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ABSTRACT

BUTTE, N. F., U. EKELUND, and K. R. WESTERTERP. Assessing Physical Activity Using Wearable Monitors: Measures of Physical

Activity.Med. Sci. Sports Exerc., Vol. 44, No. 1S, pp. S5–S12, 2012. Background: Physical activity may be defined broadly as ‘‘all bodily

actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level.’’ Physical activity is a complex

construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical

activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are

currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined ac-

celerometer and HR monitors, and multiple sensor systems. Best Practices: Currently available monitors are capable of measuring total

physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors

for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target

population, and study feasibility in terms of cost and logistics. Future Directions: Future development of sensors and analytical

techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across

manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New

approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors

and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using crite-

rion methods of calorimetry or doubly labeled water. Key Words: PEDOMETERS, LOAD TRANSDUCERS, ACCELEROMETERS,

HR MONITORS, MULTIPLE SENSORS

P
hysical activity is conventionally defined as ‘‘any
bodily movement produced by the contraction of skel-
etal muscle that increases energy expenditure above

a basal level’’ (51). In the field of physical activity monitor-
ing, investigators have been interested in capturing the broad
range of human behaviors encompassing ‘‘activity’’ and
‘‘inactivity.’’ Physiologically, skeletal muscular contractions
can be classified according to either length changes or force
levels as concentric, eccentric, or isometric (static) (58). In
many activities, all three types of muscle action may occur
in the execution of a smooth, coordinated movement. For
instance, resistance training can use isometric action, dynamic
action, or both; static holds occur during standing, yoga, or
martial arts. Therefore, physical activity may be defined more
broadly as ‘‘all bodily actions produced by the contraction

of skeletal muscle that increase energy expenditure above
basal level.’’

In this article, we will review the basic construct under-
lying the assessment of physical activity using wearable
monitors. We will identify components of physical activity
that we currently can measure, as well as components that we
would like to measure but that require more development of
sensors and/or analytic techniques. The strengths and weak-
nesses of available monitors will be reviewed. Lastly, we will
make recommendations for best practices and project future
directions in the field of physical activity assessment. This
review may be useful for engineers and device developers,
measurement scientists, and end users who apply devices in
health and behavioral research.

CONSTRUCT UNDERLYING THE
ASSESSMENT OF PHYSICAL ACTIVITY

Physical activity is a complex construct that can be clas-
sified qualitatively into major categories of sedentary be-
haviors, locomotion, work, leisure activities, and exercise. It
also can be classified quantitatively by frequency (number of
physical activity events in a specific period), duration (amount
of time), and intensity (physiological effort). In addition, it
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can be classified contextually by dimensions of time and
place, position, or posture. In general, the field of activity
measurement using electronic wearable monitors is more ad-
vanced in the quantification than the qualification (classifi-
cation) of physical activity. The measurement of contextual
factors of physical activity is just beginning.

The quantitative assessment of physical activity using
wearable monitors is grounded in the measurement of en-
ergy expenditure (EE). Devices are calibrated and validated
against EE measurements made by calorimetry or the doubly
labeled water method. Total EE (TEE) is commonly parti-
tioned into basal metabolic rate (BMR), resting metabolic rate
(RMR), sleeping metabolic rate (SMR), thermic effect of food
(TEF), and physical activity EE (PAEE) (21). BMR reflects
the energy needed to sustain the metabolic activities of cells
and tissues and the energy needed to maintain blood circu-
lation, respiration, and gastrointestinal and renal function.
BMR measurements are made on participants in a post-
absorptive state and resting comfortably, supine, awake, and
motionless in a thermoneutral environment. RMR tends to be
somewhat higher (10% to 20%) than BMR because of
increases in EE caused by recent food intake or physical ac-
tivity. SMR is approximately 5% to 10% lower than BMR.
TEF or the EE associated with the digestion and assimilation
of food is determined primarily by the amount and compo-
sition of the foods consumed. PAEE, the energy above BMR,
is calculated as TEE j BMR j 0.1TEE, assuming that the
TEF for a mixed diet is equal to 10% of TEE and measure-
ments are performed on participants in the fed state.

