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Abstract

We advocate in this paper the use of a Sequential Partial Indirect Inference (SPII) ap-

proach, in order to account for calibration practice where dynamic stochastic general

equilibrium models (DGSE) are studied only through their ability to reproduce some

well-chosen moments. We stress that, despite a lack of statistical formalization, the

controversial calibration methodology addresses a genuine issue on the consequences

of misspecification in highly nonlinear and dynamic structural macro-models. Such

likely misspecification is even more detrimental than for direct inference, since the

misspecified model is used for building simulated paths. The only way to get robust

estimators, but also to assess the model despite misspecification consists in examin-

ing the structural model through a convenient and parsimonious instrumental model,

which basically does not capture what goes wrong in the simulated paths. We argue

that a well-driven SPII strategy might be seen as a rigorous calibrationnist approach,

that captures both the advantages of this approach (accounting for structural “a-

statistical” ideas) and of the inferential approach (precise appraisal of loss functions

and conditions of validity). This methodology should be useful for the empirical as-

sessment of structural models such as those stemming from the Real Business Cycle

theory or the asset pricing literature.

Keywords: Calibration, Indirect Inference, Structural Models, Real Business Cycle,

Asset Pricing.
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1 Introduction

There is a fairly general agreement about two main goals of Econometrics, as defined by Christ (1996):“the

production of quantitative economic statements that either explain the behavior of variables that we have

already seen, or forecast (i.e. predict) behavior that we have not yet seen, or both”. In any case, this activity

relies not only upon empirical facts but also upon a theory, which produces explanation or forecasting.

But, as far as a “unification of theoretical and factual studies in economics” (Frisch (1933) in his edito-

rial statement introducing the first issue of Econometrica) is concerned, the best way to reach these goals

is still a matter for controversy. Actually, in his excellent account of the problem of macroeconometrics,

Hoover (1995a) points out that, besides the two main strands of econometric thinking that both refer to

standard statistical methodology, another strand has begun to be investigated by Frisch (1933) “on the eve

of the birth of modern macroeconomics”. The aforementioned two main strands characterized the history

of econometrics, as summarized by Morgan (1990), but persist to this day and differ about their way to use

statistical methodology. On the one hand, statistical methods may be applied to look for some regularities

in economic time series through an atheoretical approach that does not refer explicitly to any economic

theory. On the other hand, as pointed out by Morgan (1990) and Hoover (1995a) for the typical exam-

ple of estimation of demand curves, a second strand of Econometrics takes economic theory (e.g. of the

downward-sloping demand curve) as given. The statistics aimed only at measuring the relevant elasticity or

other parameters of interest. Typically, this second strand refers to the structural approach as developed by

the Cowles Commission program. The Keynesian model affords a unified framework where the econometrics

of the business cycle can be associated with the structural econometrics of demand measurement (Hoover

(1995a)). More recently, the famous Lucas Critique has even more emphasized the necessity of a structural

approach, that is to say the reference to parameters termed structural in the Hurwicz (1962) sense because

they are invariant with the respect to the considered policy interventions (despite the agents expectations

as stressed by Lucas (1972), (1976)). However, while the Cowles Commission program, providing structural

statistical inference through the simultaneous-equation model (SEM), has “obtained widespread acceptance

among academics and policy makers during the 1960s and early 1970s” (Ingram (1995)), the new classical

macroeconomics, as developed around Lucas work since the 1970s has provided new arguments to those who

consider that “the Cowles Commission program applied to macroeconomics is a mistake” (Hoover (1995a)).

More precisely, according to Hoover (1995a), “the proponents of the so-called Calibration approach believe

that the Lucas Critique, properly interpreted, undercuts the case for structural estimation at the macro-

economics level altogether”. But, far from concluding that the structural approach should be abandoned,

calibrators trace their methodology back to the early work of Frisch (1933), precisely mentioned by Hoover

(1995a) as an alternative to the two previously described mainstream strands of Econometrics which are tied

down to orthodox statistical methodology. Frisch (1933) assigned reasonable values to the parameters of a
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simple theoretical model of the business cycle in order to examine its simulated behavior and to compare

that behavior to the actual economy. Such a methodology is clearly very close to the calibration approach,

as described in further details below. Let us just stress at this stage that, faced with some empirical failure

of the Cowles program, this strand of modern macroeconomics has chosen to reject, at least partially, the

orthodox statistical methodology to remain true to the structural approach. It is worth noticing that this

choice is something like the exact opposite of the Sims (1980, 1996) program of Vector Autoregressions (VAR)

which is another form of answer to the Lucas Critique. In the latter approach, a VAR model is specified

for the variables of interest on purely statistical (i.e. atheoretical) grounds and structural properties like

causality and exogeneity are tested inside this framework.1 Sims does not ignore the Lucas Critique but

considers that changes in regime due to policy interventions do not invalidate the VAR framework as long

as the stationarity paradigm may be maintained.

But, to some extent, one might argue that the atheoretical approaches like Sims and LSE methodologies

justify a contrario the Calibration approach since they prove that, after some disappointment about the

empirical performance of the Cowles program, econometricians should choose between orthodox statistic

methodology and a more symbiotic relationship with Economic Theory. As far as one wants to remain true

to some paradigms of modern macroeconomics, typically the bedrock of the macro general equilibrium model

synthesized by the intertemporal optimization program of a representative agent (for a given specification

of tastes and technology), one should relax some usual requirements for statistical orthodoxy.

Amazingly, this regained freedom of quantitative Economic Theory (as proposed by calibrators) with

respect to statistical orthodoxy is acknowledged by both its detractors and its proponents. While the former

consider that this makes questionable the credibility of calibrators “computational experiments”, the latter

claim this freedom by using “the mantel of Frisch” (Hoover (1995b)) to argue that econometrics is not

coextensive with estimation and testing, that is with orthodox statistics. More precisely, Kydland and

Prescott (1991) claims that Calibration is also econometrics by referring to Frisch (1970) review of the state

of Econometrics: “In this review he discusses what he considers to be econometric analysis of the genuine

kind and gives four examples of such analysis. None of these examples involves the estimation and statistical

testing of some model. None involves an attempt to discover some true relationship. All use a model which

is an abstraction of a complex reality to address some clear-cut question or issue”.

Such an endorsement of Calibration as an alternative to estimation2 (Hansen and Heckman (1996))

leads one to the conclusion that “the new classical macroeconomics is now divided between calibrators and

estimators” (Hoover (1995b)). Actually, we share with Hansen and Heckman (1996) the opinion that the

construction of such artificial distinctions is counterproductive and the main goal of this paper is to try to

1The “general-to-specific” approach was also enhanced by the LSE school. Rougly speaking, we are going to argue hereafter

that the calibration approach is the exact opposite, since it can be viewed as “specific-to-general”.

2And the related endorsement of verification as an alternative to statistical tests.
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go further in the research program advocated by Hansen and Heckman (1996): “We then argue that the

model calibration and verification can be fruitfully posed as econometric estimation and testing problems. In

particular, we delineate the gains from using an explicit econometric framework.” This does not mean in our

opinion that econometricians have nothing to learn from calibrators (or that calibration is not econometrics).

The now well established methodology of statistical inference is able to incorporate and to take advantage of

some practices that calibrators are right to point out as relevant for empirical economics. Indeed, not only do

we consider as Hansen and Heckman (1996) that properly used and qualified simulation methods can be an

important source of information and an important stimulus to high-quality empirical economic research; but

also that calibrators give to statisticians a useful insight about the good way to perform these simulations

in the framework of general equilibrium theory. Moreover, we aim at delineating a close methodology which

could be able to gather both the advantages of the inferential approach (estimation and specification testing)

and also the advantages of Calibration approach, that correspond, in our opinion, to consistent estimation of

some structural parameters of interest and robust predictions despite misspecifications in the structural model

used as a simulator. In other words, we acknowledge with calibrators that, in order to address “genuine”

econometric issues, one often needs an alternative to the “quest for the Holy Grail” (Monfort (1996)), that

is the hopeless search for a well-specified parametric model that is more often than not impossible to deduce

from the Economic Theory. In this respect, it is true that we should not be obsessed by estimation and

statistical testing of some model, viewed as an attempt to discover some true relationship but we consider that

the modern calibrationnist practice can be fruitfully posed as econometric estimation and testing problems

of something different from a “true unknown model” to be discovered.

In order to be more precise on this somewhat artificial distinction drawn between calibration and estima-

tion, it is perhaps necessary to briefly recall in what context calibration is the most repeatedly advocated in

modern macroeconomics, that is the empirical dynamic stochastic general equilibrium model (DSGE)3. In

this context, the two methodologies (calibration and estimation) appear at first glance (as well explained by

Canova (1994)) to share the same strategy in terms of model specification and solution. Namely, the first step

entails specifying a dynamic equilibrium model while selecting convenient functional forms for preferences

and technology processes. In the second step, the modeler derives, possibly through simulation, a solution

for the endogenous variables in terms of the exogenous and predetermined variables and the parameters.

