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Abstract. Depending on whether bidirectional links or unidirectional
links are used for communications, the network topology under a given
range assignment is either an undirected graph referred to as the sym-
metric topology, or a directed graph referred to as the asymmetric topol-
ogy. The Min-Power Symmetric (resp., Asymmetric) k-Node Connectiv-
ity problem seeks a range assignment of minimum total power subject
to the constraint the induced symmetric (resp. asymmetric) topology is
k-connected. Similarly, the Min-Power Symmetric (resp., Asymmetric) k-
Edge Connectivity problem seeks a range assignment of minimum total
power subject to the constraint the induced symmetric (resp., asymmet-
ric) topology is k-edge connected.
The Min-Power Symmetric Biconnectivity problem and the Min-Power
Symmetric Edge-Biconnectivity problem has been studied by Lloyd et.
al [21]. They show that range assignment based the approximation algo-
rithm of Khuller and Raghavachari [17], which we refer to as Algorithm
KR, has an approximation ratio of at most 2(2−2/n)(2+1/n) for Min-
Power Symmetric Biconnectivity, and range assignment based on the
approximation algorithm of Khuller and Vishkin [18], which we refer to
as Algorithm KV, has an approximation ratio of at most 8(1 − 1/n)
for Min-Power Symmetric Edge-Biconnectivity.
In this paper, we first establish the NP-hardness of Min-Power Symmet-
ric (Edge-)Biconnectivity. Then we show that Algorithm KR has an
approximation ratio of at most 4 for both Min-Power Symmetric Bicon-
nectivity and Min-Power Asymmetric Biconnectivity, and Algorithm
KV has an approximation ratio of at most 2k for both Min-Power Sym-
metric k-Edge Connectivity and Min-Power Asymmetric k-Edge Connec-
tivity. We also propose a new simple constant-approximation algorithm
for both Min-Power Symmetric Biconnectivity and Min-Power Asym-
metric Biconnectivity. This new algorithm is best suited for distributed
implementation.

1 Introduction

Recently, range assignment problems for wireless ad hoc networks have been
studied extensively. In wireless ad hoc networks no wired backbone infrastructure
is installed and communication sessions are achieved either through a single-
hop transmission if the communication parties are close enough, or through
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Fig. 1. The network topology: (a) the nodes and their transmission ranges, (b) the
asymmetric topology, and (c) symmetric topology.

relaying by intermediate nodes otherwise. Omnidirectional antennas are used
by all nodes to transmit and receive signals. Such antennas are attractive due
to their broadcast nature. A single transmission by a node can be received by
many nodes within its vicinity. We assume that every node can dynamically
adjust its transmitting power based on the distance to the receiving node and
the background noise. In the most common power-attenuation model [22], the
signal power falls as 1

dκ where d is the distance from the transmitter antenna
and κ is a real constant between 2 and 5 dependent on the wireless environment.
We assume that all receivers have the same threshold for signal detection, and
normalize this threshold to one. With these assumptions, the power required to
support a link between two nodes separated by a distance d is dκ.

The network topology of a wireless ad hoc network, which consists of all
possible one-hop communication links among the nodes, is determined by the
transmission ranges of the nodes. Depending on whether unidirectional links or
bidirectional links are used for communications, the network topology is repre-
sented by either a directed graph referred to as the asymmetric topology, or an
undirected graph referred to as the symmetric topology. In the asymmetric topol-
ogy, there is an arc from a node u to another node v if and only v is within the
transmission range of u. In the symmetric topology, there is an edge between two
nodes u and v if and only they are within the transmission ranges of each other.
An example is depicted in Figure 1. Figure 1 (a) gives the positions and the
transmission ranges of all nodes. The asymmetric topology and the symmetric
topology are given in Figure 1 (a) and (b) respectively.

Connectivity is one of the most important properties of an wireless ad hoc
network. By asymmetric k-node (resp., k-edge) connectivity we mean the asym-
metric topology is k-node (resp., k-edge) (strongly) connected, and by symmetric
k-node (resp., k-edge) connectivity we mean the symmetric topology is k-node
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Fig. 2. Asymmetric topology may have higher connectivity than symmetric topology.
(a). The nodes lie in a regular hexagon of side equal to one, and their transmission
ranges are given beside the nodes. (b) The asymmetric topology is connected. (c). The
symmetric topology is disconnected.