Of all the components of TEE, PAEE is the most vari-
able among free-living individuals. Whereas BMR is mainly
a function of body size and body composition and TEF is
a fixed value, PAEE varies greatly among individuals. In
the general population, physical activity level (PAL), com-
puted as TEE/BMR, is between 1.2 and 2.2 to 2.5 (16). As a
proportion of TEE, PAEE varies from 5% in a participant
with a minimum PAL of 1.2 to 45%–50% in a participant
with a PAL of 2.2–2.5 (55) (Fig. 1). At a PAL value of 1.75,
close to the average reported for European, North and Cen-
tral American, African, and Asian adults (57), PAEE repre-
sents 33% of TEE.

In kinesiology, metabolic equivalents is widely used to
express the energy costs of physical activity as multiples of
RMR. By convention, 1 MET is taken to be an oxygen uptake
of 3.5 mLIkgj1Iminj1 or 1 kcalIkgj1Ihj1 in adults, a value
derived for a 70-kg man age 40 yr (8). Between 1983 and
2005, RMR was measured in 366 adults in Maastricht (57).
Average values for RMRwere lower than 3.5 mLIkgj1Iminj1,
with women having slightly lower values than men as
expected from the relatively larger metabolically inactive
fat mass in women. Individual values showed a more than
twofold range for participants differing in body size, with
lower values for obese participants and higher values for lean
participants. The conventional MET value is not applicable to
children (37). When calculating PAL, the use of the conven-
tional value for 1 MET, which is equal to 3.5 mLIkgj1Iminj1

or 1 kcalIkgj1Ihj1, is strongly discouraged for both adults
and children. If measured values are not available, predicted
BMR or RMR values can be used to appropriately adjust for
individual differences in body size by expressing TEE as a
multiple of BMR or RMR.

Appropriate normalization of EE data for body mass is
critical for understanding variability in basal metabolism
and the energy cost of physical activities because body mass
is the major predictor of EE. Theoretical, physiological, and
mathematical arguments that support or dispute different ap-
proaches for the normalization of EE for body mass have
been made (2,26,36). Constant ratio models (i.e., kcalIkgj1)
are commonly used in many applications, but they do not take
into account nonlinearity and thus fail to produce a variable
independent of body weight (26,36). Tanner (46) showed that
the mathematical bias may lead to spurious conclusions when
individuals who vary in body size are compared using the
ratio method. Linear regression models are an improvement
but can create positive and negative biases. Linear models
assume an additive error term, which is questionable because
rates of EE diverge with an increase in scale. Inspection of EE
data versus body weight reveals a curvilinear relation with a
strong linear component, and these issues need to be taken
into account in selecting empirical models to adequately ex-
plain the underlying data. Thus, a considerable amount of
flexibility for fitting EE data can be gained by considering a
nonlinear model (42). Recently, Davies and Cole (14) advo-
cated power function models to investigate the adjustment of
measures of EE for body weight and body composition. The
curvilinear power function model between physiological var-
iables and body mass has had a long tradition in physiology
and has been shown to be superior to linear models (25). For
instance, van Hees et al. (52) demonstrated that the square

FIGURE 1—PAL, defined as TEE/basal EE, in relation to the fraction
(%) of TEE in activity EE. The rectangles denote the figures for the
minimum activity level (1.2 and 5%), average activity level (1.75 and
33%), and maximum activity level (2.2–2.5 and 45%–50%) (55).
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root of body weight was appropriate for adjusting PAEE for
differences in body weight.

To establish the relationship between PAL or PAEE
and health outcomes, determination of reference values is
needed. Doubly labeled water studies have provided the
PAL reference ranges for adults and children. Reference PAL
values for children show a gradual increase to reach adult
values by about the age of 15 yr (Fig. 2). With increasing age,
relatively less energy is required for maintenance, whereas
the costs of physical activity increase as a function of in-
creased body mass (15,19). Consistent with changes in PAL
as measured by wearable monitors, PAEE per kilogram of
body weight declines with age (15). The activity pattern of
children is characterized by short intermittent bouts of phys-
ical activity (20), compared with the more deliberate activity
patterns in adult and elderly persons (30,54).

