes to be left un-specified. As BRaHS is designed now, there
are no restrictions on what must be filled in by one actor before he is
allowed to pass it on to the next. There are, however, no features support-
ing other mechanisms to infer and specify the un-specified attributes.

In a redesign of BRaHS, it should be carefully considered which fields
that has to be filled in during registration, which fields that can be filled in
through requests to other mechanisms (applications), and which fields
other actors can be requested to fill in.

Reflection of structures of the field of work and the work arrangement:
A coordination mechanism should reflect pertinent features of the field of
work. BRaHS is based on conceptualizations of the field of work, and of

229

Part III Towards computer support

structures of the work arrangement (cf. section 9.4.2). These conceptual-
izations were used by the users themselves, when characterizing their
work and coordination work activities.

As mentioned in previously, it would be obvious to improve BRaHS by
including conceptual structures reflecting the software architecture, the
actors involved, and the work plans.

Linkability: Facilities for establishing links to other coordination mech-
anism within the wider organizational context should be accesible. BRaHS
does not have any (computer-based) linking to other mechanism at the
moment. There are, of course, links to the work plan schedule, to the
module architecture, to actor lists, and to the directory structure supporting
the software integration. These links are, however, all based on one or
more human actors (users of BRaHS) who manually export information
from BRaHS to other mechanisms, and vice versa.

The central ideas in the Concept of Coordination Mechanisms of link-
ing should be included in BRaHS. This calls for a complete redesign, both
of the data structures used, and of the way the functionality is partitioned.
Linking has not been explicitly addressed in the current design of BRaHS.

9.4 Evaluation of the prototype

An open question needs to be answered: How was the prototype evalu-
ated? First of all, this has not been done sufficiently if we consider BRaHS
the first prototype of a system that is going to be implemented at Foss
Electric. BRaHS has been evaluated with the purpose of getting input for
the discussion given it this chapter, not with the purpose of getting input
for a concrete redesign (or refinement). The evaluation was conducted as
an ongoing iterative process during the design, and it basically contained
three different inputs:

(1) During the design the ideas and preliminary mock-ups and
sketches were presented at several meetings. The participants
(colleges from both Risø and the Esprit BRA project COMIC)
were familiar with both the results from the Foss Electric field
study and the Concept of Coordination Mechanisms. Ideas were
discussed, changes suggested, possible scenarios considered, etc.
BRaHS was also compared with another prototype, Gordion

230

Part III Towards computer support

(Tuikka and Sørensen, 1995) which is also based on the field
study descriptions of the bug form mechanism.

(2) The prototype was presented to three of the software designers at
Foss Electric that had been involved in the S4000 project. This
demonstration had two purposes: To get some feed-back on the
design of BRaHS from some of the potential users, and to provide
input for a design of project support systems which Foss Electric
is conducting at the moment. The prototype presented was identi-
cal to the one presented in this chapter.

(3) In a two-day heuristic evaluation session (cf. e.g., Nielsen, 1994)
Liam Bannon, University of Limerick, evaluated the prototype.
Liam Bannon is a highly respected researcher within both
Human-Computer Interaction and CSCW. The comments and
discussions included aspects like: user interface design, scenarios
for possible use (and what problems this could cause), discus-
sions of the basic assumptions behind the design, and discussions
of the model of the cooperative work setting hidden in the proto-
type, etc. The prototype used for the demonstration and evalua-
tion with Liam Bannon was identical to the one presented here.

The data from these three types of sessions have been analyzed and
used for identifying things that could be corrected. For example, the
database structure were redesigned completely after one of the meetings
mentioned in bullet 1 above. Findings from the two last mentioned evalua-
tions have mainly been used as input for the discussion of BRaHS pre-
sented in the end of this chapter. More thorough analyses can, of course,
be made from such evaluations. In a real-life design situation, a more
well-structured evaluation should take place, involving the future users
much more actively. This has, however, not been considered relevant in
the context of this dissertation, and for providing the required input.

Despite the limited evaluation, I will claim, that BRaHS is an illustra-
tive example of a computer-based coordination mechanism. There are,
however, still a long list of questions to consider.

231

Part III Towards computer support

10. Object-oriented modeling of a coordi-
nation mechanism: An experiment

We needed to grasp, to understand in depth,
the problem domain—and we needed to do it

fast as quickly as possible. Of course, the
situation is less extreme for many system ana-
lysts—but even if you happen to be a subject
matter expert as well as an analyst, you still
need tools to effectively communicate your

expertice to others [...] OOA—Object-
Oriented Analysis—is based upon concepts

that we first learned in kindergarten: objects
and attributes, wholes and parts, classes and

members. Why it has taken us so long to apply
these concepts to the analysis and specification

of information systems is anyone’s guess—
perhaps we’ve been too busy ‘following the

flow’ during the heyday of structured analysis
to consider the alternatives.
(Coad and Yourdon, 1991)

As briefly discussed in chapter 8, the transformation from the observations
conducted in the field and the description of these (described in chapter 6)
to a set of requirements and design sketches (cf. chapter 8) was quite
complicated. There was no simple unambiguous procedure or course to
follow when analyzing the findings with the purpose of identifying needs
for support and the actual requirements for a computer based coordination
mechanism. These problems make considerations on methodological sup-
port highly relevant. Although the Concept of Coordination Mechanisms
can support the conceptualization of field study findings and inspire the
requirement engineering process other means are called for. Following
Hughes (1993) it can be stated that, in order to bridge the gap between
field studies of cooperative work and design of coordination mechanisms,
there is a need for suitable methods and techniques facilitating the model-
ing activities. Albeit, methodological considerations are not core issues in
this dissertation I have, in collaboration with Birgitte Krogh and Carsten
Sørensen, conducted a small experiment investigating the question of,
what are the possibilities and limitations for modeling computer-based co-

232

Part III Towards computer support

ordination mechanisms using an object-oriented analysis method? To
explore this we have applied an object-oriented analysis methodology for
modeling the bug form based coordination mechanism identified in the
field study, previously reported in Carstensen et al. (1995a). This chapter
describes the experiment and its overall results. When reading this chap-
ter, it is important to notice, that the experiment described was conducted
before designing the BRaHS prototype described in chapter 9. The analy-
sis presented here should be considered a re-analysis of the data and
descriptions presented in chapter 6, i.e., the models presented here are
analysis models only (cf. figure 10-1). The intention of the experiment
was to investigate whether the process and resulting models appear to be
useful as input for design of computer-based coordination mechanisms.

Field study

Field study
documents

Analysis

Analysis
document

Design

Design
document

Construction

Program

Experiment

Figure 10-1: The scope of the experiment documented here is analytical
modelling. The figure is from a forthcoming improved version of
Carstensen et al. (1995a).

The first obvious question to answer is, of course, why choose an
object oriented approach? First of all, applying object-oriented techniques
seems to be one of the very important trends within the research field of
software engineering these years, and it has become increasingly popular
in the software industry too (Monarchi and Puhr, 1992). Although the
limitations of using object-oriented techniques for analyzing have been
critiqued (e.g., Embley et al., 1995; Lauesen, 1995), the popularity itself
makes it relevant to check out and discuss, if the approach can be support-
ive with respect to building computer-based support of coordination work.
One aspect of the critique concerns problems in grasping the procedural
and dynamic aspects of the domains modeled (Monarchi and Puhr, 1992).
Especially the aspect of dynamism is important in relation to coordination.

233

Part III Towards computer support

We chose a methodology that explicitly claims to address this problem.
The methodology chosen is discussed in section 10.1 below.

The second—and in the context of this dissertation much more impor-
tant—argument for experimenting with object-oriented techniques relates
to the very nature of the coordination mechanisms observed, both in my
and other field studies. As discussed in section 5.8 and section 8.3, and
illustrated in chapter 6, coordination mechanisms can be regarded as
individual detached mechanisms each supporting a limited set of
coordination activities. These individual detached coordination
mechanisms are, however, usually linked to other coordination
mechanisms in order to get access to required information, or to trigger an
action in another mechanism. The nature of detached, but interrelated,
components seems to fit nicely into the basic structures provide by object-
oriented methodologies. To phrase it differently: The central techniques of
abstraction, encapsulation, association structures, etc. (cf. e.g., Coad and
Yourdon, 1991) in the object-oriented paradigm makes it relevant to con-
sider object-oriented techniques for modeling the aspects of coordination
work to be computer supported.

Finally, although others have addressed the problem of modeling the
coordination work with the purpose of building computer support (e.g.,
Flores et al., 1988; Malone and Crowston, 1990; Swenson et al., 1994),
only few studies have addressed the applicability of object-oriented
modeling techniques for modeling the coordination aspects of a real life
cooperative work situation.

First, the basic ideas in the object-oriented approaches are briefly intro-
duced. The results from the experiment are described, i.e., an object-ori-
ented analysis model of the bug form mechanism containing system defi-
nition, clusters, class structure, events, and behavior diagrams is present-
ed. The chapter is concluded with some reflections on the usability and
applicability of an object-oriented approach to modeling coordination
mechanisms.

10.1 The object-oriented approach

A number of object-oriented methodologies for systems design have been
proposed over the last years (e.g., Coad and Yourdon, 1991; Jacobson et
al., 1992; Mathiassen et al., 1993). Although they are definitely more

234

Part III Towards computer support

complicated to use than intimated in the quote from Coad and Yourdon in
the beginning of this chapter, they have become increasingly popular in
both industry and academic communities. The methodologies encompass
principles and guidelines for the development of systems—which tasks to
carry out, which techniques to use, etc.—as well as principles for what
representations to produce in the process, i.e., which diagrams and
descriptions to make. The object-oriented paradigm is intended to be
applicable to all kinds of systems.

There is little standardization in the field of object-orientation, apart
from the notion of classes and objects (Monarchi and Puhr, 1992). Some
general characteristics can, however, be identified: The elemental concept
of the paradigm is, not surprisingly, that of an object modeling a phe-
nomenon of the real world. An important underlying principle of object
orientation is that of being able to use the same set of concepts throughout
these different phases or aspects of the development process. A class de-
notes a set of objects sharing static and dynamic properties. Structural
relationships between classes are one of the main strengths of object-ori-
entation. Relationships like one kind of vehicle being a specialization of
another, or a customer having three bank accounts, are expressed in inheri-
tance hierarchies, and association or aggregation relationships respec-
tively. The expressive means and the resulting products are typically lists
of objects and events, diagrams illustrating static and dynamic properties
of single classes, and structure diagrams for interrelated objects. All with
corresponding textual descriptions. Other key principles are those of en-
capsulation, coherence, and reusability. In object-oriented methodologies,
an object represents an entity, or a phenomenon, in the real world.

The methodology applied in the experiment was the analysis part of the
OOA&D method promoted by Mathiassen et al. (1993; 1995). Using the
classification structure of Monarchi and Puhr (1992), the OOA&D
approach is representative of object-oriented methodologies, providing
both process- and representation support. A second argument was, that we
were familiar with the methodology. Furthermore, a central characteristic
of many coordination activities is the dynamics. Activities are often relat-
ed to several structures in the problem domain. OOA&D is one of the few
methodologies that explicitly claims to address the issues of the dynamics
within the problem domain.

235

Part III Towards computer support

OOA&D is based on techniques selected from a number of established
object-oriented methodologies, together with basic principles for using the
various concepts, techniques, and notation forms. The most important
principles include ‘using objects as a unifying concept’ and ‘describing
the model of the problem domain before the requirements to the function-
ality’. The former is what basically imbues all object-oriented method-
ologies; having as key concepts: object, class, inheritance, association,
aggregation. The latter is to be seen as a contrast to having functional
requirements as the primary objective, i.e., basing the modeling of dy-
namic aspects on the concepts of event and behavior. This is inspired by
Jackson System Development (Jackson, 1983), since no existing object-
oriented methodologies seemed to grasp the kind of dynamics of the
problem domain, that was sought expressed when developing OOA&D.

Focus, in the analysis part of the methodology, is on building a dy-
namic model of the problem domain. Among the main activities in the
analysis phase is the specification of a ‘system definition’ stating what
elements are of interest in the problem and application domains, including
the general functionality of the system. Other central activities are the
generation of a ‘structure diagram’ expressing the static aspects of the
model, and ‘behavior diagrams’ defining the relationships between events
for each object class.

10.2 An object-oriented model of the bug form
mechanism

The idea of the experiment was to build an object-oriented analysis model
of the computational aspects of the coordination of software testing in the
S4000 project. The aim was on capturing the problem domain characteris-
tics and the modeling process. Specifications of interface or functions was
excluded. The fundamental principles of object-orientation include that of
using the same basic concepts throughout the development process. It is
therefore the ‘analysis phase’ that determines the essential components in
the system, and thus the phase where the applicability of object-orienta-
tion comes to test. Hence, only activities regarding modeling in terms of
object-oriented analysis have been conducted.

The experiment consisted of the following activities, in consonance
with the recommendations of OOA&D: 1) Specifying the ‘system defini-

236

Part III Towards computer support

tion’; 2) identifying candidates for object-classes; 3) specifying clusters of
classes; 4) identifying main attributes for each class; 5) specifying rela-
tionships between classes in a structure diagram; 6) identifying relevant
events; and 7) specifying the event-behavior for each class. The method
does not prescribe, that the model is specified according to a strict
sequence. The actual modeling tried to follow this sequence, but it was, of
course, a much more discontinuous process than what can be seen from
the following descriptions consisting of several iterations each refining the
model. The system definition, structure diagram, class descriptions, event
lists, and behavior diagrams established are described in the following
subsections.

10.2.1 System Definition

Inspired by the ideas of Checkland (1981) on defining a ‘root definition
for a relevant perspective on a system to be analyzed’ the OOA&D pre-
scribes to specify a system definition. A system definition is, according to
the method, a short and precise piece of natural language text that defines
the scope and boundary of the system with respect to a number of crucial
factors:

• The conditions under which the system is to be developed and used,
if any such are of specific interest in that they, for example, restrain
the possibility for user involvement, or consist of areas of conflict-
ing interests.

• The problem and application domain, i.e., an overview of the phe-
nomena (later modeled as objects, hence termed ‘the object system’)
and tasks to be captured and supported by the system.

• The functionality required to support the phenomena and tasks.

• The technology available during development and usage (this was
considered irrelevant for the experiment and thus omitted).

• The philosophy, describing the essence and idea behind the system
and how it is supposed to form part of the work setting.

 These considerations constitute the criteria of relevance when assess-
ing class, event, etc. candidates at more detailed levels later on in the pro-
cess. The below system definition is defined as a basis for the modeling of
the bug form mechanism:

237

Part III Towards computer support

The system is to be used by the testers, software designers, and management as an
integrated part of the coordination involved in registration, diagnosis, and correction
of bugs. The problem domain consists of software and bugs, software testers and de-
signers, the registration, routing, and monitoring of the bug handling process, and the
work plan for scheduling and coordinating these tasks. The functionality required is
storage and retrieval of information on who is doing what and when. The systems
philosophy is fourfold: automating the routing of tasks, making state-of-affairs of
bugs available, supporting the coordination of the tasks, and supporting the actors in
organizing the work as they consider most efficient.

10.2.2 Classes and Structure

Candidates classes and relationships were identified by going carefully
through the phenomena described and observed and searching for things,
actors, roles, concepts, resources, events, etc. that could be candidates for
an object class. All these were then considered and clustered according to
the relevance recommendations specified by the methodology.

The resulting set of relevant classes was subdivided into three clusters:
Software, Work, and People. These encompass, respectively, the software
that is being debugged and its bugs, the debugging work tasks, and the
people performing the debugging tasks. The cluster view on the model is
merely for clarification purposes, to give an overview when, as in the cur-
rent case, there is what can be considered a fairly high number of classes.

More important were the generalization and aggregation relationships,
expressing the range of possible static situations in the problem domain.
These where identified by considering possible static relationships
between the classes, and relationships that occurs due to the dynamic
interaction between objects. Figure 10-2 shows the structure diagram

238

Part III Towards computer support

Actor

Workplan

Other task

Task
Role

Period

Diagnosis Estimation

Verification
responsible

Tester Developer Spec.team
member

Platform
master

Correction

Software
bug

Spec.team

Classification

Risk

Verification

Importance

Continous
task

Periodical
task

Software
architectur

Software
module

0:m

1
m

1
m

0:1

0:m 0:m

m

1

m
1

0:m
1

1 1 1:m

1

0:m

0:m

0:m

0:m

1

m

0:m

1

Work Cluster

People Cluster

Software Cluster

0:m
1

0:m
1

0:1

10:1

1

1

0:m

1

1

Figure 10-2: The Structure Diagram.

The classes are represented as rounded boxes. A grayed class indicates that
the class do not have any instances in itself. Triangles symbolize aggrega-
tion, and semicircles generalization structures. Lines with no symbols are
associations. Numbers and intervals are the cardinalities, i.e., they state
how many instances of the other class an instance of one class can be re-
lated to. The three large grayed boxes illustrates the three clusters.

The modeling technique illustrated follows the diagramming language sug-
gested by the OOA&D methodology.

Throughout the remainder of the chapter, capitalized words are used for
the names of classes and clusters to help distinguishing them from other
uses of the same words. Each class and structure is described in further
detail in figure 10-3 below.

239

Part III Towards computer support

The Software Cluster The Actor Cluster The Work Plan Cluster

SW-architecture: The soft-
ware part of the instrument, or
the part of it, that is currently
being debugged. It is an ag-
gregation of a number of soft-
ware modules.
SW-module:
Attributes(Developer)
A distinguishable part of the
SW-architecture. At any given
moment it is related to zero or
some bugs that have been di-
agnosed to originate herefrom.
Each SW-module has a
Developer responsible for it.
Bug: Attributes(Description,
classification, testers initials,
module relation, the various
information resulting from di-
agnosis through verification
tasks, current state)
The central class of the sys-
tem. A bug is related to the
tester that found it, and be-
comes associated with a clas-
sification and the suspected
SW-module as part of the di-
agnosis process. At any given
moment it is related to one,
and only one, of the bug cor-
rection tasks and therethrough
indirectly with an actor. It is
the filling in and updating of a
bug objects attributes and the
dynamic change in its associ-
ation with tasks that are the
essential dynamic behavior of
the system.
Classification, Importance,
and Risk:
Basically these classes consti-
tute the range of possible cat-
egorizations of bugs; each
classification is a combination
of the assessed risk and impor-
tance of a bug.

Actor: Attributes(Name etc.)
An actor is any person who
can take on one or more of the
roles that are relevant for the
bug correction process.
Through the roles, an actor
can be involved in zero or
more tasks of the same or dif-
ferent kinds. For the sake of
completeness of the work
plan, an actor can also be re-
lated to any other tasks that
are not relevant to the debug-
ging, but that take up the per-
sons work hours.
Role: Attributes(Assigned ac-
tor and current tasks)
A role is taken on by an actor
for some time, during which a
number of tasks, of the spe-
cific kind that role is associ-
ated with, can be conducted.
Tester: The role testing soft-
ware and identifies bug.
Platform Master (PM): The
designer responsible for a
whole platform period; the
parts that make up the work
plan.
Verification Responsible:
The person who gets assigned
to verifying the correction of a
bug.
Developer: An actor that
takes on estimation and cor-
rection work.
Spec-team: The small group
of people responsible for the
initial assessment of the bug,
its acceptance and classifica-
tion.
Spec-team Member: A
member of the Spec-team

Work plan: Where informa-
tion on scheduled work and
resources is gathered.
Period: A scheduling and co-
ordination entity.
Task: Attributes(Bug, actor,
time)
Short for Bug Correction
Task. Any task is always re-
lated to a bug and an actor. A
task object models the actual
state of a bug, as opposed to
the intended state.
Continuous Task: The kind
of tasks that, for scheduling
reasons, are not necessarily re-
lated to specific periods.
Periodical Task: The ones
that are.
Diagnosis: The first treatment
of an identified bug. During
the existence of such an ob-
ject, the bug is classified by a
member of the Spec-team and
associated with the SW-mod-
ule suspected of containing the
bug.
Estimation: Based on the di-
agnosis, a correction time is
estimated by a developer.
Correction: One or more de-
velopers perform the correc-
tion itself. Possible outcomes
of this task, apart from the bug
being corrected, is that it has
to be diagnosed or estimated
again.
Verification:
The bug correction is verified,
i.e., it is either acknowledged
as corrected and ‘filed’ or it
has to be registered all over
again.
Other Task: Relevant only to
planning the work because one
of the actors is assigned to it.

Figure 10-3: Descriptions of the classes, organized according to the three
clusters. Details about attributes considered of no importance to the exper-
iment are omitted.

240

Part III Towards computer support

10.2.3 Dynamics

The next of the modeling concerns the dynamic aspects of the problem
domain. The basic concepts for modeling these are the events occurring in
relation to the system, and behavior of the classes.

According to the methodology, events are the atomic parts of the
dynamic aspects of the problem domain. That is, an event is any
occurrence in the real world that causes a change in the value of the
attributes of one or more classes in the object system, or that requires a
change in the structure of the classes, typically an association being
established or removed. Similarly, the behavior of a class is identified as
an abstract pattern of events that defines the possible course of events for
all objects in a given object class.

The first step was to identify all possible and relevant events. Again, all
phenomena and descriptions were searched for candidates of events to be
included in the list. The resulting list is illustrated in figure 10-4.

Using the list of relevant events as input the next step is to make a
behavior diagram for each class, illustrating the constraints on the order in
which the events that involve a specific class can occur. Behavior dia-
grams are diagrammatic representations of finite automatons.

With the event list and the behavior diagrams we can determine equiva-
lent patterns of events that objects of a class has to follow. In the case of
the bug form mechanism modeled here, a large number of events are
common for a number of classes: They involve changes in more than one
type of object. Furthermore, many classes are involved in more than just a
few events. These two characteristics tend to yield complicated behavior
diagrams. The former makes it difficult to get an overview of the conse-
quences of one specific event. The latter because many events have to be
part of the same diagram.

