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Abstract

Matrix factorization (MF) has been demonstrated to be
one of the most competitive techniques for collaborative
filtering. However, state-of-the-art MFs do not consider
contextual information, where ratings can be generated
under different environments. For example, users select
items under various situations, such as happy mood vs.
sad, mobile vs. stationary, movies vs. book, etc. Under
different contexts, the preference of users are inherently
different. The problem is that MF methods uniformly
decompose the rating matrix, and thus they are unable
to factorize for different contexts. To amend this prob-
lem and improve recommendation accuracy, we intro-
duce a “hierarchical” factorization model by considering
the local context when performing matrix factorization.
The intuition is that: as ratings are being generated
from heterogeneous environments, certain user and item
pairs tend to be more similar to each other than oth-
ers, and hence they ought to receive more collaborative
information from each other. To take the contextual in-
formation into consideration, the proposed “contextual
collaborative filtering” approach splits the rating ma-
trix hierarchically by grouping similar users and items
together, and factorizes each sub-matrix locally under
different contexts. By building an ensemble model, the
approach further avoids over-fitting with less parameter
tuning. We analyze and demonstrate that the proposed
method is a model-averaging gradient boosting model,
and its error rate can be bounded. Experimental re-
sults show that it outperforms three state-of-the-art al-
gorithms on a number of real-world datasets (Movie-
Lens, Netflix, etc). The source code and datasets are
available for download1.

1 Introduction

Recommender systems are often based on collaborative
filtering, where we observe m users, n items, and a rat-

ing matrix R = (uk; ik; rk)
|R|
k=1 with real-valued ratings

rk. In this formulation, rk represents the preferences
of certain users uk for some items ik. The objective
is to predict unobserved ratings based on users’ past
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preferences. Among different learning methods, matrix
factorization (MF) is generally considered to be a com-
petitive method and there has been much interests since
Netflix has accounted its competition winner. Based on
announced data, MF models the relationship between
users and items by decomposing the rating matrix into
low-rank factor matrices and uncovers the latent re-
lationship between users and items. Specifically, the
latent factors indicate both users’ interest distribution
and items’ membership over latent topics.

Despite their successful applications, MF methods
suffer from one major drawback: the rating values in
the matrix are assumed to be generated uniformly, such
that a user (or an item) generates all his ratings using
the same factor vector, without taking specific contexts
into account. In other words, MFs do not consider two
facts: (1) a user’s ratings can be influenced by multiple
factors, such as mood, environment, time of day, etc;
(2) items with similar properties would receive similar
ratings, such as the ratings of comedy and dramatic
movies. To solve the first problem, SVD++ [11] adds
constraints from implicit feedbacks on users’ factor
vectors, and M3F [15] introduces context dependence
rating prediction by allowing each item to select a new
topic for each new interaction. However, all of these
solutions inadvertently introduce heavy computational
costs and become rather inefficient when the dataset is
large. In addition, none of these approaches solve the
second problem.

In this paper, we propose a new matrix factoriza-
tion model: Random Partition Matrix Factorization
(RPMF), based on a tree structure constructed by using
an efficient random partition technique adopted from
Random Decision Trees (RDT) [4], to provide a fast
solution to the problems discussed above. While pre-
vious matrix factorization models generate their data
uniformly, the proposed contextual RPMF model gen-
erate data by region in a hierarchical manner. In other
words, the rating values in the matrix generated with
either similar contexts or items are partitioned locally
unto the same node of a decision tree. Afterwards,
we explore low-rank approximation to the current sub-
rating-matrix at each node. Therefore, the ratings at
tree nodes give rise to different factor vectors to handle
specific contexts, and thus ratings with similar items at
the same node can provide more impact on each other.
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Table 1: Definition of notations

Notation Notation Description

R Rating matrix
I Index matrix to indicate non-zeros in R

U Factor matrix of users
V Factor matrix of items
m Number of users
n Number of items
k Number of latent factors
FE Ensemble Model
N Number of trees
h Height of trees
{1, . . . , Q} Rating scope

As such, the latent features implied in the low-rank ma-
trices are explored to partition the rating matrix at the
current node. In addition, we take advantage of the
efficiency of random partition and its generalizability,
and exploit ensemble to effectively reduce the problem
of over-fitting. As discussed in Section 4, this process
is a model-averaging gradient boosting model, and thus
has good performance guarantee. As analyzed, the pre-
diction model is not sensitive to the rank of the latent
matrices - a problem associated with many of the state-
of-the-art matrix factorization methods. In the predic-
tion process, when a new user-item pair arrives, we pass
the pair from the root to the leaf to smooth the pre-
dictions at each node on this decision path. We then
combine the predictions from each tree in the ensemble
together to generate the final prediction. This process
is efficient because there are very few iterations required
in order for the gradient algorithm to converge towards
leaf level. We also demonstrate that its complexity is
comparatively smaller than other state-of-the-art meth-
ods. A brief summary of the paper is as follows:

1. A novel hierarchical matrix factorization method
with three properties: decomposition under differ-
ent contexts, none over-fitting and low time com-
plexity.

2. A new generalization bound for matrix factoriza-
tion which can handle multi-class ratings, and its
formal analysis to guarantee the performance of the
proposed method.

3. Evaluations on real datasets that demonstrate im-
proved performance over state-the-art methods:
Yahoo! Music Recommendation, Netflix, Moive-
lens and Eachmovie.

2 Background and Related Works

We introduce the preliminaries and backgrounds in
this section. The notations used in the paper are
summarized in Table 1.