But it is when it comes to choosing the parameters to be used in the simulations and in assessing

the performance of the model that several differences emerge. The estimation procedure attempts to find

the parameters that lead to the best statistical fit either by Maximum Likelihood or Generalized Method

of Moments (GMM hereafter) when a direct approach is feasible or, otherwise, by Simulated Method of

3Nowadays, the calibration approach is so tightly identified with the so-called Real Business Cycles (RBC) approach to

analyzing economic fluctuations that in his texbook on “Advanced Macroeconomics”, Romer (1996) raises this “empirical

philosophy” as one of the four most important objections to the RBC theory.
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Moments, Indirect Inference or Efficient Method of Moments (EMM hereafter). The performance of the

model is examined through a battery of specification and goodness of fit tests.

The second approach calibrates parameters using a set of alternative rules which includes the matching

of long run averages and chosen stylized facts such as moments of interest, the use of previous estimates or a

priori selection. On top of that the fit of the model (verification step) is assessed through a rather informal

distance criterion based on personal expertise. It is clear that this methodology has raised a huge amount of

criticism among statisticians, First, the current use of the so-called “calibrators common knowledge”, that is

specific parameters values deduced from previous empirical studies, is at odds with any orthodox statistical

estimation theory. One may wonder why the modeler needs to refer to such a common knowledge. Second, in

order to minimize the number of “evaluated” and “calibrated” parameters, the calibration methodology only

aims to reproduce some stylized facts. As stressed by Hansen and Heckman (1996) this runs the danger of

making many models with very different welfare implications compatible with the evidence. In this respect,

to what extend can we trust such calibrated models and how should we use them for evaluating the effects

of policy interventions?

These criticisms are relevant as long as one considers and acts as if the structural model was well-specified

for all the salient features of the data. However, when faced with the likely misspecification of highly nonlinear

structural macro-models, one can find a rationale for the calibration approach in the following sequence of

arguments.

First, as already noticed by Hoover (1995b), the alleged lack of discipline of the calibration methodology

is to some extent balanced by another kind of discipline: “for Lucas (1980, p. 288) and Prescott (1983, p.11),

the discipline of the calibration method comes from the paucity of free parameters”. Since theory places only

loose restrictions on the values of key parameters and they are often deduced from econometric estimation at

the microeconomic level or accounting considerations, Hoover (1995b) stresses that the calibration method

actually appears to be a kind of “indirect estimation”.

Second, such an indirect estimation, which can be traced back to the early works of Klein and others

(“Indirect Least Squares” for SEM) is now endowed with a close framework termed Indirect Inference by

Gouriéroux, Monfort and Renault (1993). The core of this methodology is a family of instrumental parame-

ters, possibly defined from some auxiliary model, for which consistent estimators are available. Then, the

structural parameters are indirectly identified through a binding function which relates them to instrumental

parameters. When, due to the complexity of nonlinear rational expectation models, the binding function

is not available in closed form, it can be estimated from simulated paths drawn from the structural model.

Then, the likely mispecification of some features of the structural model is even more detrimental than for

direct inference since the vector of structural parameters is only identified as a whole, through the binding

function.
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This will more often than not produce a contamination of the estimation of the structural parameters of

interest by the ill estimation of some nuisance parameters in the structural model. This contamination is

even more striking when one realizes that the binding function is estimated from simulated paths produced

by a misspecified structural model used as a simulator. In this respect, the Partial Indirect Inference

(PII hereafter), as proposed by Dridi and Renault (1998) (DR hereafter), addresses the issue of consistent

estimation and testing of some structural parameters of interest, when a potential misspecification of the

fully parametric structural model is acknowledged. The crucial problem is that, on the one hand, a fully

parametric structural model is needed to be able to draw simulated paths conformable to it (or equivalently

to characterize a binding function) but, on the other hand, this complete parametric specification is likely

to be misspecified and thus to provide a wrong simulator. In this context, it is shown that the only way to

protect oneself against likely misspecifications of the structural model, while it is used for building simulated

paths, is to examine it through a convenient instrumental model which does not capture what goes wrong

in the simulated paths.

The starting point of this paper is that the methodology of Partial Indirect Inference provides some

statistical foundations for the calibration methodology: since we know that the structural model is misspec-

ified but we really need it for the interpretation of some structural parameters, we try to estimate it only

through well-chosen characteristics which are conformable to the main purpose of the model. The underlying

philosophy is that some elements of truth involved in the model should be caught by matching only some

“well-chosen moments” and not a too large set of moments prompted by an automatic statistical process.

Otherwise, we might get an inconsistent estimator of the parameters of interest as well as unreliable predic-

tions, due to a contamination in dimensions where the model may do miserably. This is nothing but the

aforementioned “discipline of the calibration method” which “comes from the paucity of free parameters”.

The verification step can then be performed by using consistent PII estimators. Such strategy disentangles

the calibration and verification steps and reconciles them with their econometric counterparts of estimation

and testing. The criterion used for the verification step corresponds to the economic phenomena that the

model is addressed to reproduce. This criterion may then be different from the one used to obtain consistent

estimators in the first step. For instance, a common practice is to assess the goodness of fit of the model

through its ability to reproduce second moments of aggregate time series characterizing U.S. business cycle.

In fact, the choice of the criteria is tightly related to the “clear-cut question” addressed by the model. But,

by contrast with the R.B.C. calibrationnist approach, the proposed verification strategy is not informal but

based on well-defined statistical tests. However, we follow the calibrationnists approach by considering that

the specification tests should only be focused on the reproduction of stylized facts the structural model is

aimed to capture. Indeed, one can always find a dimension of the data for which the model is rejected since

the model is for sure misspecified. The structural model must not reproduce all empirically aspects of the
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data but only the well-chosen moments corresponding to the question of interest.

The issue of statistical formalization of the calibration methodology has already been addressed in par-

ticular by Gregory and Smith (1990), Watson (1993) for a classical approach and by Canova (1994), Dejong,

Ingram and Whiteman (1996), Geweke (1999) and Schorfheide (2000) for a Bayesian one. In both cases, the

emphasis is laid on the ability of the structural model to reproduce some features of interest. In this paper,

we focus not only on the ability of the structural model to reproduce selected moments of interest but we also

address the issue of consistent estimation of some parameters of interest. Because the proposed procedure

is a two step one, we call it Sequential Partial Indirect Indirect (SPII). In our opinion, this two-step statisti-

cal methodology remains exactly true to the calibrationnist point of view: reproducing some dimensions of

interest under the constraint that some parameters of interest are consistently estimated.

The paper is organized as follows. In section 2, the issues of interest and the general framework to address

them are defined through some template examples of the calibration literature. The statistical theory of

Sequential Partial Indirect Inference is stated in section 3. Section 4 summarizes the contributions of SPII

to afford a close framework to calibration.

2 Calibration as econometrics of misspecified models

The statistical assessment of economic models raises a specific issue: as already pointed out by Canova

(1994) the probability structure is, to a large extent, completed in an arbitrary way (in comparison with

what the structural model really specifies) and the “economic model is seen, at best, as an approximation of

the true DGP which need not be either accurate or realistic and, as such, should not be regarded as a null

hypothesis to be statistically tested” so that “the degree of confidence in the results depends on both the

degree of confidence in the theory and in the underlying measurement of parameters”. These observations

pave the way for a rehabilitation of some common calibrators’ practices while statisticians like Pagan (1995)

use to bring against them the accusation to be “very close to blaming the data if the calibrator’s model fails

to fit”.

Actually, Canova (1994) pleads guilty concerning this accusation when he acknowledges that “the degree

of confidence in the results depends on both the degree of confidence in the theory and the underlying

measurement of parameters” but this practice is not, in our opinion, open per se to criticism. This proves

that the old debate “measurement” versus “theory” as popularized by Koopmans (1947) is still a matter

of controversy. How could we then explain the calibration approach in comparison with a more traditional

statistical methodology?

We share Gregory and Smith (1990) opinion that it is not fortuitous if Calibration and GMM (Hansen

(1982)) were introduced to macroeconomics at the same time and in the same journal, “Econometrica 1982”.

If one reduces these two approaches to their statistical apparatus, they look very similar at first sight:
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• They both focus on structural parameters (as taste parameters) and neglect to a large extent other
parameters such as the technology parameters.

• Both approaches are based on “matching moments”.

• Both can lead to simulation-based versions since moments of interest to be matched are often cumber-
some either computationally or analytically.

But we agree with Canova (1994) to argue that the differences between the two Schools of Thought “are

tightly linked to the questions the two approaches ask”. Roughly speaking, the estimation approach asks the

question “given that the model is true, how false it is?” In other words, considering that the true unknown

DGP belongs to the class of p.d.f. delineated by the structural model, how should the econometrician

efficiently provide confidence intervals, specification tests as well as optimal forecasts.

By contrast, the calibration approach asks: “given that the model is false, how true is it?” That is to

say, acknowledging that any structural model is misspecified, how should the econometrician rely on this

model to perform robust estimation of structural parameters of interest as well as robust predictions.