Apart from subject characteristics of age, sex, weight, and
height, measures of physical activity can make a significant
contribution to the prediction of EE. In a review article, eight
motion devices were evaluated against the doubly labeled
water method, which measures TEE (34). The contribution
of acceleration to TEE varied considerably; partial correla-
tions ranged from 0.18 to 0.79. Clearly, activity monitoring
can partially explain interindividual variation in levels of
TEE. However, individual characteristics cannot explain
intraindividual variation in EE throughout the day because
these parameters are constants. In a cross-sectional time se-
ries model, Zakeri et al. (59) evaluated the contribution of
individual characteristics, HR, and physical activity to the
prediction of minute-to-minute EE. The cross-sectional time
series model, based solely on the HR and physical activity,
explained 72% of the variability in minute-by-minute EE
within individuals compared with 90% when the model in-
cluded individual characteristics, HR, and physical activity.

CURRENT TECHNOLOGY

The components of physical activity that we are currently
able to measure with monitors with varying levels of accu-
racy and precision include the following:

1. Total physical activity
2. Duration, frequency, and intensity of physical activity
3. Sleep and awake time
4. Sedentary, light, moderate, and vigorous levels of

physical activity during awake time
5. Prediction of TEE, PAEE, and SMR
6. Classification of locomotive activities (walking, jog-

ging, running)
7. Walking (number of steps, stride, speed, distance)
8. Posture (lying, sitting, standing)

In addition to improving the measurement of the com-
ponents of physical activity listed above, the field would
advance with further development of sensors and analytic
techniques for the following:

1. Classification of physical activity modes
2. Energy cost of specific physical activities
3. Contextual information (where, when, and with whom

physical activity occurs)
4. Automated detection of nonwearing time and awake/

nap/night sleep times

Several monitors are available to measure physical activity.
The selection of the assessment tool depends on the physi-
cal activity component of interest, study objectives, charac-
teristics of the target population, and feasibility in terms of
cost and logistics. Physical activity monitors have been used
in studies addressing obesity prevention and treatment, sports,
fitness and performance enhancement training, other health
outcomes (osteoporosis), sleep disorders, and rehabilitation in-
volving gait and locomotion. The main categories of wearable
monitors for assessing physical activity are as follows:

1. Pedometers
2. Load transducers (also known as foot-contact monitors)
3. Accelerometers
4. HR monitors
5. Combined accelerometer/HR monitors
6. Multiple sensor systems

Pedometers. Pedometers are small, lightweight, porta-
ble, noninvasive, nonintrusive, and inexpensive devices that
use three primary mechanisms: a spring-suspended horizontal
lever arm, a magnetic reed proximity switch, and piezoelectric
uniaxial, biaxial, and triaxial accelerometers (5). Many pe-
dometer models are available, and variability exists not only
in cost but also in mechanism, data storage, and sensitivity.
Pedometers are most accurate at step counting, less accurate
in distance estimates, and even less accurate at estimating EE
(43). Some pedometers measured steps within 3% of actual
values, while others were within T37% (43). Those that allow
stride length to be entered and provide distance estimates are

FIGURE 2—Activity EE as a fraction of TEE in relation to age for boys
(continuous line) and girls (broken line) based on data in the Food and
Agriculture Organization/World Health Organization/United Nations
University Expert Consultation on Human Energy Requirements (16).

MEASURES OF PHYSICAL ACTIVITY Medicine & Science in Sports & Exercised S7

Copyright © 2012 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.



reasonably accurate at normal walking speeds but overesti-
mate at slow speeds and underestimate at high speeds.
Pedometers can be valuable tools for continuously monitoring
ambulatory activity, but it is imperative that investigators
determine the accuracy and reliability of the pedometers they
intend to use.