2.1 Matrix Factorization Models Matrix factor-
ization methods [11] represent state-of-the-art for col-
laborative filtering tasks. They learn a constrained de-
composition of the rating matrix as a product of two
low-rank latent matrices: R ≈ UV T where R ∈ N

m×n

is the rating matrix, U ∈ R
m×d is the latent matrix rep-

resenting users and V ∈ R
m×d is the parallel definition

for items. The basic matrix factorization is as follows.
(2.1)

argmin
U,V

‖ (R− UV T )� I ‖2f +λ ·
(

‖ U ‖f + ‖ V ‖f
)

where I is the index matrix to indicate the non-zero
elements in R, � represents element-wise multiplication
and ‖ ∗ ‖f is the Frobenius norm and used to regulate
the complexity of U and V , and λ is the trade-off
parameter. In practice, we explore stochastic gradient
descent (SGD) to compute U and V . To obtain accurate
results, SVD++ [11] integrates the implicit feedback
and preference bias:

(2.2) Rij = bij +
(

Ui + |N(i)|− 1

2

∑

v∈N(i)

Yv

)

V T
j

where bij is the bias for user i on item j, N(i) is
the number of implicit feedbacks obtained from user
i, and Yv is the feedback factor vector of item v.
However, these methods need to set the rank of the
latent matrices, d, carefully to avoid over-fitting. [20]
explores Bayesian method to avoid this and uses MCMC
to estimate the parameters. To take the advantage
of kernel method, [12] proposes a non-linear matrix
factorization based on Gaussian process latent variable
models (GP-LVM). The common drawback of these
methods is that the computation complexity is too high
when the dataset is large and makes them impractical.

To utilize the auxiliary knowledge, such as the rat-
ing data from other domains, [23] considers collabora-
tive matrix factorization (CMF). Let Rs denote the rat-
ing matrix from another domain. Suppose two domains
share the same users. It aims to minimize the following
objective function:

minU,V,W α ‖ (R− UV T )� I ‖2f
+(1− α) ‖ (Rs − UWT )� I ‖2f +R(U, V,W )

where W is the latent matrices for items in source do-
main, R(U, V,W ) is the regularization term, and α is
the parameter to adjust the relative effects of two do-
mains. Some recently proposed cross-domain MF meth-
ods [13, 1] have similar objectives, but employ different
regularization terms. Obviously, these methods trans-
fer knowledge globally; as for each rating in R, the same
regularization (Rs − UWT )2 is imposed.
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The methods proposed in [14, 9] incorporate rela-
tionship information between users, in order to make
some users influence each other more than those re-
maining. However, they’d require additional informa-
tion, such as social network and user properties, to build
such regularization. This type of information may not
always be available, such as Netflix2. In addition, these
approaches do not consider the similarity between items.
One advantage of the proposed method is that it does
not require such additional knowledge. Another obser-
vation is that these previously proposed methods still
decompose the rating matrix uniformly, and could eas-
ily run into over-fitting problem unless parameters are
carefully tuned.

Several other CF approaches also exploit hierar-
chical approach. For example, to accelerate conver-
gence, [7] proposes a multilevel method for nonnegative
matrix factorization. However, this method is very dif-
ferent from the proposed approach in this paper, since
it still does not consider the different contexts and the
over-fitting problems. Recently, [17] introduces a hier-
archical method for response prediction. The major dif-
ference is that we build the hierarchical structure auto-
matically from training data, while the approach in [17]
requires a manually fixed structure, which is a human-
cost job.

A few theoretical analysis have been proposed. [24]
proposes generalization bounds for low-rank matrices
approximation. [25] suggests three different criteria:
rank, trace-norm and max-norm to measure the com-
plexity of low-rank matrices approximation. [21] ana-
lyzes the error bounds on collaborative filtering through
PAC-Bayesian analysis. Recently, [22] proposes a gen-
eral bound which does not use the uniform assumption.

2.2 Random Partition on Tree Structure We
adopt the idea of random partition from Random De-
cision Trees3 [4, 3] which is applicable for classification
and regression to partition the rating matrix and build
ensemble. To construct one tree in the ensemble, the
feature at a non-leaf node is chosen randomly from the
“remaining” features. Each time the feature is chosen, a
random threshold is selected. According to the selected
feature and threshold, the instances are partitioned into
two parts according to their values on the selected fea-
ture. A tree stops growing any deeper if one of the fol-
lowing conditions is met: (1) a node becomes empty or
there are no more examples to split in the current node
or (2) the depth of tree exceeds some limits. For classifi-
cation, each node of the tree records class distributions,

2http://www.netflixprize.com/
3Open source project for Random Decision Tree is available

from http://www.dice4dm.com

Algorithm 1 RPMF

1: Input: Rating Matrix: R, Number of Latent Factors:
d, Number of Trees: N , Depth of Trees: h

2: Output: Tree Ensemble with Latent Matrices at Each
Node

3: for i = 1 to N do

4: Build Tree Ti

5: Decompose R into U and V using Eq.(3.4)
6: Maintain U and V at the current node
7: Select a latent factor from U , V and a splitting point

randomly
8: Partition R into R1 and R2 using the selected factor
9: for j ∈ {1, 2} do

10: IF |Rj | is small or the depth is exceed h

11: Let its corresponding node as leaf node
12: ELSE

13: Decompose Rj recursively
14: end for

15: end for

16: Return {Ti}
N
i=1

Figure 1: Main Flow

and each tree outputs a class probability distribution
during prediction. The class distribution outputs from
multiple trees are averaged as the final output. We note
that, the advantage of random partition is that it does
not require supervised information to select either fea-
tures or thresholds. Thus, the proposed algorithm can
apply the idea to select a latent factor from low-rank
matrices without labels and then split the rating ma-
trix accordingly.

3 Hierarchical Matrix Factorization based on
Random Partition

We describe the proposed RPMF algorithm, explain
it using gradient boosting formulation and discuss its
complexity.