(resp., k-edge) connected. For k = 1, edge and node connectivity are identical
to each other, and thus are simply referred to as connectivity. For k = 2, 2-node
connectivity is simply referred to as biconnectivity, and 2-edge connectivity is
simply referred to as edge-biconnectivity. With the same transmission ranges, the
asymmetric connectivity is always not lower than the symmetric connectivity. If
the transmission ranges are not identical, the asymmetric connectivity may be
higher than the symmetric connectivity. Figure 2 shows an example in which the
asymmetric topology is connected but the symmetric topology is disconnected.
The network consists of nine nodes lying on a regular hexagon of side equal to
one, with six nodes at the vertices of the hexagon and the other three nodes at
the midpoints of three alternate sides of the hexagon. Three alternate nodes at
the vertices have transmission range of one, and all others have the transmission
range of one half. The asymmetric topology is connected, but the symmetric
topology is not. On the other hand, if all nodes have the same transmission
range, the asymmetric topology and the symmetric topology always have the
same connectivity.

The requirement on the network connectivity (either asymmetric or asym-
metric) imposes a constraint on the transmission ranges of all nodes. A crucial
issue is how to find a range assignment of the smallest total power to meet a spec-
ified connectivity requirement. The Min-Power Symmetric (resp., Asymmetric)
k-Node Connectivity problem seeks a range assignment of minimum total power
subject to the constraint the induced symmetric (resp. asymmetric) topology is
k-connected. Similarly, the Min-Power Symmetric (resp., Asymmetric) k-Edge
Connectivity problem seeks a range assignment of minimum total power subject
to the constraint the induced symmetric (resp., asymmetric) topology is k-edge
connected. Clearly, the smallest total power for asymmetric k-node (resp., edge)
connectivity is no more than the smallest total power for symmetric k-node
(resp., edge) connectivity.

The study of the Min-Power Asymmetric Connectivity problem was started
by Chen and Huang [5], who gave a 2-approximation algorithm based on mini-
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mum spanning tree. Further contributions were made in [19] and [8]. The related
broadcast problem was studied in [27], [25], and [6]. The recent survey [9] presents
the state of the art for these “asymmetric” problems. The Min-Power Symmet-
ric Connectivity problem was proposed in [2] and [4]. Both papers claim that
Min-Power Symmetric Connectivity is NP-Hard, and [4] presents a (1 + ln 2)-
approximation algorithm. In the journal submission of [4], this approximation
ratio is improved to 5/3.

The Min-Power Symmetric Biconnectivity problem has been first studied by
Ramanathan and Rosales-Hain [23], which proposed one reasonable heuristic but
without a proven approximation ratio. Lloyd et. al [21] studied both Min-Power
Symmetric Biconnectivity and Min-Power Symmetric Edge-Biconnectivity.
Among other results, they show that the range assignment based the approx-
imation algorithm of Khuller and Raghavachari [17], which we refer to as Al-
gorithm KR, has an approximation ratio of at most 2(2 − 2/n)(2 + 1/n) for
Min-Power Symmetric Biconnectivity, and the range assignment based on the
approximation algorithm of Khuller and Vishkin [18], which we refer to as Al-
gorithm KV, has an approximation ratio of at most 8(1 − 1/n) for Min-Power
Symmetric Edge-Biconnectivity.

In this paper, we present a reduction that establishes the NP-Hardness of
both Min-Power Symmetric Two-Node Connectivity and Min-Power Symmetric
Two-Edge-Connectivity. The NP-Hardness holds for plane instances, not only
for arbitrary graph weights. We show that the range assignment based on the
Algorithm KR has an approximation ratio of at most 4 for both Min-Power
Symmetric Biconnectivity and Min-Power Asymmetric Biconnectivity. Specifi-
cally, we prove that the total power of this range assignment is less than four
times the smallest power for asymmetric biconnectivity. We also show that the
range assignment based on Algorithm KV has an approximation ratio of at
most 2k for both Min-Power Symmetric k-Edge Connectivity and Min-Power
Asymmetric k-Edge Connectivity. Specifically, we prove that the total power of
this range assignment is less than 2k times the smallest power for asymmetric k-
edge connectivity. As both algorithms are graph algorithms, the approximation
ratios hold also if the nodes are in the three dimensional space, if the possible
ranges come from a discrete set of values, if obstacles completely block the com-
munication in between certain pairs of nodes, and if there is a maximum value
on the ranges.