Weaknesses of pedometers include no recording of hori-
zontal or upper body movement, insensitivity to gait differ-
ences such as stride length that varies with activity type,
and limited validity of EE estimation. In addition, the out-
puts of all pedometers are not comparable.

Load transducers. Electronic load transducers or foot-
contact monitors have been used to measure walking activity
or loads held, lifted, or carried (17). Shoe- and ankle-mounted
devices measure the acceleration of the foot and analyze
patterns of movement, stride lengths, and frequency and esti-
mate speed and distance of level walking and running. These
devices have not been validated for habitual physical activity.

Accelerometers. Accelerometers are small, lightweight,
portable, noninvasive, and nonintrusive devices that record
motion in one or more planes and provide an indication of
the frequency, duration, and intensity of physical activity
(10,12,23,53). Originally, devices used a horizontal canti-
levered beam with a weight on it. When subjected to vertical
acceleration, the beam flexes and compresses a piezoelectric
crystal that generates a voltage proportional to the accelera-
tion. Newer devices use integrated chip sensors that have a
seismic mass that sits directly over a piezoelectric element.
The raw acceleration signal is analog/digital converted, fil-
tered, and rectified and summarized for discrete epochs. Cur-
rent uniaxial and triaxial monitors are capable of recording
physical activity during extended periods. The raw output
from accelerometers is then calibrated to some meaningful
indicator of physical activity or EE.

Validity studies have yielded moderate-to-strong correla-
tions (r = 0.45 to 0.93) between accelerometer counts and
oxygen consumption (V̇O2), PAEE, or MET in adults and
similar correlations (r = 0.53 to 0.92) in children (50). The
wide range of agreement is due, to a large extent, to the type
of measurement protocol. Compared with uniaxial sensors,
triaxial accelerometers theoretically provide a more compre-
hensive assessment of body movements. Triaxial acceler-
ometers have been shown to have higher correlations with
measured EE in adults and children than uniaxial acceler-
ometers in some but not all studies (10,52,56). Most piezo-
electric accelerometers can only reliably detect dynamic, not
static events. New solid-state technology and digital filters
can measure static acceleration and hence body posture.

Triaxial accelerometry provides a technique for quan-
tifying movement patterns during walking (23). Normal
walking patterns can be deduced from vertical and anterior–
posterior accelerations, which coincide with step frequency
and account for the majority of the total signal power in each
direction. Mediolateral accelerations are governed by the
stride frequency and also are useful for detecting gait abnor-
malities. Specific gait-related movement can be measured

from hip, shoulder, upper trunk, thigh, and lower trunk
accelerations.

Accelerometers have been used to partition awake time
into sedentary, light, moderate, and vigorous levels of phys-
ical activity. For adults, light, moderate, and vigorous levels
have been defined conventionally using the thresholds of
3 and 6 METs (3). No consensus exists on thresholds for
children and adolescents. Thresholds have been derived
mathematically from prediction equations at predetermined
physiological values or statistically using receiver operating
characteristic curves to minimize false-positive and false-
negative classifications. The 80th percentile from the distri-
bution of physical activity counts has been used to represent
vigorous physical activity (22). MET or physical activity
ratio values, computed using measured or predicted BMR
or RMR, have been used by others (22,38,48). PAEE thresh-
olds have been used as well (38,48). As a result, studies are
conflicting regarding levels of physical activity in youth. Ac-
celerometers also have been used to quantify the amount of
time spent in sedentary behaviors. Sedentary thresholds have
been determined by observation, statistically, and physiolog-
ically as MET values less than 1.5.

Weaknesses of accelerometers are the lack of industry
standards for conversion of accelerometer raw output to counts,
proprietary algorithms, and inability to distinguish different
types of activities, especially nonambulatory and static activ-
ities such as cycling and weight lifting (29). Across the dy-
namic range from sedentary to vigorous physical activity, a
more sophisticated modeling of individual vectors is needed
to extract more information from uniaxial and triaxial accel-
eration signals.