3.1 Algorithm Description The main flow can be
found in Algorithm 1 and Figure 1. The motivation
is to group the ratings generated by the similar users
and items into the same node using random partition.
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For each tree, we perform random sampling on the
original rating matrix. Then, at each node, we factorize
the maintained rating matrix R using basic matrix
factorization.

(3.3) min
U,V

‖ (R− UV T )� I ‖2f

where U is a m × d matrix, V is a n × d matrix, m is
the number of users, n is the number of items, d is the
number of factors, and ‖ ∗ ‖f is the Frobenius norm.
After decomposition, matrix U = {U1, . . . , Um}, Uu =
{u1, . . . , ud} is a latent representation of users and V is
the corresponding representations of items. Then, the
users and items can be represented by latent factors,
{u1, . . . , ud} and {v1, . . . , vd}, as shown in Figure 2.
The user factors indicate users’ interest distribution
on some latent topics, while the item factors present
items’ membership to these topics. To partition the
rating matrix R, we select a latent factor and a splitting
value randomly, such as the second column of U in
Figure 2(b). In this example, suppose we pick a random
threshold of 0.4. After that, the current rating matrix
is divided into two parts according to the value of this
latent factor, such as the example in Figure 2(c). In this
example, the rating matrix is split between the second
and third rows according to the second latent factor of
U and the chosen threshold. As the latent values of
the first and second users are similar, their ratings are
partitioned into the same node, but the ratings from the
third and fourth users are partitioned into a different
node. This process is repeated recursively until either
the number of ratings in the node is too small or the
depth of the tree exceeds a given threshold. Thus, at
each node we maintain two latent matrices U and V
to construct the rating interactions between users and
items. We set the latent matrices of parent nodes as the
initial solutions for the child nodes. For the non-root
nodes, it decomposes the rating matrix at the node as

minU,V ‖ (R− UV T )� I ‖2f(3.4)

+ ν ·
(

‖ U − Up ‖f + ‖ V − Vp ‖f
)

where Up and Vp are the latent matrices in parent
node, ν is a trade-off parameter, and ‖ ∗ ‖f is the
Frobenius norm. We also perform line-search on ν to
form a additive model. During prediction, for a given
user-item pair, we let it go through from the root to
the leaf node on each tree. At each node we obtain
a partial prediction R̃k

ij = Uk
i V

k
j . At the end, the

predictions from all trees are combined to obtain the
final prediction.

(3.5) R̃uv =
1

N

N
∑

j=1

h
∑

i=1

1− νi
∑

i(1− νi)
U ij
u V ij

v

(a) (b) (c)

Figure 2: Illustration for Division

By incorporating random partition to obtain local ma-
trix factorization, the proposed method RPMF has the
following properties: (1) ratings with similar users and
items appear on common path and then impose more
influence on each other; (2) the prediction of a user-item
pair is combined with different latent matrices, gener-
ated from different contexts; (3) model-averaging is per-
formed to avoid over-fitting without parameter tuning.

3.2 Model-averaging Gradient Boosting Expla-
nation Besides the properties described above, contex-
tual and none over-fitting, the proposed method is a
model-averaging gradient boosting model. Specifically,
each tree is a gradient boosting model and the tree en-
semble is a model-averaging model. Let f(U, V ) = UV T

denote the single model at each node and F (U, V ) be
the final model obtained along a decision path. Recall
Eq.(3.4), we have

(3.6) F (U, V ) =

h
∑

p=1

1− νp
∑

p(1− νp)
fp(U, V )

We start with an initial model f1(U, V ) at the root node.
After that, we approximate the final model using the
sub-rating matrix:

(3.7) min
U,V

‖ (R̃p − UV T )� Ip ‖2f

where Ip is the current index matrix and R̃p is the
current “pseudo”-residuals

(3.8) R̃pij = −∂L(Rpij , Fij)

∂Fij

∣

∣

∣

F=Fp−1

where L is the loss function, e.g, the squared loss used
in this paper, and Fij is the prediction on R̃pij . Based
on this, we update the model in a forward “stage-wise”
manner.

(3.9) Fp(U, V ) = Fp−1(U, V ) + (1− νp)fp(U, V )

In addition, since we perform random sampling for each
tree and average the predictions, we effectively generate
a model-averaging model. As gradient boosting method
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can reduce bias [6] and model-averaging can decrease
variance [19], the proposed method has good generaliz-
ability as analyzed in Section 4.2.

3.3 Complexity Analysis When SGD is used to
solve the objective of matrix factorization, it requiresNI

iterations to guarantee convergence. At each iteration,
it exhausts all ratings in R and updates the latent
matrices with dimension d. The complexity is thus
O(NI ∗ |R| ∗d). For SVD++, it updates the constraints
Y from implicit feedbacks. For a rating Rij , it takes
|Ri| ∗ d to update, where |Ri| is the number of ratings
provided by user u. Thus its time complexity is O(NI ∗
d ∗ ∑i |Ri|2). For BPMF, it needs to compute the
inverse of a d × d matrix, which takes O(d3). Its total
complexity is O(NI ∗ |R| ∗ d3). However, for RPMF,
one needs to decompose the sub-rating matrices at each
node and builds N trees. Thus, its overall complexity
is O(N

′

I ∗ |R| ∗ d ∗ h ∗ N), where h is the height of

trees, and N
′

I ≤ NI since the decomposition process
converges quickly towards leaf node. In practice, h = 3
and N = 5 are enough to make the proposed algorithm
achieve good performance. Instead, the typical setting
of d is larger than 10 and then RPMF is faster than
both SVD++ and BPMF.