Although the range assignments based Algorithm KR and Algorithm KV
have constant approximation ratios, they have very complicated implementations
and are not practical for wireless ad hoc networks. This motivates us to seek a
trade-off between the approximation ratio and the implementation complexity.
We propose a very simple range assignment which achieves both symmetric and
asymmetric biconnectivity. The total power of this range assignment is less than
8 for κ = 2, or 3.2 · 2κ for κ > 2 times the smallest power for asymmetric
connectivity for plane instances.

The remaining of this paper is organized as follows. Due to space limita-
tions, we omit the reduction proving the NP-hardness of Min-Power Symmetric
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(Edge-) Biconnectivity. In Section 2, we introduce related graph-theoretic results
and some terms and notations. In Section 3 and Section 4, we derive tighter up-
per bounds on the approximation ratios of the range assignments based Algo-
rithm KR and Algorithm KV respectively. In Section 5, we present the new
algorithm, MST-Augmentation, and analyze its approximation ratio. Finally, in
Section 6, we conclude the paper and report preliminary experimental results.

2 Preliminaries

A directed graph D = (V, A) is said to be a branching (or arborescence) rooted
at some vertex s ∈ V if |A| = |V | − 1 and there is a path to s from any other
vertex. In other words, branchings in directed graphs are a directed analog to
spanning trees in undirected graphs.

Theorem 1 (Edmonds). [11] Suppose that, given a directed graph D = (V, A)
and a specified vertex s ∈ V , there are k arc-disjoint paths to s from any other
vertex of D. Then D has k arc-disjoint branchings rooted at s.

Theorem 2 (Whitty). [26] Suppose that, given a directed graph D = (V, A)
and a specified vertex s ∈ V , there are two internally vertex-disjoint paths to s
from any other vertex of D. Then D has two arc-disjoint branchings rooted at s
such that for any vertex v ∈ V −s the two paths to s from v uniquely determined
by the branchings are internally vertex-disjoint.

Consider a directed graph D = (V, A), a specified vertex s ∈ V , and a
positive integer k. The cheapest subgraph of D that has k arc-disjoint paths to
s from every other vertex, if there is any, must be the union of k arc-disjoint
branchings rooted at s and can be found in polynomial time by the weighted
matroid intersection algorithm due to Lawler [20] and Edmonds [12]. The fastest
implementation of a weighted matroid intersection algorithm is given by Gabow
[14]. Given a vertex r ∈ V , the cheapest subgraph of D that has k internally
vertex-disjoint paths to r from every other vertex, if there is any, can also be
found in polynomial time by an algorithm due to Frank and Tardos [13], or a
faster algorithm due to Gabow [15].

We will also make use of a corollary of Menger’s Theorem, the so-called Fan
Lemma.

Theorem 3 (Fan Lemma). [10] Suppose that D is a k-vertex connected di-
rected graph and U is a proper subset of its vertices with |U | = k. Then for
any vertex v not in U , there are k internally vertex-disjoint paths that link v to
distinct vertices of U .

The bidirected version of an undirected graph G is a directed graph obtained
by replacing every edge of G with two oppositely oriented arcs. The undirected
version of a directed graph D is an undirected graph obtained by ignoring the
directions of the arcs of D.
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From now on, we model the wireless ad hoc network by a weighted complete
graph G = (V, E, c) with c (e) = ‖e‖κ where ‖e‖ is the length of the edge e.
Every range assignment is specified by a spanning graph H as follows. The
transmission power of node v with respect to H, denoted by pH (v), is defined
by pH (v) = maxu∈NH(v) c (vu) . Clearly, the symmetric topology induced by
this range assignment contains H as a subgraph, and the asymmetric topology
induced by this assignment contains the bidirected version of H as a subgraph.
Thus, the range assignment specified by H achieves at least the connectivity of
H.

For any spanning subgraph H of G, we define the power cost of H as p (H) =∑
v∈V (H) pH (v) . Then p (H) is exactly the total power of the range assignment

induced by H. We also define the weight of H as c (H) =
∑

e∈E(H) c (e) .

The two parameters p (H) and c (H) are related by the following previously
known lemma.

Lemma 1. For any spanning subgraph H of G, p (H) ≤ 2c (H).