A recent illustration of this debate is the divergence between two apparently similar methodologies

proposed by Gallant and Tauchen (1996) on the one hand and by Gouriéroux, Monfort and Renault (1993)

on the other hand with respective names “Efficient Method of Moments” (EMM) and “Indirect Inference”.

While the EMM method asks the question “given that the model is true, how false is it”, or, according to

the conclusion of Bansal, Gallant, Hussey and Tauchen (1995) “if a structural model is to be implemented

and evaluated on statistical criteria i.e., one wants to take seriously statistical test and inference, then the

structural model has to face all empirically relevant aspects of the data”, the Indirect Inference is rather

based on the idea that “it is possible that a model structure that does a good job in matching some chosen

moments may do miserably in other dimensions” (Bansal, Gallant, Hussey and Tauchen (1995)). In some

sense, “given that the model is false”, some elements of truth involved in the model (for instance some

taste parameters) should be caught by matching only “some chosen moments” and not a too large set of

moments prompted by an automatic statistical procedure. Otherwise, we might get an inconsistent estimator

of parameters of interest, due to a contamination in dimensions where the model may do miserably. The

problem is that, even though one acknowledges some empirical weaknesses of any theoretical model as for

instance the fact that any equilibrium model is too smooth to produce realistic nonlinearity (Bansal, Gallant,

Hussey and Tauchen (1995)), nobody suggests to abandon the equilibrium model. One of the main goals of

this paper is precisely to provide some sensible guidance to the economist’s confusion as stressed by Bansal,

Gallant, Hussey and Tauchen (1995): “the findings about an equilibrium model being too smooth left the

reader alone in front of the central question of the usefulness of the structural model, if one excludes the

possibility of isolating a few selected dimensions along which it does well and along which it could be used”.
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In other words, the present paper is conformable to the Pagan (1994) research agenda: “there is now

extensive material on how to perform comparison between misspecified models (see Smith (1993); Gouriéroux

and Monfort (1995)), although much of the theory assumes that θ has been estimated by maximum likelihood

rather than GMM estimator that is most popular among calibrators.4 Extension of this theory to GMM

estimators should make it possible to effect comparisons between models”.

According to Kydland and Prescott (1991) the so-called calibration methodology was first introduced in

economics by Frisch (1933) in his pioneering work “Propagation Problems and Impulse Response Problems

in Dynamic Economics”, already addressing some business cycle issues. It is nowadays popular, not only

in the Real Business Cycles literature (following Kydland and Prescott (1982)) but also for understanding

asset pricing puzzles, starting from Mehra and Prescott (1985) on the Equity Premium puzzle. It has more

recently been developed and applied not only to the Real Business Cycles (strand of the literature initiated

by Kydland and Prescott (1982)) but also to the Equity Premium Puzzle.

We focus in the sequel on these two strands of the literature that we consider as representative illustrations

of the calibrationnist practices.

2.1 The Equity Premium Puzzle

In their presentation of the calibration approach, Kydland and Prescott (1991) lays the emphasis on the

crucial role of the research question which must be clearly defined 5. Mehra and Prescott (1985) addresses

the question whether the large differential between the average return on equity and average risk free interest

rate can be accounted for by models neglecting any frictions in the Arrow and Debreu set up. The simple

statement of this question defines on the one hand the structural parameters of interest and on the other

hand the instrumental parameters through which the empirical evidence is summarized.

In order to statistically formalize the calibration concepts, we introduce in this section general notations

that are consistently maintained herein.

First, the structural parameters of interest for Mehra and Prescott’s question are two taste parameters

of a representative agent: θ1 = (γ,α)
0 in Lucas (1978) type consumption based CAPM. The representative

agent preferences over random consumption paths are described by a time-separable expected power utility

function

E0

∞X
t=0

γtU(ct)

where

U(ct) =
c1−αt − 1
1− α

4see Guay and Renault (2003) for comparison between misspecified model in GMM and SPII contexts.

5Actually, the sole word question is used for a section title.
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and ct denotes the consumption at time t. Of course, this way of economically defining the structural

parameters of interest is tightly linked to the economic setting the modeler has in mind and might be

reducing since, while γ represents the subjective discount factor, α represents both relative risk aversion and

inverse of the elasticity of intertemporal substitution. This implicitly assumes that this reduction has no

incidence on the answer to the aforementioned question of interest. Anyway, we stress here that the structural

parameters of interest θ1 are intrinsically defined through economic paradigms rather than through falsifiable

statistical relations.

Second, in this approach the structural model is empirically assessed through its ability to reproduce some

stylized facts of interest like here the high value of the equity premium. In our statistical framework, these

stylized facts are referred to as the set of instrumental parameters denoted β. The empirical relevance of the

structural model is assessed precisely through the matching between the observed instrumental characteristics

and their theoretical counterparts consistent with the structural model.

Perhaps one of the most difficult issue for a close statement of the calibration methodology is that

the reality check relies on additional assumptions which are not part of the economic theory of interest.

These additional assumptions may require the specification of additional parameters θ2 possibly of infinite

dimension. In Mehra and Prescott (1985), these parameters θ2 define the technology, that is the Markov

chain assumed to govern the gross rate of dividend payments. More precisely, this gross rate xt is described

by a two states Markov chain:

Pr{xt+1 = λj |xt = λi } = φij , i, j = {1, 2},

where

λ1 = 1 + µ+ δ, λ2 = 1 + µ− δ,

and

φ11 = φ22 = φ, φ12 = φ21 = 1− φ.

In other words θ2 = (µ, δ,φ). More generally, the vector θ of structural parameters is split into two parts

θ1 and θ2 where θ1 gathers the characteristics of interest while θ2 corresponds to nuisance parameters which

are needed for the statistical assessment. The most usual case is the one where θ1 is related to preference

specifications (taste parameters) and θ2 describes environmental characteristics (technology parameters).

However it may be the case that, as it is for the question above, one is not interested in a complete description

of preferences. Then the specification of θ1 focuses only on a subset of taste parameters (discount factor, risk

aversion coefficient) while θ2 may include other behavioral characteristics (e.g. elasticity of intertemporal

substitution).

In any case, the main role of these nuisance parameters θ2 consists in indexing a binding function
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between the structural parameters of interest θ1 and the instrumental parameters β:

β = β̃ (θ1, θ2) . (2.1)

Of course, the value β of the instrumental parameters defined by (2.1) is the theoretical one and does not

coincide in general with the (population) value of the observed one ; this is precisely the question addressed

by the calibration exercise. For sake of illustration, let us go into further details in the presentation of the

Mehra and Prescott (1985) model. They show that the period return for the equity if the current state is i

(with a level ct of consumption) and the next period state is j is given by:

reij =
λj (wj + 1)

wi
− 1, (2.2)

where w1 and w2 are computed from the Euler equation through the linear system of two equations:

wi = γ
2X
j=1

φijλ
1−α (wj + 1) , i = 1, 2. (2.3)

In other words the expected return on the equity is:

Re =
2X

i,j=1

πiφijr
e
ij , (2.4)

where π = (π1,π2)
0 corresponds to the vector of stationary probabilities of the Markov chain. The same

type of characterization is available for the risk free return Rf and omitted here.

Therefore the above formulas (2.2)-(2.4) provide the already announced binding function between θ1 =

(γ,α)0 and βg = g(Rf , Re) =
¡
Rf , Re −Rf¢0 where the vector g(·) contains the moments of interest.6 Of

course, this function is indexed by the additional parameters θ2 = (µ, δ,φ)
0 which characterize the Markov

chain through.

The specific feature of the calibration methodology with respect to more standard statistical inference

appears precisely at this stage: since our goal is to ask whether, given the technology, there exist taste para-

meters capable of matching the returns data, this, according the Cechetti, Lam and Mark (1993) “dictates

that we proceed in two steps, first estimating the parameters of the endowment process, and then computing

a confidence bound for the taste parameters γ and α”.

With respect to more orthodox econometrics, this two steps procedure may arouse, at least, two types

of criticism: First, even though the only parameters of interest are the taste parameters θ1, one get in

general more accurate estimators by a joint, possibly efficient, estimation of θ = (θ01, θ02)0. Second, even when

ignoring the efficiency issue, it is somewhat questionable with regard to consistent estimation to focus on

taste parameters while the technology corresponds obviously to a caricature of the reality. Nobody may

believe that the endowment process is conformable with a two states Markov chain and this misspecification

presumably contaminates the estimation of the parameters of interest.

6The notation βg is introduced to specified that the binding function is defined relative to the vector of moments g.
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2.2 Encompassing assessment of the computational experiment

In our opinion, a garbled answer to the above criticisms would consist in claiming that this procedure should

not be regarded as an econometric one attempting to consistently estimate the parameters of interest. In this

respect, we share Hansen and Heckman (1996) point of view that the distinction drawn between calibrating

and estimating the parameters of a model is artificial at best.