3.4 Differences between RPMF and Random
Partition in Classification/Regression There are
three main differences between the Random Partition
for classification/regression (Random Decision Tree [4])
and RPMF: (1) RPMF decomposes rating matrix in
order to obtain latent features while the classification
method only uses existing features. (2) RPMF com-
bines the predictions at every single node (non-leaf and
leaf) on the decision path from root to leaves, while clas-
sification method uses class distributions at leaf nodes.
(3) RPMF exploits a gradient boosting process when
splitting node, while the classification method does not.

4 Formal Analysis

We analyze the proposed algorithms from three perspec-
tives: (1) the error of the low-rank matrix approxima-
tion at each node can be bounded; (2) a single tree
in RPMF is an additive as well as a boosting model,
which guarantees good generalizability by reducing the
bias; (3) tree ensemble is model-averaging and further
improves the prediction performance by reducing the
variance.

4.1 Error Bound for Low-Rank Approximation
Now we propose a new error bound for low-rank matrix
approximation for multi-class ratings. It is important
to note that the bound in [24] is derived only for

two class rating, i.e, 0 and 1. Let R∗ be the ideal
rating matrix to approximate, R be the observed rating
matrix, L(R∗, UV T ) = 1

mn

∑m
i=1

∑n
j=1 |R∗

ij −UiVj | and
L(R,UV T ) be the corresponding empirical error. Let
o = {o1, . . . , od} be the singular values of R, and Σ =
diag(o) be a diagonal matrix where the ith element on
the diagonal is oi. We minimize the following objective
with respect to U and V .

‖ (R− UΣV T )� I ‖f=
∑

Rij∈R

|Rij −
d
∑

k=1

okUikVjk|

We then derive a bound on empirical error as follows:

Theorem 4.1.

L(R,UV T ) ≤ 1

mn

∑

Rij∈R

(

d
∑

k=1

|1−ok|UikV
T
jk+

√

√

√

√

rank(R)
∑

k=d+1

o2k

)

Proof. This is straight-forward. Let UV T subtract
UΣV T , we obtain

‖ UV T − UΣV T ‖f = ‖ UΩV T − UΣV T ‖f
=

∑

Rij∈R

(|1− ok|UikV
T
jk)

where Ω is an identity matrix. Then by incorporating
the theorem in [8], we can easily derive the theorem.

Now we develop the generalization bound, a tradeoff
between the empirical error and the model complexity.

Theorem 4.2. For any matrix R∗ ∈ {1, . . . , Q}m×n,
n,m > 2, δ > 0 and integer k < rank(R), with
probability of at least 1 − δ over choosing a training
set R of entries in R∗ uniformly among all subsets of
|R| entries, the generalization error of approximating
R∗ satisfies:

L(R∗, UV T ) < L(R,UV T )(4.10)

+(Q− 1)|R|
√

exp
(

logQd(n+m) log( 16em
d

)−log σ

|R|

)

Proof. First, we assume the ratings in R are selected
independently and uniformly from R∗. Then |Rij −
UiV

T
j | is a random variable with probability defined in

|R∗ − UV T |. Furthermore, the mean of |R|L(R,UV T )
is |R|L(R∗, UV T ) and the standard variance σ ≤ Q− 1.
By applying Chebyshev’s inequality, for ∀a > 0, we have

(4.11) Pr
[

L(R∗, UV T )≥L(R,UV T ) + a|R|σ
]

≤ 1

a2

We should propose a reasonable a for a tight bound.
Note that |R∗

ij−UiVj | depends on the complexity of the
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model: d, the rank of both U and V . We consider the
number of patterns that can be generated by UV T .

(4.12) M(m,n, d) =
{

UV T ∈ {1, . . . , Q}m×n
}

Let N(m,n, d) = |M(m,n, d)| denote the number of

such patterns. By setting a =
√

exp( logN(m,n,d)−log σ
|R| ),

we obtain

Pr
[

L(R∗, UV T )≥L(R,UV T )(4.13)

+(Q− 1)|R|
√

exp( logN(m,n,d)−log σ
|R| )

]

≤ σ

The rest of the proof relies on the size of N(m,n, d).
We follow the main idea from [24]. Let us consider the
d(m+ n) entities of U and V as variables, and the mn
entities of UV T as polynomials of degree two over these
variables: R̂ij =

∑d
k=1 UikVjk. We have the following

Lemma:

Lemma 4.1. If the R ∈ {0, 1}m×n, N(n,m, d) has an
upper bound as follows.

N(m,n, d) ≤
( 16emn

d(m+ n)

)d(m+n)

≤
(16em

d

)d(n+m)

For proof of this Lemma, please refer to the one in [24].
Let us further consider a more general setting, for each
rating in {1, . . . , Q}, it can be represented by binary
code with length logQ. Then this size N(m,n, d) can
be re-written as

(4.14) N(m,n, d) ≤ (
16em

d
)d(n+m) logQ

By substituting this term into Eq.(4.13) and rearranging
other terms, we establish Theorem 2.

4.2 On Additive and Boosting Properties We
analyze why the performance can be boosted by decom-
posing the rating matrix locally. As we apply the latent
matrices obtained by the parent nodes as the “seeds”
for the child nodes (See Eq.(3.4)), the learning at the
child nodes can be considered as an approximation to
the residual from the ancestor nodes. Let Up and V p be
the latent matrices obtained from the root to the parent
of the current node to approximate the residuals, and
h′ be the height of the current node. We have

min
U∗,V ∗

‖
(

(R−
h′−1
∑

p=1

(1− νp)U
pV pT )− U∗V ∗T

)

� I ‖2f

where νp is the regularization parameter for the decom-
position at each node. Thus, the model obtained at the

leaf nodes can be represented as

(4.15) F (U, V ) =
h
∑

p=1

(
1− νp

∑

p(1− νp)
)UpV pT

This is a generalized additive model as well as a boosting
model. We analyze from two different perspectives, one
is from regression graph [10] and the other is a geometric
bound. For convenience of analysis, we assume the
height of the trees is the same as the number of latent
factors. We show that the error of Eq.(4.15) is related
to the error of a generalized additive model, and with
high probability, every regression graph (of every size)
has empirical error close to its generalization error. Let
G(U, V ) = f(

∑h
p=1 g

p) be a generalized additive model,
where f : R → [1, . . . , Q]. Then we have the following
theorem.