HR monitors. HR monitors are lightweight devices
that have been used to predict PAEE (9,28). On the basis of
the linear relationship of HR to EE, the FLEX HR technique
has been shown to be valid and reliable. Because of the
overlap between active and sedentary HR, a threshold value
of HR is used to discriminate PAEE from sedentary EE.
Prediction errors of group means have been reported below
3%, sometimes without any significant difference from the
reference method; however, the range of prediction errors
for individuals was greater than 10% (9,28).

Weaknesses of these monitors are that HR is a poor pre-
dictor of EE in the range of low-intensity physical activity
(PA), the FLEX HR technique requires individual calibration,
data processing is laborious and time-consuming, wearing
electrodes for extended periods may be logistically difficult
and can cause some skin irritation, and HR is subject to other
stimuli besides physical activity. It is important to note that a
large proportion of the population is on prescription drugs that
affect HR. These include A-blockers for high blood pres-
sure and A2 stimulators for asthma. Calibration of the indi-
vidual’s HR-to-EE relationship would have to be performed
under the influence of usual prescription drugs.

Combined accelerometer/HR monitors. Acceler-
ometers and HR monitors have been combined to improve
the accuracy and precision with which EE can be predicted.
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In one approach, accelerometer data were used to assign HR
to one of two linear regressions relating HR to V̇O2 (31,47).
In another, accelerometers were used to discriminate be-
tween arm and leg movement, and EE was predicted from
the corresponding arm or leg HR-to-EE regression equa-
tion (44,45). Brage et al. (7) used branched equation mod-
eling of simultaneous accelerometry and HR monitoring to
improve the estimate of PAEE. Zakeri et al. (59) developed
cross-sectional time series models to predict EE from HR
and accelerometer counts using the Actiheart (CamNtech
Ltd, Cambridge, UK) monitor in children and adolescents.
The prediction error was 0.9% T 10.3% for TEE and 1.5% T
8.7% for SMR with no systematic bias by sex, age, or
weight status. In general, the combined accelerometer and
HR monitor method has better accuracy and precision than
either method alone. TEE, PAEE, and SMR have been
predicted within acceptable limits from the combined ap-
proach. Further research is required to predict the energy cost
of specific activities with an acceptable degree of accuracy.

Another application is the measurement of HR in com-
bination with body movement as a measure of physical fit-
ness (32,33). Those with a higher level of physical fitness
can generate more activity at a lower HR than can unfit
participants. Short observation intervals on the order of 1 d
are sufficient to generate adequate information regarding
physical fitness.

Multiple sensor systems. Systems that entail attaching
multiple sensors to the body trunk and extremities have been
developed. The Intelligent Device for Energy Expenditure and
Activity (MiniSun LLC, Fresno, CA) system captures body
and limb motions through five sensors attached to the chest,
thighs, and feet (60,61). The system uses an artificial neural
network to recognize 32 types of activities such as jumping,
walking, running, and stair climbing and descending. In adults,
the Intelligent Device for Energy Expenditure and Activity
correctly identified posture and limb movement and gait 98%
of the time (60,61). Energy costs of specific activities are
assigned from a published compendium of physical activities
that is available for adults (1) but limited for children (39).
Another physical activity measurement system, developed for
adults and children, incorporated inclinometers and triaxial
accelerometers to capture body position and motion (27).
Body posture was correctly identified, and accelerometer out-
put correlated well with varying walking velocities.

Weaknesses of multiple sensor systems are that available
systems are wired, not wireless, and therefore cumbersome
and intrusive; systems are expensive; complex, sophisticated
data processing is required; and limited validation studies
exist across populations. Integration of multiple wireless sen-
sors attached to the body, however, has great potential for
future advances in activity monitoring.