Actually, the core principle of the calibration approach as illustrated in Mehra and Prescott paper’s

consists in concluding that the structural model is rejected on grounds of “computational experiments”

leading to unlikely values of the parameters of interest. Namely, in Mehra and Prescott (1985) it is argued

that computed values of the discount factor and the relative risk aversion parameter outside their commonly

acknowledged range (0 < γ < 1, 0 ≤ α ≤ 10) proves the misspecification of the structural model. How could
they maintain such an argument if they did not think that these computed values are consistent estimators

of something which makes sense?

Consequently, we think that calibration should also be interpreted in terms of consistent estimation of

the parameters of interest, even though this issue is addressed in a non standard way in several respects:

• First, as explained above, it is often addressed in a negative way. The model is rejected because the
estimators of its alleged parameters are obviously inconsistent.

• Second, consistency is the only focus of interest. Efficiency is irrelevant in this setting since the

calibration exercises gather a huge amount of historical information such as series of asset returns over

the whole last century in such way that the efficient use of the information is not an issue at all.

• Third, calibrators are fully aware that consistency might fail, precisely due to the misspecification
of the technology or more generally of the additional assumptions about the nuisance parameters θ2.

Indeed, fully cautious about that, they advocate calibration as a search for sensible values of θ2.

The main goal of this paper is to statistically analyze into further details the latter point. To the extent

that the aforementioned consistency requirement is maintained, the crucial concern is the following: When

one uses the binding function β̃g(·, θ̄2) indexed by a hypothetical value θ̄2 of θ2 to recover an estimate θ̂1
of the parameters of interest θ1 from an empirical measurement β̂g of the instrumental parameters βg by

solving 7:

β̂g = β̃g(θ̂1, θ̄2), (2.5)

is there any hope that θ̂1 consistently estimates the true unknown value θ
0
1 of the structural parameters of

interest? Before answering this question, three preliminary remarks are in order:

7We do not mention the issue on overidentification which might prevent one from finding an exact solution to (2.5). See

section 3 for more details.
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1. On the one hand, the sole idea of a true unknown value θ01 of the structural parameters relies on the

maintained hypothesis that the DGP is conformable to our structural ideas. This does not prevent

from accounting for the calibrationnist approach which considers the estimation issue in a negative

way as already explained.

2. On the other hand, we do not question here the consistency of the instrumental estimator β̂g since the

instrumental parameters βg,0 are essentially defined as the population value of β̂g.

3. Finally, we consider for the moment that the binding function β̃g(·, θ̄2), for any reasonable value θ̄2,
is well defined and known as is the case of the Mehra and Prescott (1985) framework. However, to

capture complicated features of richer models, simulations at different levels of the forcing processes

and parameters may be useful when analytical computation is intractable. This is perhaps the reason

why calibrators have extensively used simulations.

The hope for getting a consistent estimator θ̂1 of θ◦1 by solving (2.5) can then be supported by two

alternative arguments according to our degree of optimism: Either, one adopts an optimistic approach

wishing that history has provided sufficiently rich empirical evidence to determine without ambiguity a

value θ̄2 of the nuisance parameters. This is typically what is referred to as the calibration step. However,

one should keep in mind that the technology is crudely misspecified (see the two states Markov chain above)

in such a way that the estimator θ̂1 can be consistent only by chance whatever the choice of θ̄2. Or, to be

more cautious, one tries different values of θ̄2 to check whether the outcome of the computational experiments

is drastically changed. This is what is called the robustness of results in Mehra and Prescott (1985) and

more generally the sensitivity analysis in the calibration literature.

Of course, an ingenuous comment about this debate would be: one should jointly statistically estimate

(βg, θ1, θ2) under the constraint (2.5). But this proposal is irrelevant in the calibration framework since

the modeler knows a priori and before any statistical inference that the nuisance parameters θ2 do not

make sense on their own. Moreover, one of the main recommendations of this paper is to be suspicious in

front of sophisticated strategies of model choice and fit about the technology characteristics. For instance,

following Bonomo and Garcia (1994) it is true that by contrast with Cecchetti, Lam and Mark (1990) “a

well-fitted equilibrium asset pricing model” may account for some stylized facts but one cannot be sure

that the improvement in the technology specification is really relevant for the question of interest since

misspecification is always guaranteed. For the same reason, the modern literature on EMM through fitting

a nonlinear semi-nonparametric score (see Bansal, Gallant, Hussey and Tauchen (1995), Gallant, Hsieh and

Tauchen (1997), Tauchen, Zhang and Liu (1997)) suffers from the same drawback since it often forgets that

the crucial point is the so-called encompassing condition that is precisely defined in section 3.

Roughly speaking, we shall say that, endowed with the pseudo true value (θ◦1, θ̄2), the structural model
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encompasses the instrumental one when the following consistency condition is guaranteed:

βg,0 = β̃g
¡
θ01, θ̄2

¢
.

We want to stress here that this consistency condition is what really matters to validate the calibration

exercises. This has almost nothing to do with the accuracy of the proxy of the technology provided by the

nuisance parameters to the extent that the structural models is always “an abstraction of a complex reality”

(Kydland and Prescott (1991)).

The calibration strategy adopted by Cechetti, Lam and Mark (1993) reflects the concern for a parsi-

monious choice of the instrumental model given the technology process. These authors also investigate the

equity premium through the first and second moments of the risk-free rate and the return to equity. As

in Mehra and Prescott, the utility function is time-separable with a constant relative risk aversion. While

Mehra and Prescott consider consumption and dividend as equal and then calibrate on an univariate Markov

process, the model developed by Cechetti, Lam and Mark (1993) explicitly disentangles consumption from

dividends and the endowment process is defined by a bivariate consumption-dividends Markov-Switching

model.

Cechetti, Lam and Mark (1993) are clearly aware of the problem of choosing a too large set of moments

to estimate both structural parameters of interest and the endowment. The explicitly argue that it would

not be well-suited to estimate the parameters of interest and the endowment process jointly by maximum

likelihood procedure. Such an estimation strategy forces the model to match all the aspects of the data and

it is unlikely that a simple model could reproduce adequately all those aspects.

Cechetti, Lam and Mark (1993) proceed in two steps: first, they estimate the parameters of endowment

process through a subset of moments chosen to match the maximum likelihood estimates of a bivariate

consumption-dividends Markov-Switching model. In the second step, they compute a confidence interval

bound for the taste parameters through first and second moments of returns data for a given endowment

process. In our notation, this defines two subvectors of instrumental parameters namely;

βg1 = βg1
¡
θ1(θ̄2)

¢
βg2 = βg2(θ2).

where θ1 = (γ,α)
0 and θ2 gathers the parameters for the endowment process. The subvector β

g
2(·) corresponds

to the subset of moments chosen to match the maximum likelihood estimates of the bivariate consumption-

dividends Markov-Switching model. The subvector βg1(·) contains the first and second moments of return
data used to estimate the structural parameters θ1 given the technology characterized by θ̄2. The notation

θ̄2 stresses the fact that the concept of true unknown value does not make sense for the nuisance parameters.

As in Mehra and Prescott, the model evaluation relies on the plausibility of the confidence interval bound

for the discount factor parameter (γ) and the relative risk aversion parameter (α). The calibrator does not
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want to match the entire set of instrumental parameters βg to avoid contamination by the misspecification of

the endowment process. The adequacy of the model is judged only through the plausibility of the structural

parameters given the fit of a parsimonious subset of moments corresponding to βg1 .

More generally, we consider that, endowed with the pseudo true value
¡
θ01, θ̄21

¢
, the structural model

partially encompasses the instrumental one when the following consistency condition is guaranteed:

βg,01 = β̃g1
¡
θ01, θ̄21

¢
,

and the vector of nuisance parameters is divided as: θ2 = (θ
0
21, θ

0
22)

0
. As far as one is mainly concerned with

the estimation of the structural parameters θ1, the crucial issue of partial encompassing is the existence of

subvector βg1 . In the case of Cechetti, Lam and Mark (1993) the vector θ21 is empty such that the entire

vector of nuisance parameters is estimated through the subvector βg2 .

2.3 General equilibrium approach to business cycles: an illustration

Kydland and Prescott (1982) introduced a neoclassical one-sector growth model driven by technology shocks

to reproduce cyclical properties of U.S. economy. The model includes a standard neoclassical production,

standard preferences to describe agent’s willingness to substitute intratemporally and intertemporally be-

tween consumption and leisure and a driven exogeneous process given by the technology process. The

Kydland and Prescott’s model and the subsequent macro dynamic equilibrium models based only on real

shocks with no role for monetary shocks are called Real Business Cycle (RBC) models.8.

The clear-cut question addresses by Kydland and Prescott (1982) is the following: How much would

the U.S. economy have fluctuated if technology shocks had been the only source of fluctuations? Obviously

the model is misspecified. In particular, it implies some unrealistic stochastic singularity for the vector of

endogenous variables.9

This question addressed by Kydland and Prescott defines the moments (instrumental parameters) through

which the empirical fit of the model has to be assessed. The instrumental parameters correspond to second

moments describing the cyclical properties of U.S. postwar economy. While these moments can be easily

estimated from the data, simulations are often required to compute their theoretical counterpart. In the

strategy advocated by Kydland and Prescott (1982) the answer to the question of interest is then given by

an informal distance between empirical instrumental parameters and the instrumental parameters under the

structural model. The values of the structural parameters are previously deduced from applied micro-studies

or by matching long run properties of U.S. economy.