Theorem 4.3. Let the differential of f be |f ′(a)| ≤ α
and the one of g be |g′(b)| ≤ β for all a ∈ R and
b ∈ [1, . . . , Q]. For any δ > 0, with probability 1−δ over
training data R of |R| i.i.d samples of R∗, the relation
between the error of G and the one in Eq.(4.15) is as
follows

(4.16) L(R∗, G) = L(R,G) +
3(1 + αβd) ln(5|R|d/δ)

|R|1/7

In our context, gp = UpV pT and G = F . Then we have
a uniform convergence:

Theorem 4.4. For any δ > 0,

Pr
[

|L(R,F )− L(R∗, F )|(4.17)

> 3.8
√

logQd(m+n) ln 3|R|d2(m+n)/δ
|R|

]

≤ δ

For proofs of these theorems, one can refer to [10].
Obviously, this error bound linearly increases with
d while the error bound in Eq.(4.10) exponentially
increases with d. It means that the proposed algorithm
is less sensitive to the dimension d.

In addition, for the boosting property, we analyze
each single tree based on margin theory for boosting al-
gorithms. As follows, we first analyze the training error
of a single model and then show that the generalization
error can be bounded. Let εp be the empirical error of
the p-th model in one path, where

(4.18) εp =
∑

rij∈R

Pij · [|gpij − rij | < b]

where b is constant to transform the loss in regression
prediction into 0/1 loss, Pij = 1 if rij is in the
current sub-rating matrix and Pij = 0 otherwise. This
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formulation can be considered as the weights assigned
to the rating by the algorithm. The predicate [·] = 1 if ·
is true and [·] = −1 otherwise. In addition, we re-define
the loss as L(R∗, F ) =

∑

r∈R∗

(

2∗(F (r)−r)/(Q−1)−1
)

and then the theoretical results of boosting can be
applied. Let γp = 1/2 − εp, which measures the
advantage of the single model at each node over a trivial
model. Now, we consider a different error: margin-error,
Pr[L(R∗, F ) < θ], which can be proven to be small. Let

(4.19) γ̄θ =
θ

2
+

1√
2

√

log 2−Ψ(
1− θ

2
)

where Ψ(u) = −u log u − (1 − u) log (1− u), 0 ≤ u ≤ 1,
is the binary entropy function. Then we obtain

Theorem 4.5. Let εp = ε̄θ + δh. Then the empirical
margin-error of the composite model obtained at step h
is bounded from the above by

Pr[L(R,F ) < θ] ≤ exp
{

− 2(2ε̄θ − θ)
h
∑

p=1

δh − 2
h
∑

p=1

δ2h

}

This error is bounded by a finite value smaller than 1 if

(4.20) lim
h→∞

inf

h
∑

p=1

εp ≥ c > 0

and converges to 0 if either c = ∞, or if c is finite and
∑h

p=1 ε
2
p converges to infinity.

The proof can be found in [16]. Based on this analysis,
we can derive a new generalization bound [5]. Let H
be a class of model of VC-dimension dH, and denote by
co(H) the convex hull of H, namely, for αp ≥ 0, and
∑

p αp = 1

co(H) =
{

F : F (U, V ) =
∑

p

αpgp(U, V )
}

As such, we obtain

Theorem 4.6. With probability at least 1−δ, for every
F ∈ coH and θ > 0, the generalization error

Pr[L(R∗, F ) ≤ 0] ≤ Pr[L(R,F ) < θ]

+ O
(1

θ

√

dH
|R|
)

+O
(

√

log 1
δ

|R|
)

This bound is based on the margin and VC-dimension
while the VC-dimension is related to the number of
latent features. In addition, the bound increases sub-
linear to the VC-dimension, which suggests that the
proposed single model with one single tree can achieve
a better generalizability than the basic factorization
model. Although the analysis is for binary rating, it can
be extended to multi-class using the same transform in
Eq.(4.14).

4.3 Generalization of Model Averaging We an-
alyze the reason to combine multiple trees to generate
ensemble in the algorithm: (1) the expected error of
the averaging ensemble does not exceed the one of a
single model; (2) the ensemble has a tight bound. Let
FE = EF∼M(m,n,d)F (U, V ) denote the averaging ensem-
ble and d(FE , F

∗) denote the difference between the er-
ror of FE and the ideal hypothesis F ∗. We have the
following lemma.

Lemma 4.2. For any single model F and a model-
averaging ensemble FE, d(F, F

∗)≥d(FE , F
∗).

Proof. The difference d(F, F ∗) is:

d(F, F ∗) = EF∼M(m,n,k)

(

F (U, V )− F ∗(U, V )
)2

= EF∼M(m,n,k)

(

F (U, V )2

− 2F (U, V )F ∗(U, V ) + F ∗(U, V )2
)

On the other hand, the difference d(FE , F
∗) is

d(FE , F
∗)(4.21)

= E
(

EF∼M(m,n,k)F (U, V )− F ∗(U, V )
)2

= E
(

(

EF∼M(m,n,k)F (U, V )
)2

− 2
(

EF∼M(m,n,k)F (U, V )
)

F ∗(U, V ) + F ∗(U, V )2
)

≤ d(F, F ∗) as E[F ]2 ≤ E[F 2]

Thus, the claim is held true.