241

Part III Towards computer support

Event List

• New Actor inserted
• New SW-module inserted (and put into
SW-architecture aggregation)
• New Period inserted (and put into Work
plan aggregation)
• New Importance inserted
• New Risk inserted
• New Classification inserted
• Actor assigned as Spec-team Member (and
put into Spec-team aggregation)
• Actor assigned as Verification Responsible
• Actor assigned as Platform Master
• Actor assigned as Tester
• Actor assigned as Developer
• Actor resigned as Spec-team Member
• Actor resigned as Verification Responsible
• Actor resigned as Platform Master
• Actor resigned as Tester
• Actor resigned as Developer
• Actor assigned to Other Task
• Platform Master assigned to Period
• Developer made responsible for SW-
module
• Bug registered (a new Bug is instantiated
and associated with the responsible Tester)
• Bug postponed (no task association
happens, bug deleted and/or re-registered
later)

• Bug rejected (no task association happens,
bug deleted and/or re-registered later)
• Bug accepted (a new Diagnosis is
associated with the Bug and a Spec-team
Member)Bug diagnosed (the Diagnosis is
deleted, a new Estimation is associated with
the Bug and a Developer)
• Bug estimated (the Estimation is deleted, a
new Correction is associated with the Bug
and a Developer)
• Bug corrected (the Correction is deleted, a
new Verification is associated with the Bug
and a Verification Responsible)
• Bug re-diagnosed (the Correction is
deleted, a new Diagnosis is associated with
the Bug and a Spec-team Member, when the
corrector finds the diagnosis was wrong)
• Bug re-estimated (the Correction is
deleted, a new Estimation is associated with
the Bug and a Developer, when the corrector
finds the estimation was wrong)
• Bug correction verified (the Verification is
deleted)
• Bug re-registered (the Verification is
deleted, a new Bug is registered, when the
verifier finds something else was the matter)
• Bug deleted (when the information is
obsolete)

Figure 10-4: The final events list. For some events more classes are in-
volved than those mentioned in the event name. In these cases further de-
tails of classes affected are added in a parenthesis. In other situations a
parenthesis is used for a clarifying description. Details about when which
attributes are updated are omitted.

Showing behavior models for all classes would require a lot of space.
Let us, for illustration purposes, look at one of the essential events and
present all the classes involved as an explanatory example of, how the dy-
namic aspects are modeled: Some of the most crucial events to be mod-
eled were those that had to do with the transition from one stage of han-
dling a bug to another. These were also the single events that involved
objects from the largest number of different classes. The event ‘Bug cor-
rected’ is chosen here for the illustration of how the dynamics of the

242

Part III Towards computer support

problem domain was modeled. The ‘Bug corrected’ event represented the
situation where a correction task was completed successfully, i.e., without
the need for re-diagnosis or re-estimation, and the relevant next task—the
verification—was to take over. The event involved five classes: Bug,
Correction (the prior task completed), Verification (the next task to take
place), Developer (who had made the corrections), and Verification
Responsible (who had to verify the correction). The behavior diagrams for
those five classes are shown in figures 10-5 through 10-8.

Bug

Registered Pending Deleted

oRejectedoTreated oPostponed

Accepted Diagnosed Estimated *Re-treated Corrected Checked

oCorrection
verified

oRegisteredoRe-estimatedoRe-diagnosed

Figure 10-5: The behavior diagram for the class Bug. The events with a
‘o’ are part of the same selection. A ‘*’ is an iteration, and a row of events
on the same level, that are either marked ‘*’ or not marked form a
sequence.

‘Bug corrected’ can be considered to be one, atomic, task. The event
was an important part of the coordination happening in the bug correction
work. It indicated that one person had completed a task, which then im-
plied that the next person to take over could start his own task on the spe-
cific bug. He therefore needs to be made aware of the fact, that he can
start.

243

Part III Towards computer support

Correction

Bug estimated Correction ends

oBug
re-estimated

oBug
re-diagnosed

Bug corrected

Verification

Bug corrected Bug correction
checked

Bug registeredoBug correction
verified

Figure 10-6: The behavior diagrams for the classes Correction and
Verification.

Developer

Actor assigned
role

*Assigned Actor resign
from role

oResponsible
for software
module

oBug
diagnosed

oBug
estimated

oBug
re-diagnosed

oBug
re-estimated

Bug
corrected

Figure 10-7: The behavior diagram for the class Developer.

Verification
responsible

Actor assigned
role

*Assigned Actor resign
from role

oBug
corrected

oBug
correction
verified

oBug
registered

Figure 10-8: The behavior diagram for the class Verification Responsible

In terms of how the structure diagram and classes are changed six
things happen when the ‘Bug corrected’ event occurs:

(1) Attributes in the Bug object regarding the correction are updated;

244

Part III Towards computer support

(2) The association between Bug and Correction task objects is
removed;

(3) The Correction task object is deleted;

(4) A Verification task object is instantiated

(5) The Verification task object is associated with the Bug object;
and

(6) The Verification task object is associated with a Verification
Responsible object.

10.3 The usability of object-oriented modeling
techniques

The idea of the experiment was, as mentioned, not to establish a complete
object-oriented model for the bug form mechanism, and it was, for exam-
ple, not used as input for the design of the prototype presented in chapter
9. The intention of the experiment was to explore, what the possibilities
and limitations for modeling computer-based coordination mechanisms by
means of an object-oriented analysis method are, and would this type of
modeling grasp the essential aspects of coordination, and could it improve
the understanding gained from the other descriptions made (cf. chapter 6)?
This section will discuss, what has been learned in relation to these ques-
tions.

In general the OOA&D method provides good support for specifying
the static aspects of the model, e.g. defining clusters, classes, instances,
aggregations, and associations. The big problem regards the dynamic
aspects of the problem domain to be modeled. These just seems to
“disappear” in the model. This is not a problem specific for OOA&D, but
it is interesting to notice, since the method explicitly states that event lists
and behavior diagrams are included in order to deal with the dynamic
aspects of the problem domain. Object-oriented methods, in general, do
not sufficiently address “the sequence timing and control of events and
processes” (Monarchi and Puhr, 1992, p. 4). The experiment described
here confirms Monarchi and Puhr’s observations. There are more object-
oriented static models managing structural complexity, than dynamic
models handling behavioral complexity. As it is now, the dynamic aspects
of object-oriented models are expressed in “attached” formalisms, such as

245

Part III Towards computer support

state-transition diagrams, Petri-nets, etc. A closer integration between
static and dynamic aspects of object-oriented models is highly needed.

In Carstensen et al. (1995a) we concluded the experimented by a list of
specific lessons learned regarding the usability of object-oriented ap-
proaches for modeling coordination mechanisms. Elaborated from these,
the following conclusions should be mentioned:

(1) As mentioned above, the object-oriented modeling improved the
quality of the structural specifications. Prior to the OOA&D ex-
periment, entity-relationship diagrams, state-transition diagrams
and diagrams of the information flow were the only means ap-
plied to express the properties of the bug form coordination
mechanism (cf. section 6.7 - 6.9). The cluster specifications, the
structure diagram, and the cardinalities of class-connections im-
proved my understanding of which structural aspects of the coor-
dination mechanisms should be computer supported.

(2) Similarly to the requirements for for a proper semantic level
when describing the objects of coordination work (cf. section
5.5), the level of detail in which an event is defined must be in an
appropriate form to reflect real life coordination. As an example
can be mentioned the ‘Bug estimated’ event. It was defined as:
“The Estimation is deleted, a new Correction is associated with
the Bug and a Developer”. Alternatively, each sub-event could be
expressed as a separate event. This would, however, result in
loosing the essence of the coordination which takes place when
the spec-team estimates the time needed to fix a bug: A developer
is notified, takes over, and starts the correction. Similar to the
events, a ‘coordination function’ will include several roles de-
scribed in several behavior diagrams. It is the contiguousness that
characterizes the coordination according to the organizational
procedure, not the individual sub-tasks. The coordination mech-
anisms we want to design should provide the facility of automati-
cally conveying, to one actor, changes in the state of the mecha-
nism induced by another actor, as reflected also in the system
philosophy, stated in the system definition (cf. section 10.2.1).

(3) Regarding modeling at a proper level, the model must contain
classes reflecting conceptualizations used in the real life coordi-

246

Part III Towards computer support

nation. It could, for example, be tempting, instead of having four
classes expressing different tasks, only to have a ‘Continuous
task’ and a ‘Periodical task’ class, or maybe even only a ‘Task’
class. Then the diversity of the tasks could be expressed through
attributes and the behavior of actors. However, given the com-
posite events, mentioned above, this would result in loosing the
essence of the coordination mechanism. In the behavior diagram,
which even in a selectiont being relevant would depend on the
value of an attribute. Furthermore, getting an overview of the
consequences of an event like ‘Bug estimated’ would involve
looking at two instances of the same diagram instead of two dif-
ferent diagrams. Both are undesired situations.

(4) Although clustering classes provided a straightforward way of
subdividing the structure, the process did not help in designing
linking between coordination mechanisms. In chapter 8, four
linked coordination mechanisms was identified (cf. figure 8-9 in
section 8.2.5). Two of these were identical to the ‘Work’ and
‘People’ clusters (named ‘Planning CM’ and ‘Human Resources
CM’). The two others were the ‘Software’ cluster divided into a
‘Software Architecture CM’ and a ‘Bug CM’. The three clusters
in the model makes sense from an OOA&D perspective, but the
four mechanisms express that, a re-designed bug form mecha-
nism should be able to link to an existing repository containing
conceptualizations of the software architecture and modules.
Furthermore, the concern of modeling linking between coordina-
tion mechanisms resulted in classes which, from an OOA&D per-
spective, should be expressed as attributes to other classes. The
contents of the ‘Classification’ class could, for example, be de-
fined as an attribute to the ‘Software bug’ class. This was not
done since the ‘Classification’ class is considered providing a
link to an external mechanism maintaining the classification
structure. Hence, clustering does not support linking, or designing
coordination mechanisms by means of interrelated software
agents—as promoted by Divitini et al. (1995b)—properly.

(5) As mentioned, a fundamental finding concerned the interactions
between actors involved in coordinating their activities. These are
very difficult to identify from the established model. When mod-

247

Part III Towards computer support

eling coordination work, the interaction between actors is an im-
portant structural property of the problem domain. As argued
several places in this dissertation, protocols stipulating the flow
of the work, or the flow of the coordination work, are essential.
Although all the events related to the procedure of registration,
diagnosis, correction, and verification are described in different
diagrams, it is impossible to see from the model, how the docu-
ments are exchanged among the actors.

(6) Although reflected in the behavior diagrams, complex dynamics
is very difficult to model, and the dynamics is difficult to grasp
from the models, e.g., in order to assess the ‘Bug corrected’ event
comparison of five different behavior diagrams is required.
Coordination work mainly consist of activities meshing symbolic
references to the problem domain, e.g., “have actor A fixed bug
7?”. This implies, that many of the events, that can be observed,
will affect many classes. According to the findings in this and
other field studies, this is a very basic characteristic of coordina-
tion work. Coordination work is about doing things (provoking
events) related to two or more conceptual structures (potential
object classes). The OOA&D methodology states, that if there are
many mutual events between classes, this implies that the class-
model (the structure diagram) should potentially be redesigned:

“Consider mutual events between several objects: Mutual events point
at important dynamic relationships in the model. If there are mutual
events, the classes chosen and their structural relationships should be
reconsidered” (Mathiassen et al., 1993, p. 122, my translation).

The model could, of course, have been redesigned, but this would
break up the intuitive and nice cluster structure. Hence, the prin-
ciple of redesigning the model, if there are many mutual events
between classes, is potentially in conflict with the very nature of
coordination work.

A first brief conclusion on, whether it is useful to model coordination
mechanisms by means of object-oriented techniques, must be that the
OOA&D methodology provided very powerful means of managing and
expressing the static complexity of the coordination of the software testing
work. It was, however, insufficient with respect to the dynamic aspects.
The latter must be concluded despite the fact that OOA&D explicitly aims

248

Part III Towards computer support

at providing means for modeling dynamics. Using an object-oriented
approach should therefore be combined with other techniques having their
strength in modeling the dynamism and concurrency aspects of coordina-
tion work, e.g., petri nets.

As mentioned, the object-oriented model provided good support for
expressing the static complexity of the coordination work, better than the
entity-relationship diagrams used in chapter 8 (cf. figure 8-8) since the
association structures were better reflected. The state-transition model (cf.
figure 6-7) and the models of the flow between roles respectively actors
(cf. figure 6-9 and 6-10) provided a better understanding of the flow of
information among the actors than the behavior diagrams. So, the rather
primitive representations of the dynamic aspects of coordination applied
in chapter 6 and 8 proved to be better than the models provided by
OOA&D.

It is difficult to make any claims on whether the process of building
object-oriented models adds knowledge and understanding of coordina-
tion, or it just models already recognized knowledge differently (cf. e.g.,
Kensing and Munk-Madsen, 1993). Making claims regarding this would
require an experiment where object-oriented models are build without
having conducted other kinds of analyses beforehand. My impression,
from the process of analyzing the field study as reported in chapter 6 and 8
followed by the experiment reported in this chapter, is that the object-ori-
ented methodology mainly supports a more rigid process of establishing
explicit models of already recognized knowledge. This is, in itself, very
useful in many analysis situations. And it is important to note, that the
claim needs much further investigation.

In assessing the outcome of the experiment, it is relevant to notice, that
modeling, like many other human activities, involves a certain element of
style. None of the persons conducting the experiment were in any position
to claim being an expert, but it was conducted from a solid base in terms
of a thorough field study and a some modeling experience, based on other
approaches than the object-oriented. OOA&D is only one of many object-
oriented methods. The object model part of it is, however, not radically
different from most other approaches. The conclusions will thus probably
be valid for most of the existing object-oriented methodologies. Wirfs-
Brock et al. (1990) offers what they call ‘contracts’ and ‘collaboration

249

Part III Towards computer support

graphs’ which might be relevant for modeling coordination. The concept
of ‘use cases’ (exemplar usages of the system, each one illustrating a par-
ticular subset of the functionality), introduced by Jacobson (1992) is an-
other recent and powerful approach to expressing dynamic issues in ob-
ject-oriented modeling. Both approaches should be investigated further.
This has, however, been considered out of scope of this dissertation.

250

Part III Towards computer support

11. General recommendations for design of
computer-based coordination
mechanisms

“The general attitude seems to be that people
should wear square shoes, because square

shoes are easier to design and manufacture
than foot-shaped shoes. If the shoe industry

had gone the way of the computer industry it
would be running $400-a-day courses on how

to walk, run and jump in square shoes.”
(Alan Kay quoted in Durham, 1988).

The three previous chapters have aimed at illustrating and discussing how
the findings from the field study could be used as a basis for building a
computer-based system supporting the coordination of software testing
and correction work, i.e., the work has been constructively oriented. This
chapter discusses which general recommendations regarding design of
computer-based coordination mechanisms we can derive from these
experiments. The findings and lessons learned are not mature,
unambiguous, and conclusive. Hence, the following should not be
regarded clear-cut normative statements about design of coordination
mechanisms. They do, however, represent a series of experiences, which
can serve as a basis for preliminary recommendations.

The design process has been similar to many other design processes.
Theories, methodologies, guidelines, etc. can only facilitate the process.
The fundamental in design will inevitably be a matter of making design
decisions. How to organize the development process is important. It has,
however, not been essential for the work presented in this dissertation.
Useful representations, recommendations on setting up requirements, and
a few reflections on evaluating a coordination mechanism design will be
given. From the experiences collected during the field study and prototype
design work, I do not find it relevant, to go into further discussions on
how to organize the process of designing coordination mechanisms.

This chapter is structured into four sections related to modeling analy-
sis findings, setting up requirements for coordination support, concrete

251

Part III Towards computer support

design of coordination mechanisms, and evaluating preliminary prototypes
of coordination mechanisms.

11.1 Modeling the coordination aspects of the work

Modeling and representing work that is going to be supported or re-
designed is a very complicated process. We need both representations of
the work studied and of the system to be designed (Kensing and Munk-
Madsen, 1993; Kyng, 1995). It is, however, difficult to prescribe or rec-
ommend on which representations are needed (and sufficient) for inform-
ing the design. Involved in designing computer-based systems we need
representations that can be used for: 1) supporting the designers under-
standing the basic characteristics of the work, 2) supporting the future
users understanding of the abstract descriptions of their work, and in
grasping the ideas of the different (re-) design suggestions, 3) helping the
designers establishing possible (re-) designs, and evaluate these, 4) facili-
tate an interaction between the designers and the coming users, and 5) an-
choring the ideas and visions established in the project. Mock-ups, differ-
ent types of prototypes, narratives, and scenarios of future use are some of
the most frequently suggested and used representations (cf. e.g. Carroll
and Rosson, 1992; Simonsen, 1994; Kyng, 1995).

In this section, I will concentrate on representations related to the first
mentioned usage: Representations having the purpose of supporting non-
domain experts (the designers of the computer-based systems) in getting a
sufficiently deep and coherent understanding of the basic characteristics of
the work to be supported. The other usages are extremely important, but is
considered out of the scope in the context of this dissertation.

The experience gained from the field study indicates that it is very use-
ful to explicitly model the coordination aspects of the work setting. The
analytical distinction between work and coordination work argued for
previously proved to be useful, and it is strongly recommended to apply
this distinction. Both aspects of coordination work and actual work must,
of course, be modeled, but to address the coordination aspect explicitly
improves the understanding of, for example, the functions provided by
forms, boards, organizational procedures, classification schemes, etc.

Much coordination work is conducted by means of conceptualizations.
Both the Foss Electric field study described in this dissertation and other

252

Part III Towards computer support

field studies (e.g., Harper et al., 1989b; Edwards et al., 1995) illustrate,
that much coordination is organized, and mediated, in terms of conceptual
representations of structures from the actual work conducted (the field of
work), the work setting (the work arrangement), and the broader organi-
zational context. It is recommended to—in as early a phase in the analysis
and modeling work as possible—establish models illustrating the concep-
tual structures used for coordinating the work. These models should in-
clude, at least, conceptualizations of the field of work, and conceptualiza-
tions of the work arrangement. Examples of conceptualizations of the field
of work are bug classifications and the software architecture within the
area of software testing, or airplane identifications and airspace divisions
within air traffic control domain. Examples of conceptualizations of the
work arrangement are representations of the actors and roles involved, and
work plans established. In some situations, it will, furthermore, be relevant
to include conceptual structures representing the wider organizational
context (e.g., general company policies, external regulations to be obeyed,
etc.). The scheme containing and structuring the objects of coordination
work (cf. figure 5-2) proved very useful for conceptualizing the central
findings. It is recommended to use this scheme for approaching the phe-
nomena observed and for structuring the findings. Using this scheme can
help identifying the conceptual structures. It is, however, important to also
be aware of structures that do not fit into the scheme, i.e., the scheme
should be used for inspiration, not as a filter for what is included in the
analysis.

To improve the information in the models containing the
conceptualizations, it is, additionally, suggested that relations between the
conceptual structures established as a result of certain coordination
activities are presented in the models (e.g., relating a role to a task as a
result of a resource allocation process). An example of a model of
conceptual structures along which the coordination was conducted, and
their relationships, was given in figure 8-1. An introduction to, and
discussion of, a previous version of the model can be found in Carstensen
et al. (1994).

It is important to grasp (model and describe) the mechanisms used to
support the coordination, and how these are interrelated. The term
‘mechanisms’ covers all types of mechanisms used for coordination,
ranging from conventions for how to inform each other, over forms and

253

Part III Towards computer support

organizational procedures, to more active and/or rigid mechanisms like
work flow systems. The idea can be compared to taking an “activity-ori-
ented approach” as suggested by Sachs (1995) trying to look at whole ac-
tivities distinct from a particular task. Mechanisms used for coordination
of series of tasks should be addressed and modeled. That is, we should
aim at achieving a generalized understanding of: What is the purpose of
the mechanism, what function does the mechanism provide, who is it pro-
vided for, under which conditions is the function provided, and how are
the different mechanisms related to each other? The ambition is to estab-
lish an overview of which types of coordination work are conducted, and
how these are supported by different mechanisms. An illustration of how
some of mechanisms identified in the field study were interrelated was
given in section 6.11.

Apart from modeling the coordination support as a “network” of related
mechanisms, it proved informative to address the behavior (and typical
deviations) of the individual mechanisms. This can be done by means of,
for example, state-transition diagrams, as illustrated in section 6.7.
Through this kind of modeling, the analyst or designer is forced to con-
sider possible states for the mechanism, and the possible subsequent
states. Both the “standard flow” of the mechanism and relevant deviations
are thereby explicitly considered. Modeling the observed mechanisms
supporting coordination by means of state-transition modeling, or similar
techniques, is recommendable.

As well as addressing the conceptual structures and mechanisms used
for coordination, the field study at Foss Electric exemplified the impor-
tance of obtaining an understanding—and thus a description or model—of
the working rhythms applied in the work studied. Much cooperative work
is organized in working cycles. These can be structured with respect to
specific time slots, the tasks to be conducted, work shifts, etc. The rhythm
in which the work is organized and conducted is in itself an important
structuring and coordination mechanism that needs to be described. One
way of describing the working cycles or rhythms is by means of a time
line for a full cycle. This can then illustrate which roles are conducting
which activities or actions, at which point in time. The activities and ac-
tions included should, of course, mainly be those related to the coordina-
tion of the work. Such time lines illustrate the rhythm and, to some extent,
the sequence of interaction among the involved actors. Time lines can be

254

Part III Towards computer support

used for modeling both “here and now” activities, coordination intensive
activities (like air traffic controlling), and cooperation conducted over
long time periods (like design work). A good example of how a time line
can be used for illustrating the interaction among several actors can be
found in Kensing and Winograd (1991).

It is, furthermore, relevant to address the structure of the interaction and
coordination work from the perspective of the involved actors. There are
two aspects of communication that it can be relevant to model:

The first is the interaction between the work system addressed and its
context, i.e., modeling the work system as a black box interacting with its
surroundings. How this interaction can be analyzed and modeled in terms
of overall functions provided by a work system is thoroughly discussed in
Schmidt and Carstensen (1990). It is outside the scope of this chapter to
explain these ideas further. Another useful technique for modeling the in-
teraction between a work arrangement and its context is the communica-
tion path diagram suggested by Kensing and Winograd (1991) illustrating
the major paths of interaction, defining their direction, and the media used.
This modeling technique has not been used in the analysis presented in
chapter 6, but in cases where real time coordination is required, this type
of models will improve the general understanding of the work and its co-
ordination.

The second type of interaction to model is the flow of information
among the actors within the work system. Setting up a model of the in-
formation flow provides important input on the dynamics of the coordina-
tion and the interaction between the actors. Such flows will usually model
the “ideal” or “normal” flow being the flow present when the organiza-
tional procedures, conventions, etc. are followed. It will, in practice, often
be impossible to model all possible deviations from this flow, but it is
nevertheless highly recommended to establish such models. Both models
of the flow organized according to roles and prototypical examples of
flows from the viewpoint of the involved actors should be considered.

Chapter 10 experimented with using object-oriented techniques for
modeling coordination mechanisms. The conclusion from this was quite
clear: The models provided good support for specifying the static aspects
of the work in terms of defining clusters, classes, instances, aggregations,
and associations. But the dynamic aspects of the work and its coordination

255

Part III Towards computer support

modeled were not “visible”—and thus understandable—from the models.
It is recommended to model the static aspects by means of some of the
traditional modeling techniques within the area of software engineering,
for example object-oriented techniques (e.g., Coad and Yourdon, 1991;
Mathiassen et al., 1993) or entity-relationship modeling (see e.g., Flavin,
1981). When doing this, it is furthermore recommended, that the basic
primitives, structures, concepts, etc. used for modeling the conceptual
structures in the field of work, the work arrangement, and the organiza-
tional context, and their interrelations are at a proper semantic level. They
must be at a level, where it makes sense for the future users of the system.
If we model by means of too low-level programming primitives, the future
users will not be able to relate them to their daily work.