8For extensions of this model see e.g. Hansen (1985), Beaudry and Guay (1996) and Burnside and Eichenbaum (1996).
9Some empirical applications bypass this misspecification problem by augmenting the theoretical solution of the model with

a measurement error for each endogenous variables. The augmented model is then estimated by maximum likelihood (see

Hansen and Sargent (1979) and Christiano (1988)). See Watson (1993) and Ruge Murcia (2003) for a discussion.
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For sake of illustration, we consider here a benchmark RBC model (King, Plosser and Rebelo (1988a),

(1988b)). The social planner of this economy maximizes

E0

∞X
t=0

γt [ln(Ct) + φ ln(Lt)]

where Ct is per capita consumption, Lt is leisure, γ is the discount factor and φ is the weight of leisure in

the utility function. The intertemporal maximization problem is subject to the following budget constraint:

Ct +Kt+1 − (1− δ)Kt ≤ K1−α
t (ZtNt)

α

where Kt is the capital stock, Nt are the hours worked, Zt is the labor augmenting technology process, α is

the labor share in the Cobb-Douglas production function and δ the depreciation rate of the capital stock. As

mentioned by Kydland and Prescott (1996), the law of motion of the exogeneous process Zt in the model is

not provided by any economic theory. Additional assumptions which are neither given by economic theory

nor by any statistical procedure are then required. Following King, Plosser and Rebelo (1988b), we consider

here that the law of motion for Zt is characterized by the following random walk with drift:

lnZt = µ+ lnZt−1 + εt

where µ is the growth rate of the economy and is εt i.i.d. Normal (0,σε). Obviously, this law of motion

of the technology process is a caricature of the true unknown process. Consequently, this misspecification

could presumably contaminate the estimation of the structural parameters of interest. However, with such

a driven process, the log-linear solution of the model is compatible with a unit root process for output,

consumption, investment and real wages (see King, Plosser and Rebelo (1988b) and King, Plosser, Stock

and Watson (1991)) and cointegration relationships between these variables which are consistent with U.S.

data.

We consider here that there are four deep structural parameters in this model and three auxiliary para-

meters. In our notation, θ1 = (γ, δ,α, µ)
0 gathers the interest parameters and θ2 = (φ, µ,σε)0 the nuisance

parameters needed for statistical implementation, that is to index the binding function. We will explain

later why φ is considered as nuisance parameter.

While Mehra and Prescott ask the question: Is there exist a set of parameters of interest with reasonable

values able to reproduce some characteristics of the data?, the RBC modeler asks the question: “Given a set

of parameters of interest calibrated by micro-evidence or long run averages, what is the ability of the model

to reproduce some well documented “stylized facts”?

As explained above, Mehra and Prescott (and Cechetti, Lam and Mark (1993)) considers estimation

issue in a negative way: they search for values of structural parameters (θ1 in our notation) reproducing as

well as possible the observed instrumental parameters βg (or subset of the instrumental parameters (βg1) for

Cechetti, Lam and Mark). The goodness of fit of the model is judged by the range for these values. Kydland
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and Prescott (1982) evaluate the performance of the model by its ability to reproduce well defined “stylized

facts” which are computed by simulations at given values of the structural parameters (θ1). The assigned

value of the parameter vector θ1 comes from other applied studies or by matching long run average values

for the economy. In contrast to Mehra and Prescott strategy, the instrumental parameters used to assess

the model differs from the ones used to obtain an estimator of the structural parameters. More precisely,

the strategy advanced by Kydland and Prescott (1982) consists in two steps:

• First, structural parameters are calibrated to values used in applied studies and to match long run
average values.

• Second, the verification is implemented by judging the adequacy of the model to reproduce well chosen
“stylized facts”. When they could not find reliable estimations of a subset of parameters in economic

literature or by matching long run properties, these parameters are treated as free parameters. Their

values are then chosen to minimize the distance between the well chosen ”stylized facts” of the U.S.

economy and the corresponding ones of the model.

The first step corresponding to calibration is the most controversial one. Indeed, several authors have

shown that parameters obtained from micro-applied studies can be plugged to a representative agent model

to produce empirically concordant aggregate model only under very special circumstances (see Hansen and

Heckman (1996) for a discussion on this point). However, matching long run properties is more conformable

to the estimation step in classical econometrics. In fact, this practice consists in matching a just-identified set

of moments where the corresponding instrumental parameters are the long-run averages. For instance, Kyd-

land and Prescott (1982) calibrate the deterministic version of their model so that consumption/investment

shares, factor/income shares, capital/output ratio, leisure/market-time shares and depreciation shares match

the average values of U.S. economy. However, they fit the values of those parameters without a formal es-

timation procedure.10 Consequently, uncertainty inherent to those values is not taking into account in the

results.

The matching of long run properties of the economy corresponds in our setting to obtain an estimator of

θ = (θ01, θ02)0 by

βg = βg(θ1, θ2).

where βg captures these long run average properties.

The verification step (second step) performed by the calibrator is based on a quite informal distance

criterion for selected ”stylized facts”. This evaluation process can be formalized in our setting by a choice of

instrumental model parameters corresponding to the ”stylized facts” to reproduce. In fact, we try to judge

10see Christiano and Eichenbaum (1982) and Burnside and Eichenbaum (1996) for the estimation of structural parameters

by a just-identified GMM.
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if we can reject with a certain metric the following null hypothesis:

βk = βk(θ01, θ̄2)

evaluated at the pseudo-true value obtained (θ01, θ̄2) with the instrumental parameters β
g. The index k af-

fected to βk distinguishes the instrumental parameters corresponding to the “stylized facts” to the instrument

parameters used to estimate the parameters of interest θ.

In presence of what Kydland and Prescott (1982) called free parameters, their strategy can be formalized

by obtaining an estimator of those free parameters by minimizing the distance between the “stylized facts”

from the economy and the corresponding ones for the model. Suppose that the vector of nuisance parameters

θ̄2 is divided as θ̄2 =
¡
θ̄021, θ̄022

¢
and the subvector θ̄22 contains these free parameters for which direct estimator

can not be performed. The value θ̄22 of the nuisance parameters is obtained as the solution to the following

minimization program:

θ̄22 = arg min
θ22∈Θ22

³
βk,0 − β̃k(θ01, θ̄21, θ22)

´0
Ωk
³
βk,0 − β̃k(θ01, θ̄21, θ22)

´
(2.6)

where Ωk is a positive matrix on Rqk and qk = dimβk. For the benchmark RBC model, the free parameter

φ corresponding to the weight of leisure in the utility function may be difficult to estimate at the first step.

In such a situation, an estimator can then be obtained by (2.6). In a more complicated model, Kydland

and Prescott fix seven parameters by minimizing the distance between the model and data for twenty-three

moments describing U.S. business cycle. Those parameters are the substitutability of inventories and capital,

two parameters determining intertemporal substitutability of leisure, the risk aversion parameter and three

parameters for the technology process.

3 A Sequential Partial Indirect Inference approach to calibration

We present in this section the Indirect Inference principles as extended in DR (1998) as well as the available

results of the Partial Indirect Inference useful for validating the calibration methodology. This formulation

aims to encompass the one proposed in Gouriéroux, Monfort and Renault (1993) as well as the calibration

methodology.

The main goal if this section is to give a precise content to the calibrationnist-type interpretation of

Indirect Inference, as put forward in section 2, that is “given that the model is false”, some elements of truth

involved in the model (for instance some taste parameters) should be caught by matching some well-chosen

moments. The rigorous meaning of “elements of truth” lies in the semi-parametric modelling widely adapted

in modern econometrics as an alternative to the “quest for the Holy Grail” (see Monfort (1996)), that is the

hopeless search for a well-specified parametric model that is more often than not impossible to deduce from
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economic theory. On the opposite, the partial approach to Indirect Inference specifies only some parameters

of interest raised out by the underlying economic theory.

We first present the theoretical results (consistency, asymptotic probability distribution) available for

Partial Indirect Inference. For sake of expositional simplicity, detailed proofs and technical assumptions are

not provided. The interested reader can refer either to the companion paper DR (98) or to any standard

treatment of asymptotic theory of minimum distance estimators (see e.g. Newey and McFadden (1994)).