Proof. Let H be a subgraph of G. Then,

p (H) =
∑

v∈V

pH (v) =
∑

v∈V

max
u∈NH(v)

c (vu)

≤
∑

v∈V

∑

u∈NH(v)

c (vu) = 2
∑

e∈E(H)

c (e) = 2c (H) .

For directed spanning subgraphs Q, we define similarly pQ(v)=maxvu∈Qc(cu)
for every vertex v, and p(Q) =

∑
v∈V pQ(v).

3 Algorithm KR for k-Edge Connectivity

Algorithm KR [17] constructs a k-edge connected spanning subgraph H as
follows. For some node s, let Ds be the minimum-weight directed subgraph of
the bidirected version of G in which there are k arc-disjoint paths to s from
every other vertex in V . Let H be the undirected version of Ds for an arbitrary
node s. Then, as shown in [17], H is k-edge connected.

Let opt be the power cost of an optimum range assignment for asymmetric
k-edge connectivity. We have the following theorem.

Theorem 4. p (H) ≤ 2k · opt.

Proof. Consider Q, the directed graph given by the optimum range assignment.
Q is strongly k-edge connected, and therefore by Theorem 1 Q contains k arc-
disjoint branchings rooted at s: T1, T2, · · · , Tk.

As ∪k
i=1Ti is a feasible solution solution for the directed subgraph computed

by the algorithm, c(Ds) ≤ ∑k
i=1 c(Ti). For any vertex v and 1 ≤ i ≤ k, de-

note by ai(v) the parent of v in Ti(v). Given v, pQ(v) = maxvu∈Q c(uv) ≥
max1≤i≤k c (vai(v)) ≥ 1

k

∑
1≤i≤k c (vai(v)), and therefore
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opt = p(Q) ≥ 1
k

∑

1≤i≤k

c(Ti).

Using Lemma 1, we conclude: p(H) ≤ 2c(H) ≤ 2c(Ds) ≤ 2
∑k

i=1 c(Ti) ≤ 2k · opt

Theorem 4 implies that the approximation ratio of Algorithm KR is at
most 2k.

4 Algorithm KV for Biconnectivity

Algorithm KV [18] constructs a 2-node connected spanning subgraph H as
follows.

1. Let xy be the edge of G of minimum weight and s an vertex not in V .
Construct weighted directed graph D as follows: Replace every edge of G
with two oppositely-oriented arcs of the same weight and then add two arcs
xs and ys of weight 0.

2. Let D′ be the minimum-weighted subgraph of D in which there are two
internally vertex-disjoint directed paths to s from every vertex in V . ( D′

can be obtained by using the algorithm of Frank and Tardos [13], or a faster
algorithm by Gabow [15]).

3. Output the subgraph H of G which contains the edge xy and every edge of
G with at least one of its two directed copies in D′.

As shown in [18], H is two-connected. Let opt be the power cost of an opti-
mum range assignment for asymmetric 2-node connectivity. We have the follow-
ing theorem.

Theorem 5. p (H) ≤ 4 · opt.

Proof. Consider Q, the directed graph given by the optimum range assignment,
to which we add the arcs xs and ys of weight 0. Using Theorem 3 (Fan Lemma),
for any vertex v other than x and y, Q has two internally vertex-disjoint directed
paths that link v to x and y respectively. Therefore, in Q, every vertex v has two
internally vertex-disjoint directed paths linking it to s. Using Theorem 2, Q has
two arc-disjoint branchings rooted at s: A1 and A2 such that, for every vertex
v ∈ V , the two paths in A1 and A2 from v to r are internally vertex-disjoint.

As A1∪A2 is a feasible solution for the directed subgraph we needed in step 2 ,
c(D′) ≤ c(A1)+c(A2). For any vertex v and 1 ≤ i ≤ 2, denote by ai(v) the parent
of v in Ai(v). Given v, pQ(v) = maxvu∈Q c(uv) ≥ (c (va1(v)) + c (va2(v))) /2,
and therefore opt = P (Q) ≥ (c(A1) + c(A2))/2.