The dynamic aspects of the coordination need careful consideration.
They should be modeled further than what has been recommended so far.
The idea of identifying all events and model the dynamics in relation to
these as promoted by Mathiassen et al. (1993) appears to be useful, but the
resulting models must provide a better overview of the dynamics. The
experiences accumulated through the work described in the previous chap-
ters have not provided any good suggestions for a technique for modeling
these aspects. Holt (1985; 1988) argues for using Petri Net for modeling
what he calls “coordination mechanics”, and Käkölä (1993) suggests a
language called Role Interaction Net (RIN), based on organizational role
theory and Petri Nets for understanding the coordination of work. Some of
the flow models (e.g., ICN, cf. Ellis, 1979) might also prove useful here.
These approaches have, however, not be considered in the work presented
here, and thus need further investigation.

What I have argued above is to consider using a number of different
modeling techniques in order to address certain aspects of the coordination
work studied. Each of the approaches suggested are very limited. None of
the mentioned representations—or any other representations—will pro-
vide a complete picture. Even combining all the techniques will only re-
sult in a very limited representation of the work. Most analysis and model-
ing work will, however, be constrained by a limited amount of resources.
So, modeling the observed work will always cover certain aspects only.
Given this fact, I will argue that the suggested approaches, used intelli-
gently, and combined with a great deal of common sense is the best we
can do at the moment. The experience from the field study and the con-

256

Part III Towards computer support

struction oriented activities confirm what Kensing and Munk-Madsen
(1993) argue: It is in the process of switching from one approach to an-
other that your understanding is elaborated, i.e., we enlarge our knowledge
when we try to conceptualize and model the observed phenomena, or
when we attempts to find phenomena that illustrate certain aspects of a
model, theory, or framework. The discussion in this section has, further-
more, addressed techniques for supporting the designers in understanding
the basic characteristics of the work. Techniques and representations ful-
filling the purposes of supporting users understanding the models, facili-
tating interaction between users and designers, anchoring visions, etc.
should be included too. These are, however, not considered relevant here.

11.2 Towards useful requirements for coordination
support

Setting up requirements for a computer-based system supporting a group
of actors in coordinating their distributed activities is a complicated task.
Much research has been conducted focusing on how to educe the relevant
requirements (e.g., Hughes, 1993), and how to involve users in gathering
requirements and specify these (cf. e.g., the May 1995 issue of
Communications of the ACM). In general, specification of requirements
for coordination support systems should, of course, be based on studies of
the work to be supported, and established through involvement of the
future users.

This section will briefly discuss a set of overall requirements, that
should be considered when specifying requirements for the coordination
support of a specific work setting (or work situation). These overall
requirements could be regarded as a preliminary “check list” recom-
mended for supervising a requirements specifications process. The bullets
on the check list below should not necessarily be covered by a specific
requirement specification, but each of the bullets need, at least, to be con-
sidered carefully with respect to the actual work setting. The recommen-
dations will mainly be based on lessons learned from the work previously
presented, especially the requirements presented in chapter 8, and the
overall facilities of coordination mechanisms identified in section 5.5.
Since most recommendations have been discussed previously the bullets
on the list presented here will only be concisely discussed. When specify-

257

Part III Towards computer support

ing requirements for computer-based support of coordination activities,
the following overall requirements should be carefully considered:

• A coordination support system should provide access to data struc-
tures reflecting the conceptual structures along which the coordina-
tion work is conducted. Structures reflecting the central aspect of the
field of work and the work arrangement should be accessible to the
users.

• A coordination support system should include a possibility for cate-
gorizing and classifying the conceptual structures mentioned above.
Classifications plays a central role in establishing a ‘common lan-
guage’ among the actors (see e.g., Bowker and Star, 1991; Schmidt,
1994c).

• Meshing, combining, relating, allocating, etc. the structures pre-
sented in the coordination support system should be supported.
Much coordination work results in establishing relations between the
structures, e.g., the outcome of an allocation activity is a relation
between an actor and a task.

• A coordination support system should support (or at least not ex-
clude) informal communication among the actors. Kraut and Streeter
(1995) argue, for example, that computer support of the informal
and direct communication is required, and they suggest to provide
tools supporting conferences and distributed meetings.

• Structures supporting negotiation among the actors should be pro-
vided, either through the communication support mention above or
through more structured negotiation mechanisms, like, for example,
the Coordinator (Flores et al., 1988).

• A coordination support system should provide facilities for specify-
ing work flows and how information, tasks, etc. should be routed
among the involved actors or roles. Coordination of complex work
situations is often handled by means of pre-specified work flows (an
example is the bug report form described in chapter 6).

• The work flows stipulated by a coordination support system should
be malleable. Work situations change, and the actors must have ac-
cess to change the flow permanently (due to general changes), or
temporarily (due to the characteristics of a specific situation).

258

Part III Towards computer support

• In order to support the malleability mentioned above, a coordination
support system should provide visibility of the protocol specifying
the work flow, and access to manipulate the protocol. The actors
should be allowed to experiment until the best processes are found
(Swenson et al., 1994).

• Coordination support systems should be flexible and tailorable.
Establishing the flows, processes, etc. by which the coordination
work should be conducted is often a long incremental process
switching from supporting individual work patterns into supporting
group work patterns (Bentley and Dourish, 1995).

• A coordination support system should support the actors in being
aware of each other. Heath et al. (1993), and several others, have il-
lustrated the importance of awareness in order to coordinate work.

• Monitoring the state of affairs is an extremely important aspect of
much coordination work. It should thus be supported. This can be
done both actively (the actor is informed about changes to the state
of affairs), or upon request from the actor.

• A coordination support system should keep track of the history of
changes the roles involved, work flow protocols used, classification
structures applied, etc.

• A coordination support system needs access to subscribe to informa-
tion from other coordination support systems. In order to be support-
ive, the coordination mechanisms studied at Foss Electric had to in-
clude (or use) information handled by other coordination mecha-
nisms.

• Last, but definitely not least, coordination support systems should be
integrated components in other computer-based tools used within the
work setting. Coordination work is always intertwined with the a
actual work. Hence, coordination support mechanisms should be in-
tegrated within the work support tools used.

As mentioned most of the general requirements listed above have been
derived from the work on the Concept of Coordination Mechanisms pre-
sented in chapter 5, the field study work presented in chapter 6, and the
work on requirements described in chapter 8. Most of the requirements
listed are based on experience, only a few of them are based on external
references. This is important for understanding the generality of the re-

259

Part III Towards computer support

quirements. The list is not complete, or ordered according to any particu-
lar criteria. The list is intended to be a source for inspiration. Using com-
mon sense is always required.

The most important input for the requirements specification process de-
scribed in chapter 8 was my knowledge (from the field study) of structures
and processes relevant for coordinating the work, and an overview of
technological options (cf. Kensing and Munk-Madsen, 1993).
Furthermore, when specifying requirements (cf. chapter 8), the well-
known problem of establishing criteria of relevance for what to include
was experienced. This will probably be a problem in many requirement
specification situations. Further research focusing on establishing concep-
tual support for specifying the allocation of functionality between actor
and system is therefore called for.

11.3 Design of coordination mechanisms

Outlining a complete prescription for the design of a computer-based co-
ordination mechanism is impossible. This section should by no means be
regarded as a set of prescriptions for how concrete computer-based coor-
dination mechanisms should be designed. The only aim, is to elaborate a
bit on, what kind of recommendations can be established based on what
has been learned from the process of designing the BRaHS prototype (cf.
chapter 9). The following will address aspects of possible choices regard-
ing overall, requirements, database structure, architecture, and user inter-
face.

11.3.1 Fulfilling the overall requirements

A set of overall requirements for coordination mechanisms has been dis-
cussed both in the previous section and in section 5.5. The most important
general facilities relates to visibility and manipulability of the work flow
protocol embedded in the system, local control of the execution, access to
relevant conceptual structures, support for negotiation, and facilities for
monitoring the state of affairs.

The presentation and manipulation of the work flow protocol can be
designed in many different ways, and it is hard to draw any conclusions
from the protocol design in BRaHS. A few things should be mentioned: It

260

Part III Towards computer support

is recommended to present the protocol visually, i.e., by means of interre-
lated graphical structures like icons, diagrams, etc. In situations where the
protocol consists of a rather limited number of ‘nodes’, a presentation
where the user can see the total protocol would be preferable. If there are
many nodes in the protocol, a leveled structure like the one used for, for
example, data flow models (see e.g., Yourdon, 1989) could be applied.
The manipulations on the protocol should be provided as manipulations
directly on the graphical structures. This kind of interaction is usually the
easiest to learn, operate and control for the users (cf. e.g., Shneiderman,
1987). Apart from BRaHS, an example is Regatta (Swenson et al., 1994)
providing a visual process language by which the users can specify the
flow processes.

Most of the daily use of a coordination mechanism will not involve
making changes to the protocol. It is therefore recommended to structure
the user—coordination mechanism dialog (the user interface) so that the
protocol is only presented on demand. Otherwise it might confuse the
users, rather than support them.

If we think of the computerized part of a coordination mechanism as
consisting of data structures and code manipulating these, the data struc-
tures should reflect the conceptual structures identified in the field study.
A table of the essential objects of coordination work, similar to the one
presented in figure 6-10, should be established (cf. section 11.1), and it is
recommended to include data structures reflecting all the structures in this
table. Please notice: The scheme is a source of inspiration, not necessarily
a complete list of all structures to be included. The structures should be
visible and modifiable to the users, e.g., information on actors, work
plans, tasks, classification structures, etc. should, upon request, be pre-
sented to the users, and the users should be allowed to update the infor-
mation.

The requirement regarding negotiation support should, first of all, be
fulfilled by providing channels for informal and unstructured communica-
tion and interaction (cf. e.g., Kraut and Streeter, 1995). E-mail, conferenc-
ing systems, etc. should be provided in relation to a coordination mecha-
nism. Use of more structured negotiation structures, as for example the
semi-structured message system suggested by Malone et al. (1987),
should also be considered.

261

Part III Towards computer support

Access to monitoring the state of affairs should be provided through
several types of facilities. Search facilities should include free combina-
tion search with respect to all the conceptual structures represented in the
mechanism. It is, furthermore, important to consider which kinds of ag-
gregated information that are required. It is not possible to set up direc-
tions for which aggregation types to provide based on the work presented
here. The aggregations must be designed through reflections on the coor-
dination work conducted in the actual work setting.

Facilities allowing an actor to actively direct another actors attention to
a specific situation should be provided too, for example by letting one
actor include comments on a structure in a coordination mechanism, or
using a communication channel, to notify another actor on changes in the
state of the field of work.

11.3.2 Database structure

Although a detailed description of the database architecture used for the
BRaHS prototype is considered out of scope of this dissertation, we have,
of course, learned some lessons with respect to the design of the basic
databases to be used by a coordination mechanism. The most relevant of
these experiences were related to the overall requirements established in
chapter 8.

The design of the underlying databases for coordination mechanisms
should reflect the requirement of providing access to structures containing
the conceptual structures, and the overall requirements of visibility and
malleability. First of all the database structure needs to reflect the concep-
tual structures identified and modeled (cf. section 11.1).

Since the protocol should be visible and malleable, a database structure
containing the relevant nodes and links in the protocol should be estab-
lished. The database needs to have a structure containing the originally
defined default protocol. This is the structure specifying how all new
instances of the mechanism (e.g., one for each bug registered in the S4000
project) should be treated until something else is specified. Furthermore,
the database should include a structure defining the protocol related to
each instance of the mechanism.

262

Part III Towards computer support

In terms of an entity-relationship diagram, the recommendations can be
summarized: In many database designs for coordination mechanisms, the
following entity-types should probably be included:

• Structures containing information about the aspects of the work
being coordinated, i.e., the information that needs to be mediated by
the mechanism (e.g., information on the bugs in a bug form mecha-
nism).

• Structures including information about the field of work, typically
conceptualizations of structures worked on (e.g., software modules)
and classification structures used.

• Structures reflecting relevant aspects of the work arrangement (e.g.,
the actors and roles involved).

• Structures containing the default protocol to be used.

• Structures specifying the specific protocol for each of the instances,
or events, to be coordinated, and

• Structures containing prescriptions specifying the policies and rules
to be applied when manipulating the protocol, or changing the con-
tent of the structures (e.g., rules for who are allowed to make
changes to the bug classification scheme, and how this should be
done).

These listed structures should, of course, be related to each other by
applying the normal rules for entity-relationship models (see e.g., Flavin,
1981). An introduction and discussion of the entity-relationship model
designed as part of the BRaHS design can be seen in Carstensen and
Albert (1995).

11.3.3 Architecture

To outline the overall architecture of coordination mechanisms was not an
essential issue in the design of BRaHS. It is, however, important to con-
sider, and others have made considerations that are relevant to be aware
of.

The architecture used in BRaHS was chosen to be organized as one
application. This could be started up from several work stations all having
access to the same central database. All the different types of actors should
then use the same application (cf. chapter 9). This is a very inflexible

263

Part III Towards computer support

structure, since changes regarding the involved roles, the overall policies
to be followed, etc. would require changes to the application. It is recom-
mended to chose a more module-based structure. This could, for example,
be implemented as a set of small applications (or rather extensions to
applications used for the actual work), each presenting the roles involved
or the overall coordination activities to be conducted. Divitini et al.
(1995b) discuss approaching coordination mechanisms as “active arti-
facts”, and introduce an architecture for designing coordination mecha-
nisms based on ideas of software agents, and Tuomo Tuikka has designed
a bug handling coordination mechanism based on these ideas (see Tuikka
and Sørensen, 1995). These ideas, however, need much more considera-
tions.

An interesting lesson regarding the architecture was learned from the
evaluation of BRaHS: Although the coordination work is described in
terms of roles, this might not be a good structuring concept for the appli-
cation. Hence, when designing the architecture, it should be considered
carefully, how the structure should be presented to the users. Both BRaHS
and the ideas presented in Gordion (Tuikka and Sørensen, 1995) are based
on the assumption, that the actors think of themselves in terms of roles.
This is often not the case in the daily work.

If the architecture designed includes building blocks which the users
are going to have access to, like for example the CSCW-systems specifi-
cation language OVAL (Malone et al., 1992), it is, furthermore, important,
that these basic building blocks are at a proper semantic level, i.e., the
primitives reflect the essential components in coordination work at a level
‘natural’ to the user.

11.3.4 User interface

As I have described elsewhere, design of modern user interfaces is diffi-
cult (Carstensen, 1993b), and it is far beyond the scope of this dissertation
to discuss it in any detail. Furthermore, it should be said, that BRaHS is
not very visionary with respect to the user interface design. The user inter-
face in BRaHS should not be considered exemplary in any sense. Thus,
only a few overall recommendations, apart from those already mentioned
in the previous sub-sections, will be presented.

264

Part III Towards computer support

The interface design of a coordination mechanism should, of course,
follow the standards and styles used for designing the other applications
the actors are using. Since the coordination mechanisms will be used in
parallel with other applications, the dialog should work similarly. The
basic heuristics for good interface design—as described in for example
Nielsen (1993)—should be applied here as well.

It is important to notice, that this last recommendation can be somehow
problematic, and requires a great deal of common sense from the designer
applying it. Most of the well-established heuristics within the field of
Human-Computer Interaction (e.g., be consistent, provide feed-back, al-
low undo, user in control, etc.) are based on a single user systems, can
therefore be problematic, when being applied on a multi-user situation.
There might, for example, be situations involving several actors collabo-
rating via a system where it would be impossible to define what undo
from one actor should mean. Hewitt and Gilbert (1993) provides a list of
examples of this kind of problems, when applying single user heuristics on
user interfaces for CSCW systems.

Another overall requirement for the actor-coordination mechanism dia-
log is, that it should be tailorable. The user interface should be designed so
that the users can smoothly change the system when switching from single
user use to multi-user use. Dewan and Choudhary (1991) provides an
interesting set of user interface primitives that can be used for designing
tailorable CSCW applications. Designing this type of interfaces is, how-
ever, extremely complicated, and it will not be discussed further here.

Work flow and protocol structures should be presented and manipu-
lated visually whenever this is possible. It is much easier for actors to
overview and understand flow models, if they are visualized by means of
graphs or similar visual components. The same goes for the presentation
of aggregated monitoring information. Human actors find it easier to
monitor graphically visualized information, especially if changes in the
state of affairs occur frequently and dynamically.

As mentioned previously, it should be carefully considered, if roles
should be used for structuring the actor-coordination mechanism dialog. If
this is the case, it should be clearly visible from the interface what the cur-
rent role is, and a smooth switch between the different roles must be pro-
vided.

265

Part III Towards computer support

11.4 Evaluation of coordination mechanisms

When talking about test and evaluation of prototypes here, two aspects of
the prototype are essential: One is the evaluation of the usability of the
coordination mechanism, i.e., how the functionality provided fits the
actual needs. The second regards the user interface, i.e., how easy is the
system to learn and use.

As mentioned in section 9.1 the prototype (BRaHS) was evaluated
through discussions with colleges, an informal presentation at Foss
Electric, and a rather unstructured heuristic evaluation session (cf. e.g.,
Nielsen, 1994) with Liam Bannon as the external expert. This would not
have been sufficient if BRaHS was intended to be a prototype of a system
to be implemented at Foss Electric.

Regarding evaluation of coordination mechanisms, it should first and
foremost be recommended to involve the users much more actively in the
design process. This will provide current feed back for the design process.
A huge body of literature on, how this can be organized, exists within the
areas of Human-Computer Interaction (e.g., Gould and Lewis, 1985) and
Participatory Design (e.g. Ehn and Kyng, 1987).

One of the best and most useful techniques for evaluation of the user
interface and the functionality provided is ‘think aloud experiments’. I
have, some years ago (in Carstensen, 1986), in detail discussed how such
experiments can be organized, and what can be obtained from using these.
I will highly recommend this technique to be used for evaluation of coor-
dination mechanisms too. It requires, however, a very carefully designed
experiment since the scenario should be set up, so it creates a convincing
illusion of several interdependent actors involved.

Another obvious technique to be used for evaluating a prototype of a
coordination mechanism is heuristic evaluation (cf. e.g., Nielsen, 1994)
involving external experts. This proved to be simple and useful for eval-
uating the BRaHS prototype.

Although it is highly recommended to use the two classical HCI tech-
niques mentioned above, one important aspect must be noted: Both tech-
niques are based on the basic assumption that the user interface basically
can be considered a dialog between one actor and one system. This goes—
as illustrated in the previous section—for many of the design heuristics,

266

Part III Towards computer support

models of human-computer interaction, etc. that is described within the
HCI literature. Coordination mechanisms will usually basically be a
means for interaction between several actors. When applying techniques
from the field of HCI it should therefore be considered, how the fact that
the coordination mechanisms is supposed to support several interacting
actors influences the evaluation or the design.

The work on designing and evaluating the BRaHS prototype clearly
illustrated, that use of scenarios is probably the most important technique
for evaluating coordination mechanisms. Almost all discussions, exam-
ples, considerations, etc. took their departure in reflections on, how the
prototype should (or would) support a specific work situation. Section 9.3
contained a short example of a scenario of how BRaHS could be function-
ing. It is highly recommended, that scenarios are used as an evaluation
technique. Carroll and Rosson (1992) illustrate, how scenarios can be used
for designing and evaluating computer-based systems.

The scenarios should be established and described carefully in collabo-
ration with the future users of the coordination mechanism. It is important,
that the scenarios include aspects of concurrency and involvement of sev-
eral interdependent actors, since these situations are very hard to illustrate
by means of the other techniques mentioned. The scenarios can then, after
the prototype is sketched, support verifying whether the provided func-
tionality appears to be sufficient and well designed.

As for most other aspects of systems development, evaluation is not a
question of finding one powerful technique and use it. Depending of the
situation, the best way to evaluate will usually be to use a mixture of ap-
proaches like: active user involvement in the design process, use of con-
trolled experiments, application of a structured walk through technique,
and use of scenarios for potential use of the coordination mechanism.
System evaluation is a complex and difficult task, that needs more detailed
planning and better accomplishment than the one conducted in relation to
BRaHS, and than the very general recommendations given here indicates.

This chapter has aimed at establishing a set of general recommenda-
tions based on the experiences gained from my own analysis and design
work. The recommendations are thus based on one case only. Further
experiments are required, and certain aspects, e.g., regarding the organi-

267

Part III Towards computer support

zation of the design process, need more explicit considerations. This has
not been possible in this chapter due to the limitations of the scope in this
dissertation, and the limited amount of time that can be spend on a project
like this.

268

Part IV Conclusion

 Part IV:
Conclusion

12. Lessons learned

A man, viewed as a behaving system, is quite
simple. The apparent complexity of his behav-

ior over time is largely a reflection of the
complexity of the environment in which he

finds himself....
(Simon, 1981).

The first 11 chapters in this dissertation have aimed at presenting the
problem setting and research questions addressed and the results following
from the concrete work on the questions. The three short chapters in this
final part are devoted to concluding the work. This is done by presenting
the lessons learned from the work, and discussing relevant questions for
future research.

Several of the previous chapters have already concluded on the results
achieved so far: Chapter 5 on the Concept of Coordination Mechanisms
presented the results derived from reflections on much of the work pre-
sented in the other chapters; Chapter 7 discussed the lessons learned
regarding analysis of coordination work; Chapter 11 summarized experi-
ences attained in relation to modeling coordination and the design of a
specific coordination mechanism, and several of the other chapters have
included sections reflecting on the results presented. This chapter will
mainly summarize the lessons learned. The lessons are organized in rela-
tion to: The conceptual framework; Characteristics of coordination work;
Analysis of coordination work; Requirements for computer support of co-
ordination; And coordination mechanisms design. It should, furthermore,
be noticed, that the 32 lessons listed in the following are partly overlap-
ping. The reason being that the experiences gained have, of course, rela-
tions to several of the sections in which the chapter is organized.

269

Part IV Conclusion

12.1 The Concept of Coordination Mechanisms

The work on the Concept of Coordination Mechanisms should be regarded
as basic research. The aim was to establish a set of concepts for concep-
tualizing the basic aspects of coordination activities conducted in a coop-
erative work setting. The intendment of the conceptual framework estab-
lished was to support systems analysts and designers in understanding
how procedures, forms, and other artifacts can be considered mechanisms
supporting coordination work, and to assist the design of computer-based
systems supporting coordination work. The basic research nature of the
work implies, of course, that the conceptual framework is still somewhat
preliminary.