3.1 The general framework

As in DR (1998), the data consist in the observation of s stochastic process {(yt, xt), t ∈ Z} are dates
t = 1, . . . , T . We denote by P0 the true unknown p.d.f. of {(yt, xt), t ∈ Z}.
Assumption (A1):

i) P0 belongs to a family P of p.d.f. on (X ×Y)Z .

ii) eθ1 is an application from P onto a part Θ1 = eθ1(P) of Rp1 .

iii) eθ1(P0) = θ01, the true unknown value of the parameters of interest, belongs to the interior ◦
Θ1 of Θ1.

eθ1(P) = θ1 is the vector unknown parameters of interest. Typically, in the case of a stationary process
{(yt, xt), t ∈ Z}, it may be defined through a set h of identifying moment restrictions:

EPh (yt, xt, yt−1, xt−1, . . . , yt−K , xt−K , θ1) = 0 =⇒ θ1 = eθ1(P ).
In such a semi-parametric model, not only the Maximum Likelihood estimator is no longer available, but

even more robust M-estimators or Minimum distance estimators may be intractable due to a complicated

dynamic structure of P . This is the reason why we refer to indirect inference associated with a given pair of

“structural” model (used as simulator) and “auxiliary” (or “instrumental”) criterion.

In order to get a simulator useful for partial indirect inference on θ1, we plug the semi-parametric model

defined by (A1) into a structural model that is fully parametric and misspecified in general since it introduces

additional assumptions on the law of motion of (y, x) which are not suggested by any economic theory. These

additional assumptions require a vector θ2 of additional parameters. The vector θ of “structural parameters”

is thus given by θ = (θ01, θ02)0. We then formulate a nominal assumption (B1) to specify a structural model

conformable to the previous section, even though we know that (B1) is likely to be inconsistent with the

true DGP. 11

Nominal assumptions (B1): {(yt, xt), t ∈ Z} is a stationary process conformable to the following nonlinear
simultaneous equations model:

11We denote by B the nominal assumptions, that is assumptions that are used for a quasi-indirect inference (by extension of

the Quasi Maximum Likelihood).
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•  r (yt, yt−1, xt, ut, θ) = 0,

ϕ (ut, ut−1, εt, θ) = 0

θ = (θ01, θ02)0 ∈ (Θ1 ×Θ2) = Θ ⊂ a compact subset of Rp1+p2

• the exogenous process {xt, t ∈ Z} is independent of {εt, t ∈ Z},

• {εt, t ∈ Z} is a white noise with a known distribution G∗.

We denote by P∗ the probability distribution of the process {yt, xt, εt, t ∈ Z}.
We focus here on indirect inference about the true value θ◦1 of the parameters of interest θ1. The

Indirect Inference principle is still defined from the two basic components: a “structural” model (B1) and

the instrumental criterion Ng:

QT
³
y
T
, xT ,β

g
´
=
1

2

Ã
1

T

TX
t=1

g(wt)− βg
!0Ã

1

T

TX
t=1

g(wt)− βg
!
,

where wt = (yt, yt−1, xt−1, . . . , yt−K , xt−K) for a fixed number of K lags. Note that all the interpretations

that are done in the sequel are still valid when one is interested in partial indirect inference through general

extremum instrumental model as defined in DR (1998).

We introduce the estimators β̂gT and β̃
g
TS(θ1, θ2) associated with the instrumental model:

β̂gT =
1

T

TX
t=1

g(wt)

β̃gTS(θ1, θ2) =
1

TS

SX
s=1

TX
t=1

g(w̃st (θ))

where (w̃st (θ)) =
©
ỹst (θ), ỹ

s
t−1(θ), xt−1, . . . , ỹst−K(θ), xt−K

ª
, t = 1, . . . , T denote S simulated paths s =

1, 2 · · ·S associated to a given value θ = (θ01, θ02)0 of the structural parameters. Under usual regularity

conditions, these estimators converge uniformly in (θ1, θ2) to:

P0 lim
T→∞

β̂gT = β
g,0 = E0g(wt)

P∗ lim
T→∞

β̃gTS = β̃
g(θ1, θ2) = E∗g(w̃t(θ)).

We refer to P0 lim
T→+∞

and P∗ lim
T→+∞

as the limit with respect to the P0 and the P∗ probabilities when T goes to

infinity.

We assume (A2) that β̃g(·, ·) is one-to-one. According to Gouriéroux and Monfort (1995) terminology,
βg,0 is the true value of instrumental parameters and β̃g(·, ·) is the binding function from the structural

model to the instrumental one. The instrumental parameters βg correspond precisely to the moments of

interest E0g(wt) for calibration exercises.
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A partial indirect inference estimators θ̂1,TS is then defined as follows:

θ̂TS =
³
θ̂01,TS , θ̂

0
2,TS

´0
= arg min

(θ1,θ2)∈Θ1×Θ2

h
β̂gT − β̃gTS(θ1, θ2)

i0
Ω̂gT

h
β̂gT − β̃gTS(θ1, θ2)

i
,

where P∗ lim
T→+∞

Ω̂gT = Ω
g is positive definite matrix on Rq.

In order to derive a necessary and sufficient condition for the consistency of the PII estimator θ̂1,TS to

θ01, we define the so-called “generalized inverse” β̃
g− of β̃g by:

β̃g−(βg) = arg min
(θ1,θ2)∈Θ1×Θ2

kβg − β̃g(θ1, θ2)kΩg .

In our semi-parametric setting, we are only interested in the projection of β̃g− [βg(P )] on the set Θ1 of the

parameters of interest. Let us denote by Q1 the projection operator:

Q1 : Rp1 ×Rp2 → Rp1

(θ01, θ
0
2)
0 → θ1.

From DR (1998), we have the following consistency criterion:

Proposition 3.1 Under assumptions (A1)-(A2), θ̂1,TS is a consistent estimator of the parameters of interest

θ◦1 if and only if, for any P in the family P of p.d.f. delineated by the model (A1):

Q1

h
β̃g− ◦ βg(P )

i
= eθ1(P ).

In order to test the consistency property, we focus on a sufficient encompassing condition. We say that

(B1) endowed with the pseudo-true value (θ001 , θ̄02)0 fully encompasses (Ng) if:

βg,0 = β̃g(θ01, θ̄2).

In this framework, we are able to prove the following sufficient condition for the consistency of the PII

estimator θ̂1,TS:

Proposition 3.2 Under assumptions (A1)-(A2), if there exists θ̄2 ∈ Θ2 such that (B1) endowed with the

pseudo-true value (θ001 , θ̄02)0 fully encompasses (Ng), then θ̂1,TS is a consistent estimator of the parameters of

interest θ01.

When the structural misspecified model (B1) endowed with the pseudo-true value (θ◦01 , θ̄02)0 for θ̄2 ∈ Θ2
does not fully encompasses the instrumental model Ng, we know from DR (1998) that we can extend

the encompassing concept to a property of partial encompassing defined through a subvector βg,01 of q1

instrumental parameters (q1 ≤ q). The corresponding subvector function β̃g1(·, ·) of the binding function is
defined from Θ1 ×Θ21 onto Rq1 :

β̃g1 : Θ1 ×Θ21 → Rq1 (3.7)

(θ1, θ21)→ β̃g1(θ1, θ21), (3.8)
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where θ21 corresponds to the subvector of the nuisance parameters θ2 = (θ021, θ022)0 which does play a role

in the first q1 components of the binding function βg. θ21 belongs to Θ21, subset of Rp21 with the assumed

factorization of the nuisance parameters set of Θ2 = Θ21 × Θ22. We say that (B1) endowed with the

pseudo-true value (θ001 , θ̄02)0 partially encompasses Ng if the following conditions are fulfilled:
i) β̃g1(·, ·) is one-to-one,
ii) βg,01 = β̃g1(θ

0
1, θ̄21).

We introduce the following estimators β̂g1,T , and β̃
g,s
1,T (θ1, θ2) respectively defined as the subvectors of size

q1 of the estimators β̂
g
T and β̃

g
TS(θ1, θ2). These estimators converge uniformly in θ1, θ2 to:

P0 lim
T→∞

β̂g1,T = βg,01 = E0g1(ωt),

P∗ lim
T→∞

β̃g1,TS(θ1, θ2) = β̃g1(θ1, θ21) = E∗g1(ω̃t(θ1, θ2, z0)),

where g1(·) is naturally defined as the components of g = (g01, g02)0 corresponding respectively to β = (β01,β02)0.
In this context, since the PII estimator θ̂1,TS is possibly not consistent for θ

0
1, we propose to focus on

another class of partial indirect estimator θ̂1,TS(θ̄22) based on a subvector β1 of the instrumental parameters

and defined by:

θ̂1TS(θ̄22) =
³
θ̂101,TS(θ̄22), θ̂

10
21,TS(θ̄22)

´0
=

arg min
(θ1,θ21)∈Θ1×Θ21

h
β̂g1,T − β̃g1,TS(θ1, θ21, θ̄22)

i0
Ω̂g1,T

h
β̂g1,T − β̃g1,TS(θ1, θ21, θ̄22)

i
,

where P∗ lim
T←+∞

Ω̂g1,T = Ω
g
1 is a positive definite matrix. We denote by θ̄22 the value assigned to the nuisance

parameters θ22 in order to perform the simulations. In this framework, we are able to prove the following

sufficient condition for the consistency of the Partial II estimator θ̂11,TS(θ̄22):

Proposition 3.3 Under assumptions (A1)-(A2), and if there exists θ̄2 ∈ Θ2 such that (B1) endowed with

the pseudo-true value (θ001 , θ̄02)0 partially encompasses Ng, then θ̂11,TS(θ̄22) is a consistent estimator of the

parameters of interest θ01.