Using Lemma 1, we conclude:

p(H) ≤ 2c(H) = 2c(D′) ≤ 2(c(A1) + c(A2)) ≤ 4opt

Theorem 5 implies that the approximation ratio of Algorithm KR is at
most 4.
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5 Algorithm MST-Augmentation for Biconnectivity

In this section, we present a simple algorithm which produces a biconnected
spanning graph H by augmenting an MST. The algorithm first finds an Eu-
clidean MST T and initializes H to T . At any non-leaf node v of T , a local
Euclidean MST Tv over all the neighbors of v in T is constructed and added
to H. Thus the H is a union of the big MST T and many small MSTs. H is
2-connected, as it follows from the following argument. Only internal nodes of
T can be articulation points; let u be such a node. Removing u from T creates a
number of connected components of T , each having one vertex neighbor with u
in T . But the neighbors of u in T remain connected by Tu, the local MST which
does not include u.

We refer to this algorithm as MST-Augmentation. Besides being simple
and very fast (as every vertex has constant degree in T , total running time is
dominated by constructing T and is O(n log n)), this algorithm is best suited to
efficient distributed implementation. Another advantage of this algorithm is the
independence of the path-loss exponent.

To bound the approximation ratio of MST-Augmentation, we introduce a
geometric constant α defined below. Let o be the origin of the Euclidean plane.
A set U of at least two points is called as a star-set if its Euclidean MST for
{o} ∪ U is a star centered at o. The star is denoted by SU . Note that each star-
set contains at least two but at most six points. For any star-set U , let TU be
the minimum spanning tree of U . Then α is defined as the supreme of the ratio
c (TU ) /c (SU ) over all star-sets.

Lemma 2. For any κ ≥ 2, 2κ−1 ≤ α ≤ 1.6 · 2κ−1. If κ = 2, then α = 2.

Proof. The lower bound 2κ−1 is achieved by U consisting of two points u1 and u2
such that o is the midpoint of the line segment u1u2. Next, we prove the upper
bound 1.6 ·2κ−1. Consider any star-set U . If U has exactly six points, then these
points form a regular hexagon centered at o, and hence c (TU ) = 5

6c (SU ) <
1.6 · 2κ−1c (SU ) . So we assume U has m ≤ 5 points. For any two points u and w
in U ,

c (uw) = ‖uw‖κ ≤ (‖ou‖ + ‖ow‖)κ = 2κ

(‖ou‖ + ‖ow‖
2

)κ

≤ 2κ ‖ou‖κ + ‖ow‖κ

2
= 2κ−1 (c (ou) + c (ow)) .

Thus, the total weight of the convex polygon formed by the points of U is at most
2κc (SU ). On the other hand, as removing the largest edge of the polygon creates
a tree on U , c (TU ) is at most

(
1 − 1

m

)
times the total weight of this polygon.

Thus, c (TU ) ≤ (
1 − 1

m

) · 2κc (SU ) ≤ (
1 − 1

5

) · 2κc (SU ) = 1.6 · 2κ−1c (SU ) . The
lemma thereby follows.

Now we assume κ = 2 and show that α = 2. Since α ≥ 2, we only have to
show that α ≤ 2. Consider a star-set U = {(ai, ai) : 1 ≤ i ≤ m} . Let KU denote
the complete graph over U . We first claim that c (SU ) ≥ 1

mc (KU ) . To see this, we
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make use of the following inequality.
∑m

i=1 a2
i = (∑m

i=1 ai)2
+

∑
1≤i<j≤m(ai−aj)2

m ≥
∑

1≤i<j≤m(ai−aj)2

m . Thus, c (SU ) =
∑m

i=1

(
a2

i + b2
i

) ≥
∑

1≤i<j≤m[(ai−aj)2+(bi−bj)2]
m

= 1
mc (KU ) .
Next, we claim that c (TU ) ≤ 2

mc (KU ) . This claim can be proved by a simple
counting argument. Note that a complete graph of order m has mm−2 spanning
trees, and each edge appears in

mm−2 (m − 1)
m(m−1)

2

= 2mm−3

spanning trees (see, for example, Chapter 2 of [24]). The total weight of all
spanning trees of KU is thus 2mm−3c (KU ). Hence, c (TU ) ≤ 2mm−3c(KU )

mm−2 =
2
mc (KU ) . From the two previous claims, we have

c (TU )
c (SU )

≤
2
mc (KU )
1
mc (KU )

= 2.

So the lemma follows for κ = 2.

Now we are ready to represent the upper bound on p (H) in terms of α and
the power cost of an optimum range assignment for asymmetric connectivity
which is denoted by opt.

Theorem 6. p (H) < 4α · opt.