The framework is based on the assumption that it is possible and rele-
vant to make an analytical distinction between work and its coordination.
Another important distinction is the one between the field of work, the
cooperative work arrangement, and the organizational context. The coop-
erative work arrangement is the actors, machines, etc. that cooperatively
transform and control the complex of objects, processes, etc. in the field of
work. This is all done in a wider organizational context.

The fundamental concept in the framework is the “coordination mech-
anism” defined as “a protocol, encompassing a set of explicit conventions
and prescribed procedures and supported by a symbolic artifact with a
standardized format, that stipulates and mediates the coordination of dis-
tributed activities” (cf. section 5.3). Since the stipulations are conveyed by
a symbolic artifact that mediates the relevant coordination information, the
state of the protocol is distinct from the state of the field of work. The
purpose of a coordination mechanism will (no matter whether it is com-
puter-based or not) usually be to reduce the complexity of coordination
work to be conducted by the involved actors.

The conceptual framework includes, furthermore, a basic model of the
essential dimensions of objects of coordination work. This model distin-
guish between objects of coordination work related to the structures of the
work arrangement and objects of coordination work related to the struc-
tures of the field of work, and between the stages of ‘nominal’ and ‘actual’
(cf. section 5.4). Finally the conceptual framework comprehends a set of
overall requirements which coordination mechanisms need to relate to in
order to be useful to the actors. These are: malleability (re-programmable

270

Part IV Conclusion

mechanisms), local control to the users, visiblity of the protocol embed-
ded, and linkability between the mechanisms (cf. section 5.5).

A summary of the results of the work presented in this dissertation
regarding the Concept of Coordination Mechanisms has been structured
into the following lessons:

Lesson 1: The analytical distinction between ‘coordination work’ and
‘work’ distinction proved useful. It is, however, important to notice,
that the distinction is recursive, i.e., what can be considered coordi-
nation work for one work arrangement might be the field of work—
and thus the “tangible work”—for another work arrangement.

The advantage of the analytical distinction was especially that focus
was explicitly directed towards coordination aspects of work.

Lesson 2: In order to conceptualize the relevant aspects of a specific
work situation, the field of work and the related work arrangement
must be defined. This is an iterative process based on the fact, that
the field of work and the work arrangement mutually constitute each
other.

The iterative process supports the analyst in improving his under-
standing of the mutual interdependencies among the involved actors.

Lesson 3: Coordination mechanisms used and invented in real-life
work settings seem to be established bottom-up, i.e., since we cannot
assume an complete overall view of the organization, and thereby
over the work arrangement, the detailed coordination mechanisms
can only be established from the bottom—or to put it differently: the
mechanisms can only be precisely defined by the actors involved in
the work. This has, of course, implications for how computer-based
coordination mechanisms should be designed.

Lesson 4: Real life coordination mechanisms are often interrelated. One
mechanism might, for example, subscribe to information from an-
other. This implies that a top down approach for establishing
detailed coordination mechanisms will be very difficult.

We should, hence, as designers provide a structure from which the
involved actors can specify mechanisms and relate (link) these to
each other.

271

Part IV Conclusion

Lesson 5: The Concept of Coordination Mechanisms proved to be a
useful framework for an analysis of a cooperative work setting con-
ducted with the purpose of providing input for designing computer-
based support, and it provided support and inspiration for the pro-
cess of designing a specific coordination mechanism. The concep-
tual framework should, however, only be seen as one of several
required approaches for doing work analysis.

The lessons mentioned here, and the approach taken throughout this
dissertation, are related only to the coordination aspects of cooperative
work. Cooperative work involves a lot of interesting questions related to
the tangible work (the essence of the field of work), such as: How does a
team collect the information required for conducting their tasks? How are
different approaches to a task combined in cooperative work setting? How
are decisions made in collaboration? Etc. These aspects were not
addressed. The delimited scope, in the work presented here, only
addressed aspects related to how mutually interdependent actors coordi-
nate their distributed activities. Due to the limited scope, the temporal and
spacial aspects of coordination mechanism are not sufficiently covered in
the Concept of Coordination Mechanisms.

The development of the conceptual framework was, apart from the
empirical studies, also based on litterature surveys (cf. section 2.3 and
5.6). A brief conclusion from this was that, certain approaches within the
sociological and organizational field (e.g., La Porte, 1975b; Mintzberg,
1983; Strauss, 1985; Gerson and Star, 1986) recognize the relevance of
addressing work and its coordination distinctly, but it provides no support
conceptualizations in order to inform systems design. Construction ori-
ented approaches within CSCW are based on rather rigid non-changeable
interaction structures (e.g., Coordinator, see Flores et al., 1988), or flexi-
ble structures, but with very atomic concepts at a low semantic level (e.g.,
Johnson, 1992; Malone et al., 1992). An interesting approach on modifi-
able work-flows is presented by Swenson et al. (1994). Interesting ideas
on how to establish flexible representations supporting coordination are
presented by Simon Kaplan and associates (e.g., Kaplan et al., 1992b;
Fitzpatrick et al., 1995).

The lessons learned regarding the conceptual framework have rele-
vance for both researchers and practitioners. Researchers should recognize

272

Part IV Conclusion

that further work on conceptualizing relevant aspects of cooperative work
is called for. Furthermore, the relation between the competing approaches
of bottom-up establishment of supportive structures versus the top-down
establishment, as promoted in, for example, Business Process
Reengineering (cf. e.g., Hammer and Champy, 1993), needs to be
addressed further. For practitioners, the lessons listed imply that a more
detailed and explicit focus on the coordination aspects of work than what
is the norm today is required.

12.2 Coordination aspects of cooperative work

The analysis conducted in relation to this dissertation provided much input
in terms of special characteristics of the cooperative work. These were
discussed in chapter 3 and 6.

The field study clearly illustrated that cooperative work often is ex-
tremely complex, and it requires a lot of coordination to handle the dis-
tributed actors and activities. The actors need to be aware of each other
and each others work, and to monitor the state of affairs in the field of
work. It was, furthermore, illustrated that it can be hard to communicate
about the state of affairs when these are “hidden in abstract representa-
tions” like in the software development process observed. Activities such
as allocating resources, planning and scheduling tasks, monitoring the
state of affairs in the field of work, classifying and prioritizing, distribut-
ing information, negotiating requirements, and negotiating priorities, etc.
are essential in coordination work. The coordination work is often closely
related to conceptualizations of the domain and the aggregations of de-
tailed information. Classification and categorization structures play a cen-
tral role in the coordination activities.

Summarizing the findings regarding coordination of cooperative work
should include the following lessons:

Lesson 6: Coordination work is often conducted by means of concep-
tualizations. The conceptual structures mainly reflect (contain refer-
ences to) structures of the field of work and structures of the current
work arrangement. The representations are usually distinct from
abstractions of the field of work itself. A coordination activity will
often result in a relation between two or more of these conceptu-

273

Part IV Conclusion

alizations, e.g., an allocation activity results in a responsibility rela-
tion between an actor and an informational resource.

Lesson 7: The most prominent basic coordination functions conducted,
in relation to the conceptualizations mentioned above, are: classifi-
cation and categorization, monitoring of status and progress in the
processes, allocation of resources, relating conceptual structures to
each other, meshing the resources and tasks into work plans, and
negotiations of classifications, allocations, obligations, etc.

The conceptual structures (cf. lesson 6) and the basic functions
mentioned here should be reflected in a system supporting coordi-
nation work.

Lesson 8: When the complexity of the needed coordination activities
increase, the involved actors invent and use mechanisms, for exam-
ple forms, boards, procedures, working rhythms, etc. These mecha-
nisms stipulate how certain aspects of the work and/or the coordina-
tion work should flow, and they mediate relevant coordination
information to the actors.

The rigidness of the mode of interaction the mechanism supports
spans from the ad hoc based to rigid protocols prescribing the flow
of work.

Lesson 9: Improved rigidness is often considered an advantage.
Although all the work was situated, the actors found that more rigid
procedures, explicit defined roles, clear-cut agreements, etc. were
required in order to cope with the complexity of the coordination. As
long as they were only two or three persons collaborating, they
could manage by means of ad hoc coordination. But as soon as they
became more than three interdependent actors, ad hoc coordination
proved insufficient.

The lessons learned from the field study confirm findings from other
similar studies. Artifacts used as means for coordination have been
described by for example Edwards et al. (1995), Harper et al. (1989a),
Pycock and Sharrock (1994a), and Gerson and Star (1986).

The lessons have impact on research within the area of CSCW. In
CSCW, some approaches claim, that all work is situated and that plans
and procedures are only resources for action. Other approaches aim at
establishing rigid and pre-specified flows for how work should be con-

274

Part IV Conclusion

ducted. The approach taken and the ideas presented aims at balancing
these two rather than going for one of the approaches.

For practitioners the lessons mentioned here imply that systems sup-
porting cooperative ensembles should provide very flexible structures with
a large degree of freedom for the users to tailor their systems.

12.3 Analysis of coordination

Apart from learning about coordination, the analysis also resulted in a
series of experiences regarding the use of techniques, concepts, etc. The
work provided input for a better understanding of what should be required
from methodologies, techniques, conceptual frameworks, etc. used for
analyzing cooperative work. These were discussed in chapter 7, 10, and
11. Basically, we can conclude, that several approaches need to be com-
bined. Apart from this, summarizing the lessons learned regarding support
for conducting field studies of coordination of cooperative work should
include:

Lesson 10: As mentioned in lesson 1, an explicit analytical distinction
between work and its coordination proved useful. By explicitly ap-
proaching the coordination aspects of the mechanisms (conventions,
artifacts, procedures, working rhythms, etc.), a deeper and more co-
herent understanding of the coordination and the mechanisms was
achieved.

Lesson 11: Frameworks and schemes for conceptualizing the basic
structures along which the coordination work is conducted, and for
grasping the basic coordination functions used, are important tools
for the analyst. These frameworks should not be considered as pre-
scribing what to look for, rather they should be sources for inspira-
tion, i.e., they are means for more systematic reflection on our ob-
servations.

Lesson 12: An analysis should be based on several different techniques,
typically observation, interviews, document analysis, etc. The field
study illustrated, that findings from using each of the techniques
supplemented what was found by the others.

This is not new, rather it confirms previous experiences and finding.
In general, it can be said, that analytical skills, use of common sense,

275

Part IV Conclusion

etc. are basic qualifications for conducting a good analysis, no mat-
ter which tools are provided.

Lesson 13: Both the static aspects of the domain modeled and the
dynamic aspects of the coordination work should be addressed and
modeled. The static aspects are important in order to understand the
conceptual structures used in the coordination work, whereas the
dynamic aspects are important in relation to grasping the very nature
of coordination.

Lesson 14: To be useful, analysis methodologies must address the in-
formal communication explicitly. The informal and ad hoc based
communication between collaborating actors is important. The
methodologies applied should provide techniques for localizing and
characterizing this type of interaction too.

The lessons listed here confirm what others within the software engi-
neering tradition have recognized (e.g., Kraut and Streeter, 1995), and
what existing approaches has been criticized for (cf. e.g., the description
of the lack of focus on timing and events in the object-oriented techniques
in Monarchi and Puhr, 1992). One of the basic modeling guidelines in the
object-oriented approaches—reorganize your models in order to avoid
events affecting several object classes—might in fact be a fundamental
problem in relation to the very nature of coordination work. Coordination
work is characterized by consisting of dynamics affecting several struc-
tures (cf. section 10.3)

 Again, the mentioned lessons have impact on both research and practi-
tioners. Researchers within the software engineering or information sys-
tems area need to address the lack of dynamical aspects, or lack of statical
aspects, in almost all existing approaches. For practitioners the lessons
imply that several different approaches and techniques should be applied
when doing work analysis.

12.4 Requirements for computer support of cooperative
work

Based on the findings from the field study, I have promoted a rather
detailed set of requirements for how coordination of software testing and
correction should be computer supported (cf. chapter 8). In brief, support

276

Part IV Conclusion

for coordination of distributed software testing and correction should
include distributed registration of problems, automatic routing of infor-
mation to the next relevant actor, structures for classifying problems and
software modules, and facilities for browsing and aggregating information
on problems and their status. Chapter 5 contained a set of general overall
requirements for coordination mechanisms including malleability of the
mechanisms provided, local control of the execution of the embedded
protocol, visibility of the content and protocol structure within the mecha-
nism, and linking between mechanisms. Reflections on what an analyst,
designer, or user should consider when setting up requirements are
described in section 11.2.

The following lessons summarize what has been learned regarding
requirements for computer support of coordination work:

Lesson 15: A coordination support system should include data struc-
tures reflecting the conceptual structures along which the coordina-
tion work is conducted, and provide facilities for making the basic
operations related to meshing, allocating, monitoring these struc-
tures.

Lesson 16: Support of coordination work should include facilities for
specifying work flows, and provide facilities for routing relevant
information among the involved actors.

As mentioned earlier, the observed actors attempted to increase the
use of pre-specified work flows in order to limit the need for ad hoc
coordination.

Lesson 17: A computer-based coordination mechanism should be mal-
leable and provide local control to the users. In order to fulfil this,
the protocol embedded in the mechanisms should be visible and
manipulatable to the actors. The mechanisms should, furthermore,
be tailorable.

This lesson has resulted in one of the most essential general re-
quirements for coordination discussed in section 5.5.

Lesson 18: Negotiation should be supported by a coordination support
system. Negotiation of obligations, classifications, allocations, etc. is
essential in coordination work. Negotiation could be supported by
including structures that can be used explicitly for this (e.g., as

277

Part IV Conclusion

structured communication channels), or by including a channel for
ad hoc based informal interaction among the actors.

Lesson 19: A coordination support system should offer facilities that
enable the involved actors of being aware of each other, and being
aware of the state of affairs in the field of work and the work ar-
rangement.

Co-located human actors are extremely good at being aware of each
others actions. When computer-based systems are inserted between
the collaborating actors, the problem of awareness support becomes
essential.

Lesson 20: Coordination mechanisms should be linkable. The existing
paper and board-based coordination mechanisms all functioned as
limited individual and detached mechanisms, but they were usually
related to other individual and detached mechanisms. The nature of
coordination could be regarded as a network of interrelated mecha-
nisms. Hence, a coordination support system should offer facilities
for linking mechanisms together.

Lesson 21: Computer-based coordination mechanisms should be pre-
sented as extensions to the applications already used by the actors,
rather than being designed as individual applications. Coordination
work is heavily intertwined with the actual work to be conducted.
Hence, a smooth, simple, and invisible transition from the part of the
system supporting work to the part of the system supporting coordi-
nation needs to be provided.

 As for the lessons on the conceptual framework (cf. section 12.1), the
requirements work have been heavily inspired by the literature: The at-
tempts to establish architectures and languages for building CSCW
applications (e.g., Johnson, 1992; Malone et al., 1992) are based on the
basic idea of providing conceptual structures relevant for the actors and
some basic manipulations on these. Flexibility and tailorability has also
been argued elsewhere (see e.g., Kaplan et al., 1992b; Bentley and
Dourish, 1995; Fitzpatrick et al., 1995; Schmidt and Simone, 1995), and
the need for informal communication channels was the overall conclusion
in Kraut and Streeter (1995). The problems with awareness have been
very carefully illustrated by Christian Heath and associates (e.g., Heath et
al., 1993; Heath et al., 1995).

278

Part IV Conclusion

From a practitioners point of view these lessons are quite important
since they establish a long list of requirements for how a computer system,
designed for supporting several interacting and collaborating actors,
should be designed. Most existing systems provide only one or a few of
the mentioned facilities, for example a work flow structure, or an unstruc-
tured communication channel. Almost none of the existing systems are
malleable and tailorable to the extent required.

12.5 Design of computer-based coordination
mechanisms

The work reported in this dissertation included design of a prelimary pro-
totype of a computer-based coordination mechanism supporting the coor-
dination of software testing and correction as it is conducted at Foss
Electric. The prototype, called BRaHS, is described in some detail in
chapter 9.

The prototype illustrated a number of ideas and provoked a lot of dis-
cussions and reflections on design of coordination mechanisms. The
lessons regarding the requirements (lesson 15 - 21) affect also the design,
and can be considered as lessons on the design of coordination mecha-
nisms. Although the work on the prototype was a rather “quick and dirty”
design process, a few central conclusions can be derived from the work. In
terms of lessons learned these conclusions are:

Lesson 22: It is not clear to what extent flexibility should be provided.
Malleability and local control are important. Providing too high a
degree of freedom for manipulating the execution can complicate
the use of the mechanism too much compared to the benefit. This is
a trade-off requiring thorough considerations.

Lesson 23: The notion of roles is problematic in the design. Roles are
important and essential when characterizing coordination work, but
the roles should usually not be explicitly reflected in the user inter-
face.

Lesson 24: Supporting awareness by means of computers is complic-
tated. Search facilities for actively finding specific things are not too
complicated, but to provide “passive” awareness support of what
goes on, and to what extent this should be provided, require a

279

Part IV Conclusion

detailed analysis of the awareness needs. Again, this is a trade-off.
Too little awareness support might mean too much add hoc interac-
tion, whereas too mush awareness support could mean too many
interupts.

Lesson 25: Some of the requirements established for coordination sup-
port can be achieved by means of existing technology, such as con-
ferencing systems, e-mail. The design should thus also focus on how
to integrate these different facilities with the applications used for
the actual work, and with the new facilities designed.

Lesson 26: The protocol, and the manipulations on the protocol, should
normally be presented visually. It appeared to be easier to under-
stand the flow when it was visually represented compared to the
verbal descriptions in, for example, the requirements (cf. chapter 8).

The protocol should not have too dominant a presentation in the user
interface. To many actor changes to the protocol will be very rare.

Lesson 27: To implement a visible and changeable protocol increases
the demands on the database design. The database design can benefit
from separating aspects regarding the relevant information to be
mediated by the mechanism from aspects regarding the default pro-
tocol, and aspects regarding the dynamic protocols related to each
instance of the mechanism.

Lesson 28: A flexible an decomposed architecture should be chosen for
coordination mechanisms. Designing a coordination mechanism as
one application results in a to inflexible structure. Since the structure
of work is often changing, so is the coordination of work. It becomes
too problematic to introduce changes if the architecture is organized
so that the coordination mechanisms must be re-programmed every
time aspects of the work organization are changed. A more flexible
structure based on, for example distributed agents reflecting the
roles involved, will probably prove to be better.

Lesson 29: The well-established heuristics and guidelines for user
interface design should be applied when designing coordination
mechanisms. It must, however, be considered carefully, because the
well-established heuristics within the field of Human-Computer
Interaction are usually based on a single user systems. It can there-

280

Part IV Conclusion

fore be problematic to apply them when designing systems for mul-
tiple interdependent users (cf. section 11.3.4).

During the design of BRaHS, several basic questions related to design
of coordination mechanisms were left open. The most important of these
was, how to decide on propagation of changes to a running protocol: How
do we “inform” the rest of the system and the actors using the system?
And how do we handle concurrency and interdependencies among
instances of the protocols? This has been left open for further research.

The eight lessons mentioned above have massive impact on how prac-
titioners should design coordination mechanisms and organize the design
activities.

It has been mentioned several times, that focus in this dissertation has
not been on the design process. The work has not explicitly addressed the
problem complex of how to organize and conduct the analysis and devel-
opment work. A few overall lesson regarding how to organize the process
have, however, been learned:

Lesson 30: The analysis and design work should include use of many
different kinds of representations for describing the analysis findings
and design ideas. The work has illustrated the need for understand-
ing and modeling both static conceptual structures and their dynamic
interaction. The field study indicated further, that the actors were not
explicitly aware of their coordination activities. This calls for using
several representations in order to get as rich a picture of the coordi-
nation as possible.

Lesson 31: Much of the coordination work was conducted tacitly, i.e.,
there is a high degree of uncertainty of, what work is to be sup-
ported, and how it should be supported. This uncertainty implies the
need for organizing the analysis and development work in a highly
iterative manner.

Lesson 32: Evaluating coordination mechanisms is very complicated
and the commonly used techniques for doing this might prove in-
sufficient. The problem is mainly, that it is difficult to establish
situations that illustrate how several interdependent actors can inter-
act by means of a coordination mechanism. To phrase it differently:
The work situation that the coordination mechanism should be used

281

Part IV Conclusion

in might be impossible to simulate in an experiment or to describe in
a session involving the future users.

Lesson 30 and 31 are not surprising. Similar lessons can be found in the
computer science and information systems literature. The last lesson
should be interesting to researchers within the field of CSCW and infor-
mation systems. The question of, how to evaluate systems supporting
complex cooperative work settings, remains to be answered.

The 32 lessons listed in this chapter should not be read as precise and
explicit statements on, how to conceptualize coordination work, how to
analyze coordination, how to design a coordination mechanism, or how to
organize the development of coordination mechanisms. Rather, the lessons
should be seen as an executive summary of what I, as a researcher, an ana-
lyst, and a designer, have learned about analyzing and conceptualizing
certain aspect of coordination of cooperative work, and about the design
of computer support for certain specific coordination activities.

282

Part IV Conclusion

13. Future research

“To make a bundle, be a star;
Spread it wide and spread it far.

But if you want to change the sun,
Best begin with Number One.”

(Poem reprinted in Weinberg, 1985)

In his entertaining and informative book on consulting, Weinberg (1985)
defines “The Harder Law” stating that: “Once you eliminate your number
one problem, YOU promote number two” (Ibid., p. 17). I am not in a
position to claim, having eliminated problem number one, but the work
has definitely promoted (and illustrated) new problems to be attacked.
This is along the same line as Heinz Klein, when he, in his informative
paper on how to establish a prospectus and workplan for a dissertation
states that:

“When formulating the problems that you plan to attack and thereby defining the
scope of your dissertation, keep in mind that there is, indeed, life after your thesis.
Hence there is no need to solve all the problems that you are discovering. For a while
keep expanding your horizons. But then be MODEST with what can be achieved in a
single piece of work...” (Klein, 1989).

Although this dissertation has approached a number questions, some
addressed more thoroughly than others, there is, of course, still a long list
of open relevant research questions yet to be addressed. I have considered
these out of the scope of this dissertation. Several of them are, however,
both interesting and relevant to think of as future research to follow the
work presented. This chapter will introduce some of these.

As mentioned in the previous chapter, the work on establishing the
Concept of Coordination Mechanism has been a basic research oriented
activity. Only limited and preliminary conceptualizations existed before-
hand. There will, therefore, quite naturally still be a lot of improvement
and refinement work to do:

The notion of ‘time’ in relation to the conceptual framework needs to
be explored further. The dimension of time have not, neither in our studies
of existing CSCW applications (cf. Andersen et al., 1993) nor in the field
study discussed in this dissertation, played a major role. The coordination

283

Part IV Conclusion

activities studied have been conducted over a long period of time. The co-
ordination has not been time-critical, or in other ways been closely related
to time constraints. The dimension of time is thus not reflected in, for
example, the objects of coordination work. Many work situations require
that the coordination is handled in real time. This is clearly illustrated in,
for example, the reanalysis of the hot rolling mill (Popitz et al., 1957) pre-
sented in Schmidt (1994c), or the different control room studies (e.g.,
Harper et al., 1989b; Heath and Luff, 1991; Fillipi and Theureau, 1993).
Several questions need to be addressed: How should time be reflected in
the conceptual framework? How should the model of dimensions of
objects of coordination work be expanded (with a third dimension?).
Which new requirements should be established for computer-based coor-
dination mechanisms due to the fact that some coordination work has seri-
ous time related constraints?