3.2 Asymptotic probability distribution of partial indirect inference estimators

In this section we recall the main asymptotic results derived in DR(98) in two cases. The first one maintain

the full-encompassing assumption while the second relies only on partial encompassing.

3.2.1 Full-encompassing partial indirect inference estimator

We focus here on the asymptotic properties if the indirect inference estimator θ̂TS under the full-encompassing

hypothesis: there exists θ̄2 ∈ Θ2 such that (B1) endowed with the pseudo-true value (θ◦01 , θ̄02)0 fully encom-
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passes Ng, and we maintain the following assumptions:

(A3)
1√
T

TX
t=1

(g(wt)− βg,0),

is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix Ig◦ .

(A4) lim
T→+∞

Cov∗

(
1√
T

TX
t=1

(g(wt)),
1√
T

TX
t=1

(g(w̃sT (θ
0
1, θ̄2, z

s
0))

)
= Kg

0 ,

independent of the initial values zs0, s = 1, . . . , S.

(A5)
1√
T

TX
t=1

(g(w̃sT (θ
0
1, θ̄2, z

s
0))− βg,0),

is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix Ig,∗0

and independent of the initial values zs0, s = 1, . . . , S.

(A6) lim
T→+∞

Cov∗

(
1√
T

TX
t=1

(g(w̃sT (θ
0
1, θ̄2, z

s
0)),

1√
T

TX
t=1

(g(w̃lT (θ
0
1, θ̄2, z

l
0))

)
= Kg,∗

0 ,

independent of the initial values zs0 and z
l
0, for s 6= `.

(A7) P∗ lim
T→+∞

∂β̃g,sT
∂θ0

(θ01, θ̄2) =
∂β̃g

∂θ0
(θ01, θ̄2),

is full-column rank (p) . We are then able to prove the following result:

Proposition 3.4 Under the null hypothesis of full encompassing and assumptions (A1)-(A7), the optimal

indirect inference estimator θ̂∗TS is obtained with the weighting matrix Ωg∗ defined below. It is asymptotically

normal, when S is fixed and T goes at infinity:

√
T

µ
θ̂∗1,TS − θ01
θ̂∗2,TS − θ̄2

¶
D→ N (0,W g(S,Ωg,∗)),

with:

W g,∗
S = W g (S,Ωg,∗) =

(
∂(β̃g)0

∂θ
(θ01, θ̄2)

¡
Φg,∗0 (S)

¢−1 ∂β̃g
∂θ0

(θ01, θ̄2)

)−1
, (3.9)

Ωg,∗ = Φg,∗0 (S)−1,

Φg,∗0 (S) = Ig0 +
1

S
Ig,∗0 +

µ
1− 1

S

¶
Kg,∗
0 −Kg

0 −Kg0
0 .

3.2.2 Partial-encompassing partial indirect inference estimator

We now focus on the asymptotic properties of the indirect inference estimator θ̂1TS(θ̄22) under the partial

encompassing hypothesis H1
0 (θ̄22). We first maintain assumption (A3) and we denote β̃

g,0(θ̄22) = β̃
g(θ01, θ̄2)

for the given value θ̄22 of the nuisance parameters. We made the following assumptions for a given value θ̄22:

(A8) lim
T→+∞

Cov∗

(
1√
T

TX
t=1

(g(wt)),
1√
T

TX
t=1

(g(w̃st (θ
0
1, θ̄2, z

s
0))

)
= Kg

0 (θ̄22),
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independent of the initial values zs0, s = 1, . . . , S.

(A9)
1√
T

TX
t=1

¡
g(w̃st (θ

0
1, θ̄2, z

s
0))− βg,0(θ̄22)

¢
,

is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix Ig,∗0 (θ̄22)

and independent of the initial values zs0, s = 1, . . . , S.

(A10) lim
T→+∞

Cov∗

(
1√
T

TX
t=1

(g(w̃st (θ
0
1, θ̄2, z

s
0))),

1√
T

TX
t=1

(g(w̃lt(θ
0
1, θ̄2, z

l
0)))

)
= Kg,∗

0 (θ̄22),

independent of the initial values zs0 and z
l
0, for s 6= `.

(A11) P∗ lim
T→+∞

∂β̃g,s1,T

∂
¡
θ1

θ21

¢0 (θ01, θ̄2) = ∂β̃g1

∂
¡
θ1

θ21

¢0 (θ01, θ̄21),
is full-column rank (p1 + p21). We are then able to prove the following result:

Proposition 3.5 Under the null hypothesis H1
0 (θ̄22), assumptions (A1)-(A3), (A8)-(A11), the optimal in-

direct inference estimator θ̂1∗TS(θ̄22) is obtained with the weighting matrix Ω∗g1 (θ̄22) defined below. It is as-

ymptotically normal, when S is fixed and T goes to infinity:

√
T

µ
θ̂1,∗1,TS(θ̄22)− θ01
θ̂1,∗21,TS(θ̄22)− θ̄21

¶
D→ N (0,W g

1 (S,Ω
g,∗
1 , θ̄22)),

with:

W g,∗
1,S(θ̄22) =W

g
1 (S,Ω

g,∗
1 (θ̄22)) =

"
∂β̃g

0
1

∂
¡
θ1

θ̄21

¢(θ1, θ̄21) ¡Φg,∗0,1(S, θ̄22)¢−1 ∂β̃g1

∂
¡
θ1

θ21

¢0 (θ01, θ̄21)
#−1

,

Ωg,∗1 (θ̄22) = Φ
g,∗
0,1(S, θ̄22)

−1,

Φg,∗0 (S, θ̄22) = I
g
0 +

1

S
Ig,∗0 (θ̄22) +

µ
1− 1

S

¶
Kg,∗
0 (θ̄22)−Kg

0 (θ̄22)−Kg0
0 (θ̄22),

and Φ∗0,1(S, θ̄22) is the (q1 × q1) left-upper bloc diagonal submatrix of the (q × q) matrix Φg,∗0 (S, θ̄22).

DR (1998) have shown that we can replace the value θ̄22 of the nuisance parameters θ22 by a consis-

tent estimator θ̂22,TS such that
√
T
³
θ̂22,TS − θ̄22

´
= OP∗(1) without modifying the asymptotic probability

distribution of the PII estimator.

3.3 Identifying the Moments to Match

We follow in this subsection the testing procedure as proposed in DR (1998) and Guay and Renault (2003).

This procedure starts with a set of moments to match which are suggested by economic theory or any other

features of the data the econometrician wishes to reproduce. Then it seeks to identify which projection of

these instrumental characteristics should be selected in order to build a consistent partial indirect estimator

as well as reliable predictions under hypothetical policy interventions.
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Proposition 3.6 Under assumptions (A1)-(A7) and the null hypothesis H◦ of full-encompassing of Ng by

(B1),

ξT,S = T min
θ∈Θ

"
1

T

TX
t=1

g(wt)− 1

TS

TX
t=1

SX
s=1

g(w̃st (θ))

#
]]0Ω̂g,∗T

"
1

T

TX
t=1

g(wt)− 1

TS

TX
t=1

SX
s=1

g(w̃st (θ))

#
]],

where Ω̂g,∗T is a consistent estimator of the optimal metric Ωg,∗ = Φg,∗0 (S)−1 defined in Proposition 3.4, is

asymptotically distributed as a chi-square with (q − p) degrees of freedom where q=dimg and p=dim θ.

The proof is omitted here since it is a simple extension of standard indirect inference theory. The

associated specification test of asymptotic level α is defined by the critical region:

Wa =
©
ξT,S > χ

2
1−α(q − p)

ª
.

In case of rejection, we may look for a reduction through an appropriate projection of the set of moments.

This is based on the following partial encompassing test.

Proposition 3.7 Under assumptions (A1)-(A3), (A8)-(A11) and the null hypothesis H◦(θ̄22) of partial

encompassing of Ng by (B1)

ξ1T,S(θ̄22) = T min
θ1,θ21∈Θ1×Θ21

"
1

T

TX
t=1

g1(wt)− 1

TS

TX
t=1

SX
s=1

g1(w̃
s
t (θ1, θ21, θ̄22))

#
]]0Ω̂g,∗1,T"

1

T

TX
t=1

g1(wt)− 1

TS

TX
t=1

SX
s=1

g1(w̃
s
t (θ1, θ21, θ̄22))

#
]],

where Ωg,∗1,T is a consistent estimator of the optimal metric Ωg,∗1 (θ̄22) = Φ
g,∗
0,1(S, θ̄22)

−1 defined in Proposition

3.5, is asymptotically distributed as a chi-square with (q1−p1−p21) degrees if freedom where q1 = dimg1, p1 =

dimθ, p21 = dimθ21.

The associated specification test of asymptotic level α is defined by the following critical region:

W1
a =

©
ξ1T,S(θ̄22) > χ

2
1−α(q1 − p1 − p21)

ª
.