EMERGING TECHNOLOGY

Mathematical models to classify physical activ-
ities. An emerging area in the field of activity monitoring

is the classification of physical activity type using advanced
modeling methods. Probabilistic artificial neural networks
have been used to extract information on physical activity
type, duration, and intensity (24,60,61). Quadratic discrimi-
nant analysis and hidden Markov modeling have been used to
classify physical activity type (35). Because of intrinsic mis-
classification error, accelerometers are unable to distinguish
correctly two activities that produce similar total acceleration
over time but have different energy costs. Quadratic discrim-
inant analysis uses the mean and data dispersion to classify
physical activity type. Hidden Markov modeling is a proba-
bilistic pattern recognition algorithm similar to artificial neu-
ral networks, but the autocorrelation built into the algorithm
allows one to share classification strength across observations
that are close together in time. Classifications based on qua-
dratic discriminant analysis were 53% to 100% correct, and
hidden Markov modeling was 62% to 99% correct (35).

Future development of these methods will require train-
ing hidden Markov modeling to recognize more activities and
incorporating individual characteristics and environmental
factors into the models. Classification of physical activity type
is important for describing human behavior as well as EE
prediction. In a recent study, a classification tree algorithm
was used to classify acceleration into one of six activity clas-
ses in combination with standardMET values for each activity
type, which resulted in improved prediction of TEE (6).

Global Positioning System. Contextual information
(where, when, and with whom physical activity occurs) can
complement the measurement of physical activity (40,49).
A Global Positioning System (GPS) is a satellite-based sys-
tem that can provide information on a person’s location,
neighborhood context, mode of transportation, and speed of
locomotion. A pilot study showed a slight advantage of using
GPS in combination with accelerometer data to classify phys-
ical activity type (49). GPS signals also can be coupled with
geographic information system data for richer contextual in-
formation that provides spatial matching (e.g., exercising in
a specific park, walking to nearby shops/restaurants for util-
itarian purposes). The reliability and validity of GPS have
been demonstrated in different environments. GPS and triaxial
accelerometers are now embedded into cell phones. Cellular
phone technology can be used not only to assess physical
activity and location but also to motivate participants to com-
ply with physical activity interventions through interactive
individualized feedback.

The weaknesses of GPS include added participant bur-
den; complexity of data collection, processing, and analy-
sis; and equipment costs. An additional weakness of GPS is
that it is limited to mostly outdoor activities with ‘‘visible’’
sky. This would limit positional capabilities in many sit-
uations, such as activities at home and in the workplace,
school, shopping malls, and fitness facilities and transpor-
tation activities (e.g., walking to and fro that might occur in
bus tunnels or subways). The Wi-Fi capabilities of mobile
phones (triangulation) could complement GPS in these
instances.
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New modeling approaches. Oversimplification of the
data analysis and modeling of a complex construct presents
a significant gap in the field of physical activity measure-
ment. For the most part, linear regression approaches have been
used to predict EE from accelerometer output (4). Two-regres-
sion models also have been used (13,18). On the basis of the
variability of physical activity counts within an epoch, a two-
regression model for walking/running and other lifestyle leisure
time activities improved the prediction of MET compared with
a single-regression equation (13). Compared with the doubly
labeled water method, the linear regression equations tend to
underestimate free-living PAEE (34). Uniaxial accelerometers
mounted on the hip or waist failed to detect EE from arm
movement; standing posture; vertical work; pushing and pulling;
carrying weight; non–weight-bearing exercise, such as bicycling
or swimming; and rapid changes in horizontal acceleration,
such as tennis. Triaxial accelerometers can address some of
these shortcomings of uniaxial accelerometers.

Given the limitations of previous approaches, nonlinear
approaches may be more appropriate for EE and physical ac-
tivity prediction models. Chen and Sun (11) used a two-com-
ponent (vertical and horizontal acceleration) power model to
predict PAEE from accelerometer output. Puyau et al. (38)
used a multicomponent power model to predict PAEE from
accelerometers using weight, height, age, and sex. Rothney
et al. (41) developed an artificial neural network model of
EE using biaxial acceleration signals. Brage et al. (7) used
branched equation modeling of simultaneous accelerometry
and HR monitoring to improve the estimate of PAEE.

Mathematical modeling of the HR and accelerometer
counts has been limited to regression models that do not take
into account the interdependence of EE, HR, and counts over
time. As a result, these methods have not exploited all the
information in the raw data. To account for the interdepen-
dence of the data over time, Zakeri et al. (59) applied a cross-
sectional time series analysis to predict EE from HR and
accelerometry. This approach efficiently modeled the corre-
lated data, taking into account within-individual changes and
between-individual heterogeneity.