Further more, since the averaging ensemble can
reduce the variance, lower bound can be achieved.
When we train N independent models, the prediction
variance reduce to σ/N while the mean keeps the same.
Thus, by recalling Eq.(4.10), we obtain a lower bound:

L(R∗, FE(U, V )) < L(R,FE(U, V ))

+ (Q−1)|R|
N

√

exp
(

logQd(n+m) log( 16em
d

)−log σ

|R|

)

The proof is similar to the one of Theorem 2 and it is
omitted here. We introduce a tighter bound from [18]
where the complexity of the model depends on the VC-
dimension. Since a single tree can be considered as a
linear combination of d rank-1 matrices [24] and the
ensemble averages all predictions from every trees, its
VC-dimension is Nd and the bound is

Theorem 4.7. Let M̃ be the family of models formed
by linearly combining finitely many single models from
M . Assume that the family M̃ has finite VC-dimension
v = Nd. Then there exists δ0 > 0 such that for every
0 < δ ≤ min(δ0, 1), with probability at least 1− δ

(4.22) L(R∗, FE(U, V )) ≤ L(R,FE(U, V )) + ε(δ, |R|)
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Table 2: Summary of Datasets
Name #User #Item |R| Range

Movielens-100K 943 1682 100K {1∼5}

Movielens-1M 6040 3952 1M {1∼5}

Movielens-10M 71567 10681 10M {1∼5}

Eachmovie 74424 1648 2.8M {1∼6}

Netflix 480189 17770 100M {1∼5}

Yahoo! Music ∼ 1M 624961 250M {0∼100}

ε(δ, |R|) = 2v−3

4C0

√
|R|

(

1 +
(

1 + 0.5( 4C0

2v−3 )
2

[

log 1
δ + (v − 1) log

KC2

0

(v−1)e2 + log Ke
C0

])0.5
)

,

δ0 = K
C0

(

KC2

0

v−1

)(v−1)

e−2C2

0

K and C0 are universal constants. In particular,
ε(δ, |R|) ≥ C0/

√

|R| for all 0 < δ ≤ min(δ0, 1).

This theorem indicates that if we can improve the train-
ing approximation while keeping the model complexity
small, a better generalization can be achieved. We also
observe the bound is increase with the d linearly which
improves the one using basic factorization model.

5 Experiments

We evaluate the proposed approach RPMF on several
movie and music collaborative filtering datasets, includ-
ing the MovieLens-1M, EachMovie, MovieLens-10M4,
Netflix5 and Yahoo! Music Recommendation6 and com-
pare with four baselines: basic Matrix Factorization,
SVD++ [11], Bayesian Probabilistic Matrix Factoriza-
tion (BPMF) [20] and Gaussian Process Latent Vari-
able Model (GP-LVM) with RBF kernel [12]. To test
RPMF’s sensitivity to parameters: number of trees and
height of trees, we conduct extensive experiments on
MovieLens-100K dataset. The summary of datasets can
be found in Table 2. We set the number of trees in
RPMF as N = 5 and the height as h = 3. We evaluate
the results in 5-CV. The prediction error is measured in
RMSE.

RMSE =

√

∑

Rui∈TE

(Rui − R̂ui)2/|TE |(5.23)

where TE is the testing set and R̂ui is the prediction.

5.1 Synthetic Example To illustrate the process of
RPMF, we introduce one synthetic example as shown
in Figure 3 (a) using 4 users, 4 items and ratings in

4http://www.grouplens.org/
5http://www.netflixprize.com/
6http://kddcup.yahoo.com/

{0,1}, where the black represents 1 and white represents
0. We set the dimension of latent matrices as 1 and
use only one tree with height 3. Figure 3 (b)∼(d)
denote the approximations at each level. We observe
that at the root, ratings R13 and R24 receive wrong
approximations. Then, based on the similarity between
users, the matrix is divided into two parts between users
2 and 3. We execute this process recursively and obtain
the results as shown in Figure 3 (c) and (d). Obviously,
both of them have two wrong approximations. However,
after combination of predictions at each level, wrong
approximations can be filtered by setting a simple
threshold and we obtain a correct result as shown in
Figure 3 (e). This implies that, by considering the
different contexts at each partitions, higher accuracy
can be obtained.

5.2 Performance on Small Datasets Table 3 sum-
marizes the RMSE of MF, SVD++, BPMF, GP-LVM
and the proposed RPMF on the two databases. For the
MovieLens-1M collection, as highlighted in bold, RPMF
consistently outperforms GP-LVM, SVD++, BPMF
and MF on all different latent dimensions. When the
dimension is 30, we notice that the RMSE of RPMF is
at least 0.12 less than MF. If we overlook the model dif-
ferences, compared to its competing methods, RPMF on
average achieves 0.09, 0.04, 0.01 and 0.02 less RMSE as
compared to MF, SVD++, BPMF and GP-LVM respec-
tively. The better performance of RPMF over SVD++
can be ascribed to both the hierarchical matrix factor-
ization and ensemble prediction implemented in RPMF,
as it utilizes the predictions from different contexts and
avoid over-fitting. In addition, by utilizing hierarchi-
cal structure, ratings from similar items will be parti-
tioned unto the same nodes and then these similar items
can impose higher impacts on each other. Although
SVD++ explores implicit feedbacks to improve its ac-
curacy, its prediction is still uniform without consider-
ing contexts, i.e., users’ different mood and affections
at different times. This also explains the advantage of
RPMF over BPMF and GP-LVM, where BPMF is pro-
posed to reduce over-fitting and GP-LVM utilizes the
non-linearbility, but neither of them explores contextual
information. Moveover, in all cases, RPMF outperforms
MF on EachMovie datasets. For comparison to other
three baselines, RPMF beats SVD++ consistently, fails
to defeat BPMF when d = 5 but winning all other
5 pairwise studies and performs as well as GP-LVM.
This, from the empirical perspective, provides justifica-
tion to the theoretical analysis of model-averaging gradi-
ent boosting model in Section 4, where RPMF achieves
a lower bound.
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(a) (b) (c) (d) (e)