The previous result is not modified if θ22 is replaced by a consistent estimator θ̂22,TS such that
√
T
³
θ̂22,TS − θ̄22

´
=

OP∗(1). In case of rejection of any trial run of partial encompassing, the pair (structure model, instrumental

model) is inadequate and has to be changed. However, it may also be the case that several pairs lead to

acceptation.

3.4 Sequential Partial Indirect Inference

The previous sections show how a well-driven Partial Indirect Inference estimation strategy yields a consistent

estimator for the structural parameters of interest θ1 given θ2. With this estimator in hand, one can now

evaluate the model through dimensions of interest.
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We consider an instrumental model Nk with β
k,0 and β̂k (θ1, θ2) the moments of interest associated with

Nk, that is:

βk,0 = E0k(wt)

β̃k(θ1, θ2) = E∗k(w̃t(θ))

which, under usual regularity conditions, can be consistently estimated by the following estimators:

β̂kT = 1
T

PT
t=1 k(wt),

β̃kTS(θ1, θ2) = 1
TS

PS
s=1

PT
t=1 k(w̃

s
t (θ))

where (w̃st (θ)) =
©
ỹst (θ), ỹ

s
t−1(θ), xt−1, . . . , ỹst−K(θ), xt−K

ª
, s = 1, . . . , S, t = 1, . . . , T , correspond to simu-

lated paths of the endogenous variables for a given value θ = (θ01, θ02)0 of the structural parameters.

An evaluation of the structural model can be performed by measuring a distance between the empirical

instrumental parameters β̂k and the theoretical one β̃k,TS(θ1, θ2).

As discussed above with the RBC illustration, in the case of partial encompassing, an estimator of the

nuisance parameter vector θ22 can be obtained through the instrumental model of interest Nk. We then
define the estimator θ̂22,TS as follows:

θ̂22,TS = arg min
θ22∈Θ22

³
β̂kT − β̃kTS(θ̂1TS(θ̄22), θ22)

´0
Ω̂k
³
β̂kT − β̃kTS(θ̂1TS(θ̄22), θ22)

´
,

for a given initial value θ̄22.

Following Newey (1984), we can show the following proposition with assumptions (A.12)-(A.15) stated

in the appendix:

Proposition 3.8 Under the null hypothesis of the instrumental model Nk and assumptions (A1)-(A3),(A8)-

(A15), the optimal indirect inference estimator θ̂∗22,TS is obtained with the weighting matrix defined below.

It is asymptotically normal, when S is fixed and T goes at infinity:

√
T
³
θ̂∗22,TS − θ∗22

´
D→ N (0,Wk(S,Ωk,∗)), θ

where:

θ∗22 = P0
T→∞

lim θ̂∗22,TS

Wk,∗
S = Wk

¡
S,Ωk,∗

¢
=

(
∂(β̃k)0

∂θ22
(θ01, θ̄21, θ

∗
22)
³
Φk,∗0 (S)

´−1 ∂β̃k
∂θ022

(θ01, θ̄21, θ
∗
22)

)−1
,

Ωk,∗ = Φk,∗0 (S)−1

Φk,∗0 (S) = [A, I]Φ∗0 [A, I]
0
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A =

− ∂β̃k

∂
¡ θ1

θ̄21

¢0 (θ01, θ̄21, θ∗22)³W g,∗
1,S(θ̄22)

´−1 ∂β̃g01
∂
¡
θ1

θ21

¢ ¡θ01, θ̄21, θ∗22¢Ωg,∗1 (θ̄22)


and Φ∗0 is defined in the Appendix.

It should be emphasized that the asymptotic distribution given by Proposition 3.8 holds only for the

same simulated values εst , t = 1, . . . , T , s = 1, . . . , S for both instrumental models Ng and Nk.
Our proposed approach is then a two step procedure. For this reason, we call this procedure as Sequential

Partial Inference Indirect. Consider the partial encompassing case. At the first step, the estimators of θ01(θ̄22)

and θ̄21(θ̄22) are given by minimizing the following objective function:

J1,TS(θ1(θ̄22), θ21(θ̄22)) =
h
β̂g1,T − β̃g1,TS(θ1, θ21, θ̄22)

i0
Ω̂g1,T

h
β̂g1,T − β̃g1,TS(θ1, θ21, θ̄22)

i
,

for a given θ̄22.

At the second step, the estimator of the nuisance parameters θ22 is given by minimizing the following

objective function:

J2,TS(θ22) =
³
β̂kT − β̃kTS(θ̂1TS(θ̄22), θ22)

´0
Ω̂k
³
β̂kT − β̃kTS(θ̂1TS(θ̄22), θ22)

´
,

An evaluation of the structural model can then be performed by measuring a distance between the empir-

ical instrumental parameters β̂k and the theoretical one β̃k,TS(θ1, θ2). In the case of partial-encompassing,

the test corresponds to an overidentifying restrictions test. The test statistic is given by:

TJ2,TS(θ̂22,TS).

This statistic is asymptotically distributed as a chi-square with (dim(βk)− dim(θ22)) degrees of freedom. In
the case of full-encompassing, this corresponds to a Wald test and the statistic test is given by:

T
³
β̂kT − β̃kTS(θ̂1TS(θ̄22), θ̄22)

´0
Ω̂kT

³
β̂kT − β̃kTS(θ̂1TS(θ22), θ̄22)

´
,

where Ω̂kT is a estimator of Ω
k,∗ and

Ωk∗ = Φk,∗0 (S)−1,

Φk,∗0 (S) = [A, I]Φ∗0(S) [A, I]
0

A =

"
−∂β̃

k

∂θ0
¡
θ01, θ̄2

¢0
(W g(S,Ωg,∗))−1

∂β̃g0

∂θ

¡
θ01, θ̄2

¢
Ωg,∗

#
.

This statistic is asymptotically distributed as a chi-square with dim(βk) degrees of freedom.

4 Concluding Remarks

The SPII methodology proposed in this paper aims at reconciling the calibration and verification steps

proposed by the calibrationnist approach with their econometric counterparts, that is, estimation and testing

procedures. We propose a general framework of multistep estimation and testing:
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- First, for a given (calibrated) value θ̄22 of some nuisance parameters, a consistent asymptotically normal

estimator θ̂11,TS
¡
θ̄22
¢
of the vector θ1 of parameters of interest is obtained by partial indirect inference. A

pseudo-true value θ̄21 of some other nuisance parameters may also be consistently estimated by the same

token.

- Second, the overidentification of the vector (θ1, θ21) of structural parameters by the selected instrumental

moments βg1 provides a specification test of the pair (structural model, instrumental model).

- Finally, the verification step, including a statistical assessment of the calibrated value θ̄22, can be

performed through another instrumental model Nk.
The proposed formalization enables us to answer most of the common statistical blames on the calibration

methodology, insofar as one succeeds to split the model in some true identifying moment conditions and

some nominal assumptions. The main message is twofold: First, acknowledging that any structural model is

misspecified while aiming at producing consistent estimators of the true unknown value of some parameters

of interest as well as robust predictions, one should rely, as informally advocated in calibration exercises,

on parsimonious and well chosen dimensions of interest. Second, in so doing, it may be the case that

simultaneous joint estimation of the true unknown value of the parameters of interest as well as of the

pseudo-true value of the nuisance parameters is impossible. In this context, one should resort to a two step

procedure that we call Sequential Partial Indirect Inference (SPII). This basically introduces a general loss

function. This again corresponds to a statistical formalization of the common practice in calibration exercises

using previous estimates and a priori selection.
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A Appendix

We define the vector of empirical moments f(ωt) = (g(ω)0, k(ωt)0)
0
and the vector of moments from the

model f
¡
ω̃sT (θ

0
1, θ̄2)

¢
=
³
g(
¡
ω̃sT (θ

0
1(θ̄22, θ̄12(θ̄22)

¢0
, k(
¡
ω̃sT (θ

0
1, θ̄12, θ̄22)

¢0´
We make the following assumptions:

1√
T

TX
t=1

(f(wt)− β0), (A13) (A12)

is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix I0.

lim
T→+∞

Cov∗

(
1√
T

TX
t=1

(f(wt)),
1√
T

TX
t=1

(f(w̃sT (θ
0
1, θ̄2, z

s
0))

)
= K0, (A14) (A13)

independent of the initial values zs0, s = 1, . . . , S.

1√
T

TX
t=1

(f(w̃sT (θ
0
1, θ̄2, z

s
0))− β0), (A15) (A14)

is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix I∗0 and

independent of the initial values zs0, s = 1, . . . , S.

lim
T→+∞

Cov∗

(
1√
T

TX
t=1

(f(w̃sT (θ
0
1, θ̄2, z

s
0)),

1√
T

TX
t=1

(f(w̃lT (θ
0
1, θ̄2, z

l
0))

)
= K∗

0 , (A16) (A15)

independent of the initial values zs0 and z
l
0, for s 6= `.

We can show following DR (1998) that

Φ∗0(S) = I0 +
1

S
I∗0 +

µ
1− 1

S

¶
K∗
0 −K0 −K0

0.
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