Another modern statistical technique, multivariate adap-
tive regression splines (MARS), has been applied to the pre-
diction of EE from accelerometer and HR data (60). MARS
is a multivariate nonparametric regression method. A major
aspect of the nonparametric approach is that the complexity of
the method will be determined completely by the data, thereby
avoiding subjectivity in selecting a specific model. The MARS
method approximates a complex nonlinear relationship by a
series of spline functions on different intervals of the inde-
pendent variable. MARS can be viewed as a generalization of
binary recursive partitioning because it overcomes some of the
limitations of recursive partitioning. In recursive partitioning,
the subregions are disjointed, and as a result, the approxi-
mating functions are discontinuous at the subregion bound-
aries, which severely limits the accuracy of the approximation,
in particular, when the underlying function is continuous.
MARS has overlapping subregions, and it produces a

continuous model for continuous predictors, which should
improve prediction of EE from HR and accelerometry.

These advanced modeling techniques, which include re-
cursive partitioning, cross-sectional time series analysis,
MARS, and artificial neural networks, have the potential to
improve population-specific prediction models for EE. Pat-
tern recognition and machine learning techniques such as
artificial neural networks, classification and regression trees,
quadratic discriminant analysis, and hidden Markov modeling
also hold promise for classifying physical activity.

BEST PRACTICES

Currently available monitors are capable of measuring
total physical activity as well as components of physical
activity that play important roles in human health. The selec-
tion of wearable monitors to measure physical activity will
depend on the physical activity component of interest, study
objectives, characteristics of the target population, and study
feasibility in terms of cost and logistics. Currently, six main
categories of wearable monitors are available to investigators:
pedometers, load transducers/foot-contact monitors, acceler-
ometers, HR monitors, combined accelerometer and HR mon-
itors, and multiple sensor systems.

Because physical activity may be defined broadly as
‘‘all bodily actions produced by the contraction of skeletal
muscle that increase energy expenditure above basal level,’’
it is reasonable to express the output of measures of physical
activity in terms of EE. For meaningful comparisons be-
tween persons or populations, absolute measurements of EE
must be normalized appropriately for differences in body
mass directly or indirectly using measures of basal metabo-
lism. When calculating PAL, the individual’s measured or
predicted BMR or RMR should be used to adjust for indi-
vidual differences in body size.

The use of wearable monitors to partition total activity
into sedentary, light, moderate, and vigorous levels of phys-
ical activity has many useful applications in research, public
health, and policy. However, the prediction errors of physical
activity thresholds should be fully disclosed in publications
and documents.

One cross-cutting issue is comparability between brands
of wearable monitors for the measurement of the compo-
nents of physical activity. Except for HR monitors, different
brands of wearable monitors have no uniformity in output
units. For instance, manufacturers report incompatible counts
per unit time after undisclosed data processing of the raw
accelerometer signal. Because all accelerometers measure
acceleration (mIsj2), a consensus on filtering and reporting
accelerometer values as the primary output would facilitate
data comparisons across monitors.

FUTURE DIRECTIONS

Future development of sensors and analytical techniques
for the assessment of physical activity should focus on the
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dynamic ranges of sensors, comparability for sensor output
across manufacturers, and the application of advanced
modeling techniques for EE prediction and classification of
physical activities. Contextual information using GPS and/or a
geographic information system has potential for complement-
ing the measurement of PA, especially if these instruments
can be bundled with the motion sensors. New approaches for
the qualitative classification of physical activity should be
validated using direct observation or recording. New sensors

and methods for the quantitative assessment of physical
activity should be validated in laboratory and free-living pop-
ulations using criterion methods of calorimetry or doubly la-
beled water.

The authors do not have any professional relationships with
companies or manufacturers who will benefit from this review. The
recommendations made in this article do not constitute endorse-
ment by the American College of Sports Medicine.
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