Figure 3: Synthetic Example of RPMF’s Process

Table 3: RMSE in MovieLens-1M and EachMovie
Methods MF SVD++ BPMF GP-LVM RPMF MF SVD++ BPMF GP-LVM RPMF

Dimensions MovieLens-1M EachMovie

d=5 0.9125 0.8723 0.8735 0.8873 0.8614 1.1832 1.1342 1.1227 1.1221 1.1271

d=10 0.9192 0.8785 0.8690 0.8829 0.8549 1.1953 1.1523 1.1210 1.1171 1.1153

d=15 0.9384 0.8892 0.8671 0.8837 0.8550 1.2196 1.1722 1.1203 1.1163 1.1150

d=20 0.9563 0.8992 0.8692 0.8867 0.8592 1.2472 1.1899 1.1173 1.1143 1.1157

d=25 0.9730 0.9134 0.8702 0.8871 0.8618 1.2706 1.2071 1.1208 1.1178 1.1189

d=30 0.9908 0.9184 0.8724 0.8889 0.8672 1.2921 1.2201 1.1285 1.1198 1.1215

5.3 Performance on Large Datasets Table 4
summarizes the RMSE for the different baselines as
well as the proposed approach on two large datasets:
MovieLens-10M and Netflix. Using GP-LVM requires a
kernel, which is computationally infeasible for the Net-
flix dataset, due its large size, we omit its results. It is
obvious to note that the proposed approach, with differ-
ent number of latent factors, significantly outperforms
the basic MF, SVD++ and GP-LVM, and performs as
good as BPMF. Importantly, the proposed approach
uses much smaller latent dimensions than the others
which infers a faster computation. In the proposed ap-
proach, larger dimensional spaces resulted in better per-
formance. The reason is that the latent space is trained
using more data, and thus is less prone to over-fitting,
as analyzed in Section 4. For the Netflix dataet, the
proposed approach performs as well as SVD++, one of
the most competitive approach with carefully param-
eter tuning on the leaderboard. On the other hand,
since RPMF considers different contexts, it outperforms
other approaches. Similarly, the main reason is that
the latent space required by RPMF is small. Its per-
formance with only 5 dimensions defeats BPMF using
15 dimensions. Overall, RPMF performs well, and its
very competitive and efficient for large datasets. The
results on high dimensional problems (d=200) are pre-
sented in Figure 4(f). The performances of RPMF and
SVD++ are similar and slightly better than BPMF. In
addition, RPMF improves MF significantly by 0.037 on
RMSE. These imply that it is suitable for real-world
applications.

In addition, we evaluate the RPMF method using
the Yahoo! Music Recommendation dataset. This

dataset is more difficult than the other two, due to the
following two reasons: (1). Its rating scope is wider,
from 0 to 100; (2). Its size is much bigger than others.
These make other approaches fail. SVD++ and BPMF
fail to give a result in a feasible time scope. The results
of MF and RPMF are 27.63 and 24.95 respectively. We
notice that the result we obtain here is less than the
top ones in the leader board. According to the official
report [2] and the results on the leader board 7, the
result of the RPMF is at 100-th out of 1200 reported
entries or approximately top 8.3%. From the official
report, these leading results not only exploit the rating
information but also other related knowledge, such as
music taxonomy, not used in the proposed approach.
In addition, these methods perform model blending
by combining hundreds to even thousands of different
algorithms, while the proposed approach uses a single
algorithm by fixing parameters h = 3 and N = 5
without any tuning.

5.4 Performance Analysis We analyze three issues
in detail to give some insights to understand the perfor-
mance of the proposed algorithm: (1) How does RPMF
improve the performance when the ratings are generated
from different contexts, e.g, different types of items? (2)
How does RPMF avoid over-fitting? (3) How is the ef-
ficiency of RPMF as compared to state-of-the-art MF
methods?

To evaluate the performance of RPMF over differ-
ent contexts, we design three experiments using the
“MovieLens-100K” dataset. To do so, we compare
the rating difference between tree nodes against those

7http://kddcup.yahoo.com/leaderboard.php?track=1&n=100
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Figure 5: Parameter Analysis

within tree nodes at each level in a tree of RPMF. As
shown in Figure 4(a), the variance of ratings between
nodes increases as the tree grows deeper, while the vari-
ance within nodes decreases. This implies that, us-
ing the random partition approach, similar ratings are
grouped together and thus can give higher impact on
each other, but dissimilar ones are partitioned into dif-
ferent nodes. These strategies lead to context-aware
decomposition. A second example is given in Fig-
ure 4(b). We extract ratings of two largest movie cat-
egories, drama and comedy, and let them pass to the
third level in the tree. Then they are grouped into 4 or
2(3−1) nodes. Obviously, the means of ratings in differ-
ent nodes are quite different. This shows that they are
generated under different contexts. In addition, we ex-
tract movies from 4 genres with different ratings value:
Comedy (3.39), Children (3.35), Horror (3.29) and War
(3.82). The difference in rating values means that they
are generated under different contexts. Then we gener-
ate 3 datasets: Comedy-Children, Comedy-Horror and
Comedy-War. From Figure 4(c), we observe that as dif-