Similar to the notion of time, the notion of ‘space’ (or work context)
needs to be explored further. Much coordination work is done with refer-
ence to certain aspects of the space in which the work is conducted.
Brown and Duguid (1994) have illustrated the importance of the working
context when cooperating, both the ‘centre’ aspects and the ‘periphery’
aspects. This opens questions to be answered similar to those raised
regarding ‘time’: What does the notion ‘work context’ include, and how is
it organized? Heath et al. (1995) are, for example, very critical to the
approach taken by Brown and Duguid. Which specific requirements
should be raised for computer support?

The completeness and coherence of the dimensions of objects of coor-
dination work should also be studied further. The literature used as input
for the work presented here, and the empirical studies carried out, have
pointed at the dimensions included in the model illustrated in figure 5-2.
Other types of work domains, or differently organized work arrangements,
might have coordination mechanisms based on, or including, other di-
mensions of objects of coordination work. Further field studies, and sur-
veys of literature describing cooperative work settings, are required in
order to refine the model of dimensions of objects of coordination work.

As mentioned in chapter 7, the operation lists were not particularly use-
ful as candidates for elemental operations of the coordination work within
the work setting studied. A more coherent list including better detailed

284

Part IV Conclusion

descriptions of, how the operations manipulate the objects of coordination
work is required in order to improve the efficiency of the model as an
analysis tool.

Better methodological support for guiding the work analyses is also
required. The conceptual framework, as it is now, supports a work analy-
sis by providing concepts for structuring the findings, and by offering
inspiration for the analyst. There is, however, no methodological support,
i.e., there are no prescriptions guiding the analyst in: Where to start, what
kind of observational studies to carry out, what kind of interviews to plan,
which types of artifacts to look closer at, etc. I have previously, in collabo-
ration with Kjeld Schmidt, worked on establishing a conceptual frame-
work for supporting work analysis including methodological guidance
(Schmidt and Carstensen, 1990; Carstensen and Schmidt, 1993a;
Carstensen and Schmidt, 1993b). A systemic approach is, as for the
Concept of Coordination Mechanisms, pertained in the Work Analysis
methodology. The Work Analysis was used as inspiration for the Foss
Electric field study, and have been applied with some success earlier (e.g.,
Carstensen, 1993a; Simonsen, 1994). It would be obvious, in a future
research project, to try to integrate the ideas and concepts of coordination
mechanisms into the conceptual framework provided by the Work
Analysis, and to expand the methodological support to include prescrip-
tions and guidance for, how to analyze the coordination aspects of the
work arrangement studied.

Methodological support raise another interesting and complicated
question: What information about the cooperative aspects of a work set-
ting is sufficient and useful for a process designing computer-based sup-
port for a cooperative work setting. Although the future users should be
involved in the design of systems supporting the cooperative aspects of
the work (cf. e.g., Kyng, 1991), we need as analysts and designers, knowl-
edge about the work and the work setting to be supported. A work analysis
process can go on forever, and we will constantly expand our understand-
ing of the characteristics of the work and the work setting. A never ending
analysis process is, of course, not possible. We therefore need a better
understanding of, what type of information is sufficient from a pragmatic
point of view. Some analysis approaches have implicitly, by the concepts
and techniques they provide, defined a set of criteria of relevans (for

285

Part IV Conclusion

example the object-oriented methodologies, see e.g., Coad and Yourdon,
1991). Others have illustrated and discussed, how the ethnographically
based methods can be useful (e.g., Hughes et al., 1992; Suchman, 1995).
These methodologies do not apply a fixed set of concepts, and the analy-
ses is difficult to abstract from the actual settings. As argued by Lucy
Suchman (1995):

“...by definition normative accounts represent idealizations or typifications. As such,
they depend for their writing on the deletion of contingencies and differences. [...]
Problems arise, however, when normative representations are either generated at a
distance from the sites at which the work they represent goes on or taken away from
those sites and used in place of working knowledges.” (p. 61).

Both positions are, however, problematic: The methodologies with a
fixed set of concepts have too much of a ‘Prucustes approach’ (cf.
Carstensen and Schmidt, 1993a) excluding everything that do not fit. And
the ethnographically inspired methods do not seriously address the prob-
lem of limited resources and time available for analysis in real life soft-
ware development. Further work on what is required and useful informa-
tion for informing design of systems supporting cooperative work is called
for. Such work was started in Hughes (1993). It was concluded, that it is
needed to “examine the conceptual basis for viewpoints and how these
may be used to allow different perspectives from different theoretical per-
spectives to be contrasted and compared in the development of require-
ments” (p. 241). There is still much to do.

In relation to the analysis methodology support discussion, the use of
object-oriented methodologies should be mentioned. As argued in chapter
10, there are some good arguments for thinking of coordination mecha-
nisms in terms of interrelated object classes. It was concluded that the
OOA&D methodology provided good support for specifying the static
aspects of the model, but the dynamic aspects of the problem domain
modeled disappeared in the model. There is no doubt, that the object-ori-
ented methodologies will become common in software development in the
near future. Research on how to better represent the dynamic aspects of
coordination work in object-oriented models is therefore highly
demanded. A starting point could be, to take a closer look at the ideas for
handling behavioral complexity by means of the concepts of ‘contracts’
and ‘collaboration graphs’ suggested by Wirfs-Brock et al. (1990). Also

286

Part IV Conclusion

the possibilities for attaching formalisms like state-transition diagrams or
Petri-nets to the existing formalisms need further consideration.

Regarding the construction oriented aspects, it would be obvious to
suggest design, implementation, use, and evaluation of a number of proto-
types of computer-based coordination mechanisms. The design of BRaHS
(cf. chapter 9) provided a lot of input for improving the conceptual
framework, and for refining my understanding of requirements for sup-
porting the design process. To establish a sufficient body of experiences, a
number of experiments on designing and evaluating coordination mecha-
nisms within a number of different work domains having different basic
characteristics are required. For example, what will happen, if computer-
based coordination mechanisms are going to be used for coordinating time
critical work (e.g., navigating a large tanker), or for coordinating activities
between actors that do not have a well-defined common field of work
(e.g., a group of university teachers and researchers)? To develop the
Concept of Coordination Mechanisms further, a series of practical experi-
ences with design of coordination support systems is needed.

In relation to these practical experiences, it would also be interesting
and relevant to look at other systems and frameworks in order to get a
deeper understanding of the differences and commonalities among the
approaches. To establish a basis for comparison, it could be interesting to
have identical coordination support system implemented by means of sev-
eral “approaches”. The most obvious “platforms” to try out would be
OVAL (Fry et al., 1992; Malone et al., 1992), Regatta (Swenson et al.,
1994), ConversationBuilder (Kaplan et al., 1992b; Bogia et al., 1993a),
and the continuation on the work on ConversationBuilder, WORLDS
(Fitzpatrick et al., 1995). The work on the conceptual framework would
benefit a lot from thorough comparisons with these (and other) concepts.

Two architectural questions should be explored further: A group
around Kjeld Schmidt and Carla Simone (involving myself) has been
working on a three layered architecture for coordination mechanisms,
having an α-level presenting the running instance of the mechanism, a β-
level offering a set of structures for constructing domain specific mecha-
nisms, and a γ-level providing basic building blocks (at an operating sys-
tems level) for designing coordination mechanisms (cf. e.g., Schmidt et
al., 1993; Simone et al., 1994; Schmidt and Simone, 1995). This architec-

287

Part IV Conclusion

ture needs further refinement, and the ideas of, how to develop it into a
agent-based framework (see Divitini et al. , 1995a; Divitini et al., 1995b)
for design of coordination mechanisms should be elaborated much further.

The second architecture related question concerns the ideas mentioned
previously: Coordination mechanisms should be extensions of the appli-
cations used in the work domain rather than isolated applications. It
should be thoroughly addressed, how this can be organized.

Another very interesting question which has emerged several times
during the work presented in this dissertation is the question of how to
design the interaction between the human actors and the coordination
mechanism. As illustrated in both chapter 11 and 12, the guidelines and
heuristics for user interface design established within the Human-
Computer Interaction field are only partly valid for design of user inter-
faces for systems to be used by several interdependent actors. In order to
establish a useful set of guidelines, the literature discussing user interface
aspects of CSCW systems (e.g., Dewan and Choudhary, 1991; Hewitt and
Gilbert, 1993; Manohar and Prakash, 1995) should be carefully studied.
The results from this should be related to thorough experiments with some
of the other well-established HCI heuristics, as they are presented in, for
example, Shneiderman (1987), Nielsen (1993), or Dix et al. (1993).

A careful reconsideration of some of the models used for understanding
the interaction between users and computer systems (e.g., Norman’s Gulf-
of-execution / Gulf-of-evaluation model, cf. Norman, 1986) is also re-
quired. These models are based on a direct interaction between one actor
and a computer system, but, what is the validity of these models, if the
computer system is used as a medium through which a number of actors
are interacting? This and related questions should be investigated further.

Finally, the question of how to evaluate coordination mechanisms
needs to be addressed. As discussed in section 11.4, most of the estab-
lished techniques for evaluating usability of computer-based systems have
problems in addressing the concurrency and user interdependence that
characterizes coordination activities. It should be investigated to what ex-
tent we can use experimental techniques (e.g., “Think aloud” experiments,
cf. Carstensen, 1986), and how experiments evaluating the usability of co-
ordination support systems should be set up. One of the few relevant
alternatives to experiments is the use of scenarios. Further elaboration on

288

Part IV Conclusion

how scenarios can be used for informing the design of computer-based
coordination support systems is required. As argued by Kyng (1995) sce-
narios must be open-ended, rather than providing algorithm-like prescrip-
tions for the system use. In relation to designing and evaluating coordina-
tion mechanisms, it is perhaps even more important, that the scenario
techniques to be applied have support of coping with, and illustrating, the
concurrency, the user interdependences, the possible time constraints, etc.
that characterizes the coordination to be supported. How such scenarios
can be organized should be explored.

Each of the research questions mentioned above contain many prob-
lems and open questions. It requires a long series of research dissertations
to deal thoroughly with any of the listed problems, and they should only
be regarded as examples, being interesting and relevant continuations of
my work.

289

Part IV Conclusion

14. Conclusion

“The more you say,
the more cluttered it becomes,

and the closer you get to the truth”
(my horoscope on the

23. January 1995).

This dissertation has presented the work I have conducted over the last
three years. The aim was to discuss what characterizes the coordination of
complex cooperative work, conceptualizing certain aspects relevant for
analyzing and designing computer-based support of coordination work,
analyze coordination aspects of a cooperative work setting, and illustrate
requirements for, and concrete design of, computer-based support.

Apart from the current dissertation, the work has resulted in a number
of technical reports, conference proceedings papers, and journal papers. A
list of the relevant papers produced during the thesis work can be found in
Appendix A.

The results of the thesis work is first and foremost a central contribu-
tion to the establishment of a conceptual framework. The framework has
been established in collaboration with colleges at Risø and University of
Milano. The contribution presented is one of several (cf. chapter 5). The
Concept of Coordination Mechanisms is a conceptual frame for approach-
ing mechanisms supporting coordination through symbolic artifacts that
mediate relevant coordination information among the involved actors, and
embed a protocol that stipulates the coordination of distributed activities.
The conceptual framework includes a basic model of the essential dimen-
sions of objects of coordination work, separated in aspects related to the
structures of the work arrangement and to the field of work. Included in
the conceptual framework is, furthermore, a set of overall requirements
regarding malleability, local control, visiblity, and linkability of coordina-
tion mechanisms.

The most important input for establishing the conceptual framework
was the field study conducted at Foss Electric. The software design and
testing part of a large scale manufacturing project involving a multitude of
people with different areas of competence was studied. The actors were

290

Part IV Conclusion

mutually interdependent, and they spent a lot of time coordinating their
activities. The field study and data analysis were based on qualitative data
collection techniques such as interviews observations, documentation
analysis, and project meeting participation. The work setting has been
characterized, and a number of paper-, board-, and work-cycle-based co-
ordination mechanisms has been described and analyzed. Especially a
form based mechanism for coordinating the distributed activities related to
testing and correcting software has been carefully described and analyzed.
This was done by means of the concepts of coordination mechanisms. The
analysis illustrated, that the coordination activities were mainly based
upon conceptualizations of structures in the field of work and structures
reflecting the cooperative work arrangement. Activities such as allocating
resources, planning and scheduling tasks, monitoring the state of affairs,
classifying and prioritizing, distributing information, and negotiating were
essential. The field study, furthermore, illustrated how actors, involved in
cooperative work settings facing problems in coping with the complexity
of the coordination work, invent and use coordination mechanisms. These
mechanisms force an extended formalization of the coordination activities
by prescribing how the coordination must be conducted and which infor-
mation that should be mediated to the involved actors. Several examples
of such mechanisms invented by the actors have been provided.

Based on the analysis, I have discussed needs for computer support of
the coordination of software testing and correction work. A set of general
requirements for computer support has been provided. These requirements
included support to: Ensure that all registered bugs are treated, route co-
ordination information to all involved actors, provide an overview of the
state of affairs of testing and correction activities, and support of a process
shifting between being distributed and centralized treatment. The require-
ments were illustrated by presenting a series of interactions between actors
and the mechanism. These illustrated how a mechanism could fulfill the
requirements. In order to outline a computer-based coordination mecha-
nism, a number of decisions regarding the detailed requirements and the
design were made related to the classification structures.

Based on the requirements, a preliminary prototype of a computer-
based coordination mechanism supporting decentralized bug reporting and
information routing has been described. The aim was to illustrate how the

291

Part IV Conclusion

basic components in a coordination mechanism (artifact, protocol, etc.)
could appear in a concrete system, and to provide an example of, how the
ideas of visibility, local control, and routing support could be designed.
The prototype was introduced and discussed by means of the concepts
within the conceptual framework.

Use of object-oriented techniques is a central trend in the area of soft-
ware development, and several basic characteristics of the coordination
mechanisms studied called for an object-oriented modeling technique. I
have therefore presented an attempt to model the bug form mechanism by
means of object structures. The experiment should explore, what the pos-
sibilities and limitations for modeling computer-based coordination mech-
anisms using an object-oriented analysis methodology were. The conclu-
sion from the experiment was, that the methodology applied provided
good support for specifying the static aspects of the model, but modeling
the dynamic aspects of the problem domain was insufficiently supported.
These aspects disappear in the models. Formalisms and techniques
explicitly addressing the dynamic aspects of the coordination should be
integrated in the object-oriented methodologies.

Apart from the contribution mentioned above, this dissertation has
provided an overview of some of the relevant literature within CSCW and
related areas. A series of discussions have also been presented. These dis-
cussions departured from experiences from analyzing the S4000 work set-
ting at Foss Electric, from establishing a requirements specification for
computer-based coordination support, from designing a prototype of a
computer-based coordination mechanism, and from evaluating the proto-
type.

Conclusions from these discussions indicate, that The Concept of
Coordination Mechanisms appeared to be a useful tool for analyzing co-
ordination aspects of cooperative work. It must, however, be combined
with other approaches and the methodological support should be im-
proved. The conceptual framework also gave inspiration to the design of a
coordination mechanism. Especially the general requirements proved use-
ful. The basic operations related to the objects of coordination work were,
however, not as supportive as expected. The final prominent conclusion
was, that sufficient evaluation of coordination support systems requires
use of more advanced and complex techniques than what is commonly

292

Part IV Conclusion

used in software development. The overall conclusions and lessons
learned are discussed in more detail in chapter 11.

 A number of obvious, interesting, and relevant continuations of the
work presented here have been proposed (in chapter 13). Each of the top-
ics mentioned would require a series of dissertations to cover thoroughly.
So, Heinz Klein (1989) was absolutely right: There is, indeed, life after
your thesis!

Risø, December 1995

Peter Henrik Carstensen

293

Danish summary

Danish summary

Denne afhandling dokumenterer de forskningsaktiviteter jeg har gennem-
ført i forbindelse med mit Ph.D.-studie. Arbejdet blev påbegyndt i januar
1993 og har varet tre år. Studiet har været gennemført ved Roskilde
Universitet, Datalogisk Afdeling, med Finn Kensing som vejleder.

I store dele af erhvervslivet kan man konstatere øgede krav til produk-
tionstid, forøget kompleksitet af de produkter der fremstilles eller de ser-
vices der ydes, større krav til produktkvalitet, etc. Disse krav leder ofte til
at flere aktører involveres i arbejdsprocesserne: Større kooperative ar-
bejds-arrangementer opstår, og aktørerne er ofte gensidigt afhængige i de-
res arbejde. Dermed øges kravene til koordinationen af de distribuerede
aktiviteter.

Denne afhandling ligger indenfor forskningsfeltet Datamat-støttet ko-
operativt arbejde (CSCW - Computer Supported Cooperative Work).
Afhandlingen omhandler specielt, hvorledes koordinationsaktiviteter kan
understøttes af datamat-baseret teknologi. Der fokuseres på tre hoved-
områder indenfor dette:

(1) Hvorledes kan vi analytisk forstå koordinationsarbejde med
henblik på at udvikle datamatiske støttesystemer?

(2) Hvilke krav må opstilles for datamat-støtte af koordination af ko-
operativt arbejde?

(3) Hvordan kunne et datamat-baseret system til støtte af koordina-
tion udformes?

Arbejdet har i høj grad været empirisk drevet. Der er specielt gennem-
ført et større feltstudie på Foss Electric. Her har det været studeret, hvor-
ledes en gruppe software designere organiserede deres samarbejde i for-
bindelse med udvikling af et stort software kompleks som skal styre et
kompliceret instrument til måling af mælkekvalitet. Softwaredesignernes
håndtering af koordinationen af aktiviteterne omkring test og fejlrettelse af
software blev grundigt studeret og beskrevet. Derudover er der blevet
bygget en horisontal prototype af en datamat-baseret mekanisme som skal
støtte koordinationen aktiviteterne omkring test og fejlrettelse.

295

Danish summary

Et af de primære resultater er bidragelsen til opstilling af en begrebs-
ramme til at forstå og beskrive koordinationsmekanismer. Ideerne om
koordinationsmekanismer udspringer fra Kjeld Schmidt’s arbejder (se for
eksempel Schmidt, 1994c). En koordinationsmekanisme er et artefakt
(formular, organisatorisk procedure, edb-system, etc.) som medierer rele-
vant koordinationsinformation imellem de involverede aktører og som har
en indlejeret protokol, der stipulerer hvorledes (dele af) arbejdet eller dets
koordination skal forløbe. Ideerne i begrebsrammen er baseret på nogle
grundlæggende antagelser og konceptualiseringer: Det antages at vi analy-
tisk kan skelne imellem egentligt arbejde og den koordination som er
nødvendig fordi flere aktører er involveret. Dette fører til en fundamental
forståelse af et kooperativt ensemble som en gruppe aktører der samarbej-
der i forhold til et givet arbejdsfelt. Et kooperativt arbejdssystem er såle-
des defineret i forhold til arbejdet snarere end i forhold til organisatoriske
strukturer.

 Begrebsrammen kan bruges som støtte for en arbejdsanalyse gennem-
ført med henblik på at bygge datamat-baseret koordinationsstøtte. Det
omtalte feltstudie har dels prøvet at benytte begrebsrammen som et analy-
tisk værktøj, dels været brugt som empirisk grundlag for en lang række
forbedringer og justeringer af begrebsrammen.

Der er endvidere, i tilknytning til begrebsrammen, etableret en række
overordnede generelle krav til koordinationsmekanismer. Disse krav kan
benyttes som støtte og inspiration i en design-orienteret process. De over-
ordnede krav handler specielt om modificerbarhed af koordinations-
mekanismer, lokal kontrol til de involverede aktører, synlighed af den
indlejrede protokol, og faciliteter til sammenkobling af koordinations-
mekanismer. Disse, og krav udledt af feltstudiet, har dannet grundlag for
designet af en illustations-prototype.

Afhandlingen er grupperet i fire dele:

Første del etablerer rammerne for arbejdet. Problemstillingen introdu-
ceres og afgrænses: Afhandlingen tager udgangpunkt i et systemisk per-
spektiv inspireret af Arbejdsanalysen (Schmidt and Carstensen, 1990), og
fokus er på konceptualisering med henblik på design af datamatiske
systemer til koordination. Aspekter som sociale strukturer, magtforhold i
brugerorganisationen, brugerinvolvering i systemudviklingen, mv. er ikke

296

Danish summary

explicit adresseret. Der gives endvidere (i kapitel 2) en oversigt over dele
af litteraturen inden for CSCW-feltet. Første del afrundes med en intro-
duktion til Foss Electric casen.

Anden del er orienteret imod konceptualisering af de centrale struktu-
rer af koordinationsarbejde og hvorledes koordinationsmekanismer stu-
deret igennem en arbejdsanalyse kan analyseres og beskrives. Først (i
kapitel 4) diskuteres baggrunden for, og centrale karakteristika ved, ko-
operativt arbejde. Kooperativt arbejde opstår bl.a. pga. krav om øget kapa-
citet, involvering af forskellige specialer, og ønsker om at kombinere flere
forskellige perspektiver. Forskellige tilgange til koordinationsarbejde fra
sociologi, organisationsteori, og datalogi diskuteres kort. Den koncep-
tuelle begrebsramme for koordinationsmekanismer introduceres sammen
med en diskusion af overordnede krav til ‘real life’ koordinations-
mekanismer. Som nævnt omhandler kravene modificerbarhed, lokal kon-
trol, synlighed af protokollen, og sammenkobling.

I kapitel 6 gennemgåes, hvorledes en fejlrapport-formular, og den til-
hørende procedure for formularens anvendelse, kan opfattes og beskrives
som en koordinationsmekanisme. Formularen blev udviklet og anvendt af
software-udviklerne på Foss Electric. Det illustreres hvorledes formula-
ren, gennem en formalisering af arbejdsforløbet og en mediering af rele-
vante informationer, reducerede aktørernes overhead af koordinations-
aktiviteter. Analysen påpeger desuden, at koordination i høj grad baseres
på konceptualiseringer af strukturer i arbejdssystemet og arbejdsfeltet.