The proof of this theorem consists of the following several lemmas. The next
lemma is implicit in previous work and it follows immediatly from the fact that
T is a minimum spanning trees and one argument used in the proof of Theorem
4.

Lemma 3. c (T ) < opt.

Let E1 be the set of all edges of T incident to leaves. Let E2 be the set of all
edges of the trees Tv for all non-leaf nodes v. Let H ′ be the graph (V, E1 ∪ E2).
Then H ′ is a subgraph of H, and thus p (H) ≥ p (H ′). The next lemma states
that the equality actually holds.

Lemma 4. For every node v, pH (v) = pH′ (v), and consequently p (H) =
p (H ′).

Proof. We prove the lemma by contradiction. Assume that pH (v) > pH′ (v) for
some node v. Let pH (v) = c (uv). Then uv must be an edge of T and neither of
u and v is a leaf. Since u is not a leaf, u has an neighbor w other than v such
that vw is an edge in Tu. So vw is an edge of E2. Since both uv and uw are
edges of the MST, ‖uv‖ ≤ ‖wv‖, and thus c (uv) ≤ c (wv). Therefore,

pH (v) = c (uv) ≤ c (wv) ≤ pH′ (v) ,

which is a contradiction.
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The next lemma provides an upper bound in the total weight of H ′.

Lemma 5. c (H ′) ≤ 2α · c (T ).

Proof. From Lemma 2, we have c(Tu) ≤ α
∑

uv∈T c(uv). Then

c(H ′) = c(E1) + c(E2) =
∑

u leaf

∑

vu∈T

c(uv) +
∑

u internal

c(Tu)

≤ α
∑

u leaf

∑

vu∈T

c(uv) + α
∑

u internal

∑

vu∈T

c(uv) = 2αc(T ),

as every edge of T appears exactly twice in the summation.

Now Theorem 6 follows immediately from Lemma 1, Lemma 3, Lemma 4,
and Lemma 5:

p (H) = p (H ′) ≤ 2c (H ′) < 4α · c (T ) < 4α · opt.

Theorem 6 and Lemma 2 imply that the approximation ratio of MST-
Augmentation is at most 8 for κ = 2 and at most 3.2 · 2κ for general κ.

6 Conclusion

We presented improved analysis for existing algorithms for Min-Power Symmet-
ric Biconnectivity and Min-Power Symmetric k-Edge Connectivity, and showed
the symmetric output of these algorithms is also a good approximation for Min-
Power Asymmetric Biconnectivity and Min-Power Asymmetric k-Edge Connec-
tivity, respectively. We showed that Min-Power Symmetric Biconnectivity and
Min-Power Symmetric Edge-Biconnectivity is NP-Hard. We introduced the new
algorithm MST-Augmentation and showed it also has constant approximation
ratio.

We are aware of instances where the min-power asymmetric two-connected
topology uses only 7/10 of the min-power symmetric two-connected topology. It
would be interesting to find how small this ratio could be. By our analysis of
the Min-Power Biconnectivity Algorithm KR, the ratio is at least 1/4, and in
fact we can show the ratio is at least 1/3. By comparison, the ratio of min-power
symmetric connected topology to min-power asymmetric connected topology is
known to be at least 1/2, and this bound is tight (see for example the journal
version of [4]).

Preliminary experimental results for Min-Power Symmetric Biconnectivity
show that on random instances with 100 nodes, the following hold:

– “smart” local optimization algorithms improve by an average of 6% the
Ramanathan and Rosales-Hain algorithm, with a maximum improvement of
18%. The Ramanathan and Rosales-Hain algorithm has a local optimization
phase and on average uses 29% less power than MST-Augmentation.
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– Our best heuristics have power 75% to 250% more than the cost of the min-
imum spanning tree (the only easily computable lower bound for the prob-
lems). The average power used is 110% more than the cost of the minimum
spanning tree.

– For our best algorithms, the power required to ensure Symmetric Biconnec-
tivity is on average 61.6% higher than the power required for Symmetric
Connectivity. Our heuristics for Symmetric Connectivity are very good [1],
but we still do not know the quality of the Symmetric Biconnectivity so-
lutions our heuristics produce. Note that the minimum power for Symmet-
ric Biconnectivity could be higher than the minimum power for Symmetric
Connectivity by a factor of 2κ, as shown by an example of n nodes being
equidistant on a line.
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