ferences among ratings gets larger, RPMF can achieve
higher improvements. The obvious reason is that RPMF
can capture the difference in contexts using rating in-
formation and group similar items into same nodes. To
examine how well RPMF avoids over-fitting, we plot
the training and testing errors of MF and RPMF on
“MovieLens-1M” in Figure 4(d). The observation is
that RPMF can easily avoid over-fitting; it is insensitive
to the dimension of the latent matrices while MF is very
sensitive. As shown in the figure, when RPMF achieves
lower training error with larger latent dimensions, it still
maintains similar prediction error on testing data. On
the other hands, the testing error of MF increases signif-
icantly. For efficiency comparisons, the running time of
each algorithm is plotted in Figure 4(e). As the number
of trees increases, the computational cost of RPMF in-
creases linearly and slowly. As compared with SVD++
and BPMF, RPMF is much faster (the training cost is
insignificant) and this confirms the complexity analysis
in Section 3.4.
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Table 4: RMSE in MovieLens-10M and Netflix
Methods MF SVD++ BPMF GP-LVM RPMF MF SVD++ BPMF GP-LVM RPMF

Dimensions MovieLens-10M Netflix

d=5 0.9115 0.8762 0.8545 0.8769 0.8564 0.9589 0.9189 0.9210 - 0.9192

d=10 0.9201 0.8745 0.8472 0.8740 0.8499 0.9575 0.9142 0.9153 - 0.9144

d=15 0.9454 0.8812 0.8567 0.8777 0.8483 0.9590 0.9101 0.9117 - 0.9087

d=20 0.9637 0.8892 0.8589 0.8807 0.8501 0.9665 0.9067 0.9085 - 0.9054

d=25 0.9741 0.9004 0.8601 0.8851 0.8568 0.9770 0.9012 0.9059 - 0.9022

d=30 0.9899 0.9093 0.8634 0.8909 0.8592 0.9801 0.8979 0.9044 - 0.8983

5.5 Parameter Analysis As shown in Section 3,
two parameters N and h need to be set before running
RPMF. We argue that they do not need too much
tuning in the Introduction, and now we conduct an
extensive experiment on MovieLens-100K dataset to
show their effects. To look deeper into the algorithm,
we also plot the performance of MF and introduce one
more criterion: MAE.

(5.24) MAE =
∑

Rui∈TE

|Rui − R̂ui|/|TE |

We set N as 1, 5, 10, 15 and 20, and increase h from
1 to 5 with step length 1, thus to obtain the results
of RPMF in Figure 5(a) and (b). We observe that, as
height increases, the RMSE and MAE drop down and
then converge quickly. When h is 1, the model just
consider one context and cannot predict precisely. As
the height h is equal to or bigger than 3, both RMSE
and MAE reach the least in value. As the number of
trees N increases, the prediction error decreases. But
when N ≥ 5, both RMSE and MAE do not change
significantly. Thus, as stated in Section 3, small N
and h are sufficient to improve the prediction accuracy,
while maintaining high efficiency. Moreover, for every
setting in this study, RPMF outperforms MF. To test
the sparsity issue, we sample 20,000 users with their
ratings from Netflix dataset randomly and sample again
to generate four datasets with different sparsity. As
shown in Figure 5(c), under different sparsity, RPMF
outperforms MF consistently. In addition, RPMF can
achieve the performance of MF with significantly fewer
ratings. For example, with 75% training data, RPMF
performs comparably against MF.

6 Conclusion

Though as one of the most popular collaborative fil-
tering techniques, state-of-the art matrix factorization
methods still has several drawbacks: (1) uniform or
context-insensitive prediction; (2) over-fitting; (3) inef-
ficiency; (4) ineffectiveness due to sparsity. This paper
studies how to use hierarchical and local matrix decom-
position to address these issues. The proposed algo-
rithm Random Partition Matrix Factorization (RPMF)

works by applying a set of local decomposition processes
on sub-rating matrices. Thus, the users and items in the
same local neighborhood receive higher impacts from
each other than the rest of the items and users. To
decompose the rating matrix, we explored a basic MF
model to factorize the rating matrix, and then we have
adopted a random partition approach to use decision
tree to group similar users and items. To avoid over-
fitting, RPMF generates an ensemble. In addition, we
show that the proposed algorithm is a model-averaging
gradient boosting model. It exploits boosting technique
to reduce bias while using model-averaging to reduce the
variance further. Formal analysis demonstrates that:
(1) the error of the low-rank matrix approximation is
bounded; (2) a single tree in RPMF is a generalized
additive model as well as a boosting algorithm. As a re-
sult, it has good generalizability; (3) ensemble of RPMF
further reduces the prediction error. Empirical studies
have used several well-known benchmark datasets, in-
cluding Movielens, Eachmoive, Netflix and Yahoo! mu-
sic recommendation. The results demonstrate that the
proposed method decreases RMSE of state-of-the-art
matrix factorization methods, i.e., SVD++, BPMF and
GP-LVM, by as much as 0.04, 0.02 and 0.03 respectively.
Additional experiments show that RPMF decomposes
the rating matrix locally to adjust different contents,
and reduces the effects of over-fitting significantly.

We notice that RPMF is a general framework.
First, different MF models can replace the basic MF
at each node to obtain more accurate predictions, such
as SVD++ [11]. Second, it is not only suitable for
collaborative filtering but also other relational learning
tasks, such as tag recommendation system. Third, it
can utilize meta features, e.g, users’ (items’) attributes
and temporal information. For example, one can use
these features to regulate the factorization or to par-
tition rating matrix instead of using latent factors at
each node. Additionally, collective MF can also be ap-
plied at each node to utilize auxiliary knowledge from
other domains. Thus, in the future, we plan to extend
the proposed method to other related applications with
rich sources of information and auxiliary domains, and
compare against other context-aware approaches.
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