Anden del afrundes med en diskusion af, hvad der kræves af metoder
som skal støtte analyse af koordinationsarbejde. Desuden reflekteres over
brugbarheden af begrebsapparatet som analyseværktøj. Helt overordnet
konkluderes det, at den analytiske skelnen imellem arbejde og dets koor-
dination er meget anvendelig, at de konceptualiseringer begrebsrammen
tilbyder er anvendelige—men skal videreudvikles, at analyse af koordina-
tion ikke kan gøres ved hjælp af observationsbaserede teknikker alene,
samt at analyse af kooperativt arbejde bør baseres på anvendelse og kom-
bination af flere forskellige perspektiver og typer af konceptualiseringer.

Tredie del er konstruktivt orienteret. Først (i kapitel 8) opstilles en
serie krav til, hvad en datamat-baseret koordinationsmekanisme til håndte-

297

Danish summary

ring af koordination af software test- og rettelse skal understøtte. De over-
ordnede krav omhandler: 1) adgang til strukturer som repræsenterer aktø-
rer, software moduler, planer, registrerede fejl, og klassifikations-
strukturer, 2) rutening af relevant information imellem aktørerne, 3) facili-
teter til at monitorere fremdrift og status, 4) faciliteter til allokering af
resourcer, og 5) kanaler til kommunikation og forhandling imellem de
involverede aktører. Kravspecifikationen skitserer endvidere, hvorledes
interaktionen imellem koordinationsmekanismen og dens brugere kunne
forløbe.

En preliminær prototype præsenteres herefter. Der er i prototypen lagt
vægt på at illustrere, hvorledes kravene om modificerbarhed, lokal kontrol
og synlighed af den indlejrede protokol kunne opfyldes. Prototypen og et
tænkt scenarie for dens brug beskrives, og designet diskuteres ved hjælp af
begrebsrammen.

Koordinationsmekanismer har visse centrale karakteristika som peger
på, at det kunne være frugtbart at modellere dem objekt-orienteret. De er
sammenkoblede “isolerede” mekanismer med en selvstænding data-
struktur og funktionalitet. Dette sammenholdt med det faktum, at objekt-
orienterede metoder er meget populære for tiden, er baggrunden for et
eksperiment beskrevet i kapitel 10. Her modelleres fejlrapport-mekanis-
men fra Foss Electric ved hjælp af teknikkerne fra OOA&D (Mathiassen
et al., 1993). Konklusionen på dette eksperiment er, at OOA&D-teknik-
kerne hjalp til at modelere de statiske aspekter af koordinationsarbejdet,
mens de dynamiske aspekter—som er helt centrale at forstå og modelere
koordiantionsarbejde—ikke repræsenteres tilfredsstillende.

Tredie del afrundes med en række refleksioner over, hvad jeg har lært
om design af datamat-baserede koordinationsmekanismer. Der gives en
række rekommendationer. De vigtigste af disse omhandler, hvorledes de
overordnede krav bør udmøntes, hvordan centrale tommelfingerregler fra
HCI-feltet (Human-Computer Interaction) kan benyttes—men kun med
omtanke, samt hvilke specielle krav egenskaberne ved systemer til støtte
af kooperativt arbejde stiller til evaluering og afprøvning af systemerne.

Fjerde del er en relativ kort opsamling og konklusion på hele afhand-
lingen. Først gives et koncentreret resumé i form af 32 “lessons learned”.
Herefter (i kapitel 13) diskuteres, hvorledes arbejdet naturligt kunne fort-

298

Danish summary

sættes. Der peges på områder som for eksempel integration af begrebs-
apparatet i en egentlig analysemetode (her er Arbejdsanalysen oplagt),
implementering og evaluering af en række prototyper, mere grundige
sammenligninger med andre perspektiver beskrevet i CSCW-litteraturen,
og undersøgelser af, hvorledes konklusioner om brugergrænseflade design
fra traditionel HCI kan anvendes ved design af CSCW-applikationer.

En del af det arbejde, som er beskrevet i denne afhandling, er endvidere
blevet publiseret forskellige andre steder. Enten som tekniske rapporter,
reviewede konference-papirer eller tidskriftsartikler. Disse papirer har
fungeret som input for visse af kapitlerne. En samlet liste over de papirer,
jeg har været involveret i at producere gennem de sidste tre år, og som er
relevante i denne sammenhæng, er listet i appendix A.

Risø, December 1995

Peter Henrik Carstensen

299

Bibliography

Bibliography

Ackerman, Marc S., and Tom W. Malone: “Answer Garden: A Tool for Growing
Organizational Memory,” in Proceedings of ACM Conference on Office Information
Systems, ACM Press, 1990, pp. 31-39.

Andersen, Hans, Peter Carstensen, Betty Hewitt, and Carsten Sørensen: “Aspects,
Collage, Active Memory, OVAL,” in Computational Mechanisms of Interaction for
CSCW, edited by C. Simone and K. Schmidt, Department of Computing, Lancaster
University, Lancaster, England, 1993, pp. 217-238.

Andersen, Hans H. K.: “Classification schemes: Supporting articulation work in technical
documentation,” in ISKO ’94. Knowledge Organisation and Quality Management,
Copenhagen, Denmark, June 21-24, 1994, edited by H. Albrechtsen, 1994.

Andersen, Ib, Finn Borum, Peer Hull Kristensen, and Peter Karnøe: Om kunsten af
bedrive feltstudier [The Art of Conducting Field Studies], Samfundslitteratur,
Copenhagen, 1992.

Andersen, N. E., F. Kensing, J. Lundin, L. Mathiassen, A. Munk-Madsen, M. Rasbech,
and P. Sørgaard: Professional Systems Development — Experience, Ideas, and Action,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

Anderson, Bob, Graham Button, and Wes Sharrock: “Supporting The Design Process
Within An Organisational Context,” ECSCW ’93. Proceedings of the Third European
Conference on Computer-Supported Cooperative Work, Milan, edited by G. De
Michelis, C. Simone and K. Schmidt, Kluwer Academic Publishers, 1993, pp. 47–59.

Baecker, Ronald M. (ed.): Readings in Groupware and Computer-Supported Cooperative
Work, Morgan Kaufmann, San Mateo, 1993.

Baecker, Ronald M., Dimitrios Nastos, Ilona R. Posner, and Kelly L. Mawby: “The User-
centred Iterative Design Of Collaborative Writing Software,” INTERCHI’93
Conference on Human Factors in Computing Systems, Amsterdam, edited by S.
Ashlund at al., ACM Press, 1993, pp. 399-405.

Bannon, Liam: “CSCW: An Initial Exploration,” Scandinavian Journal of Information
Systems, vol. 5, 1993, pp. 3-24.

Bannon, Liam, and Kjeld Schmidt: “CSCW: Four Characters in Search of a Context,” in
EC-CSCW ’89. Proceedings of the First European Conference on Computer
Supported Cooperative Work, Gatwick, London, 13-15 September, 1989, 1989. -
Reprinted in Studies in Computer Supported Cooperative Work. Theory, Practice and
Design, edited by J. M. Bowers and S. D. Benford, North-Holland, Amsterdam etc.,
1991, pp. 3-16.

Barber, Gerald R.: “Supporting Organizational Problem Solving with a Work Station,”
TOIS, vol. 1, no. 1, January 1983, pp. 45-67.

301

Bibliography

Beck, Eevi E., and Victoria Bellotti: “Informed Oppertunism as Strategy: Supporting
Coordination in Distributed Collaborative Writing,” in ECSCW ’93. Proceedings of
the Third European Conference on Computer-Supported Cooperative Work, 13-17
September 1993, Milan, Italy, edited by G. De Michelis, C. Simone and K. Schmidt,
Kluwer Academic Publishers, Dordrecht, 1993, pp. 233-248.

Beizer, Boris: Software Testing Techniques, (Second Edition), Van Nostrand Reinhold,
New York, 1990.

Bellotti, Victoria, and Abigail Sellen: “Design for Privacy in Ubiquitous Computing
Environments,” in ECSCW ’93. Proceedings of the Third European Conference on
Computer-Supported Cooperative Work, 13-17 September 1993, Milan, Italy, edited
by G. De Michelis, C. Simone and K. Schmidt, Kluwer Academic Publishers,
Dordrecht, 1993, pp. 77-92.

Bentley, Richard, and Poul Dourish: “Medium versus Mechanism: Supporting
Collaboration Through Customisation,” in Proceedings of the Fourth European
Conference on Computer Supported Cooperative Work - ECSCW’95, 10-14
September, 1995, Stockholm, Sweden, edited by H. Marmolin, Y. Sundblad and K.
Schmidt, Kluwer Academic Publishers, 1995, pp. 309-324.

Bentley, R., J. A. Hughes, D. Randall, T. Rodden, P. Sawyer, D. Shapiro, and I.
Sommerville: “Ethnographically-informed systems design for air traffic control,” in
CSCW ’92. Proceedings of the Conference on Computer-Supported Cooperative
Work, Toronto, Canada, October 31 to November 4, 1992, edited by J. Turner and R.
Kraut, ACM Press, New York, 1992a, pp. 123-129.

Bentley, Richard, Tom Rodden, Peter Sawyer, and Ian Sommerville: “An Architecture
for Tailoring Cooperative Multi-User Displays,” in CSCW ’92. Proceedings of the
Conference on Computer-Supported Cooperative Work, Toronto, Canada, October
31 to November 4, 1992, edited by J. Turner and R. Kraut, ACM Press, New York,
1992b, pp. 187-194.

Beraneck, Peggy: “Qualitative Research for CSCW: Theory Building Beyond Initial
Preconceptions and Frameworks,” in IRIS 17. Quality by Diversity in Information
Systems Research. 17th Information systems Research seminar In Scandinavian,
August 6–9, Syöte Conference Centre, Finland, edited by P. Kerola, A. Juustila and J.
Järvinen, University of Oulu, 1994, vol. 1, pp. 60-62.

Beyer, Peter, Peter Carstensen, Anker Helms Jørgensen, Rolf Molich, and Finn Hindkjær
Pedersen: Brugervenlige edb-systemer [User-friendly computer systems], Teknisk
Forlag A/S, Copenhagen, 1986.

Bjerkenes, Gro, Pelle Ehn, and Morten Kyng (ed.): Computers and Democracy. A
Scandinavian Challenge, Avebudy, Aldershot etc., 1987.

Boehm, B. W.: Software Engineering Economics , Prentice-Hall, Englewood Cliffs, New
Jersey, 1981.

Bogia, Douglas P., William J. Tolone, Celsina Bignoli, and Simon M. Kaplan: “Issues in
the Design of Collaborative Systems: Lessons from ConversationBuilder,” in Design
of Computer Supported Cooperative Work and Groupware Systems. 12th
International Workshop on “Informatics and Psychology”, Schärding, Austria, June
1-3, 1993, 1993a.

302

Bibliography

Bogia, Douglas P., William J. Tolone, Simon M. Kaplan, and Eric de la Tribouille:
“Supporting Dynamic Interdependencies among Collaborative Activities,” COCS ’93,
1993b.

Borstrøm, Henrik, Peter Carstensen, and Carsten Sørensen: Artifacts Coordinating
Concurrent Engineering. A Study of Articulation Work in a Manufacturing Project,
Technical Report, January, 1995. [R-768(EN)].

Borstrøm, Henrik, and Carsten Sørensen: “CAD Models are not Mechanisms of
Interaction — Cooperative Aspects of Design For Manufacture,” in Fourth
International Conference on Human Aspects of Advanced Manufacturing and Hybrid
Automation, Manchester, England, July 6–8, 1994, edited by P. Kidd, 1994.

Bowers, John: “Understanding Organization Performatively,” in Issues of Supporting
Organizational Context in CSCW Systems, edited by L. Bannon and K. Schmidt,
COMIC, Esprit Basic Research Project 6225, Computing Department, Lancaster
University, Lancaster, UK, 1993, pp. 49-72.

Bowker, Geoffrey, and Susan Leigh Star: “Situations vs. Standards in Long-Term, Wide-
Scale Decision-Making: The Case of the International Classification of Diseases,” in
Proceedings of the Twenty-Fourth Annual Hawaii International Conference on
System Sciences, Kauai, Hawaii, January 7-11, 1991, edited by J. F. Nunamaker and
R. H. Sprague, IEEE Computer Society Press, 1991, vol. IV.

Brooks Jr., F. P.: The Mythical Man-Month — Essays on Software Engineering, Addison-
Wesley, USA, 1982.

Brown, John S., and Paul Duguid: “Borderline issues: Social and Material Aspects of
Design,” Human-Computer Interaction, vol. 9, no. 1, 1994, pp. 3-36.

Bucciarelli, Louis L.: An Ethnographic Perspective on Engineering Design, M.I.T.,
Cambridge, Mass., 1987.

Button, Graham (ed.): Technology in Working Order. Studies of work, interaction, and
technology, Routledge, London and New York, 1993.

Cambell, Robert L.: “Will the Real Scenario Please Stand Up,” SIGCHI Bulletin, vol. 24,
no. 2, April 1992, pp. 6–8.

Carroll, John M., and Mary B. Rosson: “Getting Around the Task-Artifact Cycle: How to
make Claims and Design by Scenario,” ACM Transactions on Information Systems,
vol. 10, no. 2, 1992, pp. 181-212.

Carstensen, Peter: “The Bug Report Form,” in Social Mechanisms of Interaction, edited
by K. Schmidt, Department of Computing, Lancaster University, Lancaster, England,
1994, pp. 187-220.

Carstensen, Peter, Birgitte Krogh, and Carsten Sørensen: “Object-Oriented Modeling of
Coordination Mechanisms,” in Proceedings of IRIS’18 ‘Design in Context’, Gjern,
Denmark, edited by B. Dahlbom at al., University of Gothenburg, 1995a, pp. 113-
129.

Carstensen, Peter, and Kjeld Schmidt: The Procrustes Paradigm: A Critique of Computer
Science Approaches to Work Analysis, COMIC Working Paper, Risø National
Laboratory, (version 2.0), May, 1993a. [COMIC-Risø-2-1].

303

Bibliography

Carstensen, Peter, and Kjeld Schmidt: “Work Analysis-Perspectives on and
Requirements for a Methodology,” in Human-Computer Interaction: Applications
and Case Studies, edited by M. J. Smith and G. Salvendy, Elsevir, Amsterdam,
1993b, pp. 575-580.

Carstensen, Peter, and Carsten Sørensen: “The Foss Electric Cases,” in Social
Mechanisms of Interaction, edited by K. Schmidt, Department of Computing,
Lancaster University, Lancaster, England, 1994a, pp. 295-304.

Carstensen, Peter, and Carsten Sørensen: “Requirements for a Computational Mechanism
of Interaction: An example,” in A Notation for Computational Mechanisms of
Interaction, edited by C. Simone and K. Schmidt, University of Lancaster, Lancaster,
England, 1994b, pp. 33-80.

Carstensen, Peter, Carsten Sørensen, and Henrik Borstrøm: “Two is Fine, Four is a Mess
— Reducing Complexity of Articulation Work in Manufacturing,” in COOP’95.
Proceedings of the International Workshop on the Design of Cooperative Systems,
January 25-27, Antibes-Juan-les-Pins, France, INRIA, Sophia Antipolis, 1995b, pp.
314-333.

Carstensen, Peter, Tuomo Tuikka, and Carsten Sørensen: “Are We Done Now? Towards
Requirements for Computer Supported Cooperative Software Testing,” in IRIS 17.
Quality by Diversity in Information Systems Research. 17th Information systems
Research seminar In Scandinavian, August 6–9, Syöte Conference Centre, Finland,
edited by P. Kerola, A. Juustila and J. Järvinen, University of Oulu, 1994, vol. 1, pp.
424–438.

Carstensen, Peter H.: Udvikling af brugervenligt programmel, DIKU-rapporter, Master
Thesis, University of Copenhagen - Institute of Datalogy, 1986. [86/17].

Carstensen, Peter H.: Functional analysis of the ‘KAVAS work domain’ and requirements
for the global functionality of Kaviar, AIM KAVAS-2 (A2019), 1993a. [UCI 2.1-1].

Carstensen, Peter H.: “Graphical User Interfaces: Easy to use, hard to design,” in
Proceedings of COPE’ IT ‘93, Copenhagen, Danish Data Association, 1993b, pp.
107-122.

Carstensen, Peter H.: The Complexity and Articulation of Work — In search for a useful
approach for understanding and computer supporting articulation work, Working
Papers in Cognitive Science and HCI, edited by F. Jensager, Centre for Cognitive
Informatics, Roskilde University, 1995a. [WPCS-95-8].

Carstensen, Peter H.: “Modeling Coordination Work: Lessons learned from analyzing a
cooperative work setting,” in HCI International ‘95 — 6th International Conference
on HCI: Symbiosis of Human and Artifact, Pacifico Yokohama, Japan 9 - 14 July
1995., Yokohama, Japan, edited by Y. Anzai, K. Ogawa and H. Mori, Elsevier,
1995b, pp. 327-332.

Carstensen, Peter H., and Thomas Albert: “BRaHS: A Computer Based Mechanism
Supporting the Coordination of Bug-handling,” in Demonstrator prototypes of
Computational Mechanisms of Interaction, edited by L. Navarro, University of
Lancaster, Lancaster, 1995, pp. 183-218.

Carstensen, Peter H., Carsten Sørensen, and Tuomo Tuikka: “Let’s talk about bugs!,”
Scandinavian Journal of Information Systems, vol. 7, no. 1, 1995c, pp. 33-53.

304

Bibliography

Checkland, Peter: Systems Thinking, Systems Practice, John Wiley & Sons Ltd.,
Chichester etc., 1981.

Ciborra, Claudio U.: Teams, markets and systems. Bussiness innovation and information
technology, Cambridge University Press, Cambridge, 1993.

Coad, Peter, and Edward Yourdon: Object-oriented Analysis, (2), Prentice-Hall
International, London etc., 1991.

Conklin, Jeffrey: “Capturing Organizational Memory,” in Groupware’92, edited by D.
Coleman, Morgan Kaufmann, 1992, pp. 133-137.

Conklin, Jeff, and Michael L. Begeman: “gIBIS: A Hypertext Tool for Exploratory
Policy Discussion,” in CSCW ’88. Proceedings of the Conference on Computer-
Supported Cooperative Work, Portland, Oregon, September 26-28, 1988, ACM, New
York, N. Y., 1988, pp. 140-152.

Coolican, Hugh: Research Methods and Statistics in Psychology, (2), Hodder &
Stoughton, London, 1994.

Cruse, D.: “Workflow Process Automation: Beyond Traditional Workflow,” in
Proceedings of Groupware’92, , edited by D. Coleman, Morgan Kaufmann, 1992, pp.
301-311.

Dahlbom, Bo, and Lars Mathiassen: Computers in Context — The Philosophy and
Practice of Systems Design, Blackwell Publishers, Cambridge, Massachusetts, 1993.

Dalal, S. R., J. R. Hogan, and J. R. Kettering: “Reliable Software and Communication:
Software Quality, Reliability, and Safety,” in 15th International Conference on
Software Engineering, Baltimore, Maryland, USA, IEEE Computer Society Press, Los
Alamitos, California, USA, 1993, pp. 425-435.

De Cindio, Fiorella, Carla Simone, Raffaela Vassallo, and Annamaria Zanaboni:
“CHAOS: a knowledge-based system for conversing within offices,” in Office
Knowledge: Representation, Management and Utilization, edited by W. Lamersdorf,
Elsevier Science Publishers B.V., North -Holland, Amsterdam, 1988.

Dery, David, and Theodore J. Mock: “Information Support Systems for Problem
Solving,” Decision Support Systems, vol. 1, 1985, pp. 103-109.

Dewan, Prasun, and Rajiv Choudhary: “Primitives for Programming Multiuser-User
Interfaces,” in Fourth Annual Symposium on User Interface Software and
Technology, South Carolina, USA, ACM Press, 1991, pp. 69-78.

Divitini, Monica, Carla Simone, Kjeld Schmidt, and Peter Carstensen: A multi-agent
approach to the design of coordination mechanisms, Working Papers In Cognitive
Science and HCI, edited by F. Jensager, Centre for Cognitive Informatics, Roskilde
University, 1995a. [WPC-95-5].

Divitini, Monica, Carla Simone, and Carla Quaranta Vogliotti: “Coordination
Mechanisms in a multi-agent perspective,” in Demonstrator prototypes of
Computational Mechanisms of Interaction, edited by L. Navarro, University of
Lancaster, Lancaster, 1995b, pp. 73-118.

Dix, Alan, Janet Finlay, Gregory Abowd, and Russel Beale: Human-Computer
Interaction, Prentice Hall, New York, etc., 1993.

305

Bibliography

Dourish, Paul: “Culture and Control in Media Space,” in ECSCW ’93. Proceedings of the
Third European Conference on Computer-Supported Cooperative Work, 13-17
September 1993, Milan, Italy, edited by G. De Michelis, C. Simone and K. Schmidt,
Kluwer Academic Publishers, Dordrecht, 1993, pp. 125-137.

Durham, Tony: Computing Horizons, Addison-Wesley, Workingham, 1988.
Edwards, Mark B, Dana K. Fuller, and O. U. Vortac: “The role of flight progress strips in

en route air traffic control: a time series analysis,” International Journal of Human-
Computer Studies, vol. 43, no. 3, 1995, pp. 1-13.

Ehn, Pelle: Work-Oriented Design of Computer Artifacts, Arbetslivscentrum, Stockholm,
1988.

Ehn, Pelle, and Morten Kyng: “The collective resource approach to system design,” in
Computers and Democracy—A Scandinavian Challenge, edited by G. Bjerknes, P.
Ehn and M. Kyng, Aldershot, Avebury, 1987, pp. 17-57.

Ellis, Clarence A.: “Information Control Nets,” in Proceedings of the ACM Conference
on Simulation, Measurement and Modeling, Boulder, Colorado, August 1979, ACM
Press, 1979.

Ellis, C. A., S. J. Gibbs, and G. L. Rein: “Groupware: Some issues and experiences,”
Communications of the ACM, vol. 34, no. 1, January 1991, pp. 38-58.

Ellis, Clarence A., and Gary J. Nutt: “Office Information Systems and Computer
Science,” in Computer-Supported Cooperative Work, edited by I. Greif, Morgan
Kaufmann, San Mateo, 1988, pp. 199-247.

Ellis, Clarence A., and Jaques Wainer: “Goal-based models of collaboration,”
Collaborative Computing, vol. 1, no. 1, 1994, pp. 61-86.

Embley, David W., Robert B. Jackson, and Scott N. Woodfield: “OO Systems Analysis:
Is It or Isn’t It?,” IEEE Software, no. 7, 1995, pp. 19-33.

Engelbart, Douglas, and Harvey Lehtman: “Working together,” Byte, December 1988,
pp. 245-252.

Ensor, Bob: “How can we make groupware practical,” in CHI’90 Human Factors in
Computing Systems, Seattle, Washington, edited by J. C. Chew and J. Whiteside, acm
Press, 1990, pp. 87-89.

Fillipi, Geneviève, and Jacques Theureau: “Analyzing Cooperative Work in an Urban
Traffic Control Room for the Design of a Coordination Support System,” in ECSCW
’93. Proceedings of the Third European Conference on Computer-Supported
Cooperative Work, 13-17 September 1993, Milan, Italy, edited by G. De Michelis, C.
Simone and K. Schmidt, Kluwer Academic Publishers, Dordrecht, 1993, pp. 171-186.

Fitzpatrick, Geraldine, Wiiliam J. Tolone, and Simon Kaplan: “Work, Locales and
Distributed Social Worlds,” in Proceedings of the Fourth European Conference on
Computer Supported Cooperative Work - ECSCW’95, 10-14 September, 1995,
Stockholm, Sweden, edited by H. Marmolin, Y. Sundblad and K. Schmidt, Kluwer
Academic Publishers, 1995, pp. 1-17.

Flavin, Matt: Fundamental concepts of information modelling, Yourdon Press,
Englewood Cliffs, New Jersey, 1981.

Flores, Fernando, Michael Graves, Brad Hartfield, and Terry Winograd: “Computer
Systems and the Design of Organizational Interaction,” TOIS, vol. 6, no. 2, April
1988, pp. 153-172.

306

Bibliography

Floyd, Christiane: “A Comparative Evaluation of System Development Methods,” in
Information Systems Design Methodologies: Improving the Practice, edited by T. W.
Olle, H. G. Sol and A. A. Verrijn-Stuart, North-Holland, Amsterdam, 1986, pp. 19-
54.

Flyvbjerg, Bent: Rationalitet og Magt. Bind I: Det konkretes videnskab [Rationality and
Power. Volume I: The Science of the Concrete], Akademisk Forlag, Copenhagen,
1992.

Fry, Christopher, Kum-Yew Lai, and Thomas Malone: Oval, v. 1.1, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1992.

Gaver, William, Thomas Moran, Allan MacLean, Lennart Lövstrand, Paul Dourish,
Kathleen Carter, and William Buxton: “Realizing a video environment: EuroPARC’s
RAVE system,” in CHI ’92 Conference Proceedings. ACM Conference on Human
Factors in Computing Systems, May 3-7, 1992, Monterey, California, edited by P.
Bauersfeld, J. Bennett and G. Lynch, ACM Press, New York, 1992, pp. 27-35.

Gaver, William, Abigail Sellen, Christian Heath, and Paul Luff: “One is not enough:
Multiple views in a media space,” INTERCHI’93 Conference on Human Factors in
Computing Systems, Amsterdam, edited by S. Ashlund at al., ACM Press, 1993, pp.
335-341.

Gaver, William W.: “Sound Support for Collaboration,” in ECSCW ’91. Proceedings of
the Second European Conference on Computer-Supported Cooperative Work, edited
by L. Bannon, M. Robinson and K. Schmidt, Kluwer Academic Publishers,
Amsterdam, 1991, pp. 293-308.

Gelperin, D, and B Hetzel: “The Growth of Software Testing,” Communications of the
ACM, vol. 31, no. 6, 1988, pp. 687-695.

Gerson, Elihu M.: “Work are going concerns,” Pacific Sociological Meetings, , 1983, pp.
257-270.

Gerson, Elihu M., and Susan Leigh Star: “Analyzing Due Process in the Workplace,”
TOIS, vol. 4, no. 3, July 1986, pp. 257-270.

Giddens, Anthony: The Constitution of Society: Outline of the Theory of Structuration,
Polity Press, Cambridge, 1984.

Glaser, B. G., and A. L. Strauss: The Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine Publishing Company, New York, 1967.

Gould, John D., and Clayton Lewis: “Designing for Usability: Key Principles and What
Designers Think,” Communication of the ACM, vol. 28, no. 3, 1985, pp. 300-311.

Grudin, Jonathan: “Why groupware applications fail: problems in design and evaluation,”
Office: Technology and People, vol. 4, no. 3, 1989, pp. 245-264.

Grudin, Jonathan: “Groupware and Cooperative Work: Problems and Prospects,” in The
Art of Human Computer Interface, edited by B. Laurel, Addison-Wesley, 1990.

Grudin, Jonathan: “CSCW: The convergence of two development contexts,” in CHI ’91.
ACM SIGCHI Conference on Human Factors in Computing Systems, New Orleans,
April 28-May 2, 1991, ACM Press, 1991, pp. 91-97.

307

Bibliography

Grudin, Jonathan, and Leysia Palen: “Why Groupware Succeeds: Discretion or
Mandate,” Proceedings of the Fourth European Conference on Computer Supported
Cooperative Work - ECSCW’95, 10-14 September, 1995, Stockholm, Sweden, edited
by H. Marmolin, Y. Sundblad and K. Schmidt, Kluwer Academic Publishers, 1995,
pp. 263-278.

Hamlet, Richard: “Special section on software testing,” Communications of the ACM,
vol. 31, no. 6, 1988, pp. 662-667.

Hammer, Michael: “The OA mirage,” Datamation, vol. 30, no. 2, February 1984, pp. 36-
46.

Hammer, Michael, and James Champy: Reengineering the Cooperation. A Manifesto for
Bussiness Revolution, Nicholas Brearley Publishing Limited, London, etc., 1993.

Hammer, Michael, and Marvin Sirbu: “What is Office Automation?,” in Proceedings:
First Office Automation Conference, Atlanta, Georgia, March, 1980.

Harper, Richard R., John A. Hughes, and Dan Z. Shapiro: The Functionality of Flight
Strips in ATC Work. The report for the Civil Aviation Authority, Lancaster
Sociotechnics Group, Department of Sociology, Lancaster University, January,
1989a.

Harper, R. R., J. A. Hughes, and D. Z. Shapiro: “Working in harmony: An examination
of computer technology in air traffic control,” in EC-CSCW ’89. Proceedings of the
First European Conference on Computer Supported Cooperative Work, Gatwick,
London, 13-15 September, 1989, 1989b, pp. 73-86.

Heath, Christian, Marina Jirotka, Paul Luff, and Jon Hindmarsh: “Unpacking
Collaboration: the Interactional Organisation of Trading in a City Dealing Room,” in
ECSCW ’93. Proceedings of the Third European Conference on Computer-Supported
Cooperative Work, 13-17 September 1993, Milan, Italy, edited by G. De Michelis, C.
Simone and K. Schmidt, Kluwer Academic Publishers, Dordrecht, 1993, pp. 155-170.

Heath, Christian, and Paul Luff: “Collaborative Activity and Technological Design: Task
Coordination in London Underground Control Rooms,” in ECSCW ’91. Proceedings
of the Second European Conference on Computer-Supported Cooperative Work,
edited by L. Bannon, M. Robinson and K. Schmidt, Kluwer Academic Publishers,
Amsterdam, 1991, pp. 65-80.

Heath, Christian, and Paul Luff: “Collaboration and Control. Crisis Management and
Multimedia Technology in London Underground Control Rooms,” CSCW, vol. 1, no.
1-2, 1992, pp. 69-94.

Heath, C. C., P. Luff, and G. M. Nicholls: “The Collaborative Production of the
Document: Context, Genre and the Borderline in Design,” in COOP’95. Proceedings
of the International Workshop on the Design of Cooperative Systems, January 25-27,
Antibes-Juan-les-Pins, France, INRIA, Sophia Antipolis, 1995, pp. 203-218.

Helander, Martin, and Mitsou Nagamachi (ed.): Design for Manufacturability — A
Systems Approach to Concurrent Engineering and Ergonomics, Taylor & Francis,
London, 1992.

Henderson, J. C., and J. G. Cooprider: “Dimensions of I/S Planning and Design Aids: A
Functional Model of CASE Technology,” Information Systems Research, vol. 1, no.
3, 1990, pp. 227-254.

308

Bibliography

Herskind, Steffen R., and Henrik S. Nielsen: Designing Mechanisms of Interaction for
Emergency Management, Working Papers in Cognitive Science and HCI, Centre for
Cognitive Informatics, Roskilde University, DK-4000 Roskilde, Denmark, 1994.

Hetzel, Bill: The Complete Guide to Software Testing, QED Information Sciences Inc.,
Wellesley, MA, USA, 1988.

Hewitt, Betty, and G. N. Gilbert: “Groupware Interfaces,” in CSCW in Practice: In intro-
duction and Case Studies, edited by D. Diaper and C. Sanger, Springer-Verlag,
London, etc., 1993, pp. 31-38.

Hewitt, Carl: “The challenge of open systems,” Byte, vol. 10, no. 4, April 1985, pp. 223-
242.

Hirschheim, Rudy, and Heinz K. Klein: “Four Paradigms of Information Systems
Development,” Communications of the ACM, vol. 32, no. 10, 1989, pp. 1199-1216.

Holt, Anatol: “Diplans: A New Language for the Study and Implementation of
Coordination,” TOIS, vol. 6, no. 2, April 1988, pp. 109-125.

Holt, Anatol W.: “Coordination Technology and Petri Nets,” in Advances in Petri Nets
1985, edited by G. Rozenberg, Lecture Notes in Computer Science, edited by G. Goos
and J. Hartmanis, vol. 222, Springer-Verlag, Berlin, 1985, pp. 278-296.

Hughes, John (ed.): Informing CSCW System Requirements, COMIC, Esprit Basic
Research Project 6225, Lancaster University, Lancaster, 1993.

Hughes, John, Dave Randall, and Dan Shapiro: “CSCW: Discipline or Paradigm? A so-
ciological perspective,” in ECSCW ’91. Proceedings of the Second European
Conference on Computer-Supported Cooperative Work, edited by L. Bannon, M.
Robinson and K. Schmidt, Kluwer Academic Publishers, Amsterdam, 1991, pp. 309-
323.

Hughes, John A., David Randall, and Dan Shapiro: “Faltering from Ethnography to
Design,” in CSCW ’92. Proceedings of the Conference on Computer-Supported
Cooperative Work, Toronto, Canada, October 31 to November 4, 1992, edited by J.
Turner and R. Kraut, ACM Press, New York, 1992, pp. 115-122.

Hughes, John A., Dave Randall, and Dan Shapiro: “From Ethnographic Record to
System Design. Some experiences from the field,” CSCW, vol. 1, no. 3, 1993, pp.
123-141.

Isaacs, Ellen A., Trevor Morris, and Thomas K. Rodriguez: “A Forum for Supporting
Interactive Presentations to Distributed Audiences,” in CSCW ’94. Proceedings of the
Conference on Computer-Supported Cooperative Work, Chapel Hill, North Carolina,
October 24-26, 1994, edited by T. Malone, ACM Press, New York, N.Y., 1994, pp.
405-416.

Ishii, Hiroshi, Minoru Kobayashi, and Kazuho Arita: “Iterative Design of Seamless
Collaboration Media,” CACM, vol. 37, no. 8, 1994, pp. 83-97.

Ishii, Hiroshi, and Naomi Miyake: “Torward An Open Shared Workspace: Computer and
Video Fusion Approach of TeamWorkStation,” CACM, vol. 34, no. 12, 1991, pp. 36-
50.

Jackson, Michael: System Development, Prentice-Hall, Englewood Cliffs, New Jersey,
1983.

309

Bibliography

Jacobson, I., M. Christerson, P. Jonsson, and G. Övergaard: Object-Oriented Software
Engineering – A Use Case Driven Approach, Addison-Wesley Publishing Company,
1992.

Jeffay, K., J. K. Lin, J. Menges, F. D. Smith, and J. B. Smith: “Architecture of the
Artifact-Based Collaboration System Matrix,” in CSCW ’92. Proceedings of the
Conference on Computer-Supported Cooperative Work, Toronto, Canada, October
31 to November 4, 1992, edited by J. Turner and R. Kraut, ACM Press, New York,
1992, pp. 195-202.

Johansen, Robert: Groupware. Computer Support for Business Teams, The Free Press,
New York and London, 1988.

Johnson, Philip: “Supporting Exploratory CSCW with the EGRET Framework,” in
CSCW ’92. Proceedings of the Conference on Computer-Supported Cooperative
Work, Toronto, Canada, October 31 to November 4, 1992, edited by J. Turner and R.
Kraut, ACM Press, New York, 1992, pp. 298-305.

Johnson, Philip M., and Danu Tjahjono: “Improving Software Quality through Computer
Supported Collaborative Review,” in ECSCW ’93. Proceedings of the Third
European Conference on Computer-Supported Cooperative Work, 13-17 September
1993, Milan, Italy, edited by G. De Michelis, C. Simone and K. Schmidt, Kluwer
Academic Publishers, Dordrecht, 1993, pp. 61-76.

Käkölä, Timo: “Doing by Understanding: embedded systems for understanding coordi-
nated work,” in Human-Computer Interaction: Application and case Studies.
Proceedings of the fifth International Conference on Human-Computer Interaction,
edited by J. Schmidt and G. Salvendy, vol. 2, Orlando, Florida, 1993, p. 973-979.

Kaplan, Simon M., William J. Tolone, Elsa Bignoli, Douglas P. Bogia, and Alan M.
Carroll: “Orthogonal Support Aids Collaborative Tasks,” in Proceedings of Schärding
’92, Austria, 1992a.

Kaplan, Simon M., William J. Tolone, Douglas P. Bogia, and Celsina Bignoli: “Flexible,
Active Support for Collaborative Work with Conversation Builder,” in CSCW ’92.
Proceedings of the Conference on Computer-Supported Cooperative Work, Toronto,
Canada, October 31 to November 4, 1992, edited by J. Turner and R. Kraut, ACM
Press, New York, 1992b, pp. 378-385.

Keller, Kurt: “Conditions for Computer-Supported Cooperative Work: The Significance
of the Psychosocial Work Environment,” Technology Studies, vol. 1/2, no. 2, 1994,
pp. 242-269.

Kensing, Finn, and Andreas Munk-Madsen: “PD: Structure in the Toolbox,”
Communications of the ACM, vol. 36, no. 6, 1993, pp. 78-85.

Kensing, Finn, and Terry Winograd: “The Language/Action Approach to Design of
Computer-Support for Cooperative Work: A Preliminary Study in Work Mapping,” in
Collaborative Work, Social Communications and Informations Systems, edited by R.
K. Stamper at al., Elsevir (North-Holland), 1991, pp. 311-331.

Keyser, Véronique De: “Why field studies?,” in Design for Manufacturability — A
Systems Approach to Concurrent Engineering and Ergonomics, edited by M.
Helander and M. Nagamachi, Taylor & Francis, London, 1992, pp. 305-316.

Klein, Heinz K.: The Prospectus and Dissertation Workplan in Information Systems
Research, School of Management, SUNY Binghamton, 1989.

310

Bibliography

Kraut, Robert E., and Lynn A. Streeter: “Coordination in Software Development,”
Communications of the ACM, vol. 38, no. 3, 1995, pp. 69-81.

Kreifelts, Thomas, Elke Hinrichs, Karl-Heinz Klein, Peter Seuffert, and Gerd Woetzel:
“Experiences with the DOMINO Office Procedure System,” in ECSCW ’91.
Proceedings of the Second European Conference on Computer-Supported
Cooperative Work, edited by L. Bannon, M. Robinson and K. Schmidt, Kluwer
Academic Publishers, Amsterdam, 1991a, pp. 117-130.

Kreifelts, Thomas, Frank Victor, Gerd Woetzel, and Michael Woitass: “Supporting the
design of office procedures in the DOMINO system,” in Studies in Computer
Supported Cooperative Work. Theory, Practice and Design, edited by J. M. Bowers
and S. D. Benford, North-Holland, Amsterdam etc., 1991b, pp. 131-144.

Kyng, Morten: “Designing for cooperation: Cooperating in design,” Communications of
the ACM, vol. 34, no. 12, 1991, pp. 65-73.

Kyng, Morten: “Making Representations work,” Communications of the ACM, vol. 38,
no. 9, 1995, pp. 46-55.

La Porte, Todd R. (ed.): Organized Social Complexity: A Challenge to Politics and
Policy, Princeton University Press, Princeton, N. J., 1975a.

La Porte, Todd R.: “Organized Social Complexity: Explication of a Concept,” in
Organized Social Complexity: Challenge to Politics and Policy, edited by T. R. La
Porte, Princeton University Press, Princeton, N. J., 1975b, pp. 3-39.

Lai, Kum-Yew, and Thomas W. Malone: “Object Lens: A ‘Spreadsheet’ for Cooperative
Work,” in CSCW ’88. Proceedings of the Conference on Computer-Supported
Cooperative Work, Portland, Oregon, September 26-28, 1988, ACM, New York, N.
Y., 1988, pp. 115-124.

Lauesen, Søren: “Object-Oriented Design in Practice,” in Proceedings of OZCHI’95,
Melbourne, CHISIG, 1995.

Lee, J. Sibyl: “A qualitative decision management system,” in Artificial Intelligence at
MIT: Expanding Frontiers, edited by P. Winston, MIT Press, Cambridge, MA, 1990.

Ljungberg, Fredrik: Computer Supported Cooperative Work - en allmän teoretisk
referensram [CSCW - a general theoretical frame of reference], Studies in the Use of
Information Technology, Department of Informatics, Göteborg University, June,
1994. [5].

Machiavelli, Niccolò: The Prince , Translated by George Bull, Penguin Books, London,
1514. [Reprint published by Penguin Books, London, 1985].

Malone, Thomas W., and Kevin Crowston: “What is Coordination Theory and How Can
It Help Design Cooperative Work Systems,” in CSCW ’90. Proceedings of the
Conference on Computer-Supported Cooperative Work, Los Angeles, Calif., October
7-10, 1990, ACM press, New York, N.Y., 1990, pp. 357-370.

Malone, T. W., K. R. Grant, K. -Y. Lai, R. Rao, and D. Rosenblitt: “Semistructured mes-
sages are surprisingly useful for computer-supported coordination,” TOIS, vol. 5, no.
2, April 1987, pp. 115-131.

311

Bibliography

Malone, Thomas W., Kum-Yew Lai, and Christopher Fry: “Experiments with Oval: A
Radically Tailorable Tool for Cooperative Work,” in CSCW ’92. Proceedings of the
Conference on Computer-Supported Cooperative Work, Toronto, Canada, October
31 to November 4, 1992, edited by J. Turner and R. Kraut, ACM Press, New York,
1992, pp. 289-297.

Manohar, Nelson R., and Atul Prakash: “The Session Capture and Replay Paradigm for
Asynchronous Collaboration,” in Proceedings of the Fourth European Conference on
Computer Supported Cooperative Work - ECSCW’95, 10-14 September, 1995,
Stockholm, Sweden, edited by H. Marmolin, Y. Sundblad and K. Schmidt, Kluwer
Academic Publishers, 1995, pp. 149-164.

Mashayekhi, Vahid, Janet M. Drake, Wai-Tek Tsai, and John Riedl: “Distributed,
Collaborative Software Inspection,” IEEE Software, no. 9, 1993, pp. 66-75.

Mason, Richard O.: “MIS Experiments: A Pragmatic Perspective,” in The Information
Systems Research Challenge: Experimental Research Methods, edited by I. Benbasat,
vol. 2, Harvard Business School Research Colloquium, Harvard Business School,
Boston Massachusetts, 1989, pp. 3-20.

Mathiassen, Lars, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan Stage:
Objektorienteret analyse [Object-oriented Analysis], Marko Aps., Aalborg, 1993.

Mathiassen, Lars, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan Stage:
Objektorienteret design [Object-oriented Design], Marko Aps., Aalborg, 1995.

Mathiassen, Lars, and Carsten Sørensen: “Managing CASE Introduction — Beyond
Software Process Maturity,” Proceedings of the 1994 ACM SIGCPR Conference, Old
Town Alexandria, Virginia, USA, edited by J. W. Ross, ACM, 1994, pp. 242–251.

McGrath, Joseph E.: Groups: Interaction and Performance, Prentice Hall, Englewood
Cliffs, NJ, 1984.

Mintzberg, Henry: The Structuring of Organizations. A Synthesis of the Research,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

Mintzberg, Henry: Structure in Fives: Designing Effective Organizations, Prentice-Hall,
New Jersey, 1983.

Mintzberg, H., D. Raisinghani, and D. Theoret: “The Structure of ‘Unstructured’
Decision Processes,” Administrative Science Quarterly, vol. 21, June 1976, pp. 246-
275.

Monarchi, David E., and Gretchen I. Puhr: “A Research Typology for Object-Oriented
Analysis and Design,” Communications of the ACM, vol. 33, no. 9, September 1992,
pp. 35–47.

Murrel, Sharon: “Computer Communication System Design Affects Group Decision
Making,” in CHI’83 Human Factors in Computing Systems, Boston, edited by A.
Janda, ACM-SIGCHI, 1983, pp. 63-67.

Myers, Glenford J.: The Art of Software Testing, John Wiley and Sons, New York, 1979.
Nielsen, Jakob: Usability Engineering, Academic Press, 1993.
Nielsen, Jakob: “Heuristic Evaluation,” in Usability Inspection Methods, edited by J.

Nielsen and R. L. Mack, Wiley & Sons, New York, etc., 1994, pp. 25-62.
Norman, Donald A.: “Cognitive Engineering,” in User Centered System Design, edited

by D. A. Norman and S. W. Draper, Lawrence Erlbaum, New Jersey, 1986, pp. 31-61.

312

Bibliography

Norman, Donald A.: “Cognitive Artifacts,” in Designing Interaction. Psychology at the
Human-Computer Interface, edited by J. M. Carroll, Cambridge University Press,
Cambridge, 1991, pp. 17-38.

Olson, Judith S., Stuart K. Card, Thomas K. Landauer, Gary M. Olson, Thomas Malone,
and John Leggett: “Computer-supported co-operative work: research issues for the
90s,” Behaviour & Information Technology, vol. 12, no. 2, 1993, pp. 115-129.

Olson, Judith S., Gary M. Olson, Lisbeth A. Mack, and Pierre Wellner: “Concurrent edit-
ing: The group’s interface,” in INTERACT’90 - The Third Conference on Human-
Computer Interaction, Elsevier Science Publishers, 1990, pp. 835-840.

Orlikowski, Wanda J.: “Learning from NOTES: Organizational Issues in Groupware
Implementation,” in CSCW ’92. Proceedings of the Conference on Computer-
Supported Cooperative Work, Toronto, Canada, October 31 to November 4, 1992,
edited by J. Turner and R. Kraut, ACM Press, New York, 1992, pp. 362-369.

Orlikowski, Wanda J.: “CASE Tools as Organizational Change: Investigating
Incremental and Radical Changes in Systems Development,” MIS Quaterly, no.
September 1993, 1993, pp. 309-340.

Parnas, David L.: “Software Aspects of Strategic Defence Systems,” Communications of
the ACM, vol. 28, no. 12, December 1985, pp. 1326–1335.

Parnas, D. L., and P. C. Clements: “A Rational Design Process: How and Why to Fake it
,” IEEE Trans.actions on Software Engineering, vol. SE-12, no. 2, February 1986, pp.
251-257.

Patton, M.Q.: Qualitative Evaluation Methods, Sage Publications, USA, 1980.
Pedersen, Elin Rønby, Kim McCall, Thomas P. Moran, and Frank G. Halasz: “Tivoli: An

Electronic Whiteboard for Informal Workgroup Meetings,” in INTERCHI’93
Conference on Human Factors in Computing Systems, Amsterdam, edited by S.
Ashlund at al., ACM Press, 1993, pp. 391-398.

Perrow, Charles: Normal Accidents. Living with High-Risk Technologies, Basic Books,
New York, 1984.

Petchenik, Nathan H.: “Practical Priorities in System Testing,” IEEE Software, vol. 2, no.
5, 1985, pp. 18-23.

Plowman, Lydia, Yvonne Rogers, and Magnus Ramage: “What Are Workplace Studies
For?,” Proceedings of the Fourth European Conference on Computer Supported
Cooperative Work - ECSCW’95, 10-14 September, 1995, Stockholm, Sweden, edited
by H. Marmolin, Y. Sundblad and K. Schmidt, Kluwer Academic Publishers, 1995,
pp. 309-324.

Popitz, Heinrich, Hans Paul Bahrdt, Ernst A. Jüres, and Hanno Kesting: Technik und
Industriearbeit. Soziologische Untersuchungen in der Hüttenindustrie, J. C. B. Mohr,
Tübingen, 1957.

Posner, Ilona R., and Ronald M. Baecker: “How People Write Together,” in Readings in
Gropuware and Computer-Supported Cooperative Work, edited by R. M. Baecker,
Morgan Kaufmann, San Mateo, 1993, pp. 239-250.

Pycock, James, and Wes Sharrock: “The fault report form,” in Social Mechanisms of
Interaction, edited by K. Schmidt, Computing Department, Lancaster University,
Lancaster, England, 1994a.

313

Bibliography

Pycock, James, and Wes Sharrock: “Two comments on MOIs,” in Social Mechanisms of
Interaction, edited by K. Schmidt, Computing Department, Lancaster University,
Lancaster, England, 1994b.

RandomHouse (ed.): Random House Unabridged Dictionary. The Random House
Dictionary of the English Language, (2), Random House, New York, etc., 1987.

Rasmussen, Jens: “The Role of Hierarchical Knowledge Representation in
Decisionmaking and System Management,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-15, no. 2, March/April 1985, pp. 234-243.

Rasmussen, Jens: Information Processing and Human-Machine Interaction. An
Approach to Cognitive Engineering, North-Holland, New York, etc., 1986.

Rasmussen, Jens, Annelise Mark Pejtersen, and Len P. Goodstein: Cognitive Systems
Engineering, Wiley series in System Engineering, ed. by A. P. Sage, John Wiley and
Sons, New York, etc., 1994.

Rodden, Tom, and Gordon Blair: “CSCW and Distributed Systems: The Problem of
Control,” in ECSCW ’91. Proceedings of the Second European Conference on
Computer-Supported Cooperative Work, edited by L. Bannon, M. Robinson and K.
Schmidt, Kluwer Academic Publishers, Amsterdam, 1991, pp. 49-64.

Roth, Emilie M., and David D. Woods: “Cognitive Task Analysis: An Approach to
Knowledge Acquisition for Intelligent System Design,” in Topics in Expert System
Design. Methodologies and Tools, edited by G. Guida and C. Tasso, North-Holland,
Amsterdam, 1989, pp. 233-264.

Rouncefield, Mark, John A. Hughes, Tom Rodden, and Stephen Viller: “Working with
‘Constant Interuption’: CSCW and the Small Office,” in CSCW ’94. Proceedings of
the Conference on Computer-Supported Cooperative Work, Chapel Hill, North
Carolina, October 24-26, 1994, edited by T. Malone, ACM Press, New York, N.Y.,
1994, pp. 275-287.

Sachs, Patricia: “Transforming Work: Collaboration, Learning, and Design,”
Communications of the ACM, vol. 38, no. 9, 1995, pp. 36-44.

Schmidt, Kjeld: “Functional Analysis Instrument,” in Functional Analysis of Office
Requirements. A Multiperspective Approach, edited by G. Schäfer at al., Wiley,
Chichester, 1988, pp. 261-289.

Schmidt, Kjeld: Analysis of Cooperative Work. A Conceptual Framework, Risø National
Laboratory, DK-4000 Roskilde, Denmark, June, 1990. [Risø-M-2890].

Schmidt, Kjeld: “Computer Support for Cooperative Work in Advanced Manufacturing,”
International Journal of Human Factors in Manufacturing, vol. 1, no. 4, October
1991a, pp. 303-320.

Schmidt, Kjeld: “Cooperative Work. A Conceptual Framework,” in Distributed Decision
Making. Cognitive Models for Cooperative Work, edited by J. Rasmussen, B.
Brehmer and J. Leplat, John Wiley & Sons, Chichester etc., 1991b, pp. 75-109.

Schmidt, Kjeld: “Riding a Tiger, or Computer Supported Cooperative Work,” in ECSCW
’91. Proceedings of the Second European Conference on Computer-Supported
Cooperative Work, edited by L. Bannon, M. Robinson and K. Schmidt, Kluwer
Academic Publishers, Amsterdam, 1991c, pp. 1-16.

314

Bibliography

Schmidt, Kjeld: “Computational mechanisms of interaction— Requirements for a general
notation,” in A Notation for Computational Mechanisms of Interaction, edited by C.
Simone and K. Schmidt, University of Lancaster, Lancaster, England, 1994a, pp. 15-
32.

Schmidt, Kjeld: “Mechanisms of interaction reconsidered,” in Social Mechanisms of
Interaction, edited by K. Schmidt, Department of Computing, Lancaster University,
England, 1994b, pp. 15-122.

Schmidt, Kjeld: Modes and Mechanisms of Interaction in Cooperative Work, Risø
National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark, 1994c. [Risø-R-
666].

Schmidt, Kjeld: “The Organization of Cooperative Work — Beyond the ‘Leviathan’
Conception of Organization,” in CSCW ’94. Proceedings of the Conference on
Computer-Supported Cooperative Work, Chapel Hill, North Carolina, October 24-
26, 1994, edited by T. Malone, ACM Press, New York, N.Y., 1994d, pp. 101-112.

Schmidt, Kjeld, Hans Andersen, Peter H. Carstensen, and Carsten Sørensen: “Linkable
Mechanisms of Interaction as a Representation of Organizational Context,” in A
Conceptual Framework for Describing Organizations, edited by J. Bowers,
Department of Computing, Lancaster University, England, 1994.

Schmidt, Kjeld, and Liam Bannon: “Taking CSCW Seriously: Supporting Articulation
Work,” CSCW, vol. 1, no. 1-2, 1992, pp. 7-40.

Schmidt, Kjeld, and Peter Carstensen: Arbejdsanalyse. Teori og praksis [Work Analysis.
Theory and Practice], Risø National Laboratory, DK-4000 Roskilde, Denmark, June,
1990. [Risø-M-2889].

Schmidt, Kjeld, and Carla Simone: “Mechanisms of Interaction: An Approach to CSCW
Systems Design,” in COOP’95. Proceedings of the International Workshop on the
Design of Cooperative Systems, January 25-27, Antibes-Juan-les-Pins, France,
INRIA, Sophia Antipolis, 1995, pp. 56-75.

Schmidt, Kjeld, Carla Simone, Peter Carstensen, Betty Hewitt, and Carsten Sørensen:
“Computational Mechanisms of Interaction: Notations and Facilities,” in
Computational Mechanisms of Interaction for CSCW, edited by C. Simone and K.
Schmidt, University of Lancaster, Lancaster, England, 1993, pp. 109-164.

Schmidt, Kjeld, Carla Simone, Monica Divitini, Peter Carstensen, and Carsten Sørensen:
A ‘contract sociale’ for CSCW systems: Supporting interoperability of computational
coordination mechanisms, Working Papers in Cognitive Science and HCI, edited by
F. Jensager, Centre for Cognitive Informatics, Roskilde University, 1995.

Scott, W. Richard: Organizations. Rational, Natural, and Open Systems, (Second edition;
First edition 1981), Prentice Hall, Englewood Cliffs, New Jersey, 1987.

Shapiro, Dan: “The Limits of Ethnography: Combining Social Sciences for CSCW,” in
CSCW ’94. Proceedings of the Conference on Computer-Supported Cooperative
Work, Chapel Hill, North Carolina, October 24-26, 1994 , edited by T. Malone, ACM
Press, New York, N.Y., 1994, pp. 417-428.

Sharrock, Wes, and Bob Anderson: The Ethnomethodologists, Ellis Horwood Publishers,
Chichester, 1986.

315

Bibliography

Shen, HongHai, and Presun Dawan: “Access Control for Collaborative Environments,”
in CSCW ’92. Proceedings of the Conference on Computer-Supported Cooperative
Work, Toronto, Canada, October 31 to November 4, 1992, edited by J. Turner and R.
Kraut, ACM Press, New York, 1992, pp. 51-58.

Shneiderman, Ben: Designing the User Interface. Strategies for Effective Human-
Computer Interaction, Addison Wesley, Reading, 1987.

Siemieniuch, Carys: “Design to product — A prototype of a system to enable design for
manufacturability,” in Design for Manufacturability — A Systems Approach to
Concurrent Engineering and Ergonomics, edited by M. Helander and M. Nagamachi,
Taylor & Francis, London, 1992, pp. 35-54.

Simon, Herbert A.: “The Structure of Ill Structured Problems,” Artificial Intelligence,
vol. 4, 1973, pp. 181-201.

Simon, Herbert A.: The Sciences of the Artificial, (Second edition; First edition 1969),
The MIT Press, Cambridge, Mass., 1981.

Simon, Herbert A.: “Search and Reasoning in Problem Solving,” Artificial Intelligence ,
vol. 21, 1983, pp. 7-29.

Simone, Carla, Monica Divitini, and Alberto Pozzoli: “Towards an architecture based on
a notation for mechanisms of interaction,” in A Notation for Computational
Mechanisms of Interaction, edited by C. Simone and K. Schmidt, University of
Lancaster, Lancaster, England, 1994, pp. 81-131.

Simone, C., M. A. Grasso, and A. Pozzoli: “Coordinator, AWMS, DOMINO, UTUCS,
WooRKS, CHAOS, TaskManager, and Lotus Notes,” in Computational Mechanisms
of Interaction for CSCW, edited by C. Simone and K. Schmidt, University of
Lancaster, Lancaster, England, 1993, pp. 171-216.

Simone, Carla, and Kjeld Schmidt (ed.): Computational Mechanisms of Interaction for
CSCW, COMIC, Department of Computing, Lancaster University, England, 1993.

Simone, Carla, and Kjeld Schmidt (ed.): A Notation for Computational Mechanisms of
Interaction, COMIC, Department of Computing, Lancaster University, England,
1994.

Simonsen, Jesper: “Designing Systems in an Organizational Context,” Ph.D.
Dissertation, Roskilde University, Roskilde, 1994.

Sirbu, Marvin, Sandor Schoichet, Jay Kunin, and Michael Hammer: OAM: An Office
Analysis Methodology, Laboratory for Computer Science, MIT, Cambridge, 1981.

Sommerville, Ian, Tom Rodden, Pete Sawyer, and Richard Bentley: “Sociologists can be
surprisingly useful in interactive systems design,” Manuscript, 1991.

Sørensen, Carsten: Introducing CASE Tools into Software Organizations, Topics in
Cognitive Science and HCI, Ph.D. Dissertation, Centre for Cognitive Informatics,
Risø National Laboratory/Roskilde University, 1993. [2].

Sørensen, Carsten: “The Augmented Bill of Materials,” in Social Mechanisms of
Interaction, edited by K. Schmidt, Department of Computing, Lancaster University,
England, 1994a, pp. 221-236.

Sørensen, Carsten: “The CEDAC Board,” in Social Mechanisms of Interaction, edited by
K. Schmidt, Department of Computing, Lancaster University, England, 1994b, pp.
237-246.

316

Bibliography

Sørensen, Carsten, Peter Carstensen, and Henrik Borstrøm: “We Can’t Go On Meeting
Like This! Artifacts Making it Easier to Work Together in Manufacturing,”
OZCHI’94 - Harmony Through Working Together, Melbourne, edited by S. Howard
and Y. Leung, CHISIG, 1994, pp. 181-186.

Star, Susan Leigh: “The Structure of Ill-Structured Solutions: Boundary Objects and
Heterogeneous Distributed Problem Solving,” in Distributed Artificial Intelligence,
edited by L. Gasser and M. Huhns, vol. 2, Pitman, London, 1989, pp. 37-54.

Stefik, M., D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar: “WYSIWIS revised:
Early experiences with multiuser interfaces,” TOIS, vol. 5, no. 2, April 1987, pp. 147-
167.

Strauss, Anselm: “Work and the Division of Labor,” The Sociological Quarterly, vol. 26,
no. 1, 1985, pp. 1-19.

Strauss, Anselm: “The Articulation of Project Work: An Organizational Process,” The
Sociological Quarterly, vol. 29, no. 2, 1988, pp. 163-178.

Strauss, Anselm, Shizuko Fagerhaugh, Barbara Suczek, and Carolyn Wiener: Social
Organization of Medical Work, University of Chicago Press, Chicago and London,
1985.

Suchman, Lucy: “Do Categories Have Politics? The language/action perspective recon-
sidered,” Computer Supported Cooperative Work, vol. 2, no. 3, 1994, pp. 177-190.

Suchman, Lucy: “Making Work Visible,” Communications of the ACM, vol. 38, no. 9,
1995, pp. 56-64.

Suchman, Lucy A.: Plans and situated actions. The problem of human-machine commu-
nication, Cambridge University Press, Cambridge, 1987.

Suchman, Lucy A., and Eleanor Wynn: “Procedures and Problems in the Office,” Office,
Technology, and People, vol. 2, 1984, pp. 133-154.

Sutcliffe, Alistar: Jackson System Development, Prentice Hall, Hertfordshire, 1988.
Swenson, Keith D., Robin J. Maxwell, Toshikazu Matsumoto, Bahram Saghari, and

Keith Irwin: “A business process environment supporting collaborative planning,”
Collaborative Computing, vol. 1, 1994, pp. 15-34.

Thompson, Paul: The Nature of Work. An introduction to debates on the labour process,
Macmillan, London, 1983.

Trevor, Jonathan, Tom Rodden, and Gordon Blair: “COLA: a Lightweight Platform for
CSCW,” in ECSCW ’93. Proceedings of the Third European Conference on
Computer-Supported Cooperative Work, 13-17 September 1993, Milan, Italy, edited
by G. De Michelis, C. Simone and K. Schmidt, Kluwer Academic Publishers,
Dordrecht, 1993, pp. 15-30.

Tuikka, Tuomo, and Carsten Sørensen: “Architectural Issues in Design of Computational
Coordination Mechanisms for Software Testing,” in Demonstrator prototypes of
Computational Mechanisms of Interaction, edited by L. Navarro, University of
Lancaster, Lancaster, 1995, pp. 219-254.

Weinberg, Gerald M.: The Secrets of Consulting. A Guide to Giving & Getting Advice
Successfully, Dorset House, New York, 1985.

Winograd, Terry: “A language/action perspective on the design of cooperative work,” in
CSCW ’86. Proceedings. Conference on Computer-Supported Cooperative Work,
Austin, Texas, December 3-5, 1986, ACM, New York, N.Y., 1986, pp. 203-220.

317

Bibliography

Winograd, Terry: “Groupware and the Emergence of Business Technology,”
Proceedings of Groupware’92, edited by D. Coleman, Morgan Kaufmann, 1992, pp.
69-72.

Winograd, Terry, and Fernando Flores: Understanding Computers and Cognition: A New
Foundation for Design, Ablex Publishing Corp., Norwood, New Jersey, 1986.

Wirfs-Brock, R.J., B. Wilkerson, and L. Wiener: Designing Object-Oriented Software,
Prentice Hall, Englewood Cliffs, New Jersey, 1990.

Woods, David D.: “Coping with complexity: the psychology of human behavior in com-
plex systems,” in Tasks, Errors and Mental Models. A Festschrift to celebrate the
60th birthday of Professor Jens Rasmussen, edited by L. P. Goodstein, H. B.
Andersen and S. E. Olsen, Taylor & Francis, London etc., 1988, pp. 128-148.

Woods, David D., and Emilie M. Roth: “Cognitive Systems Engineering,” in Handbook
of Human-Computer Interaction , edited by M. Helander, Elsevier Science Publishers
(North Holland), 1988.

Yin, Robert K.: Case Study Research: Design and Methods, Sage Publications, Beverly
Hills, 1989.

Yourdon, Ed: “Software Quality Assurance in the 1990s,” in Proceedings of the Sixth
Annual Pacific Northwest Software Quality Conference, Portland, Oregon, USA,
1988, pp. 3-33.

Yourdon, Edward: Modern Structured Analysis, Prentice Hall, Englewood Cliffs, New
Jersey, 1989.

Zisman, Michael D.: “Representation, Specification and Automation of Office
Procedures,” Ph.D. dissertation, Dept. of Decision Sciences, The Wharton School,
Univ. of Pennsylvania, PA, 1977.

318

Appendix A Papers produced

Appendix A: A list of papers produced

During the work, I have been involved in writing of a number of papers.
These have been published as reports, conference papers, and journal pa-
pers. Several of these have been used as input for the dissertation. The list
below includes all the papers I have been involved in writing while work-
ing on the dissertation. The list is organized according time of publication
(the oldest first).

1993:

1 Peter H. Carstensen: “Graphical User Interfaces: Easy to use, hard to design,”

Proceedings of COPE' IT '93, Copenhagen, Danish Data Association, 1993, pp.

107-122.

2 Peter Carstensen and Kjeld Schmidt: The Procrustes Paradigm: A Critique of

Computer Science Approaches to Work Analysis, COMIC Working Paper, Risø

National Laboratory, (version 2.0), May, 1993. [COMIC Report no. Risø 2-1].

3 Peter H. Carstensen and Kjeld Schmidt: “Work Analysis-Perspectives on and

Requirements for a Methodology,” in Human-Computer Interaction: Applications

and Case Studies, ed. by M. J. Smith and G. Salvendy, Elsevir, Amsterdam, 1993,

pp. 575-580.

4 Hans Andersen, Peter Carstensen, Betty Hewitt, and Carsten Sørensen: “Aspects,

Collage, Active Memory, OVAL,” in Computational Mechanisms of Interaction

for CSCW, ed. by C. Simone and K. Schmidt, Esprit BRA 6225 COMIC,

Lancaster University, 1993, pp. 217-238.

5 Kjeld Schmidt, Carla Simone, Peter Carstensen, Betty Hewitt, and Carsten

Sørensen: “Computational Mechanisms of Interaction: Notations and Facilities,”

in Computational Mechanisms of Interaction for CSCW, ed. by C. Simone and K.

Schmidt, University of Lancaster, Lancaster, England, 1993, pp. 109-164.

1994:

6 Peter Carstensen: “The Bug Report Form,” in Social Mechanisms of Interaction,

ed. by K. Schmidt, Esprit BRA 6225 COMIC, Lancaster, England, 1994, pp. 187-

220.

319

Appendix A Papers produced

7 Peter Carstensen and Carsten Sørensen: “The Foss Electric Cases,” in Social

Mechanisms of Interaction, ed. by K. Schmidt, Esprit BRA 6225 COMIC,

Lancaster, England, 1994, pp. 295-304.

8 Peter Carstensen and Carsten Sørensen: “Requirements for a Computational

Mechanism of Interaction: An example,” in A Notation for Computational

Mechanisms of Interaction, ed. by C. Simone and K. Schmidt, University of

Lancaster, Lancaster, England, 1994, pp. 33-80.

9 Kjeld Schmidt, Hans Andersen, Peter H. Carstensen, and Carsten Sørensen:

“Linkable Mechanisms of Interaction as a Representation of Organizational

Context,” in A Conceptual Framework for Describing Organizations, ed. by J.

Bowers, Esprit BRA 6225 COMIC, Lancaster, England, 1994.

1995:

10 Peter Carstensen: The Complexity and Articulation of Work — In search for a use-

ful approach for understanding and computer supporting articulation work,,

Working Papers in Cognitive Science and HCI, edited by F. Jensager, Centre for

Cognitive Informatics, Roskilde University, 1995. [WPCS-95-8].

11 Peter Carstensen, Carsten Sørensen, and Henrik Borstrøm: “Two is Fine, Four is a

Mess — Reducing Complexity of Articulation Work in Manufacturing,”

COOP'95. Proceedings of the International Workshop on the Design of

Cooperative Systems, January 25-27, Antibes-Juan-les-Pins, France, INRIA,

Sophia Antipolis, 1995, pp. 314-333.

12 Peter Carstensen, Carsten Sørensen, and Tuomo Tuikka: “Let's talk about bugs?

Towards Computer Support for the Articulation of Software Testing”,

Scandinavian Journal of Information Systems, 7 (April), 1995, pp. 33-53.

13 Kjeld Schmidt, Carla Simone, Monica Divitini, Peter Carstensen, and Carsten

Sørensen: A 'contract sociale' for CSCW systems: Supporting interoperability of

computational coordination mechanisms, Working Papers in Cognitive Science

and HCI, edited by F. Jensager, Centre for Cognitive Informatics, Roskilde

University, 1995. [WPCS-95-7].

14 Peter H. Carstensen: “Modeling Coordination Work: Lessons learned from ana-

lyzing a cooperative work setting”, HCI International '95 — 6th International

Conference on Human-Computer Interaction, Pacifico Yokohama, Japan 9 - 14

July 1995., Yokohama, Japan, edited by Y. Anzai, K. Ogawa, and H. Mori,

Elsevier, 1995, pp. 327-332.

320

Appendix A Papers produced

15 Peter H. Carstensen, Birgitte Krogh, and Carsten Sørensen: “Object-Oriented

Modeling of Coordination Mechanisms”, Proceedings of IRIS'18 'Design in

Context', Gjern, Denmark, edited by B. Dahlbom, et al., University of

Gothenburg, 1995, pp. 113-129.

16 Peter H. Carstensen and Thomas Albert: “BRaHS: A Computer Based Mechanism

Supporting the Coordination of Bug-handling,” in Demonstrator prototypes of

Computational Mechanisms of Interaction, ed. by L. Navarro, University of

Lancaster, Lancaster, 1995, pp. 183-218.

Forthcoming:

17 Peter H. Carstensen, Birgitte Krogh, and Carsten Sørensen: “Object-Oriented

Modeling of Coordination Mechanisms” [Submitted for international conference].

Revised version of paper no. 15.

18 Peter H. Carstensen and Carsten Sørensen: “From the social to the systematic. An

analysis of mechanisms supporting coordination work in design,” Computer

Supported Cooperative Work. An International Journal, 1996, [Submitted for

publication].

321

